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Abstract. The mathematical theory of solids was studied from the mod-
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tion of the limit passage between different scales.

Mathematics Subject Classification (2000): 35-xx, 49-xx, 74-xx, 82D .

Introduction by the Organisers

The design of modern materials, like multifunctional materials, and devices needs
a deeper qualitative and quantitative understanding of material properties. How-
ever, the material behavior is influenced by effects on different length scales. For
instance, the formation of single dislocations in a crystal is dominated by quan-
tum and atomistic effects on a subnano-scale, whereas single-crystal plasticity has
its origin in the motion and generation of thousands of dislocation lines on the
micron scale. Similarly, phase transformations in shape-memory alloys or domain-
wall formation in micromagnetics is generated via microstructures on different
spatial scales. Formation of microcracks is one of the main origins of material
failure, and the modeling of a crack tip involves length-scales over several decades.

The workshop brought together mathematicians and applied scientists and en-
abled them to discuss the relevant physical effects and their pertinence for the
understanding of materials as well as the mathematical methods modeling the
formation of microstructures and the effective description of small-scale effects
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on larger scales. The talks concentrated on the following three main topics with
special emphasis on their interaction:

• mathematical models for solids, in particular involving damage,
fracture, plasticity and multifunctional materials;

• multiscale techniques, evolution of microstructures;

• computational and experimental aspects.

The discussed mathematical methods for multiscale problems included (two-scale
and high-contrast) homogenization and analytical relaxation for models of crystal
plasticity. Moreover, a new “uniformly Γ-equivalent” continuum theory for frac-
ture was derived from a discrete model based on Lennard-Jones type interactions.
For rate-independent systems the theory of Γ-convergence was shown to predict
the creation and the evolution of microstructure from macroscopic states as well
as providing a rigorous link between damage models and delamination of Griffith
type. The passage from viscous kinetics to rate-independent dynamics was inves-
tigated via spatially random models, which give rise to a microscopic stick-slip
motion.

The theory of dislocations was discussed from several points of view, namely as
obstacles to crystallization in 3D, as a discrete origin to strain-gradient plasticity,
and as a continuous transport theory for dislocation densities. Furthermore, a
macroscopic model for non-associative plasticity in cam-clay was discussed ana-
lytically.

Effective descriptions of microstructures in nematic elastomers, elastoplastic
materials, magnetic shape-memory alloys, solids undergoing phase transformations
and ferroelectric materials were discussed in the framework of dissipative materials
or using a special evolution law for simple or double laminates. The influence of
rapid heating and cooling on microstructure formation was reported on the basis
of recent experiments.

Size effects for microstructures in solids become relevant below the micron scale.
The relevant multiscale modeling of the mechanical properties of metallic and bio-
logical polycrystals (e.g. chitin) was investigated using ab initio theory in conjunc-
tion with continuum homogenization. Similarly, progress in the understanding of
interfacial cracks was obtained by combining quantum theory with macroscopic
adhesion and strain-gradient models.

The foundations of such numerical approaches were investigated at several ex-
amples, like the statistically equivalent representative volume elements, a compar-
ison of force-based atomistic/continuum hybrid models and the quasi-continuum
methods and an effective numerical approach to gradient Young measures.

The stimulating discussion between the different research communities created
many interesting links between previously disconnected research topics. The work-
shop initiated several new collaborations which will foster the progress of our un-
derstanding microstructures in solid materials.
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Abstracts

Γ-convergence for local minimizers

Christopher J. Larsen

(joint work with Andrea Braides)

Γ-convergence is a key tool in studying approximations of energies, based on com-
paring global minimizers of an energy E and minimizers of approximate energies
En. It is used in two main ways in applications: if E is a physical stored energy,
it can sometimes be more convenient to find approximate energies that are more
easily analyzed (see, e.g., [6, 2, 3, 5]). On the other hand, it can be that the phys-
ical energy has a natural small scale, such as atomistic energies, and one seeks a
continuum model without a scale. In this case, the “true” physical energy is some
En, with n large, and the limiting energy E is the approximation.

To study all stable states, one must also consider at least strict local minimizers,
and for this Γ-convergence is generally not suitable. For this reason, we introduce
new definitions of convergence (see [4]), based on coupling Γ-convergence with
certain ideas of stability, with the hope that these will prove useful for studying
(strict) local minimizers in a variety of situations. The stability we will use is
based on the following:

Definition 1 (ε-slide and ε-stability). Let E : X → [0,+∞] and ε > 0 with X a
metric space. An ε-slide for E at u is a continuous function φ : [0, 1] → X such
that φ(0) = u,

sup
0≤s<t≤1

[E(φ(t)) − E(φ(s))] < ε

and E(φ(1)) < E(u).
We say that u is ε-stable for E if no ε-slide at u exists, and stable if it is

ε-stable for ε > 0 small enough (see [7] for motivation in the context of evolutions
based on local minimization).

Let En : X → [0,+∞]. A sequence {un} is uniformly stable for {En} if, for all
ε > 0 small enough, each un is ε-stable for En.

Definition 2 (relative stability). We say that {En} is stable relative to E if the
following hold:

(1) If u has an ε-slide for E and un → u, then each un has an ε-slide for En

(for n large enough)
(2) If u is a strict local minimizer of E, then there exist un → u uniformly

stable for {En} (and so, by (1), u is stable for E).

To make this stability more meaningful, it will be coupled with Γ-convergence
in the sequel.

Definition 3 (stable convergence). If {En} is stable relative to E and Γ-converges
to E, we say that it stable converges to E. Stable convergence will be denoted

En
s→E.
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Theorem 1. Let En
s→E.

(i) Let each stable point for E be a local minimizer. Then, if un → u and the
un are uniformly stable for En, then u is a local minimizer of E;

(ii) Let each strict local minimizer for E be a stable point. Then, each strict
local minimizer u of E is the limit of a sequence of uniformly stable points for En.

We also give a stronger definition of convergence, strongly stable convergence

(denoted En
s-s−→E) such that we have

Theorem 2. If En
s-s−→E, then (En + G)

s→(E +G) for every continuous G such
that (En +G) is coercive.

We also study some examples, including

Example 1. We consider the Manhattan metric function ϕ : R2 → {1, 2}

ϕ(x1, x2) =

{
1 if x1 ∈ Z or x2 ∈ Z

2 otherwise,

and the related scaled-perimeter functionals with forcing term f

En(A) =

∫

A

f(x) dx +

∫

∂A

ϕ(nx) dH1

defined on Lipschitz sets A. By reasoning as in [1], it can be proved that the
energies En Γ-converge to an energy of the form

E(A) =

∫

A

f(x) dx +

∫

∂∗A

(|ν1|+ |ν2|)dH1

defined on all sets of finite perimeter (ν denotes the normal to ∂∗A).

We show that actually En
s−→E.

Finally, we give a definition that is suitable for discrete-to-continuum problems.

Acknowledgments

This material is partially based on work supported by the National Science
Foundation under Grant No. DMS-0505660.
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On gradient descents in random wiggly energies

Timothy Sullivan

(joint work with Florian Theil)

In physics, engineering and other settings, it is important to understand the
macroscopic behaviour of systems whose evolution is determined by microscale
effects. It seems natural to consider these microscale effects to be random in na-
ture (and, therefore, beyond the scope of classical averaging and homogenization
theory) and to constitute some perturbation of a well-understood smooth struc-
ture. In the case of rate-dependent viscous systems, analysis of how the random
microstructure determines the macroscopic behaviour can be found in the Green–
Kubo relations and many further developments since their introduction in the
1950s. In the realm of rate-independent plasticity theory, there is a large literature
(see, e.g., [4]) surrounding rate-independent processes (or quasistatic evolutions)
described by ordinary differential inclusions such as

(1)

{
∂Ψ(ż(t)) ∋ −DE(t, z(t)), for all t ∈ [0, T ],

zε(0) = x0, for some given x0 ∈ Rn,

where Ψ is homogeneous of degree one, which have been very successful in mod-
elling plastic effects with their associated structures of hysteresis loops, yield sur-
faces, stick-slip dynamics & c. Stick-slip evolutions such as the movement of a
dislocation line in a crystalline structure or the Barkhausen effect in a ferromag-
netic domain can be seen in this way, cf. [1] [2]. Our interest lies in rigorously
obtaining the evolution of z in (1) as the limit as ε → 0 of the (random) rate-
dependent processes zε that satisfy

(2)





żε(t) = −1

ε
∇Eε(t, zε(t)), for all t ∈ [0, T ],

zε(0) = x0, for some given x0 ∈ Rn,

where Eε is a suitable (random) perturbation of the underlying energetic potential
E. It should be noted that, typically, Eε → E strongly whereas ∇Eε does not
converge as ε → 0. It should also be noted that taking the limit as ε → 0 results
in a change from a dissipation potential that is homogenous of degree two in (2)
to one of degree one in (1).

The convergence zε → z has been known since the 1990s in the case n = 1
with a periodic perturbation [1]. Periodic perturbations in n = 2 were considered
in [3]; an undesirable feature of the periodic situation in n ≥ 2 is that periodic
“grid effects” introduce resonance zones for the limit process, where the dynamics
consist of both sticking and slipping; these resonance zones have the structure of
the complement of a Cantor set.
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In order to dispense with the unnatural periodicity assumption and to avoid
such anisotropic grid effects, we consider random perturbations of E. A result
for n = 1 was reported in [6]; both the 1-dimensional case and the n-dimensional
analysis outlined here are treated in detail in [5].

For simplicity, we consider the moving quadratic energetic potential E(t, x) :=
1
2 〈Ax, x〉 − 〈ℓ(t), x〉, where A is symmetric and positive-definite and ℓ is Lipschitz.
The random perturbation Eε − E is a sum of prototypical dent functions

Dε,y(x) :=
σ

2
min

{
0,

‖x− y‖22
ε

− 1

}
,

where y ranges over the points of a Poisson point process in Rn of intensity ε−p,
and σ > 0 is the magnitude of the dent’s gradient at the edge of its support.
It becomes apparent in the course of the proof that the constant-volume-fraction
limit for the Poisson process (the case p = n) is not permissible; therefore, the
ε → 0 limit that we consider is a dilute limit, although limits arbitrarily close to
the constant-volume-fraction limit are allowed.

Theorem 1. In the notation used above, let Ψ := σ‖ · ‖2. Then, for all T > 0
and p ∈ (n− 1, n), it holds that limε→0 zε = z in probability in C0([0, T ];Rn) with
the uniform norm ‖ · ‖∞: i.e., for all δ > 0,

lim
ε→0

P

[
sup

t∈[0,T ]

∥∥zε(t)− z(t)
∥∥
2
≥ δ

]
= 0.

It follows from theorem 1 that, up to the extraction of suitable subsequences,
zε → z uniformly on [0, T ], P-almost surely.

The key step in the proof is to control the total variation of zε and thereby show
that zε “nearly” satisfies the energy evolution inequality for the limit process z.
More precisely, for [a, b] ⊆ [0, T ], define the energy surplus of u : [a, b] → Rn by the
following ‖ · ‖∞-lower-semicontinuous functional ES(·, [a, b]) : BV([a, b];Rn) → R:

ES(u, [a, b]) := E(b, u(b))− E(a, u(a)) +

∫ b

a

(
Ψ(u̇(t))− (∂tE)(t, u(t))

)
dt.

For the rate-independent limit process z, ES(z, [a, b]) ≤ 0 for all [a, b] ⊆ [0, T ]. It
can be shown that the random evolution zε has vanishing energy surplus in mean
square:

E
[
ES(zε, [0, T ])

]
≤ CTεp−n+1,

V
[
ES(zε, [0, T ])

]
≤ CTεp−n+2.

The tightness (compactness) of the family (zε)ε>0 follows easily from this argu-
ment, and it is not hard to show that any uniform limit z̃ of (zε)ε>0 must satisfy
the stability constraint ‖∇E(t, z̃(t))‖2 ≤ σ, which, together with the energy in-
equality, is the other condition that characterizes z.

It would be of interest to extend theorem 1 to more general energetic potentials
E defined on possibly infinite-dimensional spaces, and to include the effects of a
heat bath whose influence is of the same order as that of the microstructure Eε.
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Two-scale homogenization in strain gradient plasticity

Alessandro Giacomini

(joint work with Alessandro Musesti)

We provide a two-scale convergence approach for an homogenization result in
strain gradient plasticity due to Fleck and Willis [4]. This result concerns the
asymptotic behaviour of minimizers of the following energy

E(u, p)−
∫

Ω

f(x) · u(x) dx,

where

E(u, p) := 1

2

∫

Ω

C(x)(Eu − p) : (Eu − p) dx+

∫

Ω

b(x)[|p|2 + ℓ2|∇p|2] dx,

in the case the elastic and plastic moduli C and b oscillate. Here Ω ⊂ RN denotes
the reference configuration of an elastoplastic body, Eu is the symmetrized gra-
dient of the displacement u : Ω → RN , while p : Ω → MN

D is the plastic strain,
taking values in the space of deviatoric matrices. The constant ℓ, associated to the
presence of the gradient of the plastic strain p, is an intrinsic length scale of the
material. The deformation theory we consider is thus a strain gradient deformation
theory [2, 3].

We consider the case of periodic oscillations, i.e., we consider

C ∈ L∞(RN ; Lin(MN
sym;M

N
sym)) and b ∈ L∞(RN )

such that for every i = 1, . . . , N and for a.e. x ∈ RN

C(x+ ei) = C(x) and b(x+ ei) = b(x).

Since oscillations occur on a scale ε, we accordingly rescale the intrinsic length
scale to εℓ. The energies then assume the following form

Eε(u, p) =
1

2

∫

Ω

C

(x
ε

)
(Eu − p) : (Eu− p) dx+

∫

Ω

b
(x
ε

)
[|p|2 + ε2ℓ2|∇p|2] dx.
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Assuming the coercivity estimates

α|M |2 ≤ C(x)M :M ≤ β|M |2, 0 < α < β < +∞
and b(x) > c > 0, Eε turns out to be well defined on H1(Ω;RN )×H1(Ω;MN

D).
The family of minimizers of

(u, p) 7→ Eε(u, p)−
∫

Ω

f · d dx

such that u = ū ∈ H1(Ω;RN ) on ∂Ω satisfy the following bound

‖uε‖H1(Ω;RN ) + ‖pε‖L2(Ω;MN
D
) + ε‖∇pε‖L2(Ω;MN

D
) ≤ C̃.

As a consequence, the effective behaviour of the energies would be given in terms
of the weak limit of the displacements in H1(Ω;RN ) and of the weak limit of the
plastic strains in L2(Ω;MN

D ): the control on ∇pε in L2 tends to vanish in the limit.
By means of an analysis involving two-scale convergence ([8, 1]), we show that

the variational properties of Eε are encoded in the two scale energy

E(u, U, P ) := 1

2

∫

Ω×Y

C(y)(Eu + EyU − P ) : (Eu + EyU − P ) dxdy

+

∫

Ω×Y

b(y)[|P |2 + ℓ2|∇yP |2] dxdy,

where Y denotes the unit cube in RN centered at the origin,

u(x) ∈ H1(Ω;RN ), U(x, y) ∈ L2(Ω;H1
per,0(Y ;RN ))

and
P (x, y) ∈ L2(Ω;H1

per(Y ;MN
D)).

In order to move toward a single scale setting, we introduce the functional

Eeff : H1(Ω;RN )× L2(Ω;MN
D) → [0,+∞[

defined by

Eeff (u, p) := min
(U,P )

{
E(u, U, P ) :

(U, P ) ∈ L2(Ω;H1
per,0(Y ;RN ))× L2(Ω;H1

per(Y ;MN
D)),

∫

Y

P (x, y) dy = p(x) for a.e. x ∈ Ω

}
.

We can now state our main results.

Theorem 1 (The homogenization result of Fleck and Willis). For every
ε > 0 let (uε, pε) be the minimizer of

(u, p) 7→ Eε(u, p)−
∫

Ω

f · u dx

on H1(Ω;RN )×H1(Ω;MN
D) with u = ū on ∂Ω. Then for ε→ 0

uε ⇀ u0 weakly in H1(Ω;RN )
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and
pε ⇀ p0 weakly in L2(Ω;MN

D ),

where (u0, p0) is the unique minimizer of

(1) (u, p) 7→ Eeff (u, p)−
∫

Ω

f · u dx

on H1(Ω;RN )× L2(Ω;MN
D ) with u = ū on ∂Ω. Moreover

lim
ε→0

Eε(uε, pε) = Eeff (u0, p0).

The energy Eeff (u, p) turns out to be independent of ∇p. We have the following
representation result involving a cell-type problem.

Theorem 2 (Representation formula for the effective energy). For every
(u, p) ∈ H1(Ω;RN )× L2(Ω;MN

D) we have

(2) Eeff (u, p) =

∫

Ω

F eff (Eu(x), p(x)) dx,

where for (Ā, p̄) ∈ MN
sym ×MN

D

(3) F eff (Ā, p̄) := min
{1
2

∫

Y

C(y)[Ā+ EyU − P ] : [Ā+ EyU − P ] dy

+

∫

Y

b(y)[|P |2 + ℓ2|∇yP |2] dy : (U, P ) ∈ H1
per,0(Y ;RN )×H1

per(Y ;MN
D),

∫

Y

P (y) dy = p̄
}
.

Following the same two-scale approach, we can deal with the homogenization
of strain gradient quasistatic evolutions. We concentrated on the model of Gurtin
and Anand [5] in presence of linear isotropic hardening and neglecting the energetic
strain gradient contribution. Following Mielke and Timofte [7], we show that the
evolutions converge to a two-scale quasistatic evolution which is of strain gradient
type in the microscopic variable y. The passage to a single scale setting entails
loss of informations, and a description in terms of a quasistatic evolution for an
ordinary plasticity theory seems not feasible. This is connected to the nonlocal
effects (for example of memory-type) that can be induced by homogenization, as
shown by Tartar [9].
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Towards uniformly Γ-equivalent theories in the context of fracture
mechanics

Anja Schlömerkemper

(joint work with L. Scardia, C. Zanini)

The aim of our work is to rigorously derive continuum models for fracture mechan-
ics from atomistic models. To get started, we study a one-dimensional chain of
atoms with nearest and next-to-nearest neighbour interactions of Lennard-Jones
type under certain boundary conditions and apply Γ-convergence methods.

Let J1 and J2 be the classical Lennard-Jones potentials, or more general inter-
action potentials of Lennard-Jones type, see [4] for details. Set λn = 1

n , n ∈ N

and let u : λnZ ∩ [0, 1] → R describe the deformation of the discrete chain with
respect to the reference configuration λnZ∩ [0, 1]. We set ui = u(λni) and identify
u with its piecewise affine interpolation, so u ∈ An(0, 1), the space of piecewise

affine functions. Let the following three parameters ℓ, u
(1)
0 , u

(1)
1 > 0 be given. We

consider the energy functional Hℓ
n : An(0, 1) → (−∞,∞] which is defined as

Hℓ
n(u) =

n−1∑

i=0

λnJ1

(
ui+1 − ui

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2 − ui

2λn

)

if u satisfies the boundary conditions u0 = 0, u1 = λnu
(1)
0 , un−1 = ℓ−λnu(1)1 , un = ℓ

and is infinite else.
As shown in [4], the Γ-limit Hℓ

0 of Hℓ
n as n→ ∞ involves the convexification of

the effective potential

J0(z) = J2(z) +
1

2
inf
{
J1(z1) + J1(z2) : z1 + z2 = 2z

}
.

The minimal value of the Γ-limit is minHℓ
0 = J∗∗

0 (ℓ) for all ℓ > 0.
Since we are interested in describing fracture, the Γ-limit does not give a sat-

isfactory answer. Indeed, we would like to obtain a boundary layer energy in the
limit, i.e., a surface energy due to the opening of a crack. Therefore we derive [4]
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the first order Γ-limit, Hℓ
1. This has minimal values

minHℓ
1 =






B
(
u
(1)
0 , ℓ

)
+B

(
u
(1)
1 , ℓ

)
− J0(ℓ)

−J ′
0(ℓ)

(
u
(1)
0 +u

(1)
1

2 − ℓ

)
if ℓ ≤ γ

B
(
u
(1)
0 , γ

)
+B

(
u
(1)
1 , γ

)
− J0(γ) + βmin if ℓ > γ

,(1)

where γ is the minimum point of J0, B(θ, ℓ) is some boundary layer energy and
βmin 6= 0 involves boundary layer energies and depends on where the crack is
located, see [4] for details. We remark that the first order development of the
minimal values

m̃(ℓ) = minHℓ
0 + λn minHℓ

1(2)

shows a jump of order λnβmin at ℓ = γ, see Figure 1 for a sketch. The jump

ℓ ℓ

m̃(ℓ) m̃′(ℓ)

γ

γ

Figure 1. Behaviour of the development of minimal values in
(2) in dependence of ℓ as well as the behaviour of the derivative.

at ℓ = γ is of the order λn, which means that our model contains an (internal)
length parameter. This is what we expect to have in a model describing fracture.
However, notice that at ℓ > γ the material breaks at zero tension. In order to
overcome this, we derive a uniformly Γ-equivalent theory in the spirit of Braides
and Truskinovsky [3].

To achieve this, we consider a blow up at ℓ = γ and generalise a Γ-convergence
result by [2]. Let λnj

→ 0 and ℓj → ℓ as j → ∞. Then the minimal value of the

first order Γ-limit of Hℓ
n is equal to (see [5])

lim
j→∞

min

{
α

∫ 1

0

|v′|2 dt+B
(
u
(1)
0 , γ

)
+B

(
u
(1)
1 , γ

)
− J0(γ) + β0#(Sv ∩ {0})

+ β1#(Sv ∩ {1}) + βint#(Sv ∩ (0, 1)) : v(0) = 0, v(1) =
ℓj − 1√
λnj

}
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with α = 1
2J

′′(γ), where the scaling vi =
ui−λnj

γi√
λnj

is considered and the β’s again

involve boundary layer energies. Furthermore, (1) is equal to

lim
j→∞

min

{
α(ℓj − γ)2

λnj

, βmin

}
+B

(
u
(1)
0 , γ

)
+B

(
u
(1)
1 , γ

)
− J0(γ).

Hence the transition from elasticity 9described by the quadratic term in the mini-
mum above) to fracture (corresponding to the constant value βmin) depends on the
rate of convergence of ℓj to γ with respect to λnj

, which is sketched in Figure 2.

ℓ ℓ

m̃(ℓ) m̃′(ℓ)

γ

γ

Figure 2. Blow up and failure curve at ℓ = γ.

A uniformly Γ-equivalent theory is now obtained by taking an energy which
is Γ-equivalent to the original energy for ℓ far from γ and an energy which is
Γ-equivalent to the rectified one (obtained by blow-up) for ℓ close to γ, and by
proving that these match at ℓ = γ.
We show in [5] that the following functional Gℓ

n is uniformly Γ-equivalent at first
order to Hℓ

n: If ℓ ≤ γ, set

Gℓ
n(u) =

∫ 1

0

J0(u
′) dt+ λn

(
B
(
u
(1)
0 , ℓ

)
+B

(
u
(1)
1 , ℓ

)
− J0(ℓ)

)

− λnJ
′
0(ℓ)

(
u
(1)
0 + u

(1)
1

2
− ℓ

)
,

and if ℓ > γ, by a pull-back of variables u(t) = γt+
√
λnv(t), set

Gℓ
n(u) =J0(γ) + α

∫ 1

0

|u′ − γ|2dt+ λn

(
B
(
u
(1)
0 , γ

)
+ B

(
u
(1)
1 , γ

)
− J0(γ)

)

+ λn (β0#(Su ∩ {0}) + β1#(Su ∩ {1})) + λnβint#(Su ∩ (0, 1))

if u(0) = 0, u(1) = ℓ, [u] > 0 on Su, and ∞ else.
The qualitative behaviour of the minimal values of the equivalent theory Gℓ

n is
sketched in Figure 3. In particular, m : ℓ 7→ minGℓ

n is continuous. In future work
we will investigate this and other Γ-equivalent theories further.
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Interfacial energy and size effects in evolving martensitic
microstructures

Stanis law Stupkiewicz

(joint work with Henryk Petryk)

A fully three-dimensional model of evolving martensitic microstructure is pro-
posed, which accounts for the interfacial energy and also for the dissipation related
to annihilation of interfaces. The interfacial energy of two origins is considered,
namely the atomic-scale energy of phase or twin boundaries and the elastic micro-
strain energy at microstructured interfaces. Accordingly, size effects can be studied
quantitatively for a class of martensitic microstructures in shape memory alloys
(SMA). Details of the approach can be found in [3, 4].

The total Helmholz free energy density Φ is assumed to comprise the size-
independent bulk contribution Φv and several size-dependent interfacial energy
contributions Φk

(1) Φ = Φv +Φi, Φi =
∑

k

Φk.

Each Φk originates from the interfacial energy at a specific scale which is integrated
over all interfaces at this scale and divided by the volume of the corresponding
representative element.

With regard to the martensitic transformation in polycrystalline SMA, the
interfacial energy is considered at three scales, namely at the grain (or sub-
grain) boundaries attained by parallel martensitic plates, at the austenite-twinned
martensite interfaces, and at the twin boundaries within the martensitic plates.
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In general, the density (per unit area) of the interfacial energy γk can be a sum of
the atomic-scale energy γak and elastic micro-strain energy γek,

(2) γk = γak + γek, γek = Γe
khk,

the latter is proportional to the spacing hk of the laminated microstructure ter-
minating at the interface. The proportionality factor Γe

k is a size independent
quantity that can be estimated using the approach proposed in [1, 5] for the case
of austenite-twinned martensite interfaces or a using an approximating function
determined in [4], used here for the elastic micro-strain energy at the grain (sub-
grain) boundaries. The relevant atomic-scale interfacial energies are taken from
the materials science literature.

Similarly to the free energy in (1), the dissipation increment ∆D is assumed as a
sum of the size-independent bulk contribution ∆Dv and size-dependent interfacial
contributions ∆Dk,

(3) ∆D = ∆Dv +∆Di, ∆Di =
∑

k

∆Dk.

The key assumption of the present model is that the negative increments of inter-
facial energy, which are associated with annihilation of interfaces, contribute to
(size-dependent) dissipation, so that we have

(4) ∆Dk = κk(−∆Φk)+, (ψ)+ =

{
ψ if ψ > 0,
0 if ψ ≤ 0.

Here 0 ≤ κk ≤ 1 is a coefficient that is expected to be close to unity at low
scales and possibly smaller, but still close to unity, at higher scales. The bulk
dissipation term includes all the remaining dissipation mechanisms and is assumed
as ∆Dv = fc|∆η|, where η is the volume fraction of martensite and fc > 0 is the
threshold value for the thermodynamic driving force f = −∂Φv/∂η.

The evolution of microstructure in an isothermal, quasi-static process is deter-
mined by minimization of the incremental energy supply [2]

(5) ∆E → min subject to kinematical constraints,

where, assuming kinematic control, the incremental energy is equal to

(6) ∆E = ∆Φ+∆D.

Note that the adopted dissipation function exhibits a limited path-independence [3]
so that it automatically satisfies the essential symmetry restriction which is neces-
sary for the minimization principle (5) to be applicable for finite increments [2, 3].

The above framework has been applied in [4] for the simulation of the pseudoe-
lastic response of an idealized CuAlNi SMA polycrystal. Formation and evolution
of a rank-three laminated microstructure of finite characteristic dimensions has
been examined. The results illustrate also the effect of grain size of the macro-
scopic stress-strain response, including the hysteresis width, as well as on the
characteristic dimensions such as twin spacing, plate thickness, and plate spacing.
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Relaxation-based modeling of laminate microstructures in finite-strain
crystal plasticity

Dennis M. Kochmann

(joint work with Klaus Hackl)

The non-quasiconvexity of the free energy density in finite-strain crystal plasticity
gives rise to the formation of microstructures as minimizers of the governing mini-
mum principles [1, 5]. Such microstructures form in plastically strained, crystalline
solids and can be observed experimentally in terms of dislocation patterns. The
specifics of these microstructures and their impact on the macroscopic material be-
havior can be determined by means of a relaxation of the energy and dissipation
potentials involved.

In finite-strain plasticity models, the deformed state of a strained solid is gen-
erally described in terms of the displacement field φ and a set of internal variables
K which capture all microstructural characteristics. We denote the deformation
gradient by F = ∇φ and the free energy density by Ψ(F ,K). Furthermore, we
introduce the total free energy stored in a deformed body Ω by

(1) I(t,φ,K) =

∫

Ω

Ψ(∇φ,K)dV − ℓ(t,φ)

where ℓ(t,φ) represents the potential of external forces. The microstructure devel-
opment can then be determined from thermodynamic minimum principles [1, 5].
The actual displacement field follows from the principle of minimum potential en-
ergy, and the internal variables are determined from the principle of minimum
dissipation potential. These principles are defined as

φ = argmin {I(t,φ,K) | φ = φ0 on ∂Ω} ,(2)

K̇ = argmin
{
L(φ,K, K̇)

∣∣∣ K̇
}
,(3)

respectively, with the dot denoting differentiation with respect to time, and with
the introduced Lagrange functional

(4) L(φ,K, K̇) =
d

dt
Ψ(∇φ,K) + ∆(K, K̇).
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∆(K, K̇) represents the dissipation potential [1], which accounts for dissipation
due to dislocation motion in the crystalline solid and must be specified.

To describe the formation of a particular type of microstructure, viz. simple
laminates, we derive an approximation of the relaxed energy (i.e., of the quasicon-
vex envelope) by constructing a laminate of first order, characterized by N volume
fractions λi with values Ki and F i, which are separated by parallel planes with
common normal vector b, so that we may write for each phase i [2]

(5) F i = F (I + ai ⊗ b)

Hence, deformation gradients differ only by tensors of rank one, enforcing com-
patibility at laminate interfaces. We consider the normal vector b as inelastic (or
dissipative), since any rotation of the laminate causes microstructural rearrange-
ment and thus dissipation. In contrast, the amplitudes ai can be changed purely
elastically. Therefore, we define the (semi-)relaxed energy as

(6) Ψrel(F , λ,K, b) = inf

{
N∑

i=1

λiΨ(F i,Ki)
∣∣ ai;

N∑

i=1

λiai = 0

}
,

where the abbreviations λ = {λ1, . . . , λN} and K = {K1, . . . , KN} are intro-
duced, and the constraint accounts for the average laminate deformation to equal
the overall deformation F .

We apply the above formulation to an incompressible Neo-Hookean solid with
one active slip system only (for illustrative purposes, the framework has been gen-
eralized to multiple slip systems) [2, 3]. The multiplicative split of the deformation
gradient into elastic and plastic contribution, i.e., F = F eF p, allows for the com-

mon flow rule of crystal plasticity: Ḟ pF
−1
p =

∑
i γ̇i si ⊗ mi. For a single active

slip system (s,m), we conclude that F e = F (I−γ s⊗m) with plastic slip γ. The
free energy density of an incompressible Neo-Hookean solid (detF = 1) follows as

(7) Ψ(F e,p) =
µ

2

(
trF T

e F e − 3
)
+ κ pα.

The second term accounts for hardening with p being a hardening variable, which
is governed by the flow rule ṗ = |γ̇|, and µ > 0 and κ > 0 are the shear and
hardening moduli, respectively. Furthermore, we assume dissipation of the type
∆(γ̇) = r |γ̇|.

With this framework at hand, the minimization in (6) can be carried out an-
alytically [2]. Besides, we have developed a suitable relaxed dissipation potential
which accounts for a first-order laminate microstructure [2, 3].

Many approaches in the scientific literature make use of an effective (or con-
densed) energy functional to predict the formation of microstructures. However,
this approach is not generally suitable for the description of their time-continuous
evolution. Therefore, we establish a variational, incremental strategy, which is
applicable both to monotonic and cyclic loading and which accounts for the ex-
act microstructural changes during each time step. To this end, we incrementally
solve the stationarity conditions of the minimum principle (3), where the energy
density and dissipation potential are replaced by their relaxed counterparts. Our
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Figure 1. a) Comparison of the (normalized) unrelaxed energy
Ψunrel and the relaxed energy for a tension-compression load path
(from a condensed energy functional, Ψcond, and from the present
approach, Ψrel), b) cyclic normalized stress-strain response for
a simple shear test from the present approach. Results are for
κ = 0.005µ, r = 0.001µ, ϕ = 135◦, α = 2.

numerical scheme includes in particular the possibility to update the hardening
parameters during each time step (dependent on the existing microstructure at
the beginning of the time step) [2, 3], furthermore possible laminate rotations [2],
and cyclic loading [4].

Figure 1 illustrates two important characteristics of the results obtained from
the present approach which has been combined with a suitable numerical scheme.
From Figure 1a it becomes apparent that the present approach gives rise to a
considerable reduction of energy, compared to the results from using a condensed
energy functional. This stems in particular from the incremental updates of the
hardening variables due to volume fraction changes [2]. Besides, the possibility
of an incremental laminate rotation is accounted for by the present approach and
might yield further decreases of the energy. Figure 1b demonstrates the stress-
strain hysteresis obtained from a cyclic simple shear test. Such cyclic tests show a
gradual degeneration of the stress-strain hysteresis as well as an elastic-shakedown
effect with some interesting characteristics of persistent slip bands. Within a
certain number of load cycles, an almost steady laminate is formed, which consists
of one elastically deforming phase with high volume fraction (80-90%) and one
phase which concentrates plastic slip in a low volume fraction (10-20%). The
specifics of the steady-state laminate as well as the number of load cycles to arrive
at that state highly depend on the chosen hardening modulus κ.
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Force-based atomistic/continuum hybrid models

Christoph Ortner

(joint work with Matthew Dobson, Mitchell Luskin, C. Makridakis, Endre Süli)

The motivation for atomistic/continuum hybrid models is that the accuracy of
an atomistic model for a defect can, in principle, be combined with the efficiency of
a continuum model of the elastic “far field”. Despite several creative attempts [5,
9, 10], significant obstacles remain to the development of efficient and accurate
hybrid coupling energies. The force-based approach [1, 6, 8] has become very
popular because it provides a simple and efficient method for coupling two physics
models without the development of a consistent coupling energy.

Consider a simple atomistic energy functional

E(y) = ε

N∑

ℓ=−N+1

R∑

r=1

[
φ(ε−1(yℓ+r − yℓ))− fℓyℓ

]
,

where the displacement u = y − x (x = (xℓ) = (εℓ)) is 2N -periodic and has zero
mean, ε = 1/N , and y′ℓ = ε−1(yℓ − yℓ−1). The local QC approximation of E is the
short-ranged functional

Ec(y) = ε
N∑

ℓ=−N+1

[
W (y′ℓ)− fℓyℓ

]
,

where y′ℓ = ε−1(yℓ − yℓ−1) and

W (t) =
R∑

r=1

φ(rt).

Thus, in the local QC model a non-local second neighbour interaction is replaced
by a local nearest-neighbour interaction, which subsequently makes it possible to
remove degrees of freedom for an efficient computational algorithm. For the sake
of simplicity of notation we will ignore this step (the formulation and analysis in
[7] does consider coarse-graining).

The QCF operator is defined as

Fℓ(y) =

{
− 1

ε
∂E(y)
∂yℓ

, ℓ = −K, . . . ,K,
− 1

ε
∂Ec(y)
∂yℓ

, otherwise,
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where the index set A = {−K, . . . ,K} is the atomistic region, and C = {−N +
1, . . . , N} \ A is the continuum region.

The linearized QCF operator DF(Bx) (linearized at a perfect lattice Bx) was
the subject of detailed studies in [2, 3]. In [7] these analyses were extended to the
case of finite deformations. Under suitable technical assumptions it was shown
that, if ya is a “sufficiently stable” atomistic equilibrium, and if ya is “smooth” in
the continuum region C then a solution yqc of the QCF system

F(y) = f

exists and satisfies the error estimate

(1) ‖y′a − y′qc‖ℓ∞ ≤ Cε2(‖y′′a‖2ℓ∞(C̃)
+ ‖y′′′a ‖ℓ∞(C̃)),

where

C̃ = C ∪ (C +R) ∪ (C −R).

The main tool in the proof of (1) is the following “weak form” of the QCF
operator: Let (·, ·)ε denote the weighted ℓ2-inner product, then

(F(y), u)ε = ε
∑

ℓ∈A

σa
ℓ (y)u

′
ℓ + ε

∑

ℓ∈C

σc
ℓ(y)u

′
ℓ

− uK(σa
K+1(y)− σc

K+1(y)) + u−K(σa
−K(y)− σc

−K(y)),

where the “stress functions” σa
ℓ and σc

ℓ are given by

σc
ℓ (y) = DW (y′ℓ), and σa

ℓ (y) =

R∑

r=1

ℓ−1∑

k=ℓ−r

φ′
(
ε−1(yk+r − yk)

)
.

An analysis of these stress functions leads to stability estimates and quasi-optimal
consistency error estimates that are then used to establish (1).

However, the interface terms cause considerable technical difficulties, especially
for the generalization of the results to higher dimensions. Moreover, we see that
the QCF method does not impose the desirable “zero-flux” transmission condition
on the A/C interface. Hence, in [7] we also propose a new force-based coupling
scheme:

(Sqc(y), u) = ε
∑

ℓ∈A

σa
ℓ (y)u

′
ℓ + ε

∑

ℓ∈C

σc
ℓ(y)u

′
ℓ,

which has superior theoretical properties: in particular, sharper stability estimates
and positivity of the linearization.
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From Electrons to Atoms to Continuae at Interfaces

Siegfried Schmauder

Shear at metal/ceramic interfaces plays an important role during deformation and
fracture in a number of materials. High-strength materials, such as metal-matrix
composites consist of internal interfaces between ceramic (e.g. SiC or Al2O3) par-
ticles or filaments within a metallic host. In microelectronics packaging, inter-
faces between metallic (Cu and/or Al) interconnects and SiO2, carbide/nitride
(TiCN) or oxide (Al2O3) ceramics are commonplace, and impact the performance
and longevity of solid state devices. Despite their widespread use, a basic un-
derstanding of these interfaces has been elusive. For example, given a particular
metal/ceramic interface, it is not yet possible to accurately predict such funda-
mental properties as its fracture energy. In most of the cases, improvements in in-
terface properties proceed via a costly and time consuming trial-and-error process
in which numerous materials are evaluated until suitable performance is obtained.
Computational methods provide a wide range of possibilities to study the fracture
behaviour of such metal/ceramic interfaces:

In the first part of the presented work, the deformation behaviour of niobium single
crystals has been simulated using crystal plasticity theory. An automatic identi-
fication procedure has been proposed to identify the crystal plasticity parameters
for each family of slip systems and simulation results of the mechanical behaviour
of single crystal niobium are compared with the experiment. Good agreement
between the experimental and simulation results was found. The second part
presents effects of the different niobium single crystalline material orientations on
crack initiation energies of the bicrystal niobium/sapphire four-point-bending-test
specimens for a stationary crack tip. The trends of crack initiation energies are
found to be similar to those observed during experiments. In the third part, crack
propagation analyses of niobium/alumina bicrystal interface fracture have been
performed using a cohesive modelling approach for three different orientations of
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Figure 1. Simulated metal/ceramic interface fracture problem
in the frame of crystal plasticity (CP) theory.

single crystalline niobium. Parametric studies have been performed to study the
effect of different cohesive law parameters, such as work of adhesion and cohesive
strength, where work of adhesion is the area under the cohesive law curve while
cohesive strength is the peak stress value of the cohesive law. The results show
that cohesive strength has a stronger effect on the macroscopic fracture energy
as compared to work of adhesion. Cohesive model parameters are identified for
different combinations of cohesive strength and work of adhesion by applying a
scale bridging procedure based on ab initio data of work of adhesion taken from
literature. In the last part, a correlation among the macroscopic fracture energy,
cohesive strength, work of adhesion and yield stress of niobium single crystalline
material will be derived.
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Micromechanical modeling of martensitic microstructures

Klaus Hackl

Shape memory alloys can be described in a uniform way relying on energetic con-
siderations only. We present a micromechanically motivated model for polycrys-
talline shape memory alloys based on work presented in [3, 5, 6]. Micromechanical
models for the monocrystalline case can be found in [1, 2]. The model studied
here is based on energy minimization and includes hysteretic effects via a simple
dissipation ansatz which is homogeneous of first order. It is capable of reproducing
important aspects of the material behavior such as pseudoelasticity and pseudo-
plasticity. The influence of anisotropies in the crystalline texture as well as in the
elastic constants of the austenite and the martensitic variants are also discussed.

We adopt the hypothesis that, at the microscopic level, the material choses the
crystallographic variant which corresponds to the lowest energy

(1) W̄ j (ε) = min
i=0,...,n

[
W j (ε, ii)

]

for a given strain. Here, n is the number of martensitic variants and ii are the
unit vectors in n+1-dimensional variant space. Furthermore, the energy at every
microscopic material point will also depend on the orientation of the crystallite
it lies in. In order to take the crystal orientations into account, the continous
texture of an idealized polycrystal is approximated by a large, but finite number
of orientations j = 1, . . . , N each of which is charactarized by a rotational tensor
Rj . The energy of each variant within each crystal orientation in dependence of
the corresponding linearized strain ε

j
i is assumed to have the linear elastic form

(2) W j
(
ε
j
i , ii

)
=
(
ε
j
i − η

j
i

)
: Cj

i :
(
ε
j
i − η

j
i

)
+ αi,

where the so-called chemical energy αi differs only between austenite and marten-
site and the transformation strain η

j
i is given by η

j
i = RT

i · ηi ·Ri, ηi being the
transformation strain of phase i in a single crystal. Since the energy formulation
given by (1) is clearly non-quasiconvex, the mesoscopic energy is calculated via
relaxation methods. For simplicity, we employ straightforward convexification to
obtain a lower bound which is then used as an estimate W rel for the unknown
quasiconvex hull of the energy density. The quality of this estimate is validated by
comparison to an upper bound. The latter bound is based on derivations concern-
ing the energy density of polycrystals by [12] in combination with a lamination
upper bound presented in [3], for details see [6]. In order to close the formulation,
hysteretic aspects of the material behavior are included into the model via the
dissipation ansatz

(3) ∆
(
λ̇, ||λ0||

)
= r(||λ0||)

√√√√
N∑

j=1

ξj
n∑

i=0

(
λ̇ji

)2
,

where ξj is the volume fraction of the jth crystallite, which remains constant
within in the temperature range of interest, and λji is the percentage of the ith
crystallographic variant within that crystallite. Furthermore we make an ansatz
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Figure 1. Distribution of the austenite phase (top) and the cor-
responding temperature field, setting room temperature to zero
(bottom).

for the dissipation coefficient r(||λ0||) in order to account for varying energy costs,
depending on the average amount of austenite ||λ0||.

Using the variational procedure found among others in [4, 8, 9, 10, 11] we derive
evolution equations by minimizing the total power

(4) L
(
λ, λ̇

)
=

d

dt
W rel (ε,λ) + ∆

(
λ̇
)

with respect to λ̇ for fixed ε.
In order to simulate entire specimens made of shape memory alloys and to

account for the coupling in between phase transition and temperature, we genralize
the formulation introduced above by maximizing the entropy production Σ under
the constraint of energy-consevation. The entropy production is formulated as

(5) Σ = ∆
(
λ̇
)
+
αtherm

2
|q|2,

where q denotes the heat-flux. Using a finite element approach the displacement
and the temperature field is solved together with a field function which serves
as regularization to circumvent mesh dependence due to ∆ being a functional of
the internal variables. A typical result displaying the distributions of temperature
and volume content of austenite is given in Figure 1. We validate the model by
comparing the martensite orientation distribution functions it predicts to those
measured by synchrotron diffraction experiments, see [7] and references therein.
For this purpose, we simplify the formulation by assuming, on the one hand, that
the elasticity tensor C

j
i is the same for all crystal orientations and variants and,

on the other hand, that transformation occurs mainly in the stress plateau, which
is characteristic for phase transitions in shape memory alloys.
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Fast evolution of microstructures due to recovery during heat
treatment of metals

Petr Šittner

(joint work with J. Pilch)

Thermomechanical properties of metals depend, in addition to basic characteris-
tics as elastic constants, crystal structure and mobility of crystal defects, phase
transformations, also on the initial microstructure (grain size, texture, density of
dislocation defects, grain boundary misorientations etc.) which is given to the
metal by the final processing. Typically, this includes hot/cold working passes
followed by final heat treatment. During the final heat treatment, the heavily de-
formed microstructure of the metal resulting from the final cold work is recovered
by thermally driven recovery processes taking place during the heat treatment.
This heat treatment is conventionally preformed by exposing the metal to temper-
atures 200C-600C for several minutes or hours.

We have developed a nonconventional method of heat treatment by electric
current which allows for performing heat treatments of thin filaments made of cold
worked NiTi shape memory alloy and setting their functional mechanical properties
in much shorter time interval of few milliseconds. The filament is heated by
electric current pulse to temperatures as high as 1000C and the recovery processes
take place under stresses as high as 600MPa. In this way, NiTi filaments with
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carefully controlled nanosized microstructures were prepared and their functional
superelastic properties were investigated.

Experimental evidence on the fast evolution of microstructures during the heat
treatment of thin NiTi wires determined from in-situ mechanical, electric resis-
tance and synchrotron X-ray studies during the fast heat treatment [1] is reported
in this talk. It is interesting to see that the recovery processes responsible for
microstructure evolution normally considered to proceed for minutes or hours in
fact can complete within microseconds. Next, experimental information on the
microstructures observed in wide range of differently treated NiTi wires by trans-
mission electron microscopy and X-ray diffraction was presented and confronted
with the functional superelastic properties of these wires determined from ther-
momechanical testing experiments. A microstructure-property relationship for
superelastic NiTi wires was established and discussed. It is suggested that the
microstructure yielding best superelastic properties is partially polygonized and
recrystallized with grain size in the range 20-50 nanometers.

In order to obtain information on the stress induced transformation process
responsible for the superelasticity, the microstructures in NiTi wires subjected to
10 tensile cycles were also investigated by transmission electron microscopy. It
was found that in wires having microstructures with grain size larger than 100
nm, large density of slip dislocations was created by cycling. These dislocations
are thought to be responsible for the accumulated plastic strains, since no residual
martensite particles were found by TEM in the microstructure of the cycled wires.
It was concluded that the slip activity is largely suppressed in microstructures
having small grain size under 50 nm but stress induced transformation is not.
The microstructure control by heat treatment can thus be very effective in setting
unique mechanical properties of metals in which various deformation mechanisms
become active upon straining.
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Statistically Similar Representative Volume Elements based on
Lineal-Path Functions

Daniel Balzani

(joint work with Jörg Schröder, Dominik Brands)

1. Introduction

For the prediction of the mechanical behavior of micro-heterogeneous materials
the FE2-method provides a suitable numerical tool, see e.g. Smit et al. [8],
Miehe et al. [4], Schröder [5]. In this context a micromechanical boundary



760 Oberwolfach Report 14/2010

value problem is solved at each macroscopic Gauss point, where the discretiza-
tion of a representative volume element (RVE) reflecting the real microstructure
is taken into account. In this context see e.g. [6], where also eigenstress distri-
butions are taken into account at the microscale. Here, a method is proposed for
the construction of more efficient statistically similar RVEs (SSRVEs) that are
characterized by a much less complexity than usual RVEs. This method is based
on a general least-square functional taking into account the squared differences
of some suitable statistical measures characterizing the inclusion phase morphol-
ogy, that are computed for a given real (complex) microstructure and the SSRVE,
cf. [3], [2], [7]. Optimizing this least-square functional leads to certain problems
such as a non-smooth energy surface and the existence of numerous local minima
as shown in [1]. To overcome these problems a moving-frame algorithm combining
a line-search strategy is given in [2]. In [3] it turns out that simple scalar-valued
statistical measures are not enough to characterize e.g. macroscopic anisotropy
appropriately. In this contribution it is shown that even the spectral density does
not suffice and significantly improved results are obtained by taking into account
the lineal-path function.

2. Least-Square Functions for the Construction of SSRVEs

For the construction of SSRVEs we consider an optimization problem, where the
general objective functional taking into account the summation of individual least-
square functionals

(1) L(γ) → min with L(γ) =
nsm∑

L=1

ω(L)L(L)
SM (γ)

is minimized. ω denotes an appropriate weighting factor and LSM is the squared
difference of a statistical measure computed for a reference target structure (which
can be interpreted as an usual RVE) and the SSRVE parameterized by splines such
that the sampling point coordinates enter the general vector γ representing the
degrees of freedom of the optimization problem. In this contribution we analyze
three different statistical measures, the volume fraction, the spectral density, and
the lineal-path function, see e.g. Torquato [9] for the definition of the lineal-path
function. Then the resulting least-square functionals are

LV (γ) =

(
1− PSSRV E

V (γ)

Preal
V

)2

,(2)

LSD(γ) =
1

NxNy

Nx∑

m=1

Ny∑

k=1

(
Preal
SD (m, k)− PSSRV E

SD (m, k,γ)
)2
,(3)

LLP (γ) =
1

NxNy

Nx∑

m=1

Ny∑

k=1

(
Preal
LP (m, k)− PSSRV E

LP (m, k,γ)
)2
.(4)
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Here, we compare the results obtained from minimizing the two different objective
functions L1 and L2 given by

(5) L1(γ) := ωV LV + ωSDLSD and L2(γ) := ωV LV + ωSDLSD + ωLPLLP ,

Target Type A Type B Type C

ndof = 60410 ndof = 2914 ndof = 3206 ndof = 3378

Figure 1. Considered target structure and resulting SSRVEs
from minimizing the least-square functional L2.

where we set the weighting factors to ωV = ωSD = 1 and ωLP = 10. We consider
three different types of SSRVEs: Type A takes into account two inclusions with
3 spline-sampling points each, Type B two inclusions with 4 sampling points each
and Type C three inclusions with 3 sampling points each. All inclusions are
not permitted to intersect with themselves or with the other ones and at the
boundary of the SSRVE we ensure that a periodic extension is possible. The
microstructure shown in Fig. 1 (left) serves as a target structure. Then, the
two objective functions are minimized using the method proposed in [3] and as
an example Fig. 1 shows the resulting SSRVEs obtained from minimizing L2.
When discretizing the microstructures with Finite Elements obviously much less
elements are required for the SSRVEs leading to much more efficient numerical
micro-macro procedures. In order to estimate the quality of the individual SSRVEs
we compare the mechanical response of the SSRVEs with the response of the target
structure in three different virtual experiments: uniaxial tension in horizontal and
vertical direction and simple shear. For this purpose we define the mechanical

error measure r(i) =
σreal
i −σSSRVE

i

σreal
i

evaluated in a number of n calculated stress-

strain situations i. To estimate the mechanical quality in simple identificators we
define the errors r̃x, r̃y and r̃xy for the three different virtual experiments

(6) r̃ =

√√√√ 1

n

n∑

i=1

[r(i)]2 with r(i) := r

(
i

n

△lmax

l0

)
and r̃O/ =

r̃x + r̃y + r̃xy
3

representing an overall mechanical error r̃O/. The results are given in Table 1 and we
observe that with decreasing values of the minimized objective function the overall
mechanical error decreases, too. For both objective functions we observe that Type
C leads to the best mechanical correspondence and conclude that more than two
inclusions are required for a good representation by a SSRVE. Furthermore, we
observe that the mechanical errors for objective function L2 are more uniformly
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distributed for the three experiments and that the overall mechanical error is
significantly lower (0.7 vs. 1.1). We conclude that a much more suitable SSRVE
can be constructed when adding the lineal-path function as a statistical measure.

SSRVE L [×10−3] r̃x [%] r̃y [%] r̃xy [%] r̃O/ [%]

Objective function L1:

A 2.98 2.43 ± 0.86 1.72 ± 0.40 5.06 ± 2.07 3.07

B 1.17 1.14 ± 0.39 0.97 ± 0.44 4.38 ± 1.85 2.17

C 0.84 0.14 ± 0.15 0.09 ± 0.06 3.08 ± 1.24 1.10

Objective function L2:

A 4.31 2.37 ± 0.60 1.19 ± 0.29 2.61 ± 1.15 2.06

B 1.58 7.20 ± 2.97 1.99 ± 0.55 4.59 ± 2.04 4.59

C 1.31 0.53 ± 0.36 0.07 ± 0.08 1.51 ± 0.66 0.70

Table 1. Results of optimization and comparison of mechanical response
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[3] B. Balzani, D. Brands, J. Schröder, and C. Carstensen. Sensitivity Analysis of Statistical
Measures for the Reconstruction of Microstructures based on the Minimization of generalized
Least-Square Functionals. Technische Mechanik, in press, 2010
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From discrete dislocations to strain gradient crystal plasticity

Marc Geers

(joint work with Ron Peerlings, Marcel Brekelmans, Tuncay Yalcincaya)

Miniaturization has become an important industrial drive in the development of
engineering micro- and nanosystems. At the level of most microsystems, metallic
structures and films are used ranging from sizes of a few microns or below to
hundreds of microns. Within this context, considerable research efforts were done
to characterize metallic materials a range where size effects have a dominating
contribution. The present talk departs from a general classification of different
size effects, related to different underlying physical mechanisms in the crystalline
microstructure [1]. Among these, first-order size effects, processing induced size
effects [2], interfacially controlled size effects and strain gradient (lattice curvature
driven) size effects are briefly addressed.

In order to address all these possible size effects, an enriched crystal plasticity
model is required, which has to be further extended to cover all known physical
mechanisms in a multi-phase polycrystal. Emphasis is put on the formulation,
thermodynamics and physics of strain gradient crystal plasticity models, for which
the models presented by Gurtin [3] and Evers and Bayley et al. [4, 5, 6] are
taken as reference. Whereas the thermodynamical model presented by Gurtin
looks substantially different from the phenomenological-physical model of Evers-
Bayley, it is shown that an intrinsic duality between the two models exists [7], as
already emphasized by Kuroda et al [8]. This duality implies the thermodynamical
consistency of the Evers-Bayley approach on the one hand, and provides a clear
physical interpretation of the micro-stress vectors and the assumed free energy
terms in the Gurtin model. Particular emphasis is given on the meaning and
interpretation of the related boundary conditions in both models. As a result of
this analysis, it becomes evident that the physical short-range interactions between
dislocations have to be accounted for in the free energy.

The most important topic of this contribution concerns the need for an ener-
getic strain gradient contribution, which is demonstrated on the basis of an ide-
alized pile-up problem. The critical role of the underlying discreteness is thereby
addressed, and the vanishing continuum limit (for the stress) is discussed in de-
tail [9]. It is shown that a corrective internal dislocation interaction stress has
to be accounted for in the viscous slip law, which emanates from a defect energy.
The energetic dislocation interaction terms can be approximated in a determin-
istic manner, using a nearest neighbour approach [10]. The duality between the
resulting back stress in a deterministic setting and the one obtained from a sta-
tistical mechanics approach (e.g. from Groma et al. [11]) is advocated, and its
implications on future steps to be taken in strain gradient crystal models are ad-
dressed. The generalization to a complete crystal plasticity model with all its
slip systems is discussed, using an analytical integration scheme of the induced
dislocation stresses [4, 5].



764 Oberwolfach Report 14/2010

In the context of the presented models, the following challenges are briefly
outlined:

• identifying higher-order terms and boundary conditions in a consistent
manner from discrete dislocation solutions

• properly handling dislocation screening in a continuum model, based on
the dislocation interactions (and the induced fine scale fluctuations)

• the general solution of an idealized pile-up problem, with a variable slip
plane spacing

• the mathematical interpretation of the analytical solution based on the
stress fields of distributed discrete dislocations on multiple slip systems,
for which the defect energy cannot be determined trivially.

The talk concludes with some recent work on a non-convex strain gradient
plasticity model, for which the extended slip law has been derived in a thermo-
dynamical setting. The resulting problem has a structure that partially compares
with phase field models with a non-convex free energy. An example is presented,
revealing the time-dependent patterning of slip in a simple 1D setting.
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Conservation laws and Hamilton-Jacobi equations in the theory of
plasticity

Hans-Dieter Alber

In a metallic thin film the plastic yield limit is higher than in a bulky body of the
same material. One of the explanations is that the movement of dislocation lines,
is restricted in thin films by geometrical reasons. Standard mathematical models
of plasticity and viscoplasticity do not reflect this observation. Here we summarize
a systematic study in [2] of the continuous theory of dislocations [3] to deduce a
refined mathematical model, which, as we hope, accounts for the influence of the
geometrical dimensions on the inelastic behavior of the metallic body. We first
formulate a classical crystallographic model, which can be found for example in
[1, 4], sketch the investigations in [2] and state the model resulting from these
investigations.

We need some definitions and notations. We assume that all deformations
are small and we use a quasistatic model. Let Ω ⊆ R3 be a bounded open set
with sufficiently smooth boundary ∂Ω representing the crystalline body. Assume
that there are k slip planes with unit normal vectors gs and Burgers vectors bs,
s = 1, . . . , k. The vector bs must be orthogonal to gs. We do not require that
all gs are different. By Te we denote a positive number (time of existence), which
can be chosen arbitrarily large. S3 denotes the set of symmetric 3×3–matrices.
Unknown are the displacement u(x, t) ∈ R3 of the material point x at time t, the
Cauchy stress tensor T (x, t) ∈ S3 and the slips εsp(x, t) ∈ R along the s–th slip
plane in the direction of bs. The equations of the standard model are

−divx T = 0 ,(1)

T = D
(
ε(∇xu)− εp

)
,(2)

∂tε
s
p = fs

(
|bs|ms : T

)
, s = 1, . . . k,(3)

εp =

k∑

s=1

msε
s
p ,(4)

which must be satisfied in Ω × [0, Te]. Standard initial and traction boundary
conditions are

εsp(x, 0) = εs(0)p (x), x ∈ Ω(5)

T (x, t)n(x) = γ(x, t), (x, t) ∈ ∂Ω× [0, Te).(6)

Here we use the notation

divx T =
∑3

j=1

(
∂xj

Tij
)
i=1,2,3

.

∇xu denotes the 3×3–matrix of first order partial derivatives of u, and

ε(∇xu) = â
(
∇xu+ (∇xu)

T
)
∈ S3
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is the linear strain tensor. We write AT for the transpose of a matrix A. With the

unit vectors b̂s = bs/|bs| we define the symmetric tensors

ms = ε(b̂s ⊗ gs) = â(b̂s ⊗ gs + gs ⊗ b̂s) ∈ S3.

εp(x, t) ∈ S3 is the plastic strain tensor, and D : S3 → S3 is a symmetric, positive
definite linear mapping, the elasticity tensor. For x ∈ ∂Ω we denote by n(x) the

exterior unit normal vector to ∂Ω, and ε
∗(0)
p : Ω → R, γ : ∂Ω× [0, Te) → R3 are the

given initial data and the given boundary traction, respectively. The constitutive
functions fs : R → R must satisfy

s · fs(s) ≥ 0, for all s ∈ R.

A typical choice is fs(s) = cs|s|γss with constants cs > 0 and γs > 1.
This completes the formulation of the standard model. The constitutive equa-

tion (3) consists of a system of ordinary differential equations, which are inde-
pendent of the dislocation density and the geometrical dimensions of the body
Ω. This is different for the model obtained from the continuous theory of dislo-
cations, where the dislocation density enters the constitutive equations explicitly.
This model is based on an evolution equation for the dislocation density ρ(x, t).
To formulate this evolution equation, we use four conditions, which determine the
form of the evolution equation rather precisely. These conditions are:

(1) Since ρ(·, t) must be a rotation field for all times t, the evolution equation
must have the form

∂tρ = rotxα[T, ρ, b],

with a suitable function α.
(2) The Clausius-Duhem inequality ∂tψ + divxq ≤ 0 must hold.
(3) The evolution equation must be such that the dislocation density t 7→ ρℓ(t)

to a single dislocation line driven by the Peach-Koehler force F (x, t) =
τ(x, t)× T (x, t)b is a distribution solution. Here τ denotes a unit tangent
vector to the dislocation line.

(4) Plastic deformations must be volume conserving. This means that the
plastic part hp of the displacement gradient must satisfy the equation

trace hp(x, t) = 0.

The model obtained in this way consists of the equations (1), (2), (4)–(6) with (3)
replaced by the equations

(7) ∂tε
s
p = fs(|bs|ms : T ) |∇gsε

s
p|, s = 1, . . . , k,

where ∇gs denotes the tangential gradient to the slip plane with normal vector gs.
The constitutive equations (7), which have the form of Hamilton-Jacobi equations,
differ from the constitutive equations (3) only by the term

∇gsε
s
p = gs ×∇xε

s
p = −rot (gsε

s
p).

This term is just the density of dislocations with Burgers vector bs lying in the slip
plane with normal gs. In the constitutive equation (7) the slip rate is therefore
proportional to the dislocation density.
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One can interpret this result as follows: In a bulky solid metallic body normally
a high number of dislocation lines can be found in every part of the body. In this
case the dislocation density is everywhere different from zero and does not vary
much. Therefore it can be replaced by a constant, in which case the equations (7)
take the form of the standard equations (3). The standard model can therefore
be used in most cases and yields accurate results in simulations. In a situation
however, where the number of dislocations is small, or where the movement of
dislocations is restricted by various reasons, the refined constitutive equations (7)
must be used to obtain accurate results.

Since (7) is a system of partial differential equations, boundary conditions for
the functions εsp must be added to get a complete model. For a discussion of these
boundary conditions we must refer the reader to [2].
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Plasticity with hardening and softening: the Cam-Clay model in soil
mechanics

Gianni Dal Maso

(joint work with Antonio DeSimone and Francesco Solombrino)

Cam-Clay plasticity is a phenomenological model used to describe the inelastic
behaviour of fine grained soils. Some of its interesting features are its nonassocia-
tive character, and that it may lead to both hardening and softening behaviour,
depending on the loading conditions. The variables considered in the model are
the displacement u(t, x), the elastic and plastic strains e(t, x) and p(t, x), the stress
σ(t, x), and two internal variables z(t, x) and ζ(t, x). All these functions are de-
fined for positive time t and for x in the reference configuration Ω, a bounded
open set in Rn, n ≥ 2, with Lipschitz boundary. As it is typical in plasticity, the
stress is constrained to lie in a convex set K(ζ) of the space Mn×n

sym of symmetric
n×n matrices, whose size is controlled by a scalar parameter ζ and whose bound-
ary represents the yield surface. Given a time-dependent body force f(t, x), and
denoting the normal cone to K(ζ) at σ by NK(ζ)(σ), the equations summarising
the model are

(a) constitutive equations: σ(t, x) = Ce(t, x) and ζ(t, x) = V (z(t, x)),
(b) additive decomposition: 1

2 (∇u(t, x) +∇u(t, x)T ) = e(t, x) + p(t, x),
(c) equilibrium condition : −div σ(t, x) = f(t, x),
(d) stress constraint: σ(t, x) ∈ K(ζ(t, x)),
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(e) flow rule: ṗ(t, x) ∈ NK(ζ(t,x))(σ(t, x)),
(f) evolution of the internal variable: ż(t, x) = ̺ ⋆ [(̺ ⋆ trσ(t, ·)) tr ṗ(t, ·)](x),

accompanied by suitable boundary conditions. In the previous equations, C is
the isotropic elasticity tensor, V is a nondecreasing globally Lipschitz function
satisfying V (z) ≥ ζmin > 0 for every z ∈ R, div is the divergence operator with
respect to the space variable, ̺ is a smooth convolution kernel, and ⋆ denotes the
convolution with respect to the space variable. In the typical applications, ∂K(ζ)
are homothetic ellipsoids passing through the origin in the space Mn×n

sym ; more in
general, we assume that K(ζ) = ζK(1) for every ζ ≥ ζmin and that K(1) is a
compact convex body in Mn×n

sym containing 0.
The convolution kernel in the evolution of the internal variable has been in-

troduced for technical reasons: it ensures that a very weak convergence of σ and
ṗ implies strong convergence of the corresponding z. From the point of view of
mechanics, the convolution gives a nonlocal character to the evolution law for the
internal variable: it implies that the size of the yield surface at a point x is affected
by pressure and volumetric plastic strain rate in a small neighborhood of x, which
is not physically implausible.

The study of the spatially homogeneous case (see [1] and [3]) shows that, for
many initial data, the problem has no smooth solutions. We introduce a notion
of generalized solution, based on a viscoplastic approximation of Duvaut-Lions
type. Given a viscosity parameter ε > 0, the corresponding viscoplastic evolution
uε(t, x), eε(t, x), pε(t, x), zε(t, x), σε(t, x), ζε(t, x) satisfies (a), (b), (c), and (f);
condition (d) is dropped, while (e) is replaced by

(eε) regularized flow rule: ṗε(t, x) = Nε
K(ζε(t,x))

(σε(t, x)),

where Nε
K(σ, ζ) := 1

ε

(
σ − πK(ζ)(σ)

)
and πK(ζ) is the projection onto K(ζ). The

existence of a viscoplastic evolution is obtained using a fixed point argument.
An energy estimate allows us to prove the existence of change of variables

t = t◦ε(s), uniformly Lipschitz with respect to s, such that the rescaled functions
p◦ε(s, x) := pε(tε(s), x) are uniformly Lipschitz with respect to s, in a suitable
function space. This idea has already been used in [4, 5, 6] for rate independent
dissipative problems in finite dimension. The authors of the last two papers have
used the same idea to study a similar problem in infinite dimension [7].

The Ascoli-Arzelà Theorem provides the existence of a subsequence (not rela-
belled), such that

t◦ε(s) → t◦(s) and p◦ε(s, ·)⇀ p◦(s, ·) ,
the latter in a weak topology. A further argument, based on the uniqueness of the
solution to an auxiliary variational problem, shows that

e◦ε(s, ·) := eε(tε(s), ·)⇀ e◦(s, ·) and u◦ε(s, ·) := uε(tε(s), ·)⇀ u◦(s, ·) .
The compactness ensured by the presence of the convolutions in the evolution law
for the internal variable allows to prove that

z◦ε(s, x) := zε(tε(s), s) → z◦(s, x) ,
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uniformly with respect to x. It is then easy to see that (a), (b), (c) are satisfied
by the limit functions. As for (f), it holds only in a weak form since, in general,
the limit p◦(s, ·) is just a measure and this requires an ad-hoc definition for the
derivative.

Condition (d) is satisfied in the limit only for those values of s for which t◦(s)
is not locally constant. Condition (e) is replaced by

(eext) extended flow rule: ṗ◦(s, x) ∈ Next
K(ζ◦(s,x))(σ

◦(s, x)),

where Next
K(ζ)(σ) := NK(ζ)(σ) (the normal cone to K(ζ) at σ) if σ ∈ K(ζ), while

Next
K(ζ)(σ) := {λ

(
σ − πK(ζ)(σ)

)
: λ ≥ 0} if σ /∈ K(ζ). This result follows from an

energy-dissipation balance, which presents two main differences with respect to
the case of perfect plasticity [2]: first, the set K, and hence the plastic dissipation,
depend now on ζ◦(s, x); second, there is an additional dissipative term,

(1)

∫ S

0

∫

Ω

(
σ◦(s, x)− πK(ζ◦(s,x))(σ

◦(s, x))
)
: ṗ◦(s, x) dx ds ,

which accounts for viscous dissipation in those intervals where t◦(s) is locally con-
stant (the colon denotes the scalar product between matrices). A similar term
appears in [5], where a different evolution problem with nonconvex energy is stud-
ied through a viscosity approximation and time rescaling.
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Analytical aspects of relaxation for models in crystal plasticity

Carolin Kreisbeck

(joint work with Sergio Conti, Georg Dolzmann)

Modern mathematical approaches to plasticity lead to a sequence of non-convex
variational problems [5] for which the standard methods of the calculus of varia-
tions are not applicable. In order to derive information about macroscopic material
behavior one has to study the relaxation of the single incremental problems, which
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amounts to calculating quasiconvex envelopes. In this contribution we consider ge-
ometrically nonlinear crystal elasto-plasticity in two dimensions with one active
slip system and restrict to investigating the first time step under monotone load-
ing. Our focus is on the question of whether systems with an elastic energy leading
to large penalization of small elastic strains can be well-approximated by a model
based on the assumption of rigid elasticity [1, 4].
To be more precise let Ω ⊂ R2 be the reference configuration of a two-dimensional
elasto-plastic body, u : Ω → R2 the total deformation of the sample and F = ∇u
the deformation gradient. Accounting for finite strains yields a multiplicative de-
composition of F into an elastic part Fel and a plastic one Fpl, i.e. F = Fel Fpl.
The single slip system is characterized by the slip direction s ∈ S1 and the
slip-plane normal m ∈ S1 with s ⊥ m. Further let γ denote the slip strain
along (s,m). Then the system energy density consists of the three components
Wel(Fel) +Wpl(Fpl) + Diss(Fpl), where Wel(Fel) is the elastic energy density and
the sum of plastic and dissipated energy density is given by

Wpl(Fpl) + Diss(Fpl) =

{
|γ|p if Fpl = I+ γs⊗m
∞ else,

with p = 1 and p = 2 describing models without hardening and with linear hard-
ening, respectively. If we choose

Wel,ε (Fel) =
1

ε
dist2

(
Fel, SO(2)

)
, ε > 0

as the elastic energy density and optimize over all possible decompositions of F
with plastic component Fpl = I + γs⊗m, we end up with the condensed energy
density

Wε(F ) = inf
γ∈R

{1
ε
dist2

(
F (I− γ s⊗m) , SO(2)

)
+ |γ|p

}
,

which is the object of our interest. Notice that the multiplicative decomposition
of F combined with the pointwise minimization over the internal variables Fpl and
γ results in non-standard growth for Wε.
Considering the limit ε → 0 in We,ε(Fel) leads to an elastically rigid energy den-
sity and hence a simplified single-slip model. In [2, 3] the relaxation of the corre-
sponding energy density W was determined explicitly by proving the subsequent
representation formulas for the quasiconvex envelopes,

W qc
1 (F ) =

{ √
|F |2 − 2 if F ∈ N

∞ else,
W qc

2 (F ) =

{
|Fm|2 − 1 if F ∈ N

∞ else,

for p = 1 and p = 2, respectively. Here N = {F ∈ M2×2| detF = 1, |Fs| ≤ 1} is
the quasiconvex hull of the set where W is finite. Thus, under the hypothesis of
rigid elasticity macroscopic material behavior is analyzed completely. Now let us
summarize the results for the model with elastic energy.
In absence of hardening one can find curves along which Wε grows merely sublin-
early. Exploiting these directions in a subtle construction of appropriate rank-one
lines gives rise to this result.
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Theorem 1 ( [1, Theorem 1]). If p = 1 and ε > 0, the quasiconvex envelope of
Wε vanishes identically on N , i.e. W qc

ε (F ) = 0 for all F ∈ N .

Even if the pointwise limit limε→0Wε(F ) =W (F ) for all F ∈ M2×2 might suggest
the opposite, W is not a good approximation to Wε, just compare the statement
of Theorem 1 to W qc

1 . In terms of physics these findings reveal very soft material
behavior in response to a large class of applied loads.
The regularizing effect of linear hardening, however, renders an approximation
result via Γ-convergence possible.

Theorem 2 ( [4, Theorem 1.1]). Let p = 2 and X = {u ∈ W 1,1(Ω;R2) |
∫
Ω u = 0}

be endowed with the strong L1-topology. For ε > 0 we define the energy functionals
Eε : X → R and E : X → R by Eε[u] =

∫
ΩWε(∇u) dx and

E[u] =

{ ∫
Ω
W qc

2 (∇u) dx, if u ∈ W 1,2(Ω;R2) ∩X,∇u ∈ Na.e. in Ω
∞, else.

Then, Eε Γ-converges to E in X as ε → 0 and the corresponding compactness
result holds.

The proofs of compactness and the lower bound are widely based on careful al-
gebraic estimates exploiting the anisotropic structure of Wε. The crucial point
is the recovery of the incompressibility constraint in the limit. For this purpose
Conti, Dolzmann and Müller [6] recently developed a generalization of the classical
div-curl lemma for sequences whose div and curl are compact as functionals on
Lipschitz functions. For the construction of the recovery sequence we use local
laminates with position-dependent period and orientation.

References

[1] S. Conti, G. Dolzmann and C. Klust Relaxation of a class of variational models in crystal
plasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), 1735–1742.

[2] S. Conti and F. Theil Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal.
178 (2005), 125–148.

[3] S. Conti Relaxation of single-slip single-crystal plasticity with linear hardening, Multiscale
Materials Modeling, Fraunhofer IRB, Freiburg (2006), 30–35.

[4] S. Conti, G. Dolzmann and C. Kreisbeck Asymptotic behavior of crystal plasticity with one
slip system in the limit of rigid elasticity, in preparation.

[5] M. Ortiz and E. A. Repetto Nonconvex energy minimization and dislocation structures in
ductile single crystals, J. Mech. Phys. Solids 2 (1999), 397–462.

[6] S. Conti, G. Dolzmann and S. Müller The div–curl lemma for sequences whose divergence
and curl are compact in W−1,1, submitted to C. R. Acad. Sci. Paris Sér. I Math.

Macroscopic modeling of Magnetic Shape Memory Alloys

Ulisse Stefanelli

(joint work with F. Auricchio, A.-L. Bessoud, A. Reali)

In the last decade a new class of materials called magnetic shape memory alloys
(MSMAs) has been intensively investigated. MSMAs are metallic alloys presenting
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the superlastic and shape memory effects along with a giant magnetostrictive be-
havior (up to 5-8%) which is the effect of the ferromagnetic nature of martensites.
In particular, the martensitic phase in MSMAs presents the classical ferromagnetic
texture of magnetic domains. This mesostructure can be modified by magnetic
domain wall motion, magnetization rotation, and martensitic variant reorienta-
tion. We are focusing here on the magnetically uniaxial case, that is to say that
martensites are assumed to present just one magnetic easy axis. This is specifi-
cally the case of cubic-to-tetragonal martensitic transformations (as in Ni2MnGa,
FePd, FePt among others).

We aim at presenting a novel 3D description of the constitutive response of
MSMAs as the effect of changes in the internal magnetic field H, the total strain
σ, and the absolute temperature T . The linearized (small) strain ε is additively
decomposed into ε = C−1:σ+z where C is the elasticity tensor whereas z ∈ R3×3

dev is
the inelastic (or transformation) part and shall be regarded as the descriptor of the
martensitic structure of the material. Given variant z, we obtain the corresponding
(directed) easy axis as

Az :=
1

3
msat(1, 1, 1)

⊤ + A:z

where msat is the saturation magnetization, A is a 3-tensor of components

Aiii = −2

3

√
2

3

msat

εL
, Aijj =

1

3

√
2

3

msat

εL
, Aijk = 0

for i, j, k = 1, 2, 3, i 6= j 6= k,, and εL is the maximal strain modulus due to align-
ment of martensitic variants. In particular, we have thatAzi = msatei (coordinate
vector) for all pure variants zi obtained by compression along the respective co-
ordinate directions. A second internal variable is the local (signed) proportion
α ∈ [−1, 1] of magnetic domains oriented in the direction of the (directed) easy
axis. Additional modeling details and motivation are reported in [1] and the reader
is referred to [2, 3] for some relevant modeling discussions.

Our main modeling ansatz is that of directly connecting magnetic and mechan-
ical variables by prescribing the magnetization M of the material in terms of z
and α as

M = αAz.

In particular, we assume that the magnetic anisotropy of the material is suffi-
ciently strong so that the magnetization stays rigidly attached to the easy axes of
the martensitic variants and no magnetization rotation occurs [5]. Note that the
specific form of A is compatible with material symmetries and yields the natural
constraint |M | ≤ msat.

We prescribe the Gibbs free energy density of the material (of a constant and
normalized density) as

G(σ,H, T, z, α) := −1

2
σ:C−1:σ − σ:z + β(T )|z|+ h

2
|z|2 + IεL(z)

+
1

2δ
α2 + I[−1,1](α)− µ0H ·αAz.(1)
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The first line in (1) is exactly the Gibbs energy of the well-known Souza-Auricchio
model for non-magnetic SMAs [4]. In particular, T 7→ β(T ) ≥ 0 is a specific
function of the temperature, h > 0 is a hardening modulus, and IεL is the indicator
function of the ball {z ∈ R3×3

dev : |z| ≤ εL}.
The second line in (1) describes the magnetic behavior of the material. The

term −µ0H·αAz is nothing but the classical Zeeman energy term. Note that H
stands here for the internal magnetic field. In particular, H corresponds to the
sum of the applied external field and the corresponding induced demagnetization
field. The indicator function I[−1,1] is constraining the scalar α to take values in
[−1, 1] and 1/δ is a hardening parameter.

As for the dissipative character of the model, we assume that the inelastic strain
z dissipates energy whereas the variable α is non-dissipative. This is of course
disputable as the dissipation in α is, for instance, the basic dissipative mechanism
in ferromagnetic materials. Still, experiments show that, at small strains, the
dissipation in α is negligible with respect to that in z. Eventually, the dissipation
function associated with z is given by

D(ż) = sup
{
g:ż |F (g) ≤ 0

}
=

{
R|ż| if ż ∈ R3×3

dev

∞ else

Moving from these considerations, the internal variable α can be directly ob-
tained as a function of H and z as α = max

{
− 1,min

{
1, δµ0H ·A∗z

}}
.

We have proved existence of energetic solutions for both the constitutive rela-
tion problem and the three-dimensional quasi-static evolution problem (H given).
Moreover, we have checked the reduction of this model to the Souza-Auricchio
non-magnetic one by means of a rigorous Γ-convergence argument.
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Microstructures in Nematic Elastomers

Antonio DeSimone

Nematic elastomers consist of networks of cross–linked polymeric chains, each
of which contains nematic rigid rod-like molecules (nematic mesogens). The inter-
action between nematic order and the underlying rubbery solid results in unusual



774 Oberwolfach Report 14/2010

elastic properties. These arise from material instabilities (elastic shear banding)
which are closely reminiscent of mechanical twinning in crystalline solids.

We have presented some analytical and computational results which reproduce
rather well the available experimental evidence on nematic elastomers. Our analy-
sis is conducted both in the framework of finite deformations and using linearized
kinematics.

The basic formula for the analysis of the large deformation regime is the energy
density

(1) W (F) =
1

2
µa1/3

(
λ2min + λ2mid +

1

a
λ2max − 3a−1/3

)
, if detF = 1

and W (F) = +∞, if detF 6= 1. Here µ > 0 and a > 1 are material parameters,
λmax ≥ λmid ≥ λmin are the ordered singular values of the deformation gradient F
(principal stretches). The counterpart of (1) in the small strain regime is

(2) ϕ(E) = µ

[
(emax − γ)2 + (emid +

1

2
γ)2 + (emin +

1

2
γ)2
]
, if trE = 0

and ϕ(E) = +∞, if trE 6= 0. Here 0 < γ << 1 is a material parameter (a1/3 =
1 + γ), while emax ≥ emid ≥ emin are the ordered eigenvalues of the linear strain
E (principal strains). Energy (2) is obtained from

(3) ϕ(E) = inf
n∈S2

Φ(E,n) ,

where

(4) Φ(E,n) = µ|E−E0(n)|2 , if trE = 0

and Φ(E,n) = +∞ if trE 6= 0. This last expression was obtained in [6] by Taylor
expansion of the classical trace formula of Warner and Terentjev [8].

We have reported on recent results including an explicit formula for the quasi-
convex hull of (2) obtained in [2], which is the small-strain counterpart of the
result in [5], and a justification of (2) and of its quasi-convex hull as the small-
strain Γ-limit of (1), see [1].

Knowledge of the quasiconvex hull of (2) has been used to set up efficient
finite-element simulations of the mechanical response arising from global enengy
minimizers, in the same spirit as it was done in [3] in the large deformation regime.

A model for the dynamics of nematic elastomers in the small strain regime is
available [4] and it has been validated against experimental evidence [7]. This
allows us now to explore the issue of the dynamic accessibility of global energy
minimizers.
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Multiscale modeling of the mechanics of metallic and biological
polycrystals using ab initio theory in conjunction with continuum

homogenization

Dierk Raabe

We introduce concepts to predict and experimentally validate elasto-plastic crys-
tal mechanical problems using multiscale models which proceed in part from the
level of quantum mechanics. The presentation starts with an concise introduction
to crystal plasticity finite element modeling with examples from small and large
scales. Concerning the use of quantum mechanical models two main examples will
be presented thereafter. The first one is the study of the effective elastic prop-
erties of polycrystals using a quantum mechanical approach in conjunction with
different types of continuum-based mechanical homogenization schemes (Hershey;
fast Fourier transform approaches; finite element method). The predictions are
compared to experimentally observed elastic constants considering measured crys-
tallographic textures and microstructures. As example materials we use a set of
beta-Ti-Nb alloys (BCC) with different composition and Zener anisotropy ratios
. In a first step the elastic single crystal constants are for all alloys (BCC crys-
tal structure) calculated using an ab-initio approach based on density functional
theory (DFT) in the generalized gradient approximation (GGA-PBE96). In the
second step these constants are used as input data for the calculation of the ef-
fective polycrystal stiffness using different homogenization methods. As second
example we propose a hierarchical model for the prediction of the elastic prop-
erties of mineralized lobster cuticle using ab initio calculations. The prediction
of the elastic properties of chitin and the ensuing hierarchical homogenization are
performed in a bottom-up order in order to identify the cuticle properties at all hi-
erarchy levels. The mechanically relevant parts of lobster cuticle consist of planes
reinforced with chitin-protein fibers embedded in a matrix consisting of calcium
carbonate nanoparticles and proteins. The planes are stacked over each other and
gradually rotate along the normal direction of the cuticle to form a twisted ply-
wood structure. In addition, the cuticle has a canal pore system which pierces it
through its thickness. The canals have the shape of twisted ribbons with elliptical
cross section and are arranged in a hexagonal array so that the cuticle resembles
a honeycomb-like structure. We compare the model predictions to experimental
data for the Young moduli and the Poisson’s ratios of wet lobster endocuticle. It
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is found that the dominant factors determining the cuticle stiffness are the mineral
content, the specific microstructure of the mineral-protein matrix and the in-plane
area fraction of the pore canals.
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From kinetic relations to kinetic equations

Lev Truskinovsky

(joint work with Anna Vainchtein)

In this talk we discussed the concept of kinetic equations representing a natural
extension of the more conventional notion of a kinetic relation. Algebraic kinetic
relations, widely used to model dynamics of dislocations, cracks and phase bound-
aries, link the instantaneous value of the velocity of a defect with an instantaneous
value of the driving force. The new approach [1] generalizes kinetic relations by
implying a relation between the velocity and the driving force which is nonlocal in
time. To make this relations explicit one needs to integrate the system of kinetic
equations.

We illustrate the difference between kinetic relation and kinetic equations by
working out in full detail a prototypical model of an overdamped defect in a one-
dimensional discrete lattice. We show that the minimal nonlocal kinetic descrip-
tion containing now an internal time scale is furnished by a system of two ordinary
differential equations coupling the spatial location of defect with another internal
parameter that describes configuration of the core region. The aim of these equa-
tions is to capture the transient phases of the defect evolution in response to
nonsteady driving.

Martensitic phase boundaries are particularly convenient for the demonstration
of the main principles of our approach because these plane defects may be ade-
quately represented already in one-dimensional models. To emphasize ideas we
consider the simplest case of a phase boundary with overdamped dynamics. At
the microscale, the analysis of the non-steady evolution of the core region of such
phase boundaries requires a study of a dynamical system with an infinite number
of degrees of freedom representing different atomic bonds. The key to our method
is the assumption that the dynamics of only a few bonds located in the core re-
gion has to be resolved fully. The other bonds remain confined to their respective
potential wells, and their relaxation can be treated as instantaneous.

To be more specific, consider an infinite chain of particles, connected to their
nearest neighbors (NN) through viscoelastic springs and to their next-to-nearest
neighbors (NNN) by elastic springs. Suppose that in the undeformed configuration
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the NN and NNN springs have lengths ε and 2ε, respectively. Let un(t) denote the
displacement of nth particle at time t with respect to the reference configuration.
We associate with the deformation of nth NN spring a discrete measure of strain
wn = (un − un−1)/ε. For the viscoelastic NN springs we assume the following
constitutive relation for the force:

(1) fNN(w, ẇ) = φ′NN(w) + ξẇ,

where ξ > 0 is the viscosity coefficient. To describe martensitic phase transitions
the energy φNN(w) must be at least a double-well potential; to obtain explicit
solutions, we assume that this function is biquadratic:

(2) φNN(w) =






1
2µw

2, w ≤ wc

1
2µ(w − a)2 + µa

(
wc −

a

2

)
, w ≥ wc.

To simplify calculations further, we assume that the NNN interactions are linearly
elastic: fNNN(ŵ) = 2γŵ. Here we defined ŵn = (wn+1+wn)/2 as the strain in the
NNN spring connecting (n+ 1)th and (n− 1)th particles.

The dynamics of the chain is governed by the following system of ordinary
differential equations:

ρεün =µ[wn+1 − wn − θ(wn+1 − wc)a+ θ(wn − wc)a]

+ γ(wn+2 + wn+1 − wn − wn−1) + ξ(ẇn+1 − ẇn).
(3)

Here ρ > 0 is the mass density of the chain and θ(x) is the unit step function. To
ensure stability of the chain we require that E = µ+4γ > 0 where E is the homog-
enized macroscopic elastic modulus; we also assume that the NNN interactions are
of ferromagnetic type, meaning that γ ≤ 0. Our main interest is the overdamped
limit when ξ >> ε

√
ρE. Then the dimensionless system equations reads

(4) ẇn − ẇn+1 = σ̂(wn+1)− σ̂(wn) +D(wn+2 + wn+1 − wn − wn−1),

where σ̂(w) = w− θ(w−wc) is the normalized macroscopic stress-strain law. The
dimensionless parameter D = −γ/E ≥ 0 measures the relative strength of NN and
NNN interactions. The system (4) can be “integrated”

(5) ẇn = D(wn+1 − 2wn + wn−1)− σ̂(wn) + σ.

where σ = σ(t) is the time-dependent applied stress.
Our goal is to approximate this infinite-dimensional dynamical system of a

gradient flow type by a finite-dimensional reduced dynamical system of the same
type

(6) ν̇ = −α∇Φ(ν;G(t)),

where α is the effective mobility matrix. The gradient is taken with respect to
the order parameter ν ∈ RK where the integer-valued parameter K defines the
dimensionality of the reduced system. After the solution of the vector equation
(6) is known, the approximation of the dynamics of the discrete field should be
recoverable from the auxiliary relations wn(t) = wn(ν1(t), . . . , νK(t)) describing
the recovery of relaxed “non-order-parameter” variables.
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Assume first that G is given and minimize the energy with respect to all strain
variables other than w−1, w0 and w1. We obtain the following recovery relations

(7) wn =






wc +G+ 1/2 + (w−1 − wc −G− 1/2)eλ(n+1), n ≤ −1
w0, n = 0
wc +G− 1/2 + (w1 − wc −G+ 1/2)eλ(1−n) n ≥ 1.

The remaining variables w−1(t), w0(t) and w1(t) satisfy the equations

ẇ−1 = (−2D − 1 + e−λD)w−1 +Dw0 + (wc +G+ 1/2)(1 +D(1− e−λ))

ẇ0 = (−2D − 1)w0 +Dw1 +Dw−1 + wc +G+ 1/2

ẇ1 = (−2D − 1 + e−λD)w−1 +Dw0 + (wc +G− 1/2)(1 +D(1− e−λ))

(8)

One can see that the equations governing the dynamics of w−1(t) and w1(t) differ
only by a constant term in the right hand side. This allows us to reduce (8) to a
two-dimensional system for

(9) x(t) = w0(t), y(t) =
w−1(t) + w1(t)

2
.

The two variables: x(t), describing the dynamics of the transforming spring, and
y(t), describing the average strain in the core region, must satisfy the following
system of equations:

(10) ẋ = (−2D − 1)x+ 2Dy + wc +G+ 1/2

(11) ẏ = Dx+ (−2D − 1 + e−λD)y + (wc +G)(1 +D(1− e−λ)).

This system of kinetic equations can be reformulated as a gradient flow (6) and
turns out to be an excellent approximation of the full infinite-dimensional dynamics
not only for G = const but also in a wide range of non-steady regimes when
G = G(t) (see [1] for the details).
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Pinning of interfaces in random media

Patrick W. Dondl

(joint work with Nicolas Dirr, Michael Scheutzow)

Problems of interface evolution in heterogeneous media arise in a large number
of physical models. Common to such models is a regularizing operator, for example
line tension, and the competition between an external applied driving force F and
a force field f(x, y) describing the inhomogeneities. Assuming a viscous law for the
relation between the driving force and the velocity of the interface, an important
question is whether rate independent hysteresis can emerge from the interaction
between the heterogeneous force field and the regularizing operator.



Microstructures in Solids: From Quantum Models to Continua 779

Here, we consider a model for the evolution of an interface through a random
field of obstacles. Let n ∈ N, n ≥ 1. Let (Ω,F ,P) be a probability space, ω ∈ Ω.
We model the interface as the graph (x, u(x, t, ω)) of a function u : Rn ×R×Ω →
R moving through a field f(x, y, ω) of (soft) random obstacles and driven by a
constant force F . More precisely, we consider the semi-linear PDE

∂tu(x, t, ω) = △u(x, t, ω) + f(x, u(x, t, ω), ω) + F on Rn,(1)

u(x, 0, ω) = 0.(2)

The random nonlinearity f is constructed in the following way: We consider the
obstacle function φ ∈ C∞(Rn × R) to have the properties φ ≤ 0, φ(x, y) = 0 for
||(x, y)|| > r1, φ(x, y) ≤ −1 for ||(x, y)||∞ ≤ r0, with r1 >

√
nr0 > 0, thus fixing

a ‘shape’ for the individual obstacles. Here, ||·|| denotes the Euclidean norm on
Rn+1, ||·||∞ denotes the maximum-norm. The heterogeneity f is now given as
the sum over individual obstacles with centers {(xk(ω), yk(ω))}k∈N, and strength
fk(ω) ≥ 0, i.e.,

f(x, y, ω) =
∑

k

fk(ω)φ(x− xk(ω), y − yk(ω), ω).

The laws of xk, yk, and fk will be specified below.
In the physics literature, a parabolic semi-linear equation with random input

like (1) is sometimes called Quenched Edwards-Wilkinson model. It is motivated
in the following way: A very basic model for an interface (phase boundary, dislo-
cation line in its slip plane etc) moving through an array of random obstacles (e.g.
impurities, other dislocation lines) in an over-damped limit (inertial effects are
neglected) is the gradient flow of the area functional plus a random bulk term. If
so-called inner variations are considered, the resulting evolution law is forced mean
curvature flow, where the forcing is random. The model is called “quenched,”
because the random field does not explicitly depend on time. For forced mean
curvature flow and applications, in particular in the case of periodic forcing, we
refer to [1, 2, 5, 7]. If the interface is a graph and the gradient is sufficiently small,
the evolution by forced mean curvature flow for the graph can be approximated
heuristically by the semi-linear parabolic PDE (1). These kinds of problems have
found considerable interest in the physics community, see e.g. [6].

The goal is to construct, for some F > 0, a stationary supersolution v to (1)
satisfying v ≥ 0. If such a supersolution exists, by the comparison principle
for parabolic equations, the evolving solution u will always remain below v—the
interface is pinned. Such pinning of an interface leads to a rate independent
hysteresis in the physical system.

We first pose a condition on the distribution of obstacles. The condition basi-
cally states that there is a uniform lower bound for finding an obstacle of some
strength (also bounded from below) in a box of volume 1, independent of its shape
or position, and independently for pairwise disjoint boxes.

Condition 1. We assume from now on that the random distribution of obstacle
sites {(xk, yk)}k∈N ⊂ Rn × [r1,∞) and strength {fk}k∈N ⊂ [0,∞) satisfy
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(1) (xk, yk) are distributed according to an n+1-dimensional Poisson process
on Rn × [r1,∞) with intensity λ > 0.

(2) fk are i.i.d. strictly positive random variables which are independent of
{xk, yk}.

Note that there are no obstacles crossing the line {y = 0}, so at t = 0 the
interface with initial condition (2) only sees the external driving force. We thus
have ∂tu ≥ 0 for all times.

Theorem 1 below depends crucially on the existence of an infinite cluster of
open sites in Zn+1 that is the graph of a Lipschitz function, for site percolation
with P{Site open} > pc independently for all sites. This result is proved in [3].

The following result asserts the existence of a stationary positive supersolution
to (1).

Theorem 1 (Existence of a pinned solution). If Condition 1 is satisfied, then
there exists F ∗ > 0 and a positive v : Rn × Ω → [0,∞) so that 0 ≥ △v(x, ω) +
f(x, v(x, ω), ω) + F ∗ a.s., i.e., any solution to (1) with initial condition (2) gets
pinned.

The proof consists of a piecewise construction of the supersolution, and an
amount of tedious, but simple, algebra. It can be found in [4].
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An efficient approach to numerical solutions of multi-well variational
problems

Martin Kruž́ık

(joint work with Sören Bartels)

Let the specimen representing an elastic body occupy a domain Ω ⊂ Rn. The
stress-free parent austenite is a natural state of the material which makes it, in the
context of continuum mechanics, a canonical choice for the reference configuration.
As usual, y : Ω → Rn denotes the deformation and u : Ω → Rn the displacement,
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which are related to each other via the identity y(x) = x + u(x), where x ∈ Ω.
Hence the deformation gradient is F := ∇y = I + ∇u. Here, I ∈ Rn×n is the
identity matrix and ∇ the gradient operator.

The total stored energy in the bulk occupying, in its reference configuration,
the domain Ω, is then

(1) V (y) :=

∫

Ω

ϕ(∇y(x)) dx.

A common variational principle in continuum mechanics is the minimisation of
the stored energy. Due to the coexistence of several variants at low temperature, ϕ
has multiple minima and thus a multi-well character. We consider an isothermal
situation with several variants coexisting. Here ϕ is a nonnegative multi-well
energy density with zeros precisely at SO(n)Uℓ, ℓ = 0, . . . ,M , where SO(n) denotes
the group of proper rotations in n dimensions and Uℓ the stretch matrices of
particular material phases/variants. Due to nonconvexity, minimising sequences of
V tend to develop, in general, finer and finer spatial oscillations of their gradients.
In other words, the deformation gradient often tends to develop spatial oscillations
due to the lack of (quasi-)convexity of the stored energy density. These oscillations
are difficult to model in full detail. The oscillations correspond to the development
of fine microstructures when the stored energy is to be minimised. The minimum
of V , under specific boundary conditions for y, is usually not attained in a space of
functions. Therefore one needs to extend the notion of a solution. Young measures
are here an appropriate tool. They are capable of recording, on a mesoscopic
level, the limit information of the finer and finer oscillating deformation gradient
as we move towards the macroscopic scale. This can be described, for a current
macroscopic point x ∈ Ω, by a probability measure νx on the set of deformation
gradients, that is, matrices in Rn×n. Then the mesoscopic stored energy reads

V̄ (y, ν) :=

∫

Ω

∫

Rn×n

ϕ(A)νx(dA) dx ,

where ν = {νx}x∈Ω is a gradient Young measure with the first moment ∇y and
the set of all gradient Young measures is denoted by G(Ω;Rn×n).

Dissipation due to phase transitions. In order to describe dissipation due to
transformations we adopt the (to some extent rather simplified) standpoint that
the amount of dissipated energy associated with a particular phase transition be-
tween austenite and a martensitic variant or between two martensitic variants
can be described by a specific energy (of the dimension J/m

3
= Pa). For an

explicit definition of the transformation dissipation, we need to identify the par-
ticular phases or phase variants. To this behalf, we define a continuous mapping
L : Rn×n → △, where

△ :=

{
ζ ∈ R1+M

∣∣ ζℓ ≥ 0 for ℓ = 0, . . . ,M and

M∑

ℓ=0

ζℓ = 1

}

is a simplex withM+1 vertices, withM being the number of martensitic variants.
Here L is related with the material itself and thus has to be frame indifferent. We
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assume, beside ζℓ ≥ 0 and
∑M

ℓ=0 ζℓ = 1, that the coordinate ζℓ of L(F ) takes the
value 1 if F is in the ℓ-th (phase) variant, that is, F is in a vicinity of the ℓth well
SO(n)Uℓ of ϕ, which can be identified by the stretch tensor F⊤F being close to
U⊤
ℓ Uℓ. If L(F ) is not in any vertex of △, then it means that F is in the spinodal

region where no definite phase or variant is specified. We assume, however, that the
wells are sufficiently deep and the phases and variants are geometrically sufficiently
far from each other so that the tendency for minimisation of the stored energy will
essentially prevent F to range into the spinodal region. Thus, the concrete form
of L is not important as long as L enjoys the properties listed above. We remark
that L plays the role of what is often called vector of order parameters or a vector-
valued internal variable.

For two states q1 and q2, with qj = (yi, νi, λi) for j = 1, 2, we now define the
dissipation due to martensitic transformation which “measures” changes in the
volume fraction λ ∈ L∞

(
Ω;RM+1

)
. This dissipation is given by

(2) D (q1, q2) :=

∫

Ω

|λ1(x)− λ2(x)|RM+1 dx ,

where λj(x) :=
∫
Rn×n L(s)νj,x(ds) and |·|

RM+1 is a norm on RM+1.
In experiments, the specimen is subjected to external loads. In order to simplify

our exposition, we consider only dead body forces and surface forces. We assume
that we are given two disjoint sets Γ0,Γ1 ⊂ ∂Ω, where the (n − 1)-dimensional
Hausdorff measure of Γ0 is positive. We consider Dirichlet boundary conditions
y = y0 on Γ0 for some prescribed (time-independent) mapping y0. As for the
surface forces acting on Γ1, we define a linear functional

(3) L(q) :=

∫

Ω

f(x) · y(x) dx+

∫

Γ1

g(x) · y(x) dS ,

where f : Ω → Rn and g : Γ1 → Rn are the densities of volume and surface forces
acting on the material, respectively. Below, we write L = L(t, q) to indicate the
possibility of temporally changing forces.

From now on let y ∈ Y (Ω;Rn) :=
{
y(t) ∈ W 1,p (Ω;Rn)

∣∣ y = y0(t) on Γ0

}
and

Q := Y (Ω;Rn)× G(Ω;Rn×n)× L∞(Ω;RM+1). We introduce

Q :=
{
q ∈ Q

∣∣ λ = L • ν, ∇y = I • ν
}
,

where, for almost all x ∈ Ω, [L • ν](x) :=
∫
Rn×n L(s)νx(ds); I • ν is defined

analogously.
The existence of a rate-independent evolution [4] commonly proceeds via time-

discretisation. Thus, in a first step, a sequence of incremental problems is defined.
We employ a time discretization 0 = t0 < . . . < tn = T via a time step τ > 0,
chosen in such a way that N = T/τ ∈ N. Let an initial state q0τ ∈ Q be given. For
1 ≤ k ≤ N we find qkτ ∈ Q by solving

(4) minimize I(tk, q) +D
(
qk−1
τ , q

)
, subject to q ∈ Q .

In this contribution, we propose to replace the set of gradient Young measures
in this minimization by the set of Young measures satisfying the Jensen inequality



Microstructures in Solids: From Quantum Models to Continua 783

for all minors only. A suitable discretization then leads to a linear programming
problem with linear constraints [1] for which the first order optimality conditions
are known and we use them in an effective numerical algorithm [2] for its solution
[3].

Acknowledgement: MK’s long-term research in this field has been supported by
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From Damage to Delamination in Nonlinearly Elastic Materials at
Small Strains

Marita Thomas

(joint work with Alexander Mielke and Tomáš Roub́ıček)

Damage means the creation and growth of cracks and voids on the micro-level
of a solid material. This phenomenon can be described by means of so-called
continuum damage mechanics, which was introduced by L.M. Kachanov in 1958,
see e.g. [1] in english. Within this approach an inner variable, the damage variable
z : [0, T ]×Ω → [0, 1], is incorporated to the constitutive law, where it reflects the
changes in the elastic behaviour due to damage. Here, [0, T ] denotes a time interval
and Ω ⊂ Rd the reference domain of the body. Moreover, z(t, x) = 1 stands for
no damage and z(t, x) = 0 for complete damage in the point (t, x) ∈ [0, T ] × Ω.
With similar ideas also the delamination, i.e. the micro-cracking, of a compound
along an interface ΓC can be described. Then, z : [0, T ] × ΓC → [0, 1] denotes
the delamination variable, which accounts for the constitution of the bonding
along the interface. In many engineering contributions (e.g. in [2]) an interface is
understood as the limit of a thin medium following its own constitutive law. This
was our motivation to mathematically rigorously perform such a limit passage in
order to obtain a delamination model as the limit of damage models [3, 4]. We
consider a three-specimen-sandwich-structure, where the outer two constituents
are perfectly unbreakable and the middle component experiences partial damage.
This means that there is a lower bound εγ ∈ (0, 1) for a positive γ, such that
z(t, x) ∈ [εγ , 1] for a.e. (t, x) ∈ [0, T ] × Ωε

D. As ε → 0 the lower bound on the
damage variable as well as the thickness 2ε of the damageable component Ωε

D

tend to 0, so that the limit model describes delamination along the interface ΓC.
The limit passage is done in a double limit. Since the damage model contains a
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regularization
∫
Ωε

D

κ
ε |∇z|r dx, r ∈ (d,∞), the first limit ε → 0 leads to a model

involving the delamination gradient. Due to this, the delamination variable can
attain values between 0 and 1. This property differs from those of crack-models
based on Griffith’ fracture criterion [5], as studied e.g. in [6, 7, 8]. To overcome
this discrepancy the gradient is suppressed in a second limit κ → 0. In fact, this
second limit model is of Griffith-type. In particular, both delamination models
incorporate transmission and unilateral contact conditions along the interface:

z
[[
u
]]
= 0 and

[[
u · n1

]]
≥ 0 a.e. on ΓC ,(1)

which result from the following ansatz for the stored energy density on Ωε
D

WD(e, z) := zW (e) + |max{−e11, 0}|p .(2)

Here, W : Rd×d
sym → R is a convex, coercive stored energy density, e is the linearized

strain tensor and e11 its’ 11-component. The multiplicative link between the dam-
age variable and the strains is a common ansatz for damage in engineering, but
it leads to a lack of uniform coercivity as ε → 0. This complicates the derivation
of the transmission condition and requires the assumption r > d. Moreover, the
unilateral contact condition can be obtained due to the anisotropic term.

The analysis is done using the so-called energetic formulation. This approach
is solely based on an energy functional Eκ

ε : [0, T ] × Q → R ∪ {∞} and on a
dissipation potential Rε : Z → [0,∞] which takes into account the evolution of
the inner variable. Thereby Q = U ×Z is a suitable state space with U as the set
of admissible displacements and Z as the set of admissible inner variables being
Banach spaces in our setting. Rate-independence is featured by the positive 1-
homogeneity of Rε, i.e. Rε(0) = 0 and Rε(αv) = αRε(v) for all α ∈ (0,∞] and all
v ∈ Z. Moreover, the damage process is assumed to be unidirectional, i.e. healing
is forbidden. With a constant ̺>0, this is featured by

Rε(v) :=

∫

Ωε
D

Rε(v(x)) dx , where Rε(v) :=

{ ̺
ε |v| if ̺ ≤ 0 ,
∞ else .

Under the assumption of Eκ
ε being convex with respect to the linearized strain

tensor e(u) := 1
2 (∇u + ∇u⊤) the existence of so-called energetic solutions was

proven in [9]. Thereby, an energetic solution q = (u, z) : [0, T ] → Q for a rate-
independent system (Q, Eκ

ε ,Rε) is characterized by satisfying the global stability
condition (S) and the global energy balance (E) for all s, t ∈ [0, T ]:

for all q̃ = (ũ, z̃) ∈ Q holds : Eκ
ε (t, q(t)) ≤ Eκ

ε (t, q̃) +Rε(z̃−z(t)) ,(S)

Eκ
ε (t, q(t)) + DissRε

(z, [s, t]) = Eκ
ε (s, q(s)) +

∫ t

s
∂ξEκ

ε (ξ, q(ξ)) dξ with(E)

DissRε
(z, [s, t]) :=sup

{∑N
j=1 Rε(z(ξj)−z(ξj−1)) | s=ξ0<. . .<ξN = t, N ∈N

}
.

The convergence of the systems is proven using the abstract result [10, Th.
3.1], which states the convergence of (subsequences of) energetic solutions of the
approximating systems to an energetic solution of the limit system. Compared
to the original notion of Γ-convergence of static functionals, in the context of
rate-independent processes it is not sufficient, if the energy functionals and the
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dissipation potentials Γ-converge. Rather the properties (S)& (E) have to be pre-
served under convergence. Amongst other properties this can be guaranteed by
the validity of Γ-lim inf-inequalities for Eκ

ε and Rε, the convergence of the partial
time-derivatives of the energy functionals and the existence of so-called mutual
recovery sequences. The last property is extraordinarily difficult to verify in our
setting, not only due to the discontinuity of the dissipation potential but also due
to the fact that conditions (1) require a strong interplay between the sequence of
damage/delamination variables and the sequence of the displacements.
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Across multiscales in solid mechanics via Γ-convergence in the context
of quasistatic evolution

Tomáš Roub́ıček

This contribution addresses the quasistatic initial-value problem for the following
equality/inclusion:

∂R
(dz
dt

)
+ ∂zE(t, u, z) ∋ 0, ∂uE(t, u, z) = 0, z(0) = z0,(1)

with u ∈ U a “fast” variable, z ∈ Z a “slow” variable with an activated evolution,
U and Z Banach spaces, E : [0, T ]× U ×Z → R ∪ {∞} a stored-energy potential,
R : Z → R+ ∪ {∞} a convex (positively) homogeneous degree-1 dissipation pseu-
dopotential, ”∂” denoting (partial) subdifferentials or Gâteaux differentials. Due
to the mentioned homogeneity degree-1, the problem (1) is rate independent in
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the sense that any monotone rescaling of time scale does not influence its (set of)
solution(s). We will briefly refer to (1) as the (U×Z, E ,R, z0)-problem.

If also E(t, ·, ·) is convex, the usual definition of weak solution to (1) is essentially
equivalent to the so-called energetic formulation, i.e. beside the initial condition
z(0) = z0, the couple (u, z) is to satisfy the energy equality and stability:

E
(
T, u(T ), z(T )

)
+VarR(z; 0, T ) = E

(
0, u0, z0

)
+

∫ T

0

∂tE(t, u(t), z(t)) dt,(2a)

∀v ∈ Z, t ∈ [0, T ] : E
(
t, u(t), z(t)

)
≤ E

(
t, u(t), v

)
+R

(
v − z(t)

)
(2b)

with VarR(z; 0, T ) denoting the variation of z : [0, T ] → Z with respect to R de-
fined as sup0≤t0<t1<...<tI≤T

∑
i R(z(ti)−z(ti−1)). The energetic formulation (2),

invented by Mielke at al. [12, 13], works also in the nonconvex case, is derivative-
free, and expresses a competition between minimisation of stored energy and max-
imisation of dissipation. This is an applicable concept for a lot of activated pro-
cesses in mechanics (as plasticity, damage, delamination, or phase transformation).

Considering of sequences of functionals {En}n∈N and {Rn}n∈N, it was observed
in [9] that their Γ-convergence respectively to some E and R does not ensure con-
vergence of the corresponding energetic solutions of (U×Z, En,Rn, z0)-problems
towards energetic solutions of (U×Z, E ,R, z0)-problem, and disclosed that this
goal needs the (Γ-lim inf)-parts combined with a so-calledmutual-recovery-sequence
(MRS) condition, i.e. for any sequence (tn, un, zn) → (t, u, z) and for any (ũ, z̃) ∈
U×Z, one is to find another sequence {(ũn, z̃n)}n∈N such that

lim sup
n→∞

(
En(tn, ũn, z̃n)+Rn(z̃n−zn)−En(tn, un, zn)

)
(3)

≤ E(t, ũ, z̃)+R(z̃−z)−E(t, u, z).
Explicit construction of mutual recovery sequences {(ũn, z̃n)}n∈N thus represents
the main task. In accord to [8], one can distinguish several typical cases:

(A) unidirectional processes (i.e. R = R0 + δK with R0 continuous and K a
cone) and E(t, ·, ·) quadratic; then a so-called binomial trick applies – a
prominent example is the linearised plasticity and a nontrivial illustration
of this technique is limit of the hardening model towards the perfect-
plasticity Prandtl-Reuss model if hardening parameters approach 0, cf. [2].

(B) unidirectional processes with general nonquadratic E(t, ·, ·); this may, in
general, be very difficult and an explicit construction of MRS’s is to be
made case by case; an example is passage from a partial damage to a
complete damage [4, 11], or from adhesive delamination [5] or from a
damage on a thin layer [10] to a Griffith-type brittle delamination [14].

(C) R is continuous in the topology in which the sub-level sets of E(t, ·, ·) are
compact – then and recovery sequence for {En}n∈N serves as a MRS.

Situation for (C) occurs, e.g., in multiscale modelling: the sequence {En} typ-
ically arises by some higher-gradient theory that vanishes with n → ∞ and the
minimisers typically develop a microstructure (often modelled by Young measures
solving relaxed problems). The relaxed problems can effectively be solved on a
“mesoscopical”-level and simultaneously justified from a “microscopical”-level by
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higher-gradient-type regularizations. This concerns e.g. models of shape-memory
alloys on microscopical level in [1] limited to mesoscopical level [3, 6, 7].
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Continuum and discrete dynamic models with high contrast via
“non-classical” homogenization

Valery P. Smyshlyaev

Classical homogenization when specialized to dynamic problems corresponds to a
low frequency regime, where the wavelength is much larger than the size of the
heterogeneity. Taking as an example linear elastic matrix-inclusion periodic com-
posite with uniformly positive and uniformly bounded (in other words, moderately
contrasting) elasticity tensors and densities, the resulting homogenized equations
are well known to describe waves in an “effective” uniform medium retaining all
the “classical” properties (the uniform positivity, symmetry of the elasticity tensor,
etc). Such a classical effective medium hence propagates waves of any frequency in
any direction, with appropriate speeds and polarizations (generally three, in three
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dimensions). Classical homogenization is hence intrinsically incapable of account-
ing for such effects as dispersion and localization due to the micro-heterogeneity
(in particular due to the so-called “micro-resonances”). Remark that the classical
homogenization has numerous variants, for linear and nonlinear, vector and scalar,
(non-)periodic and stochastic, continuum and discrete models, with the common
feature being a uniform ellipticity and boundedness (i.e. non-degeneracy) which
ensures the compactness properties for the solutions uε(x, t) as ε → 0 and their
ultimate (weak) convergence to homogenized solutions u0(x, t).

One way to account further for the effect of the heterogeneity on dynamics, still
within the low-frequency regime, is to incorporate higher order terms into the ho-
mogenization, i.e. to seek correctors to the homogenized equation with respect to
the small parameter ε which is in this context the ratio of the heterogeneity (e.g.
the size of the periodicity cell) and the wavelength (say in the matrix). One way for
achieving this was proposed (in a static context) in our earlier work [1] via a hybrid
of two-scale asymptotic and variational approaches, which resulted in a well-posed
higher-order in ε homogenized equation with higher-order error bounds obtained.
The higher-order terms display the dependence on higher derivatives of the macro-
scopic strain, consistently with phenomenologically used “strain-gradient” models
(we refer to our earlier work [2] and further references therein for homogenization
of such models). This was extended to some nonlinear regimes [3] and to the
“beyond all orders” (exponential) homogenization [4].

Allowing higher contrasts in the components’ properties extends dramatically
the range of the effects observed via developing an appropriate version of a “non-
classical” homogenization. Consider e.g. the case when the densities are compa-
rable but the inclusion is considerably softer than the matrix, with the underlying
small parameter of the contrast δ (which is crudely the ratio of the stiffnesses).
Because of the high contrast, the same frequency would generate highly contrast-
ing wavelengths λI and λM in the inclusions and the matrix respectively (in fact,
λI/λM ∼ δ1/2). Hence, increasing the frequency (equivalently, decreasing the
wavelengths) from “very low” up we eventually reach such a regime when the
wavelength in the matrix is still much larger than the periodicity size (i.e.. still a
“low frequency” regime for an observer in the matrix), while the wavelength in the
inclusions already becomes comparable to the size of the inclusion (equivalently,
the “resonance” regime). Selecting the macroscale (“order one”) comparable to
λM , corresponds to ε ∼ λI/λM ∼ δ1/2, or δ ∼ ε2, which is a “critical” scal-
ing extensively studied in the literature (sometimes called “double porosity”-type
scaling, for its appearance in models of flow in fractured porous rocks).

Setting δ = ε2 one observes that, asymptotically for ε→ 0, the solution uε(x, t)
retains (although in the inclusion only) the dependence on the “fast” variable, i.e.

uε(x, t) ∼
{
u0(x, t) in matrix
u0(x, t) + v(x, x/ε, t) in inclusion,

where v(x, y, t) is periodic in the “microscopic variable” y, being supported on the
inclusion and vanishing on its boundary. One then ends up with (u0, v) solving
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a coupled “two-scale” limit problem, see [10] and further references therein. The
limit problem allows an equivalent (two-scale) variational formulation with a corre-
sponding well-defined two-scale self-adjoint limit operator, having an explicitly de-
scribed limit spectrum displaying (upon an uncoupling) a band-gap structure. The
convergence is rigorously established by means of two-scale spectral and operator
convergence and associated (two-scale) compactness, cf. [11, 12]. The uncoupling
of the limit problem in the frequency domain displays highly nonlinear dependence
of the macroscopic solution on the spectral parameter (i.e. the frequency). This
gives rise to both the band-gap effect (the presence of ranges of frequencies for
which waves fail to propagate i.e. stay localized, see e.g. [7, 8] with analysis of
localized modes emerging due to defects in high-contrast periodic media) and high
dispersion in the bands (close to their right ends, i.e. the eigenfrequencies of the
inclusions or “micro-resonances”, see [9]). An effect of high contrasts not only in
frequency but also in density is addressed in [13], and the effect of nonlinearity
(including non-convexity) is studied in detail in [14] in the context of variational
(static) problems. One can consider similar high-contrast discrete models, with
(in particular) a hybrid two-scale limit system: a continuum homogenized matrix
coupled to discrete microresonances in the “inclusions”.

If the uncoupling is done in the time domain rather than in the frequency
domain, the nonlinear dependence on frequency translates (e.g. via the Laplace
transform) into the time-nonlocality, i.e. to the well-known memory effect via
homogenization. (See also e.g. [5] for other instances of the memory effect via
homogenization.) Analogous spatial nonlocality was observed and analyzed in [6]
in the case of highly anisotropic fibers. By analogy with the temporal nonlocality
linked to the dispersion and band-gap effect in the frequency domain, one can
expect a link of the spatial nonlocality to similar effects on the wavevectors (since
the wavevector is a Fourier dual of the spatial variable just as the frequency is the
Fourier dual of the time). This was explored to some extent in [10], and indeed an
effect of a “directional localization” could be observed this way: certain frequency
ranges fail propagating in certain ranges of directions while can propagate in other
directional ranges. It was also noticed in [10] that the case of highly anisotropic
fibers considered in [6] could be regarded as a particular case of a “partial” degen-
eracy (of the stiffness tensor, in the context of elasticity): while the fiber is “soft”
in the cross-sectional directions, it remains “stiff” along the fiber. This motivates
a generalization for “partially” high contrasts, see [10] for the case of inclusions
with such properties. This allows viewing from a unified viewpoint the classical
homogenization, the “fully” high-contrast one, and all the intermediate cases.

Mathematically, the introduction of the partially high contrast poses, in the
context of a two-scale asymptotic analysis, an interesting challenge of accounting
for the microscopically partially constrained kinematics coupled to the macroscopic
fields. This requires appropriately modifying the two-scale convergence technique
and results in the two-scale effective equations explicitly involving projectors ac-
counting for the kinematic constraints. A more systematic study of related general
mathematical constructions and of their rigorous analysis is performed in [15].
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The Time-Dependent von Kármán Plate Equation as a Limit of 3d
Nonlinear Elastodynamics

Maria Giovanna Mora

(joint work with Helmut Abels and Stefan Müller)

The present contribution concerns the rigorous derivation of two-dimensional dy-
namic models for a thin elastic plate starting from three-dimensional nonlinear
elastodynamics. Let Ωh = Ω′×(−h

2 ,
h
2 ) be the reference configuration of a thin

plate, where Ω′ ⊂ R2 is a bounded Lipschitz domain and h > 0. The plate is
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made of a hyperelastic material whose energy potential W : R3×3 → [0,+∞] is
continuous and satisfies the following natural conditions:

W (RF ) =W (F ) for every R ∈ SO(3), F ∈ R3×3 (frame indifference),(1)

W = 0 on SO(3), W (F ) ≥ C dist2(F, SO(3)), C > 0,(2)

W is smooth in a neighbourhood of SO(3).(3)

The dynamic equation of nonlinear elasticity reads as

(4) ∂2τw − divxDW (∇w) = fh in [0, τh]×Ωh,

where w : [0, τh]×Ωh → R3 is the deformation of the plate and fh : [0, τh]×Ωh →
R3 is an external body force applied to the plate. We focus on the case where
fh(τ, x) = hαf(τ, x′)e3, where α ≥ 3 and f ∈ L2((0,+∞);L2(Ω′)).

Let wh be a solution to (4) on [0, τh]×Ωh. To discuss its limiting behaviour as
h → 0, it is convenient to rescale Ωh to the fixed domain Ω = Ω′×(− 1

2 ,
1
2 ) and to

rescale time by setting t = hτ . According to this change of variables, we set

yh(t, x) := wh
(
t
h , (x

′, hx3)
)

for every (t, x) ∈ (0, Th)×Ω, where Th := hτh. Using the notation

∇hψ :=
(
∇′ψ | 1

h∂3ψ
)
, divhΦ := div′Φ′ + 1

h∂3Φ3

for any ψ ∈ H1(Ω), Φ ∈ H1(Ω;R3×3), the scaled deformations yh satisfy

(5) h2∂2t y
h − divhDW (∇hy

h) = hαge3 in (0, Th)×Ω,

where g(t, x′) := f
(
t
h , x

′
)
for every (t, x) ∈ (0,+∞)×Ω′. We also assume that the

following initial conditions hold:

(6) yh|t=0 = w̄h, ∂ty
h|t=0 = 1

h ŵ
h

together with the mixed Neumann–clamped boundary conditions

(7) yh|∂Ω′×(− 1
2 ,

1
2 )

=

(
x′

hx3

)
, DW (∇hy

h)e3
∣∣
x3=± 1

2

= 0,

or, assuming Ω′ = (−L,L)2, the mixed Neumann–periodic boundary conditions

(8)

(
yh(t, x) −

(
x′

hx3

))∣∣∣
xα=−L

=
(
yh(t, x)−

(
x′

hx3

))∣∣∣
xα=L

α = 1, 2,

DW (∇hy
h)e3

∣∣
x3=± 1

2

= 0.

If α > 3, we prove that, under suitable regularity assumptions on g and appropriate
scaling and regularity of the initial data w̄h, ŵh, for every T > 0 there exists h0 > 0
such that for every h ∈ (0, h0) equation (5), supplemented by the initial conditions
(6) and the boundary conditions (8), has a unique strong solution defined on [0, T ].
If α = 3, assuming in addition that g and the initial data are small enough, we
show that (5), supplemented by (6) and (8), has a unique strong solution on [0, T ]
for every h ∈ (0, 1) ([1, Theorem 3.1]).
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Assuming thatW is differentiable with Lipschitz continuous derivative and that

(9) 1
2

∫

Ω

|ŵh|2 dx+

∫

Ω

W (∇hw̄
h) dx ≤ Ch2α−2,

we prove ([2, Theorem 2.1]) that, if yh is a weak solution to (5) on [0, T ], satisfying
(6), the boundary conditions (7) or (8), and the energy inequality, then yh → (x′, 0)
in L∞([0, T ];H1(Ω;R3)). Moreover, the in-plane and out-of-plane displacements

uh(t, x′) :=
1

hα−1

∫ 1
2

− 1
2

(
(yh)′ − x′

)
dx3, vh(t, x′) :=

1

hα−2

∫ 1
2

− 1
2

yh3 dx3

converge in a suitable sense to a limit displacement (u, v). If α = 3, (u, v) is a
solution to the dynamic von Kármán plate equations
{
∂2t v +

1
12div

[
divL2((∇′)2v)

]
− div

[
L2(sym∇′u+ 1

2∇′v ⊗∇′v)∇′v
]
= g,

div
[
L2(sym∇′u+ 1

2∇′v ⊗∇′v)
]
= 0,

in [0, T ]×Ω′, and satisfies the boundary conditions u|∂Ω′ = 0, v|∂Ω′ = 0, ∇′v|∂Ω′ =
0, or, respectively, periodic boundary conditions, and the initial conditions v|t=0 =
w̄3, ∂tv|t=0 = ŵ3. Here L2 is the linear form associated with the quadratic form
Q2 : R2×2 → R defined by Q2(G) = L2G :G := minF ′′=GQ3(F ), where Q3(F ) :=
D2W (Id)F :F , while F ′′ denotes the 2×2-submatrix of F defined by F ′′

ij = Fij for
1 ≤ i, j ≤ 2. The limiting initial values w̄3 and ŵ3 are the limits of suitably scaled
averages of w̄h

3 and ŵh
3 , whose existence is guaranteed by the scaling condition (9).

If α > 3, the limit in-plane displacement u is equal to 0, while the out-of-plane
displacement v is a solution to the dynamic linear plate equation

∂2t v +
1
12div

[
divL2((∇′)2v)

]
= g in [0, T ]×Ω′

and satisfies the boundary conditions v|∂Ω′ = 0, ∇′v|∂Ω′ = 0, or, respectively,
periodic boundary conditions, and the initial conditions v|t=0 = w̄3, ∂tv|t=0 = ŵ3.
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A variational approach to the Hamiltonian boundary value problem:
existence and approximation

Johannes Zimmer

(joint work with Hartmut Schwetlick)

We consider the conservative dynamical system

(1)
d2q(t)

dt2
= −∇V (q) ,
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where V is a smooth potential on Q ⊂ Rn, and

(2) q(0) = qa and q(T ) = qb

with qa, qb ∈ Q and T > 0; we assume that the total energy E, defined as the sum
of kinetic and potential energy, is fixed, so T has to be determined.

A motivation for the analysis of this problem comes from Molecular Dynamics
and other problems with complex energy landscapes. For example, qa and qb can
be different conformational states of a molecule; then the Newtonian equations
of motion (1) describe the vibrations of one conformation, followed by a rapid
transition to the energetic well containing the other conformation, and vibrations
in that well. This example illustrates two typical difficulties: the state space Q can
be high-dimensional (for example, n ≈ 400 for relatively simple models of DNA
motion); the timescale T will be very long in comparison to the temporal scale of
typical vibrations.

The problem of solving (1) with periodic boundary conditions has a long history,
including existence results by Seifert [5], Weinstein [6], Rabinowitz [3].

The boundary value problem (1)–(2) is less studied. An existence result with
additional differential-geometric assumptions on the underlying metric is due to
Gordon [2].

We present an alternative existence result, where the a priori estimates depend
on physical quantities, notably the total energy E and the potential energy V . The
method we employ resembles so-called string methods, but the particular setting
we use allows us to prove the convergence of a suitable approximation.

The setting we use is that of Jacobi and Maupertuis; according to this classi-
cal principle, trajectories to (1) with total energy E are suitably re-parametrised
geodesics with respect to the Jacobi metric

(3) gij(q) := 2(E − V (q))δij(q) ;

we recall that geodesics are critical points γ of

(4) L[γ] :=

∫ τ

0

√
gij(γ(s))γ̇i(s)γ̇j(s) ds ,

where q = q(s), q(0) = qa, q(τ) = qb. For Jacobi’s metric, this is

(5) L[γ] :=

∫ τ

0

√
2(E − V (q)) 〈q̇, q̇〉ds .

Physical time can then be recovered via the explicit formula

(6) t =

∫ τ

0

√
〈q̇, q̇〉

2(E − V )
ds .

The advantage of the variational method (5) is its elliptic nature; the existence
of periodic solution is thus often studied in this setting [5, 6]. An argument going
back to Birkhoff [1] can in this case provide a constructive existence proof.

We provide a similar result for the boundary value problem, but with a different
focus: Given qa and qb, bounds can be given on the choice for E such that the
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existence of a trajectory can be guaranteed. The argument uses discrete curvature
bounds to obtain a neighbourhood of qa and qb which is invariant under a flow.

While in principle such an argument is not hard once a curvature bound yielding
an invariant region is found, we choose to complicate the proof so that it yields in
the end a constructive convergent approximation by line segments. Line segments
are Euclidean geodesics, so it is natural to use piecewise constant approximations
of the Jacobi metric (3). The computation of the length is then in principle simple.
However, care has to be taken of the scaling. It can be shown that locking and
other artificial effects can be avoided if three different scales are considered: one
for the discretisation width ǫ0 of polygonal approximations for γ, a finer one for
the step width of the Birkhoff step and an even finer one for the computation of
the length.

Unlike the continuous (original) Birkhoff step, the argument requires a grid
refinement, even a sequence of refinements ǫk := 2−kǫ0 (and suitable refinements
of the two other scales involved). It can then be shown that the Birkhoff procedure
stops on every discrete level k after finitely many steps, yielding a limit polygon
γk. It can be shown that γk → γ ∈ C1,1 as k → ∞, where γ is a geodesic graph.

We close by remarking that, rather than relying on a Birkhoff procedure, a
parabolic flow with an artificial time can be used as a steepest descent procedure
to the elliptic limit associated with (5). A numerical implementation shows that
this is an efficient string method [4]; a theoretical underpinning of this flow in form
of a convergence proof is however missing.

The homogenisation of this problem (that is, the computation of effective Hamil-
tonians for potentials Vǫ with wiggly contributions in the limit ǫ → 0) was also
mentioned as open problem in the discussion at the meeting. Also, the result pre-
sented here is deterministic. Extensions to a stochastic setting (e.g., within the
Freidlin-Wentzell theory or for thermostats) are presently not available.
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