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Abstract. The challenge inherent in the accurate and efficient numerical
modeling of wave propagation phenomena is the common grand theme in both
computational electromagnetics and acoustics. Many excellent contributions
at this Oberwolfach workshop were devoted to this theme and a wide range of
numerical techniques and algorithms were mustered to tackle this challenge.

Among these methods boundary integral equation methods received par-
ticular attention, both in frequency and time domain. Combined with phase
modulation techniques they pave the way for the construction of frequency
robust schemes for wave scattering. This is an exciting recent development,
which is complemented by the invention of high-order spectral integral equa-
tion methods. In parallel, we also witnessed soaring interest in time-domain
integral equation methods. The alternative volume based schemes for wave
propagation problems can also boast innovations, most notably in the context
of plane wave methods.

Though wave propagation is paramount, several other important aspects
were addressed during the workshop ranging, among others, from the design
of novel Galerkin schemes, asymptotic methods for geometrically singularly
perturbed problems, analysis of spectral edge elements, to the design of pre-
conditioners for quasi-static electromagnetics.

Mathematics Subject Classification (2000): 65Mxx, 65Nxx, 65Rxx, 78-04.

Introduction by the Organisers

This is the report about the third and last in a series of three Oberwolfach
workshops on Computational Electromagnetics and Acoustics. The earlier events
were held in 2004 and 2007. Again, the 2010 workshop attracted a distinguished
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group of researchers in the field, the bulk of them with a background in numerical
analysis, but also a considerable number of participants from engineering. A siz-
able number of PhD students and postdoctoral researchers attended the workshop
and many of them were given the opportunity to present their work.

The workshop comprised a total of 28 presentations, six of which were meant
to provide surveys about specific aspects and methods. The topics covered in the
survey talks were

• asymptotic analysis for wave propagation problems by X. Claeys, page 438,
• analysis of p-version edge element approximation of the Maxwell eigen-
value problem by M. Costabel, page 443,

• spectral-Galerkin surface integral methods for three Dimensional electro-
magnetic scattering by M. Ganesh, page 449,

• radiation boundary conditions for time-domain scattering problems by T.
Hagstrom, page 453,

• plane wave discontinuous Galerkin methods by I. Perugia, page 485, and
• isogeometric analysis in electromagnetism by R. Vazquez, page 506.

Looking back, the field of computational electromagnetics and acoustics has
experienced rapid development in the past decade, has emerged as a core subject
in numerical analysis, and, in the process, has matured as ever deeper and more
comprehensive insights have been gained. With three workshops spanning six
years we may try and trace some aspects of this evolution of the field.

An area that has reached a fairly mature state is the theory of “mimetic dis-
cretization” of the electromagnetic field equations based on co-chains and discrete
differential forms. A final breakthrough was made by proving discrete compactness
for spectral edge elements (see the extended abstract by M. Costabel on page 443),
This closes a chapter in numerical analysis. The construction of fast solvers for
low-frequency electromagnetic field problems has reached a similar maturity. With
qualification, also the theoretical analysis of discontinuous Galerkin (DG) methods
could successfully resolve most open problems in both time and frequency domain.
Meanwhile, DG methods have become commonplace in computational engineer-
ing. The investigation of absorbing boundary conditions has also seen substantial
progress (we refer to the abstract by T. Hagstrom on page 453) and many tech-
niques have become standard tools. Of course, in all these areas, isolated open
problems and specialized settings are still await further exploration.

The workshops saw attention shifting to the treatment of wave propagation
problems at medium to high frequencies. Phase modulation techniques combined
with boundary integral equation methods hold exciting promises (see the contri-
bution by S. Langdon on page 472) as well as spectral methods (cf. the abstracts
by M. Ganesh, page 449 and O. Bruno, page 434). Once obscure, time-domain
integral equation methods have risen to prominence (see the articles by L. Banjai,
page 421, J. Rodŕıguez, page 489, and F. Sayas, page 492) and we may see many
more theoretical results and more algorithmic improvements in the near future.
This list cannot be complete and the following abstracts will reveal many more
promising directions for future research.
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We also point out that the field of computational electromagnetics and acoustics
is too broad to be covered by a single workshop. Important topics that were not
represented by speakers include inverse scattering problems, multi-physics set-
tings like plasmas, non-linear materials, and optimization. Thus computational
electromagnetics and acoustics will continue to be an area of brisk and creative
mathematical research, with an abundance of challenging questions and beautiful
answers.
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Abstracts

Runge-Kutta convolution quadrature for acoustic scattering

Lehel Banjai

(joint work with Christian Lubich)

In this short report we discuss the efficient discretization of time domain bound-
ary integral operators of acoustics and the solution of the arising discrete systems.
The time domain boundary integral operators in question are all given in the form
of a time convolution

(1) K(∂t)g :=

∫ t

0

k(t− τ)g(τ)dτ,

The difficulty in computing such convolutions comes from the fact that the kernel
k(t) is always distributional and in many cases of practical interest, e.g., viscoelas-
todynamics and poroelastodynamics [10], even not known explicitly. However the
Laplace transform of the kernel

(2) K(s) := (L k)(s) =

∫ ∞

0

k(t)e−stdt

is always explicitly known and simpler. For this reason it is essential to be able
to compute (1) by using only the Laplace transformed kernel K(s). To make this
dependence on the Laplace transformed kernel explicit, the operational calculus
notation K(∂t)g is used. The rationale behind this notation comes form the fact
that for K(s) = s, K(∂t)g = g′, if g(0) = 0.

Convolution quadrature, introduced by Christian Lubich in 1988 for sectorial
operators and extended to non-sectorial operators in 1994 [7], is a method to dis-
cretize time convolutions in time (!), but by using only the Laplace transformed
kernel K(s). The use of merely the operator K(s) is the main reason for our
interest in convolution quadratures. Other good methods exist for acoustics and
electromagnetism that work purely in the time domain [1, 5, 9], these are however
not as straightforward to extend to more complicated situtations such as dissipa-
tive media and above mentioned viscoelastodynamics and poroelastodynamics.

We introduce and give convergence results given for convolution quadrature by
making the following assumption on the operator K(s):

K(s) is analytic for Re s > 0 and bounded as

|K(s)| ≤ C(σ0)|s|µ, for Re s ≥ σ0 > 0.
(3)

To make the connection to the time domain boundary integral operators let us
note that single layer operator for the 3D wave equation with wave speed c is given
by

(V (∂t)ϕ) (x, t) =

∫ t

0

∫

Γ

δ(t− τ − |x− y|/c)
4π|x− y| ϕ(y, t)dΓydt, x ∈ Γ,
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where V is the single layer operator in the Laplace domain:

(4) (V (s)φ)(x) :=

∫

Γ

e−s
|x−y|

c

4π|x− y|φ(y)dΓy .

Runge-Kutta based convolution quadrature. Let a Runge-Kutta method be

given by its Butcher tableau
c A

bT
where A ∈ Rm×m, b, c ∈ Rm. A Runge-Kutta

method is said to be A-stable if the stability function

(5) R(z) = 1 + zbT (I − zA)−11

is bounded as

(6) |R(z)| ≤ 1, for Re z ≤ 0 and I − zA is non-singular for all Re z ≤ 0.

To simplify expressions assume further that bTA−1 = (0, 0, . . . , 1), i.e., that the
method is stiffly accurate; this,in turn, implies that cm = 1. For the convergence
result we also need the technical assumption |R(iy)| < 1 for y ∈ R \ {0}. Radau
IIA and Lobatto IIIC are examples of Runge-Kutta methods satisfying all of the
above conditions.

In a Runga-Kutta method computations are done not only at the equally spaced
points tj = j∆t but also at the stages tj + cl∆t, l = 1, 2, . . . ,m. Note that
cm = 1 implies tj+cm∆t = tj+1. The Runge-Kutta based convolution quadrature
approximation to u(tn + cl∆t), l = 1, . . . ,m, is given by

(7)




un1
...

unm


 = K(∂t

∆t)g :=

n∑

j=0

W∆t
n−j(K)




g(tj + c1∆t)
...

g(tj + cm∆t)


 .

Here the matrix convolution weights W∆t
j (K) are defined implicitly by

(8) K

(
∆(ζ)

∆t

)
=

∞∑

j=0

W∆t
j (K)ζj ,

with ∆(ζ) = A−1 − ζA−11bTA−1, 1 := (1, 1, . . . , 1)T .
If p is the order of the Runge-Kutta method and q is the stage order, then in [3]

we could prove that the convergence order of the Runge-Kutta based convolution
quadrature of (1) is given by O(∆tq+1−µ+∆tp), if the data g is sufficiently smooth
and compatible. Numerical experiments for K(s) = sµ/(1− e−s) and the 3-stage
Radau IIA based convolution quadrature confirm the convergence order predicted
by our theory.

An open problem. In [1] it has been shown that

(9) ‖V −1(s)‖H−1/2(Γ)←H1/2(Γ) ≤ C(σ0)
|s|2
Re s

, for Re s ≥ σ0 > 0.

Combining this estimate with our result would suggest a convergence of order
O(∆tq−1) for V −1(∂t

∆t)g. Some preliminary numerical experiments, however,

suggest a higher convergence order O(∆tq) both for the sphere Γ = S2 and a more
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Figure 1. Kernel functions (W̃∆t
j (d))m1 for the 3-stage Radau IIA

(left) and the semilog plot of (W29(d))m1 (right).

complicated non-convex domain. The question then remains whether the estimate
(9) is sub-optimal for some/all domains or if the theory should make use of the
more complex bound (9) rather than the simpler (3) for which the analysis in [3]
has been performed.

The convolution weights W∆t
j (V ). If V is the single layer potential in the

Laplace domain, see (4), then the convolution weights W∆t
j (V ) have the form

(W∆t
j (V )ϕ)(x) =

∫

Γ

W̃∆t
j

(
|x−y|
c∆t

)

4π|x− y| ϕ(y)dΓy,

where W̃∆t
j : R≥0 → Rm×m. In Figure 1 we show a plot of (W̃∆t

j (d))m1 for

d ∈ [0.1, 50] and j = 0, 1, . . . , 50. Also a plot of (W29(d))m1 is given that displays
the exponential decay of this function away from the diagonal d ≈ 30; this shows
that up to exponentially small error the space discretization of the convolution
quadrature weights have the familiar, though denser, sparsity pattern of, for ex-
ample, space-time Galerkin discretizations of the time domain boundary integral
operators.

Efficient implementation and numerical experiments. In applications we
usually want to find Uj = (uj1, · · · , ujm)T such that K(∂t

∆t)U = Gn, with

Gn = (g(tn+c1∆), · · · g(tn+cm∆))T . In [2] a modification of a recursive procedure
of [6] is introduced which allows the solution of this discrete convolution equation
without ever constructing the convolution weights. In this method the only opera-

tor that needs to be inverted is W∆t
0 (V ) = V

(
∆(0)
∆t

)
. A number of non-trivial 3D

numerical experiments have been presented in [2]. These show very good qualita-
tive properties of the Runge-Kutta convolution quadrature in comparison to linear
multistep based method.
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Hierarchical Matrix Preconditioners for the Curl-Curl Operator

Mario Bebendorf

(joint work with Jörg Ostrowski)

Solution of boundary value problems involving the curl-curl operator is para-
mount in computational electromagnetism. An example is the ungauged vector
potential based magnetostatic problem

curl
1

µ
curl u = j0 in Ω,(1a)

u× n = 0 on ∂Ω ,(1b)

which we choose as our model problem with given source current j0. Here, n is the
exterior normal at the boundary ∂Ω of the computational domain Ω, µ ∈ L∞(Ω)
with µ0 ≤ µ(x) ≤ µ1 for some constants µ0, µ1 ∈ R is the magnetic permeability.

The curl-curl operator has a large kernel. An obvious idea to regularize the
“magnetostatic operator” is to add a multiple of the identity. Hence, we consider
the operator

(2) Lα := curl
1

µ
curl + αI

with constant 1/µ1 ≤ α ∈ R as a preconditioner for the magnetostatic operator
L0 = curl 1µcurl.

One of the most established methods for the iterative solution of electromagnetic
problems are multigrid methods; see [6, 1]. Algebraic multigrid methods (AMG)
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can be applied if no finite element grid hierarchy is available; see [8], and [3] for
an improved version. However, they lack a comprehensive theoretical analysis. A
major difference of the method in [8] and the method presented in this talk is that
we do not regularize the problem itself. We rather use the regularized operator for
generating preconditioners for the original problem (1), while in [8] an approximate
solution which depends on the regularization parameter α is computed. See [7] for
a preconditioning technique that relies on solvers for the discrete Poisson problem.
In this talk we propose the use of hierarchical matrices (H-matrices) [4, 5] due
to their efficiency and robustness with respect to non-smooth coefficients in the
differential operator.

1. Approximation by hierarchical matrices

Let Aα ∈ Rn×n arise from the H(curl)-conforming edge element Galerkin dis-
cretization of Lα. The existence of H-matrix approximations to inverse finite
element stiffness matrices A−1α can be proved using the representation

(L−1α v)(x) =

∫

Ω

G(x, y)v(y) dy for all v ∈ H0(curl; Ω)

of the inverse containing the Green function G of Lα and Ω. Degenerate approxi-
mations of G lead to low-rank matrices in A−1α . In [2] the following approximation
result for the Green function G is proved:

Theorem 1. Let D1 ⊂ Ω and let D2 ⊂ Ω be a convex polyhedron satisfying

η dist(D1, D2) ≥ diamD2

for some η > 0. Then for any ε > 0 there is a separable approximation

Gk(x, y) =
k∑

ℓ=1

uℓ(x)vℓ(y)
T with k . c3η| log ε|4,

so that for all x ∈ D1 we have ‖G(x, ·)−Gk(x, ·)‖L2(D2) ≤ ε‖G(x, ·)‖
L2(D̂2)

, where

D̂2 := {y ∈ Ω : 2η dist(y,D2) < diamD2} and cη = 2cAe(1 + η).

2. Preconditioning the Curl-Curl operator

Let 0 = λ1 = · · · = λm−1 < λm ≤ · · · ≤ λn denote the eigenvalues of the
symmetric positive semi-definite matrixA0. Notice that the smallest non-vanishing
eigenvalue λm is uniformly bounded away from zero. The regularization (2) leads
to positive definite coefficient matrices Aα := A0 + αM , where M denotes the
mass matrix.

Let C := LHL
T
H, LH ∈ H(P, k), be an approximate Cholesky decomposition of

Aα satisfying

‖Aα − C‖2 ≤ εH‖Aα‖2.
Then an appropriate choice of the hierarchical matrix rounding precision εH guar-
antees that A0 and C are spectrally equivalent on the orthogonal complement
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(kerA0)
⊥ of the kernel of A0. Let λ′1, λ

′
n > 0 denote the smallest and the largest

eigenvalue of M . The choice

εH :=
αλ′1

2(αλ′n + λn)

leads to spectral equivalence

1

2
(1 + α

λ′1
λn

)xTA0x ≤ xTCx ≤ 3

2
(1 + α

λ′n
λm

)xTA0x, x ∈ (kerA)⊥,

of A0 and C on (kerA0)
⊥. Note that the spectral equivalence on (kerA0)

⊥ is
sufficient for a bounded number of iterations since the conjugate gradient method
suppresses kernel components of the initial vector.

3. Numerical experiments

Numerical experiments were made on the test geometry of Fig. 1. The magnetic
permeability jumps between a value of 1.3 ·10−6 (Vs)/(Am) in the air and the coil
to a value of 6.3 ·10−4 (Vs)/(Am) in the core. The diameter of the coil is 2.45 cm.

Figure 1. Results of the magnetostatic field computations.

Table 1 contains the time required to set up the hierarchical matrix precondi-
tioner for various problem sizes n and different numbers of processors p, while
Table 2 shows the time required for the iterative solution with residual error
εCG = 10−4. For the parallelization of the methods see [2]. The columns la-
beled “Ep” contain the parallel efficiency. The results were obtained on a system
consisting of two Intel Xeon 5160 processors (dual core, 3 GHz). In all tests we
have used a multiple of the identity matrix for regularization, where the regular-
ization parameter α was set to 2π/µ0. Notice that the size of the matrix entries
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in A is of the order 1/µ0. The rounding accuracy εH of the hierarchical matrix
Cholesky factorization was chosen 10−2.

n non-zeros partition p = 1 p = 2 E2 p = 4 E4

163 693 2 679 725 3.4s 31.8s 16.1s 98.8% 9.7s 82.0%
297 302 4 884 262 7.2s 65.5s 33.5s 97.8% 17.8s 92.0%
420 881 6 909 745 11.3s 112.3s 59.3s 94.7% 33.9s 82.8%
523 989 8 626 747 14.2s 131.3s 66.4s 98.9% 40.5s 81.0%
664 539 10 921 019 20.0s 181.6s 91.1s 99.7% 50.0s 90.8%
742 470 12 192 476 22.3s 212.4s 115.6s 91.9% 60.3s 88.1%
810 412 13 284 530 25.2s 234.7s 131.2s 89.4% 70.6s 83.1%
955 968 15 715 398 29.5s 273.4s 159.6s 85.7% 82.7s 82.6%

Table 1. Cholesky factorization time on p = 1, 2, 4 processors.

n #It p = 1 p = 2 E2 p = 4 E4

163 693 60 17.7s 9.3s 95% 6.2s 71%
297 302 75 42.0s 24.2s 87% 14.6s 72%
420 881 96 81.4s 43.5s 94% 28.8s 71%
523 989 92 93.9s 50.3s 93% 33.6s 70%
664 539 88 118.9s 63.6s 93% 42.2s 70%
742 470 77 117.9s 69.9s 84% 42.1s 70%
810 412 81 134.0s 74.0s 91% 47.3s 71%
955 968 85 163.3s 92.5s 88% 58.4s 70%

Table 2. Preconditioned CG solution on p = 1, 2, 4 processors.
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Apparently, the complexity scales almost linearly and the parallelization of the
hierarchical LU factorization algorithm shows a competitive speedup. The number
of iterations is bounded independently of n. The major part of the total solution
time is used to construct the preconditioner. This ensures a quick computation of
the magnetic field in case of varying exciting currents j0, i.e. for multiple right-hand
sides.
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Some Preliminary Results on a Multi-Domain Boundary Element
Method

Abderrahmane Bendali

(joint work with Xavier Claeys, Ralf Hiptmair, Carlos Jerez-Hanckes)

We consider the following scattering problem

(1)





u ∈ H1
loc(R

n) :=
{
v ∈ D′(Rn); ϕv ∈ H1(Rn), ∀ϕ ∈ D(Rn)

}

uℓ = u|Ωℓ
, ∆uℓ + κ2ℓuℓ = 0 in Ωℓ (ℓ = 0, . . . ,m)

limr→∞ r
(n−1)/2(∂r(u0 − uinc)− iκ0(u0 − uinc)) = 0

m∑

ℓ=0

〈∂nℓ
uℓ, v〉Γℓ

= 0, ∀v ∈ H1
loc(R

n)

where

• {Ωℓ}ℓ=mℓ=0 is a non overlapping decomposition of Rn such that Ωℓ (ℓ = 1, . . . ,m)
is a bounded domain,

• κℓ complex constant such that Reκℓ > 0, Imκℓ ≥ 0 (ℓ = 0, . . . ,m),
• uinc(x) = exp(−iκ0x ·Θ) with Θ ∈ Rn such that |Θ| = 1,
• Γℓ = ∂Ωℓ and 〈·, ·〉Γℓ

is the duality bracket betweenH−1/2(Γℓ) andH
1/2(Γℓ),
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• nℓ is the unit normal to Γℓ (assumed to be at least Lipschitz) outwardly
directed to Ωℓ.

The usual boundary integral formulations of problem (1) as those considered in
[5] lead to a final linear system not well-adapted for an iterative solution. The aim
of this study, for which some preliminary results are presented here, is to overcome
this flaw.

Let us first present the boundary integral formulation. It has some similarities
with the boundary integral domain decomposition introduced in [3] with the main
difference that it involves no explicit determination for the Dirichlet-to-Neumann
operator. Let us denoted by H±1/2 :=

∏n
ℓ=0H

±1/2(Γℓ)

(2) XD :=
{
µ ∈ H1/2; ∃v ∈ H1

loc(R
n), µℓ = v|Γℓ

(ℓ = 0, . . . ,m)
}

(3) XN :=
{
p ∈ H−1/2;

∑m
ℓ=0 〈pℓ, µℓ〉Γℓ

= 0, ∀µ ∈ XD

}
.

Clearly, the Cauchy data of problem (1)

(4) λ = {uℓ|Γℓ
}ℓ=mℓ=0 , p = {∂nℓ

uℓ|Γℓ
}ℓ=mℓ=0 ,

satisfy λ ∈ XD, p ∈ XN . Using the usual integral representations of the solutions
to the Helmholtz equation which either satisfy the radiation condition or are of
finite energy for an absorbing ambient medium (cf., e.g., [4]), we can write

(5) uℓ(x) = uincℓ (x) + Ψ
(ℓ)
SLpℓ(x) + Ψ

(ℓ)
DLλℓ(x), x ∈ Ωℓ (ℓ = 0, . . . ,m)

where Ψ
(ℓ)
SLpℓ and Ψ

(ℓ)
DLλℓ are the single- and the double-layer potentials created by

the densities pℓ and λℓ respectively

(6)





Ψ
(ℓ)
SLpℓ(x) =

∫

Γℓ

G(κℓ, x, y)pℓ(y)dsy ,

Ψ
(ℓ)
DLλℓ(x) = −

∫

Γℓ

∂nℓ(y)G(κℓ, x, y)λℓ(y)dsy,
(x /∈ Γℓ)

The function Gℓ is the Green kernel explicitly given by

(7) Gℓ(κℓ, x, y) =

{
(i/4)H

(1)
0 (κi |x− y|), for n = 2,

exp(iκℓ |x− y|)/4π |x− y| , for n = 3.

For the convenience in the notation, we have set uincℓ (x) = 0 for ℓ 6= 0 and
uinc0 (x) = uinc(x). The main feature, on which is based the class of boundary
integral formulations presented here, is that, in (5), the densities pℓ and λℓ are the
Cauchy data of uℓ if and only if one succeeds to ensure that the right-hand side
in this equation is zero in the complement Ωcℓ := Rn\Ωℓ of Ωℓ. As a result, we
can combine the approaches in [2] for removing spurious solutions due to internal
resonances and in [1] for designing formulations which can be efficiently solved by
means of an iterative method. LetMℓ be a smoothing positive operator compactly
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acting from H−1/2(Γℓ) into H1/2(Γℓ) satisfying
〈
pℓ,Mℓpℓ

〉
Γℓ

> 0 if pℓ 6= 0. We

hence get the class of formulations presented here

(8)





find (p, λ) ∈ H−1/2 ×XD,〈
qℓ, β

(
Ψ

(ℓ)
SLpℓ +Ψ

(ℓ)
DLλℓ

)−
+Mℓ∂nℓ

(
Ψ

(ℓ)
SLpℓ +Ψ

(ℓ)
DLλℓ

)−〉

Γℓ

= −
〈
qℓ, βu

inc
ℓ +Mℓ∂nℓ

uincℓ
〉
Γℓ
, ∀qℓ ∈ H−1/2(Γℓ) (ℓ = 0, . . . ,m),

∑ℓ=m
ℓ=0 〈pℓ, µℓ〉Γℓ

= 0, ∀µ ∈ XD.

with β a fixed parameter such that Imβ > 0.
The proof of the following theorem can be obtained in several ways.

Theorem Let be given t ∈ H−1/2 and χ ∈ H1/2. The problem

(9)





find (p, λ) ∈ H−1/2 ×XD,〈
qℓ, β

(
Ψ

(ℓ)
SLpℓ +Ψ

(ℓ)
DLλℓ

)−
+Mℓ∂nℓ

(
Ψ

(ℓ)
SLpℓ +Ψ

(ℓ)
DLλℓ

)−〉

Γℓ

= 〈qℓ, χℓ〉Γℓ
, ∀qℓ ∈ H−1/2(Γℓ) (ℓ = 0, . . . ,m),∑ℓ=m

ℓ=0 〈pℓ, µℓ〉Γℓ
= 〈tℓ, µℓ〉Γℓ

, ∀µ ∈ XD,

admits one and only one solution satisfying the following estimate

(10) ‖(p, λ)‖
H−1/2×H1/2 ≤ C ‖(t, χ)‖

H−1/2×H1/2 .

The minus supscript indicates the tace on Γℓ taken from the complement domain
of Ωℓ.

As regards of the numerical approximation of problem (8), up to now we have
partial results concerning only geometries not involving multiple points.

Theorem If no boundary of the non-overlapping decomposition Γj intersects the
interior of any domain Ωℓ, then, for a sufficiently small mesh size, the nodal con-
tinuous linear by element approximation of both the unknown and the testing func-
tions yields a stable and convergent boundary element method for solving problem
(8).

In fact the main advantage of formulation (8) lies in the fact it can be solved
by an iterative method, where each iteration is performed by solving a standard
combined field integral equation in each domain Ωℓ. In a sense, the method boils
down to a domain decomposition method. Plot 1 depicting the decrease of the
GMRES-residual gives a clear indication on its efficiency.
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Figure 1. Decrease of the residual during GMRES iterations for
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Time-harmonic electromagnetism in presence of interfaces between
classical materials and metamaterials

Anne-Sophie Bonnet-Ben Dhia

(joint work with Lucas Chesnel and Patrick Ciarlet)

In some adequate range of frequencies so-called metamerials display a behaviour
which can be described by the usual Maxwell’s equations with negative real values
of ε and µ [1]. Such negative index materials have very attractive properties: for
instance, a slice of metamaterial with ε = −1 and µ = −1 could in principle help
to build a perfect lens [2]. Our purpose is the study of mathematical and numerical
properties of the time-harmonic Maxwell’s equations in a bounded domain Ω which
is the union of two subdomains Ω1 and Ω2, such that ε and µ take positive values
in Ω1 and negative values in Ω2. Let us consider for instance a second order
formulation for the electric field E:

(1)





curl

(
1

µ
curlE

)
− ω2εE = F in Ω

E × n = 0 on ∂Ω

where the source term F ∈ L2(Ω)3 is such that divF = 0. We have to face two
difficulties: on one hand, as a consequence of the sign-switch of µ, the operator

curl
(

1
µ curl

)
suffers from a lack of coerciveness; on the other hand, due to the
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sign-switch of ε, the available results regarding the compactness of the embedding
of the space of electric fields

Vε = H0(curl)(Ω) ∩H(div, ε)(Ω)

in L2(Ω)3 do not apply. We discuss these two aspects and prove that well-posedness
of (1) can be recovered under restrictive conditions on the contrasts in ε and µ
between the two domains.

1. The coerciveness issue

Let us consider first the scalar problem

(2)

{
div

(
µ−1∇u

)
+ ω2εu = −f in Ω

u = 0 on ∂Ω

In the case where µ takes a constant value µi in each subdomain Ωi and where
the interface Σ between Ω1 and Ω2 is regular enough, one can prove [3] using an
integral equation on Σ that problem (2) is Fredholm in H1

0 (Ω) if, and only if,
κµ 6= −1, where κµ = µ1

µ2
. On the other hand, the problem is ill-posed in H1

0 (Ω) if

Σ has a right angle (see figure 1) and κµ lies in Iµ where the critical interval Iµ is
defined by Iµ = [−3,−1/3] (see [4]).

In the general case of L∞ coefficients (ε, µ and 1/µ) and Lipschitz interface Σ,
we developed two approaches to prove that problem (2) is Fredholm in H1

0 (Ω) if
one of the following two conditions is fulfilled:

(1) κ↑µ > κsupµ ≥ −1 where κ↑µ =
supx∈Ω1

µ1

supx∈Ω2
µ2

(2) κ↓µ < κinfµ ≤ −1 where κ↓µ =
infx∈Ω1

µ1

infx∈Ω2
µ2

where the constants κsupµ and κinfµ depend only on the geometry. The first ap-
proach consists in writing an augmented variational formulation of problem (2),
whose unknowns are u and ∇u|Ω2

, which is coercive+compact in H1
0 (Ω) [5]. The

second approach consists in finding an isomorphism T of H1
0 (Ω) such that the

bilinear form a(u, v) =
∫
Ω
µ−1∇u · ∇(Tv) is coercive on H1

0 (Ω). This allows to
establish an inf-sup condition (and in a similar manner a discrete inf-sup condi-
tion) for the natural variational formulation of problem (2) (see [6]). The first
approach has been extended to Maxwell equations in [7]. The extension of the
second approach (T coerciveness) requires restrictive conditions on the regularity
of µ and Σ. As a consequence, the convergence of usual finite element schemes
for Maxwell equations in the general case of a Lipschitz interface is still an open
question.

2. The compactness issue

As mentioned in the introduction, well-posedness of Maxwell’s equations with
sign-switching ε and µ requires in addition a compactness embedding result. Using
the above results, we prove the
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Figure 1. The corner case

Theorem 1. The space Vε = H0(curl)(Ω) ∩H(div, ε)(Ω) is compactly embedded
in L2(Ω)3 if

κ↑ε > κsupε ≥ −1 or κ↓ε < κinfε ≤ −1

where the constants κsupε and κinfε depend only on the geometry.

Proof. Following Weber’s proof, we consider a bounded sequence En of Vε: clas-
sically, there exist bounded sequences ϕn ∈ H1

0 (Ω) and Ψn ∈ H(curl)(Ω) ∩
H0(div)(Ω) such that En = ∇ϕn + 1

ε curlΨn. By hypothesis, the sequences

div (ε∇ϕn) def
= fn and curl

(
1
ε curlΨn

) def
= Fn are bounded in L2. The objec-

tive is then to find a subsequence such that ∇ϕn and curlΨn converge in L2(Ω)3.
Consider for instance the ϕn. By Rellich theorem, there is a subsequence, still
denoted by ϕn, which converges in L2(Ω). Setting ϕnm = ϕn − ϕm, we have by
linearity: ∫

Ω

ε∇ϕnm · ∇v =

∫

Ω

fnmv ∀v ∈ H1
0 (Ω)

We conclude by using the T coerciveness: taking v = Tϕnm, we get the Cauchy
criterion for ∇ϕm in L2(Ω)3. We proceed in the same way for the Ψn. �

Summing up, we prove that problem (1) is Fredholm if the following conditions
hold:

1) κ↑µ > κsupµ ≥ −1 or κ↓µ < κinfµ ≤ −1

2) κ↑ε > κsupε ≥ −1 or κ↓ε < κinfε ≤ −1

which read for constant εi and µi:

κµ =
µ1

µ2
/∈ Iµ and κε =

ε1
ε2

/∈ Iε

where Iµ and Iε are critical intervals containing −1.

3. A way to overcome ill-posedness in the 2D corner case

We have investigated the problem of solving (2) when κµ ∈ Iµ, in the case of
the geometry of Fig. 1.

For κµ ∈ C\Iµ and f ∈ L2(Ω), problem (2) is well-posed (except maybe for
discrete real values of ω) and Mellin analysis [4] shows that the solution u is the
sum of a regular part ureg which is H2 on each side of Σ, and a singular part
proportional to the singular function S, which behaves near the singular point like

S(r, θ) ∼ rλφ(θ)
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where the singular exponent λ has a strictly positive real part. When κµ tends
to some limit value in Iµ, this real part tends to 0. The interval Iµ is exactly
the interval of values of the contrasts κµ such that the singular function S has
a pure imaginary singular exponent, so that S /∈ H1(Ω). More precisely, both
the singular function S and the dual singular function S∗ have a pure imaginary
singular exponent:

S(r, θ) = S
∗
(r, θ) ∼ riγφ(θ)

Using Mellin coordinates (t, θ) with t = − log r near the singular point, we can
emphasize that there is a strong analogy between this problem and classical scat-
tering problems in unbounded domains. Singular functions correspond to modes
of the strip {(t, θ); t ∈ R; θ ∈ [0, 2π]}. For κµ ∈ C\Iµ, all modes are evanescent
but for κµ ∈ Iµ, there exist two propagative modes, propagating in opposite direc-
tions t and −t. The strategy that we suggest is to establish a limiting absorption
principle to select the “outgoing” mode, which corresponds to the correct singular
behavior. This allows one to solve problem (2) in the space H1

0 (Ω) + {S}. In
addition classical numerical methods like PMLs could be used to solve (2) with
finite elements.
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New methodologies for corner-edge treatment and efficient time
evolution

Oscar P. Bruno

This note concerns recent progress in two important problems in numerical anal-
ysis and computational science, namely solution of Partial Differential Equations
(PDE) with special attention to treatment of geometric singularities and accurate,
fast solution of time-dependent problems.
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Corner-edge problem. The problem of evaluating numerical solutions of Partial
Differential Equations (PDE) under conditions that give rise to solution singular-
ities (such as reduced differentiability and/or blow-up) is one of fundamental im-
portance in science and engineering—yet, a wide variety of such problems have not
been adequately addressed from a computational perspective. Here we consider a
prototypical problem of this type, namely, solution of the Neumann problem for
Laplace’s equation in domains containing corners. For this problem, the associated
integral-equation solutions, along with the physical fields, tend to infinity at the
singular points. The high-order numerical methodology we propose [7], which is
based on use of Nyström discretization of second-kind integral equations and exact
cancellation of associated blow-up terms, applies to a variety of other problems for
which integral formulations exist, including two- and three-dimensional problems
concerning potential theory, scattering and diffraction in areas such as electro-
magnetics, acoustics and solid mechanics. In particular, our method exploits a
new expression for the field near edges which makes it possible to avoid the two
main difficulties arising in this context by existing Garlerkin approaches, namely,
cancellation of infinities and expensive integrations.

A variety of high-order integral equation methods for two- and three-dimensional
problems in domains with smooth boundaries have been available for some time [19,
3, 13, 23]. Both high- and low-order accurate integral equation methods for non-
smooth domains have been put forward as well [21, 1, 11, 12, 17, 8, 9, 10, 18]; the
references [21, 1] are representative of a significant portion of the (sizable) liter-
ature on high order integral equation approaches. The approach represented by
the contribution [21] relies on use of first kind (singular or hypersingular) integral
equations and high-order (Galerkin) boundary element methods; such approaches,
which apply both to Dirichlet and Neumann problems and are theoretically sound,
require costly evaluation of matrix elements and, for cases in which the integral
equation solutions are unbounded, have, in practice, given rise to limited accura-
cies; see e.g. [16]. Focusing on previous Nyström methodologies, which are closer
in spirit to the approach put forward in the present contribution, on the other
hand, we mention [20, 2, 14]; the extensive literature in this area is discussed in [1,
Chap. 8]. Each of these contributions employs special graded-mesh quadratures
to achieve high-order accuracy in the solution of the Dirichlet problem in two-
dimensional domains with corners by means of second-kind integral equations. A
direct extension of this methodology to the Neumann case does not generally give
rise to highly accurate solutions. A key theoretical and practical difference be-
tween the Dirichlet and Neumann problems in this regard, is that the solutions
of the corresponding integral equations are bounded for the former (if the inte-
gral equations are selected appropriately), while they are generally unbounded (at
corners) for the latter. The contribution [22], which, like [20, 2, 14], is based on
use of changes-of-variables and graded meshes, considers solutions of both Dirich-
let and Neumann problems and has produced results of significant accuracy. As
demonstrated in [7], such an approach does not completely resolve the singular
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corner behavior in the Neumann case, and thus it: 1) Cannot yield high accura-
cies for Neumann problems around corner points, unless expensive, highly-refined
integration rules are used to evaluate integrals of the products of basis functions
and the very highly peaked composition of the nearly non-integrable kernel and
the graded-mesh change-of-variables; and 2) Owing to subtractive cancellations,
it leads to diminishing accuracies as discretizations are refined beyond a certain
level—yielding limited or no accuracy for problems which, like the sharp-angle
problems mentioned below in this text, require fine sampling meshes.

Relying on analytical cancellation of singularities and special treatment of
nearly non-integrable integrands, the approach [7] eliminates these difficulties and
enables highly efficient high-order Nyström solution of the general Neumann prob-
lems. In this method, the leading singularity of the solution of the integral equation
is treated separately, while the more regular remainder is handled using graded-
mesh quadratures, so that cancellations errors are eliminated and high order accu-
racy is achieved without recourse to highly refined submeshes. Numerical results
presented in [7] demonstrate the efficacy of this algorithm through applications to
solution of Neumann problems for the Laplace operator over a variety of domains—
including domains containing extremely sharp concave and convex corners, with
angles as small as π/100 and as large as 199π/100.
Efficient time-stepping: The FC family of evolution algorithms. We
recently introduced a new methodology [4, 5] for the numerical solution of Par-
tial Differential Equations (PDEs) in general spatial domains. This approach is
based on use of the well-known Alternating Direction Implicit (ADI) methodology
in conjunction with the “Fourier Continuation” method [6] for the resolution of
the Gibbs phenomenon. Alternating direction algorithms can yield unconditional
stability at approximately the same cost per time step as explicit (conditionally
stable) finite difference formulations, and have thus been pursued aggressively
over the last half century. The application of alternating direction methods has
been hindered by a significant limitation however: previous alternating direction
approaches could not be directly applied to PDEs on arbitrary (non-rectangular)
domains without reducing the truncation error near the boundary to first order [4].
Our Fourier-Continuation Alternating-Direction (FC-AD) methodology [4, 5], in
contrast, can produce high-order accuracies with unconditionally stable numer-
ics for general geometries, for any spatial dimensionality, and in essentially linear
time—of the order of a spatial Fast Fourier Transform per time-step. A variety
of numerical examples presented in [4, 5] demonstrate the unconditional stability
and high-order convergence of the proposed algorithm, as well the very significant
improvements it can provide over corresponding accuracies and speeds resulting
from other methods.

As noted in [4], over the more than fifty years since the introduction of the
finite-difference-based ADI algorithm, many variants of this approach have been
put forward, including methods for solution of a variety of linear and nonlinear
PDEs as well as methods of high-order of spatial and temporal accuracy. As
suggested above, previous unconditionally stable alternating-direction methods
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can only achieve high-order accuracy in presence of a formulation of the given
PDE on domains given by the union of a finite number of rectangular regions.
The few unconditionally stable high-order ADI algorithms that have been applied
to non-rectangular geometries rely upon domain mappings that translate the given
problem into one posed on a rectangular geometry, to which a stable version of the
algorithm is applicable. Unfortunately, however, the construction of such domain
mappings is prohibitively laborious for most engineering and scientific applications.
To the authors’ knowledge, unconditionally stable high-order alternating direction
algorithms for general domains without some form of domain mapping had not
been produced prior to the contributions [4, 5].

Our use of the Fourier basis, which relies on Fourier approximation of non-
periodic functions, requires resolution of a classical problem in numerical analysis:
the Gibbs phenomenon. Briefly, our “FC(Gram) algorithm” [4, 5] for the reso-
lution of the Gibbs phenomenon is an accelerated version of the “continuation
method” [6] for accurate Fourier representation of nonperiodic functions. For a
given d-dimensional (open) domain Ω, d ≥ 2, our FC-AD algorithm uses a Carte-
sian grid given by the intersection of Ω with a Cartesian grid G in all space. The
PDE is discretized in time and then split into sets of un-coupled spatial ODEs
by means of an alternating direction technique. To complete the time-stepping
algorithm, each one of the resulting spatial ODEs is then solved with high-order
accuracy on the corresponding Cartesian line, call it L, by means of the FC(Gram)
continuation method and one-dimensional grids in L. The one-dimensional grid in
L equals the union of L∩G∩Ω and the set of boundary points L∩ ∂Ω. Since the
computational cost required for the FC(Gram) solution of each one of these spatial
ODEs is proportional to that of a one dimensional FFT, the overall cost of a full
FC-AD time-step is of the order of O(N log(N)) operations, where N denotes the
size of the full d-dimensional spatial grid. As shown in [4, 5], these solvers can
be thousands of times faster (and beyond, depending on the size of the problem)
than other competing solvers; see e.g. Tables 1, 2 and 3 in the reference [4].
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Overview on a selection of recent works in asymptotic analysis for
wave propagation problems

Xavier Claeys

In recent years, the study of wave propagation has induced a lot of research in
relation with asymptotic analysis. While many types of problems may possibly
be linked both to asymptotic analysis and scattering theory, the present overview
focuses on recent advances concerned with wave propagation problems involving
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a small perturbation of geometrical nature.

General issues Consider a well posed wave propagation problem (Pδ) with solu-
tion uδ (called ”exact”) that depends on a parameter δ satisfying kδ << 1 where
k is the wave number. The problem (Pδ) is assumed to be a perturbed version
of a limit problem (P0) from which it differs only in a localised region that is as
small as δ in one (or more) direction of space.

Our purpose is to design a numerical method for (Pδ) that would keep track of
the influence of the perturbation at a reasonnable computational price. One idea

is to find another well posed problem (P̃δ) that satisfies two features:

• its dependency with respect to δ is easier to handle numerically,

• its unique solution ũδ is a sufficiently accurate approximation of uδ.

Deriving such an approximate model for (Pδ) is usually not a trivial issue. Suppose

that we want to build (P̃δ) such that ‖uδ−ũδ‖ = O( η(δ) ) with η(δ) → 0. Consider
the expansion

uδ(x) = u0(x) + λ1(δ)u1(x) + · · ·+ λN (δ)uN (x) +O( η(δ) )

One possible approach consists in identifying a (well posed) problem (P̃δ) that

would be satisfied by
∑N

n=0 λn(δ)un(x) up to a residual in O(η(δ)), and prov-

ing that ũδ satisfies a relevant error estimate noting that ũδ =
∑N

n=0 λn(δ)un +
O( η(δ) ).

Although approximate models can be easier to handle, they may contain ex-
otic features which would require specific numerical treatments. Once a numerical

method has been proposed for P̃δ, a typical issue consists in proving that there
exists C > 0 (independent of δ) and µ(h) → 0 such that ‖ũδ − ũδ,h‖ ≤ C µ(h) for
all h, δ ∈ (0, 1) where ũδ,h is the discrete solution.

Thin layer problems In the first category of problem that we examine, the
perturbation has the structure of a thin layer of thickness δ located along smooth
boundaries or smooth interfaces of the domain of propagation. In such a case
the exact solution admits an expansion of the form: uδ = u0 + δu1 + δ2u2 + . . . .
A possible approximate model then consists in posing the wave equation in the
limit geometry, as if there were no perturbation, and taking into account the thin
layer by means of modified boundary conditions called Generalized Impedance
Boundary Conditions (GIBC).

Scattering by objects with thin dielectric coating is a first exemple of such a
case. On this subject, Engquist and Nédélec in [15] proposed a GIBC that was
much more accurate than any of the modified impedance boundary conditions that
had been previously introduced. Since then, a complete theoretical framework for
thin coatings has been developped by Bendali, Lemrabet, Joly, Haddar and co-
workers in [2, 3, 4, 14, 16], including derivation of full expansions and rigorous
justifications of GIBCs of high order. Besides Poignard in [29] studied the case
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a high contrasted thin coating, and Chun and Hestaven in [7] validated the good
computational efficiency of GIBCs in a discontinuous Galerkin context.

Scattering by a highly absorbing obstacle is another case of thin layer problem.
Assume that such an object admits an absorption coefficient σ = k/δ2 where
δ → 0. A wave penetrating such an object keeps a significant amplitude only in
a region of thickness δ concentrated along the exterior boundary of the obstacle:
this is the skin effect. Whereas thin coating problems had been studied for long,
there existed very few works on high absorption problems until recently, except
[1, 32]. Haddar, Joly and Nguyen in [17, 18] proposed results comparable to what
had been established in the case of thin coatings. Péron, Dauge and co-workers
in [6, 27] also proposed a derivation of full expansions for obstacles with Lipschitz
boundary (not just smooth) and studied precisely the influence of the geometry
on the skin thickness. Finally Haddar and Lechleiter in [19] proposed a similar
analysis in the context of scattering by an unbounded obstacle.

The case of a domain of propagation containing a dielectric layer of thickness
δ is a third example that caught attention only recently. In [31] Schmidt and
Tordeux proposed a full expansion and approximate trasmission conditions pre-
cise in O(δ2) for a scalar problem. Poignard and Péron in [28, 30] derived an
expansion in O(δ3) of the exact solution to an electromagnetic scattering problem.
Chun, Haddar and Hestaven in [8] formally derived an expansion for a time do-
main electromagnetic problem and studied computational efficiency of high order
GIBCs in a discontinuous Galerkin framework.

Geometric singular perturbation problems In a second part of this presenta-
tion we focus on asymptotic problems for which the solutions admit an expansion
with terms that may have a singular behaviour related to a singularity appearing
in the geometry. In this situation, the exact solution may admit an expansion
with more complex structure than for thin layer problems. On this type of as-
ymptotic analysis for elliptic problems, the reference book is [26]. For such cases
different asymptotic approaches are possible, we comment on two: multiscale ex-
pansion method and matched asymptotics. Clear presentation and comparison of
those two approaches was the subject of [13]. Concerning matched asymptotics, a
reference book is [20].

Multiscale expansion method and matched asymptotics share several common
features. Both techniques involve far field functions expressed in standard vari-
ables, and near field functions that depend on scaled variables, and in both cases
the expansion is obtained as an interpolation between the near and the far field
terms. These methods differ on the cutt-off functions used to interpolate, and on
the exact procedure used to construct the far field and near field terms. The mul-
tiscale expansion method provides sharper approximations but looks less intrinsic
than matched asymptotics. The construction procedure associated to matched
asymptotic requires to enforce an algebraic identity called ”matching principle”.

Several recent works dedicated to problems of this category deserve attention.
Joly, Tordeux and co-workers in [12, 21, 22, 23, 24] applied matched asymptotics
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and provided a full expansion and approximate models for the propagation of
waves in thin slots. This work also brought deep insight on the matching principle
for a whole class of problems. Dauge, Vial, Costabel and Caloz in [5, 33] studied a
thin coating problem in the case of a domain whose boundary contains an angle.
An important conclusion of this work is that the ansatz is directly related to the
opening of the angle: this case is much more involved than the case of a smooth
boundary. Besides in this situation, whether it is possible to derive high order
GIBC remains an open question. The works of Tordeux and Vial have inspired
further advances in many other situations including patch antennas, see [25], or
diffraction by thin wires, see [9, 10, 11].

Open questions Concerning remaining open questions that we present, we would
like to formulate two observations. First, asymptotic problems in a context of time
domain scattering have received only few attention so far. Second, theoretical
numerical analysis for approximate model in an asymptotic context still remains
to be developed for most of the problems already studied from a purely analytical
point of view.
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p version edge element approximation of the Maxwell eigenvalue
problem

Martin Costabel

(joint work with Daniele Boffi, Monique Dauge, Leszek Demkowicz, Ralf
Hiptmair, Alan McIntosh)

In the theory of finite element approximations of Maxwell’s equations, it has been
known for a long time that the spectrally correct approximation of the eigenvalue
problem is harder to achieve than the approximation of the source problem. The
finite element spaces have to satisfy additional requirements that are not always
guaranteed. An example is the spectral (“p version”) approximation on a single
square element in R2 using Qp vector fields, discretizing the variational formulation

Find ω 6= 0 and E ∈ H0(curl,Ω) \ {0} such that

∀Ẽ ∈ H0(curl,Ω) :

∫

Ω

curlE · curl Ẽ = ω2

∫

Ω

E · Ẽ

In this example, the Maxwell eigenvalues are well approximated, but with wrong
multiplicities [8, Section 5.3]. As a consequence, the source problem with a fre-
quency different from the eigenfrequencies is well approximated, but the approx-
imation is not spectrally correct. The additional requirements (which are not
satisfied in this example) can be cast in various different forms, a classical form
being Kikuchi’s discrete compactness property [16]. In the recently finished paper
[4], we prove the discrete compactness property in a generalized setting of differ-
ential forms, which includes 2D and 3D Maxwell equations as special cases and
covers several p version finite element approximations of the Maxwell eigenvalue
problem where the question of spectrally correct approximation had been open,
such as triangular meshes in 2D and tetrahedral and hexahedral meshes in 3D.

This proof uses two main ingredients that have become available only recently:
On one hand, a class of projection operators onto the finite element spaces that
enjoy certain p-uniform Sobolev estimates and satisfy the commuting diagram
property (“cochain projections” for the De Rham complex, in the language of
the survey article [2]). These are provided by the projection-based interpolants
constructed and analyzed by Demkowicz et al [10, 11, 14]. On the other hand,
a regularizing left inverse of the curl operator, given by the regularized Poincaré
operator analyzed in [9]. This operator is now known to be a pseudodifferential op-
erator of order −1 and has useful mapping properties between polynomial spaces.
It belongs to a class of singular integral operators dual to a class generalizing the
Bogovskĭı operator [6, 12, 13, 17].

Embedding the curl operator into the De Rham complex and simultaneously em-
bedding the finite element space used for discretizing the energy space H0(curl,Ω)
into a discrete complex of finite element spaces has long been a successful recipe
for constructing good approximations of Maxwell source and eigenvalue problems.
This is an important theme in Hiptmair’s survey article [15], and it has been ele-
vated to the status of a dogma in the recent survey articles [1, 2] by Arnold, Falk
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and Winther. In [2], a strong case is made for the claim that the right setting
for finite element approximations of the Maxwell source problem are discrete sub-
complexes of the L2-based De Rham complex equipped with cochain projections
that are uniformly bounded in the graph norm of the exterior derivative operator
(for the approximation of H0(curl,Ω), this boundedness would correspond to a
uniform bound in the H(curl) norm.) For the eigenvalue problem, the stronger
requirement of the availability of uniformly L2-bounded cochain projections onto
the discrete subcomplexes is introduced. In [1, 2], only the h version of the finite
element method on simplicial meshes is considered, and for this situation, a con-
structive proof of the existence of h-uniformly L2 bounded cochain projections is
given.

Their construction is not applicable to the p version of the finite element
method, and it is currently an open question whether p-uniformly L2 bounded
cochain projections on suitable discrete subcomplexes of the De Rham complex
exist at all. My current conjecture is that they do not exist, in general. A motiva-
tion for this pessimistic view is based on the struggle in the papers [5, 3] to prove
L2-stability of a certain projection operator, to be used as a tool in the proof of
the discrete compactness property. In [5], which considered the p and hp version
on triangular meshes, it was suggested by numerical computations that such a
stability would hold with a constant that grows like

√
p, and in [3] it was shown

for rectangular meshes that this growth is indeed present. This not-quite-uniform
estimate was sufficient to prove discrete compactness – and therefore spectral cor-
rectness of the approximation – in these cases, because the growth of the L2 norm
could be compensated by a sufficiently good approximation property in the same
norm.

In the abstract framework of the paper [4], the curl operator is also embedded
into the De Rham complex, and a commuting diagram plays an important role,
as well as a piece of a subcomplex of the De Rham complex that serves as domain
of definition of the required projection operators. But these projection operators
are, as their concrete instances, the projection-based interpolation operators, only
defined on some dense subspaces of the energy spaces, described by the graph
norm in certain Sobolev spaces more regular than L2, and they have p-uniformly
bounded norms with respect to these smaller spaces.

The discrete compactness property appears at several places in the proof of
the spectral correctness of the approximation of the eigenvalue problem. One
place is its implication – together with a rather natural approximation property
(“Completenes of the discrete kernel”, see [7]) – of the discrete Friedrichs inequality
(DFI). In its turn, (DFI) is easily seen to be equivalent to what is called the
“spurious-free approximation” property in [7], that is, a finite gap between the
eigenvalue zero and the rest of the discrete spectrum. In [2], it is shown that
(DFI) (called “Poincaré inequality”) is equivalent to the existence of uniformly
graph-norm bounded cochain projections. The projections thus constructed are
similar to those whose L2-norm stability was studied in [5, 3].
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Convergent scattering algorithms

Fatih Ecevit

Hybrid numerical methods based upon a combination of integral equations and
asymptotic theories for the solution of high-frequency scattering problems have
found an increased interest within the last two decades. Indeed, the methodologies
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developed in this time span, that specifically concern scattering off a single two-
dimensional smooth convex obstacle [2, 5, 6, 8], display the capability of predicting
scattering returns within any prescribed accuracy utilizing a number of degrees of
freedom independent of (or only mildly dependent on) the frequency.

This report concerns (i) the classification of Hörmander classes and asymp-
totic expansions of multiple scattering iterations for a collection of smooth convex
obstacles that thereby allow for the extension of the single-scattering solvers in
[5, 6, 8] to multiple-scattering configurations to accompany the algorithm in [3];
and (ii) the derivative estimates of multiple scattering iterations that are neces-
sary for their rigorous numerical analysis and that facilitate the development of
convergent scattering algorithms (for each fixed value of the wavenumber k) for
the computation of each iterate (utilizing a number of degrees of freedom that
depends only mildly on the frequency to attain a prescribed accuracy) based on
the ideas in [5].

To present a summary of the relevant results we have recently developed in
[1, 7], let us consider the problem of evaluating the scattering of an incident plane
wave uinc(x) = eikα·x, |α| = 1, from a compact impenetrable obstacle K with a
smooth boundary ∂K. Throughout this note we concentrate on two-dimensional
configurations wherein the relevant frequency-domain problem is modeled by the
Helmholtz equation

∆u(x) + k2u(x) = 0, x ∈ R2\K,
where the scattered field u is required to satisfy the Sommerfeld radiation condition
[4]; here, for definiteness, we shall assume Dirichlet boundary conditions on ∂K.

As is well known, this problem can be restated in the form of an integral equation
in a variety of ways [4]; a convenient form for our purposes is that derived from
the Green identities resulting in the equation

(1) η(x)−
∫

∂K

∂G(x, y)

∂ν(x)
η(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂K

for the unknown density η (the normal derivative of the total field), where ν(y)
denotes the vector normal to ∂K and exterior to K,

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|)

is the outgoing Green function, and G = −2Φ. Since the solution of the integral
equation (1) is not unique when the wavenumber k is an internal resonance, in
practical implementations a “combined field” integral equation formulation must
be used [4]. For the sake of simplicity, the derivations that follow, for the descrip-
tion of multiple scattering formulation of the scattering problem, are based upon
the integral equation (1).

Let us now further suppose that the sound-soft obstacle K is decomposed into
a finite collection of disjoint compact sub-scatterers K =

⋃
σ∈I Kσ. Then the

integral equation (1) can be written as

(2) (I −R) η = f
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where η(x) = (ησ1
(x), . . . , ησ|I|

(x))t and f(x) = (fσ1
(x), . . . , fσ|I|

(x))t with ησ and
fσ defined on ∂Kσ and

fσ(x) = 2ik eikα·x α · ν(x),
and the operator R is defined as

(Rστ ητ )(x) =

∫

∂Kτ

∂G(x, y)

∂ν(x)
ητ (y) ds(y), x ∈ ∂Kσ.

Inverting the diagonal part of (2) yields the equivalent relation

(3) (I − T )η = g

with

gσ = (I −Rσσ)
−1fσ, σ ∈ I

and

Tστ =

{
(I −Rσσ)

−1Rστ if σ 6= τ
0 otherwise.

The formulation (3) provides a convenient mechanism to account for multiple
scattering since the m-th term in its Neumann series solution

(4) η =

∞∑

m=0

ηm =

∞∑

m=0

Tmg

corresponds to contributions arising as a result of waves that have undergone m
reflections. More precisely, we have

(5) ηm
∣∣
∂Kσ

=
∑

τ0,···τm−1∈I
σ 6=τm−1,τj 6=τj−1

Tστm−1
Tτm−1τm−2

· · ·Tτ1τ0gτ0 ,

where each application of a Tστ entails an evaluation on ∂Kσ of a field generated
by a current on ∂Kτ , and its use as an incidence for a subsequent solution of a
single-scattering problem on ∂Kσ. Accordingly, equations (4) and (5) guarantee
that η can be recovered as the superposition (over all infinite paths {Km}m≥0 ⊂
{Kσ : σ ∈ I}) of multiple scattering iterations ηm that recursively solve the
integral equations

η0(x)−
∫

∂K0

∂G(x, y)

∂ν(x)
η0(y) ds(y) = 2

∂uinc(x)

∂ν(x)
, x ∈ ∂K0

and, for m ≥ 1,

ηm(x)−
∫

∂Km

∂G(x, y)

∂ν(x)
ηm(y) ds(y) =

∫

∂Km−1

∂G(x, y)

∂ν(x)
ηm−1(y) ds(y), x ∈ ∂Km

on the path {Km}m≥0.
Supposing now that the obstacles Kσ are strictly convex, under certain condi-

tions, the multiple-scattering iterations ηm admit the factorizations

(6) ηm(x) = eikϕm(x) ηslowm (x), x ∈ ∂Km
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wherein ϕm is the m-th geometrical optics phase, and where the asymptotic prop-
erties of the slow envelope ηslowm are as follows (see [1, 7] for details):

Theorem 1 (Hörmander classes and asymptotic expansions of ηslowm , [1, 7]) The
asymptotic characteristics of the slow densities ηslowm specified by (6) are as follows:
(i) On the m-th illuminated region ∂KIL

m , ηslowm (x) = ηslowm (x, k) belongs to the
Hörmander class S1

1,0(∂K
IL
m × (0,∞)) and admits the asymptotic expansion

ηslowm (x, k) ∼
∑

j≥0

k1−jam,j(x)

where am,j(x) are complex-valued C∞ functions. Accordingly, for any N ∈ N∪{0},
the difference

rm,N (x, k) = ηslowm (x, k) −
N∑

j=0

k1−jam,j(x)

belongs to S−N1,0 (∂KIL
m × (0,∞)) and thus satisfies the estimates
∣∣Dβ

xD
n
k rm,N (x, k)

∣∣ ≤ Cm,β,n,S(1 + k)−N−n

on any compact subset S of ∂KIL
m for any multi-index β and n ∈ N ∪ {0}.

(ii) Over the entire boundary ∂Km, η
slow(x, k) belongs to S1

2/3,1/3(∂Km × (0,∞))

and admits the asymptotic expansion

ηslowm (x, k) ∼
∑

p,q≥0

k2/3−2p/3−q bm,p,q(x)Ψ
(p)(k1/3Zm(x))

where bm,p,q(x) are complex-valued C∞ functions, Zm(x) is a real-valued C∞ func-
tion that is positive on the illuminated region ∂KIL

m , negative on the shadow region
∂KSR

m , and vanishes precisely to first order on the shadow boundary ∂KSB
m , and

the function Ψ is a certain contour integral of an Airy function (see [9]). Note
specifically then, for any P,Q ∈ N ∪ {0}, the difference

Rm,P,Q(x, k) = ηslowm (x, k)−
P,Q∑

p,q=0

k2/3−2p/3−q bm,p,q(x)Ψ
(p)(k1/3Zm(x))

belongs to S−µ2/3,1/3(∂Km× (0,∞)), µ = min {2P/3, Q}, and thus satisfies the esti-
mates ∣∣Dβ

xD
n
kRm,P,Q(x, k)

∣∣ ≤ Cm,β,n(1 + k)−µ−2n/3+|β|/3

for any multi-index β and n ∈ N ∪ {0}.
As we anticipated, the preceding theorem provides the necessary theoretical

background for the extension of the single-scattering solvers [6, 6, 8] to multiple
scattering configurations to accompany the algorithm in [3]. As a byproduct, we
now present the derivative estimates of the slow envelopes ηslowm that can be directly
utilized for the numerical analysis of multiple scattering iterations ηm as is done
in [5, 6] for a single convex obstacle.
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Theorem 2 (Derivative estimates of ηslowm , [7]) Let m ≥ 0, and denote by y(s) =
(y1(s), y2(s)) the arc-length parametrization of ∂Km. Then, for all n ∈ N ∪ {0},
there exist a constant Cn > 0 independent of k and s such that for all k sufficiently
large,

∣∣Dn
s η

slow
m (y(s))

∣∣ ≤ k

{
Cn, n = 0, 1,

Cn

[
1 +

∑n
j=2 k

(j−1)/3(1 + k1/3|w(s)|)−(j+2)
]
, n ≥ 2,

where w(s) = (s − a)(b − s) and ∂KSB
m = {y(a), y(b)} is the set of m-th shadow

boundary points.
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Spectral-Galerkin Surface Integral Methods for Three Dimensional
Electromagnetic Scattering

M. Ganesh

(joint work with S. C. Hawkins)

Many important physical processes involve scattering of electromagnetic waves by
ensembles of deterministic and stochastic particles [5, 14, 15, 18, 20, 21, 22, 23, 24].

In particular, for applications such as light scattering in (i) the atmospheric sci-
ences, with configurations consisting of computer models of atmospheric ice crys-
tals and dust particles [12, 15, 18] with rough non-convex surfaces with unique
stochastic description; and (ii) medical diagnostics [5, 14, 20, 22, 23, 24] involving,
for example, several red blood cells; and in several other classes of wave propaga-
tion problems [21], it is efficient to develop algorithms that directly incorporate
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local mapping properties of each obstacle in the configuration and use such map-
pings to reduce the computational complexity.

The spectral methods are one of three major classes of schemes in computa-
tional science. Three dimensional spectral-Galerkin algorithms critically depend
on application-specific geometric properties for rapid high-order convergence (and
hence reduced degrees of freedom) in computations compared to the other two
major classes of grid based low-order finite-difference and boundary/finite-element
methods.

In this short note, we discuss high-order spectral-Galerkin boundary integral al-
gorithms with specific focus on simulating the scattering of electromagnetic waves
by a collection of disjoint three-dimensional obstacles D1, D2, . . . , DJ situated in
a homogeneous medium.

The general surface coordinates, in deterministic and stochastic computer mod-
eling of various particles (described in the above applications and references)
and in several other models, can be written locally in spherical coordinates as
(x, y, z) = (qj1(θ, φ), q

j
2(θ, φ), q

j
3(θ, φ)), where (x, y, z) is a point on the surface of

the j-th particle in the configuration, and (θ, φ) are the polar and azimuth an-
gles of a point on the unit sphere S2, leading to a diffeomorphic local mapping
qj : S2 → ∂Dj, j = 1, . . . , J , for the surface ∂Dj of the j-th obstacle Dj in the

configuration. The local coordinate mappings qj1, q
j
2, q

j
3 may be given by Fourier

series, based on deterministic or stochastic descriptions of the particle surfaces,
such as those described in [5, 14, 15, 18, 20, 21, 22, 23, 24].

Spectral boundary integral algorithms in three dimensions were investigated for
potential and elasticity problems in [1, 2, 6, 7], for acoustic scattering in [4, 8, 13,
19] and for electromagnetic scattering in [9, 10, 11, 12, 16]. Naive generalization
of spectrally accurate three dimensional acoustic scattering algorithms to elec-
tromagnetic scattering may destroy the advantages of the spectral algorithm. In
particular, only quadratic convergence was obtained for electromagnetic scattering
in [16], despite exploiting the mapping properties described above.

Spectrally accurate spectral-Galerkin surface integral algorithms for electro-
magnetic scattering for single and multiple particles were developed recently by
the authors in [11, 12]. Due to the spectral accuracy of the algorithms, fewer
unknowns are required to solve a given problem to a prescribed accuracy than low
order boundary element methods. In particular, compared to industrial standard
algorithms developed about a decade ago, our new algorithms require only 2 to
5% as many unknowns for particles that can be locally represented using the map-
ping properties described above. For example, the industrial standard Fast Illinois
Solver Code [17] requires 2 408 448 unknowns to simulate scattering by a sphere of
diameter 48 wavelengths. In contrast, our spectral algorithm requires only 48 670
unknowns to obtain similar accuracy [11]. Further increasing the number of un-
knowns by between one and three percent leads to very high-order accuracy in our
spectral-Galerkin algorithms [11].

Several steps are crucial in the development of spectrally accurate multiple
electromagnetic scattering algorithms, as described in [12].
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The first step is the approximation of tangential surface currents on the surface
of each scatterer in the ensemble, using non-polynomial basis functions. In this
part of the algorithm, first the local spherical coordinate mappings are exploited,
allowing use of a well-known high-order tangential basis on the fixed reference
surface spanned by polynomials of degree, say not greater than n. Then, for
the j-th connected surface, we develop an efficient transformation Fj with the
property that Fj(x̂)Z(x̂) is tangential at any point qj(x̂) on ∂Dj whenever Z is

a tangential function on the reference surface. In addition, we proved the O(n−r)
best approximation property of the non-polynomial tangential basis, where r is
the maximum smoothness of the particles in the configuration.

The second step, which is equally important as the first, is the spectrally accu-
rate discretization of the several surface integral operators acting on the surface
current in the multiple ensemble configuration, by analytically resolving singu-
larities and approximating integrands in the J2 surface integrals that describe
interaction of the waves between any two particles in the configuration. Such
approximations, as described in [12], also retain the spectral O(n−r) accuracy.

Combining these with several other technical details, due to the spectral accu-
racy, both direct and iterative surface decomposition approaches can be used for
electromagnetic scattering simulations such as those given in the figure [12]. In
addition to mathematically proving spectral accuracy of our algorithms, excellent
comparison of simulation results with several experimentally measured radar cross
section values (such as those in [3, 21]) have been established in [9, 10, 11, 12].

In the following table we demonstrate the high-order convergence of our algo-
rithm by tabulating the accuracy of the backscattered RCS for a cluster of J = 16
stochastic ice crystal and dust atmospheric particles created by an incident wave
with frequency ω. The relative errors reported below are obtained by matching
digits of backscattered RCS values as the number of unknowns are increased, in
comparison with the backscattered RCS value obtained using n = 60. The number
of unknowns in our simulation is only NJ , where for N = 7440 for the case n = 60.

n 40 45 50 55
Relative error in

backscattered RCS 3.429e-06 2.261e-07 1.726e-07 7.781e-08

In the figure below we visualize the shadow in the near field by plotting |E(·, t)|
in a vertical plane behind the 16 stochastic particles at time t = ω/4.
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Radiation boundary conditions for time-domain scattering problems

Thomas Hagstrom

Although in the frequency domain the development of various fast solution algo-
rithms leads, at least in my view, to the conclusion that integral equation formula-
tions of scattering problems, when applicable, are more efficient than volume-based
discretizations, the situation in the time domain is far less clear. In particular,
volume-based approaches maintain the locality of the hyperbolic time-evolution
operator and also allow the use of flexible and relatively well-understood approxi-
mation methods. In many cases, we contend that even the total memory require-
ments are decreased, as no extensive time history is required. However, for these
potential advantages to be realized, rapidly convergent near-field radiation bound-
ary conditions are required. The focus of this talk is the construction and analysis
of optimal conditions for many of the standard models, including Maxwell’s equa-
tions and the linearized Euler equations. We will also discuss some ideas for their
extension to more complex cases.



454 Oberwolfach Report 10/2010

We begin with the construction of boundary conditions in a half-space for hy-
perbolic systems. We consider

∂u

∂t
+A

∂u

∂x
+
∑

d

Bd
∂u

∂yd
= 0

where Bd = BTd and, in preparation for deriving boundary conditions on the
hyperplane x = 0, A has been block-diagonalized with positive-definite, negative-
definite, and zero diagonal blocks, corresponding to a partition of the solution,
u = (u−, u+, u0)

T , in terms of incoming, outgoing, and tangential variables. For
our error estimates we will assume that the scatterer is located a (small) distance
δ to the left of the boundary. We formally solve the system by Fourier-Laplace (in
y − t - dual variables k − s) transformations. To properly label waves as causally
incoming and outgoing, it is useful to take Re s > 0. To develop approximations
we will take

Re s =
1

T

where T is a time scale over which we want to guarantee accuracy - for example the
simulation time. Note that we are explicitly introducing a time scale, which isn’t
directly involved in the operator we are approximating. In fact we will approximate
a homogeneous symbol by an inhomogeneous one.

The solutions take the form

û = e−µ(s,k)xφ,
(
sI − µA+

∑
ikdBd

)
φ = 0

with waves labeled by the sign of Reµ. Exact radiation boundary condition
at x = 0 simply encode the statement that there are no incoming waves. The
idea behind our method is to interpolate the exact condition at some collection
of eigenvalues. We attempt to develop uniform approximations along the entire
inversion contour. To emphasize this fact we call the resulting boundary condition
sequences complete radiation boundary conditions, or CRBCs for short.
We choose the interpolants µj and µ̄j to be affine in s (and also possibly in k)
corresponding respectively to eigenvalues with positive and negative real parts. We
can realize these interpolants by evolving auxiliary variables along the boundary.
The idea is to write down recursions which terminate for outgoing waves with
µ = µj or incoming waves with µ = µ̄j .

∂ψj
∂t

−
(
cj
∂

∂t
+ σj

)
Aψj +

∑

d

(Bd + βjdA)
∂ψj
∂yd

=

∂ψj+1

∂t
+

(
c̄j
∂

∂t
+ σ̄j

)
Aψj +

∑

d

(Bd + β̄jdA)
∂ψj
∂yd

,

for j = 0, . . . , q with ψ0 = u. Truncate by:

ψ−,q+1 = 0,
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with
∂ψ+,0

∂t computed from the interior. Note that it is straightforward to reinter-
pret the recursions as a semidiscretized perfectly matched layer (PML) by rein-
terpreting the recursion indices as grid indices. See also the work of Guddati and
coworkers [1, 2] for this connection.

What we’ve left out is the choice of nodes to guarantee rapid convergence. The
fact is, we don’t know how to find them in general. But we do know how to do
it for isotropic systems, as well as a few (including the linearized Euler equations
[3]) which are anisotropic. For the isotropic cases we have

µ = ±γ = c−1
(
s2 + c2k2

)1/2
.

We first derive a convenient representation for γ and thus µ via some elementary
computations.

γ = cosφ · s
c
+

1

cT
· sin

2 φ

cosφ

with |φ| < π
2 everywhere on the inversion contour.

We then interpolate at an optimal set of nodes, φj . Precisely we prove in [4]
that q interpolation nodes can be chosen which guarantee an error less than ǫ up
to time T with

q ∝ ln
1

ǫ
· ln cT

δ
.

The estimate is proven using estimates of the complex reflection coefficient
adapting Newman’s famous construction of exponentially convergent rational ap-
proximations to |x| [5] combined with Parseval’s relation. It is in using Parseval’s
relation for Laplace transforms that the restriction to Re s = O(T−1) arises.

Directly we show that the claimed estimate holds for approximations of the
form:

cosφj =

(
2

δ

cT ln 1
ǫ

)j/q
, j = 0, . . . , q.

Computations of optimal nodes using the Remez algorithm show that the approx-
imations can be made very efficient. For example, for δ

cT = 10−3, three digit
accuracy can be guaranteed using 7 terms and six digits using 14.

To enable computations in exterior domains we construct corner closures by
introducing multiply-indexed auxiliary variables at the corners which satisfy the
recursions from each edge. We can combine the governing equations with the two
sets of recursions to derive corner odes for the new variables, which in turn provide
boundary conditions along the edges. (We can also view this construction as a
standard corner layer using the PML analogy.) As yet we have no analysis of the
corner closures but they work in practice; see numerical experiments in [4].

Although we believe the CRBCs provide an entirely satisfactory solution to the
time-domain radiation boundary condition problem for the systems mentioned, a
number of important mathematical and practical issues remain open.
Rigorous Error Analysis Including the Corner Conditions: One possibility
is to write down an equivalent integral operator and try to adapt work on inte-
gral equations on nonsmooth domains. On the full plane we can write down the
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equivalent integral operator using the Fourier-Laplace representation, but what is
it on a polygon?
Simpler Corner Treatments: The implicit system on the corner can be large for
3d applications.A simpler corner treatment for the standard Padé approximants
is implicit in recent work by Schmidt and coworkers (e.g. [6] on formulations of
approximate boundary conditions using the pole condition. Can their method be
adapted to the CRBCs? Can it be used to generalize conditions to curved-off
corners (smooth boundaries)?
General hyperbolic systems: Do good interpolation nodes always exist, and
if so how can we find them? It is straightforward to derive bounds on µ± from
the coefficient matrices, but are they too crude? Also, if the sign of the imaginary
part of µ± changes as the magnitute of Im s changes we are in the case of a
phase velocity - group velocity mismatch. For dispersion relations following from
quadratic equations we can always effectively transform to an isotropic problem.
Then CRBCs work directly. See [7, 3]. What about more complicated cases, such
as the problems in elasticity discussed by Bécache and coworkers in [8]?

In such cases we cannot choose complex µj , µ̄j so that each term in the product
defining the reflection coefficient is less than 1. Purely real parameters, on the
other hand, work, but may be very slowly convergent. It is interesting to note
that the “damping layer” interpretation of the CRBCs in the case of purely real
paramters is simply grid stretching. Grid stretching combined with damping is
a popular technique in the engineering community. In [9] Appelö and Colonius
show experimentally that this method can be quite accurate for elastic waves if
high-order discretizations are used. Can a rigorous analysis be given?
Variable coefficients: Coefficients which are variable tangential to the bound-
ary as in stratified media can be treated in the same way as constant coefficient
problems. One only needs to estimate the location of the eigenvalues which can
be done (perhaps crudely) using the coefficients. Variation in the normal direction
is more difficult. That said, Ehrhardt and Zheng [10, 11] have recently character-
ized and approximated the exact conditions for periodic and decaying potentials.
In the periodic case their formulation directly uses the function γ which we just
approximated; thus the CRBCs are clearly relevant. More generally, the exact
conditions formally follow from an operator Ricatti equation. It seems likely that
this formulation could be combined with our interpolation scheme.

Alternatively, one could imagine combining the grid stretching method [9] men-
tioned earlier with some sort of goal-oriented grid adaption. We also mention a
multiscale filtering approach for the Schrödinger equation with decaying potentials
which has been proposed and analyzed by Sofer and Stucchio in [12].
Multiple scattering: Can we interface with a fast propagation algorithm or
construct one out of the solution expression used to build the boundary conditions?
The latter construction has recently been achieved by Sim and Grote [13], who
use auxiliary functions from a high order boundary condition based on progressive
wave expansions to directly to propagate the field.
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Discrete Lie-derivatives: Eulerian approach

Holger Heumann

(joint work with Ralf Hiptmair)

In this talk we present a novel approach to derive Eulerian discretizations of non-
stationary generalized convection-diffusion equations. The calculus of differential
forms permits us to express general non-stationary convective partial differential
equation as

−ε(−1)ld ∗ dω(t) + ∗∂tω(t) + ∗Lβω(t) = ϕ in Ω ⊂ Rn .(1)

This is an equation for an unknown l-form ω(t), 0 ≤ l ≤ n, on the domain Ω. The
symbol ∗ stands for the so-called Hodge operator mapping an l-form to an (n− l)-
form, and d denotes the exterior derivative. Together they define the principal part
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d∗dω of the differential operator. Lie-derivative Lβ, is a convection operator for a
given velocity field β. Differential forms can be modelled by means of functions and
vector fields through so-called vector proxies [4, page 132]. For n = 3, in the case of
∗ induced by the Euclidean metric on R3, the operator d∗dω becomes −∆,∇×(∇×
·), and ∇ ·∇ in vector proxy notation, for l = 0, 1, 2, respectively. The convection
operators for vector proxies are β ·∇, ∇(β · ·)−β×(∇×·) and β(∇ ·)−∇×(β×·).
We refer to [3] for more details and an introduction to the calculus of differential
forms. For 0 < ε ≪ 1 we encounter in (1) a singularly perturbed boundary value
problem. While a stable discretization for the case l = 0 has attracted immense
attention in numerical analysis, see [5] and the many references cited therein, the
cases l = 2 and l = 3 have been neglected. These cases are nevertheless relevant
for numerical modeling, e.g. in magnetohydrodynamics. The magnetoquasistatic
electrodynamic equations in moving media can be reformulated as a convection-
diffusion problem for 1-forms in introducing the electromagnetic vector potential
A [6, section 4]:

∂tA+ ε∇×∇×A+ (∇×A)× β +∇(A · β) = f .(2)

Here ε is the electrical resistivity σ−1. In [6] we introduced Semi-Lagrangian
methods for (1) based on the observation that:

∂tω(t) + Lβω(t) = lim
τ→0

ω(t)−Φ∗−τω(t− τ)

τ
,(3)

where Φ∗−τ is the pullback induced by the flow Φ−τ of the velocity β [2, p. 140].
In general, neither the conforming nor the non-conforming approximation spaces
for discrete differential forms ωh permit global continuity. Only the restriction
of ωh to elements Ti of the triangulation Ωh is polynomial. Fully discrete Semi-
Lagrangian schemes therefore require additional approximation steps. Either we
use interpolation operators to map the pullback of discrete forms to the approx-
imation space, or we decompose the domain into non-overlapping parts, where
both the pullback of the discrete forms and the discrete forms are continuous.
Both approaches can be used to derive Eulerian discretization. We will focus in
the following on the second approach. Eulerian discretizations of (1) build on
semi-discretization in space. While the spatial discretization of the diffusion op-
erator is well known [3], we encountered difficulties for the convection operator.
The Lie-derivative is not well defined for discontinuous discrete differential forms.
But since our Semi-Lagrangian approach yields convergent schemes we postulated
that for small perturbation parameter ∆t > 0 the difference quotient

b∆t(ωh, ηh) :=

∫

Ω

ωh −Φ∗−∆tωh

∆t
∧ ∗ηh,(4)

should give a consistent discretization of the convection operator Lβ and in par-
ticular the limit:

b0(ωh, ηh) := lim
∆t

∫

Ω

ωh −Φ∗−∆tωh

∆t
∧ ∗η,(5)
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if it exists, will give a parameter-free consistent discretization. By means of the
contraction/extrusion technique [7] we can show that this limit exists. Moreover
b0(ωh, ηh) is a sum of volume integrals over elements Ti and face integrals over
faces fj . For vector proxies in R3 this is:

l = 0 : b0(ωh, ηh) ∼
∑

Ti

∫

Ti

β · ∇uw dx−
∑

fj

∫

fj

β · n+(u+ − u−) · w+dS

l = 1 : b0(ωh, ηh) ∼
∑

Ti

∫

Ti

∇(u · β) · v + (∇× u× β) · v dx

−
∑

fj

∫

fj

β · n+(u+ − u−) · v+dS

l = 2 : b0(ωh, ηh) ∼
∑

Ti

∫

Ti

∇× (u× β) · v + (∇ · uβ) · v dx

−
∑

fj

∫

fj

β · n+(u+ − u−) · v+dS

ℓ = 3 : b0(ωh, ηh) ∼
∑

Ti

∫

Ti

∇(u · β) · v dx−
∑

fj

∫

fj

β · n+(u+ − u−) · w+dS

where the superscripts + and − indicate the trace from the upwind and downwind
side. Note that the case l = 3 is the stabilized discontinuous Galerkin scheme [1].
It is possible to prove convergence for all these schemes, both for the conforming
and the non-conforming approximations along the lines of the proof for l = 3 in
[1]. Our numerical experiments confirm this.
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Multiple Traces Boundary Integral Formulation for Helmholtz
Transmission Problems

Carlos Jerez-Hanckes

(joint work with Ralf Hiptmair)

We present a boundary formulation of the Helmholtz transmission problem over
multiple penetrable subdomains that lends itself to operator preconditioning. Us-
ing interior Calderón projectors, the problem is cast in variational Galerkin form
with a matrix operator whose diagonal is composed of block boundary integral
operators. We show uniqueness of solutions, continuity and coercivity of the for-
mulation in ad hoc functional spaces.

1. Transmission problem

1.1. Geometry. Let Ωi ⊂ Rd denote mutually disjoint, isotropic curvilinear Lip-
schitz polytopes possessing boundaries ∂Ωi and individually homeomorphic to a

sphere. These compose a scatterer Ω, i.e., Ω̄ =
⋃N
i=1 Ω̄i, with boundary ∂Ω. De-

note the exterior isotropic unbounded domain by Ω0 := Rd \ Ω̄. For each Ωi, we
write its complement as Ωci := Rd \ Ω̄i. Let Γij := ∂Ωi ∩ ∂Ωj, denote the common
interfaces and eventually be equal to the empty set if the domains are not adjacent.
Notice that Γij = Γji and that each ∂Ωi can be decomposed into its interfaces,
∂Ωi =

⋃
j∈Λi

Γ̄ij , where we have introduced the index set:

(1) Λi := {j = 0, . . . , N : j 6= i and Γij 6= ∅}
The union of the interfaces Γij or skeleton is denoted by Σ and we set Σ0 := Σ\∂Ω,
representing the union of only interior interfaces.

1.2. Functional spaces. Let Γij have a boundary, then standard duality pairings
are (

H1/2(Γij)
)′

= H̃−1/2(Γij) and
(
H̃1/2(Γij)

)′
= H−1/2(Γij),

where H̃1/2(Γij) is the space of functions whose extension by zero over ∂Ωi \ Γ̄ij
lies in H1/2(∂Ωi). Define the product trace space Vi := H1/2(∂Ωi)×H−1/2(∂Ωi)
equipped with the natural graph norm. Let u,v ∈ Vi, identify V′′i with Vi, and
write their dual product as sum of component-wise dual products:

〈u , v〉×,i := 〈Qi u , v〉i = 〈u , Qi v〉i , where Qi :=

(
0 Idi

Idi 0

)
.

The associated sesquilinear form is (u , v)×,i := 〈u , v〉×,i and we define the ×-
adjoint of an operator Hi : Vi → Vi, through the relation

(
H
†
i u , v

)
×,i

:= (u , Hi v)×,i ∀ u,v ∈ Vi.

For multiple interfaces, we will require the tensor product spaces:

H̃−1/2(∂Ωi) :=
⊗

j∈Λi

H̃−1/2(Γij) and H1/2(∂Ωi) :=
⊗

j∈Λi

H1/2(Γij).
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for which the chain of inclusions

H1/2(∂Ωi) ⊂ H1/2(∂Ωi) ⊂ L2(∂Ωi) ⊂ H̃−1/2(∂Ωi) ⊂ H−1/2(∂Ωi)

holds. We also need the space Ṽi := H1/2(∂Ωi)× H̃−1/2(∂Ωi) and the subspaces

defined by restriction over Γij , Vij := Vi|Γij and Ṽij := Ṽi|Γij with associated
dual product 〈· , ·〉×,ij and sesquilinear form (· , ·)×,ij .
1.3. Problem statement. Let u in Ω0 refer to the scattered wave while in Ω it
represents the total wave. Define Pi := −(∆+κ2i ) with κi ∈ R+ and introduce the
trace operator γiu := (γiDu, γ

i
Nu) : H1

loc(Pi,Ωi) → Vi. Transmission conditions
over each interface take the form (in distributional sense)

[γu]Γij
=
(
Xj γ

ju − γiu
)

in Γij

where we introduce the orientation operator Xi for Neumann data. We seek u ∈
H1

loc (Ω ∪ Ω0) such that

(2)





Pi u = 0 in Ωi i = 0, . . . , N ,

[γu] = g on ∂Ω ,

[γu] = 0 on Σ0 ,

+ radiation conditions for |x| −→ ∞
where the boundary data g = (gD, gN) ∈ Vi is given.

2. Multiple trace formulation

The idea relies on the weak enforcement of jump conditions across interfaces by
doubling the number of trace unknowns in suitable functional spaces. These are
Cartesian products of standard Dirichlet and special Neumann spaces, for which
restriction and extension by zero operations are well defined.

2.1. Restriction and extension operators. Introduce the following operators
acting on Dirichlet data:

restriction: R
D
ij : H1/2(∂Ωi) −→ H1/2(Γij),

extension by zero: E
D
ij : H1/2(Γij) −→ H1/2(∂Ωi) .

Their dual adjoints are denoted

E
N
ij :=

(
R
D
ij

)′
: H̃−1/2(Γij) −→ H̃−1/2(∂Ωi),

R
N
ij :=

(
E
D
ij

)′
: H̃−1/2(∂Ωi) −→ H̃−1/2(Γij)

where E
N
ij is the “extension by zero” for Neumann data over ∂Ωi while R

N
ij is the

restriction over Γij . With these, one can define the operator over Vi

Rij ϕ
i :=





(
R
D
ij 0

0 R
N
ij

)
ϕi if j ∈ Λi,

0 any other case,

∀ j ∈ {0, . . . , N}.
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Its ×-adjoint, R†ij , is the formal extension by zero with diagonal terms ED
ij and E

N
ij ,

well defined for functions in Ṽij . With it, we have the following result (in weak
sense)

(3)
N∑

j=0

R
†
ij Rij = Idi : Ṽi −→ Ṽi .

2.2. Calderón projectors. Recall the interior and exterior Calderón projectors:

Ci =
1

2
Id + Ai and C

c
i =

1

2
Id − Ai, where Ai :=

(
−Ki Vi
Wi K

′
i

)
,

with Vi, Ki, K
′
i, Wi, denoting the standard single-layer, double-layer, adjoint

double-layer, and hyper-singular boundary integral operators, respectively. If u
is solution of the Helmholtz problem (2), it must hold

(4) γiu = Ci γ
iu =

(
1

2
Id + Ai

)
γiu =⇒ 1

2
γiu = Ai γ

iu on ∂Ωi.

2.3. Multi-trace formulation. Define VN := V0 × · · · ×VN and equivalently

for ṼN . Expansion of the jump operator in (2) over each interface in Σ0 in weak
sense yields,

(
R0i γ

0u − Ri0 Xi γ
iu , R0iϕ

0
)
×,0i

=
(
R0i X0 g , R0iϕ

0
)
×,0i

,(5a)
(
−R0j X0 γ

0u+ Rj0 γ
ju , Rj0 ϕ

j
)
×,j0

= −
(
R0j g , Rj0 ϕ

j
)
×,j0

,(5b)
(
Rji γ

ju− Rij Xi γ
iu , Rjiϕ

j
)
×,ji

= 0 ,(5c)

for i 6= j ∈ {1, . . . , N} and for all ϕ ∈ ṼN . We can extend conditions (5) in order
to define transmission conditions over each ∂Ωi as follows:(

γ0u , R†0i R0iϕ
0
)
×,0

−
(
R
†
0i Ri0 Xi γ

iu , ϕ0
)
×,0

=
(
X0 g , R

†
0i R0iϕ

0
)
×,0

,(6a)

(
R
†
j0 R0j X0 γ

0u , ϕj
)
×,j

−
(
γju , R†j0 Rj0 ϕ

j
)
×,j

=
(
R
†
j0 R0j g , ϕ

j
)
×,j

,(6b)

(
γju , R†ji Rjiϕ

j
)
×,j

−
(
R
†
ji Rij Xi γ

iu , ϕj
)
×,j

= 0 ,(6c)

for all ϕ ∈ ṼN . For simplicity, introduce the operator X̃ji := R
†
ji Rij Xi mapping

Ṽi to Ṽj . Using (3) to simplify the sum of conditions (6a) with respect to i, one
obtains:

(7)
(
γ0u , ϕ0

)
×,0

−
N∑

i=1

(
X̃0iγ

iu , ϕ0
)
×,0

=
(
X0 g , ϕ

0
)
×,0

, ∀ ϕ0 ∈ Ṽ0,

while the sum (6c) + (6b) for i from one to N yields, for all ϕj ∈ Ṽj ,

(8)
(
γju , ϕj

)
×,j

−
N∑

i=0
i6=j

(
X̃jiγ

iu , ϕj
)
×,j

= −
(
R
†
j0 R0j g , ϕ

j
)
×,j
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for fixed j ∈ 1, . . . , N . Replacing (4) in (7) and (8), and identifying λi = γiu,
gives an equivalent formulation to Problem (2), the multi-trace formulation: Seek

λ ∈ ṼN such that the variational form

(9) (MN λ , ϕ)× =
1

2







X0 g

−R
†
10 R01 g
...

−R
†
N0 R0N g


 , ϕ




×

for all ϕ ∈ ṼN

is satisfied for g ∈ Ṽ0 with

(10) MN :=




A0 − 1
2 X̃01 · · · − 1

2 X̃0N

− 1
2 X̃10 A1 · · · − 1

2 X̃1N

...
...

. . .
...

− 1
2 X̃N0 − 1

2 X̃N1 · · · AN




: ṼN −→ VN .

Theorem 1. The multi-trace formulation of the Helmholtz transmission problem

is VN -coercive for λ ∈ ṼN and continuous in ṼN .

The proof is based on the Vi-coercivity of operators Ai and eliminating real
parts of off-diagonal terms. This however constitutes a mismatch between conti-
nuity and coercivity preventing the use of standard results for stability.

Theorem 2. The solution of the multi-trace formulation is unique.

Future work includes numerical experiments and extension to Maxwell trans-
mission problems.

References

[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics: A Series of Monographs and
Textbooks, Academic Press, London, UK, 1975.

[2] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results,
SIAM J. Math. Anal., 19 (1988), pp. 613–626.

[3] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, UK, 1985.
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Electrodynamic Interface Conditions at a Moving Boundary

Stefan Kurz

For the mathematical modeling of electromagnetic boundary value and transmis-
sion problems, the interface conditions for electromagnetic fields are of utmost
importance. What about moving and deforming bodies?

The standard textbook approach starts from a boundary at rest and employs
Lorentz transformations (“frame hopping”), which is valid for uniform motion only
[3, Ch. 5]. A more general analysis either considers Helmholtz’ vector flux theorem
(see [4] and the references cited therein) or starts from a model in four dimensions,
and derives the (3+1)-dimensional interface conditions by a decomposition into
“space” and time relative to an observer [5]. Still, the usual approach typically
introduces coordinates, employs Ricci calculus, and utilizes metric heavily. On the
other hand, the interface conditions are part of pre-metric electrodynamics, and
should therefore be devoid of any metric [8, 9].

In this contribution, we derive the interface conditions in a pre-metric setting,
based on minimal structures. Space-time is modeled as a bare manifold (no metric,
no connection, no Lorentz transformation). Electromagnetic fields are modeled as
cochains over the manifold (no coordinates, no localization).

Appropriate models for observers and interfaces in terms of foliations are in-
troduced, and a relation between the observers’ trace and projection operators is
derived. The desired interface conditions are an immediate consequence.
Space-time. We model space-time as a four-dimensional differentiable manifold
M , which shall be connected, orientable, and non-compact. We populate the
manifold by introducing the space Cp(M) of chains. In geometric integration
theory, this space is equipped with an appropriate norm. A Banach space of
chains is obtained by a completion process. Then, integration operators, cochains,
are defined as elements of the dual space Cp(M) = Cp(M)∗ [7, 14]. Since we model
measuring probes by chains, we will model electromagnetic fields by cochains.
The reading of the probe is then given by the dual pairing Cp(M)× Cp(M) → R :
(ω, c) 7→ ω

∣∣c. For example, consider the electromagnetic field F ∈ C2(M). For

c ∈ C2(M), the magnetic flux of F embraced by c is F
∣∣c.

Finally, we denote by χ(M) the space of smooth vector fields on M . In what
follows, it is convenient but not required to talk about spacelike and timelike
objects. To define such classes of objects, a causal structure is required on M [13].
Observer. We model “space” as a three-dimensional differentiable manifold E,
which shall be connected, orientable and non-compact. The manifold E is embed-
ded in M by a one-parameter family of embeddings Ψt : E → M , t ∈ R, smoothly
depending on t, s.t. Ψt(E) are spacelike hypersurfaces which fill space-time densely.
We receive a foliation of space-time, also called slicing or hypersurface observer [2].
A point Q ∈ E is mapped to a timelike smooth curve Ψt(Q), which is called the
world line of Q. This gives rise to a congruence of parameterized curves, densely
filling space-time, which define a vector field u ∈ χ(M). In a metric setting, this
vector field could be normalized and would then be called four-velocity. Each point
in space-time is uniquely contained in one hypersurface of the foliation (its instant
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in time) and in one curve of the congruence (its point in “space”), respectively:
The observer defines a diffeomorphism between the product manifold E × R and
space-time M .

We denote time-dependent cochains on E by Cp(E,R). The pullback map Ψ∗t :
Cp(M) → Cp(E,R) maps cochains from space-time into “space”. The pullback of
a cochain ω and of its contraction iuω with the vector field u [10], respectively,
yields the horizontal and transversal pieces of observation, that are combined into
the projection operator P [6, 12],

P : Cp(M) → Cp(E,R)× Cp−1(E,R) : ω 7→
(
α

β

)
=

(
Ψ∗tω
Ψ∗t iuω

)
.

For example, the projection PF =
(
B(t),−E(t)

)T
defines the magnetic flux den-

sity B(t) ∈ C2(E,R) and the electric field E(t) ∈ C1(E,R).
Interface in space-time. A point in “space” gives rise to a world line in space-
time. Consequently, an interface in “space” gives rise to a (2+1)-dimensional
entity in space-time (two spatial and one temporal dimensions). We let N be a
(2+1)-dimensional connected and orientable manifold, dubbed “flatland” [1]. We
parametrically embed “flatland” in space-time by a family of embeddings κs :
N → M , s ∈ R, smoothly depending on s, where s = 0 coincides with the
actual configuration. Embedded “flatland” might happen to be a hypersurface of
discontinuity for the physical quantities. Therefore, we define single-sided trace
operators by pullback, t± : Cp(M) → Cp(N) : ω 7→ t±ω = lims→±0 κ

∗
sω.

Maxwell-Faraday’s law states flux conservation, i.e. F
∣∣c = 0 for all c ∈ Z2(M),

where Z2(M) =
{
c ∈ C2(M) : ∂c = 0

}
is the space of 2-cycles. The continuity of

the trace follows by standard methods, (t+ − t−)F = 0. In numerical methods,
this type of essential interface condition is either included in the construction of
the discrete spaces, or it is enforced by Lagrangian multipliers.
(3+1)-decomposition of interface conditions. To (3+1)-decompose such kind
of interface conditions, the interplay of the observer with “flatland” has to be
considered, see Fig. 1. It is assumed that for fixed t and s the intersection Ψt(E)∩
κs(N) is a two-dimensional embedded submanifold. This situation is depicted
in Fig. 1 for t = t1, t2, t3 and s = 0. We choose a two-dimensional manifold S,
connected and orientable, to model the surface. Moreover, we choose two families
of embeddings λs,t : S → E, ΨNs,t : S → N , smoothly depending on s, t, s.t.

Ψt ◦ λs,t = κs ◦ΨNs,t holds. For the pullback maps it follows that

(1) λ∗s,t ◦Ψ∗t = ΨN∗s,t ◦ κ∗s.

Through each point inM there is a unique world line of a point Q fixed in “space”
E and of a point R fixed in the surface S, both parameterized by t, hence vector
fields u,u′ ∈ χ(M). We let v = u′−u and note that v is everywhere tangential to
the hypersurfaces ΨtE, same with u and κsN . By considering the pushforward of
Ψt and κs, respectively, we write v = (Ψt)∗v̂(t) and u = (κs)∗u

N
s , and therefore

(2) u+ (Ψt)∗v̂(t) = (κs)∗u
N
s .
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In a metric setting with four-velocity u, v̂(t) ∈ χ(E, t) would be the ordinary
velocity field of the moving interface with respect to the observer.

By using the rule Φ∗ ◦ iΦ∗w = iw ◦ Φ∗ we receive from (1) and (2) λ∗s,t ◦
(
Ψ∗t ◦

iu + iv̂(t) ◦Ψ∗t
)
= ΨN∗s,t ◦ iuN

s
◦ κ∗s. This can be combined with (1) into

λ∗s,t ◦
(

1 0
iv̂(t) 1

)
◦
(

Ψ∗t
Ψ∗t ◦ iu

)
=

(
ΨN∗s,t

ΨN∗s,t ◦ iuN
s

)
◦ κ∗s.

For s→ ±0 we obtain the main result

(3) t̂±t ◦
(

1 0
iv̂(t) 1

)
◦ P = PN ◦ t±,

where t̂±t denotes the time-dependent spatial trace operator, and PN the “flatland”
projection operator. Consider the trivial case v̂(t) = 0. Eq. (3) says that it does
not matter if we first take the projection P from space-time M to “space” E and
then the spatial trace t̂t, or first the space-time trace t and then the projection
PN from ”flatland” N to the surface S. In the general case, the contraction iv̂(t)
corrects for the effect of the motion.

Application to the electromagnetic field yields with PF =
(
B(t),−E(t)

)T
and

(t+ − t−)F = 0
(t̂+t − t̂−t )B(t) = 0,

(t̂+t − t̂−t )
(
E(t)− iv̂(t)B(t)

)
= 0.

If the cochains are localized as differential forms [14], and an Euclidean metric is
chosen in E, then the differential forms can be represented by vector fields [11].
This yields the vectorial version n ·

(
B+(t)−B−(t)

)
= 0,

n×
(
E+(t)−E−(t) + v̂(t)×

(
B+(t)−B−(t)

))
= 0.

These interface conditions are valid for an arbitrarily moving and deforming in-
terface, as long as it can be modeled as an embedded submanifold. The same
derivation can be applied to the electromagnetic excitation G ∈ C2(M), including
the generalization to electromagnetic surface charge currents. A possible extension
would consider discontinuous velocity fields, to allow for sliding contacts.
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Advanced CEM Techniques for Solving Large Complex
Electromagnetic Wave Problems

Jin-Fa Lee

(joint work with Zhen Peng, Xiaochuan Wang)

Finite element based non-overlapping domain decomposition (DD) methods
have recently attracted considerable attention due to their ability to accurately
and efficiently solve large and multi-scale electromagnetic radiation and scattering
problems [1, 2, 3, 4, 5, 7, 8, 9, 10]. It is well known that the convergence of the
DD algorithms depends strongly upon the nature of the transmission conditions
(TC) that communicate information between adjacent sub-domains [5, 11, 12, 13].
Desprs showed [1] that the use of a complex Robin TC would lead to the iterative
process converging quickly for propagating eigenmodes, though the evanescent
modes are non-convergent. The optimized TCs of [2], by including a single second
order transverse derivative, allow the convergence of both sets of modes. However,
to obtain convergence of evanescent modes, the optimized TCs must trade in some
performance of the propagating modes. Thus, the optimized TCs do not always
provide better convergence against the conventional Robin TC.

In [5], a new type of SOTC, called SOTC-TE, which is shown to shift eigenvalues
that correspond to transverse electric (TE) evanescent modes away from zero.
While the DD method with SOTC-TE considerably improves the convergence
w.r.t. the 1st order Robin TC, it is only effective in preconditioning one set of
problematic eigenvalues. The eigenmodes neglected by the SOTC-TE, namely
the transverse magnetic (TM) evanescent modes, present the last impediment to
solver convergence. We address these modes by introducing a full second order
TC (SOTC-Full) that includes an additional term with a second order transverse
derivative.

The SOTC-Full was first proposed and implemented in reference [4] for im-
proving convergence in conformal DD methods. However, the incorporation of
the SOTC-Full in the finite element implementation of conformal DD methods
[4] results in a singular system matrix. This is due to the fact that the auxiliary
variables, j, which represent the electric currents on the interfaces, were defined
discontinuously over the interfaces. This gives rise to redundant basis functions on
edges shared by two or more interfaces. Nonetheless, in the conformal DD meth-
ods, the excitation is kept in the range of the system matrix, and consequently
the singular eigenvalues have little or no impact on the convergence. However,
the scenarios are different once we extend the application of the SOTC-Full to the
non-conformal DD methods. In the presence of non-conformal meshes, or non-
matching triangulations, the original zero eigenvalues become small eigenvalues
near zero. The occurrence of these small eigenvalues greatly affects negatively
the convergence of the non-conformal DD methods. The detrimental effects of the
non-conformal meshes on the zero eigenvalues are evidenced through many real-life
examples, and were illustrated during the presentation. To mitigate the difficulty
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encountered in the application of the SOTC-Full to non-conformal meshes, we ex-
amined the eigenvectors that correspond to zero eigenvalues in conformal DDM.

What we found was that the zero eigenvectors do not satisfy the ∇ · ~B = 0 condi-
tion near corner edges. Consequently, a corner edge penalty term is introduced in
the variational formulation. Numerical examples show clearly that the introduc-
tion of the corner edge penalty tern successfully circumvents the aforementioned
difficulty with non-conformal DDM. In many large complex electromagnetic wave
problems, the proposed non-conformal DDM with SOTC-Full injunction with cor-
ner edge penalty term result in an almost scaleable performance. The number of
iterations is found to grow only logarithmically in the number of domains.

Moreover, we present our recent work on multi-solver domain decomposition
methods for solving electromagnetic compatibility (EMC) effects of multiple an-
tenna systems on large air platform. Although, theoretically, the scattering mech-
anism should be converging for scatterers that are not touching each other, in real
computations the convergence is far from certain. Two scenarios are usually the
cause for failure to converge in many practical numerical computations: scatterers
that are very close to each other and the structures are near resonance. An ef-
fective way to combat the convergence issue is to adopt simply the Krylov solver.
Finally, we proposed in the multi-solver DDM a special treatment for touching
sub-domains, which avoids the troublesome self-integral terms.
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Universal Extension for Sobolev Spaces of Differential Forms

Hs(d,Ω,
∧l

(Rd)) and Applications

Jingzhi Li

(joint work with Ralf Hiptmair, Jun Zou)

The purpose of this report is to construct a family of universal extension oper-
ators for Sobolev spaces of differential forms Hk(d,Ω,Λl), for d, l, k ∈ N0, d ≥ 2
and 0 ≤ l ≤ d in Lipschitz domains Ω ⊂ Rd (the exact definition will be recalled
later). In [5, Theorem 5, pp.181], E. M. Stein introduced the first universal ex-
tension operator for Lipschitz domains, which can be applied to function spaces
Wm,p(Ω) for any m ∈ N0 and 1 ≤ p ≤ ∞. The Sobolev spaces of differential forms
are fundamental for the theoretical analysis of, e.g., electromagnetic phenomena
governed by Maxwell’s equation [3, 4, 1], and fluid dynamics by Navier-Stokes
equation [2]. The importance of universal extensions for Sobolev spaces of differ-

ential forms Hk(d,Ω,Λl) lies in the fact that one can obtain a family of universal
extension operators for all orders k of differentiability. The gist of the construction
is the commuting diagram property between the pullback and the exterior deriv-
ative, and Stein’s idea of integral averaging over the pullback of a parametrized
reflection mapping. Here we will generalize Stein’s extension for Lipschitz domains
to Sobolev spaces of differential forms as follows:

Theorem 1. Let Ω be a bounded Lipschitz domain or its complement, k ∈ N0 and
0 ≤ l ≤ d. Then there exists a universal extension operator

El : H
k(d,Ω,Λl) 7→ Hk(d,Rd,Λl)

satisfying

(1) Elω = ω a.e. in Ω, and
(2) the extension operator is continuous

‖Elω‖Hk(d,Rd,Λl) ≤ C ‖ω‖Hk(d,Ω,Λl) ∀ ω ∈ Hk(d,Ω,Λl),

with the constant C = C(Ω, d, k, l) independent of the differential forms
involved.
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We point out in passing that the universal extension operators for Hk(curl; Ω)

and Hk(div; Ω) in R3 are covered by our universal extension theorem as special
cases for l = 1, 2, respectively.

Corollary 2. Let Ω be a bounded Lipschitz domain in R3 and k ∈ N0. Then there
exist universal extension operators

E0 : Hk+1(Ω) 7→ Hk+1(R3) satisfying

{

E0u = u, a.e. in Ω, and
‖E0u‖Hk(R3) ≤ C ‖u‖

Hk(Ω) ;

E1 : Hk(curl; Ω) 7→ H
k(curl;R3) satisfying

{

E1u = u, a.e. in Ω, and
‖E1u‖Hk(curl;R3) ≤ C ‖u‖

Hk(curl;Ω) ;

E2 : Hk(div; Ω) 7→ H
k(div;R3) satisfying

{

E2u = u, a.e. in Ω, and
‖E2u‖Hk(div;R3) ≤ C ‖u‖

Hk(div;Ω) ;

E3 : Hk(Ω) 7→ Hk(R3) satisfying

{

E3u = u, a.e. in Ω, and
‖E3u‖Hk(R3) ≤ C ‖u‖

Hk(Ω) ;

with all the constants C = C(k,Ω) independent of the functions/fields involved.

Of considerable mathematical interest by itself, the newly established theo-
retical results have many potential important applications, for instance, its ap-
plications to the theory of interpolation and the proof of a generalized regular
decomposition result reported here. In particular, the former application can fur-
ther generalize the universal extension theorems from integer order Hk(d,Ω,Λl),
k ∈ N0, to nonnegative real order Hs(d,Ω,Λl), s ∈ R+

0 by establishing the equiv-
alence in

Lemma 3. For s0, s1 ∈ R with s0 < s1, and l ∈ N0 with 0 ≤ l ≤ d, it holds that

(1)
[
Hs0(d,Rd,Λl),Hs1(d,Rd,Λl)

]
θ
= Hs(d,Rd,Λl)

with equivalent norms, where s = (1− θ)s0 + θs1 for 0 < θ < 1.

Moreover, the latter application provides a proof of the generalized regular
decomposition lemma in

Theorem 4. (Lifted regular decompositions) For every k ∈ N0, 1 ≤ l ≤ d, there

exist continuous maps R : Hk(d,Ω,Λl) 7→ Hk+1(Ω,Λl) and N : Hk(d,Ω,Λl) 7→
Hk+1(Ω,Λl−1) such that

(2) R+ d ◦ N = Id on Hk(d,Ω,Λl) .

In addition, there are continuous maps R0 : Hk
0(d,Ω,Λ

l) 7→ Hk+1
0 (Ω,Λl) and

N0 : Hk
0(d,Ω,Λ

l) 7→ Hk+1
0 (Ω,Λl−1) such that

(3) R0 + d ◦ N0 = Id on Hk
0(d,Ω,Λ

l) .

The generalized regular decomposition lemma can be used to present an alter-
native proof for the Nečas Lemma.

Corollary 5 (Generalized Nečas’ Lemma). Let s ∈ R+
0 and 1 ≤ l ≤ d. For

a bounded Lipschitz domain Ω ∈ Rd of full topological generality and all ω ∈
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dHs(d,Ω,Λl−1), then there is a η ∈ Hs+1(Ω,Λl−1) and a positive constant C
independent of η such that

dη = ω,(4)

‖η‖Hs+1(Ω,Λl−1) ≤ C ‖ω‖Hs(Ω,Λl) .(5)

Moreover, for all ω ∈ dHs
0(d,Ω,Λ

l−1) for 1 ≤ l < d, and
∫
Ω
ω = 0 if l = d, there

is a η ∈ Hs+1
0 (Ω,Λl−1) and a positive constant C independent of η such that (4)

and (5) holds.

It is natural to derive from Corollary 5 a similar Nečas-like result for the curl
operator.

Corollary 6. Assuming that Ω is a bounded Lipschitz domain in R3, then

(1) there exists a positive constant C such that for all v ∈ curlH(curl; Ω),
one can find u ∈ H1(Ω) satisfying

(6) curl u = v and ‖u‖H1(Ω) ≤ C ‖v‖L2(Ω) ;

(2) if v ∈ curlH0(curl; Ω), we can find a u ∈ H1
0(Ω) such that (6) holds.
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Boundary element methods for high frequency scattering problems

Stephen Langdon

(joint work with Simon Chandler-Wilde)

We consider scattering of a time harmonic incident plane wave, ui(x) = eikx.d,
by a bounded Lipschitz domain Ω ⊂ R2, as modelled by the Helmholtz equation

∆u+ k2u = 0, in R2\Ω,
coupled with the Sommerfeld radiation condition and sound soft or impedance
boundary conditions. Here d denotes the direction of the incident wave, and the
wavenumber k is proportional to the frequency of the incident wave. Considering
first the sound soft problem, with u = 0 on the boundary Γ of Ω, Green’s theorem
allows us to reformulate the problem as a second kind boundary integral equation

1

2

∂u

∂n
(x) +

∫

Γ

(
∂Φ(x,y)

∂n(x)
+ iηΦ(x,y)

)
∂u

∂n
(y) ds(y) =

∂ui

∂n
(x) + iηui(x), x ∈ Γ,
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where n is the outward normal, Φ(x,y) = i
4H

(1)
0 (k|x − y|) is the fundamental

solution to the two-dimensional Helmholtz equation, and the coupling parameter
η 6= 0 ensures that the integral equation has a unique solution for all k.

The conventional approach to solving this boundary integral equation, applying
a Galerkin method in which ∂u/∂n is approximated by piecewise polynomials,
suffers from the restriction that the number of degrees of freedom required to
achieve a prescribed level of accuracy grows at least linearly with respect to k.
As an alternative, much recent work has focused on the development of hybrid
schemes in which the unknown function φ (with φ = ∂u/∂n, the complementary
boundary data, in this case) is approximated by a combination of oscillatory and
non-oscillatory functions, specifically:

φ(x) ≈
M∑

m=1

exp(ikγm(x))Vm(x, k).

Here, the phase functions γm are chosen a-priori, in an attempt to represent the
oscillatory nature of the solution explicitly, and the unknown functions Vm are
then approximated by piecewise polynomials. The hope is that the functions Vm
will be easier to approximate than φ.

Domain based methods, such as the Ultra Weak Variational Formulation or the
Plane Wave Discontinuous Galerkin Method, use similar approximation spaces
with large values of M , and are widely applicable to a range of scattering prob-
lems. However, in the absence of a clear motivation for the explicit choice of the
phase functions γm, such schemes in general have a computational cost that scales
at least linearly with k. Here, we focus in particular on simple problems for which
one can deduce sufficient a-priori information regarding the oscillatory behaviour
of φ such that one can choose γm in such a way that the functions Vm are non-
oscillatory, even if M is small. For a range of two-dimensional convex scatterers,
this enables the development of schemes with computational costs that are essen-
tially independent of frequency, i.e. the computational cost required to achieve a
prescribed level of accuracy does not grow as k increases.

For smooth convex obstacles, choosing M = 1 and γ1(x) = x.d immediately
reduces the computational cost from O(k) to O(k1/3), and a concentration of the
degrees of freedom in the vicinity of the shadow boundary (where n.d = 0) can
remove the k-dependence of the computational cost altogether [4]. For obstacles
with corners, however, a slightly different approach is required, as the oscillations
caused by diffraction from the corners are not well represented by the oscillations
of the incident wave (eikx.d). Instead, for convex polygons, we write:

(1) φ(x(s)) = Ψ(x(s)) + v+(x(s))e
iks + v−(x(s))e

−iks, x(s) ∈ Γ,

where x(s) is an arclength parametrisation of the boundary, Ψ(x(s)) represents
the known physical optics solution (which behaves like eikx(s).d on illuminated
sides, as for smooth obstacles), and v± are smooth, non-oscillatory functions, that
can be shown to be peaked at the corners of the polygon, and rapidly decaying
away from corners. In particular, for the sound soft problem it is shown in [2] by
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separation of variables near the corners that we have the behaviour

k−m|v±(m)(s)| ≤ Cm!
√
m+ 1(ks)−α−m, for ks ≤ 1,

where α = 1 − π/(external angle at corner) ∈ (0, 1/2), whilst away from corners
we have the behaviour

k−m|v±(m)(s)| ≤ Cm!(ks)−1/2−m, for ks ≥ 1.

This latter result is shown via consideration of a set of related half-plane prob-
lems, allowing us to identify the oscillatory nature of the unknown boundary data
explicitly. For details we refer to [2]. These estimates can be used to design a hy-
brid approximation space consisting of the products of plane waves with piecewise
polynomials supported on a graded mesh, with larger elements away from the cor-
ners of the polygon, leading to the result that, if V + is the best L2 approximation
from the approximation space,

k1/2‖v+ − V +‖2 ≤ Cp
n1/2(1 + log(kL))1/2

Np+1
,

with a similar result holding for our approximation to v−, where N is proportional
to the total number of degrees of freedom, p is the degree of the polynomial
approximation on each element, L is the maximum side length of the polygon,
and n is the number of sides of the polygon. It is further demonstrated in [2] that
the error in our Galerkin boundary element method solution satisfies a similar
estimate, giving us a prescribed level of accuracy with a computational cost that
grows only logarithmically with respect to k.

The extension of these ideas to convex curvilinear polygons is discussed in [5].
In this case the aim is to combine the ansatz for smooth convex obstacles with
that for convex polygons (1), leading to the ansatz

φ(x(s)) = eikx(s).dw(x(s)) + v+(x(s))e
iks + v−(x(s))e

−iks, x(s) ∈ Γ,

where w and v± are all to be found. Whereas for smooth obstacles it can be
proven that w is slowly oscillating, and for convex polygons Ψ is known and v±
can be proven to be slowly oscillating, as described above, for convex curvilinear
obstacles such results have, to date, remained elusive. Numerical results in [5] seem
to suggest however that the number of degrees of freedom required to approximate
∂u/∂n to any given level of accuracy for convex curvilinear polygons grows only
logarithmically as k increases.

The extension to convex polygons with impedance boundary conditions is de-
scribed in [3]. In this case, we have φ = u as the unknown function to be ap-
proximated on Γ, rather than ∂u/∂n. Again we can express φ as a product of
oscillatory and non-oscillatory functions on each side of the polygon, leading to
the ansatz

φ(x(s)) = physical optics + v+(x(s))eiks + v−(x(s))e−iks, x(s) ∈ Γ.
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We prove in [3] that

k−m|v±(m)
(s)| ≤

{
Cm supx∈R2\Ω |u(x)|(ks)α̂−m, for ks ≤ 1,

Cm supx∈R2\Ω |u(x)|(ks)−1/2−m, for ks ≥ 1,

where α̂ = π/(external angle at corner) ∈ (1/2, 1). We thus use a similar approxi-
mation space to that for sound soft convex polygons, albeit with a slightly different
mesh grading, and this gives the result that if ϕN is the best L2 approximation
from the approximation space to ϕ(s) := u(x(s)), x ∈ Γ, it holds that

k1/2‖ϕN − ϕ‖2 ≤ Cp sup
x∈R2\Ω

|u(x)|n
1/2(1 + log(kL))1/2

Np+1
,

demonstrating that we can again achieve any prescribed level of accuracy with a
computational cost that depends only logarithmically on k.

For a much more detailed survey of the application of boundary element meth-
ods to the solution of high frequency scattering problems, we refer to [1].
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Calderón preconditioning of integral equations for perfectly
electrically conductive and homogeneous penetrable objects

Eric Michielssen

(joint work with Francesco Andriulli, Hakan Bağcı, Kristof Cools, Felipe Valdés)

The use of Integral Equations (IE) for analyzing time-harmonic radiation and
scattering from perfect electrically conducting (PEC) as well as penetrable objects
has remained a popular choice among code developers and practitioners for almost
four decades [1]. The popularity of IE-based methods stems from the fact that
compared with their finite elements or finite differences counterparts, (i) they
implicitly impose radiation conditions, and (ii) they do not require unknown fields
to be discretized throughout homogeneous volumes. IEs are obtained by enforcing
boundary conditions on the tangential component of the electric and/or magnetic
field at every point on the surface of the scatterer. In contrast with the finite
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elements and finite differences methods which lead to sparse systems of linear
equations, IE-based methods give rise to full matrices. Thus, when dealing with
increasingly large problems the use of direct solvers is impractical and iterative
solvers are called for. When solving IEs with iterative solvers, the computational
cost scales multiplicatively with the cost of multiplying the system matrix with
a trial solution vector, and the number of iterations required to reach a specified
residual error. Nowadays, the use of accelerators such as adaptive integral or
multilevel fast multipole method are widely used to reduce the cost of a matrix-
vector multiplication. The required number of iterations typically is proportional
to the system matrix’s condition number, viz. the ratio of largest and smallest
singular values. For an ill-conditioned system, iterative methods require so many
iterations that the numerical solution becomes prohibitively expensive.

The literature abounds with IEs for analyzing scattering from homogeneous
penetrable objects. Dual source techniques, which are by far the most popular,
solve a coupled pair of electric, magnetic, or mixed/combined field integral equa-
tions for electric and magnetic surface currents. Single source techniques on the
other hand, solve one electric, magnetic, or combined field integral equation (EFIE,
MFIE, and CFIE) for an electric or magnetic surface current density. Equations of
the first kind (first presented in [2] and [3]) involve hypersingular operators which
lead to ill-conditioned matrices when discretized, therefore are susceptible to dense
mesh and low frequency breakdown. Moreover, they exhibit resonances; that is,
their solution is not unique at a set of discrete frequencies that grows increasingly
dense as the electrical size of the scatterer increases. Second kind equations [4, 5]
on the other hand, do not suffer from dense mesh nor low frequency breakdown,
but they are still susceptible to resonances and hence problematic when applied
to the analysis of electrically large scatterers. A linear combination of first and
second kind single source equations has been proposed in [4], yielding a resonant
free combined field IE. Unfortunately, this equation still contains a hypersingular
electric field integral operator rendering the entire equation hypersingular and sus-
ceptible to dense mesh breakdown. We have presented a Calderón-preconditioned
CFIE (CP-CFIE) which is obtained as the linear combination of a second kind
single source MFIE and a Calderón-preconditioned first kind single source EFIE
[6]. As such, the equation is free from spurious resonances and it is not susceptible
to dense mesh breakdown. The proposed single source equation contains double
and triple operator products, the discretization of which is achieved by multiply-
ing system matrices arising from the discretization of the various (standalone)
operators involved using carefully chosen basis and testing functions. Specifi-
cally, Rao-Wilton-Glisson (RWG) functions are used alongside Buffa-Christiansen
(BC) functions to stably discretize operator products as they give rise to a well-
conditioned Gram matrix and guarantee the numerical annihilation of products of
discretized hypersingular operator components [7]; similar techniques are used to
discretize triple operator products. A preliminary implementation of this approach
has been tested on a sphere of radius 1m. Figure 1(a) shows the relative residual
error versus iteration count achieved during the iterative solution of the matrix
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systems obtained by discretizing CFIE and CP-CFIE. The simulation is repeated
for five discretizations with minimum edge size δ ranging from 1/400 to 1/2000 of
a wavelength. For the CFIE, the convergence rate deteriorates as δ → 0, and the
number of iterations needed to reach a relative residual error of 10−5 increases.
The CP-CFIE exhibits a convergence rate that is independent of the discretization
and a low number of iterations. The condition number of the impedance matri-
ces obtained discretizing four single source equations (EFIE, MFIE, CFIE, and
CP-CFIE) is plotted versus frequency in Figure 1(b). As expected, the matrices
obtained by discretizing the EFIE and MFIE become ill-conditioned in the vicinity
of the resonant frequencies of a spherical PEC cavity of radius 1 m. On the other
hand, those obtained by discretizing the CFIE and CP-CFIE are free from these
resonances.

Efficient and stable discretization of operator products like the ones present in
Calderón-preconditioned EFIEs (CP-EFIE) for PEC, as well as in CP-CFIE for
penetrable objects, relies on the properties of RWG and BC basis functions. In the
last decade, high-order IE solvers have increasingly gained attention in the com-
putational electromagnetics community. These solvers exploit the use of either
high-order representation of the geometry, high-order representation of the un-
known current densities (high-order basis functions), or both. Among high-order
basis functions, a common choice is the set of Graglia-Wilton-Peterson (GWP)
basis functions [8], which are constructed as the product of a set of scalar polyno-
mials (complete up to a given order p) and the RWG basis functions. For a desired
accuracy on the solutions, solvers using high-order basis functions have shown to
be more accurate as well as CPU and memory efficient than their zeroth-order pre-
decessors leveraging RWG functions. Unfortunately, the BC basis functions are
zeroth-order in nature, and only can be used in conjunction with RWG basis func-
tions. This limitation imposes a severe constraint on the accuracy and efficiency of
present Calderón preconditioned solvers, either for PEC or for penetrable objects.
We have developed a set of high-order div- and quasi curl-conforming basis func-
tions which extend the properties of the BCs [9]. These functions are high-order in
nature and are designed to be used alongside GWP functions in the discretization
of operator products like the ones present in CP-EFIE for PEC, as well as in the
CP-CFIE for penetrable objects. The proposed basis functions are constructed as
the orthogonal projection of the range of the EFIE operator (pertinent to PEC
objects) onto div-conforming GWPs defined on a barycentrically refined mesh. We
have tested the set of basis functions on a PEC sphere of radius 1 m. The relative
residual error versus iteration count achieved during the iterative solution of the
matrix systems obtained by discretizing a diagonal-preconditioned EFIE and CP-
EFIE is shown in Figure 2(a). The simulation, performed with basis functions of
order 5, is repeated for three discretizations with decreasing minimum edge size
δ. For the diagonally-preconditioned EFIE, the convergence rate deteriorates as
δ → 0, and the number of iterations needed to reach a relative residual error of
10−5 increases. The CP-EFIE exhibits a convergence rate that is independent of
the discretization and a low number of iterations. Figure 2(b) puts in evidence the
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Figure 1. (a) Relative residual error versus iteration count
achieved during the iterative solution of CFIE and CP-CFIE. (b)
Condition number versus frequency of matrix obtained discretiz-
ing four different single source equations.

Figure 2. (a) Relative residual error versus iteration
count achieved during the iterative solution of diagonally-
preconditioned and CP-EFIE for a PEC sphere. (b) Relative
error in the bistatic RCS of a PEC sphere. The RCS solutions
are computed with basis functions of order p = 0, 1, 2, 3, and
compared to Mie series solution.

high-order nature of the proposed basis functions. For a fixed discretization of the
PEC sphere, increasing of the order in the basis functions increases the accuracy
in the solution.
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Approximation by plane waves

Andrea Moiola

(joint work with Ralf Hiptmair, Ilaria Perugia)

The Trefftz methods are special finite element methods where the trial and test
functions are solutions of the underlying PDE in the interior of each element. In
the case of the homogeneous Helmholtz equation

−∆u− ω2u = 0,

plane waves (x 7→ eiωx·d) or circular/spherical waves are usually used as basis
functions. These methods have been developed in order to cope with the problems
that arise in the numerical simulation of the propagation and interaction of acoustic
and electromagnetic waves (e.g., numerical dispersion, pollution effect); see for
instance [1], [2] and [3].

One of the main step in the convergence analysis of any plane wave Trefftz
method is the proof of a best approximation estimate for the trial space: given a
solution u ∈ HK+1(D) of the homogeneous Helmholtz equation, it is possible to
approximate u in Sobolev norms with a linear combination of p plane waves of
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given directions {dk}k=1,...,p

inf
α∈Cp

∥∥∥∥∥u−
p∑

k=1

αke
iωdk·x

∥∥∥∥∥
Hj(D)

≤ C ǫ(h, p) ‖u‖HK+1(D) ,

where ǫ(h, p) goes to zero for decreasing h (the diameter of the domain D) or
increasing p, with a certain order of convergence.

The only best approximation estimates for plane waves space available in litera-
ture (see [5] and [1]) are limited to two dimensional domains and are not completely
satisfactory. We can prove best approximation estimates with algebraic order of
convergence in h and p (exponential in p if the solution can be extended outside
the domain), both in two and three dimensional domains. The dependence of
every bounding constant on the wavenumber is always made explicit. The order
of convergence in h is sharp, as verified by numerical experiments, while the one
in p is sharp only in the two dimensional case.

The proof is split in two parts. In the first part we show how u can be approx-
imated by the so-called generalized harmonic polynomials, i.e. the circular waves

x = reiψ 7→ eilψ Jl(ωr), l ∈ Z,

in two dimensions and the spherical waves

x 7→ Yl,m
(
x
|x|

)
jl(ω|x|), 0 ≤ |m| ≤ l ∈ N,

in three dimensions. Here Jl, jl and Yl,m are the Bessel functions, the spherical
Bessel functions and the spherical harmonics, respectively.

The main tools used are the Vekua transforms for the N–dimensional Helmholtz
equation:

V1, V2 : L∞(D) → L∞(D),

Vj [φ](x) : = φ(x) +

∫ 1

0

Mj(x, t)φ(tx) dt , a.e. x ∈ D, j = 1, 2;

where the functions M1,M2 : D × [0, 1] → R are defined as

M1(x, t) = −ω|x|
2

√
t
N−2

√
1− t

J1(ω|x|
√
1− t),

M2(x, t) = − iω|x|
2

√
t
N−3

√
1− t

J1(iω|x|
√
t(1− t)).

These integral operators map Helmholtz solutions into harmonic functions on the
same domain and viceversa. This allows to reduce the problem to the simpler
case of the approximation of harmonic functions by harmonic polynomials. The
orders of convergence in h are proved using a suitable version of the Bramble–
Hilbert theorem, the ones in p in two dimensions using the result provided by [6]
while the ones in p in two dimension are new. In this case however the speed of
convergence is not explicit but depends on the shape of the domain in an unknown
way. This result provides also a best approximation estimate for all the Trefftz
methods based on circular and spherical waves (Fourier-Bessel functions).
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In the second part we approximate these functions with plane waves. The link
between plane waves and the circular/spherical waves is provided by the Jacobi–
Anger expansion. We truncate the expansion and give a bound on the solution
of the linear system obtained; in three dimensions this requires a careful choice of
the propagating directions of the plane waves.

The final result states that for any solution u ∈ HK+1(D), D ⊂ RN starshaped
with diameter h, N = 2, 3,

inf
α∈Cp

∥∥∥∥∥u−
p∑

k=1

αke
iωx·dk

∥∥∥∥∥
j,ω,D

≤ C hK+1−jq−λ(K+1−j) ‖u‖K+1,ω,D

where the Sobolev norms are weighted with ω, the constant C depend on ωh
(explicitly), j, k, {dk} and the shape of D. The number p of plane waves is linked
to the parameter q as p = 2q + 1 in two dimensions and as p = (q + 1)2 in three
dimensions. The positive parameter λ depends only on the shape of D: in two
dimensions it can be chosen arbitrarily close to 1 while in three dimensions we are
not able to provide an appropriate lower bound. At the present time this is the
main gap in the theory: it prevents from proving a sharp order of convergence in
p in three dimensions.

Most of these results are described in details and proved in the report [4].

The proof of analogous bounds for Maxwell equations

curl curl u− ω2u = 0

is more difficult because the Vekua operators are not appropriate for these equa-
tions. We use Herglotz functions and vector spherical harmonics to separate the
vectorial generalized harmonic polynomials that are solution of Maxwell equations
from the ones that are not divergence free. With these tools we can prove a h-
estimate for spherical waves with the same order of convergence proved for the
Helmholtz case but using a few more basis functions.

In order to estimate the approximation by plane waves we have proved a spe-
cial Jacobi-Anger formula for vector spherical harmonics that is well-adapted for
Maxwell equations.
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Weighted Poincaré inequalities for high contrast coefficients

Clemens Pechstein

(joint work with Robert Scheichl)

In this short note we consider iterative solvers for second-order elliptic problems
with highly varying coefficients and the robustness analysis of these solvers.

Our main motivation is the following nonlinear magnetostatic problem in two
dimensions. Assuming isotropic material, neglecting hysteresis, and considering
the transverse magnetic mode, we obtain

−div
[
ν(|∇u|)∇u

]
= J3 .

Here, u is the third component of the vector potential A, J3 is the third component
of the current density, and the magnetic reluctivity ν is given by ν(s) = g−1(s)/s,
where g is the B-H-curve such that |B| = g(|H|). Note that B = (∂2u,−∂1u, 0).

This nonlinear PDE is discretized using continuous piecewise linear finite ele-
ments. We solve the discrete nonlinear system by a Newton or fixed point method.
In either case, the linear system to be solved in the k-th step is of variational type,
and its coefficient is either ν(|∇u(k)|) or a closely related matrix-valued coeffi-
cient whose local anisotropy is negligibly small in many applications. However,
the coefficient can exhibit large jumps, e. g. of order 103 between iron and air.
Additionally, the solution u will have singularities at (re-entrant) material cor-
ners. Therefore, the coefficient ν(|∇u(k)|), can vary strongly within ferromagnetic
materials, also within a magnitude of 103, see e.g. [9].

When the number of unknowns becomes large, the use of direct solvers is not
feasible. Standard analyses of iterative methods, however, depend on the global
variation of the coefficient. In order to carry out a more careful analysis, weighted
Poincaré type inequalities turn out to play a central role, especially in the analysis
of domain decomposition and multigrid methods. In the following, we consider
the simplified model problem −div

[
α∇u

]
= f with the scalar coefficient α. First,

we would like to give a brief overview on existing work, but we restrict ourselves
to two-level overlapping Schwarz and FETI type domain decomposition solvers.

Two-level overlapping Schwarz (coefficient α resolved by the coarse mesh). The
known results here are based on the weighted L2-projections, see [1]. The so-called
quasi-monotone case is well-treated in [2], and the bounds are independent of the
values of α. If α is not quasi-monotone, it is necessary to resort to other (“exotic”)
coarse spaces, see [2, 15]. Related results, where effective condition numbers are
bounded, can be found in [5, 19].

FETI type methods (coefficient α resolved by subdomain partitioning). In [7] it
is shown that the condition number grows as C (1 + log(H/h))2, where H is the
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subdomain diameter, h the mesh size, and the constant C is independent of H , h,
and α, see also [8] for FETI-DP methods.

Two-level overlapping Schwarz (non-resolved case). Here, to the best of our
knowledge, the only paper on the standard piecewise linear coarse space is [3],
where Galvis and Efendiev prove weighted Poincaré inequalities for the case of a
finite number of low-valued inclusions in a high-valued background medium. The
Poincaré constant there is independent of the values of α, but depends on the
number of inclusions. New results that apply to more general situations can be
found in the upcoming paper [17]. The rest of the literature (see e.g., [4, 6, 11, 16]
and the references therein), resorts to problem-adapted coarse spaces based on
energy minimization or solution of local eigenproblems.

FETI type methods (non-resolved case). In [10], we showed that if the coefficient
is constant in the boundary layer of width η of each subdomain, the condition

number of FETI is bounded by C
(
H
η

)2
(1 + log(H/h))2, independently of α. If

the values of α in the subdomain interior is larger or equal to the value in the
boundary layer, the quadratic dependency even reduces to a linear one. This
result can be generalized to coefficients that vary mildly and smoothly in the
boundary layer [10, 12]. In order to treat cases where the coefficient jumps along
the interface, we made use of special Poincaré type inequalities, see [12].

The key tool in the analyses of the non-resolved case above are weighted Poincaré
type inequalities of the form

inf
c∈R

∫

Ω

α(x) |u(x) − c|2 dx ≤ C

∫

Ω

α(x) |∇u(x)|2 dx ∀u ∈ H1(Ω).

By a variational principle, one easily shows that the infimum above is attained at

c =

∫
Ω α(x)u(x) dx∫

Ω
α(x) dx

.

Clearly, C will in general depend on α. However, there are a lot of situations,
where C is at least independent of high contrast in α and depends just on the
geometry of the isolines in the coefficient. In order to classify such situations, we
have generalized in [13] the notion of quasi-monotonicity that has been introduced
by Sarkis et al., cf. [2, 14].

Definition. Let the coefficient α : Ω → R+ be piecewise constant with respect
to a partition {Ωk} of Ω and let X∗ ⊂ Ω be an m-dimensional manifold. Then we
call α type-m X∗-quasi-monotone if for every Ωℓ there is an index k with X∗ ⊂ Ωk
and a path through the subregions of the partition joining Ωℓ and Ωk such that
(i) the interface between two subsequent subregions is an m-dimensional manifold,
and (ii) the coefficient is non-decreasing along the path (starting from Ωℓ).

Lemma. Let α be type-(d − 1) X∗-quasi-monotone on a bounded domain

Ω ⊂ Rd and set uX
∗

:= meas(X∗)−1
∫
X∗ u dX

∗. Then,
∫

Ω

α |u− uX
∗ |2 dx ≤ C diam(Ω)2

∫

Ω

α |∇u|2 dx ∀u ∈ H1(Ω),
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where the constant C is independent of the values of α.
If α is type-m with m < d − 1 and the domain Ω exhibits some regularity,

then we can show similar discrete inequalities for finite element functions, albeit
with an additional factor of (1 + log(η/h)) if m = d − 2 and of η/h if m = d− 3,
where η is the maximum diameter of any of the subregions Ωk, cf. [13]. Standard
inequalities with such additional factors are well summarized in [18, Sect. 4.6].

The dependence of the constant C on the geometry of α can be made explicit
in some sense. In [13], we provide examples in two dimensions including domains
with long thin subregions, inclusions, checkerboard distributions, etc.

Using the above lemma, robustness statements can be derived for both over-
lapping Schwarz and FETI methods. For two-level overlapping Schwarz, the coef-
ficient needs to be type-m quasi-monotone in each of the patches associated with
a coarse element, cf. [3, 17]. This can theoretically be achieved by adapting the
coarse mesh to the coefficient. However, ideas to automate this by e. g. using
element agglomeration are still under development [17].

For FETI, the coefficient needs to be type-m quasi-monotone in each subdo-
main, or, more generally, in the boundary layer of each subdomain. For the magne-
tostatic problem above, it can be shown (and also seen in numerical experiments)
that it pays off to choose the subdomain partition such that it does not resolve
material interfaces, but isolates material corners in the interior of subdomains,
see [11, 12, 13].

Comparable robustness results for problems in H(curl) are to the best of our
knowledge not yet available in the unresolved case. In H(curl), the analogue of
Poincaré type inequalities are (stable) Helmholtz decompositions. A very promis-
ing result is the one by Hu and Zou [20], where a discrete Helmholtz decomposition
is constructed that is orthogonal in a weighted L2-inner product. However, the
authors do not consider the case of non-resolved variation of the coefficient in the
principal curl-curl term, but only non-resolved variation in the zero-order term.

We acknowledge the support by the Austrian Science Fund (FWF) under grants
P19255 and W1214.

References

[1] J. H. Bramble and J. Xu. Some estimates for a weighted L2 projection, Math. Comp. 56
(1991), 463–476.

[2] M. Dryja, M. Sarkis, and O.B. Widlund, Multilevel Schwarz methods for elliptic problems
with discontinuous coefficients in three dimensions, Numer. Math. 72 (1996), 313–348.

[3] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale problems,
preprint, Texas A&M University (2009), submitted.

[4] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in
high contrast media, preprint, Texas A&M University (2009), submitted.

[5] I. G. Graham and M. J. Haggar, Unstructued additive Schwarz-CG method for elliptic prob-
lems with highly discontinuous coefficients, SIAM J. Sci. Comp. 20 (1999), 2041–2066.

[6] I. G. Graham, P. Lechner, and R. Scheichl, Domain decomposition for multiscale PDEs,
Numer. Math. 106 (2007), 589–626.

[7] A. Klawonn and O.B. Widlund, FETI and Neumann-Neumann iterative substructuring
methods: connections and new results, Comm. Pure Appl. Math. 54 (2001), 57–90.



Computational Electromagnetism and Acoustics 485

[8] A. Klawonn, O.B. Widlund, and M. Dryja, Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40
(2002), 159–179.

[9] U. Langer and C. Pechstein, Coupled Finite and Boundary Element Tearing and Inter-
connecting Solvers for Nonlinear Potential Problems., ZAMM Z. Angew. Math. Mech. 86
(2006), 915–931.

[10] C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs, Numer. Math.
111 (2008), 293–233.

[11] C. Pechstein and R. Scheichl, Scaling up through domain decomposition, Appl. Anal. 88
(2009), 1589–1608.

[12] C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs – part II: in-
terface variation, BICs preprint 7/09, University of Bath, United Kingdom, 2009, submitted

[13] C. Pechstein and R. Scheichl, Weighted Poincaré inequalities and applications in domain
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Plane Wave Discontinuous Galerkin Methods

Ilaria Perugia

(joint work with Ralf Hiptmair, Andrea Moiola)

Plane wave discontinuous Galerkin methods (PWDG) are a class of Trefftz-type
methods for the spatial discretization of wave problems in frequency domain.

As a model problem, consider the Helmholtz equation with impedance boundary
conditions: given a bounded polygonal Lipschitz domain Ω ⊂ Rd, d = 2, 3, a fixed
wave number ω > 0 , and g ∈ L2(∂Ω), find u such that

(1)
−∆u− ω2u = 0 in Ω ,
∇u · n+ iω u = g on ∂Ω ,

where n is the outer normal unit vector to ∂Ω, and i is the imaginary unit.
The oscillatory behavior of solutions to (1) renders low order finite element

methods inefficient already in medium-frequency regimes because of the pollution
effect (see [3]): though for sufficiently small ωh, h being the mesh size, an accurate
approximation of u is possible, the Galerkin procedure fails to provide it.
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Attempts to remedy this have focused on incorporating extra information in
the form of plane wave functions x 7→ exp(iωd ·x), |d| = 1, into the discretization
spaces. We denote by plane wave methods the numerical schemes arising from this
approach, among which we recall: i) the Plane Wave Partition of Unity Methods
(see [2]) which are conforming methods with approximating spaces constituted by
modulated plane waves; ii) the Ultra Weak Variational Formulation (see [9, 5, 6])
derived from a variational formulation whose unknowns are impedance traces along
interelement boundaries, and using approximating spaces made of plane waves
only; iii) the Discontinuous Enrichment Method (see [10, 1, 25, 11]) with plane
wave basis functions and interelement continuities enforced by means of Lagrange
multipliers; iv) the Wave Based Prediction Technique (see [8]) with global wave
approximation functions and boundary conditions imposed in an integral way;
v) the Variational Theory of Complex Rays (see [24]) with approximating spaces
made by plane waves with amplitude depending on the wave vector. We focus on
the Ultra Weak Variational Formulation (UWVF) and variants of it.

The UWVF has recently received new interest: in a series of papers by Monk,
Collino, Huttunen, Kaipio and Malinen [20, 19, 18, 16, 17, 7], algorithmic aspects,
as well as new applications, have been investigated and a commercial simulation
software based on it has been developed (see http://www.waveller.com/). This
has motivated investigations into its theoretical foundations.

The UWVF can be recast as a discontinuous Galerkin (DG) method with plane
wave basis functions. This was done in [18] and in [12] in the hyperbolic context,
and in [4] and in [14] in the elliptic context. We denote by plane wave discontinuous
Galerkin methods (PWDG) the class of general DG methods with plane wave basis
functions; the methods in the PWDG class differ from each other for the choice of
the numerical fluxes in their definition.

We outline the derivation of PWDG methods for (1), referring to [14, 15] for
details. Introduce an auxiliary variable σ and rewrite problem (1) as

(2)
iωσ = ∇u in Ω ,
iω u−∇ · σ = 0 in Ω ,
iωσ · n+ iω u = g on ∂Ω .

Consider a partition Th = {K} of Ω with granularity h. Write an element-
by-element variational formulation of (2) in the (discontinuous) discrete spaces
Vp(Th)d and Vp(Th), with p denoting the elemental space dimension, and replace
boundary traces by numerical fluxes. The auxiliary variable σh,p can be eliminated
and a further integration by parts gives

(3)

∫

K

(−∆vhp − ω2vhp)uhp dV +

∫

∂K

ûhp∇vhp · n dS −
∫

∂K

iωσ̂hp · n vhp dS = 0 .

By choosing Vp(Th) locally made by linear combination of p plane waves of
frequency ω in different directions, the volume term in (3) vanishes. For the nu-
merical fluxes, denoting by {{·}} and [[·]]N , with standard DG notation, the averages
and jump operators, respectively, we define σ̂h,p = 1

iω{{∇huh,p}} − α [[uh,p]]N and
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ûh,p = {{uh,p}} − β
iω [[∇huh,p]]N on interior faces (we refer to [14, 15] for the defini-

tion on boundary faces). The classical UWVF is recovered by setting α = β = 1/2,
while one can enhance stability by choosing hp–dependent α and β (see [14, 15]).

Assume Ω convex, Th shape-regular and quasi-uniform, p = 2m + 1 in 2D or
p = (m + 1)2 in 3D, with integer m ≥ 1 (i.e., p is the dimension of the har-
monic polynomial space of degree m in 2 or 3 variables). We can summarize the
theoretical results available on PWDG methods in the following table:

2D 3D pollution energy-error L2–error
effect q-opt. estim. q-opt. estim.

h–version∗ X X yes X X

p–version X missing∗∗ no X open pbl.

∗ for hp–dependent flux parameters;
∗∗ only best approximation estimates are missing.

For the h–version error analysis, slightly suboptimal error estimates in the L2–
norm have been proved in [4] for the UWVF, while in [14] low order convergence
(1 in energy-norm and 2 in L2–norm) has been proved for the PWDG method
with hp–flux parameters applied to the inhomogeneous Helmholtz problem (i.e.,
right-hand side f ∈ L2(Ω) in the first equation of (1)), by using a duality argu-
ment and under a threshold condition of the type “ω2h small enough”. These
estimates are sharp, as demonstrated in [13]. The same theory has been applied
in [21] to get quasi-optimal h–convergence in both 2D and 3D for the homogeneous
Helmholtz problem (order m in energy-norm and m + 1 in L2–norm), exploiting
best approximation properties for homogeneous Helmholtz solutions by means of
plane wave spaces proved in [22] (for generic functions, plane wave spaces only
have low order approximation capability, independently of p).

The error analysis for the p–version of the PWDG method has been developed
in [15]. Even if the theory covers both the two- and three-dimensional cases, the
final estimates have been obtained for the 2D case only, since p–version best ap-
proximation estimates (see [22]) are not available, at the moment, in 3D. Both the
cases of constant and special hp–flux parameters are considered, thus including the
case of the standard UWVF. A standard duality argument is no longer applica-
ble since plane wave do not have high order approximation properties for general
functions, thus the same approach as the one in [4], based on a result contained
in [23], has been adopted. Quasi-optimal error estimates in energy-norm only have
been obtained (and exponential convergence for smooth analytical solutions).

References

[1] M. Amara, R. Djellouli, and C. Farhat, Convergence analysis of a discontinuous Galerkin
method with plane waves and Lagrange multipliers for the solution of Helmholtz problems,
SIAM J. Numer. Anal. 47 (2009), no. 2, 1038–1066.
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Discontinuous Galerkin methods and retarded potentials for time
dependent wave propagation problems on unbounded domains

Jerónimo Rodŕıguez

(joint work with Toufic Abboud, Patrick Joly and Isabelle Terrasse)

This work has been motivated by computational acoustics. More precisely,
in aeroacoustics, it is of interest to compute acoustic wave propagation in the
presence of a uniform flow that is locally perturbed by a scatterer. Assuming that
this flow is steady and given, one could use the linearized Euler equations (LEEs)
to model the problem. From the numerical point of view, this gives rise to two
major difficulties: i) due to the presence of convective terms in the equations,
there is no natural variational formulation of the problem; thus the finite element
method can not be directly applied, ii) one needs to account the unbounded nature
of the computational domain.

Discontinuous Galerkin methods (DGM) have recently gained attention for the
resolution of time dependent wave propagation problems [10]. These methods
enjoy of a great flexibility in terms of h − p adaptivity and can easily handle
heterogeneities. Moreover, they are well adapted to solve equations containing
convective terms such as aeroacoustics.

When the problem is posed on an unbounded domain, one needs to artificially
bound the computational domain. Many approaches to tackle this problem have
been proposed in the literature. Under some assumptions on the external bound-
ary one can use local/explicit methods such as absorbing boundary conditions [7]
or perfectly matched layers. However, both techniques are not exact and can meet
stability issues when applied to the advective wave equation (see however [4, 12]
for some works on the stabilization of the second technique). The increasing com-
putational power together with the progress of rapid algorithms [5] like the fast
multipole method make possible, at least when the exterior domain is homoge-
neous, the use of exact or transparent boundary conditions. Such conditions rely
on the explicit representation of the solution on the exterior domain Ωe in terms
of its traces on the boundary Γ = Ωi ∩ Ωe using the so-called retarded poten-
tial representations (RP). Among these techniques we can distinguish two types:
i) those based on collocation techniques [5], easier to implement but might meet
some stability issues [3]; ii) those based on a Galerkin approach [9], leading to
more robust methods.

For these reasons we have investigated the question of coupling a discontinuous
Galerkin method in the interior domain with a Galerkin retarded potential method
on the boundary. To start with, we have considered the simplified model of the
scalar wave equation. Even if there are many contributions to the coupling of
the finite element method (FEM) and the boundary element method (BEM) for
elliptic and harmonic problems [11], there are much less works for time dependent
problems and they mainly concern collocation RP methods [2, 13]. We should
mention some works concerning the coupling of FEM and Galerkin RP in different
frameworks [8, 1]. During the talk, we have introduced an algorithm allowing to
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couple a discontinuous Galerkin method combined with explicit finite differences
in time in the interior domain with a Galerkin retarded potential approximation
on the external boundary. The coupling, based on the ideas introduced in [8, 6],
permits to use both methods with quasi-optimal discretization parameters in the
sense that will be explained later. The stability of the global discretization is
obtained when the usual CFL condition in the interior domain is satisfied by
means of a discrete energy identity enforced by the coupling formula. We have
shown some numerical experiments on academic problems that show the feasibility
of the whole discretization procedure. The algorithm can be generalized to other
symmetric hyperbolic systems such as LEEs.

Let us provide more details on the construction of the coupling algorithm. We
start by rewriting the problem as a transmission problem between the interior do-
main Ωi and the exterior domain Ωe. The equations on the exterior are replaced
by two integral equations on the boundary Γ involving the four standard integral
operators for the transient wave equation [9]. Both systems are coupled by the
usual transmission conditions on the same boundary. Appropriate manipulations
allow us to derive a variational formulation of the coupled problem with the fol-
lowing properties (this is the first key point of the method): i) it is well suited for
the discretization with DG methods in space with central fluxes and explicit finite
differences in time in Ωi, ii) it is also well adapted to a Galerkin approximation
using retarded potentials on the boundary Γ, iii) the transmission conditions are
directly included on the formulation. As a consequence, using the solutions on the
exterior and in the interior as the test functions, one obtains an equivalent of the
usual energy identity for the wave equation providing a priori stability estimates.

The second step on the construction of the numerical method is the discretiza-
tion of the terms in the global variational formulation that are not involved on
the coupling. We use a Galerkin space-time approximation for the integral equa-
tions with a typical time step given by ∆t, with c∆t/h of the order of 1 to use
the RP method with quasi-optimal settings (this choice is a good trade-off be-
tween the numerical cost and the accuracy). In the interior we discretize first in
space employing a DG method by using typically a tetrahedric mesh of the do-
main and piecewise discontinuous Pk elements. The resulting differential system
is discretized using a second order finite difference scheme (leap frog scheme). The
time step needs to be rather small in the interior domain in order to satisfy the
CFL condition introduced by the explicit scheme. That is why we use a discretiza-
tion parameter given by ∆t/p where p is a given positive integer. This allows to
perform the computations in the interior and on the boundary with quasi-optimal
discretization parameters. The key point at this stage is that the coupling terms
have not been discretized yet.

The third step consists on establishing a discrete energy identity (similar to the
one obtained with the continuous variational formulation) which will drive the con-
struction of the scheme for the coupling terms. This identity involves some terms
associated to the coupling (not yet discretized). From this identity we propose a
coupling formula that does not introduce any energy dissipation or amplification.
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In this way, the global discretization procedure is well-posed and stable under the
usual CFL condition in the interior domain. Moreover there is almost no addi-
tional cost due to the coupling. The coupling scheme, being stable by construction
(under the usual CFL condition in Ωi), is very robust. However, most of the cou-
pling terms propose by this method are only first order consistent, which generate
high frequency spurious oscillations in the interior domain (aliasing phenomena).
Following the ideas on [14], we can post-process the interior solution by time aver-
aging, which restores the second order accuracy of the interior scheme. Moreover,
one can build a new coupling algorithm allowing to compute the post-processed
unknowns directly. We have tested this coupling algorithm in some academical
configurations obtaining promising results. We can see in the figure two snapshots
of a spherical wave propagating on the free space. We have considered a (non-
convex) L-shaped domain as the interior domain. No visible spurious reflexions
on the artificial boundary can be seen.
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Energy estimates for space discretizations of Time–Domain Integral
Equations

Francisco-Javier Sayas

In the mathematical literature, time–domain boundary integral equations meth-
ods can be traced to the seminal work of Alain Bamberger and Tuong Ha Duong
[2], [3], although the key to them is the classical Kirchhoff formula for wave prop-
agation around obstacles. Bamberger and Ha Duong’s proof of ellipticity of the
single and double layer boundary integral operators for the acoustic wave equa-
tion sparked extensive work that dealt with exterior and transmission problems
for acoustic, elastic and electromagnetic waves (see [1], [6], [12], to name just a
few). This wide and deep literature in the French school of numerical analysis, as
well as many other recent approaches, is summarized in [11]. Note that, unfortu-
nately, many of the results remained in doctoral dissertations and have not been
widely available, which has limited recognition of this first wave of results. The
methods that were explored in this first group of publications are space and time
Galerkin methods. To the best of the author’s knowledge, in all of them the finite
dimensional spaces are tensor products of time and space discretizations. Some
time later, based on his convolution quadrature method (first introduced and an-
alyzed in [18] and [19]), Christian Lubich proposed a new way of approaching the
discretization of the single layer acoustic retarded integral equation [20]. Space
discretization is still of Galerkin type, but the time variable is dealt with by using
the Laplace transform. The collocation method has also been explored in [9]. All
these approaches have been the object of systematic and serious practical testing
in the engineering literature: see [10] and [24], as well as their many sequels. Re-
cently, the mathematical interest in this family of methods, that never abandoned
the electrical and mechanical engineering community, has been stirred again and
several research groups have started proposing new solutions to unsolved problems
both in the area of time–Galerkin discretization and with Convolution Quadrature
methods: [4, 5, 7, 13, 16, 17].

The object of this note is the presentation of some new results concerning the
behavior of the energy as a function of time when some of the time domain bound-
ary integral equations (or coupled systems of these with variational formulations
of wave propagation problems in interior heterogeneous obstacles) are discretized
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in space using Galerkin methods. The results are then pertinent to both time–
Galerkin and convolution quadrature discretizations. No restriction is imposed on
the choice of finite element spaces for the space variables discretizations.

The results use elementary arguments. On the one hand, we rely on C0−groups
of isometries and their relation with second order initial value problems in Hilbert
spaces, that is, on the adaptation of Lumer–Phillips theorem [21] to wave equa-
tions. On the other hand, we develop the idea of recasting discretized integral
equations and boundary–field problems (BEM and BEM–FEM problems) as ex-
otic transmission problems in the entire space. This technique was devised by
the author of this talk in collaboration with Antonio Laliena in [17]. The trick
has been later employed in [23] and [22] to solve some open questions on coupling
BEM and FEM with only one integral equation on polyhedral interfaces.

With these tools, we can prove some interesting preliminary results. For in-
stance, the space discretization of the indirect time domain integral equation as-
sociated to the scattering of acoustic waves by a sound soft obstacle preserves the
total energy (kinetic plus potential) as a function of time. The total energy has to
be computed in the exterior as well as in the interior of the obstacle, which shows
that space discretization produces leakage of energy to the interior of the obstacle.
The same fact holds for the indirect approach for the sound hard case.

With direct methods (discretizations of the Kirchhoff formula) this is not the
case any more. In addition to the interior leakage of energy, there is an oscilla-
tion term that changes energy as a function of time and that decreases as space
discretization becomes richer. The understanding of this term is not full yet. It
can be vaguely described as a function that scatters (both inside and outside the
obstacle) the part of the normal derivative of the incident wave that cannot be
approximated by the space used for BEM discretization of the normal derivative
of the scattered wave. The fact that we are scattering a function that does not
appear explicitly in the numerical method just adds some mystery to the problem.

In the case of non–homogeneous obstacles, the BEM–FEM formulation à la
Costabel–Han ([8], [14]) has a principal component that preserves energy as well
as an additional oscillation term. An interesting fact is that the Johnson–Nédélec
coupling (with only one integral equation [15]) is associated to an evolution equa-
tion that is not energy conservative. This fact might be a hint of the practical
impossibility of using this non–symmetric coupling method for time dependent
problems and on the need of using symmetric formulations.

References

[1] A. Bachelot, L. Bounhoure, and A. Pujols. Couplage éléments finis–potentiels retardés pour
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A Posteriori Error Analysis for Hybridized Interior Penalty
Discontinuous Galerkin Method for H(curl)-Elliptic Problems

N. S. Sharma

(joint work with R. H. W. Hoppe and T. Warburton)

We develop and analyze an adaptive hybridized interior penalty discontinuous
Galerkin (IPDG-H) method for H(curl)-elliptic boundary value problems in 3D
arising from a semi-discretization of the eddy current equations in time. The
IPDG-H method is derived from a mixed formulation. We study a residual-type
error estimator and establish its reliability within the unified framework developed
in [3]. The performance of the method is illustrated by a numerical example.
Given a bounded domain Ω ⊂ R3 with boundary Γ = Γ̄D ∪ Γ̄N ,ΓD ∩ ΓN = ∅, we
consider the H(curl)-elliptic problem

curl µ−1 curl u+ σu = f in Ω,

γt(u) := u ∧ n = g1 on ΓD,

πt(µ
−1curl u) := n ∧ (µ−1curl u ∧ n) = g2 on ΓN ,

where f ∈ L2(Ω),g1 ∈ L2(ΓD) and g2 ∈ H(curl0ΓN
; ΓN ). We further assume

that µ is symmetric positive definite and σ ≥ 0, both being elementwise con-
stant with respect to a given coarse simplicial triangulation TH(Ω). We set
V :=

{
v ∈ H(curl; Ω)

∣∣ γt(u) = g1

}
, Q := L2(Ω), and denote by V0 the sub-

space of V with zero tangential trace on ΓD. Introducing p := µ−1curl u as
an additional variable, the mixed formulation amounts to the computation of
(u,p) ∈ V ×Q such that

A(u,p) = ℓ(1) + ℓ(2).(1)

Here, A : V×Q → Q∗×V∗0 is the operator (A(u,p))(v,q) := a(p,q)− b(u,q) +
b(v,p) + c(u,v), where a(p,q) :=

∫
Ω
µ p · q dx, b(u,q) :=

∫
Ω
curl u · q dx, and

c(u,v) :=
∫
Ω σ u · v dx. Moreover, the functionals ℓ(i), 1 ≤ i ≤ 2, are given by

ℓ(1)(q) := 0 and ℓ(2)(v) :=
∫
Ω
f · v dx+ 〈g2,γt(v)〉.

Theorem 0.1. The operator A is a continuous, bijective linear operator. Hence,
for any ℓ(1), ℓ(2) ∈ Q∗×V∗0 equation (1) admits a unique solution (u,p) ∈ V×Q
such that

‖(u,p)‖V×Q . ‖ℓ(1)‖Q∗ + ‖ℓ(2)‖V∗
0
.(2)

IPDG Method: DG methods are based on the approximation of (u,p) by
elementwise polynomials (uH ,vH) ∈ VH × QH , where VH = QH := {vH ∈
L2(Ω)

∣∣ vH |T ∈ Πk(T )), T ∈ TH(Ω)} and Πk(T ), k ∈ N, stands for the linear
space of vector fields whose components are polynomials of degree k. We denote
by aH , bH and cH the mesh-dependent bilinear forms as given by aH(pH ,qH) :=∑

T∈TH(Ω)

∫
T µpH · qH dx etc. and introduce dH : VH × QH → R according to

dH(uH ,qH) :=
∑

F∈FH(Ω̄)

∫
F
γt(uH) · πt(qH) dτ , where FH(Ω̄) refers to the set
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of faces of the triangulation. We further define ℓ
(1)
H : QH → R and ℓ

(2)
H : VH → R

by ℓ
(1)
H (qH) = 0 and ℓ

(2)
H (vH) :=

∑
T∈TH(Ω)

∫
T f · vH dx +

∑
F∈FH(ΓN )

∫
F g2 ·

γt(vH) dτ . DG methods amount to the computation of (uH ,pH) ∈ VH × QH

such that

aH(pH ,qH) + bH(qH ,uH) + dH(ûH ,qH) = ℓ
(1)
H (qH) , qH ∈ QH ,(3a)

bH(pH ,vH)− dH(vH , p̂H) + cH(uH ,vH) = ℓ
(2)
H (vH) , vH ∈ VH ,(3b)

where the non-conformity of the approach is taken care by the proper specification
of the numerical fluxes ûH and p̂H . In particular, if the numerical fluxes are chosen
by means of

γt(ûH) :=

{
{γt(uH)} , F ∈ FH(Ω),

0 , F ∈ FH(Γ) ,(4a)

πt(p̂H) :=

{
{πt(µ

−1curl uH)} − α h−1F [γt(uH)] , F ∈ FH(Ω)
0 , F ∈ FH(Γ) ,(4b)

with α > 0 denoting a suitably chosen penalty parameter, we obtain the symmetric
IPDG method for H(curl)-elliptic problems as studied in [1].

Hybridization of the IPDG Method: The idea of hybridization is to enforce
the continuity of the tangential traces of uH across the interior edges of the trian-
gulation by a Lagrange multiplier in the space MH := {µH ∈ L2(FH)

∣∣ µH |F ∈
Πk(F ), F ∈ FH(Ω̄)}. Choosing a numerical flux function p̂H , not necessarily the
same as above, the IPDG-H method is to find (uH ,pH ,λH) ∈ VH ×QH ×MH

such that

aH(pH ,qH)− bH(qH ,uH) + dH(λH ,qH) = ℓ
(1)
H (qH) , qH ∈ QH ,(5a)

bH(pH ,vH)− dH(vH , p̂H) + cH(uH ,vH) = ℓ
(2)
H (vH) , vH ∈ VH ,(5b)

dH(µH , p̂H) = 0 , µH ∈ MH .(5c)

We eliminate the vector fields uH and pH by static condensation and this results
in a global variational system only in the Lagrange multiplier λH . Once we have
computed λH , we obtain uH and pH by the solution of low-dimensional, local
subproblems. To this end, we follow the unified framework from [2].

A Posteriori Error Analysis: It is an immediate consequence of (2) that if
(ũH , p̃H) ∈ V ×Q is an approximation of the solution (u,p) of (1), then

‖(u− ũH ,p− p̃H)‖V×Q . ‖Res1‖Q∗ + ‖Res2‖V∗
0
,

where the residuals Resi, 1 ≤ i ≤ 2, are given by Res1(q) := ℓ(1)(q) − a(p̃H ,q) +
b(ũH ,q) and Res2(v) := ℓ(2)(v) − b(v, p̃H) − c(ũH ,v). Now, if (uH ,pH ,λH) is
the solution of (5a)-(5b), we choose p̃H = pH and ũH as the unique minimizer of
the consistency error

ξ := min
ṽH∈V

( ∑

T∈TH(Ω)

∫

T

(|uH − ṽH |2 + |curl(uH − ṽH)|2) dx
)1/2

.
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The norms of the residuals Resi, 1 ≤ i ≤ 2, and the consistency error ξ can be
estimated by a residual-type a posteriori error estimator η consisting of the element
residuals ηT,1 := ‖µ pH−curl uH‖0,T , ηT,2 := hT ‖f−curl pH−σuH‖0,T , ηT,3 :=

hT ‖∇·(f−σuH)‖0,T , T ∈ TH(Ω), and the face residuals ηF,1 := h
1/2
F ‖[πt(pH)]‖0,F ,

ηF,2 := h
1/2
F ‖nF · [f − σuH)]‖0,F , ηF,3 := h

−1/2
F ‖[γt(uH)]‖0,F , F ∈ FH(Ω), and

ηF,4 := h
−1/2
F ‖g1−γt(uH)‖0,F , F ∈ FH(ΓD), ηF,5 := h

1/2
F ‖g2−πt(pH)‖0,F , ηF,6 :=

h
1/2
F ‖nF · (f − σuH))‖0,F , F ∈ FH(ΓN ).

Theorem 0.2. Let (u,p) ∈ V × Q and (uH,pH,λH) ∈ VH × QH × MH be
the solutions of the mixed formulation (1) and the IPDG-H method (5a)-(5c),
respectively. Then, there holds

‖(u,p)− (uH ,pH)‖ . η,

where ‖(u,p)− (uH ,pH)‖ := (‖p−pH‖20,Ω+‖u−uH‖2curl,H,Ω)1/2 and ‖ ·‖curl,H,Ω
refers to the broken H(curl,Ω)-norm.

Numerical Results: For a 2D H(curl)-elliptic boundary value problem on the
L-shaped domain Ω = (0, 1)2 \ ((0, 1) × 0) ∪ (0 × (0, 1)) with Dirichlet data on
ΓD := (0 × (0, 1) ∪ (0, 1) × 0) and Neumann data on ΓN := Γ \ ΓD such that

u = grad(r
2
3 sin(23φ)) is the exact solution, the figure below shows the decrease

of the error as a function of the degrees of freedom (DOF) on a logarithmic scale
in case k = 1 (left) and k = 4 (right) for both uniform refinement and adaptive
refinement using various values of the universal constant 0 < θ < 1 in the standard
bulk criterion that has been implemented for marking elements and edges for
refinement.
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Propagation of acoustic waves in fractal networks

Adrien Semin

(joint work with Patrick Joly)

1. Introduction

We are interested in solving the wave equation in fractal domains such as human
lungs, that can be modeled modulo some approximation as infinite dyadic trees
(as in [4, 6]). As it is not possible to do numerical computations on the whole
geometry, the idea is to truncate resolution of wave generation to a finite number
of generations, and to replace remaining generations by adapted DtN operators,
which is possible if one assumes that the cut subtrees are self-similar.

2. Theoretical aspects

For this part, we consider that we work in Rd (with d = 2 or d = 3).

2.1. Self-similar p-adic tree. We can define a self-similar p-adyc tree by

• a finite closed segment Σ given by Σ = {(t, 0), 0 ≤ t ≤ 1} (in R2) or
Σ = {(t, 0, 0), 0 ≤ t ≤ 1} (in R3),

• p strictly contracting direct similitudes (si)0≤i<p of ratio αi < 1 such that
si(0) = (1) for any i.

where 0 is the origin and 1 = (1, 0) (in R2) or 1 = (1, 0, 0) (in R3).

With these datas, we build the tree T by induction: we define T 0 = Σ; given n ∈ N,
we define T n+1 = T n ∪ s0(T n) ∪ · · · ∪ sp−1(T n); finally, we define T =

⋃ T n.

Figure 1. On the left: the tree T (whole figure), and subtrees
T0 and T1. On the right: mesh associated to the partial 3D lung.
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We shall denote by E(T ) the set of edges of T and by V(T ) the set of interior
vertices of T . We also define subtrees Ti of T as Ti = si(T ) (see figure 1 for an
example of configuration with p = 2).

2.2. Variational spaces and Helmholtz equations. On T , given {µi > 0, 0 ≤
i < p}, we define the unique piecewise constant weight function µ̃ : T → R∗+ such
that: {

µ̃ = 1 on Σ,

µ̃ ◦ si = µi µ̃

and we denote by µ̃e the value of µ̃ on the edge e ∈ E(T ).

We define then the weighted ”broken” norms depending of µ as

‖u‖2L2
µ(T ) =

∑

e∈E(T )

µ̃e ‖u‖2L2(e) |u|2H1
µ(T ) =

∑

e∈E(T )

µ̃e ‖u′‖2L2(e) ,

where u′ on e ∈ E(T ) is the derivative of u with respect to the curvilinear abscissa
along e, and the associated Sobolev spaces

H1
µ(T ) =

{
v continuous such that ‖u‖2L2

µ(T ) + |u|2H1
µ(T ) <∞

}

H1
µ,0(T ) = closure of

{
v ∈ H1

µ(T ) such that ∃n ∈ N, v = 0 on T \ Tn
}
.

Moreover we define the following Besov spaces

H1
µ(T ) =

{
v continuous such that |v(0)|2 + |u|2H1

µ(T ) <∞
}

H1
µ,0(T ) = closure of

{
v ∈ H1

µ(T ) such that ∃n ∈ N, v = 0 on T \ Tn
}
.

We also define the Helmholtz problem with ”Neumann” or ”Dirichlet” condition
at infinity: find u ∈ H1

µ(T ) (resp. u ∈ H1
µ,0(T )) such that u(0) = 1 and, for any

test function v ∈ H1
µ(T ) (resp. v ∈ H1

µ,0(T )):

(1)

∫

T

µ̃u′v′ − ω2

∫

T

µ̃uv = 0, where ω ∈ C is the wave pulsation.

This formulation automatically implies a homogeneous wave equation on each edge
e ∈ E(T ), and standard Kirchhoff conditions on each interior vertex v ∈ V(T ).
Standard Kirchhoff conditions are detailed in [5, 3].

Remark. The particular choice µi = αd−1i (the associated tree is called a d-
geometric tree) is obtained by considering T as the limit of T ε when ε tends to 0,
where T ε is built as T - the only difference is that Σε is a d-dimensional domain
which tends to Σ when ε tends to 0. Then (1) appears as the limit model for the
solution of the d-dimensional homogeneous Helmholtz equation on T ǫ.
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2.3. Results. When Im(ω) 6= 0, problem (1) admits a unique solution un ∈ H1
µ(T )

(resp. ud ∈ H1
µ,0(T )). Moreover, one has

(2) un 6= ud ⇐⇒ H1
µ(T ) 6= H1

µ,0(T ) ⇐⇒
∑ µi

αi
> 1 .

In the following, we assume that (2) is satisfied (this is the interesting case). By
denoting Λn(ω) the value of u

′
n
(0) (resp. Λd(ω) the value of u

′
d
(0)), we can replace

the Helmoltz equation on T by a transparent DtN condition

(3) u′(0) = Λn(ω)u(0) (resp. u′(0) = Λd(ω)u(0)) .

Proposition 2.1. Λn and Λd, as functions of ω, satisfy the following quadratic
relation (obtained by looking at the problem satisfied on each subtree Ti, this ap-
proach is similar to the approach done in [1])

(4) Λ(ω) cos(ω)− ω sin(ω) =

p−1∑

i=0

µi
αi

(
cos(ω) +

Λ(ω)

ω
sin(ω)

)
Λ(αiω) .

For ω = 0, (4) becomes

(5) Λ(0) = Λ(0)
(
1 + Λ(0)

) p−1∑

i=0

µi
αi

,

whose solutions are Λn(0) = 0 and Λd(0) = (1 −∑µi/αi)/(
∑
µi/αi).

Conjecture 2.1. There exists at most two homeomorphic functions Λ satisfying
(4), and the unicity is given knowning Λ(0).

If the length of Σ is ℓ instead of 1, one has the following scaling formulas for
the traces Λn(ℓ, ω) and Λd(ℓ, ω) of ”Neumann” and ”Dirichlet” solutions of (1):

Proposition 2.2. One has

Λn(ℓ, ω) =
1

ℓ
Λn(ℓ ω) and Λd(ℓ, ω) =

1

ℓ
Λd(ℓ ω) .

So if we want to solve problem (1) on T n instead on T , one has to replace
Helmholtz equation on each subtree by the DtN condition (3), where we set length
of Σ equal to ℓn. Since ℓn ∼ αn, with α = max(αi), for large n it is sufficient
to get a good approximation of Λ(ω) for small ω which can be done with Taylor
expansions.

Proposition 2.3. For ω small, one has

Λn(ω) =
1

1−∑µiαi
ω2 +O(ω4)

Λd(ω) =
1−∑µi/αi∑

µi/αi
+

1 +
∑
µi/αi + (

∑
µi/αi)

2

3
(
(
∑
µi/αi)

2 −∑µiαi

) ω2 +O(ω4) .
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2.4. Back to the time-domain wave equation. Neglecting the O(ω4) term in
formulas of proposition 2.3 allows us to write Λn(ω) (resp. Λd(ω)) under the form

(6) Λn(ω) = λ0
n
+ λ2

n
ω2

(
resp. Λd(ω) = λ0

d
+ λ2

d
ω2
)
.

Injecting (6) in (3) and going back to time-domain leads to the following DtN
operator

(7) u′(t,0) = λ0 u(t,0)− λ2
∂2u

∂t2
(t,0) .

If we want to ensure stability for the time-domain wave equation with this condi-
tion, one has to check λ0 ≤ 0 and λ2 ≥ 0:

• for Λd, under hypothesis (2), one always has λ0
d
≤ 0 and λ2

d
≥ 0,

• for Λn, one has λ
0
n
= 0, and one has λ0

n
≥ 0 if and only if one has

∑
µiαi <

1, i.e. if and only if the constant function 1 belongs to L2
µ(T ).

3. Numerical results

To validate results of previous section, we solve time-domain wave equation on
Tn for various values of n with outgoing condition at 0 and different conditions at
outer boundary of n (with coefficients computed thanks to proposition 2.2):

• Dirichlet condition,
• First order impedance condition u′(t, ·) = λ0u(t, ·),
• Second order impedance condition given by (7).

Numerical tests validate the condition (7) and show accuracy of this condition with
respect to number of generations we consider. These results are work in progress
for general case.
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Coercivity of boundary integral equations in high frequency scattering

Euan A. Spence

(joint work with Timo Betcke, Simon N. Chandler-Wilde, Ivan G. Graham,
Valery P. Smyshlyaev)

Whether continuity and coercivity hold for variational formulations of several
classical PDEs is well known. However, determining the conditions under which
coercivity holds for boundary integral equation operators in acoustic scattering is
still an open problem. Consider the problem of time-harmonic acoustic scattering
from a sound-soft bounded obstacle Ω ⊂ Rd, (d = 2, 3) with Lipschitz boundary
Γ := ∂Ω. That is, we are looking for the solution u of the problem

∆u+ k2u = 0 in Rd\Ω , u = 0 on ∂Ω ,(1)

∂us
∂r

− ikus = o(r−(d−1)/2),(2)

where u = uinc + us is the total field, uinc is a solution of (1) in a neighborhood
of Ω, such as an incident plane wave, us is the scattered field, and r is the radial
coordinate.the solution u is given by

u(x) = uinc(x) −
∫

Γ

Φ(x, y)un(y)ds(y), x ∈ Rd\Ω,

where un is the outward pointing normal derivative of u and Φ(x, y) stands for the
standard free-space Green’s function. To compute un one can solve the boundary
integral equation

(3) Ak,ηun = 2
∂uinc
∂n

− 2iηuinc , Ak,η := I +K ′ − iηS,

where η ∈ R\{0}, I is the identity, and K ′ and S are defined by

K ′u(x) := 2

∫

Γ

∂Φ(x, y)

∂n(x)
u(y)ds(y), Su(x) := 2

∫

Γ

Φ(x, y)u(y)ds(y), x ∈ Γ .

The corresponding sesquilinear form is defined as ak,η(u, v) := 〈Ak,ηu, v〉, with
〈u, v〉 :=

∫
Γ u(y)v(y)ds(y) being the standard L2-inner product. It was recently

shown by Chandler-Wilde and Langdon in [10] that the operator Ak,η is bijective

with bounded inverse in the Sobolev spaces Hs−1/2(Γ) for |s| ≤ 1
2 and η ∈ R\{0}

(see also the book by Colton and Kress [12] for unique solvability of (3) in C(Γ)
with C2 boundary).

The common choice for the coupling parameter η is to take η proportional to k
for k large, and η constant for k small. This has been based on theoretical studies
for the case of Γ a circle or sphere [17, 16, 1, 2], and also on computational experi-
ence [7]. Recently this choice has been backed up as near optimal for conditioning
for more general domains by the analysis of [9].

An integral operator closely related to Ak,η is

(4) A′k,η := I +K − iηS
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where K is the double layer integral operator. This operator appears in the classic
indirect boundary integral formulation due to Brakhage and Werner [5], Leis [19]
and Panič [20]. (“Indirect” refers to the fact that this integral operator does not
arise from Green’s integral representation, whereas the so-called “direct” integral
operator from (3) does.) The operator A′k,η is the adjoint of Ak,η with respect to

the real inner product 〈u, v〉R :=
∫
Γ
u(y)v(y)ds(y), thus, ‖Ak,η‖ = ‖A′k,η‖, where

the norm is that induced by the standard L2-inner product. If continuity and
coecrivity hold for Ak,η then they also hold for A′k,η with the same constants.

In acoustic scattering the key question is thus not only whether a(·, ·) is con-
tinuous and coercive, but also how the continuity constant C > 0 and coercivity
contant γ > 0 depend on the wavenumber k. Indeed, this is the main motivation
for studying the variational form of (3). The classical theory of second kind inte-
gral equations such as (3), which is based on the fact that for sufficiently smooth
domains the integral operator from (3) is a compact perturbation of the identity,
gives asymptotically quasi-optimal error estimates. However, these error estimates
have the following two disadvantages: The first is that they are not explicit in the
wavenumber k; i.e. they do not say how either the constant in the estimates, or
the dimension of the approximation space N , depend on k [3].

The second is that much research effort has been focused recently on deter-
mining novel approximation spaces which take into account the high oscillation
of the solution as k increases [8], and it does not appear that the classical theory
can be used to prove error estimates for numerical methods using these subspaces.
On the other hand, if continuity and coercivity of a(·, ·) can been established with
constants explicit in k, then quasi-optimality estimates are valid for V(h) any finite
dimension subspace of L2(Γ).

Continuity of ak,η(·, ·) is much more easy to establish than coercivity: by
Cauchy-Schwartz, |t(u, v)| ≤ C‖u‖‖v‖ holds for the bilinear form involving Ak,η
with C = ‖Ak,η‖, and this is seen to be sharp by letting v = Ak,ηu. The question
of bounding ‖Ak,η‖ with bounds explicit in k and η was investigated in detail in
[9]. A first result on the coercivity of ak,η(·, ·) was given in [13], where it was
shown that with Γ the unit circle (in 2-d) and the unit sphere (in 3-d), with η = k,
ak,k(·, ·) is coercive for sufficiently large k with γ ≥ 1. However, the question of
coercivity and of k−dependence of the coercivity constant γ is still unanswered for
more complicated domains. Although nothing is known directly about the coer-
civity constant γ for domains other than the circle/sphere, results on the norm of
the inverse of Ak,η can be used to deduce information about γ using the fact that if
Ak,η is coercive then γ ≤ 1

‖A−1

k,η‖
. Chandler-Wilde, Graham, Langdon and Linder

[9] proved that if a part of Γ is C1 then ‖A−1k,η‖ ≥ 1 and, hence, γ ≤ 1. Thus the

bound obtained for γ for the circle in [13] is sharp. This follows from the fact that
S and K are smoothing operators on smooth parts of Γ. In the same paper the
authors constructed an example of a non-convex, non-starlike “trapping” domain
in 2-d for which there exists an increasing sequence kn where ‖A−1k,η‖ grows as kn

increases. Indeed, for this domain, when η = k, ‖A−1kn,kn‖ & k
9/10
n , where B is
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independent of k. It is not known whether Ak,k is coercive for this domain or not,
but this example shows that if it is coercive, it cannot be uniformly coercive in k

since γ . k
−9/10
n , which tends to zero as kn → ∞.

The final result on ‖A−1k,η‖ which is relevant for coercivity was obtained by

Chandler-Wilde and Monk in [11]. Their result implies that if Γ is Lipschitz , C2

in a neighborhood of almost every x ∈ Γ, and starlike with respect to the origin,
that is

ess inf
x∈Γ

x · n(x) > 0,

then for η & k

‖A−1k,η‖ . 1.

Thus, the “blow-up” of ‖A−1k,η‖ for the “trapping” domain in [9] cannot occur when
Ω is starlike.

Recall the definition of “trapping” and “non-trapping” from the epilogue of
[18]: consider all the rays starting in the exterior of Ω inside some large ball of
finite radius. Continue all the rays according to the law of reflection (angle of
incidence equals angle of reflection) whenever they hit ∂Ω, until they finally leave
the large ball. We call Ω trapping if there are arbitrary long paths or closed
paths of this kind; otherwise Ω is non-trapping. (Note that there are subtleties
associated with rays hitting the boundary at a tangent, and also for domains with
non-smooth boundaries.) In scattering theory, both for the Helmholtz equation
(1) and for the time dependent wave equation, the geometry of the domain, and
in particular whether it is trapping or not, plays a key role [18]. The connection
between trapping and coercivity is discussed more in [4].

From the definition of the numerical range (field of values, [14]) we have the
following equivalent characterisation of coercivity: The sesquilinear form t(u, v) :=
〈Tu, v〉 associated with a linear operator T on a Hilbert space is coercive if and

only if 0 6∈W (T ). Furthermore, if t(·, ·) is coercive then the coercivity constant γ is
given by γ = d(0,W (T )), where d is the usual set distance. Thus, we can determine
coercivity by computing the numerical range of the operator Ak,η, which is a
well studied problem in the numerical linear algebra literature for matrices acting
on Cn. Coercivity for several interesting polygonal and smooth domains in two
dimensions is investigated in this way in [4] for the most common choice of coupling
constant η = k. Since in practice one works with Galerkin discretizations of
ak,η(·, ·), [4] gives convergence estimates of the numerical range based on Galerkin
discretizations with standard piecewise constant boundary element discretizations.

The numerical results in [4] demonstrate that coercivity of the direct combined
boundary integral operator Ak,k seems to hold uniformly on a wide range of do-
mains. This is surprising since for standard domain based variational formulations
of the underlying Helmholtz equation only a weaker G̊arding inequality, with k de-
pendent perturbation term, holds [15]. Some rigorous results on proving coercivity
of Ak,η in certain situations, as well as proving coercivity of other related integral
operators, have recently been obtained.
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Isogeometric analysis in electromagnetism: analysis and testing

Rafael Vázquez

(joint work with A. Buffa, G. Sangalli)

1. Introduction

Isogeometric Analysis (IGA) is a method for the discretization of partial differ-
ential equations, that was recently introduced by T.J.R. Hughes et al. in [7]. The
concept of IGA was born with the aim of making easier the interaction between
the Computer Aided Design (CAD) software and the numerical solver. In order to
describe the geometry, CAD tools make use of different kind of functions, the most
popular of them being non-uniform rational B-splines (NURBS) (see [10]). The
main idea of IGA is to use NURBS basis functions as the trial and test functions
in the discrete variational formulation. The main features of IGA compared to
finite elements are the following:

• The geometry is defined exactly, in the sense that the NURBS description
given by CAD is preserved.

• The computed solution is smoother, due to the higher continuity of NURBS
basis functions.

Thanks to this second property, in IGA we can perform the so-called k-refinement,
which consists on increasing the degree and the continuity of the basis functions
(see [7]). This refinement provides better convergence in terms of degrees of free-
dom than p-refinement, and it has been found of particular interest in the approx-
imation of the entire spectrum of harmonic and biharmonic problems [8].

In this work we present the application of IGA to electromagnetic problems,
and in particular to the Maxwell eigenproblem: Find ω ∈ R, ω 6= 0 and u ∈
H0(curl; Ω), u 6= 0 such that

(1)

∫

Ω

curl u · curl v = ω2

∫

Ω

u · v, ∀v ∈ H0(curl; Ω).

The method we describe was introduced in [5], and analyzed in [4]. Our method
is based on B-splines, but the domain Ω may be defined with NURBS, thus the
CAD representation of the geometry is preserved. In the next section we give a
brief overview about B-splines, using the same notation of [5], and refer the reader
to [3] and [11] for extended works on the subject.

2. B-splines and NURBS

Given two positive integers p and n, we define the open knot vector Ξ := {0 =
ξ1, ξ2, . . . , ξn+p+1 = 1}, where the term open means that the first and last knots
are repeated p+1 times. Univariate B-splines basis functions are defined from the
knot vector following the algorithm described in [3]. To characterize the space they
span, we define the vector {ζ1, . . . , ζm} of knots without repetitions. The space
spanned by these basis functions is formed by piecewise polynomials of degree p
having αi continuous derivatives at the points ζi, with αi = p − ri, and ri the
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multiplicity of the knot ζi. We will denote this space of B-splines as Spα(Ξ) ≡ Spα,
where α := {α1, . . . αm} is the vector of continuities. It is worth to note that the
derivatives of B-splines are also B-splines, and in fact

(2)

{
d

dx
v : v ∈ Spα

}
≡ Sp−1α−1.

The definition is generalized to the trivariate case (also bivariate) by tensor
products. Given the integers pd and nd, for d = 1, 2, 3, we introduce the knot
vectors Ξd as before, and also the corresponding vectors of knots without repeti-
tions and continuities. Notice that the vectors Ξd define a Cartesian partition of

the unit cube Ω̂ = (0, 1)3, that is, a mesh. The space of B-splines associated to
these knots is denoted by Sp1,p2,p3α1,α2,α3

, and is formed by piecewise polynomials with
interelement regularity given by the vectors αd (see [5] and [4] for details).

NURBS basis functions and geometrical entities are then defined from these
B-splines. Roughly speaking, to each B-spline basis function Bi, where i is a three-
dimensional multi-index (or two-dimensional for bivariate splines), we associate a
positive weight wi, and define the corresponding NURBS basis function as

Ni(x) =
wiBi(x)∑
j wjBj(x)

.

In order to describe the geometry, we associate to each NURBS basis function Ni

a control point Ci ∈ R3. The domain is then defined by the parametrization

(3)
F : Ω̂ −→ Ω

x 7−→ F(x) :=
∑

jNj(x)Cj.

For further details and examples we defer the reader to [10] and [7]. In the following
we will assume that our physical domain Ω is open, Lipschitz, simply connected and
with connected boundary, and that it can be described through a parametrization
as (3).

3. Commuting De-Rham diagram

It is well known that, in order to discretize (1), it is necessary to find a set of
discrete spaces that mimic the following exact sequence [1, 9]:

(4) H1
0 (Ω)

grad−−−−→ H0(curl; Ω)
curl−−−−→ H0(div; Ω)

div−−−−→ L2(Ω)/R.

In finite elements the discrete sequence is formed by nodal, edge and face finite
elements. A sequence of B-spline spaces can be also constructed thanks to property

(2). Let us define the spaces in the parametric domain Ω̂

X̂0 := Sp1,p2,p3α1,α2,α3
, X̂1 := Sp1−1,p2,p3α1−1,α2,α3

× Sp1,p2−1,p3α1,α2−1,α3
× Sp1,p2,p3−1α1,α2,α3−1

,

X̂2 := Sp1,p2−1,p3−1α1,α2−1,α3−1
× Sp1−1,p2,p3−1α1−1,α2,α3−1

× Sp1−1,p2−1,p3α1−1,α2−1,α3
,

X̂3 := Sp1−1,p2−1,p3−1α1−1,α2−1,α3−1
,
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and let us denote with the subindex 0 the spaces with homogeneous boundary
conditions (tangential for X̂1

0 , normal for X̂2
0 , null average value for X̂3

0 ). It can

be proved that the following sequence in Ω̂ is exact:

(5) X̂0
0

grad−−−−→ X̂1
0

curl−−−−→ X̂2
0

div−−−−→ X̂3
0 .

The exact sequence in the physical domain Ω is then constructed by applying
suitable push-forwards (see, e.g., [1, 4]). For instance, the discrete space for ap-
proximating H0(curl; Ω) is defined as

X1
0 := {uh ∈ H0(curl; Ω) : ι

1(uh) ∈ X̂1
0},

where ι1 is the curl-conserving pull-back, defined as

ι1(u) := (DF)T (u ◦F),
and F is the same parametrization given by (3).

In order to develop the numerical analysis of our discrete spaces, it is necessary
to construct a commuting diagram between the continuous and the discrete spaces.
This is done by defining suitable projectors onto our discrete spaces. To do it

briefly, the projectors in the reference domain Ω̂ are formed by tensor products of

the univariate projectors Π̂p0,S , analyzed in [11, 2], and Π̂p−10,A , defined in [4]. Both

projectors are L2-stable and local, and they satisfy

Π̂p−10,A

d

dx
u =

d

dx
Π̂p0,Su ∀u ∈ H1

0 (0, 1).

For instance, we define the projector Π̂1
0 : H0(curl; Ω̂) → X̂1

0 as

Π̂1
0 := (Π̂p1−10,A ⊗ Π̂p20,S ⊗ Π̂p30,S)× (Π̂p10,S ⊗ Π̂p2−10,A ⊗ Π̂p30,S)× (Π̂p10,S ⊗ Π̂p20,S ⊗ Π̂p3−10,A ).

Then, the projector in the physical domain is constructed by push-forward:

ι1(Π1
0u) = Π̂1

0(ι
1(u)), ∀u ∈ H0(curl; Ω).

With similar choices for the three other spaces, the diagram can be proved to be

commutative. Moreover, as the projectors are defined from Π̂p0,S and Π̂p−10,A they

are also L2-stable and local. Once again, we address the reader to [4] for the
proofs.

4. Application to Maxwell eigenvalue problem

The discrete spaces presented above have been applied to the approximation of
problem (1). The discrete version of the problem reads: Find ω ∈ R, ω 6= 0, and
uh ∈ X1

0 , uh 6= 0 such that
∫

Ω

curl uh · curl vh = ω2

∫

Ω

uh · vh, ∀vh ∈ X1
0 .

Since the continuous and discrete spaces satisfy a commuting diagram, with L2-
stable and local projectors, we know that our discretization is spurious-free, and
that the discrete solutions converge to the continuous one when refining in terms
of the mesh size h (see [1]).
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In order to test the behavior of the method, it has been applied to several bench-
mark problems. The numerical results can be found in [4, 5, 6]. The method has
proved to be spurious-free, and capable to approximate singular functions in non-
convex domains. The convergence rate in terms of the mesh size h always agrees
with the theoretical value. Moreover, the convergence in terms of the degrees of
freedom is better than with standard finite elements.

Finally, it is worth to note that the method provides the two main properties of
IGA: the geometry is exactly described using very few elements, and the computed
solution is smoother than the one given by finite elements. In particular, if the
geometry is smooth enough, the computed solution may be continuous, and its
divergence can be computed. We refer the reader again to [4] for the study of the
divergence and some numerical results.
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BETI-methods for acoustic scattering problems

Markus Windisch

(joint work with Olaf Steinbach)

We consider the Helmholtz problem with Neumann boundary conditions

∆u(x) + κ2u(x) = 0 for x ∈ Ω ⊂ R3(1)

∂

∂n
u(x) = g(x) for x ∈ Γ = ∂Ω
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which we solve by using a domain decomposition approach, more precisely a tearing
and interconnecting method (see [3]), and by using boundary element discretiza-
tions for the local subproblems. This has several advantages:

• κ can be chosen piecewise constant (constant on each subdomain).
• The BEM can be easily exchanged in specific domains by other methods
like finite element methods.

• The domain decomposition approach offers a natural parallelization for
the implementation.

The boundary value problem (1) is equivalent to the local boundary value prob-
lems

∆ui(x) + κ2iui(x) = 0 for x ∈ Ωi,(2)

∂

∂ni
ui(x) = g(x) for x ∈ Γi = ∂Ωi ∩ Γ,(3)

together with the transmission or interface boundary conditions

ui(x) = uj(x) for x ∈ Γij ,(4)

∂

∂ni
ui(x)+

∂

∂nj
uj(x) = 0 for x ∈ Γij .(5)

To avoid non–uniqueness in the solution of either local Dirichlet or Neumann
boundary value problems, instead of the Neumann transmission boundary condi-
tion in (4) we consider a Robin type interface condition given as

(6)
∂

∂ni
ui(x) +

∂

∂nj
uj(x) + iηijRij [ui(x)− uj(x)] = 0 for x ∈ Γij , i < j,

together with the Dirichlet transmission condition

(7) ui(x) = uj(x) for x ∈ Γij .

Note that Rij : H1/2(Γij) → H̃−1/2(Γij) is assumed to be self–adjoint and

H1/2(Γij)–elliptic, and ηij ∈ R\{0}. In this case, the equivalence of the inter-
face transmission conditions (6) and (7) with (4) and (5) follows immediately.

The local subdomain boundary Γi = ∂Ωi of a subdomain Ωi is considered as
the union

Γi = (Γi ∩ Γ) ∪
⋃

Γij

Γij ,

where Γi ∩ Γ corresponds to the original boundary where Neumann boundary
conditions are given, while Γij denotes the coupling boundary with an adjacent
subdomain. We define

(8) (Riu|Γi
)(x) := (Riju|Γij

)(x) for x ∈ Γij

and

(9) ηi(x) :=





ηij for x ∈ Γij , i < j,

−ηij for x ∈ Γij , i > j,

0 for x ∈ Γi ∩ Γ .
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We assume, that ηi(x) for x ∈ Γi does not change its sign. This can be guaran-
teed either when considering a checker board domain decomposition [1], or when
enforcing Robin type boundary conditions only on a part of the local boundary
Γi, i.e. setting ηij = 0 on some coupling boundaries Γij .

Since we want to use a boundary integral approach for the local problems, we
have to introduce first the local representation formulae, see e.g. [4]

ui(x) =

∫

Γi

U∗κi
(x, y)ti(y)dsy −

∫

Γi

∂

∂ny
U∗κi

(x, y)ui(y)dsy for x ∈ Ωi,(10)

where

U∗κi
(x, y) =

1

4π

eiκi|x−y|

|x− y| , ti(y) :=
∂

∂ny
ui(y), y ∈ Γ

are the fundamental solution of the Helmholtz equation and the associated normal
derivative of the solution ui, respectively. By taking the Dirichlet and Neumann
traces of the representation formulae (10) we obtain a system of local boundary
integral equations

(11)

(
ui

ti

)
=

(
1
2I −Kκi Vκi

Dκi

1
2I +K ′κi

)(
ui

ti

)
,

where we have used the standard notations for boundary integral operators. The
mapping properties of all boundary integral operators as introduced above are well
known, see, e.g. [2]

If we reformulate now the problem (2),(3),(6),(7) with the help of boundary
integral equations, discretize the resulting system and apply a tearing and inter-
connecting approach, then we end up with the discrete formulation (see [5])




Vκ1,h −K̃κ1,h

K̃ ′κ1,h
Dκ1,h + iη1R1,h −B⊤1

. . .
...

Vκp,h −K̃κp,h

K̃ ′κp,h
Dκp,h + iηpRp,h −B⊤p

B1 . . . Bp







t1
u1
...
tp
up
λ




=




0
g
1
...
0
g
p

0




,

where K̃ is defined by K̃ := (12I +K), and Bi are boolean matrices which ensure
the continuity of the Dirichlet data. It can be proven that this discrete formulation
omits a unique solution, if (1) has a unique solution and if the discretization is
fine enough.
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After eliminating the primal degrees of freedom we end up with the Schur
complement system

Fλ =

p∑

i=1

(
0 Bi

)( Vκi,h −K̃κi,h

K̃ ′κi,h
Dκi,h + iηiRi,h

)−1(
0

B⊤i λ

)

= −
p∑

i=1

(
0 Bi

)( Vκi,h −K̃κi,h

K̃ ′κi,h
Dκi,h + iηiRi,h

)−1(
0
g
i

)
.

Numerical examples and possible preconditioning strategies can be found in [6].
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Efficient high-order Maxwell solvers via discrete space splittings

Sabine Zaglmayr

1. Problem formulation

In order to guarantee the unique solvability for vector potential formulations of
magnetostatic problems, additional constraints, so called gauging conditions, have
to be imposed. In particular, we consider the Coulomb gauge, which enforces or-
thogonality of the magnetic vector potential to gradient fields. In fact, we consider
the problem of finding a vector field A : Ω → R3 such that

curl νcurl A = j in Ω(1a)

div A = 0 in Ω(1b)

A× n = 0 on ∂Ω.(1c)

We assume ν ∈ L∞(Ω) with 0 < ν0 ≤ ν and compatible right hand side div j = 0.
For simplicity of presentation only, we assume Dirichlet boundary conditions (1c)
and the domain Ω to be contractible. Problem (1) arises also in iterative solvers
of the Maxwell Eigenvalue problem as well as in alternative formulations of the
Stokes problem.
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In this presentation, we investigate one possibility to realize the divergence-free
constraint, and we propose a two-step strategy for an efficient realization by hp-
finite element methods based on a careful construction of the involved high order
Nédélec finite element spaces.

2. hp-discretization

A crucial ingredient in the construction of conforming hp-finite elements is the
following discrete exactness property

H1
0 (Ω)

∇−→ H0(curl,Ω)
curl−→ H0(div,Ω)

div−→ L2,0(Ω)⋃ ⋃ ⋃ ⋃

Whp
∇−→ Vhp

curl−→ Qhp
div−→ Shp,

see e.g. [3, 2]. Exactness of the de Rham sequence means that the gradient fields
span the kernel of the curl operator and the curl fields span the kernel of the div
operator. The second line indicates that the same property should be satisfied also
on the discrete level. Discrete exactness (ker(curl,Vhp) = ∇Whp+1) and a discrete
Friedrichs’ inequality [5] for H0(curl) already imply the stability of the discrete
variational problem corresponding to (1): Find Ahp ∈ Vhp and Φhp ∈ Whp such
that

(νcurlAhp, curlvhp) + (∇Φhp, vhp) = (j, vhp) ∀vhp ∈ Vhp(2a)

(Ahp,∇ψhp) = 0 ∀ψhp ∈ Whp.(2b)

In the following we show how to solve this mixed problem efficiently by utilizing
special constructions of the H(curl)-conforming high-order finite element space.

3. Discrete space splitting

We start from a hierarchic representation

Whp := Wh ⊕Wp ⊂ H1
0 (Ω)

of the H1-conforming finite element space as direct sum of a low-order space Wh

and a completing space Wp of higher order polynomials. According to the discrete
de Rham sequence the gradients of functions in Whp shall be included in the
H(curl)-conforming finite element space Vhp. This can be accomplished by the
following construction [10, 11]

Vhp := Vh ⊕∇Wp ⊕ Ṽp ⊂ H0(curl,Ω),

where Vh denotes the classical low-order Nédélec space [8] and ∇Wp are the higher

order gradient fields. The completion space Ṽp is linearly independent to all
gradient fields ∇H1(Ω) and provides the approximation properties of Vhp. The
required discrete exactness property is thus fulfilled by construction. Moreover,
the largest part of the kernel space, i.e. the higher order gradient fields can be
represented explicitly. This property will be utilized in the following.
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4. A two-step gauging strategy

For solving (2) we proceed as follows: First, we solve a mixed problem on a

reduced space (Vh ⊕ Ṽp) ×Wh dropping higher order gradient and scalar fields.
In a second step, we establish the full solution of problem (2) by post-processing.
Both subproblems are much smaller and better conditioned than the original mixed
problem. In detail, the algorithm looks as follows:

(A) Find Ah ∈ Vh, Ãp ∈ Ṽp, and Φh ∈ Wh such that
(
νcurl (Ah + Ãp), curl (vh + ṽp)

)
+ (∇Φh, vh) = (j, vh + ṽp)

(Ah,∇ψh) = 0

for all vh ∈ Vh, ṽp ∈ Ṽp, and ψh ∈ Wh. Note that the second equation is needed

only to ensure uniqueness of Ah. Since Ṽp is linearly independent to gradient

fields, the curl-curl operator is positive definite on Ṽp.
(B) Find whp ∈ Whp such that

(∇whp,∇ψhp) = (Ah + Ãp,∇ψhp) ∀ψhp ∈ Whp.

In this second step, we compute the projection of Ah+ Ãp onto the gradient space

∇Whp. Note that Ṽp is linearly independent but not necessarily orthogonal to
gradient fields.

Theorem 1. Let (Ah, Ãp) be the solution of (A) and whp be the solution of (B),

then Ahp := Ah + Ãp −∇whp and Φhp := 0 solve (2).

If one is interested only in curl Ahp, then the post-processing step (B) can be
skipped.

5. Discussion

The proposed two-step strategy requires the solution of linear systems which are
much smaller and better conditioned than that of the original mixed problem. For

three dimensional computations, the dimension of the reduced space (Vh + Ṽp)×
Wh used in subproblem (A) is approximately 50 % smaller than that of the full
space Vhp × Whp. Problem (A) consists of two coupled subproblems: an elliptic
high-order part and a low-order mixed problem. Efficient solvers for the low-order
problem are readily available, e.g. via tree/cotree gauging [2] or penalization [9],
see also [6, 1]. The high-order part can be addressed by local block smoothers [11].
Problem (B) is a scalar elliptic problem for which efficient solvers are well-known.

The assembly of Ahp := Ãhp −∇whp does not require any further computation, if
the gradients of the basis functions of Wp are used directly as basis functions for
∇Wp in the H(curl) finite element space.
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