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Introduction by the Organisers

This interdisciplinary workshop brought together mathematicians, historians, and
philosophers to discuss a theme of general interest for understanding developments
in mathematics over a span of two hundred years. The emergence and development
of various disciplines in pure mathematics after 1800 has now been studied in a
number of special contexts, some of which played an important role in shaping the
character of modern research traditions. It has long been understood that the pe-
riod after 1800 saw a kind of emancipation of mathematical research from related
work in nearby fields, especially astronomy and physics. This general trend not
only led to a proliferation of special disciplines and wholly new fields of knowledge,
it also went hand in hand with a variety of innovative styles, new ways of doing
and presenting mathematics. Issues of style have long been central for historians
of art and literature, but such matters have seldom been addressed in the histor-
ical literature on mathematics, despite the fact that mathematicians themselves
have often been acutely aware of the importance of creative styles. During the last
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few decades, however, there has been a growing interest in various shifts within
the larger disciplinary matrix of mathematics during the nineteenth and twenti-
eth centuries. This workshop therefore aimed to shed new light on these complex
processes by considering ways in which issues of style–operating on the individual,
communal, and national levels–shaped and guided research activities in important
fields. Approximately half of the program dealt directly with mainstream fields in
pure mathematics, addressing issues of discipline and style in number theory, alge-
bra, geometry, topology, and analysis. A session on mathematical physics helped
to round out this picture by looking across the usual disciplinary boundaries. Most
of the speakers focused on subtler shifts in style and substance relevant to their
special theme, but a few offered more global surveys of how stylistic shifts informed
the transition and transformation of special research fields. Older traditions in es-
tablished research communities were considered alongside newer trends, including
changing views regarding the role of proof. The role of journals as a medium of
communication, but also for staking out priority claims and molding disciplines,
received considerable attention. Several speakers also dealt with problematic issues
connected with the use and abuse of stylistic issues to promote special agendas.
As a whole, this workshop broke significant new ground by showing through a rich
variety of examples how stylistic and disciplinary factors affected major develop-
ments in mathematics over the last two centuries.
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Abstracts

Rigour and understanding – the case of algebraic curves

Jeremy Gray

I discussed what might be meant by ‘style’ in mathematics, and offered a discus-
sion of the conflicts between rigour and understanding, which is a place in which
conflicts of style can often be found. One definition of style, adapted from the
Oxford English Dictionary, would be a ‘manner of expression characteristic of a
particular mathematician or a group or period; a writer’s mode of expression con-
sidered in regard to clearness, effectiveness, beauty, and the like’. Another, harder
to work with, would be ‘Those features of mathematical composition which be-
long to form and expression rather than to the substance of the thought or matter
expressed’. Terms such ‘algebra’, ‘analysis’, and ‘geometry’ would then refer not
to styles, but to disciplines.

There would not be much point in talking about styles in mathematics if it
did not enable us to do something. I think the concept can be used to illuminate
misunderstandings: imperfect understandings by good mathematicians may arise
from the use of different styles of exposition. For example, algebraic curves were
approached in the mid-19th century in algebraic, algebrao-geometric, analytic, and
even topological ways, all with different contemporary standards of rigour, and all
with different aspects: parts that look easy and parts that look questionable.
As commonly analysed, these are disciplinary differences, but I think we can see
stylistic differences at work too, as I intend to show.

What Riemann introduced in his doctoral thesis (Riemann 1851) was a truly
näıve yet profound idea. After Cauchy, he was the second mathematician to ap-
preciate that within the class of functions from R2 to R2 there is a major subclass
of functions from C to C and to begin to spell out their distinctive properties.
This class is specified by insisting on the definition of complex differentiability:
the derivative of a function from C to C at each point where it is differentiable
is to be independent of the direction of dz. Riemann was not, however, primarily
writing complex function theory. By 1857, in (Riemann 1857) he was using it and
developing it to an extraordinary degree, in order to do something else: create a
theory of Abelian functions. By now his approach was very abstract. His paper
starts with an abstract branched covering of the sphere, it dissects this to obtain
a polygon whose sides are identified in pairs, it does function theory on this poly-
gon in order to deduce the existence of complex functions on the covering surface.
Only then does it bother to show that to each branched covering and each choice
of a set of poles there corresponds a family of algebraic curves.

In the obituary of Rudolf Clebsch, who died unexpectedly in 1872, his seven
obituarists (Klein, Brill and Noether among the, see (von der Mühll et al 1874)
recorded that it was difficult to see a branched covering completely, and it was
difficult to know how to dissect it. Several good mathematicians retreated from
Riemann’s position of 1857 to that of 1851. After Clebsch and Gordan, Brill and
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Noether studied the general problem as one about algebraic curves in the plane
C × C. This loses the abstract setting where Riemann began and therefore loses
the topological aspect of the theory entirely. Riemann’s students Hattendorff and
Prym were appalled, as their correspondence makes clear.

A different but nonetheless pedagogically motivated choice of style was adopted
by another group of mathematicians, most of them with personal ties to Riemann,
who wrote books, or large sections of books, about his ideas: see (Durège 1864),
(Schlömilch 1866), and (Neumann, C.A. 1865) in Germany, and (Bertrand 1870)
in France. They largely restricted their attention to elliptic functions and other
simple Riemann surfaces. In his review of Bertrand’s Traité (1870) Darboux wel-
comed this part as being the first to show a proper understanding of this difficult
subject and therefore to offer the hope that Riemann’s ideas would not be aban-
doned.

These books display a typical feature of the textbook style: numerous exam-
ples. They were written for audiences that wanted to learn the advanced calculus
in some depth and who were willing to admit complex variables and complex func-
tions. They took the Riemannian approach and inverted it, so that readers began
with complex polynomials, appreciated that their many-valued nature could be
understood via the picture of a covering, but (Neumann apart) dispensed with the
idea of a covering space as a fundamental entity. I would tentatively suggest that
what we see here are examples of a mathematician’s writing style being determined
by the context, and that these books might be examples of textbook style.

The uniformisation theorem of Poincaré (1883 and 1907) offered a novel way to
understand Riemann’s ideas, because it placed them in a new context. Riemann
surfaces were now obtained not as quotient spaces rather (as is well-known) as total
spaces of a branched covering. Where they come together is in their presentation
of a polygon with its sides identified in pairs. Does thinking about style help us to
see anything new? I think it does. While Hilbert objected, correctly, in describing
his famous mathematical problems (Hilbert 1901) to the proof of the regularity
of the parameterising functions, he could, with equal justice, have objected to the
sheer vagueness of the description of the universal covering space. This leads me to
propose the existence of another style of mathematics, which might be called the
visionary or the naive, and which deals in loose presentations of big ideas, where
the expectation is that when everything is tightened up the big idea – now possibly
somewhat altered – will be seen to have been correct all along. This is not a style
available to every mathematician, nor is it one adopted by every member of the
select group that might be recognised by their peers as being talented enough to
be licensed to provide such visions. When it is used it raises acutely the question
of when a piece of mathematics is understood.

These considerations deepen one’s suspicion that ‘style’ is a term that may rest
on a misunderstanding: it is probably not possible to say the same thing in differ-
ent ways. Choice of a style may determine the content of what a mathematician
is going to say, by affecting his or her use of examples, techniques, use of other
literature and in other ways. The textbook and the visionary style communicate
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different things. One’s choice of style affects what can be said and also how well
it can be understood. What I called the textbook style may not be compatible
with the visionary approach, readers needing one in order to do something new
themselves may be disappointed, even frustrated, when they get the other one.
This is not entirely a matter of the content or difficulty of what is being said, but
also a question of how it is said.
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der K.S. Polytechnischen Schule zu Dresden.
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More details can be found in Bottazzini and Gray’s forthcoming history of complex
function theory.

Learned journals and styles of mathematical communication

Jeanne Peiffer

The lecture grew out of a research program which started in 2005 and which inves-
tigates learned journals as agents of communication and construction of knowledge
in the seventeenth and eighteenth centuries. The creation of learned journals in
the last third of the seventeenth century - Journal des savans in January 1665
followed by The Philosophical Transactions in March of the same year – eventu-
ally established a communication system, which has dominated the exchange and
validation practices in science since for centuries– and which is today called into
question by the dematerialisation of its medium. These first journals were not yet
specialised and may be characterised by the publication, at regular intervals and
under the same title, of extracts of recent books, original memoirs and scientific
news, each issue giving voice to different themes and authors. The texts published
were listed in annual bibliographies or indexes, and recapitulatory tables, which
referred them to topics in a classification system. The latter offered access, on a
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long-term basis, to the information published in the journal, which could thus be
revived, completed, extended, discussed or controversially debated.

In the talk I examine the implications of this communication system on the
production and assessment of reliable knowledge. More specifically, I am interested
in its impact on the “style” of mathematical representation. Before the creation
of learned journals, mathematicians communicated mostly by letters with a more
or less wide circle of correspondents. Mathematicians were then writing for an
exclusive group of readers and assumed that their readers possess an extensive
tacit know-how that they widely shared with them.

1. Tacit knowledge

A word may be in order to make clear what I understand here by tacit knowl-
edge, or as I would prefer to say shared know-how. The term “tacit knowing” or
“tacit knowledge” was first introduced into philosophy by Michael Polanyi in his
Personal Knowledge(1958). The theory of tacit knowledge stands in opposition
to the “ideal of wholly explicit knowledge” which took shape from the scientific
revolution of the seventeenth century. There is a lot of discussion going on con-
cerning the philosophical theory of tacit knowledge, especially in the context of
mathematical education and curricula. Among the different interpretations which
have been given – from a conscious under-articulation to the strong thesis that
there are specific kinds of knowledge that are in principle incapable of articulation
– I am especially interested in the first one: Tacit knowledge as something math-
ematicians consciously attempt to conceal, to avoid articulating or which they
choose to under-articulate. This is particularly interesting if we understand math-
ematics also as a social practice in a wide sense. Tacit knowledge is then built on
experience or action. Mathematical practitioners do not fully describe it because
they assume, or know by experience, that their readers share this knowledge with
them. It concerns knowledge of a set of procedures, methods, techniques, and
strategies. Tacit mathematical knowledge is any type of mathematical knowledge
used as subsidiary to the performance and control of a mathematical task (Ernest).

In their correspondence, mathematicians from the seventeenth century heavily
relied on this tacit knowledge as I show by means of two examples well known
in the historiography of mathematics: The catenary and the Florentine cupola. I
put the emphasis on the communication strategies used by the authors involved
in these famous contests.

2. Example of the catenary

The problem was posed by Jacob Bernoulli, then a newcomer in the field, in the
May 1690-issue of the Acta eruditorum and solved by Christiaan Huygens, Johann
Bernoulli and Gottfried W. Leibniz1. Huygens applied the rules of epistolary
communication and, in order to avoid discussions about the authorship of the
result, hid his solution under a cipher which could at best be understood by a

1Their solutions are published in the June 1691-issue of the Acta eruditorum.
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mathematician knowing the result. He was writing for a very small circle of experts
and was barely communicating. Leibniz was not willing to encode his solution.
Instead he enumerated some properties of the curve (supposita ejus constructione),
which in his eyes could allow Huygens to name the curve which describes the
shape of a rope attached to two fixed points located on a same vertical plane.
This was also what Johann Bernoulli did in the paper sent to Leipzig. While
Huygens applied the rules he was used to follow with his correspondents and
communicated first a cryptic solution, Leibniz and Bernoulli seemed confident
that the greater publicity offered by journals could guarantee the authorship of
the published solutions. It is important however to stress that none of the three
authors gave a complete solution. They contented themselves with describing
the properties of the curve and giving the construction of one single point on
it. They clearly assumed a very strong tacit know-how from their (necessarily
small) audience. Leibniz was very proud of the catenary and tried to make it
widely known. In Italy, he contacted Bodenhausen, a strong defender of Leibnizian
methods and preceptor at the Medici court, to whom he communicated a complete
solution. He agreed that Bodenhausen might circulate the construction, but not
his ‘’modum quadrandi”. His technique of squaring was new at that time and
not at all systematic. Leibniz’s correspondence with Bodenhausen contains some
evidence of the rules to follow when mathematicians make their solutions public,
either by letters or by publication in journals2.

3. The Florentine cupola

Vincenzo Viviani, Galileo’s disciple and mathematician of the Tuscan court,
formulated this problem in response to Leibniz catenary. The Florentine Aenigma
concerns what is described as an ancient Greek temple of a circular basis, dedicated
to geometry. The problem is to cut out of the surface of a hemisphere four equal
windows in such a way that the remaining surface be equivalent to a square. While
Viviani stuck to a local patron, the grand prince of Tuscany, to whom he offered
a geometrical model as solution to his challenge problem - the squarable cupola is
obtained by drilling into a sphere two equal cylinders having a diameter equal to
the radius of the sphere and one single generatrix in common passing through the
centre of the sphere - Leibniz put the emphasis on method and used the journals in
order to inform a wider, mostly mathematical audience about his new and general
method, the differential calculus, which he applied to the special problem of the
Florentine cupola. We can observe in this example two different epistemologies,
classical geometry versus calculus, but also two different communication styles
conveyed by two different material forms, a letter addressed to a patron versus an
analytical calculation in a journal.

2”Es ist aber guth da wenn man etwas wurklich exhibiret man entweder keine demonstration
gebe, oder eine solche, dadurch sie uns nicht hinter die schliche kommen”, Leibniz to Boden-
hausen, March 23, 1691, in Leibniz, Akademie-Ausgabe III, 5, p. 80.
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4. Concluding remarks

In order to conclude, I formulate the following hypothesis, which needs further
discussion: With the creation of learned journals, a new style of mathematical
communication slowly emerged. Memoirs tended to be more explicit, to rely less
on tacit know-how, even if it was far from being absent, to include proofs and
analytical calculations. The emphasis was on method, more than on results. All
along the eighteenth century, periodicals developed their own rules and codes
for the acceptability and validation of the results they were publishing. These
rules differed from those applied in epistolary exchanges. As publication in a
learned journal guaranteed the authorship of a result or a method, it might no
longer be necessary to withdraw from the published version the demonstration,
the calculations or a special technique. The periodical form which allows rapid
publication of short pieces, in which one single aspect of a question may be studied,
which gives the possibility to add to one author’s findings an extension found by
another, to discuss an aspect of a proof or to propose a variant of a proof, the
periodical form which allows all this brings about what might be called a new
“style” of communication, more explicit and putting more emphasis on methods,
proofs, variants of proofs than on simple results.

In my eyes, the hypothesis formulated above needs further study and may be
extended into a new research program: When and where do mathematicians make
which parts of their methods public ? In which contexts do they practice an open
style of communication ?
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Issues of style in the 19th century Cambridge Mathematical Tripos

June Barrow-Green

Since its inception during the early decades of the 18th century, the Mathemati-
cal Tripos examination has defined the teaching and examining of undergraduate
mathematics at Cambridge. Enormous prestige (which stretched far beyond the
boundaries of the University) was attached to attaining first place (senior wran-
gler) in the examination, and being a leading wrangler provided a passport to
high-status employment outside academia. As the 19th century developed, the
number of examination papers grew, and the event progressively turned into a
problem-solving marathon. For those undergraduates who wished to gain a high
place in the order of merit, it was essential to hire coach (private tutor).
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The latter years of the 19th century saw a number of reforms to the Mathe-
matical Tripos, due both to the need for curriculum changes (to take account of
new and developing subjects) and the fact that such a highly competitive exam-
ination was having an adverse effect on student numbers. Nevertheless, despite
these reforms, the numbers continued to decline, particularly in contrast to those
for the Mechanical Sciences Tripos [1] and at the beginning of the 20th century
moves were made for further reforms–notably to get rid of the order of merit–with
strong support coming from outside the university, e.g. from the engineer John
Perry [2]. In 1907, after a prolonged and heated debate, the order of merit was
finally abolished.

It is clear that during the (long) 19th century the Mathematical Tripos was
little short of a national institution with widespread influence outside mathemat-
ics. That a mathematical examination should have reached such an exalted state
is remarkable and invites consideration about its (changing) style. However, be-
fore embarking on such a study, some discussion about style within the broader
mathematical culture, both nationally and within Cambridge itself, is merited.
For example, one could, albeit rather provocatively, characterise British mathe-
matics during this period, with its proliferation of problem solvers and lack of a
research structure, as being ‘amateur’ as opposed to ‘professional’ (acknowledging
the complexity of such labels); although such an epithet would not of course sit
comfortably in discussions limited exclusively to Cambridge. But in Cambridge
other aspects of style, for example, the dominance of Newtonian style mathemat-
ics with its emphasis on geometrical as opposed to analytical proofs, play into the
story. Then there is the question of the differences of style between Cambridge
mathematics and the mathematics studied and produced elsewhere, notably in
Oxford, but also in London and the Scottish universities.

In considering style within the Mathematical Tripos itself, it is not only the
examinations1 that require scrutiny but also certain elements of the teaching and
learning process, and in particular the system of coaching and the content of
textbooks.

In the mid-19th century, the mathematical coach was in a position of consid-
erable influence, both as a transmitter2 and as an orchestrator of mathematical
style. The job of the coach was to train students to solve problems as efficiently as
possible. During the period 1862-1888, the most successful coach, Edward Routh,
trained almost 50 of the 990 wranglers, and his style of teaching, with its relentless
drive towards ever-faster problem-solving, had a lasting influence on many of his
students [5]. But learning through such hot-house methods not only stultified the
student as an independent learner but also reduced his opportunity for intellec-
tual development, as was testified by John Venn who reported on his experience
of being coached by Isaac Todhunter in the 1850s ([6], 185). And in the 1870s

1It should be remarked that in addition to the Tripos examination, there was also the Smith’s
Prize examination, another gruelling test, which was open to leading wranglers. For further
details, see [3]

2For a description of the coach’s role in this respect, see ([4], 117).
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the coach’s domination of the undergraduate mathematical training began to be
challenged by the gradual reform of public teaching.

Many books written by Cambridge authors for Cambridge students were vir-
tually useless to students elsewhere, so opined De Morgan in 1835. This was
because they were so intimately connected with the form of the Tripos examina-
tion, and, as Warwick has described, Cambridge students were groomed to deal
with the sketchiest of examples in textbooks [7]. From the 1840s, textbooks in-
creasingly reproduced large numbers of Tripos problems.3 Typical of Cambridge
authors were Todhunter,4 Routh and A.R. Forsyth, all of whom published books
with the Tripos in mind. To give some examples: Todhunter’s Algebra sold over
500,000 copies and was published in editions for use overseas; Routh’s Dynamics
(1860) was admired by Felix Klein who had it translated into German (1898);
Forsyth’s Differential Equations (1885) included more than 800 problems and was
translated into German. The mixed success of the foreign editions of these books –
Todhunter’s overseas editions sold well while the translations of Routh and Forsyth
made little impact – is revealing. Todhunter’s books were used for teaching by
Cambridge graduates working overseas (the Empire) who took with them not only
the books but the Cambridge style of teaching, while Routh’s and Forsyth’s books
had no such ambassadors: Germany had its own style of teaching.

As far as the examination papers themselves were concerned, these contained
two types of question: bookwork and problems, and it was the latter that were
all-important since they effectively determined the student’s place in the order of
merit. The extent to which the order of merit – with its place in the national
consciousness (reports in The Times etc.) – helped not only to cement the very
particular (and ultimately unsatisfactory) style and content of the examination
papers, but also affected the style and content of the curriculum is evident from
the debates surrounding the 1907 reforms. The order of merit, by enforcing con-
straint on the curriculum, both conspired against those wishing to specialise in
pure mathematics and kept the study of mathematics apart from experimental
physics. A good idea of the main arguments for reform can be gathered from the
following extracts by two of its most ardent supporters, E.W. Hobson and G.H.
Hardy:

E.W. Hobson, Response to the Board of Mathematical Studies, 1906
If one considers the ideas connected with such names as Cauchy, Rie-
mann, Weierstrass, Lie and Cantor, it would be recognised that those
ideas had never permeated the teaching of Cambridge mathematics
to a sufficient degree to form a real school of mathematics which

3As well as textbooks, there were books devoted solely to Tripos problems and their solutions,
the most famous of which is Joseph Wolstenholme’s Mathematical Problems on the First and Sec-

ond Divisions of the Schedule of Subjects for the Cambridge Mathematical Tripos Examination
[8]. For a book containing fully worked Tripos solutions, see [9].

4Isaac Todhunter, who was the most prolific mathematics textbook writer of the 19th century,
was also the author of a number of histories, see [7]
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should be in line with the best Continental schools. the mathemat-
ical instinct, which had been restricted to a comparatively narrow
circle of ideas, had avenged itself by producing a very great amount
of material in the shape of riders, problems, illustrative examples,
often produced with almost diabolical ingenuity. The enthusiasm
of the best men had thus been damped, while upon those of less
capacity it had produced the natural effect of severe indigestion.

G.H. Hardy, The Cambridge Review, October 1906
That the papers are absurdly difficult almost every one admits.
They are not only too difficult but difficult in the wrong way. The
difficulties are not the inherent and inevitable difficulties of the sub-
ject matter – no one will ever make mathematics easy – but artificial
difficulties which have been invented by the examiners for the pur-
poses of examinations. It is a tradition that a Tripos question must
be ‘neat’: it must contain some little point of difficulty that cannot
be found in any of the books. And when once the ingenious lit-
tle question is printed it is lost: it is the property of every lecturer
and coach. I believe that the questions have been hoarded for years
in order that their proud inventor may adorn his papers with them
when his time comes to examine in the Tripos. The result is that
the Mathematical Tripos is a thoroughly bad examination.

No study concerning the 19th century Mathematical Tripos would be complete
without taking into account another significant aspect of Cambridge life: the im-
portance attached to physical activity, and in particular competitive sports.5 Com-
petition was deeply embedded into undergraduate culture and the Mathematical
Tripos was one (admittedly extreme) element of it. As Norbert Wiener remarked,
when visiting Cambridge just before World War 1, young mathematicians “carried
into their valuation of mathematical work a great deal of the adolescent ‘play-the-
game’ attitude which they had learned on the cricket field.” ([10], 152) The com-
petitive style of mathematical teaching and examining imposed by the Tripos did
not exist in isolation. Furthermore, success in the gruelling examination schedule
required physical, as well as mental, strength and stamina.

Finally, lest it should be thought that prior to the 1907 reform the Mathemat-
ical Tripos had nothing but a stifling effect on mathematical creativity, it should
be emphasised that this was not the case. Consider, for example, the early con-
tributions of Ebenezer Cunningham (senior wrangler 1902) and Harry Bateman
(senior wrangler 1903) to the development of relativity theory. And Karl Pearson,
reflecting at the end of his life on his experience of the Tripos, wrote: “Every bit
of mathematical research is really a “problem”, or can be thrown into the form
of one, and in post-Cambridge days in Heidelberg and Berlin I found this power
of problem-solving gave one advantages in research over German students, who

5The relationship between mathematics and athleticism at Cambridge is extensively discussed
in ([6], Chapter 4).
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had been taught mathematics in theory, but not by “problems”. The problem-
experience in Cambridge has been of the greatest service to me in life and I am
grateful indeed for it.” ([11], (27)
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Proving Impossibility

Jesper Lützen

Many of the most famous theorems in modern mathematics are impossibility re-
sults. As examples one can mention the impossibility of constructing the three
classical problems (the quadrature of the circle, the trisection of the angle and
the duplication of the cube) by ruler and compass, the impossibility of solving
the quintic by radicals, Fermat’s last theorem, the impossibility of proving the
parallel postulate, and the impossibility of proving the consistency of arithmetic
(in a certain sense) (Gödel).

If mathematics is viewed as a theorem proving activity there is really nothing
special about impossibility results. The ordinary rules of logic make it possible
to reformulate any impossibility result as a universal “positive” statement. How-
ever, if one views mathematics as a problem solving activity, impossibility results
obtain a special status. Indeed, they do not solve a problem so they are not
real results within mathematics (viewed this way) but statements about mathe-
matics. They are meta-statements limiting the problem solving activity. Since
Greek antiquity mathematical results have required proof, but with their status as
meta-statements, it is not obvious that impossibility statements would have been
considered as amenable to proof.
For example, Pappos (ca. 340 AD) considered cube duplication and angle trisec-
tion as impossible with ruler and compass, not only because “plane” construction
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had not been found but because he thought that such constructions were in prin-
ciple impossible. Yet he did not point to the desirability or possibility of a proof
of this impossibility.

Similarly, when Lagrange in 1770 gave up finding a solution of the quintic by
radicals, he nevertheless published the methods he had developed in his attack on
the problem because he thought they might help his successors find the solution.
He also mentioned the possibility that the quintic might be unsolvable by these
means, but he did not indicate that his methods might be useful in a demonstration
of this impossibility. And soon after when Ruffini used them for this purpose, he
was ignored in France.

Even in cases where impossibility theorems were proved they were often con-
sidered as less interesting than “positive” statements. For example, as Goldstein
(1995) has pointed out, Fermat’s impossibility theorems in number theory were
received less favorably than his positive statements, and Wallis even commented:
“I do not see why he [Fermat] mentions them [negative propositions] as things of
surprising difficulty. It is easy to think of innumerable negative determinations of
this sort.” (Quoted from [1], p. 135)

One can interpret Gauss’ way of dealing with the construction of regular poly-
gons by ruler and compass in a similar way. Indeed, in the Disquisitiones Arith-
meticae he took great pains to prove how regular polygons can be thus constructed
if their number of sides is a power of two multiplied by a product of different
Fermat-primes. He also claimed that it was impossible to construct any other reg-
ular polygons, but he left out the proof. This decision indicates that he thought
that the constructive part of the result was more important than the impossibility
part.
In a similar vein one can mention that when Wantzel proved the impossibility part
of Gauss result, as well as the impossibility of a ruler and compass construction
of the trisection of the angle and the two mean proportionals (a generalization of
the duplication of the cube) his proof was overlooked for a century.[2]

Of course impossibility theorems were proved already in Greek antiquity. In
particular the important discovery of incommensurable line segments is a result
of the impossibility of finding a line that measures both the side and the diagonal
of a square (or a pentagon) a whole number of times. But if the Greeks realized
the possibility of proving this theorem, why wouldn’t they have realized that they
should seek a proof of the impossibility of the classical problems? I think the
reason is that these two impossibility results are qualitatively different in nature.
The nature of an impossibility result depends on what is impossible or does not
exist: It could be

a. An object in the theory (a common measuring line in the incommensurability
proof, or a number triplet in Fermat’s last theorem)
b. A construction procedure in a theory (the classical problems or the solution of
the quintic)
c. A proof of a theorem in a theory (the parallel postulate for example)
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d. A proof of a property of the theory (Gödel)

The steps from problem-type a. through d. above represent in a way a rise of
meta-level. There are many examples showing that at a given period a problem of
a certain level could be considered provable whereas problems of a higher meta-
level were considered meta-statements that were not amenable to proof. This fact
also reflects that different types of impossibilities require different types of proofs
ranging from simple indirect proofs to proofs by models.

As an example of the fate of an impossibility result let us briefly consider the
two classical problems: the trisection of the angle and the duplication of the
cube, or more generally the two mean proportionals. The first mathematician
who thought of proving these two results seems to have been Descartes (1637) (for
an analysis of this proof and that of Montucla see [3]). Although he translated the
problems into cubic equations and hinted at an algebraic proof he ended up giving
an entirely geometric proof along the following lines: Since circles only have one
curvature they can only be used to construct one mean between two limits. Since
the two problems in question require the construction of two means (the two mean
proportionals and the two trisecting lines) they cannot therefore be constructed
with plane means.

A somewhat less peculiar proof was given by Montucla (1754). It was based
on the cubic equations of the two problems, and was considered by the author to
be a triumph of the new analytic geometry. According to Montucla, an equation
can only be constructed geometrically (that is by a certain procedure) by the
intersection of two algebraic curves that can intersect each other in as many points
as the degree of the equation (here 3). But since circles and straight lines intersect
in at most two points they are not sufficient to solve the two problems.

The main problem of this proof is that it has not succeeded in translating the
procedure of construction by ruler and compass into algebra. The first proper
translation (into successive solutions of quadratic equations) was given by Gauss
(1801) and used by Wantzel in his proof. Wantzel’s proof is not entirely clear
and actually has a hole (discovered by Robin Hartshorne) so the first completely
correct proof may have been the one by Petersen (1870) popularized by Felix
Klein (1895). The impossibility of the quadrature of the circle was first proved
in 1882 by Lindemann as a simple result of his proof of the transcendence of
π. Contrary to Wantzel’s proof, that was overlooked, Lindemann’s result was
immediately celebrated.

This indicates that such impossibility results had changed their status during
the 19th century. In fact already around 1830 many impossibility results were
stated and proved: Abel proved the impossibility of solving the quintic by radicals,
Wantzel proved the impossibility of the two classical problems, Liouville proved
the impossibility of expressing elliptic integrals (and solutions of certain differential
equations) in finite form etc. However it seems to have been a young man’s game.
Only at the end of the century did impossibility theorems obtain full citizenship in
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mathematics. The reason seems to have been a reformulation of what constitutes
a solution of a problem in mathematics.

Already Abel emphasized that one should not ask: “Find the solution of the
quintic by radicals” but rather: “Is the quintic solvable by radicals?” In this way
the impossibility statement becomes a solution to the problem.

This view of impossibility statements was wholeheartedly endorsed by Hilbert
in his 1900 talk on mathematical problems at the International Congress of Math-
ematicians. He pointed out that “in recent time (der neueren Mathematik) the
question as to the impossibility of certain solutions plays a preeminent role”. So
according to Hilbert this central role of impossibility theorems was of a recent
date. In particular he stated that the problem of the proof of the parallel axiom,
the squaring of the circle, and the solution of the quintic by radicals “have finally
found fully satisfactory and rigorous solutions, although in another sense than that
originally intended.” Of course the sense was different because the result did not
turn out to be a construction (a solution) but an impossibility result.

By including impossibility as a possible “solution” of a problem Hilbert, just
as Abel before him, believed that all problems could eventually be solved, either
by exhibiting a solution or by proving that it was impossible. In Hilbert’s words:
there would be no ignorabimus in mathematics.
To conclude, we have seen that before 1800 impossibility statements were often
considered unimportant meta-statements about the problem solving enterprise
that do not lend themselves to proof. During the period 1830-1900 impossibil-
ity theorems gained full citizenship in mathematics partly because new techniques
for their proof were developed (pre-Galois theory, models) and partly because they
were considered as real mathematical results (solutions). In this way impossibility
theorems followed the general trend toward more conceptual and qualitative ways
of thinking in mathematics, and their development paralleled that of existence
theorems.
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The search for finite simple groups 1830–2010: changing styles of
thought and proof over 180 years of group theory

Peter M. Neumann

We began with a preliminary questionnaire, a survey designed with two purposes in
mind: first to give me some idea of what I could reasonably expect of the audience;
secondly, to remind colleagues of the basic theorems of finite group theory and the
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very basic tools that had been shaped during and soon after the end of the 19th

century and were already at that time being used in the search for finite simple
groups:

(1) How many of us have once taken a course in group theory?

(2) recall Lagrange’s Theorem?

(3) recall Cauchy’s Theorem?

(4) recall Sylow’s Theorems?

(5) recall the definition of a simple group?

(6) recall the Jordan–Hölder Theorem?

(7) have seen Transfer Theorems—of Burnside? Of Frobenius?

(8) have met Burnside’s pαqβ-Theorem?

(9) have met Frobenius groups?

Finite simple groups (FSG)

In his letter to Auguste Chevalier written on 29 May 1832 Galois made a defini-
tion of a décomposition propre of a finite group. In modern terms it was a partition
into cosets of a subgroup K of the group G such that each right coset is also a left
coset. Nowadays we speak of K as being normal and express Galois’ condition
in the equivalent form Kx = xK for all x in G. Then the group G is said to be
simple if {1} and G are the only normal subgroups.

Examples: Cyc(p); Alt(n) for n ≥ 4; PSL(2, p) for p ≥ 5.
Of these three series of finite simple groups the first and third were known to
Galois, the alternating groups appear not to have been.

The search for FSG pre-1900

After Galois’ Œuvres were published by Liouville in 1846 it took a few years
until a consciousness of the importance of FSG became evident. Camille Jordan
wrote about the pre-eminent significance of the concept in the preface to his Traité
des Substitutions et des Équations algébriques (1870), and in the second part of
the book he proved the simplicity of the alternating groups (though this proof is
not completely correct) and of various classical groups over prime fields, such as
PSL(d, p), PSp(2m, p), and many of the finite orthogonal groups. By the turn of
the century, when L. E. Dickson published his Linear groups (Leipzig 1901), the
catalogue had been extended to include the remaining finite orthogonal groups,
the finite unitary groups, all these groups (new and old) over arbitrary finite fields,
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and five sporadic groups, namely the Mathieu groups discovered in 1861. Soon
after this Dickson discovered simple groups that were analogues of some of the
exceptional Lie groups.

To have a large collection of FSG is one thing; to know that it is complete quite
another. Otto Hölder began a systematic search for FSG with his 1892 paper on
those of orders up to 200. By the time Burnside wrote the first edition of his
Theory of groups of finite order in 1897 much was known; the second edition of
this book (1911) contains much more: new tools such as transfer theorems and
character theory had come available; the simple groups whose orders are at most
2001 or products of at most 5 prime numbers were now known; Burnside had
proved his famous pαqβ-Theorem (that a group of such an order cannot be simple
unless its order is prime). Perhaps most important of all was an open problem
that Burnside had identified. In 1911, following a discussion of special properties
of groups of odd order, and echoing and up-dating a paragraph from the first
edition of his book he wrote

The contrast that these results shew between groups of odd and of
even order suggests inevitably that simple groups of odd order do
not exist. A discussion of the possibility of their existence must in
any case lead to interesting results.

This wonderful conjecture was finally and famously proved by Walter Feit and
John G. Thompson in 1962 (published 1963).

Fast-forward to my life-time

In 1955 Chevalley published a wonderful paper in which he gave a uniform way
of constructing the finite groups of Lie type from the root systems describing finite-
dimensional simple Lie algebras; up to this time the groups were defined by their
geometries, and although there was a certain uniformity to the constructions of the
classical groups, the groups associated with exceptional Lie algebras were handled
differently. This paper produced new insight into the catalogue of known FSG.
Also in 1955 Richard Brauer, in part with his student K. A. Fowler, showed that
the elements of order 2 (involutions) in a group of even order have a very strong
influence on its structure—for example, the order of a finite simple group of even
order is bounded by a function of the order of the centraliser of any involution.
Then in 1956 Philip Hall and Graham Higman published a paper on the Burnside
Problem (on groups of finite exponent), which turned out to provide new and
wonderful tools for the internal analysis of groups. John Thompson was not slow
to see the power of the Hall–Higman ideas. In 1959 he published his proof of an
old conjecture on Frobenius kernels—namely that they are direct products of their
Sylow subgroups—and soon he started tackling Burnside’s conjecture on groups of
odd order. As was mentioned above, the proof was published by Feit & Thompson
in 1963. This paper (and the lasting influence of the Brauer–Fowler ideas) marked
the start of a campaign. Simple groups in which the Sylow 2-subgroups were
abelian, or dihedral, or of sectional 2-rank at most 4 were classified—the list
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goes on and on. Simple groups with a huge variety of interesting centralisers
of involutions were classified. Thompson classified the minimal simple groups—
the FSG in which all proper subgroups are soluble (that is, have no non-abelian
composition factors).

But then new simple groups appeared. The Suzuki groups, now recognised as
twisted versions of 4-dimensional symplectic groups over certain fields of char-
acteristic 2; Tits groups and Ree groups, which are similarly twisted versions of
certain Chevalley groups. And not only new series of groups—there were also new
sporadic groups that did not fit into any series: first the small Janko group of
order 175 560, then more and more, until the Monster was announced in 1973 by
Fischer and by Griess (independently), and finally proved to exist by Griess in
1980. In all there were 21 new sporadic groups added to the five Mathieu groups
in the few years from 1965 to 1980.

Early in the 1970s Danny Gorenstein ( “The Godfather”) announced and ad-
vertised in lectures in Chicago, New York, London, Jerusalem, and various other
places, an ambitious programme designed to complete the classification. As is well
known the announcement of the success of of this programme, owing to the work of
a huge number of mathematicians, among whom Gorenstein himself and Michael
Aschbacher were pre-eminent, was made in 1980. The classification of the finite
simple groups (CFSG) was complete.

CFSG and Revisionism

Or was it? It emerged after a few years that a key paper by Geoffrey Mason
on the so-called quasi-thin groups was incomplete and was unlikely to be pub-
lished. Moreover, a proof that extended over hundreds of papers and thousands
of pages—could it possibly be error-free? Gorenstein almost immediately started
the “revisionism” project, a project to complete and civilise the proof. Although
he died in 1992, the project lives on and is coming to completion. It is being pub-
lished by the AMS. The original authors are Gorenstein (ob. 1992), Richard Lyons
and Ron Solomon, so the series is familiarly known as GLS. Two volumes on the
quasithin groups were contributed by Michael Aschbacher and Stephen Smith in
2004, closing the notorious gap. Apart from those 2 volumes GLS is expected to
come to 11 volumes, of which 6 have already been published and one or two more
should appear soon. Others, some in the new generation of algebraists, such as
Inna Kortagina-Capdebosq, a former student of Solomon, have joined the team,
and the project still looks an excellent one, nearly twenty years after its inception.

Should we have confidence? That is a matter of personal conviction. It is also
a matter of how much effort one is prepared to invest in order to understand some
of the ideas. I myself am not an expert, but I have read enough of the proof that
I certainly do have confidence. There may be slips or errors—indeed, it is hard to
believe that a proof coming to some 5000 or 6000 pages in all could possibly not
suffer from some defects—but I am confident that the tools are there to correct
them. And in any event, those who quote CFSG have acquired the comfortable
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habit of flagging up its use—rather as analysts or topologists who need the Con-
tinuum Hypothesis draw attention to points where it is needed. Thus theorems
based on CFSG may either be read as unconditional results (by those who believe
in it) or as results into whose assumptions the hypothesis that CFSG is correct
must be added. We win either way.

ΠMN: The Queen’s College, Oxford: 14.iii.2010

Experimental mathematics in the 1990s: A second loss of certainty?

Henrik Kragh Sørensen

In most traditional accounts, experiments — one of the corner-stones of modern
natural sciences — have had no place in mathematics. However, during the 1990s,
with the advent of high-speed computers and sophisticated software packages a
new experimental flavour was brought to parts of mathematics leading to the
gradual formation of a branch of so-called “experimental mathematics” with its
own research problems, methodology, conferences, and journals. The purpose of
this paper is to situate the institutionalization of experimental mathematics in
discussions within the mathematical community during the 1990s.

Despite early success in 1976 with the computer-assisted proof of the Four
Colour Theorem, the full impact of the computer on mathematical practice was
not felt until the mid-1980s. In 1985, when a new Cray-2 supercomputer was being
installed at the University of Minnesota at Minneapolis, a group of remarkable
geometers including Benôıt Mandelbrot, David Mumford and William Thurston
began work on a proposal for a Geometry Supercomputing Project to be funded by
the NSF. That project would explore the power of computers for “visualization as
a tool for experimentation, exploration, and inspiration in research” [9, p. 11].

Members of the project were instrumental in founding the journal Experimental
Mathematics in 1991 with David Epstein and Silvio Levy as its editors. The journal
was devoted to publishing experiments, new theorems, algorithms, practical issues,
computer programs, a program column, and surveys and miscellanea [6, p. 1]. In
introducing the journal, the editors alluded to a possible division of labour between
hypotheses and proofs that would later be taken up with more force by Arthur Jaffe
and Frank Quinn in their suggestion for a “theoretical” mathematics [8]. As the
editors of Experimental Mathematics explained, the journal “was founded in the
belief that theory and experiment feed on each other, and that the mathematical
community stands to benefit from a more complete exposure to the experimental
process. The early sharing of insights increases the possibility that they will lead to
theorems; an interesting conjecture is often formulated by a researcher who lacks
the techniques to formalize a proof, while those who have the techniques at their
fingertips have been looking elsewhere” [6, p. 1]. Eight years later, in the opening
issue of 2000, the same editors could celebrate the “maturity of the journal” [5,
p. 1]: The journal’s output had grown by 30% between 1992 and 1999 and would
increase from 420 pages annually in 1999 to 640 pages a year from 2000. Thus,
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the journal established itself and the experimental approach to mathematics on
the horizon of mathematical publishing in the 1990s.

At Simon Fraser University in Vancouver, another group formed in 1993 around
the brothers Peter and Jonathan Borwein at the Centre for Experimental and Con-
structive Mathematics (CECM). That group has focused more on symbolic algebra
and the use of computational methods in number theory. In a paper published in
the Mathematical Intelligencer, the group announced their definition of the field:
“Experimental Mathematics is that branch of mathematics that concerns itself ulti-
mately with the codification and transmission of insights within the mathematical
community through the use of experimental [. . . ] exploration of conjectures and
more informal beliefs and a careful analysis of the data acquired in this pursuit”
[4, p. 17]. Thus, they also argued for a more inclusive view of mathematics and
envisioned experimental mathematics as a dual dialectic between the computer
and the human mathematician and between experiments and proofs [3, p. viii].

Among the results obtained by researchers affiliated with the group at the
CECM is the so-called PSLQ algorithm which can be used for interactive, comput-
erized searches for integer linear combinations of mathematical constants; see also
[10]. It takes as its input a vector of high-precision real numbers (x1, . . . , xn) ∈ Rn

and after a specified number of iterations produces either a very good sugges-
tion for a non-trivial integer linear combination (m1, . . . ,mn) ∈ Zn, such that∑n

k=1
mkxk ≈ 0 with high precision or a lower bound on the coefficients.

Members of the CECM group put the PSLQ algorithm to use in proving a
remarkable formula which allowed the computation of individual hexagesimal dig-
its of π without the computation of the previous ones. The authors described
their process as applying ideas generalized from similar expressions for log 2 and
“a combination of inspired guessing and extensive searching using the PSLQ in-
teger relation algorithm” [2, p. 905]. The CECM group would advocate searching
for traditional proofs of conjectures such as those obtained from the first case of
the PSLQ algorithm; and for the above-mentioned formula such a proof could be
found. It relied on yet another use of computers in performing standard calcu-
lations that go into the the lemmas; such uses are now widespread and largely
uncontroversial.

However, discussions emerged within the mathematical community over the
need for traditional proofs of the more complicated computer-generated insights.
Taking his inspiration from the new use of computers in visualization and proof,
the science journalist John Horgan wrote an article entitled “The Death of Proof”
for the Scientific American in 1993 [7]. There, Horgan captured the new dilemma
of mathematics in the subtitle: “Computers are transforming the way mathemati-
cians discover, prove and communicate ideas, but is there a place for absolute
certainty in this brave new world?” and he suggested that the notion of proof was
becoming an anachronism in mathematics.

A deliberate provocateur, the Rutgers mathematician Doron Zeilberger sug-
gested in 1994 that “[a]s wider classes of identities, and perhaps even other kinds
of classes of theorems, become routinely provable, we might witness many results
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for which we would know how to find a proof (or refutation); but we would be
unable or unwilling to pay for finding such proofs, since ‘almost certainty’ can be
bought so much cheaper” [11, p. 14]. Continuing the argument that mathematics
was discovering new lands and extending great frontiers, Zeilberger suggested: “I
can envision an abstract of a paper, c. 2100, that reads, ‘We show in a certain
precise sense that the Goldbach conjecture is true with probability larger than
0.99999 and that its complete truth could be determined with a budget of $10
billion”’ [11, p. 14]. Such provocation was met with fierce reactions, and George
Andrews expressed the thoughts of a more conservative part of the community
when he wrote: “Zeilberger has proved some breathtaking theorems [. . . ]. How-
ever, there is not one scintilla of evidence in his accomplishments to support the
coming ‘. . .metamorphosis to nonrigorous mathematics.’ [. . . ] [H]e has produced
exactly no evidence that his Brave New World is on its way” [1, p. 17]. Such
discussions thus touched upon the epistemology of mathematics: It was obvious
that so-called experimental methods could provide new heuristics for generating
mathematical hypotheses, but whether new experimental methods also be allowed
into the justificatory parts of mathematics was a very controversial issue, indeed,
within the community.

In conclusion, the previous description has illustrated that to the protagonists
of experimental mathematics in the 1990s, experimental mathematics was charac-
terized not by a specific subject matter of mathematics, but rather by a technology
(the computer), a somewhat vaguely specified methodology (the experiment) and
a vision for an infrastructure (the electronic dissemination).

Based on these analyses, the development of experimental mathematics in the
1990s is not fruitfully analyzed within a disciplinary setting: Despite the devel-
opments of infrastructure and institutionalization, experimental mathematics re-
mained cross-disciplinary in its subject matter, and its methodology and technol-
ogy is increasingly integrated in most branches of mathematical research.

Instead, it is clear that efforts were made during the late 1980s and 1990s by the
protagonists of experimental mathematics to promote an experimental approach
as a style for doing mathematics. During that period, research institutions and
journals were established, and software was developed to facilitate the methodology
of interactive experimentation. However, aspects of that style were contested
within the mathematical community and in the broader scientific and intellectual
milieu. In particular, discussions about the conception of proof went to the core of
the mathematical enterprise and an immediate reaction on the part of experimental
mathematics was to confine the experimental approaches to the realm of heuristics
and still demand traditional proofs. Such discussions over the potential epistemic
roles of experiments in mathematics are still active within circles of experimental
mathematics and within the community interested in the so-called philosophy of
mathematical practice.

Some of the philosophical parts of this talk are being published in [10], whereas
other parts are being prepared for publication.
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On the Identities of Algebra in the 19th Century

Caroline Ehrhardt and Frédéric Brechenmacher

It is our aim to question whether algebra can be considered as a mathematical
“discipline” during the 19th century or whether algebra took on much more var-
ied and changing identities than the ones which can be described by resorting to
a single category such as the one of‘ “discipline”. In short, we are referring to
the category “discipline” as identifying a corpus of specialized knowledge which
resorts to institutionalized practices of transmissions and to a group of actors who
are identifying themselves as “specialists”. This category must be considered as a
dynamical one: as a result of the actions of the groups of experts, the definitions
and delimitations of disciplines are in constant evolution. The use of the adjective
“disciplinary” in expressions such as Kuhn’s “disciplinary matrix” or Bourdieu’s
“disciplinary habitus” usually aims at taking into account both the social dimen-
sion and the cognitive or epistemological aspects of this category. Even though we
cannot go into any further detail on the uses of the category “discipline”, these pre-
liminary remarks are meant to highlight that, when wondering about the history
of mathematical disciplines, it would be highly artificial to distinguish between
internal and external approaches. If, indeed, one would consider Algebra as an
immanent discipline for the purpose of a historical investigation, such an investiga-
tion would not only result in cutting slices of the mathematics of the past through
a retrospective glance, but it would also miss the various social mechanisms of
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intellectual differentiations through which mathematicians had given some alge-
braic identities to their work or had come to consider themselves as “algebraists”.
In order to determine whether algebra can be considered as a discipline or not
during the 19th century, it is thus convenient to analyze the roles that had been
devoted by mathematicians to algebra within the mathematical sciences (including
analysis, arithmetic, mechanics etc) as well as the relative and changing consensus
about what should be “inside” or “outside” algebra. Two different situations are
considered within the frames of two different periods of times as well as two dif-
ferent scales. First, we examine the meanings of the terminology “Algebra” in the
first half of the 19th century through different kind of sources related to both the
teaching of mathematics and to the academic sphere. Second, we appeal to a mi-
cro analysis of a controversy which opposed Jordan and Kronecker in 1874. Both
approaches raises similar issues about the relevance of the “disciplinary model”
for the history of algebra in the 19th century and highlight the major roles played
by some practices specific to some communities, milieus, institutions or networks
on the shaping of the identities given to algebra by various groups of actors.

I. How can we define what was Algebra at the beginning of the 19th
century (1800-1835)?

A usual approach is to look for the actors point of view, using a dictionary, or
an encyclopedia. In the Encyclopédie des gens du monde, 1833, t. 1, p. 670, the
definition is inherited from Condillacs philosophy: algebra is described as the lan-
guage of calculation and confounded with analysis, that is with the analytical way
to solve a problem (as opposed to the synthesis associated to geometry) (Bézout
, Lacroix, Cauchy, 1843). A comparison with another definition, coming from the
mathematician Gergonne and explicitly directed against the Condillacian analyt-
ical domination, is instructive : the distinction between algebra/analysis on the
one side and synthesis on the other side is described as not relevant, because both
ways of reasoning can be used to answer “algebraic questions” i.e questions related
to general magnitudes on the one hand (including differentiation, integration, log-
arithms etc), and to the resolution of equations on the other hand (Gergonne,
Sur les méthodes de lanalyse et de la synthèse mathématiques, 1813). Hence,
distinction we would spontaneously make today between algebra and analysis by
appealing to the notions of infinity or limits was not relevant at the beginning of
the XIXth century. Actually, at that time, the ontological issues at stake were
more related to ways of reasoning than to concepts. Moreover, the distinction
between Algebra and Analysis was resorting to a hierarchy between the two des-
ignation: the first, considered as a tool for the second, did not have any specific
object of inquiry. However, this image is somehow contradicted if we take another
historical approach to reach the actors point of view by looking more closely to
the mathematical contents, practices and problems hidden behind these general
definitions. In the Procès verbaux of the Academy of science, algebra was not
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a category often used by the geometers (as opposed to Analysis) and thus can-
not be considered as an autonomous field of investigation in France at that time.
In that institution, algebra was not defined by the specific part of mathematical
knowledge or objects it was supposed to deal with, but by the kind of problem it
was about. Another way to understand what were the problems and practices of
algebra is to look to a field where “algebra” seems perfectly defined, namely the
one of the teaching of mathematics. Algebra is one of the three parts of the high
schools curriculum, together with arithmetic and geometry. In the case of Algebra,
the more widely used textbooks until the 1840s had been written by Lacroix for
the Ecoles Centrales, in 1799, and it partly took up the Bézouts and Clairauts
textbooks written at the end of the XVIIIth century. Algebra thus inherited from
a tradition, and, as such, had a real legitimacy. The Cours complet de Lacroix,
the Elements d’algèbre and the Compléments des elements d’algèbre, for instance
cannot be considered as a the result of a vulgarizing process that would simplify
the algebra developed by the geometers of the Academy but they highlight an
autonomy of algebra within these textbooks which presented the subjects in the
order they arose the ones from the others : the epistemological framework of the
algebra one could learn from Lacroixs textbooks was totally different, and quite
autonomous, from the normative image of scholarly algebra we have alluded to
before. However, some similarities can be found if we look to the contents of
these textbooks: algebra is introduced as the science of problems solving by the
mean of equations, whose fundamental tool is symbolical calculation (including
logarithms, exponentials, numerical solutions, finding the limits of the roots etc.).
Lacroix pays a lot of attention to the concrete aspects of equations solving and
explains that as the algebraic solution leads to calculations that are not effective,
numerical solutions have to be developed : the fundamental skill the students
had to acquire was the ability to calculate an approximate value of the roots of a
given equation. On the one hand, this apprenticeship of algebra as a practice of
calculation is perfectly coherent with the finality of the preparation for the com-
petitive exam of the Ecole polytechnique where most of the questions dealt with
analytical geometry, and nearly none of them took algebra as a subject. Hence,
the algebraic methods that students learned in textbooks were actually used as a
tool to solve the equations that one finds in more general problems. On the other
hand, this context gives a very specific status to the advanced part of algebra,
namely the one which is exposed in the second textbook and which is the closest
to what we would call algebra today but was out of the core of knowledge that was
needed for the problems students had to solve during the examination. Algebra
as an autonomous field of knowledge, with specialized contents, was not a part of
the mathematical culture that was instilled into the students of the French high
schools. Finally, to conclude this first part, I could say that Algebra does not seem
to be an autonomous field of knowledge at the beginning of the XIXth century,
neither at the academy nor in the field of teaching. It cant be separated from what
geometers called analysis neither from the core of knowledge it was dealing with,
nor for its methodology. Then, a definition I would like to propose is the practice



Disciplines and Styles in Pure Mathematics, 1800-2000 607

of solving problems with the help of equations, which leads to concrete values.

II. Practices of the solution of equations at the beginning of the 19th
century.

As we shall see, the identity of algebra as an activity of solving problems with
equations leads to questions for which we can’t separate external and internal
approaches. First, there is a hierarchy inside this field, which is created by how
mathematics were taught. The differential and integral calculus was the core of
the curriculum of the Ecole polytechnique and mastering this knowledge was what
made a real geometer of a student. In this context, the numerical solution of
equations was a kind of initiation to more advanced questions. On the contrary,
the study of general (or algebraic) solution of equation was completely interrupted
after the high school, if ever it was actually taught. Then, these problems had
no strong link with the mathematical research: on the one hand, the would-be
geometers were not trained to use this kind of knowledge and know-how, and,
on the other hand, they didn’t need them to be scientifically recognized. More-
over, this hierarchy was linked to the development of mathematics and to some
epistemological conceptions : to make the theory of equations progress after La-
grange’s Traité de la résolution des équations numériques de tous les degrés, one
had to concentrate upon numerical solution, using the differential calculus if it was
needed. Moreover, it would have had no sense to distinguish between one kind
of tool or another because all of them were part of the “mathematical analysis”
which was, according to Fourier “as broad as the Nature itself”. Analysis was a
general way of reasoning, that was not restricted to mathematics: its importance
for human mind had been emphasized by the Idéologues and by Comte. Second,
this hierarchy in the values associated to the different kind of equations one can
solve was reproduced in the everyday work of the Academy. There were very few
works sent at the Academy, which dealt with general solutions of equations. Most
of the papers on this topic were aiming to improve methods for the equations of
degree 3 or 4 and seemed to be directly linked with the social space of teaching.
On the contrary, those who gain recognition for their research on the solution on
equations were, in a large majority, the ones who studied the “advanced” part of
the question, namely differential equations. Most of them were former students
of the Ecole polytechnique, so they shared with the ones who would assess their
work a specific way to deal with these questions. Besides, the evaluating practices
of the Academy shows that the association of the problem of solving equations
and the practice of effective calculation of numerical solutions can be considered
as a value, namely that it was “the good way” to deal with such a question. In
fact, the efficiency and the cleverness of the calculation processes are always un-
derlined in the reports, and are a criterion to assess the papers. When one looks
to the reports of the academy, one can see that the issue as stake was not whether
these papers were “Algebra” or not. In fact, in the words of that time, all of



608 Oberwolfach Report 12/2010

this was analysis, and the only criterion was to determine whether it was in con-
formity with the analytic approach to a problem. In this approach, the method
of decomposition of the problem in simpler steps, the goal of making theory and
applications work together, and the non -restrictive use of all the mathematical
objects needed for that, may they be “elementary”, or “transcendant” can not be
separated. Moreover, as we have seen, the positive values attributed to this specific
way to undertake the solution of equations is strongly linked with the structure of
the French mathematical milieu, whose heart was the Ecole polytechnique.

III. The 1874 controversy between Camille Jordan and Leopold Kro-
necker.

Throughout the whole of 1874, Jordan and Kronecker were quarrelling over the
organisation of the theory of bilinear forms and this opposition sheds some light
on two conflicting perspectives on the identities taken on by algebra within mathe-
matics. The controversy was originally caused by Jordan’s ambition to reorganise
the theory of forms on the model of the algebraic organisation he had given to
the theory of groups of substitutions in his Traité of 1870 and through what he
designated as the algebraic notion of “canonical form” . In 1866, two papers pub-
lished by Christoffel and Kronecker had laid the foundations of a theory whose
main problem was the characterisation of bilinear forms - given P =

∑
Aaxay

and P ′ =
∑

Baxay, find the necessary and sufficient conditions under which P
can be transformed into P’ by using linear substitutions - and whose methods
were to look for invariants which would be unaltered by linear transformations.
It was actually the problem of the simultaneous transformations of two forms P
and Q which would shortly become the main question of the theory. Although the
determinant of the “network” P+sQ was a polynomial invariant, the roots of the
characteristic equation |P + sQ| = 0 would provide a complete set of invariants
only under the condition that no multiple roots existed. The general resolution to
this problem had been given by Weierstrass in 1868 (for |P +sQ| not always equal
to 0) who introduced a complete set of invariants computed from a comparison of
the algebraic decompositions of the determinant —P+sQ— and its successive mi-
nors. Since then, Weierstrass’ elementary divisors theorem had become the main
result of the theory of bilinear forms. Jordan thus stroke at the heart of the theory
when he claimed that “the problem of the simultaneous reduction of two functions
P and Q is identical to the problem of the reduction of a linear substitution to its
canonical form”, and to the theorem he had stated in his 1870 Traité. When he
responded to Jordan’s claims for the greater “ simplicity “ and “ generality” of his
methods of canonical reduction, Kronecker did not only reject the originality and
validity of the latter methods but also the algebraic theoretical organisation relat-
ing to them. To Kronecker’s opinion, resorting to such algebraic expressions was
legitimate provided that they would remain in their proper places of “methods”
as opposed to the “notions” relating to the “other disciplines” - such as arithmetic
- it was algebra’s duty to serve. What can we learn from this controversy? From
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the standpoint of the contemporary discipline of linear algebra, Jordan’s canoni-
cal form theorem for matrices with coefficients belonging to an algebraically closed
field is equivalent to Weierstrass’ elementary divisors theorem. Much a do about
nothing ? There is actually a lot to learn from this controversy if we are wondering
about the history of disciplines such a linear algebra. Methodologically speaking
we shall wonder about Kronecker’s and Jordan’s opposite perspectives on algebra
without focusing on the issues about the origins of abstract notions most authors
have been dealing with while studying the history of linear algebra. The identity
of the 1920-1930’s discipline of linear algebra has often served as a lens for looking
into the past, selecting relevant texts and authors, thereby giving structure to its
own history while other identities that did not fit in this retrospective theoretical
glance have stayed out of sight. The question therefore arises as to the identities
and significations taken on by Algebra itself and the controversy between Jordan
and Kronecker illustrates that we cannot take for granted that this identity re-
sorted to the one of a single established discipline. We shall thus wonder about
the multiple identities that algebra has been taking on within different time peri-
ods, corpuses, communities, public spheres, institutions etc. as well as within the
work of individual mathematicians. What was specific to Jordan and Kronecker
as individuals ? To the public spheres of the Academies ? To journals ? To com-
munities and institutions ? Should this controversy be described as an opposition
between Berlin and Paris a few years after the Franco-Prussian war ? Between
group theory and the theory of forms ? It is impossible to tackle such complex
issues on the interrelation of individual aspects of mathematical work and collec-
tive phenomena by distinguishing between an internal and an external approach
to the history of mathematics. As we shall see, technical operatory processes were
usually resorting to cultural aspects specific to collective phenomenon of circula-
tions of texts that have to be described.

IV. The opposition of two practices. Cultural features peculiar to net-
works of texts.

The 1874 controversy was underlain by an opposition over two practices - Jor-
dan’s algebraic practice of canonical reduction and Kronecker’s arithmetic practice
of invariant computation. The complex identities taken on by these two practices
were resorting to the various networks of texts in which these practices circulated
and highlight three different meanings given by Kronecker to algebra. First, Jor-
dan and Kronecker’s practices shared a common identity which can be considered
as a common algebraic knowledge in the second half of the 19th century. In his
addresses to the public spheres of both the Paris and Berlin Academies, Kronecker
did not resort to the identity of a discipline to identify the importance of Weier-
strass’ theorem for Algebra but he alluded to a long history referring to the work
of Lagrange, Cauchy, Jacobi etc., i.e. to a network of texts that can neither be
identified to a theory nor to the resolution of a single problem but laid on a pecu-
liar equation : the “ equation to the secular inequalities in planetary theory “. For
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the public sphere of the Academies, the algebraic nature of Weierstrass theorem
was thus identified by the historical identity of a network of authors covering the
period 1766-1874 and by alluding to what can be considered as a shared history,
or a common algebraic culture at the time. The reference to this network was
used in order to identify the algebraic identity of a practice which consisted in
solving some specific linear systems by some polynomial expressions , this practice
passed from a method to another, a theory to another1. Before the 1870s, even
though this practice could not be identified to any mathematical identity that
would be contemporary to us, it was not limited to some procedures but resorted
to some cultural aspects specific to the network in which this practice circulated
and that could not be dissociated from its “ algebraic “ status (such as specific
meanings taken on by the terms “ forms “, “ transformations “ etc.) Second, in
addition to the broad algebraic culture identified by the network of the “equation
etc.”, within Crelle’s Journal and the Monatsberichte in which he published his
papers, Kronecker opposed to Jordan a second identity of algebra as opposed to
arithmetic and which was related to another, more local, network. The opposition
between an arithmetical and an algebraic theory of forms was indeed referring
to a specific network of texts in which such a distinction had been introduced in
the 1850s by considering different kind of classes of equivalences. This distinction
therefore resorted to a cultural practice specific to a network involving especially
Hermite and Kronecker which developed an “algebraic theory of form” based on
the relations between Sturm’s theorem and quadratic forms which implied new
considerations on the relations between algebra and arithmetics 2. Third, within
the Berlin community, Kronecker was also appealing to the local identity of the
“ theory of bilinear forms “ as developped by Christoffel, Weierstrass and himself
(which T. Hawkins has designated as “Berlin style of linear algebra”). And it
was only within this community that Kronecker would develop a third identity
of algebra which resorted to a more individual agency claiming the superiority of
arithmetic over algebra. Kronecker especially blamed the tendency of algebraic
expressions (such as Jordan’s canonical form) to develop formal (that is non effec-
tive) approaches which resorted to the extractions of roots of equations of arbitrary
degrees. Kronecker appealed to the tradition of Gauss on behalf of his claim that
the theory of forms should be considered as belonging to arithmetic and should
consequently focus on the characterisation of equivalence classes in establishing
arithmetical invariants thanks to some effective procedures such as g.c.d.s com-
putations (i.e. invariant factors of a matrix in a principal ring). As long as they
could not be effectively computed because they resorted to the solution of “gen-
eral” algebraic equations, explicit algebraic formulas such as Jordan’s canonical

1From the standpoint of linear algebra this practice could be considered as a method giving
the general polynomial expressions of the eigenvectors of symmetric matrix A (such expressions
are given by the columns of the matrix of cofactors computed from the polynomial matrix A−λI)

2Compare with the discussion in [Goldstein and Schappacher, 2007, p. 52] about the “research
field” status (in the sense of Bourdieu / as opposed to a discipline) of the “arithmetic algebraic
analysis” that developed from Gauss work.
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form had thus to be rejected because of their formal nature.

Conclusion

These two case studies show that the identities taken on by algebra during the
19th century are neither restricted to the problems of origins or diffusion of abstract
approaches that would later be related to the identity of algebra as a “mathemati-
cal discipline”, nor to the question of a transition from the “established discipline”
of the theory of equation to another one that would be structural algebra. At the
beginning of the 19th century, the word “algebra” was not even only related to
ways of reasoning that one would spontaneously call “algebraic” today. In fact,
the question of “what was algebra” during the 19th century seems to be strongly
linked to the specific practices developed in particular mathematical networks, or
in particular local communities. It is therefore compulsory to analyze the modal-
ities of circulation of texts between networks, or between the different strata that
structured local communities, like research and teaching. In the case of teaching
and research, this circulation phenomena challenges the usual interpretation of
knowledge that would go “up to down”, from research to teaching. In fact, at
the beginning of the 19th century, algebra was much more “institutionalized” in
high schools that it was at the Academy and there was also a relative autonomy
of the “high school” algebra. Later on in the 19th century, Algebra took on vari-
ous and changing identities depending on the communities, networks, disciplines,
public spheres, institutions, journals, etc., in which “algebraic practices” were cir-
culating. Such practices also often circulated between and interacted with various
fields - such as mechanics, arithmetic or geometry - and passed from one theory on
to another before the time of the emergence of a unifying disciplinary framework
when algebra would take on a fundamental role in the organization of mathemati-
cal knowledge. More generally, the question of the identities taken on by Algebra
raises the one of the development of a disciplinary system in the mathematical
sciences. In order to understand what was algebra during the 19th century, it is
compulsory to analyze how the actors themselves described their own activities.
The problem is that neither the word “discipline”, nor the word “specialty” were
used by the actors. Until the end of the 18th century, the divisions among sciences
and arts depended on different ways of thinking (memory, imagination, reasoning,
etc.). During the 19th century, they began to be divided in accordance to their
objects, their principles, and their methods. It was a long-term process, and the
case of Algebra shows that it was not a straight road.
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Style and Rigor in Mathematics

Harold M. Edwards

One of the primary goals of my work in the history of mathematics is to make
known the way in which Leopold Kronecker’s effort to base the mathematics of
his and preceding generations on what he called “generalized arithmetic”—the
algebra of polynomials with integer coefficients—was overruled at the end of the
19th century and never revived. This is a question of “style” in a very broad sense.
Kronecker’s style of algorithmic and finitistic mathematics, which bases concepts
and proofs on concrete polynomial constructions, satisfies my own demands, both
aesthetic and technical, but is so antithetical to today’s transfinite set-theoretic
constructions that it is rejected as unworkable today. The prevailing belief is that
there is only one rigorous way to do mathematics and that it must be followed.
My thesis is that mathematics would be enriched by opening the forum to other
styles of thought and presentation.

I was encouraged by James Pierpont’s statement in his essay “Mathematical
Rigor, Past and Present,” [5] that “Personally [I] do not believe that absolute
rigor will ever be attained and if a time arrives when this is thought to be the
case, it will be a sign that the race of mathematicians has declined.” Pierpont,
after making this statement, so surprising to today’s mathematicians, goes on, not
to attempt to describe rigor, but to “pass in review some examples of what were
regarded at the time as good mathematical demonstrations.”

My article “Euler’s Definition of the Derivative” [2] presents a view of Euler’s
standards of rigor that is very different from Pierpont’s, who states that, “Judged
by modern standards [Euler’s] demonstrations are quite worthless.” I believe that,
carefully read and properly understood, Euler’s demonstrations are as rigorous and



Disciplines and Styles in Pure Mathematics, 1800-2000 613

convincing as modern mathematics, as I tried to show in the specific case of Euler’s
treatment of derivatives. It is rejected today for reasons of style, not of rigor. The
modern reader tends to believe Euler is describing limits in an inadequate way,
but in fact Euler’s definition the derivative does not involve limits at all.

A key attitude of the second half of the 19th century was expressed by Richard
Dedekind when he said [1]: “My efforts in number theory have been directed to-
ward basing the work not on arbitrary representations [Darstellungsformen] or
expressions but on simple foundational concepts and thereby—although the com-
parison may sound a bit grandiose—to achieve in number theory something anal-
ogous to what Riemann achieved in function theory, in which connection I cannot
suppress the passing remark that in my opinion Riemann’s principles are not being
adhered to in a significant way by most writers—for example, even in the newest
works on elliptic functions; almost always they disfigure the theory by unneces-
sarily bringing in forms of representation [Darstellungsformen again] which should
be results, not tools, of the theory.” (Pierpont’s translation.)

I summarized the argument I made against this statement of “Riemann’s prin-
ciples” in a talk I recently gave [3] with the title “The Algorithmic Side of Rie-
mann’s Mathematics.” Invoking Riemann’s work on the Riemann-Siegel formula,
on establishing the analytic continuation and the functional equation of the zeta
function, on transforming hypergeometric functions, and on conceptualizing and
working with “Riemann surfaces,” I tried to show that Riemann was not only a
master of what Dedekind called Darstellungsformen, but also that they were very
much tools, not results, of his theories.

Dedekind’s attitude is repeated and even amplified in David Hilbert’s state-
ment in the introduction to his famous Zahlbericht [4] that, “I have sought to
avoid Kummer’s vast computational apparatus and thereby to realize Riemann’s
fundamental principle that proofs should be effected not by computation but solely
by concepts” (my translation). To me, this approach to the subject not only de-
prives his readers of the experience of Kummer’s fertile and beautiful techniques
but is a degradation of their rigor insofar as Hilbert replaces the banned “com-
putational apparatus” with “constructions” that are transfinite algorithms that
fall far short of what Kummer and his student Kronecker would have regarded as
rigor.

Kronecker’s ideas of rigor are indicated in a famous statement, “If I still have
the time and the energy, I will myself show the mathematical world that not only
geometry but also arithmetic can point the path to analysis, and certainly a more
rigorous one. If I cannot do this, then another will who comes after me, and
the world will recognize the inexactitude of the types of proof now employed in
analysis” (my translation). This and other indications Kronecker gave, as well as
the body of his mathematical work, show clearly that he wanted to base all of
his concepts and proofs on finite (but not necessarily practical) algorithms and
computations. Pierpont shows sympathy and even admiration for Kronecker’s
view.
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I differ from Pierpont, however, when he casts L. E. J. Brouwer as the math-
ematician of Pierpont’s time whose principles were closest to Kronecker’s. From
the point of view of style, Kronecker and Brouwer could hardly be more differ-
ent. Kronecker was a product of a classical German Bildung while Brouwer was a
mystic. Kronecker was primarily interested in mathematics, not the philosophy of
mathematics, and he was a careful student of both the classics of mathematics and
the work of his contemporaries, while Brouwer worked in mathematics primarily
to validate his philosophical principles, and worked in the new field of topology in
idiosyncratic ways. Kronecker was a banker, while Brouwer was a prophet.

In my opinion, the association of Brouwer with Kronecker’s program has done
great damage to a proper understanding of what Kronecker’s vision for mathe-
matics was.

In conclusion, I believe that a broad exploration of various styles — in the sense
of the word I have tried to indicate — would enrich mathematics and promote rigor
in the only way that remains possible if one agrees with Pierpont that absolute
rigor is a mirage. It would release the stranglehold that set theory currently has
on mathematics and promote approaches to topics like number theory, algebraic
geometry, and the classical theory of functions that are better adapted to these
topics and that use more constructive, direct, and comprehensible methods.
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Arithmetisation of Algebra and Structural Style

José Ferreirós

In 1894 Richard Dedekind published a third, innovative version of his celebrated
theory of ideals. It presented a different foundation of the core of this theory, based
on development of a theory of “modules” (Z-modules in today’s parlance), and it
elaborated views that Dedekind had held from the 1870s, featuring a revolutionary
exposition of Galois theory. Understanding Dedekind’s vision of a new algebra
is an important goal, since it is undeniable that his methods played a key role
in developments from 1890 to 1940, i.e., in the emergence of modern algebra.
We considered Dedekind’s programmatic statements and aspects of his detailed
presentation in 1894, establishing on their basis that Dedekind’s approach must be
understood as an arithmetisation of algebra. This program was certainly forward
looking, but it also presents surprising traits. In the course of the presentation we
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discussed the meaning of arithmetisation for Dedekind, contrasted our views with
the influential analysis offered by Leo Corry, and analysed the abstract nature of
Dedekind’s methods as perceived by contemporaries like Frobenius or Hurwitz.
Attention was given to the contrast between Hilbert’s Zahlbericht and Dedekind’s
1894 work, to the first appearance of the “ascending chain condition” famously
linked with Noether’s name, and to Dedekind’s reformulation of Galois theory
(see Dean, unpubl.) which underscores his rejection of the traditional focus on
equations and his preference for an “arithmetisation” of algebra.

Dedekind strove to link intimately his advanced mathematical contributions
with his foundational work. His understanding of “arithmetisation” was based on
the view that “arithmetic (algebra, analysis) is only a part of logic” (Dedekind
1888). It suffices to know that the most important concept of “logic” was for
him that of a mapping [Abbildung], and next the concept of set [System, Man-
nigfaltigkeit]. Thus in Dedekind’s view pure mathematics has to be focused on the
number systems, but it is expected to employ set-theoretic or even map-theoretic
methods.

From the early 1870s Dedekind favoured a conception of algebra as the theory
of the “relationship [or family relations] between the different fields” [Verwand-
schaft zwischen den verschiedenen Körpern], where by a field he meant a subfield
K⊂C. This view of algebra recommended some radical departures from tradi-
tion, which in fact would not be adopted by the mathematical community. In
particular Dedekind consciously tried to distance his work from the traditional
focus on equations, and even from reliance on polynomials or other “forms of
representation.” This same radical attitude explains why Dedekind opted for the
set-theoretic methods of his theory of modules, regarded by Emmy Noether as a
model of methodology, and for a map-theoretic approach to Galois theory employ-
ing groups of field automorphisms, which would be taken up and popularized by
Emil Artin. On this basis I proposed that the correct interpretation of Noether’s
”es steht alles schon bei Dedekind”, is methodological: The “all” in Dedekind was
the new methods he developed, the spirit of his mathematical style, including
axiomatic analysis - but not the modern abstract structures (see Corry 2003).
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Mathematics in Spain: 1800-2000. From translated to self production

Carlos Suarez Aleman

Toward the beginning of the 19th century, textbooks produced by Spanish scien-
tists were only composed of translations from foreign, principally French textbooks
([15]). There were two important exceptions. The first was by Josef Chaix Isniel
(1765-1809) who published the book Instituciones de Calculo Diferencial e Integral
in 1801 [8]. In this book, Chaix developed the principles of calculus and surface
curves as well as curves of double curvature theory following Euler, Clairaut and
Monge. An important aspect is that he declared himself a follower of the idea of
using limits for the foundation of calculus as opposed Lagrange’s method. At the
time this approach was advancing in France, it was entering in Spain for the first
time. We are preparing a facsimile edition of this book accompanied with articles
about Isniel and his life together with notes about his works.

The second original writer was Jose Mariano Vallejo y Ortega (1779-1846),
author of the book Compendio de Matemáticas Puras y Mistas from 1819. In
the third edition (1835), he demonstrated a method for the numerical solution
of polynomial equations. In the fourth edition of this book (1840) the reader is
informed on the front page that it contains: “A new, simple, general and reliable
method to find real roots of numerical equations of any degree, even those that
resist all means and resources offered by mathematics, even those provided by the
infinitesimal calculus” [14]. Vallejo contributed a formulation of the Regula Falsi
and secant methods in almost contemporary terms, hoping that this could yield a
calculus-free approach to the problem of solving equations numerically.

The second half of 19th century in Spain was an epoch of many translations.
Important books were translated into Spanish, including the geometry of Chasles,
works on determinant theory, Galois theory or elliptic functions, etc. In this
way, by the end of the century some mathematicians in Spain began to establish
contacts with mathematicians from other countries.

We should emphasize the work of the Spaniard Antonio Portuondo Barceló
(1845-1927), whose book Ensayo sobre el infinito from 1880 is an isolated work
unrelated to any previous writing by the author. Still, he was rather proud of
it, as shown by his publishing an excerpt of it thirty-two years later, in 1912,
under the title “Les Lois Infinitésimales dans l’Analyse Mathématique” in the
Revue Générale des Sciences Pures et Appliquées. The book is devoted to the
development of a theory about the ordering and valuation of infinitesimal laws,
computations with infinitesimals and it presents a series of theorems needed in
the development of mathematical analysis. In the Nota he added remarks on
an analysis of the possible relationships between two infinitely small (resp. large)
functions, written in a spirit very similar to that of DuBois-Reymond’s 1875 article,
though we believe that Portuondo did not know it ([12]).

At the end of the 19th century Ventura Reyes Prosper (1863-1922) became the
first Spanish mathematician to publish in foreign journals. It is known that he
developed a lasting friendship with Klein and Lindemann. He worked principally
in synthetic geometry and in 1887 published “Sur la géométrie non-Euclidienne”
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in Mathematische Annalen where he simplified a proof of Klein about the con-
struction of the fourth harmonic point. In 1888, he published “Sur les propriétés
graphiques des figures centriques (Extrait d’une lettre adressé a Mr. Pasch)” in
Mathematische Annalen about a proof of Desargues Theorem for a special case.

The first half of the 20th century was marked by the Great Wars and by the
Dictatorship of General Franco, which slowed the development of mathematics in
Spain. However, there is at least one important figure to be mentioned: Julio Rey
Pastor (1888-1962). He was a student of Schwarz, Frobenius, Schur and Schottky
in Berlin, of Carathéodory, Hilbert and Courant in Göttingen and was the most
important and influential Spanish mathematician at the beginning of the 20th
century. In fact many important mathematicians were considered successors to
Rey Pastor: Ricardo San Juan, Sixto Rios, Antonio de Castro, etc. and many
mathematicians consequently dedicated their articles to Pastor.

Much less well known is Norberto Cuesta Dutari (1907-1989), an interesting
example of an ‘outlier mathematician’ (see [7]). He served as chairman at the Uni-
versity of Salamanca from 1958 until his retirement in 1977. Cuesta’s most impor-
tant work was published under the title Matemática del Orden by de Academia de
Ciencias. This was his doctoral thesis published in a series of four articles in Re-
vista Matematica Hispano-Americana. He never published in a foreign language,
probably a consequence of the dictatorship.

Cuesta’s case shows the importance of investigations about Spanish mathemati-
cians who did their work under the dictatorship. Interesting, yet unknown works
whose dissemination was limited because they were only available in Spanish, will
probably be discovered in this process.
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How to Define Geometry of Numbers as a Discipline?

Sébastien Gauthier

The aim of the talk is to address the question of the usefulness of the notion of
“discipline” as a category of analysis for historians through the example of the
geometry of numbers. “Discipline” appears as a natural category because, for
instance, it is a category of the actors. But they seem to have a spontaneous
knowledge of what their discipline is which makes the notion difficult to use for
historians. We can illustrate this point quoting André Weil speaking about number
theory [6]:

“Perhaps, before I go on, I ought to say something about what
number-theory is. Housman, the English poet, once got one of
those silly letters of inquiry from some literary magazine, asking
him and others to define poetry. His answer was “If you ask a
fox-terrier to define a rat, he may not be able to do it, but when
he smells one he knows it.” When I smell number-theory I think I
know it, and when I smell something else, I think I know it too.”

We show in the talk that questioning what could characterize the geometry of
numbers as a discipline is a fruitful heuristic approach to study its developments.

1. The Geometry of Numbers: A Natural Category for

Mathematicians

It is usually considered that the domain of researches “geometry of numbers”
began at the end of 19th century with the work of Hermann Minkowski who in-
troduced the expression Geometrie der Zahlen. A first way to grasp the geometry
of numbers as discipline is to use classifications of mathematical domains, for ex-
ample, the Jahrbuch über die Fortschritte der Mathematik and the Mathematical
subjects classification used by the Mathematical Reviews. The study of these clas-
sifications give information about the perception of the geometry of numbers by
the community of mathematicians from a collective point of view. It suggests that
the geometry of numbers is considered as a subdiscipline of number theory and
that this conception remains stable throughout the 20th century.

The discourses of mathematicians about the geometry of numbers confirm this
observation. Moreover, from Minkowski to contemporary comments, one can find
the same definition for the geometry of numbers: it would consist of using a
geometrical point of view to solve arithmetical problems. This definition which
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seems to characterize the geometry of numbers in the long-term raises several
problems, in particular, there is no reason that geometry, arithmetic (and their
concatenation) have the same meaning for mathematicians involved in researches
in the geometry of numbers. The study of specific cases shows these differences
and also reveals various disciplinary conceptions for the geometry of numbers.
This has been illustrated in the talk with the examples of Minkowski, Mordell and
Davenport.

2. Different Disciplinary Conceptions: Minkowski, Mordell and

Davenport

The work of Minkowski about the geometry of numbers can be accurately de-
scribed with internal criteria. It is characterized by:

– fundamental objects: lattices, distance functions or, alternatively, convex
bodies,

– a fundamental theorem: Minkowski’s convex body theorem,
– a fundamental method: the one used by Minkowski to prove the funda-
mental theorem.

This conception of the organization of the geometry of numbers is not shared by
Mordell and Davenport. Their work is structured around the study of different
problems, for example, the minimum of the product of n linear forms and some
particular cases of this question. Consequently, they are interested in the different
objects which appear in previous problems and they use many results and many
methods to study these objects. In the case of Mordell and Davenport, we have to
consider collective aspects of their work that we can see through correspondences,
seminars and teaching. This example shows another disciplinary configuration
different from Minkowski: here, there is not a limited core of objects and methods
but the geometry of numbers is more defined by a set of collective practices.

3. The geometry in the geometry of numbers

The study of the mathematical practice of Minkowski, Mordell and Davenport
enable us to clarify what the general description of the geometry of numbers –
the use of geometry in number theory – means for these mathematicians [3]. For
Minkowski, the geometry is associated with intuition and often consists in the
geometrical representation of the question studied.
The meaning of the geometrical point of view in Mordell’s and Davenport’s work
is the interpretation of an arithmetical problem in terms of the research of a lattice
point in a fixed domain.

4. Conclusion

We have several evidences that the geometry of numbers is perceived as a nat-
ural discipline by mathematicians. They seem to have a discourse of continuity
about this subject as shown by the general definition of the geometry of numbers
which appears in the long-term.
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But at another scale of analysis, the study of the practices of mathematicians
gives another image of the geometry of numbers. There is in fact no obvious char-
acterization of the geometry of numbers as discipline. “Disciplines are historical
objects”1 and an aim for the historians should be to determine what define a dis-
cipline in each specific situation. In that sense the category of discipline can be
useful as it helps to reconstruct the developments of a subject like the geometry
of numbers.
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Two episodes in late 19th century research on convex bodies: Style
and towards a discipline

Tinne Hoff Kjeldsen

The beginning of the modern theory of general convex sets is attributed to Her-
mann Brunn and Hermann Minkowski. They both figure prominently in introduc-
tions to text books and monographs on convexity [1]. In such introductions it is
neither revealed that Brunn and Minkowski studied convex bodies independently
of each other, for very different reasons, and in very different ways, nor that it
was Minkowski’s strand of thoughts that led to the development of a theory of
convexity.

In this talk Brunn’s and Minkowski’s approaches to convex bodies were com-
pared and discussed in the framework of the theme for the conference, in order
to understand why they began investigations of bodies only characterized by the
property of convexity, and how they did it. It was argued that there was a big
difference in style between the two, and that the “move” towards a discipline of
convexity can be seen as a consequence of Minkowski’s work.

Hermann Brunn (1862-1939) took up the study of what we today would call
general convex bodies in his inaugural thesis Ueber Ovale und Eiflächen from 1887.

1G. Lenclud, “L’anthropologie et sa discipline”, in [1], 69–93.
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In the preface he explained that his thesis consists of “Elementary geometrical
investigations of a special kind of real curves and surfaces - ovals and egg surfaces”
[2]. He defined objects that he named “Oval”,”volles Oval”, “Eifläche” and “volles
Eifläche”. These objects correspond to the boundary of a convex body in the
plane, the boundary together with its inner points, and the corresponding objects
in three-dimensional space. Brunn’s thesis is a study of various kinds of properties
about these objects. In the last part of his thesis he dealt with cross sections in
“egg”-forms and extremal properties. It is in this section we find Brunn’s version
of what became known as the Brunn-Minkowski inequality. Minkowski used his
version of the inequality in a paper from 1901 [6] to give a new and more rigorous
proof of the extremal property of the sphere, whereas Brunn claimed that it could
not be used to prove this property [2].

It is unclear why Brunn began to study ovals and egg-forms. It seems that he
just started from scratch so to speak, as he wrote at the end of the thesis:

however, the complete work is intended to show that also geomet-
rical figures of unusual few specialized construction laws after all
allow some statements that are not quite obvious [2]

Brunn was committed to Steiner’s views on geometry, as he himself phrased it

I was not entirely satisfied with the geometry of that time which
strongly stuck to laws that could be presented as equations quickly
leading from simple to frizzy figures that have no connection to
common human interests. I tried to treat plain geometrical forms
in general definitions. In doing so I leaned primarily on the ele-
mentary geometry that Hermann Müller, an impressive character
with outstanding teaching talent, had taught me in the Gymna-
sium, and I drew on Jakob Steiner for stimulation. [3]

Here Brunn was referring to the controversy of the 19th century between the
analysts and the synthesists, and he held the opinion that using synthetic methods
was the right way to argue in geometry.

In contrast to Brunn, Hermann Minkowski (1864-1909) was one of the leading
mathematicians of his time. He came to - or stumbled over - convexity due to the
way in which he approached the minimum problem for positive definite quadratic
forms in n variables. The minimum problem is to find the minimum value of such
a form for integer values of the variables not all zero. The innovative element of
Minkowski’s work was that he approached the minimum problem for n dimensions
geometrically by interpreting a positive definite quadratic form geometrically, con-
structing a lattice of congruent parallelotopes through which he reformulated the
minimum problem to the problem of finding the smallest distance in the lattice.
He was then able to find an estimate for the upper bound of the quadratic form
for integer values of the variables by a simple comparison of two volumes [4]. At
some point, probably around 1891, Minkowski realized that the essential property
for his argument for comparing the two volumes was the property of convexity.

He then introduced a radial distance between two points along with its cor-
responding unit ball, or “Eichkörper”, as he named it. He argued that the
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“Eichkörper” of a radial distance for which the triangular inequality holds is con-
vex, or nowhere concave as he called them at that time, and vice verse that every
nowhere concave body which has the origin as an inner point, is the “Eichkörper”
of a certain radial distance for which the triangular inequality holds. He then
reformulated his result for the minimum problem into his famous lattice point
theorem:

Ein nirgends concaver Körper mit einem Mittelpunkt in einem
Punkte des Zahlengitters und von einem Volumen = 2n enthält
immer noch mindestens zwei weitere Punkte des Zahlensgitters,
sei es im Inneren, sei es auf der Begrenzung. [7]

Minkowski reached his results through geometrical intuition, as he explained in
the advertisement for his 1896 book Geometrie der Zahlen:

I have chosen the title Geometry of Numbers for this work be-
cause I reached the methods that give the arithmetical theorems,
by spatial intuition. Yet the presentation is throughout analytic
which was necessary for the reason that I consider manifolds of
arbitrary order right from the beginning. [7]

If we compare Brunn’s and Minkowski’s styles, we can see that Brunn was what
could be called a purist in style. He had one context of argumentation, namely
within synthetic geometry. Minkowski on the other hand used a diversity of styles
which provided him with several contexts of argumentation. He used geometrical
intuition in number theory, and he treated the geometry of numbers analytically.
Thereby, his work became situated in a much richer context than Brunn’s which
created connections between various (sub)disciplines of mathematics. New ideas
such as the lattice point theorem and the field of geometry of numbers, and new
objects such as the “Eichkörper” and nowhere concave bodies, emerged.

There are other differences that help to explain why the further development
came out of Minkowski’s strand of thoughts. First, Minkowski’s mathematics
on convexity came out of his effort to solve mathematical problems that were
recognised as important problems. This was not the case with Brunn. Second,
Brunn’s and Minkowski’s objects were very different in nature. Brunn’s were
quasi-empirical objects that existed in plane and space. Minkowski worked on
abstract mathematical entities that “lived” on n-dimensional manifolds. Third,
Minkowski’s work was much more general and convex bodies had kind of proved
themselves as powerful tools in his work.

The comparison shows the differences in the way Brunn and Minkowski worked
with mathematics and produced new knowledge, as well as the significance of these
differences for whether their investigations of the new objects had the potential to
develop into a mathematical discipline [5].

Minkowski then began to study convex bodies for their own sake publishing
several papers on convexity where he worked on convex bodies completely detached
from quadratic forms and number theory as such. He gave a systematic treatment
of convex bodies in 3 dimensions, introduced the now standard notions of distance
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function for convex bodies with the origin as an inner point, supporting hyper
planes, separating hyper planes, mixed volumes etc.

From there on the number of manuscripts and materials on convex bodies or
using convex bodies multiplied and around 1932 Neugebauer suggested that Tom
Bonnesen (1873-1935) and Werner Fenchel (1905-1988) should collect, organize
and systematize all of this. The result of their joint effort was the book Theorie
der konvexen Körper [1]. The appearance of Bonnesen’s and Fenchel’s monograph
can be seen as a the first step of the formation of convexity as a (sub)discipline
of mathematics. It indicates that there at that time were a specialized body of
knowledge and a group of practitioners.
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Minkowski Collected Works, vol. II, 1911.

[7] H. Minkowski. Geometrie der Zahlen. Leipzig: B. G. Teubner, 1910.

The evolution of the concept of projective space (1890-1935): from
geometry to algebra

Jean-Daniel Voelke

This talk constitutes a summary of a forthcoming paper. It analyses the evolution
of the concept of projective space from the epoch of Poncelet until our days and
gives an example of the change of status of a discipline (projective geometry). It is
divided into four parts. I begin by presenting the current definitions of projective
space. I’ll then examine the origins of these definitions. In the third part, I’ll
explain in which context the notion of projective space appeared at the end of the
19th century. I’ll end by showing how this notion evolved during the 1930s and
finally took its current shape.

Let us begin with the modern definitions. Nowadays, there are two manners
of defining a projective space: an axiomatic one and an analytic. In the first
one, a projective space is defined as a set of objects (points and straight lines)
satisfying some axioms. In the second one, a projective space of dimension n is
defined as the set of sets of n + 1 homogeneous coordinates chosen in a field, or
as the set of straight lines of a vectorial space of dimension n+ 1. If you suppose
that the theorem of Desargues is valid in an axiomatic projective space (it is the
case if the dimension is greater than 2), you can introduce coordinates and show
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that it is isomorphic to an analytic projective space on a field. Consequently, the
axiomatic and analytic ways meet. These two definitions have their roots in the
two main streams in projective geometry in the 19th century: the synthetic method
of Poncelet, Steiner and von Staudt and the analytic one of Möbius, Plücker and
Hesse.

I would like to discuss some characteristics of these mathematicians’ research
which are necessary to understand the origins of the concept of projective space.
I’ll have to distinguish the first group, Poncelet, Steiner and von Staudt, from
the second one, Möbius, Plücker and Hesse. From my point of view, the crucial
issue is the treatment of the elements at infinity. Indeed I shall later argue that
the concept of axiomatic projective space appeared when mathematicians stopped
differentiating proper from ideal elements. Let us first recall that the notion of
ideal point or at infinity was introduced by Desargues. For him, such points were
represented or conceived as the intersection of parallel lines. At the beginning of
the 19th century this idea was commonly accepted by professional mathematicians.
In their books, Poncelet, Steiner and von Staudt, the users of the synthetic method,
first considered an affine space which they completed by ideal points. But they
didn’t conceive them as ordinary points. They rather conceived them as a linguistic
tool which allows unification of some statements. Consequently, even if these
mathematicians dealt with projective geometry, the concept of projective space
was absent from their writings.

The situation among the users of the analytic method was a little different.
At the end of the 1820s, Möbius and Plücker defined systems of homogeneous
coordinates. Their main motivation was to gain simplifications in calculation and
not to develop an analytic tool for calculating with ideal points. This possibility
rather appeared as a by-product of their research; however, they used it without
any problems. In practice they made less discrepancy between proper and ideal
points than Poncelet and Steiner. A decade after Möbius and Plücker, Hesse began
to use a particularly simple system of homogeneous coordinates. The ordinary
coordinates x, y from a point are replaced by homogeneous coordinates X,Y, Z

satisfying x = X
Z
, y = Y

Z
. Hesse’s motivation was similar to the one of Möbius and

Plücker: it is often more practical to calculate with homogeneous polynomials.
Hesse didn’t mention the issue of ideal points. A few years later his method was
adopted by Cayley and generalised to n dimensions. It was then used by Italian
mathematicians as D’Ovidio and Segre and at the beginning of the 1880s a new
concept appeared in Italy: the linear space. The points of such a space are the
sets of (n + 1) real or complex homogeneous coordinates. In fact, a linear space
is the same thing as an analytic projective space. I encountered this last term
the first time in a paper written by Killing in 1893. In conclusion, the situation
was not the same among the users of the synthetic method as among the ones of
the analytic method. The framework of the second ones was already the analytic
projective space.

I will now discuss how the notion of projective space appeared during the 1890s.
After the axiomatization of geometry given by Pasch in 1882, a new interest for
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this issue developed among mathematicians, especially in Italy. In 1891 Segre
published a paper in which he noticed that nobody had yet given a system of
postulates characterising the linear space of n dimensions. In other terms, Segre
called for an axiomatization of the analytic projective space. His paper challenged
two young mathematicians: Amodeo and Fano. The result was the publication
of two papers resolving the issue proposed by Segre. I consider that these papers
marked the birth of the axiomatic projective space. Significantly Amodeo used this
term. In the axiomatics of Amodeo and Fano two coplanar straight lines always cut
each other in a point and there is no distinction between proper and ideal points.
The classical process of complementation used by Poncelet and his successors
disappeared and we have from the very beginning the axiomatic projective space.
The method of Amodeo and Fano was then used by Pieri in several papers on the
axiomatics of projective geometry published at the end of the 19th century. He
insisted on the independence of this geometry from the euclidean one and regularly
used the term “projective space”. He also formulated a specific system of axioms
of the complex projective space. This paper showed that there are indeed different
projective spaces. At the beginning of the 20th century, after the publication of
Hilbert’s Grundlagen der Geometrie, new research in axiomatics was undertaken
in America. The main mathematician was Veblen. After writing several papers
on this subject, he published a book Projective geometry with Young in 1910; this
book remained the reference in this field for many years. It adopts the axiomatic
method and offers a synthesis of the main recent research done in this area. If we
focus on the biography of projective space, this book is important because this
concept is presented simultaneously from the analytic and the axiomatic points
of view. Veblen and Young define an analytic projective space of 3 dimensions
as the set of all proportional quadruples of numbers not all equal to zero. They
show that such a space constitutes a model of an axiomatic projective space.
Reciprocally, they show that coordinates can be defined in such a space and that it
is isomorphic to an analytic one. Finally, Veblen and Young take into consideration
finite projective spaces too. For all these reasons, we can say that the notion of
projective space became mature with their book.

I would now like to examine the subsequent evolution of the notion of projective
space during the 1930s. As Corry showed it in his book Modern Algebra and the
Rise of Mathematical Structures, this period was characterised by the development
of a structural conception of algebra. It influenced the conception of projective
geometry too. In the middle of the 1930s, Birkhoff and Menger showed indepen-
dently that projective space can be defined as a finite, modular, complemented
lattice. At the same time, Schreier and Sperner published their famous book Ana-
lytische Geometrie in which projective geometry constitutes only a chapter. They
chose the analytic definition of projective space and remarked that there is a cor-
respondence between the points of such a space and the straight lines of a vectorial
space. With these different publications, projective geometry lost its independence
and was integrated into more general algebraic theories. Projective space was con-
ceived as a particular lattice or as the set of straight lines of a vectorial space.
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Such a definition was adopted for example by Bourbaki or by many authors who
included projective geometry in treatises of linear algebra. At the beginning of
the 1950s, it seemed that projective geometry wasn’t a geometrical discipline any
more but an algebraical one. Nowadays, opinions are less extreme. The time of
ideologies is past. The different approaches of projective geometry coexist peace-
fully and mathematicians pass easily from one to the other one depending on their
needs.
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1822 and 1865; 2e édition, Gauthier-Villars, Paris,
[10] Schreier, Otto and Sperner, Emanuel, Analytische Geometrie 2 vol., B. G. Teubner, Leipzig

und Berlin, 1931 et 1935
[11] Segre, Corrado, Studio sulle quadriche in uno spazio lineare ad un numero qualunque di

dimensioni , Memorie della Reale Accademia delle Scienze, Torino 36 (2), 1883, 3-86.
[12] Segre, Corrado, Su alcuni indirizzi nelle investigazioni geometriche , Rivista di Matematica,

1891, 42-66.
[13] Staudt, Georg Karl Christian von, Geometrie der Lage , Bauer und Raspe, Nürnberg, 1847.
[14] Steiner, Jakob, Systematische Entwickelung der Abhängigkeit geometrischer Gestalten von

einander , Fincke, Berlin, 1832.
[15] Veblen Oswald and Young John Wesley, Projective Geometry, 2 vol., Ginn and Company,

1910 and 1918

Oscar Zariski and Alexander Grothendieck

Robin Hartshorne

Oscar Zariski and Alexander Grothendieck, each in his own way, brought radical
changes to the field of algebraic geometry in the twentieth century. The purpose
of this talk is to give a brief look at the lives of these two men, to say what they
did, and to compare and contrast their styles of doing mathematics.

Oscar Zariski was born into a Jewish family in Kobrin, Russia in 1899. He
studied in the Russian gymnasium and at the University of Kiev until 1920. When
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Kobrin became a part of Poland, he could obtain a Polish passport and travelled to
Italy. At the University of Rome (1921-1927) he learned algebraic geometry at the
feet of the great Italian masters Castelnuovo, Enriques, and Severi. During this
time he also met and married a young Italian woman, Yole Cagli, who remained
with him until the end of his life. Even while admiring the accomplishments of the
Italian algebraic geometers, Zariski felt the need for new methods to go farther.
He accepted a position at Johns Hopkins University in Baltimore, which he held
from 1927-1945, with visits to other places such as Harvard, Illinois and Sao Paulo
in between. During this time he was able to visit Lefschetz in Princeton, and
apply his topological methods to the study of the fundamental group of algebraic
varieties. During this time also he wrote his book on Algebraic Surfaces (1935), in
which he explained the ingenious geometric methods of the Italian school. As he
says in the preface to his collected works, he may have succeeded, but at a price.
“The price was my own personal loss of the geometric paradise in which I was
living theretofore.” [[4], vol. I, p. xi]. He felt the need for more solid algebraic
foundations for the geometry. These he created, drawing on the work of E. Artin,
E. Noether, and Krull, in a series of foundational papers from 1939 to 1944. For
the rest of his life he worked on many aspect of algebraic geometry, using these
foundations and creating more tools as he went along. His main contributions
were to the resolution of singularities, the classification of algebraic surfaces, the
theory of linear systems and the Riemann-Roch problem, the theory of birational
transformations and minimal models, the theory of holomorphic functions and,
in his later years, equsingularity. He also expanded the domain of the subject,
recognizing the need to work over non-algebraically closed groundfields, and over
fields of characteristic p > 0.

As a result of Zariski’s work it was no longer possible for a researcher in algebraic
geometry to work in the purely geometric style of the Italian masters: one had to
have proper algebraic foundations for one’s results. (Unfortunately, I do not have
space in this paper to report on the parallel algebraic foundations developed by
van der Waerden, André Weil and others.) Zariski’s report to the International
Congress of Mathematicians in 1950 summarized the algebraic transformation that
had overcome the field of algebraic geometry since his student days in Rome. This
article makes curious reading today, since it came on the eve of the next great
revolution in algebraic geometry due to Serre and Grothendieck.

Alexander Grothendieck was born in Berlin in 1928 to a Russian Jewish an-
archist father and a German mother. His early years were chaotic as his parents
lived on a shoestring. From age 6-11 he lived with a foster family in Hamburg
while his parents went to fight in the Spanish Civil War. In 1939 he was sent to
France, where he lived with his mother in an internment camp. His father was
deported to Auschwitz in 1942. He was able to attend school, and later (after
the war) study mathematics at the University of Montpellier. In 1948 he went
to Paris with an introduction to H. Cartan. Cartan sent him to Nancy to work
with Laurent Schwartz. Schwartz reported in his autobiography that he had just
finished a big paper with Dieudonné with fourteen unsolved problems at the end.
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They suggested that Grothendieck might try his hand at one that appealed to him.
They did not see him for a while, but when he reappeared several weeks later, he
had done half of them with deep and difficult solutions, and introducing a number
of new concepts. They realized they were dealing with a first-rate mathematician
[quoted in [2], p. 161]. This was the beginning of is intensive work (1950-56) on
topological vector spaces.

Then, with Serre’s paper Faisceaux algébriques cohérents (1955) and his expe-
rience in the Cartan seminar came Grothendieck’s plunge into algebraic geometry.
During the period 1957-1970 he worked essentially non-stop, producing several
lifetimes’ worth of mathematics, and rewriting the foundation of algebraic geom-
etry in terms of the theory of schemes, a vast generalization of the old algebraic
varieties. His work during this time includes

• The Eléments de Géométrie Algébrique (EGA) with J. Dieudonné, 8 vol-
umes, 1960-67.

• Séminaire de Géométrie Algébrique (SGA) with various coauthors, SGA
1- SGA 7, 1960-69 (more than 6000 pages in all)

• 15 talks to the Séminaire Bourbaki on his new results
• Not to mention numerous other published articles and seminar talks.

After 1970 he largely withdrew from the world of research mathematics. Although
he continued to teach at the University of Montpellier until his official retirement in
1988, and produced several unpublished manuscripts of mathematics, he shunned
most other mathematicians. Since 1991 he has lived in an unknown location in
southern France, and refused most contact with other people.

Now a few comparisons between the works of these two men. Both left their
birthplaces and moved through several different cultures. Both changed the way
algebraic geometry was done. Zariski’s work was always grounded in the many
examples of classical geometry he learned in Italy. In his ICM talk (1950) he
says “The Italian geometers have erected, on somewhat shaky foundations, a stu-
pendous edifice: the theory of algebraic surfaces. It is the main object of modern
algebraic geometry to strengthen, preserve, and further embellish this edifice, while
at the same time building up also the theory of algebraic varieties of higher di-
mension.” Zariski brought in techniques of algebra to strengthen the base, and
tested his methods on specific problems such as the resolution of singularities. He
developed new tools as needed for other problems.

On the other hand Grothendieck explains [[3], 2.17] how he saw a vast panorama
opening in front of him, which went far beyond the techniques necessary for any
particular problem, and he felt the need to explore in all its detail this new un-
expected world and map it carefully. He generalized everything: the base field
became an arbitrary ring, the old varieties became schemes, even the notion of
topological spaces and sheaves were transformed, new cohomologies appeared.
And in all this work, examples hardly played any role at all.

Another difference is that Zariski mostly worked alone. Except for his book
Commutative Algebra (1958-60), written jointly with his student Pierre Samuel,
almost all of Zariski’s books and papers are singly authored. Grothendieck on the
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other hand had such a continual outpouring of new ideas that he needed a whole
army of collaborators to join in his work, Thus the EGA are written jointly with
J. Dieudonné; most of the volumes of SGA have coauthors, including Demazure,
M. Artin, Verdier, Berthelot, Illusie, Deligne, and Katz. While I attended courses
of lectures by Zariski, my real apprenticeship in mathematics was as a participant
in Grothendieck’s vast program: I wrote the lecture notes for his seminar on local
cohomology in 1961 [SLN 41], and ran the seminar on his theory of duality that
was written up as Residues and Duality [SLN 20, 1966].

Another striking difference is that Zariski’s published papers span 58 years:
1924-1982, while Grothendieck’s published work is confined to his 20 years of
intense activity 1950-1970.

Grothendieck’s style of working is perhaps best described by his image of the
sea rising: one develops the general theory all around a problem so that each step
seems simple, and at the end the problem is submerged. Here are his words [[3],
p. 502]:

”La mer s’avance insensiblement et sans bruit, rien ne semble se casser rien
ne bouge l’eau est si loin on l’entend à peine Pourtant elle finit par entourer la
substance rétive, celle-ci peu à peu devient une presqu’̂ıle, puis une ı̂le, puis un ı̂lot
qui finit par être submergé à son tour, comme s’il s’était finalement dissous dans
l’océan s’étendant à perte de vue. . . ”
This is not to say that Grothendieck did not care about problems. One that con-
cerned him throughout his career was the “Weil conjectures” relating the topology
of a variety in characteristic 0 to the number-theoretic properties of its reductions
(mod p). These were finally solved by Deligne using the apparatus set up by
Grothendieck. But more characteristic are his great generalizations of theorems
known in special cases, such as the Riemann-Roch theorem to an arbitrary proper
morphism of schemes, or his generalization of Serre’s duality theorem for a smooth
projective variety to a projective morphism of schemes with arbitrary singularities.
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Milnor, Serre, and the Cartan Seminar

John McCleary

In discussions of style with my colleagues in the arts and humanities, I learned that
the notion of style quite simply treats how something is said, while subject treats
what is said. For historians of mathematics, it is mathematics that is said, and to
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consider style is to consider how it is said. For critics of art forms, the notion of
style exists when there is synonymy, that is when there is a possibility of choosing
between alternative forms of expression about the same thing. Generally speaking,
research mathematical papers do not treat the same thing—even if the topic is the
same, the point of a paper is to present a new way of seeing, a different category
of generalization, or even an error of insight of the other paper. The subjects of
my title are universally accepted to be masters of ‘saying,’ that is, their writings
and work are considered as models of style in writing. I ask:

• Is it possible to extract from their successes some notion of style that might
be useful in the history of mathematics?

• Can we contrast their work with contemporary work and find ways to
explain certain developments?

• Is the excellence of style modelled in these works a factor in the develop-
ment of the sub-disciplines to which they contribute?

To frame this discussion, let me introduce one more notion of style, developed by
the sociolinguists, namely, stylistics. How we say things is certainly the purview
of linguistics for whom many different issues arise. To describe phenomena like
dialect, they have introduced the notion of register, which includes the properties
within a language associated to a particular purpose or in a particular social
setting. An example is the use of dialect, but register covers other notions as well,
and it is often shorthand for formal/informal style. The study of register is based
on three important aspects of a situation:

field: the activity associated with the language used;
tenor: the specific role of the participants between whom the statement is

made;
mode: the symbolic organization of the situation.

These notions parallel questions about place, time, and community raised by
Moritz Epple in a paper on knot invariants in Vienna and Princeton in which
the issue of the “specifics of the mathematical language” is raised.

It is a notion in stylistics to consider the formality of the use of language.
Serre, in an Intelligencer interview, expressed his taste in mathematical writing
“Precision combined with informality!”

In my lecture, I considered the cases of Serre’s thesis and Milnor’s first papers in
topology. We can ask Epple’s questions: “How were mathematicians at particular

places and times led to try out certain definitions and concepts? How did par-
ticular mathematical problems emerge? How was it possible to frame conjectures
that might eventually become theorems? Which means of proof were available at
particular places and times and how did mathematicians put them to use? How
did they manage to convince others of the relevance of their definitions as well as of
the correctness of their theorems and proofs? How did – in and by all these activ-
ities – perceptions of and ideas about particular mathematical notions or objects
change?” This leads to a discussion of the roles played by 1) the key questions

in topology at the time; 2) the actors in Paris in 1950, in Princeton in 1955; 3)
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the main examples that guided the key insights, and 4) the influence of resulting
work. The role played by the Séminaire Cartan and Séminaire Bourbaki for Serre
was pivotal. The community of topologists and the high standard for exposition
of the 1950’s faculty at Princeton played a similar role for Milnor. As in Epple’s
analysis of the development of knot invariants, the local features are crucial. In
the framework of stylistics, locality determines the resulting language. The im-
pact of the major results of the Serre’s thesis and Milnor’s first topology paper
was greatly increased by their ability to write with precision and informality.
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Stilarten, Variations du style, Denkstile: Fleck’s critical “Lehre vom
Denkstil” and the “Stilarten mathematischen Schaffens”

Moritz Epple

The talk discussed uses of the notion of ‘styles’ applied to science, and mathemat-
ics in particular, of the years immediately following the takeover of the Nazis in
Germany in 1933. The question was raised whether Ludwik Fleck’s now famous
Entstehung und Entwicklung einer wissenschaftlichen Tatsache: Einführung in die
Lehre vom Denkstil und Denkkollektiv, published in 1935 in Basel, must be seen in
the context of a broader discourse of the time, strongly shaped by the intervention
of authors favouring the idea of racial styles such as Hans F. K. Guenther, whose
pamphlet Rasse und Stil, published in 1926, was widely read and republished sev-
eral times. The same context is of course relevant for a historical understanding
Ludwig Bieberbach’s infamous Stilarten mathematischen Schaffens of 1934.

In the talk I briefly recalled Bieberbach’s polemics against Jewish colleagues
and the strong international reactions it provoked. The claim was made that
most politically sensitive and internationally active European mathematicians were
aware of Bieberbach’s racist initiative and of the public controversy with Harald
Bohr that followed in Summer 1934. In particular, I argued, this is probably true
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for Claude Chevalley, who was well acquainted not only with Germany but also
with several of the mathematicians attacked by Bieberbach.

In this light, the short article Variations du style mathématique, published in
1935, acquires a second meaning. Even if the Bieberbach affair was not mentioned
in this article at all, it, too, can be placed among the international reactions to
Bieberbach’s racist conception of mathematical styles. Indeed, a closer analysis
of Chevalley’s arguments reveals that his idea of changing literary and epistemic
styles of mathematical writings and mathematical research is not just incompati-
ble with Bieberbach’s exhortations, but is actually defending many of the math-
ematicians and modern, formal mathematical approaches that Bieberbach was
attacking.

Similarly, in the field of the history of science in general, Ludwik Fleck’s mono-
graph of 1935 can be read as a counter-text to racist accounts of styles in science.
As in Chevalley’s case, a closer reading shows that Fleck’s discussion of the vari-
ations of the notion of the syphilitic disease and of the laboratory and medical
practices surrounding it aims at an open and critical understanding of the role of
styles in scientific practice. Not only were Fleck’s “thought collectives” - the social
carriers of styles of thought - explicitly construed in a way prohibiting identifica-
tion with racial collectives, he also pointed out that in any research practice, a
fixation on one given style of thought would imply a severe limitation of research.
His case study actually shows that decisive scientific innovations, and what he calls
the emergence of new scientific facts, were always coupled to changes of a given
style. On the other hand, Fleck was convinced that collective scientific practice
was always based on adhering to certain styles of thought - so that the historical
development of research always involves a plurality of thought styles in continuing
variation.

So far, there is no indication of a direct awareness on Fleck’s side of the Bieber-
bach affair in Germany. He was, however, on close terms with several leading
mathematicians in his hometown Lemberg, including Hugo Steinhaus, from whom
he might have learned about the affair. Further research may provide new insights
here. On the other hand, Fleck’s monograph was read and misunderstood by Nazi
reviewers as supporting the notion of racial styles. To such reviews Fleck reacted
in later publications, e.g. in the article Das Problem einer Theorie des Erkennens
of 1936. There, he described the value of his theory in the following words: “If
it only throws to the ground that malicious and hard-necked mystification with
which fanaticists of their own style fight human beings adhering to a different
style, then it proves its cultural value.”

Taken together, Chevalley’s and Fleck’s considerations may warn us against
simplistic uses of the notion of styles in science. An insight they share is that
styles are always in variation, and that a ‘fanaticism of one’s own style’ may be a
dangerous thing.
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Weierstrass’s algebraic style in complex function theory

Umberto Bottazzini

“The more I think about the principles of function theory - and I do it incessantly
- the more I am convinced that this must be built on the foundations of algebraic
truths. Consequently it is not correct to take the ‘transcendent’, to express myself
briefly, as the basis of simple and fundamental algebraic propositions”. This ‘con-
fession of faith’ that Weierstrass made in a letter to Schwarz on Oct. 3 1875, can
be assumed as a guideline to Weierstrass’s approach to complex function theory.

In the late 1840s Cauchy had published the refined version of his approach to
complex function theory, including the Cauchy-Riemann equations, the integral
theorem, the integral formula, and the calculus of residues. Weierstrass avoided
resorting to Cauchy’s ‘transcendental’ methods. Instead, he chose the power series
approach because of his conviction that the theory of analytic functions had to be
founded on simple ‘algebraic truths’. He claimed furthermore that his view had
been especially strengthened by his study of the theory of analytic functions of
several variables.

Weierstrass followed this approach in 1854 in an epoch-making paper where
he presented a solution of the Jacobi inversion problem in the hyperelliptic case.
There Weierstrass limited himself to providing a hint of the mathematical devel-
opments needed to support his results (most of them being simply stated without
proof). Two years later he resumed this subject in more detail, and provided
the required proofs. In particular, Weierstrass proved that the solutions of Jacobi
problem could be expressed in terms of al-functions, which are single-valued func-
tions expressed as quotients of convergent power series, and other Al-functions
whose analytical form he was able to determine. Despite his successes he could
not obtain an analytical definition of the two functions whose ratio represented
an arbitrary Abelian function. “Here”, he stated “we encounter a problem that,
as far as I know, has not yet been studied in its general form, but is nevertheless
of particular importance for the theory of functions”. He promised to treat this
problem in a continuation of the paper, but such a publication never appeared.

In 1857 a completely new approach to the theory of Abelian integrals was pub-
lished by Riemann. What Riemann did surpassed by far anything Weierstrass had
been able to produce. After summarizing the main features of his 1851 Dissertation
– including the fundamental role of the Cauchy-Riemann equations, the idea of a
surface multiply covering the Riemann sphere and the related, topological ideas
of crosscuts and genus of a surface – he proved an existence theorem for a func-
tion with prescribed behaviour at branch-points and singularities via the Dirichlet
principle. Then he provided a classification of Abelian functions (integrals) into
three classes according to their singularities, and finally, he gave a complete so-
lution of Jacobi inversion problem by determining the theta series expressing the
Jacobi inverse functions of p variables. After the publication of Riemann’s paper
Weierstrass decided to withdraw the publication of his own research. Even though
Riemann’s work “was based on foundations completely different from mine, one
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can immediately recognize that his results coincide completely with mine”, Weier-
strass later stated. “The proof of this requires some research of algebraic nature”
which he was able to publish only some ten years later in a paper that was flawed
by some inaccuracies that he himself later recognized in a letter to Borchardt in
1879.

In response to Riemann’s achievements, by the early 1860s Weierstrass began to
build the theory of analytic functions in a systematic way on arithmetical founda-
tions, and to present this in his lectures. According to Weierstrass, this provided
the foundations of the whole of both elliptic and Abelian function theory, the latter
being the ultimate goal of his mathematical work. Weierstrass’s approach was suc-
cessful in providing the “systematic foundation” of the theory of analytic functions
of one variable. This included the distinction between poles and essential singular-
ities, the discovery of natural boundaries and the establishment of representation
theorems based on the idea of prime factors. He also involved his students, in
particular Schwarz, in his research program. Schwarz in fact performed the func-
tion for Weierstrass of recapturing several of Riemann’s theorems in a way more
acceptable (and indeed more rigorous) than Riemann had first presented them.
Among these there were special cases of the Riemann mapping theorem and the
Dirichlet principle.

In a paper (1880) Weierstrass showed that “the concept of a monogenic function
of one complex variable does not coincide completely with the concept of a depen-
dence that can be expressed by means of (arithmetical) operations on magnitudes”
(contrary to what Riemann had stated). In fact, he proved that the domain of
(uniform) convergence of a series may be built up of different, disjoint regions as
shown by the series

F (x) =
∞∑

ν=0

1

xν + x−ν

which is uniformly convergent for |x| < 1 and |x| > 1. In either domain this
series represents a monogenic function which cannot be analytically continued
into the other region across their common boundary. This result allowed him to
show the intimate relationship between two theorems that “did not coincide with
the standard view”, namely 1) the continuity of a real function does not imply
its differentiability; 2) a complex function defined in a bounded domain cannot
always be continued outside it.

Eventually, in a lecture at the Mathematical Seminar in 1884 he pointed out
that in his approach he avoided the use of Cauchy’s integral theorem. He repeated
his criticism of Riemann’s general concept of a complex function based on Cauchy-
Riemann equations, and claimed that his own theory (based on simple arithmetical
operations) could “easily” be extended to functions of several variables. In spite
of his claims, however, he was largely blocked in his search for a good theory of
complex functions in several variables, and for the properties of Abelian functions.
This had another much more important consequence : Weierstrass’s limited in-
terest in publishing his ideas. Instead, Weierstrass was very much concerned with
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his role as a founder of a mathematical school. As he confessed in a letter to
Schwarz on 18 Aug. 1888 “As things now stand, I fear - and I have all reason for
that - that in a short time the most influential chairs at our universities will be
taken by people of whom nobody thinks at all nowadays”. And it will be brought
to the Ministry of Education the opinion that “Weierstrass himself had achieved
really noteworthy things, but only second-rate people went out of his school so
that one has to conclude that his road was not the right one.” According to the
picture of the ‘mathematical school’ at Berlin in the early 19th century provided
by Volterra, apparently Weierstrass’s fear was well-founded. Indeed, commenting
on the former students of Kronecker and Weierstrass who had gone on to become
professors at Berlin, Volterra wrote to his wife on Feb. 18, 1904 : “They are
suggestive figures because they make us think, and there are certainly great ruins.
They make us think because they show that Weierstrass and Kronecker with all
their genius did not succeed at anything that they hoped to accomplish. They
have created neither a new mathematics nor a school of their own. Their genius
has been more advantageous to France than to their own pupils.”

Hermite’s Weierstrass

Tom Archibald

The adoption of certain aspects of what might be termed Weierstrass’ mathemat-
ical style by Charles Hermite affords an interesting case study in how a set of
local practices, associated with the personal, authorial, and even thinking style
of one individual, may be successfully transplanted to another context despite
marked stylistic differences. Many papers presented at this meeting provided us
with examples of the distinctions between personal style (open versus closed, nor-
mative versus accepting of difference, etc.) and the style of presentation of a given
mathematical author. In the paper we couched the discussion of the style of a
mathematical text by comparing the kinds of parameters there present with those
in a literary text. Some specific stylistic markers at the textual level include: the
level of precision, the level of formality, the concern with generality, the use of text
versus formulas, the presentation of examples, notational innovation, statement of
unsolved problems, length, scope, and accessibility [1].

Hermite and Weierstrass differed markedly on many of these scores. The paper
of Bottazzini at this meeting gives a fine account of aspects of Weierstrass’s per-
sonal and mathematical style. Weierstrass keenly felt the failure to impose what
he considered to be definitive contributions to analysis on his students, reflecting
his closed and normative personal style and a strongly formal, highly rigid mathe-
matical structure as the core of his presentation of a subject. Aspects of Hermite’s
style include a strong preference for the concrete in both problems and results.
This reflected his own “naturalism” in mathematics, the idea that mathematical
objects were in fact given as transcendent realities outside of the human mind. His
admiration for Weierstrass’ results derived from an appreciation of this concrete-
ness, and he consistently reformulated what were, in Weiestrass’ presentations,



636 Oberwolfach Report 12/2010

non-constructive existence proofs (for example the Weierstrass Factorization The-
orem of 1876), making them into constructive representations under somewhat
more restrictive hypotheses. The resulting representations could then be worked
with directly to produce the kind of results resting on pattern recognition that
had occupied Hermite for his entire career.

Hermite’s teaching, notably the Cours d’analyse of the early 1880s, thus incor-
porated central results from Weierstrass’ work, but in a framework far removed
from the formal approach of Weierstrass himself. The lectures include the factor-
ization theorem and its generalization by Mittag-Leffler (once again transformed
to a constructive mode); a series expansion for the reciprocal of the Γ-function;
and some of Weierstrass’ canonical representations for elliptic functions.

The paper concluded that despite Hermite’s eclecticism, his conversational and
“common sense” notions about mathematics, these stark differences from Weier-
strass did not act as an obstacle to the transmission of Weierstrass’ results to an
alien environment, the Paris of the Grandes Écoles in the 1880s and 1890s.
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Style in French Treatises on Analysis: From Tannery to Godement

Jean Mawhin

Between the end of the XIXth century and the end of the XXth century, the
contents of treatises and textbooks on algebra, geometry and probability has been
substantially modified. In the case of analysis, the difference in contents is not so
large, but the style has considerably changed. We compare it in several classical
treatises of analysis in French language due to Jules Tannery [7], Camille Jordan

[5], Édouard Goursat [4], Georges Valiron [8], Jean Favard [2], Jean Dieudonné [1],
Laurent Schwartz [6] and Roger Godement [3].

The publishing period of those books covers more than one century, their size
goes from one to nine volumes, their contents varies from basic differential and inte-
gral calculus until harmonic analysis and even algebraic topology, and their public
is either the students of the École polytechnique or of the Faculté des sciences of
a French University (essentially Paris). The authors are all recognized mathe-
maticians, including one Fields Medal (Schwartz), five members of the Académie
des Sciences of Paris (Tannery, Jordan, Goursat, Dieudonné, Schwartz), and three
members of the Bourbaki group (Dieudonné, Schwartz, Godement). With the ex-

ception of Jordan, who graduated at the École polytechnique, all the authors are
former students of the École normale supérieure of Paris.

The analysis of the contents, style, language and even typography of those
treatises leads to the following conclusions.

The style of Tannery in his Introduction à la théorie des fonctions d’une variable
(1886) is purely discursive, clear and elegant, and the rigor satisfies the standards
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of the XXIst century. No definition or statement is printed in italics or preceded
by the corresponding term. There are many historical references (suppressed in
the second edition of 1904), no exercices and no pictures (introduced in the second
edition). The book uses typographical characters of uniform size and italics is
employed only to distinguish special words. The first edition has one volumes and
the second one two.

The rigor of the second edition (1893) of Jordan’s Course d’analyse de l’École
polytechnique is strongly improved with respect to the first one (1882), and the
style is clear, definitely less elegant than Tannery’s one, but more geometrical. The
3 volumes book is also written in a discursive style, with few historical references,
no exercises and some pictures. The typographical characters have uniform size
but italics is used to distinguish the statements, rarely preceded by ‘Lemma‘,
‘Theorem’ or ‘Corollary’.

Although contemporay to the two previous ones, Goursat’s Cours d’analyse
mathématique (1902) is less concerned with rigor, but the language remains clear
and the scope is significantly wider. The discursive style is conserved, with many
historical references and some pictures. Two novelties : the introduction of exer-
cises (a few of routine type and many theoretical complements), and the use of
smaller characters for material to be kept for a second lecture. Statements are
only identified by the use of italics.

The discursive style of Valiron’s Cours d’analyse mathématique (1942) is not
substantially different from Goursat’s one. The rigor is intermediate between that
of Tannery and of Goursat. Each chapter is preceded by a historical introduction,
exercises follow Goursat’s tradition and there are few pictures. The whole book
is printed in small size, a feature probably due to the war restrictions. Only the
use of italics identifies the statements, and the scope is somewhat narrower than
Goursat’s one.

Even if its classical Gauthier-Villars typography and binding makes it looking

very similar to Goursat’s treatise, Favard’s Cours d’analyse de l’École polytech-
nique (1960) is somewhat different at the level of generality and abstraction. It is
the first of those treatises to introduce and use the language of functional analy-
sis, and to cover functions between Banach spaces. The style is quite discursive
and not especially elegant, and the clarity depends upon the chapters. It follows
Goursat with respect to the historical references, the exercises, the use of italics
and of small characters, and the scope. Commercially, it has been, without any
objective reason, the less successful of our selection.

The influence of Bourbaki in the style, presentation and level of abstraction
of Dieudonné’s Éléments d’analyse (1962) is evident. With the exception of the
introductions to the various chapters, the style is as dry as rigorous, not discursive
at all, and the statements are only identified by the numerical reference system
(chapter - section - item) also adopted for the formulas, and widely used in the
references to the used material in the subsequent proofs. This is very demanding
to the reader and of no help is estimating the importance of a statement. Even
if Dieudonné’s style has been qualified as ‘geometrical’, there are no pictures in
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the book. The numerous exercises follow Bourbaki’s tradition of being essentially
theoretical complements. The typographical characters have uniform size and
italics are only used to distinguish terms. Despite its 9 volumes, Dieudonné’s
treatise does not cover all the topics considered by Goursat or Favard, but of
course also deals with other more recent ones.

The formalist tendency of Dieudonné has not been pushed further by Schwartz
in his Cours d’analyse (1967), even if the level of abstraction is similar. The
first edition, reproduced from typewritten notes, keeps the flavor of the oral style,
without any prejudice for rigor, but with a large number of inspiring comments.
Every statement is underlined and, for the first time in our selection, preceded by
Lemma, proposition, theorem or corollary, the proofs being preceded by ‘proof’.
There are no exercises and very few pictures. The scope is more limited than in
Dieudonné’s treatise, even in the second enlarged edition of 1991, written with
the collaboration of K. Zizi, and using, for the first time in our selection, LaTeX
word process. The main novelties are a more general and more elegant treatment
of measure and integration (partly departing of Bourbaki’s approach followed in
Dieudonné and Godement), and a better covering of set theory, topology and
Fourier analysis. On the other hand, the chapters on the algebraic topological
applications of differential forms and on complex functions have disappeared in
the second edition.

A complete return to a discursive style characterizes the Analyse mathématique
(1998) of Godement. One can undoubtly speak of a colorful style, without prej-
udice to clarity and rigor, with many comments about the history and the mo-
tivations of the main concepts and results, as well as about non mathematical
topics. LaTeX word process is again used, and there are no exercices and very
few pictures. The statements, in italics, start with ‘lemma’, ‘theorem’, ‘corollary’
or ‘proposition’. Besides the basic concepts and results of differential and integral
calculus, the emphasis is upon complex analysis, harmonic analysis and modular
forms.

Considering the various styles of seven former students of the École normale
supérieure, of three members of the Bourbaki group, of two groups of three contem-
porary writers, of three courses written for the students of the École polytechnique
and three ones written for those of the Faculté des sciences de Paris, one is temped
to conclude from this analysis, with Buffon, that

le style c’est l’homme !
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New light on Sofja Kowalewskaja

Eva Kaufholz

Sofja Kowalewskaja, as the first woman to obtain her doctoral degree with a math-
ematical thesis and the first to hold a position as professor at a University after the
Renaissance, naturally became the topic of many scholarly and belletristic publi-
cations since her untimely death in 1891 at the age of 41. Unfortunately, however,
even the best recent studies present only a rudimentary contextualisation of the
central themes in her life. Thus, my doctoral research aims to provide a richer
elaboration of the relevant historical background while giving special considera-
tion to three topics that ran through her fascinating life. Alongside her political
interests and the way she was depicted in contemporary accounts of friends and
acquaintances, I will focus on her role in the mathematics of her time, the topic I
briefly addressed in my talk.

As a mathematician Sofja Kowalewskaja served as a link in a network of math-
ematicians interested in analysis. Those mathematicians worked in four mathe-
matical centres: Stockholm, St. Petersburg and the two most important locations
for mathematical research of the time, namely Paris and Berlin. Somewhat sur-
prisingly, however, her relationships with important members of this network have
never been carefully scrutinized. Especially in the case of Gösta Mittag-Leffler,
who earlier had studied under Charles Hermite and Karl Weierstrass, a careful
analysis of the subtle dependency that existed between him and Kowaleskaja will
shed light on the process that helped her to appear on the mathematical landscape.
More than 500 letters between the two are kept at the Institut Mittag-Leffler in
Stockholm and most have never been evaluated before. They provide new evidence
of the important role Kowalewskaja played for Mittag-Leffler as an editor of Acta
Mathematica, since due to her excellent contacts she could arrange international
publications. In his letters Mittag-Leffler constantly stresses the fact that Acta is
an international journal – to what extent this was due to Kowalewskajas efforts
has yet to be investigated.

In Paris mathematicians like Hermite and Henri Poincaré belonged to the net-
work mentioned above. Although Kowalewskaja did not take up an extensive cor-
respondence with them, nevertheless both seem to be of great importance when
analyzing her mathematical background. Hermite’s connection with the Weier-
strassian school stems from the fact that, even though the relations between France
and Germany after the Franco-Prussian-War were strained and reception of Ger-
man art and literature in France had ceased, he took a strong interest in mathemat-
ical results obtained in Germany and incorporated Weierstrassian methods into his
lectures.[2] Hermite and Mittag-Leffler constantly discussed Kowalewskaja’s math-
ematical work and other interests via letters [1], and whenever a recommendation
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of Kowalewskaja was needed, Hermite was happy to write on her behalf. That he
took great interest in the Russian mathematician can also be seen from the fact
that, in cooperation with his colleague Joseph Bertrand he ensured that Sofja was
able to win the Prix Bordin in 1888.

Poincaré, a student of Hermite, was one of the most original mathematicians of
his time. In 1889 he won the contest held in honour of King Oscar II of Sweden,
in which Hermite, Weierstrass and Mittag-Leffler served as judges. This prize was
strongly associated with Acta, which announced the contest and published the
prize-winning papers. Poincare’s career and the success of Acta were a symbiotic
process from the beginning. Securing Poincare’s work on Fuchsian functions that
was published in the first issue of Acta, helped establish the journal’s reputation
provided Poincaré with a possibility to make his results internationally known.[5]
Most of the few letters between Kowalewskaja and Poincaré concern papers that
were submitted for publication in Acta1. But in Stockholm Kowalewskaja gave a
lecture course on Poincaré’s qualitative theory of differential equations, an indica-
tion of the importance she ascribed to his work. Nonetheless, so far his impact on
the way she treated questions of mathematical physics has not been investigated,
and so my goal is to evaluate the influence of other mathematicians besides to
Weierstrass on her work.

As is well known, Kowalewskaja was a private student of Weierstrass between
1870 and 1874, and therefore is considered to be a member of a group of mathemati-
cians working on complex analysis that came to be identified as the Weierstrassian
school of mathematics. As Thomas Hawkins noted, this school can be character-
ized not only by the specific methods like analytic continuation used in complex
analysis, but more generally by the use og rigorous methods and the consideration
of special cases as opposed to the generic treatment of problems as customary at
this time.[4]

Like Kowalewskaja, Carl Runge got his mathematical education in Berlin. Even
though he only moved there in 1877, when Kowalewskaja was living in Russia, they
became friends and started a correspondence. In fact, Runge was the first person
to be notified of Kowalewskaja’s death via a letter by Mittag-Leffler. The network
of contacts becomes clearly visible from a letter Kowalewskaja wrote to Mittag-
Leffler in 1881. We learn that Dmitrieff Selivanov, a young student of Pafnuty
Chebyshev, was sent to Berlin so he could participate in the lecture courses of
Weierstrass. There he befriended Carl Runge and subsequently became a friend
of Kowalewskaja as well.

Chebyshev, too, can be considered a part of the network, due to his contact with
several European mathematicians. As Paul Butzer points out, those contacts were
not maintained via letters, sinve Chebyshev rarely wrote, but instead travelled to
Europe on a regular basis. As far a Kowalewskaja is concerned, one can not speak
of a correspondence on a regular basis, even though no one ever got more letters
from him than her. But since she visited him during her trips to Russia and

1Those letters can be seen as scans at the homepage of the Institut Poincaré:
http://www.univ-nancy2.fr/poincare/chp/hpcoalpha.xml
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translated some of his articles into French so that they could be published in Acta
Mathematica [3], it seems promising to analyse whether his mathematical work
had any impact on hers.

Evidently, Kowalewskaja was not the only connecting point for the mathe-
maticians I mentioned, who were part of overlapping networks. Some of them
corresponded, others visited each other regularly, and not a few even called each
other friends. Apart from their obvious common interest in analysis, they all were
connected through their interactions with Sofja Kowalewskaja. There exist let-
ters from all those persons mentioned written to her while she was in Stockholm,
and most of these have never been taken into serious account in the literature at
hand. But considering them in the process of contextualising Kowalewskaja and
the way she moved in these various circles. I hope to show her as a window on the
mathematics of her time, thereby shedding new light on important mathematical
centres and interactions between them.
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Disciplines and Styles in Pure Mathematics, 1800–2000

Scott A. Walter

The contributions of Hermann Minkowski to the theory of relativity are remark-
able from the point of view of discipline and style. First of all, by the end of the
19th century, German mathematicians no longer contributed to theoretical physics.
From the 1870s, theoretical physics emerged in Germany as an autonomous sub-
discipline of physics, in parallel with the construction of new physical institutes
(cf. Jungnickel & McCormmach, 1986). Minkowski was known for foundational
contributions to the geometry of numbers, and from 1902, held a chair in pure
mathematics at the University of Göttingen. His interest in physics deepened in
Göttingen, extending from fluid dynamics and capillarity to electron theory and
heat radiation (Corry 2004). Upon reading works on relativity theory by Poincaré,
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Planck, and Einstein, Minkowski conceived an ambitious program to reformulate
the laws of physics in four-dimensional, Lorentz-covariant terms (Walter 2008). In
1908 he published the first relativistic theory of the electrodynamics of moving
media, which he couched in a new four-dimensional matrix calculus. Physicists
were impressed by his theory, but preferred, with Einstein and Laub (1908), to
translate it into three-dimensional terms. Minkowski then focussed, in his next
publication, on the merits of his four-dimensional formalism alone. His celebrated
Cologne lecture, Raum und Zeit, described the requirement of covariance of laws
of nature with respect to the transformations of the inhomogeneous Lorentz group
as the essence of relativity theory. Thereby, Minkowski claimed, the theory of
relativity was well-adapted for exploitation by mathematicians. Despite scattered
protests, theoretical physicists like Arnold Sommerfeld, Max Planck, and Max
Laue recommended a four-dimensional approach for research on relativity, such
that by 1911, this approach had come to dominate the pages of Planck’s journal,
the Annalen der Physik. Collectively, mathematicians contributed a quarter of all
articles on relativity published from 1909 to 1915 (Walter 1999). Thus questions
of discipline and formalism (or style) are important for understanding the history
of relativity theory.
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Dealing with inconsistencies—a matter of style?

Tilman Sauer

The talk had two parts: after an extended introduction, in which I presented some
thoughts about the role of inconsistencies for the dynamics of science, I discussed
an episode of Einstein’s early work on a unified field theory, in which I illustrated
some of those thoughts about inconsistencies.
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Inconsistencies and contradictions are a curious phenomenon in the history of
science. Explicit contradictions are those that are being developed at some point
in the history of a particular branch of science to be of the explicit form A ∧ ¬A.
They immediately render the conceptual framework that allowed a deduction of
such a contradiction invalid, at least in parts. More interesting than this negative
consequence is the fact that an explicit contradiction usually contains hints as to
what part of the relevant conceptual framework needs to be revised and how. In
actual science, examples where inner inconsistencies are being pushed to the point
of an explicit contradiction are the exception. Inconsistencies, on the other hand,
i.e., implicit contradictions that are inherent in the semantics of scientific concepts
but that are not elaborated fully to the point of an explicit contradiction, are found
frequently and ubiquitously, especially in periods of crisis. They, too, it seems to
me, play an important role in the development of conceptual frameworks.

The role of contradictions and inconsistencies appears to be very different in
pure mathematics and in physical sciences. In pure mathematics, inconsistencies
are unacceptable. Unless they point to explicit mistakes in a mathematical theory,
they usually indicate deep foundational problems. In the case of mathematized
natural sciences, scientific concepts carry an external reference that frequently cre-
ates inconsistencies with the semantics that is being established by its embedding
in a larger conceptual framework and by the means and rules of deduction. Incon-
sistencies in the natural sciences can be tolerated to a much greater extent, since
the empirical content of scientific concepts may stabilize inconsistent connotations.
The way scientists deal with inconsistencies can be very different. One strategy
to deal with inconsistencies is to follow a heuristics that secures the consistency
of axiomatic systems from the beginning. This strategy was formulated program-
matically by Hilbert as the “axiomatic method.” Physicists may also look for
inconsistencies in the empirically meaningful conceptual frameworks as pointers
to scientific progress and insight into the nature of things. It seems that Albert
Einstein’s eminent early productivity was to some extent due to his ability to lo-
cate conceptual inconsistencies and to explore implicit contradictions to the point
that they could be resolved by way of fundamental conceptual revision.

Examples of inconsistencies and contradictions that have played a role in the
history of relativity theory include the inconsistency between the relativity prin-
ciple, the constancy of the speed of light, and the classical addition theorem for
velocities. This inconsistency was resolved by Einstein’s special theory of relativ-
ity, at the heart of which was a reinterpretation of the concept of simultaneity.
With the establishment of the special theory of relativity, an inconsistency that
had already appeared between electromagnetic field theory and the concept of
Newtonian action-at-a-distance forces became more prominent since the postulate
of Lorentz covariance precluded infinite propagation of causally efficacious physical
forces. This inconsistency was only resolved with the realization that Einstein’s
field equations allow for solutions that describe gravitational waves. A more spe-
cific example of a contradiction was the rotating disc paradox that pointed to the
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breakdown of Euclidean geometry in the case of accelerated motion. The break-
down of Einstein’s so-called Entwurf-theory, the immediate precursor of the general
theory of relativity was occasioned by three contradictions. First, the empirically
observed anomaly of the perihelion advance of Mercury could not be reproduced
when explicit numbers were being calculated. Second, Einstein realized in Sep-
tember 1915 that Minkowski spacetime in rotating Cartesian coordinates is not a
solution to the Entwurf-equations despite the fact that the case of a rotating frame
of reference had been a heuristic point of departure for the derivation of those equa-
tions. Third, Einstein at some point realized that a mathematical derivation of
the equations on the basis of a variational principle did not render the equations
unique despite the explicit claim that it did. All three contradictions were re-
solved with the advent of the final field equations of general relativity. Curiously,
it can be argued that the realization of internal inconsistencies also played a role
in Hilbert’s independent path toward general relativity in late 1915. He, too, had
found a “hair in the soup” of Einstein’s Entwurf-theory, which appears to have
been the fact that Einstein made a mistake in his variational calculation. More
seriously, it can perhaps be argued that Hilbert’s revision of an earlier version of
his famous 1915 paper on the Foundations of Physics, as extant in the form of page
proofs, was occasioned by a reflection on the consistency of an axiom system that
initially included three axioms, one of which was then dropped in the published
paper.

Other interesting examples of inconsistencies and contradictions in theoretical
physics include the recurrence and time reversal paradoxes in the context of statis-
tical mechanics, Gibbs’ paradox and the concept of indistinguishability of particles
in Bose-Einstein statistics, the negative energy solutions of Dirac’s equations and
their interpretation as antiparticles, the EPR paradox and the notion of quantum
non-locatility, the infinities of quantum electrodynamics and the notion of vacuum
fluctuations.

By way of illustrating the more general considerations laid out so far, the talk
focussed on an episode of Einstein’s search for a unified field theory of gravitation
and electromagnetism, that will be documented in the forthcoming Volume 13 of
the Collected Papers of Albert Einstein [1]. The question was posed whether the
original motivation for the unified field theory program, i.e., the quest for a math-
ematical representation that “unifies” in some sense the two then-known funda-
mental fields, carries the same heuristic power as the analysis of a true conceptual
inconsistency. While the program itself may be criticized on these grounds, one
can nonetheless observe the productive role of contradictions in the actual mathe-
matical elaboration of specific approaches to the problem. In early 1923, on board
the ocean liner that took him back to Europe from his visit to Japan, Einstein
drafted a manuscript for a paper that took up Eddington’s affine field theory of
1921. Before sending off his manuscript, Einstein realized a contradiction between
an implication of his theory and its intended physical interpretation. As a conse-
quence, he revised his theory. Fortunately, extensive notes and calculations have
been preserved that allow us to some extent to reconstruct Einstein’s reflections.
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Such a reconstruction illustrates the heuristic role of inconsistencies that have been
made explicit in the elaboration of the mathematical representation. Einstein fi-
nally sent off for publication a revised manuscript in which he had resolved the
earlier contradiction [2]. But, as he eventually found out, he had not solved the
task of constructing a final unified field theory.
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Reactions to the introduction of group theory into quantum mechanics

Martina R. Schneider

Group theoretic methods, or rather methods based on representation theory of
groups, were introduced into quantum mechanics from 1926 onwards. By the
beginning of 1930, they were used in four areas: foundational questions (H. Weyl,
E. Wigner); quantum numbers, atomic and molecular spectra (Wigner, J. von
Neumann, Weyl, E.E. Witmer); molecular bond (W. Heitler, F. London, Weyl);
Dirac wave equation (Weyl, von Neumann, B. L. van der Waerden). Whereas
today group theory is an integral part of quantum theory and particle physics,
its introduction to quantum physics was not without difficulties in the late 1920s.
The paper explores the following questions:

(1) How was the group theoretic method received by quantum physicists at
the time?

(2) How did mathematicians introduce group and representation theory to
physicists?

(3) Was there any impact on pure mathematics due to the involvement of
quantum physicists in group theory?

ad 1) In secondary literature one often comes across the picture of two clearly
divided “camps” within the community of quantum physicists. The one camp
consisted of physicists who used the method, the other, a larger one, of those who
rejected it. This picture is too simplified. One can find a whole spectrum of reac-
tions between these two poles. After J.C. Slater determined a group-free method
to calculate the multiplets of atoms with many electrons in 1929, the rejection of
the group theoretic method gained momentum. According to Slater, a lot of sci-
entists were delighted: “Slater has slain the ‘Gruppenpest’.” [Mehra/Rechenberg
2000, p. 508]

The term “Gruppenpest” (group plague) became a catchword for those who re-
jected the group theoretic method. It had been coined by the physicist P. Ehrenfest
in Leiden in 1928. Ehrenfest, however, did not reject group theory – a fact that is
often overlooked. He wanted to understand group theory and organized a series of
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talks on the topic in Leiden. Consequently, some of his students (H. B.G. Casimir,
G. Uhlenbeck) took up the new method and developed it further.

Other physicists, like A. Sommerfeld, were also interested and acknowledged its
importance to quantum mechanics. W. Heisenberg [1928] wrote a very positive
review of Weyl’s monograph on group theory and quantum mechanics. However,
like Ehrenfest, Sommerfeld too expressed the difficulties he had understanding
representation theory.

But there were also more sceptical voices. D. Hartree, for example, was not sure
if he should learn group theory because he feared that it might turn out to be of no
value just as he was beginning to understand it. Hartree also feared that theoretical
physics would come under the regime of mathematicians [Gavroglu 1995, p. 55 f.].
In this respect, P.A.M. Dirac took a totally different, almost opposite point of
view. Dirac [1929, p. 716] was of the opinion that group theory should be seen
as part of quantum mechanics because he believed that quantum mechanics was
the theory of all quantities which are not commutative. As one of the founders of
quantum mechanics, Dirac held this self- confident, but rather singular point of
view. However, he didn’t keep to this viewpoint.

Analyzing the reasons why group theory was so controversially debated among
physicists, I have come to the conclusion that the main reason is that only very
few physicists were familiar with group and representation theory at the time. As
far as I know, the fact that those fields belonged to modern mathematics was never
a reason for physicists to reject them. What was recognized by some physicists
was that representation theory is different in style to the mathematics they were
familiar with, namely to analysis [Wigner 1931, p. V].
ad 2) By comparing the three monographs on the group theoretic method byWeyl,
Wigner and van der Waerden published in 1931/32 one arrives at differences and
similarities which cannot be explained by a professional/disciplinary distinction
between the three authors. This is illustrated by two examples: the proof of the
uniqueness theorem and the treatment of Slater’s group-free method.

The uniqueness theorem says that the decomposition of a representation of a
group into irreducible ones is unique (up to isomorphism and order). Wigner [1931]
proved the theorem only for groups of finite order. In his proof he worked with
characters. In doing so, he gave the readers a method to decompose a given rep-
resentation into its irreducible components. For Weyl [1931] and van der Waerden
[1932] the uniqueness theorem was important enough to create an extra section
named after it. Of course, their proofs included the case of groups of infinite order,
which, like the rotation groups, were of central importance to quantum mechanics.
Weyl gave a highly structural proof depending on a lot of algebraic concepts intro-
duced specifically for this very purpose. Van der Waerden’s approach was totally
different. He based his proof on two simple lemmata on groups. These were easy
to prove. Then he used the concept “group with operators” (which was central
to his introduction to representation theory) to transfer these lemmata to repre-
sentation spaces and thus to prove the uniqueness theorem. His proof was very
elementary compared to Weyl’s and no additional concepts had to be introduced.
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The second example shows that things are more subtle. Here different dynamics
can be seen: Weyl ignored Slater’s method, Wigner ‘groupified’ it, and van der
Waerden optimized it [Schneider 2010, chapter 13].

Summing up, the two mathematicians chose very different approaches. Weyl’s
was more conceptual and mathematically elaborated. Van der Waerden’s was
structural but tailored to the demands of physicists, at least as far as he was aware
of them. His goals were elementarization and operationalization of mathematical
methods. Van der Waerden clearly differentiated very carefully between the re-
quirements of both sides, the mathematicians’ and the physicists’. The physicist
Wigner also chose an elementary approach but at the same time tried to show the
power of group theory wherever he could.
ad 3) Indeed, as early as the 1930s the involvement of quantum physicists in group
theoretic methods had an impact on the development of representation theory.
Wigner determined the unitary infinite-dimensional irreducible representations of
the inhomogenous Lorentz-group in 1939. Casimir and van der Waerden [1935]
gave the first purely algebraic proof of complete reducibility of semi-simple Lie-
groups. Here a network of physicists and mathematicians played a vital role:

Weyl proved the complete reducibility of semi-simple Lie-groups in 1925/26.
He did this with methods he called “transcendental”. By this he basically meant
methods of analysis, integration over manifolds. Like some other mathematicians,
Weyl himself was not too happy about these because the theorem itself is a purely
algebraic statement and thus it should be able to be proved algebraically.

While Pauli was an assistant in Hamburg he participated in a course of lectures
on hyper-complex systems, i.e. algebras, by Emil Artin. According to Pauli, Artin
had explained at the beginning of the lecture that he could not treat continuous
groups in the lecture because there was no algebraic proof of the theorem of full
reducibility of representations of semi-simple continuous groups. Pauli was im-
pressed by the fact that Artin, a representative of the algebraic school, preferred
the ascetic omission of an entire field of application rather than include a method
which he considered inadequate [Meyenn 1989, p. 114]. With respect to the con-
ference’s topic ‘Style’, this episode clearly highlights the influence of a wide-spread
methodological style in mathematics which can be expressed by “purity of meth-
ods”.

Pauli was appointed professor in Zürich and, in September 1931, Casimir, one
of Ehrenfest’s students, became his assistant. Pauli gave Casimir the problem of
finding an algebraic proof of the full reducibility. So here a mathematical problem
becomes an object of research for physicists. One might speculate why this was the
case. In letters from Casimir to Ehrenfest we find several reasons: Firstly, Pauli
realized that this was a serious problem for mathematicians. Mathematicians
lacked an algebraic proof and were keen to have one. Secondly, Pauli thought
that theory in physics was not getting anywhere and so it would be better to
do mathematics. And finally, Pauli was convinced that the proof could not be
difficult.
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Casimir started working on the proof, and after a year he had developed a
purely algebraic proof for the three-dimensional rotation group SO3(R). His proof
was based an object which is today known as the Casimir-operator and which he
had introduced in his PhD-thesis with Ehrenfest. Casimir sent his partial solution
to van der Waerden whom he knew from the series of lectures on group theory and
quantum mechanics organized by Ehrenfest. Van der Waerden quickly generalized
Casimir’s proof to apply to all semi-simple Lie-groups.
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Poincaré’s approach to electrodynamics: Sur la dynamique de

l’électron.

Alberto Cogliati

I would like to offer a brief historical excursus on the different interpretations
of Lorentz’s covariance of Maxwell’s equations before Einstein’s special relativity
(SR). We will consider physicists and mathematicians working on the same topic
with very different approaches; I do not know whether one is entitled to speak of
different styles (I would prefer to speak of different epistemologies and different
educational backgrounds) or not. However we will certainly deal with different
disciplines: namely, electrodynamics of moving bodies and transformation groups
theory.

As is well-known, SR was born to remedy the following inconvenience: al-
though the symmetry group of Maxwell’s equations (ME) does not coincide with
the Galilean group of classical mechanics, experimental data suggest that it is im-
possible to reveal any influence of the motion of the Earth on the electromagnetic
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phenomena; the well-known experiments carried out by Michelson and Morley with
the interferometer and by Trouton and Noble with the charging and discharging of
a plane condenser are just a few manifestations of this conflict between theoretical
predictions and experimental facts.

Often overlooked, but the first one to deal with the problems connected with the
symmetry properties of the equations for the electromagnetic field is the father-
founder of the theory himself: J. C. Maxwell. In paragraphs 600 and 601 of his
illustrious Treatise on electricity and magnetism, Maxwell studies the equations for
the electromotive intensity when these equations are referred to a reference frame
which moves with uniform velocity with respect to the ether. Assuming that
the electric field and the vector potential transform according to certain laws, he
demonstrates that these equations are covariant under Galilean transformations,
that is they take on the same form whether they are referred to a moving reference
frame or to a reference frame at absolute rest. Despite the inexactness of this
statement (it is correct only if we disregard terms of order higher than first in
the aberration ratio), however, from a historical point of view, Maxwell’s concern
with transformation properties of the equations for the electromagnetic field is
important, because it is connected with the applicability of the principle of relative
motion and more generally with the dynamical properties of the ether surrounding
ponderable matter in motion.

Over the years that follow the publication of Maxwell’s electromagnetic theory,
the necessity for giving a proper description of the electromagnetic phenomena in
moving dielectrics is soon reflected in further knowledge of symmetry properties
of ME. The first to give a systematic account of the electrodynamics of moving
bodies which is based on the study of the symmetries of ME is the Dutch physicist
H. A. Lorentz.

Within the context of Lorentz’s electrodynamics, the covariance of ME under
what is now known, after its introduction by Poincaré, as the Lorentz group, is
stated in the so-called theorem of corresponding states. For the sake of brevity,
I will only describe Lorentz’s analysis contained in [3]; the other formulations of
the theorem, which are contained in [4] and in [5], differ from the previous one
for the fact that they do not disregard terms of order higher than the first in the
aberration.

Lorentz’s starting point consists of writing down ME for a physical system
at rest; then, he operates a Galilean boost and he introduces primed quantities
(coordinates and fields), which are such that they satisfy, at first order in the
aberration, equations of the same form as those of a system at rest, in order to
trace back the resolution of a moving physical system to that of a system at rest.
It is important to underline that the primed quantities are not identified with
the physical quantities that are measured by a moving observer, but that they
are considered as auxiliary quantities describing a fictitious system at rest with
respect to the ether. Obviously, understood so, the covariance of ME does not
guarantee the validity of the principle of relativity.
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Before Einstein, the only one to doubt this interpretation of the covariance of
ME was Poincaré. In an important paper, [7] written in 1900 on the occasion of
the 25th anniversary of Lorentz’s doctorate, by marking a deep discontinuity with
Lorentz’s orthodoxy, Poincaré gives a passive interpretation (that is relativistic)
of Lorentz’s transformations; Poincaré’s intention consists of demonstrating that a
violation of the principle of reaction in Lorentz’s electrodynamics implies a corre-
sponding violation of the principle of relativity which shows itself in the fact that
a moving observer does measure the primed quantities introduced by Lorentz and
in the consequent existence of the so-called Liénard force. .

Five years later (in 1905), however, Poincaré’s approach towards covariance
properties of electrodynamics seems to change completely in favour of an active
interpretation which, closely following Lorentz’ standpoint, considers Lorentz’s
transformations (whose algebraic group structure is for the first time recognized)
as active transformations acting on physical systems and not on reference frames.
The following quotation taken from [8] is particularly enlightening on this subject.
The context is a discussion of the contraction of electrons.

Supposons un électron unique animé d’un mouvement de transla-
tion rectiligne et uniforme. D’après ce que nous venons de voir,
on peut, grâce à la transformation de Lorentz, ramener l’étude
du champ déterminé par cet électron au cas où l’électron serait
immobile; la transformation de Lorentz remplace donc l’électron
réel en mouvement par un électron idéal immobile.

Now the question is: why does Poincaré change his mind? In other words,
why is he then convinced that the active interpretation introduced by Lorentz is
to be preferred to the passive one that he discovered in 1900? Some hypotheses
have already been proposed (see [10]); I will limit myself to add the observation
that, contrary to what he stated in 1900, in 1905 Poincaré thinks that Lorentz’s
electrodynamics, in the emended version set forth in [5], is fully capable of assim-
ilating the principle of relativity. As a consequence of this, he no longer needs to
adhere to a passive interpretation in order to reveal a violation of the principle of
relativity.
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Mittag-Leffler and mathematics at Stockholms Högskola: some
reflections related to the issues of “style” and “discipline”

Laura Turner

Disciplines, in particular within mathematics, are not just subject groupings. They
are are collective practices associated with a body of knowledge/autonomous field
of knowledge/academic division, with canonical texts; the term “discipline” thus
implies a specialization, or a specific domain of application. With this in mind,
disciplinary leaders (often thought of as “heroes”) are practitioners who stand at
the head of a community, through which one must gain entrance if one seeks to
become a practitioner or adherent, pointing to many sociological interpretations of
disciplines and the issue of rites of passages. These leaders typically seem to have
a spontaneous or tacit knowledge of disciplinary boundaries and practices. One
criterion for the existence of an academic discipline is the capacity for reproduction.
This necessitates a body of students (the “disciples”) and teaching practices, and
a style of communication where practitioners must publish in the “right” places
according to the disciplinary boundaries. Clearly, then, discipline formation is
connected to factors and developments both internal and external to the body of
knowledge itself.

In my paper I aimed to reflect upon the various criteria for discipline forma-
tion in connection with the Swedish mathematician Gösta Mittag-Leffler’s (1846
– 1927) central role in the promotion of specialized, research-level mathematics at
the newly-founded Stockholms Högskola and the development of a research com-
munity there during the early- to mid-1880s. I have characterized his actions
there as reflecting a “mission” which stemmed from his studies under Weierstrass
at Berlin during the mid 1870s. This mission centred about promoting the research
imperative through advanced study in Weierstrassian analysis and encouraging his
students to engage in research connected to his own work on the Mittag-Leffler
Theorem.

Specifically, I aimed to reflect upon whether or not the notion of “discipline
formation” might enhance our understanding of Mittag-Leffler’s aims and the im-
pact of his actions in this context, as well as the ways in which this particular case
study might contribute to a more refined definition of discipline as an analytical
tool.

I posed the questions:
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• Is discipline formation a useful or meaningful way to understand what
Mittag-Leffler tried to establish at Stockholms Högskola? (and how useful
or meaningful can it be as an analytical tool before a clearer definition
has been established?) Did Mittag-Leffler possibly also have a stylistic
“mission”?

• . . . or is this development, in its rather unique setting better understood
through different tools (for example, the notion of a research school)?
For instance, what might have been the role of Acta Mathematica, an
international journal of mathematics produced in a specific local context,
in discipline formation in Scandinavia and beyond?

• How do local factors (ex. peripheral nature of Sweden; unique position of
Mittag-Leffler, who was well-connected and with powerful contacts, etc.;
presence of an international journal; existence of Stockholms Högskola,
which was devoted to research, . . . ) change/influence our understanding
of discipline formation?

To attempt to establish answers, it is necessary to recall Mittag-Leffler’s own
contributions to complex analysis, one of the most important of which was the
theorem which bears his name. This work was tightly bound to Weierstrass’
lecture series and research in analysis, and the earliest (1876) version was inspired
by work Mittag-Leffler learned from Weierstrass in 1875. Mittag-Leffler utilized
Cantor’s theory of sets of points to generalize this theorem between 1882 and 1884,
and taught his own results and those connected to them in Stockholm from 1881.

In 1877 Mittag-Leffler wrote to his former mentor Hjalmar Holmgren about the
advantages of Weierstrass’ function theory, specifically its simple and systematic
foundation. Mittag-Leffler appreciated not only the quality of the material pre-
sented by Weierstrass, however, but also the nature of the teaching he received
in Berlin. Specifically, he experienced a tight link between research and higher
education and an emphasis on training future researchers. The hiring of the Rus-
sian mathematician Sofia Kovalevskaya at Stockholms Högskola was also linked to
Mittag-Leffler’s allegiance to Weierstrass and his mathamtical approach.

It is important, however, to understand that Mittag-Leffler’s success in in-
stituting Weierstrassian analysis and the Berlin style of teaching in Stockholm
was due in part to several important factors specific to Sweden and Stockholms
Högskola. Specifically, the högskola, which promoted academic freedom (there
was no curriculum, no examinations, and no formally registered students) and its
emphasis on (scientific) research essentially allowed Mittag-Leffler to teach what-
ever he liked, however he liked (among others see [Bedoire and Thullberg(1978)]
and [Stubhaug(2007)]). This allowed him to focus his teaching on one branch
of mathematics rather than introducing a little bit of everything (a strategy in
which he firmly believed in the early 1880s, see [Heinonen(2006)]), to train his
students through seminars, and even to put them in touch with current research
developments, both Cantor’s and his own.

One might wonder, then, whether or not Mittag-Leffler’s promotion of a spe-
cific body of knowledge (Weierstrassian analysis) and professional practices to his
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students might be construed as evidence of discipline formation. It is clear, for
instance, that based on the early work of two of his earliest students in Stockholm,
namely Ivar Bendixson (1861–1935) and Edvard Phragmén (1863–1937), as well
as their correspondences with Mittag-Leffler, Mittag-Leffler actively encouraged
research from his students, and even gave them particular problems on which
to work. In turn, they both produced original research results closely related
to Mittag-Leffler’s own (which, I note, Mittag-Leffler in turn communicated to
students in his later lectures). Not only did their work reflect Mittag-Leffler’s re-
search interests, but these students also understood their results within a function-
theoretic framework — they considered themselves to be doing work in the theory
of functions.

Studying Phragmén’s career is particularly interesting, for it suggests that at
least a small fraction of a second generation of Swedish analysts had aims toward
a third generation. As a result of this specialized, research-oriented study he re-
ceived in Stockholm, as well as his involvement (under Mittag-Leffler’s direction)
in editorial work and critical readings for Acta Mathematica, Phragmén took on
Mittag-Leffler’s mission in 1887 when he visited James Joseph Sylvester in Ox-
ford. His goal for this journey: “to attempt to introduce the theory of functions
in England” ( “att söka införa funktionsteori i England”), to be achieved either
through lectures, or by the writing of a textbook on the subject in the English
language.

These ideals or strategies connected to discipline formation were further man-
ifested in connection with Acta Mathematica, a journal whose contents were pre-
dominantly works in analysis. This points to an extended network of practitioners.

Returning to the questions posed earlier in this paper, this case study demon-
strates the complexity of the various issues at hand in connection with discipline
formation, the necessity of separating general issues from those specific to very
particular contexts, and the fact that that issues internal to mathematics cannot
be separated from social and cultural developments. In studying issues connected
to discipline formation it is therefore necessary to consider many different “layers”
of social spaces, such as the teaching carried out at particular institutions, the
development of mathematics within particular local or national contexts, the jour-
nals utilized in the communication of knowledge and the networks of practitioners
associated with them, and the correspondences between practitioners.
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National Styles in Mathematics Revisited

Reinhard Siegmund-Schultze

In a 1996 paper [1] I have tried to discuss the notion of mathematical style in a
somewhat broader manner. In my talk in Oberwolfach I restricted the discussion to
a much narrower point. I took the existence of differences in ‘styles’ in mathematics
as given (e.g. between the Riemann and Weierstrass schools in function theory)
and asked under which circumstances certain styles could be described - at the
same time - as ‘national styles’ in mathematics.

My interest in the topic of national styles in mathematics has originated in
two contexts: First, my studies on maths in the Third Reich, where the discus-
sion, largely triggered by Ludwig Bieberbach, on alleged German/Aryan styles in
mathematics as opposed to Foreign/French/Jewish styles plays a certain, although
rather infamous role [2]. Second, my work on the comparison of the German and
American science/mathematics systems, and, in particular, on emigration from the
German into the American system [3]. Roughly said, the first kind of studies helps
you to understand the ideological atmosphere better under which mathematics was
done in the Third Reich, although you have basically to find the “sense in the non-
sense” [[2], 116]. However, this discussion does not allow one to connect different
manners (or styles) of doing basically the same mathematics or even preferences
for one or the other mathematical discipline - which everybody instinctively feels
to exist - to any historically relevant invariant or marker, be it ‘race’, or ‘nation’
or ‘philosophy.’

As to the second level of comparison: When comparing the German and Amer-
ican mathematical systems, one is - in spite of considerable changes on both sides
- empirically confronted with several historically rather stabile political and soci-
ological traditions. Differences persist on the level of philosophical traditions and
the educational systems, for instance the different transition from high schools
to the university, the funding systems (private universities), the heavy teaching
loads an the American college, the ‘American spirit of cooperation’ (versus alleged
‘European individualism’) and the ‘democratic system of departments’ in the U.S.
which historically have been very often quoted as well. As an important source
we have of course here the book by Karen Parshall and David Rowe from 1994
[4]. For the discussion of ‘national mathematical styles’ the main methodological
problem seems to be to which extent these differing national traditions translated
or still translate into different research traditions, in the selection of research areas
and working styles. The different institutional settings of applied mathematics in
Germany and the U.S. in the first half of the 20th century which were related
with these generally different traditions have for instance been described by Gert
Schubring and myself.

G. D. Birkhoff talked in 1938 about certain American works which he summa-
rized under “Special Analysis” (Wiener on Tauberian Theorems, Hille, Tamarkin
andWidder on Laplace-Transforms, and L.L. Silverman on summation of divergent
series) [5]. He complained that these fields were marginalized because mathematics
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was considered as “serious business” in the U.S. rather than as “a means of exer-
cising talent for free invention” like in Europe. The frequent talk among American
mathematicians of the 1930s about the ‘German Algebra’, which was often related
- if in a convoluted way - to Emmy Noether’s structural approach, was very much
influenced by the existing political circumstances, in particular immigration [[3],
285].

While European countries continue to imitate American traditions in research
funding, it has been repeatedly stressed also in recent years that the U.S. still needs
the continuous import of the European traditions in mechanics, classical analysis
and differential equations. In 1989 the American students Coifman and Strichartz
of the Polish immigrant-analyst Antoni Zygmund stressed the unabated impor-
tance of these European traditions [6]. Inasmuch as that import is brought about
today by graduate students from abroad, this seems connected to certain insuffi-
ciencies of the American system to produce a large enough number of promising
young mathematicians. With respect to graduate and doctoral students the influx
of Asian nationals has brought new aspects into this question in recent decades.
Hermann Weyl saw it as one of his major tasks in the U.S. to maintain or to
re-introduce “reflection” (Besinnung) in the ever faster growing world of modern
mathematics [[3], 294]. Weyl pleaded for the employment of European mathe-
maticians with knowledge of the history of mathematics, such as M. Dehn, E.
Hellinger, O. Blumenthal, and O. Neugebauer. But Weyl was mostly unsuccessful
in this endeavour.

The thrust of the tentative arguments of my contribution is the following:

(1) Different styles in mathematics often exist in different social groups of
mathematicians

(2) These social groups are even today often funded on a national base or
otherwise influenced by national traditions (education, philosophy etc.)

(3) An exaggeration of these differences into “national” styles is often politi-
cally and propagandistically motivated

(4) No conclusions for innate abilities or styles of individual mathematicians
belonging to these groups are possible

(5) Even conclusions as to the ‘average’ style in certain groups of mathemati-
cians are only possible in so far relevant conditions for the scientific social-
ization are taken into account: this rules out racism but it opens for the
consideration of particular conditions of socialization which for instance
affected Jewish or black minorities.
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Remarks on style, purity of method, and the role of collectives for the
history of mathematics between the World Wars.

Norbert Schappacher

The remarks sketched here were intended as a contribution to launching the final
discussion.

1. Style

During the past week, we have heard several, different proposals to render the
category of ‘style’ more precise and efficient for historiographical accounts. Of
these I would like to recall here the following:
(1) As in, say, music history (my standard example is the “style of the Vienna
classic”, i.e., Haydn, Mozart and Beethoven), the notion of style, applied to works
of art, or more generally, texts, allows for instance to relate a score, or text, whose
author is unknown, to a well identified group of such documents. Such groupings
can be formalized to a certain extent by way of a set of rules; and rules associated
with different styles can be compared. For example, Chevalley in his Variations
du style mathématique [1], discussed by Moritz Epple in his talk, discusses the
style d’une époque like for instance the style des ε à la Weierstrass. This seems
very analogous to the notion of style of the Vienna classic. Note in particular that
Chevalley groups all of (Western) mathematics in the period in question under
this heading, just as the musical category covers all genres of music, from opera
to string quartetts. Such a notion of style may provide criteria for the classifica-
tion of the historical material. Another example along these lines would be the
(style of) Algebraic analysis of the 18th century. But also more local examples of
the same function of the category “style” can be given, for instance the SGA and
other series of texts produced by the Grothendieck school all have a Leitfaden (Fil
d’Ariane) in the beginning.

(2) Jean Mahwin’s comparison of various French treatises on Analysis according
to a fixed set of criteria brought to light individual variations of style, as did John
MacCleary’s comparison of Serre and Milnor. The last word along these lines in
both cases was: Le style, c’est l’homme. I wonder if there are not two readings
of this sentence, which might be called a French and a German one. In French,
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it is the style that a man shows off which creates his personality. In German,
or at least in a certain 19th century, romantic strand of the theory of style, the
physiognomical temptation lurks, i.e., the tendency to interpret the description of
individual styles as the expression of the essence (Wesen) of the individual. This
reading was consciously exploited by Bieberbach for his political goals, when he
(and Teichmüller) pretended that one could recognize Edmund Landau’s racial
incompatibility with his Aryan students in the way that π was defined in his anal-
ysis textbook. Even independently of this revolting example, it is obvious that the
historian using the category of style must do everything in his power to ban the
physiognomic interpretation.

(3) Tom Archibald had another notion of style which I interpreted as an attempt
to overcome the problem alluded to on the first two days of our conference: that
different styles are rarely just varying ways to express an invariant content. Tom
explained that the category of style becomes immediately relevant when one stud-
ies the displacement of a content from one place or context to another. The only
occasion so far where I have used the category of style in my own work was pre-
cisely such a case of a migrating content: to describe what sets the first chapters
of André Weil’s Foundations of Algebraic Geometry from 1946 apart from Bartel
L. van derWaerden’s series of articles Zur Algebraischen Geometrie in the Math-
ematische Annalen during the 1930s. Here very basic mathematical ingrediences
which Weil takes over from van der Waerden – specifically the universal domain,
generic points and specializations – bridge the gap between those two sets of
texts, which however turn out completely different: Weil deliberately cast his text
in book format, used a Bourbaki-like internal referencing system underscoring the
sheer dimension of the stringent systematicity. It was Weil’s presentation which
instituted a new practice of doing Algebraic Geometry. The migration of scientific
content makes the style comparisons both viable and useful.

2. Purity of method

The notion of purity of method came up in Martina Schneider’s lecture, in par-
ticular via Emil Artin who was not prepared to accept as adequate an analytic
proof of an algebraic theorem. There are many other examples of similar reactions.
Oswald Teichmüller for instance wrote ([3], p. 693): “Aber ich möchte etwas so
Geometrisches wie diese konforme Abbildung nicht gern aus Reihenentwicklun-
gen schließen.” Helmut Hasse induced Max Deuring not to publish a proof, which
involved lifting a situation back from characteristic p to characteristic 0 and us-
ing complex analytic arguments there, of an important property of the ring of
correspondences of a curve over a finite field, because he considered it “unfair.”

On the French side, reading Chevalley’s text as the (probably first) manifesto
of the Bourbaki programme, the adequate proofs seem to fall freely into place:
“On peut donc dire que les définitions constructives de l’analyse, si elles ont les
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premières permis les raisonnements rigoureux, ont eu souvent l’effet de cacher pro-
fondément la nature de ce qu’elles cherchaient à définir ou de confondre indûment
des domaines mathématiques en réalité distincts les uns des autres. De là résultent
les complications inutiles qui se rencontrent dans beaucoup de démonstrations clas-
siques, du fait de l’emploi de méthodes n’ayant rien à voir avec le résultat escompté,
on pourrait dire : de méthodes n’admettant pas le même groupe de transformations
que le résultat.” ([1], p. 380) With hindsight, this description brings to mind the
definition of natural transformations by Eilenberg and MacLane at the very be-
ginning of category theory.

On a larger scale, the whole development of Algebraic Geometry in the 1930s
and 1940s, and also that of Probablility Theory, globally fall under this theme:
exclusively algebraic (in Zariski’s case: arithmetic) methods were installed for Al-
gebraic Geometry, measure theoretic ones for Probability Theory, stripping away,
at least from the mathematical part of its development, all application-related
complications.

But a more interesting question may be, to which extent German and French
approaches of such questions can be told apart - in spite of the intense contact
between young mathematicians afforded at the time by Rockefeller grants.

3. The role of collectives

In Moritz Epple’s talk, we heard about Ludvik Fleck’s Denkkollektive, even
though nobody used this methodology in his/her talk. Discussing the history of
science in the 1930s, various discourses and practices around collective enterprises
naturally come into the picture. This point is made for France at the end of
Catherine Goldstein’s recent article [2]. She compares Gaston Julia’s exhortation
of a group of students in 1934 which is based on patriotism, discipline and a
patriarchal family model to a 1963 speech by Pierre Cassou in honour of Châtelet
stressing the unity of scientist and citizen, and the Bourbaki group and the tension
it cultivated between the individualist outlook of its members and their collective
group identity.

How do these choices compare to the German Kameradschaftlichkeit which ap-
pears to have marked Ernst August Weiss’s mathematical (and political) student
training camps afer 1933? How do they compare to the climate of the working
group of advanced students like Ernst Witt and Teichmüller in Göttingen between
1934 and 1936 who wrote up the classification of local fields under Hasse’s indi-
rect supervision? And can Hasse’s initiatives to try and integrate amateurs like,
Otto Grün and Kurt Heegner, into professional mathematical work be seen in this
context?
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The discipline “mathematics” in a general scientific journal in the
1920s and the 1930s in France : “mathematics” versus “mathematical

sciences”, which identity?

Hélène Gispert

I consider the notion of discipline on the global scale of mathematics as a whole
and not on the scale of any specific mathematical fields. I will question it from the
point of view of mathematics in general, studying one of the two French famous
general scientific journal, la Revue générale des sciences pures et appliquées and
look at the contents, the authors, the editorial politic, the intended readership
of this “high scientific popularisation” journal as said by its editors. The Revue
claims to address itself only to the intellectual public, and to popularise science
- “science which creates the elite” - with the following cultural agenda: “sans
négliger les hautes recherches spéculatives, faire une large part aux méthodes et
travaux industriels démontrant l’alliance féconde de la science et de l’industrie”.

The identity of mathematics, as far as this journal is concerned, can be ap-
proached by several factors: 1/ the mathematical contents we can read in its
pages; 2/ the actors we encounter there, that is the authors - mathematicians who
have written on mathematics or on other topics, other scientists and chroniclers -
but also the different kinds of intended readers: mathematicians, scientists, stu-
dents, teachers, “amateurs”, users; 3/ third factor, places, linked to these actors:
from where do they write and, linked to the readership, for whom do they write.

What can catch a reader, when skimming through the Revue, is identified by the
terms “sciences mathématiques” and deals with a very large spectrum of topics :
from “pure” topics in analysis, geometry, but also astronomy and mechanics to the
most applied or industrial ones in all these branches as we can see in these slides.
There is nothing-specific in the pages of the bi-monthly issues of the journal iden-
tifying just “mathematics” even if at the end of each annual volume, the editors
undertake a posteriori a rearrangement in an analytic table of contents which com-
bines the titles and subtitles “mathematics” and “mathematical sciences”. One of
the major issues at stake in this general journal about the identity of mathematics,
is then the status of “mathematics” versus “mathematical sciences” which gather
also astronomy and geodesy, and, depending of the section, mechanics and civil
engineering or general and applied mechanics. What is then the specific territory
of mathematics? What is in and what is out? What is its relative place? What are
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its characteristic features for the reader as for those who make the journal? Actu-
ally, what is at stake under the adjective “mathematical” (mathematical sciences)
or under the noun “mathematics” which identify a specific discipline.

I have pointed out that mathematics appears, during the inter-wars period,
first of all as a discipline that is taught, in France and abroad, in different places
- universities, engineers schools, secondary schools -, second as a mainly useful
discipline for various applications in various professional domains by all kinds of
audiences. It is far less evident, reading the Revue, that mathematics is an affair of
research, of current research, and, if so, to see which researches are the more visible.
Mainly, the respective territories of what is labelled “mathematics” and what is
labelled “mechanics” in the Revue - for teaching as for research - is not so clear,
specially in the thirties, considering both actors (authors as intended readers) and
places. More over, chroniclers take the occasion to advocate in favour of applied
topics, of applied mathematics and lay the emphasis on an opposition, and even
an conflict, between pure and applied mathematics, mathematics mostly having
therefore in the Revue an applied identity among the mathematical sciences.

Axiomatics Between Hilbert and the New Math: Diverging Views on
Mathematical Research and Their Consequences on Education

Leo Corry

”New Math” is a term commonly used to denote a series of high-school and pri-
mary education programs developed after 1958 - following the Soviet launching
of the Sputnik - first in the USA, then in many Europeans countries, and subse-
quently all over the world. Indeed it is the best-known, and typically derided, of
the many educational reforms in mathematics devised throughout the twentieth
century. Curiously, little serious historical research has been devoted to it. My
talk is an outline of a genealogy of ideas leading from the modern axiomatic ap-
proach developed by Hilbert since the beginning of the twentieth century to the
basic principles behind the New Math in its various local contexts. The genealogy
suggested takes two different paths: one via R.L. Moore in the USA, and one via
Bourbaki in France. David Hilbert is widely acknowledged as the father of the
modern axiomatic approach in mathematics. The methodology and point of view
put forward in his epoch-making Grundlagen der Geometrie (1899) had lasting
influences on research and education throughout the twentieth century. Neverthe-
less the way in which it came to be understood and practiced by mathematicians
of the following generations, including some who believed the were developing
Hilbert’s original line of thought, often deviated from Hilbert’s own conception of
the role of axiomatic thinking in mathematics and in science in general. The topol-
ogist Robert L. Moore was prominent among those who put at the centre of their
own research an approach derived from Hilbert’s recently introduced axiomatic
methodology. Moreover, he actively put forward a view according to which the
axiomatic method would serve as a most useful teaching device in both gradu-
ate and undergraduate teaching in mathematics and as a tool for identifying and
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developing creative mathematical talent. Some of the basic tenets of the Moore
Method for teaching mathematics to prospective research mathematicians were
adopted by the promoters of the New Math movement. The Bourbaki movement
in France introduced an approach and style that became emblematic and highly
influential, based on a highly idiosyncratic use of structural and axiomatic style.
Because of their style and approach they sometimes declared themselves to be the
“true heirs of Hilbert”. Still, in important senses they deviated from Hilbert’s
views. Their style and their personal influence were decisive in establishing the
New Math ideas in France.

Reporter: Eva Kaufholz
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