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Introduction by the Organisers

This workshop included 46 researchers and graduate students from Europe, North
America, and Asia. The participants represented a broad range of areas from
pure mathematics to numerical analysis to medicine and industry. This interplay
between pure mathematics and applications is one of the appeals of the field.

The first Oberwolfach tomography conference in 1980 helped define this young
field, and the subsequent Oberwolfach workshops have reflected the growing breadth
of the area. Modalities represented at this eighth conference include X-ray tomog-
raphy, sonar, radar, seismic imaging, ultrasound, electron microscopy, impedance
imaging, photoacoustic tomography, elastography, vector tomography, and texture
analysis.

Frank Natterer, one of the pioneers in the field, started the conference by ap-
plying the Kaczmarz method to wave equation imaging in ultrasound. Ivana Jo-
vanovic discussed ideas and algorithms in ultrasound, and Barbara Kaltenbacher
analyzed convergence of Newton-Kaczmarz algorithms.

Local and limited data problems have been studied since the beginning of the
field. Rolf Clackdoyle presented methods for two-dimensional region-of-interest
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CT, and Samuli Siltanen presented his algorithm for x-ray tomography with very
sparse data. Frederic Noo gave a reconstruction method for helical cone beam CT.

Esther Klann described a Mumford-Shah type level-set method to reconstruct
and segment from SPECT/CT data, and Oliver Dorn spoke on reconstruction
using level set methods.

Alexander Katsevich discussed his motion compensation algorithms for 2-D X-
ray CT. Mohammad Dawood gave a motion correction method in 3D PET and
CT, and Bernd Fischer described a motion correction algorithm for SPECT data.

Holger Kohr described his work using the approximate inverse in electron mi-
croscopy, and Todd Quinto analyzed a curvilinear Radon transform for large-field
electron microscopy. Thomas Schuster presented work on vector tomography in-
cluding diffraction and using an X-ray transform over geodesics.

Several types of tomography are modeled by circular or spherical integrals. Vic-
tor Palamodov developed a circular Radon transform for texture analysis on crys-
talline materials. Malte Spiess and Martin Riplinger spoke on an reconstruction
method for stereology. Andreas Rieder presented a local reconstruction algorithm
for spherical mean data, and Maarten de Hoop gave a multi-scale approach for
seismology, and he showed reconstructions of the earth’s crust.

Guillaume Bal described his work on inverse transport and photoacoustics and
John Schotland presented related results on inverse transport with large data sets.
Leonid Kunyansky discussed his algorithm in acousto-electric tomography, and
Otmar Scherzer described his work to correct for attenuation in photoacoustic
tomography. Aref Lakhal provided an imaging method for Maxwell’s equation.

Martin Hanke described his algorithm for backscattering data in impedance
tomography, and Bastian Harrach gave his linearization method for impedance
tomography. Peter Maass presented his work on impedance tomography with
sparsity constraints.

Ming Jiang gave a phase unwrapping algorithm in phase contrast imaging, SAR,
and MRI. Joyce McLaughlin discussed recent advances and challenges for elastog-
raphy imaging. Pierre Sabatier discussed the meaning of mathematical ideas, such
as uniqueness, closeness, and well-posedness, in physical inverse problems.

Summing up, tomography is a lively branch of science with an inexhaustible
supply of mathematical problems. Every new imaging modality poses new math-
ematical questions, and this conference can be viewed as a snapshot of this lively
field.

We thank Prof. Dr. Greuel and the staff of the Mathematiches Forschungsinsti-
tut Oberwolfach for creating a stimulating environment to do serious mathematics.
For seven participants, that hospitality extended for several days beyond the end
of the conference when European airspace was closed by an ash cloud from an Ice-
landic volcano. Those participants are grateful to the MFO staff for making the
time pleasant and productive. The organizers thank the MFO for their support of
young mathematicians through E.U. and U.S. National Science Foundation grants.



Mathematics and Algorithms in Tomography 1019

Workshop: Mathematics and Algorithms in Tomography

Table of Contents

Frank Natterer
Kaczmarz’ Method in Wave Equation Imaging . . . . . . . . . . . . . . . . . . . . . . 1021

Barbara Kaltenbacher (joint with Martin Burger, Hans Baumeister,
Antonio Leitão)
Newton type Kaczmarz Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

Holger Kohr
A novel method for fast and high-quality reconstructions
in Electron Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024

Thomas Schuster (joint with Tim Pfitzenreiter)
2D vector field tomography taking refraction into account . . . . . . . . . . . . . 1027

John C. Schotland (joint with Guillaume Bal)
Inverse Problem of Acousto-Optic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

Guillaume Bal
Models for Optical Tomography and Photoacoustics . . . . . . . . . . . . . . . . . . 1033

Alexander Katsevich
An accurate approximate algorithm for motion compensation in
two-dimensional tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036

Victor Palamodov
Texture analysis and Funk transform in the rotation group . . . . . . . . . . . . 1038

Esther Klann (joint with Ronny Ramlau, Wolfgang Ring)
A Mumford-Shah level set approach for tomography . . . . . . . . . . . . . . . . . . 1039

Joyce R. McLaughlin (joint with Kui Lin)
Computing Complex Frequency Dependent Shear Moduli . . . . . . . . . . . . . . 1042

Rolf Clackdoyle (joint with Catherine Mennessier, Michel Defrise, Dilip
Ghosh Roy)
Comparing and Combining Two Methods of Two-Dimensional
Region-of-Interest Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

Bernd Fischer (joint with Hanno Schumacher, Jan Modersitzki)
Reconstruction and Motion Correction in SPECT Imaging – a Combined
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049

Ming Jiang (joint with Zhi-Quan Luo, Jin-Jun Xiao)
2D Phase Unwrapping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052



1020 Oberwolfach Report 18/2010

Bastian Harrach (joint with Jin Keun Seo)
Exact shape-reconstruction by one-step linearization in electrical
impedance tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055

Andreas Rieder (joint with Todd Quinto and Thomas Schuster)
Local SONAR inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058

Leonid Kunyansky (joint with P. Kuchment)
Synthetic focusing in Acousto-Electric Tomography . . . . . . . . . . . . . . . . . . 1060
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Abstracts

Kaczmarz’ Method in Wave Equation Imaging

Frank Natterer

We consider the inverse problem of the wave equation for a special geometry,
well suited for applications to medicine and seismic imaging. The object to be
reconstructed lies between two parallel horizontal lines in R2. The sources are
sitting on the top plane. In the transmission mode the receivers are on the bottom
line, while in the reflection mode the receivers are also on the top line. From the
measurements g(r, t) = (Rs(f))(r, t) = u(r, t), 0 < t < T of the pressure field u
at the receivers r for each source s we want to determine the speed of sound c(x)
for each point x between the parallel lines. We assume that u satisfies the wave
equation with the speed of sound c = c0/sqrt(1+f) with c0 the background speed,
i.e. we want to determine the function f .

We model the source at point s in the top line by the boundary condition

(1)
∂u

∂x2
(x, t) = q(t)p(x− s).

q is the source pulse. The frequency content of q is of the utmost importance.
We assume that the Fourier transform q̂ of q is significantly non-zero between
ωmin and ωmax. Then it can be shown [1] that, in the Born approximation, the

Fourier transform f̂ is determined by the data in the union of the circles of radius
kmax = ωmax/c0 around the points (±kmax, 0) in transmission mode and outside
the circles W with radius kmin = ωmin/c0 around (±kmin, 0) in the reflection
mode. In particular it is clear that if q doesn’t have low frequencies, i.e. if
ωmin > 0, low frequency features of f cannot be recovered in reflection mode.

The Kaczmarz method is an iterative method with update

(2) f ← f + α(R′
s(f))

∗(g −Rs(f)).

The adjoint operator (Rs(f))
∗ can be evaluated by time reversal, i.e. by solving

the wave equation backwards in time, with the residual g − Rs(f) as boundary
values at the receivers.

In the talk we study the performance of the Kaczmarz method. In the trans-
mission mode all we have to do to get convergence is to make sure that the initial
approximation f0 satisfies the condition

(3) |
∫
(f − f0)ds| ≤ λ

where λ = 2π/kmax is the smallest wavelength contained in the pulse q. An early
reference to results of this type is [2]. If this condition is not satisfied one can
get convergence by filtering out the high frequencies from the data and doing a
preliminary reconstruction.
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In the reflection mode we in addition have a condition on the lowest frequency
ωmin in q. This condition is obtained by securing stability in the analytic continu-
ation process that fills the missing circlesW in the Fourier plane. It is shown that
this stability is governed by the factor 1/(1− ρ) where ρ is the largest eigenvalue
of the integral operator with kernel K(x− y),

(4) K(x) =
1

π
cos(kminx1)

J1(kmin|x|)
kmin|x|

,

in the space L2(|x| < r), |x| < r being the support of f . ρ obviously depends on
rkmin only, which is just the object diameter expressed in wavelengths. Typical
values for ρ are 0.588 and 0.968 for rkmin = π/2, π, respectively. This means that
only objects whose size corresponds to a typical wavelength can be recovered. We
show by numerical examples that the Kaczmarz method in fact recovers objects
of this size.

References

[1] Natterer, F.: Ultrasound tomography with fixed arrays of transducers, Proceedings of the
Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-
Modulated Radiation Therapy (IMRT), Pisa, Italy, October 2007.

[2] Mora, P.: Inversion = migration + tomography, Geophysics 54,1575-1586 (1989).

Newton type Kaczmarz Methods

Barbara Kaltenbacher

(joint work with Martin Burger, Hans Baumeister, Antonio Leitão)

Many problems in tomography can be formulated as a system of nonlinear operator
equations

Fi(x) = yi , i = 0, . . . , N − 1 ,

with possibly noisy data satisfying

‖yδi − yi‖ ≤ δ , i = 0, . . . , N − 1 ,

where, e.g. x is a coefficient in a PDE, and F(x) = (F0(x), . . . , FN−1(x)). . . the
discrete Dirichlet-to Neumann map. Kaczmarz methods (closely related to the
well-known algebraic reconstruction technique) perform a cyclic iteration over
these subproblems, see, e.g., [7], [10] One of the key advantages over this suc-
cessive instead of simultaneous kind of iterative solution strategy is that stor-
age and computational treatment is only required for several smaller subproblems
Fi(x) = yi instead of one large problem F(x) = y. Moreover, Kaczmarz methods
are particularly easy to implement especially if the Fi are similar, thus in many
tomographic problems. After a short review on convergence results for gradient
type (Landweber) Kazcmarz methods ([9], [4]), we dwell on cyclic Newton type
iterative schemes. In the context of ill-posedness and regularization, manly two
approaches can be found in the single operator case: The Levenberg-Marquardt
method (LM, [5], [11]) and the Iteratively Regularized Gauss Newton Method
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(IRGNM, [1], [8], [6]). For both of them the convergence analysis can to some
extent be carried over to the respective Kaczmarz version:

The LM-Kaczmarz method reads as

xδk+1 = xδk + (F ′
[k](x

δ
k)

∗F ′
[k](x

δ
k) + αkI)

−1F ′
[k](x

δ
k)

∗(yδ[k] − F[k](x
δ
k))

where

[k] := kmodN

and requires a proper selection of the regularization parameter αk in each step.
Adopting the inexact Newton choice for the single equation case according to
[5], one can prove monotone decay of the error and square summability of the
residuals, however, convergence possibly gets lost. By simply setting αk ≡ α
constant, convergence can be show. For the practically relevant situation of noisy
data, a loping strategy from [4] can be applied and, together with the discrepancy
principle as an overall stopping rule, yields convergence as the noise level tends to
zero, see [2]. As in the single equation case, closeness of the strating value to a
solution as well as restrictions on the nonlinearity are needed such as the following
analog of the Scherzer condition

‖Fi(x̃)−Fi(x)−F ′
i (x)(x̃−x)‖ ≤ η‖Fi(x̃)−Fi(x)‖ , ∀i ∈ {0, . . . , N−1}, x ∈ Bρ(x0) .

For the IRGNM-Kazcmarz method

xδk+1 = x0,[k] −Gαk
(F ′

[k](x
δ
k))(F[k](x

δ
k)− yδ[k] − F ′

[k](x
δ
k)(x

δ
k − x0,[k]))

the simple a priori choice αk = α0q
k, q ∈ (0, 1) yields convergence provided the

initial guesses satisfy x0,i − x∗ ∈ N (F ′
i (x

∗))⊥. The latter condition appears to be
the price one has to pay for some additional freedom that the IRGNM-Kazcmarz
method offers as far as the nonlinearity of the forward operator is concerned.
Namely, in place of the Scherzer condition, the analysis works with local range
invariance of each of the F ′

i (x), which turns out to be realistic for several to-
mography type problems such as reconstruction from Dirichlet-Neumann pairs,
reconstruction from multiple sources SPECT, or ultrasound tomography: These
can be written as the composition of a linear ill-posed with a nonlinear well-posed
operator (with Lipschitz continuous derivative) and therefore satisfy local range
invariance, see [3].

Future research will be devoted to an analysis of Kaczmarz methods in Banach
spaces, motivated by the fact that in tomography often natural choices of the
preimage and image space do not have Hilbert space structure,
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A novel method for fast and high-quality reconstructions
in Electron Tomography

Holger Kohr

In Electon Tomography (ET), a specimen is exposed to high-energy electrons
(modeled as plane waves) which are scattered by the electrostatic potential of
the object, pass the optical system of the microscope and are finally detected by
a digital camera. In the most general setting, this process can be described as
scalar potential scattering, followed by a series of transformations and propaga-
tions of the scattered wavefield. In the case of biological applications covered
here, the contrast of a typical electrostatic potential is low enough such that the
problem can be linearized on the one hand by applying the Born approximation
to the scattered wave, and on the other by linearizing the measured intensity at
the detector. By replacing the circular wavefronts in the propagation steps by a
parabolic appoximation, one acquires the linear forward model

gω = DMCσPωf

for the formation of a single image gω [1]. The quantities and operators appearing
in this equation are as follows:

Phase contrast function f : R3 → R:
Represents the phase modulation of an incoming wave by the specimen. In
order to achieve uniqueness, the amplitude contrast function is supposed
to be the σ-fold multiple of the real part [1]. For the tested datasets, the
value of σ = 0.2 was found to be an appropriate choice.

X-ray transform Pω : L2(R3)→ L2(ω⊥):
For a fixed direction ω ∈ S2, Pω is defined as

Pωf(η) =

∫

R

f(tω + η) dt, η ∈ ω⊥.
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In the current application, this operator can be regarded as a projection of
the object to the normal plane ω⊥, every point of which acts as a secondary
source of a circular wave.

Convolution Cσ : L2(ω⊥)→ L2(ω⊥):
The propagation of the aforementioned secondary waves and the trans-
formation introduced by the optics of the microscope are gathered in the
convolution

Cσu(η) =
∫

ω⊥

Kσ(η − ξ)u(ξ) dξ,

where the Fourier transform of Kσ, the so-called charge transfer function,
is an oscillating and exponentially decaying function [2].

Dilation DM : L2(ω⊥)→ L2(ω⊥):
The actual purpose of the optics is a magnification of the projection image.
Mathematically, this operation is described by the M -fold dilation

DMu(η) =M−1 u(M−1η).

In the case of single-axis tilting, the optical axis ω varies on the partial great circle

S2∗ :=
{(

0, sin θ, cos θ
) ∣∣ θ ∈ [−θ0, θ0]

}
.

This leads to the description of a full measurement series as a function given on
the tangent bundle

T :=
{
(ω, η)

∣∣ω ∈ S2∗ , η ∈ ω⊥
}
.

By defining the X-ray transform Pω : L2(Ω)→ L2(ω⊥) with variable direction as

Pf(ω, η) :=
∫

R

f(tω + η) dt, ω ∈ S2∗ , η ∈ ω⊥,

the inverse problem addressed in this context can be expressed as the following
task:

Reconstruct the function values f(x) from the dataset g modeled by

g(ω, η) = DMCσPf(ω, η) := Aσf(ω, η).

The standard algorithm to solve this inverse problem in ET is the so-called weighted
backprojection (WBP) which is a modification of the filtered backprojection ac-
counting for some attenuation [5]. The method presented here is based on the Ap-
proximate Inverse approach [3] which consists in the computation of a smoothed
version

fγ(x) = 〈f, Eγ(x, ·)〉L2(R3) =

∫

R3

f(y)Eγ(x, y) dy

with the help of a solution Ψγ : R3 → L2(T ) of the auxiliary equation

A∗
σΨγ(x) = Eγ(x, ·).

The function Eγ is called mollifier, whereas Ψγ is usually refeered to as recon-
struction kernel. The application of a mollifier of convolution type Eγ(x, y) =
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eγ(x − y), the pointwise solution of the auxiliary equation can be reduced to the
solution of

A∗
σψγ = eγ ,

since the reconstruction kernel inherits the convolution structure:

Ψγ(x)(ω, η) = ψγ(MPω⊥x− η).

For a separated mollifier eγ(x) = e1γ(x1) ẽγ(x̃), x̃ = (x2, x3), it can be shown that
an approximation to the reconstruction kernel is given by

F2ψγ(ω, ξ) =
M

2
√
2π

T †
σ(Mξ)︸ ︷︷ ︸ F1e

1

γ(Mξ1)︸ ︷︷ ︸
|Mξ̃|F2 ẽγ(Mξ̃)︸ ︷︷ ︸

in Fourier space, where the subscript of the Fourier transform F denotes its dimen-
sionality. The first underbraced factor is responsible for the deconvolution step
and depends on both image coordinates, whereas the other two factors exhibit
the same separated structure as the mollifier. Apparently, only the ξ̃ direction is
affected by the X-ray transform, which is indicated by the ramp filter.
The actual reconstruction formula for the approximation fγ is given by

fγ(x) =

∫

S2
∗

(g ∗ ψγ)(ω,MPω⊥x) dω,

which is clearly of filtered backprojection type. The major difference between
other FBP type methods and this one is the inversion of the convolution, which
requires a smoothing not only in the direction ξ̃ where the X-ray transform acts,
but also in the perpendicular direction ξ1, due to the singular term T †

σ depending
on both coordinates.
Numerical experiments with measured data show that the presented method is
clearly superior to the standard WBP in terms of both noise suppression and
richness of detail (Figure 1).
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Figure 1. Slice through the reconstruction of a phase contrast
function. The reconstructed volume contains the exterior region
of a cell, where the small string-like actin filaments are of special
interest. Left image: reconstruction computed by the approxi-
mate inverse with Gaussian mollifier and γ = 7 · 10−10. Right
image: the same slice in the WBP reconstruction. The noise level
in the left image is substantially lower than in the right one, while
the details are preserved. Courtesy of Ohad Medalia, Martinsried
[4].

2D vector field tomography taking refraction into account

Thomas Schuster

(joint work with Tim Pfitzenreiter)

The aim of 2D vector field tomography is the reconstruction of the velocity field
u(x) = u(x1, x2) of a moving fluid in a bounded, convex domain Ω ⊂ R2 from
ultrasound time-of-flight measurements. We assume that Ω has an inhomogeneous
background given by a variable sound velocity c(x) for x ∈ Ω and that c = c0 is
constant in the exterior R2\Ω. The time a signal needs for travelling from a source
point a ∈ ∂Ω to a detector b ∈ ∂Ω is given as

t(a, b) =

∫

L(a,b)

dσ(x)

c(x) + 〈u(x), τL〉
,

where L(a, b) denotes the line connecting a and b, τL is the vector of direction of
L(a, b) and dσ means the segment of length along L(a, b). A linearization yields

(1) t(a, b) =

∫

L(a,b)

1

c(x)
− 〈u(x), τL〉

c2(x)
dσ(x) + h.o.t.

which is a good approximation when |u|/c≪ 1, a reasonable assumption in many
applications. Denoting by n(x) = c0/c(x) the index of refraction, then from (1)
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follows that

t(a, b) + t(b, a) =
2

c0

∫

L(a,b)

n(x) dσ(x) =
2

c0
R[n](a, b)(2)

t(a, b)− t(b, a) = −
∫

L(a,b)

〈u(x), τL〉
c2(x)

dσ(x) = − 1

c20
D[n2u](a, b)(3)

Here R[f ](a, b) denotes the 2D Radon transform of a scalar function f along the
line L(a, b) and D[f ](a, b) is the 2D Doppler transform

D[u](a, b) =

∫

L(a,b)

〈u(x), τL〉dσ(x) .

It is known, compare e.g. Norton [2], that only curlu can be recovered from
D[u]. The idea to do this is first computing n(x) from (2) by inverting R followed
by reconstructing curlu from (3) by filtered backprojection, see e.g. Schuster [4].
Doing so we would completely neglect any refraction of the ultrasound beams. But
if the index of refraction n(x) siginificantly differs from 1 depending on x, then
refraction can not be neglected. According to Fermat’s principle the ultrasound
beams follow geodesic lines of the Riemannian metric

(4) ds2 = n2(x)(dx21 + dx22) .

Thus if the index of refraction n(x) is assumed to be known from (2), then Fermat’s
principle inspires to consider the longitudinal ray transform on the Riemannian
manifoldM = (Ω, ds)

I[u](ϕ, s) =

τϕ,s∫

0

〈u(γϕ,s(t)), γ̇ϕ,s(t)〉dt , ϕ ∈ [0, 2π] , s ∈ R .

Here, γϕ,s : [0, τϕ,s] → Ω is a parametrization of the geodesic curve of the Rie-
mannian metric (4) satisfying γϕ,s(0) = a = rω(α) with r ≥ diam(Ω)/2, γ̇ϕ,s(0) =
ω(ϕ)⊥, where ω(ϕ) = (cosϕ, sinϕ)t ∈ S1, s = dist ({a+ tω(ϕ)⊥ : t ∈ R}, 0) and
τϕ,s is chosen such that γϕ,s(τϕ,s) = b. The transversal ray transform for vector
fields onM is given as

I⊥[u](ϕ, s) =

τϕ,s∫

0

〈u(γϕ,s(t)), γ̇
⊥
ϕ,s(t)〉dt , ϕ ∈ [0, 2π] , s ∈ R .

and is necessary to get the divergence of u. The parametrization is illustrated
in Figure 1 for Ω = {x ∈ R2 : |x| < 1}. We assume that the metric (4) being
simple and dissipative and that there are no caustics. In that case the matrix
(∂tγϕ,s(t), ∂sγϕ,s(t)) is regular and there exists a real phase function φ : Ω ×
(R2\{0})→ R, that is a C∞-function satisfying φ(x, λθ) = λφ(x, θ), ∇xφ(x, θ) 6= 0
and

h(x, θ) := det
( ∂2φ

∂x∂θ
(x, θ)

)
> 0

such that
x = γϕ,s(t) ⇔ φ(γϕ,s(t), ω(ϕ)) = s .
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Figure 1. Definition of the parameters for I[u](ϕ, s); the
geodesics γϕ,s are depicted in grayscale.

In case of ds being the Euclidean metric, that means n(x) = 1, the geodesic
curves are straight lines and φ(x, θ) = 〈x, θ〉2. With the help of phase functions
the generalized Radon transform along geodesics of (4) can simply defined as

Ra[f ](ϕ, s) =

∫

φ(x,ω(ϕ))=s

f(x)a(x, ω(ϕ)) dx ,

where f ∈ L2(M) and a ∈ L2(M× S1). Associated with Ra is the weighted dual
Radon transform

R∗
b [w](x) =

2π∫

0

b(x, ω(ϕ))w(ϕ, s)|s=φ(x,ω(ϕ))
dϕ

for b ∈ L2(M× S1), w ∈ L2([0, 2π] × R). The following theorem was proven by
Beylkin in [1] and is fundamental for our inversion method.

Theorem: (Beylkin 1984 [1])
Let U(s) ∈ C∞(R) with U(s) = U(−s) and |∂ksU(s)| ≤ C(k)(1+s2)(m−k)/2, k ∈ N.
Further let F be a Fourier integral operator

F [f ](y) :=
1

(2π)2

∫

R2

∫

Ω⊂R2

ei[Φ(x,θ)−Φ(y,θ)]A(x, y, θ)f(x) d2xd2θ

with phase function

Φ(·, θ) := ‖θ‖2 φ(·, arctan(θ1/θ2))
and amplitude A(x, y, ω) := b(y, ω)a(x, ω)U(‖ω‖2), where b(y, ω) ∈ C∞(Ω × S1)
with b(y, ω) = b(y,−ω). Then, R∗

b(K ∗s Ra) is a Fourier integral operator F , that
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is

R∗
b(K ∗s Ra)[f ] =

1

(2π)2

∫

R2

∫

Ω⊂R2

ei[Φ(x,ω)−Φ(y,ω)]A(x, y, ω)f(x) d2xd2ω

=: F [f ] , f ∈ L2(Ω) ,(5)

where

K(s) =
1

2(2π)2

∫ ∞

−∞

|r|U(r)ei rs dr

Moreover if particularly

b(y, ω) =
h(y, ω)

a(y, ω)

and U(‖ω‖) = 1 for all ω ∈ S1, then the Fourier integral operator R∗
b(K ∗s Ra)

has a representation

(6) R
∗
b(K ∗s Ra) = F = id + T ,

where T : L2(Ω)→ L2
loc(Ω) is a compact operator with an asymptotic expansion

of the form

(7) T =

∞∑

l=1

l∑

m=0

Tm
l .

The next ingredient of our reconstruction scheme is the following connection of
the longitudinal and transversal ray transform for vector fields onM and the at-
tenuated Radon transform Ra. The proof relies on Stoke’s theorem and can be
found in [3].

Theorem: Let Ω ⊂ R2 be an open, bounded and convex domain, M = (Ω, g)
be a Riemannian manifold with metric tensor gij = n2(x)δij and u = (v1, v2)T ∈
C1(Ω)2 be a vector field with u = 0 on R2\Ω. Furthermore assume that {γϕ,s :
[τϕ,s, 0]→M : s ∈ [−r, r] , ϕ ∈ [0, 2π]} is a family of geodesic curves correspond-
ing to the metric tensor g onM such that the Jacobian

J(s, τ) := (∂sγϕ,s(τ), ∂τγϕ,s(τ))

exists and is continuous on [−r, r]× [0, 2π], where r := diam(Ω)/2. Then,

∂

∂s
I[u](s, ϕ) = Ra[(curlu)](s, ϕ)

∂

∂s
I⊥[u](s, ϕ) = Ra[(divu)](s, ϕ)

with s ∈ R, a = | detJ | and ϕ ∈ [0, 2π] holds.

Neglecting the compact operator T in the identity (6) we obtain an asymptotic
inversion method of filtered backprojection type to recover curlu and divu from
I[u] and I⊥[u], respectively.
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Corollary: Neglecting the compact operator T in the identity R∗
b(K ∗s Ra) =

id + T the asymptotic reconstruction formulas read

curlu = R∗
b

(
K ∗s

∂

∂s
J[u]

)
(8)

divu = R
∗
b

(
K ∗s

∂

∂s
J
⊥[u]

)
.(9)
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Inverse Problem of Acousto-Optic Imaging

John C. Schotland

(joint work with Guillaume Bal)

The acousto-optic effect is a phenomenon in which the optical properties of a
material medium are modified due to interaction with acoustic radiation. Bril-
louin scattering from density fluctuations in a fluid [1] or the ultrasonic modu-
lation of multiply-scattered light in a random medium [2] are familiar examples
of this effect. It is well known that the scattered optical field carries informa-
tion about the medium. This principle has been exploited to develop a hybrid
imaging modality, known as acousto-optic imaging (AOI), which combines the
spectroscopic sensitivity of optical methods with the spatial resolution of ultra-
sonic imaging [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. AOI holds great
promise as a tool to probe hidden structure inside of highly-scattering media, such
as clouds, paint and biological tissue—a problem which is of both fundamental
interest and considerable applied importance [18]. For instance, in biomedical
applications, optical methods provides unique capabilities to assess physiological
function including blood volume and tissue oxygenation [19, 20, 21]. At the same
time, such methods have the molecular selectivity to map gene expression and
other markers of bio-molecular activity.

In a typical AOI experiment, a highly-scattering medium is illuminated by a
coherent optical source and the resulting speckle pattern is registered by a detec-
tor. A focused ultrasound beam is then introduced and the speckle modulation
is recorded as the beam’s focus is scanned throughout the medium. Since the
scatterers in the medium are displaced by the acoustic wave, the scattered light
undergoes a frequency shift which permits the localization of the resulting so-called
tagged photons to the volume containing the focus. The intensity images that are
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obtained in this manner convey information about the medium. However, they
are not tomographic, nor are they quantitatively related to the optical properties
of the medium.

In this talk we consider the inverse scattering problem that arises in AOI. We
show that it is possible to reconstruct tomographic images of the optical proper-
ties of a medium from incoherent measurements of multiply-scattered light that
is modulated by a standing acoustic wave. The principle advantages of the pro-
posed method compared to conventional methods for imaging with diffuse light are
two fold. (i) The resolution of reconstructed images is, in principle, much higher
than in diffuse optical tomography (DOT). In particular, the inverse problem of
AOI is well-posed and the image resolution is controlled by the acoustic wave-
length. In contrast, the inverse scattering problem for diffuse waves is severely
ill-posed, which leads to the relatively low resolution of DOT [22, 23]. Physically,
the improvement in resolution in AOI can be understood to be a consequence
of controlling an internal degree of freedom of the scattering medium (the den-
sity of scatterers) by means of an external wave field. (ii) Neither interferometric
measurements of tagged photons nor the use of a focused acoustic wave field is
required. This considerably simplifies the experimental realization of the method.
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Models for Optical Tomography and Photoacoustics

Guillaume Bal

Abstract

Imaging optical properties of tissues is useful because of the large optical con-
trast that exists between healthy and unhealthy tissues. However, photons un-
dergo multiple scattering in the regimes of interest and as a consequence, optical
tomography suffers from a rather poor spatial resolution. Photoacoustics is a novel
hybrid modality which allows us to combine the large contrast of optical waves
with the good resolution properties of ultrasounds. This note summarizes results
obtained recently by the author and his colleagues in optical tomography and
quantitative photoacoustics. We refer the reader to [1, 2, 3] for the details.

1. Inverse Transport and Optical Tomography

Propagation of photons in tissues is accurately modeled by the following trans-
port equation:

(1)
v · ∇xu+ σ(x)u =

∫

V

k(x, v′, v)u(x, v′)dv′, (x, v) ∈ X × V
u|Γ−

(x, v) = g(x, v) (x, v) ∈ Γ−.

Here, u(x, v) is the density of photons at position x ∈ X ⊂ R
d (with d = 3 in

practice) and with direction v ∈ V = Sd−1 and g(x, v) models the density of
particles entering the domain. The sets of incoming conditions Γ− and outgoing
conditions Γ+ are defined by

(2) Γ± = {(x, v) ∈ ∂X × V, s.t. ± v · ν(x) > 0},
where ν(x) is the outgoing normal vector to X at x ∈ ∂X .

The optical parameters σ(x) and k(x, v′, v) model the interaction of the prop-
agating particles with the underlying structure. The parameter σ(x) models the
total absorption of particles caused either by true, intrinsic, absorption or by
scattering of particles into other directions. The scattering coefficient k(x, v′, v)
indicates the amount of particles scattering from a direction v′ into a direction v
at position x. In most inverse problems considered in this paper, σ and k are the
unknown parameters that need to be reconstructed from available measurements.
The measurements considered here are measurements collected at the boundary
∂X of the domain of interest. The measurements are therefore functionals of the
incoming density of particles u|Γ−

(x, v) and outgoing density of particles u|Γ+
(x, v).

While u|Γ−
(x, v) = g(x, v) is prescribed, u|Γ+

(x, v) is obtained by solving (1). The
relationship between both quantities is the so-called albedo operator defined by

(3) A := A[σ, k] : u|Γ−
(x, v) 7→ Au|Γ−

(x, v) = u|Γ+
(x, v).

In the presence of full measurements of A = A[σ, k], the optical coefficients σ and
k can uniquely and stably be reconstructed. This is based on a decomposition of A
into singular components. The first component is the ballistic component, obtained
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by solving the above transport equation with k ≡ 0. The second component is the
single scattering component, which is the part of u|Γ+

that is linear in k. Such
components can be extracted from measurement of A by singularity analysis and
allow us to reconstruct both optical parameters stably. We refer the reader to
the review paper [1] and its references for the detail and the long history of this
classical inverse problem.

The main difficulty in optical tomography is that: (i) the ballistic part is typ-
ically too weak in practice to be extracted from available measurements; and (ii)
often only angularly averaged measurements such as e.g. the current J(x) :=∫
V
u|Γ+

(x, v)v · ν(x)dv are available. In such measurements, the singularities of
the albedo operator are not captured. As in most inverse problems where singular-
ities do not propagate, the inverse transport problem becomes severely ill-posed.
This is the situation encountered in most applications of optical tomography and
the main theoretical reason why good (millimeter) resolution typically cannot be
achieved; see [1] and the references cited there again for the details.

2. Photoacoustics and Inverse Problems with Internal Data

In spite of its limited resolution, optical tomography is still useful as the optical
coefficients (primarily the absorption coefficient) exhibit large contrasts between
healthy and unhealthy tissues. A very promising modality to observe the large
optical contrast while obtaining good resolution is offered by photoacoustics.

Photoacoustic imaging is a recent medical imaging technique combining the
large contrast between healthy and unhealthy tissues of their optical parameters
with the high spatial resolution of acoustic (ultrasonic) waves. Electromagnetic
radiation (photons), sent through a domain of interest, generates heating and
thus a thermal expansion of the underlying tissues. The resulting mechanical
displacement of the tissues generates acoustic waves, which then propagate through
the medium and are recorded by an array of detectors (ultrasound transducers). A
first step in the inversion thus consists in reconstructing the amount of heating by
solving an inverse source problem for a wave equation. This inversion is relatively
simple when the sound speed is constant and full measurements are available.
It becomes much more challenging when only partial measurements are available
and the sound speed is not constant. Here, we assume this first step done (see the
references cited in [2] for details).

In a second step, called quantitative photoacoustics, we wish to reconstruct the
optical parameters from the reconstructed source of heating. We define

(4) σs(x, v) =

∫

Sd−1

k(x, v, v′)dv′, σa(x, v) = σ(x) − σs(x, v).

The available internal information is now given by the new measurement operator
(5)

A = A[σ, k] : L1(Γ−, dξ) → L1(X)

g(x, v) 7→ Aφ(x) = H(x) :=

∫

Sn−1

σa(x, v)u(x, v)dv.
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Here, we recognize H(x) as the source of heating, which is proportional to the
spatial density of photons and to the absorption coefficient.

Note that the data H(x) are now internal data. This however does not mean
that detectors are placed inside the domain, which would be intrusive. Rather,
this means that a first inverse problem (a well-posed inverse source problem for
the wave equation) has been solved accurately.

Although the available data are angularly averaged, they now are internal and
the optical coefficients can be reconstructed stably from such measurements, at
least their spatial structure. It is shown in [2] that σa(x, v) and σs(x, v) can
be uniquely and stably reconstructed from knowledge of A. The full anisotropy
in the scattering coefficient k(x, v′, v) however does not seem to be amenable to
stable reconstructions. What we show in [2] is that some degree of anisotropy can
be reconstructed stably. For instance, when k(x, v′, v) is modeled by a Henyey-
Greenstein kernel, then the (scalar) degree of anisotropy can be reconstructed
uniquely and stably; see [2] for the details.

The above results show that photoacoustic measurements indeed allow us to
perform stable reconstructions. However, the aforementioned results require the
full operator A, which corresponds to a continuum (hence an infinite number)
of boundary illuminations g(x, v) of the domain of interest. Assuming that σa
and σs depend only on the spatial variable x, it remains an interesting question
to understand how many measurements H(x) (corresponding to equally many
illuminations g(x, v)) would be necessary. We do not know how to answer this
question for the transport equation. However, some results have been obtained
for the diffusion approximation to transport. When k in the transport equation
becomes large, i.e., when photons interact very often with the underlying structure,
the transport equation is well approximated by a diffusion equation; see e.g. [1].

The propagation of radiation in scattering media is then modeled by the fol-
lowing diffusion equation:

(6)
−∇ ·D(x)∇u + σa(x)u = 0, x ∈ X,
u(x) = g(x) x ∈ ∂X.

Our results in [3] show that under appropriate regularity measurements, there is
an open set of illuminations g1 and g2 such that availability of the data H1 =
σa(x)u1(x) and H2 = σa(x)u2(x), with u1,2 solution of (6) with g replaced by
g1,2, uniquely determines both coefficients σa(x) and D(x). Moreover, the recon-
struction is stable and under additional geometric constraints, we find that for
k ≥ 3,

(7) ‖D − D̃‖Ck(X) + ‖σa − σ̃a‖Ck(X) ≤ C‖H − H̃‖(Ck+1(X))2n .

Here, H = (H1, H2) corresponds to two measurements and H̃ corresponds to

measurements performed with σa and D replaced by σ̃a and D̃, respectively. This
shows that two well-chosen measurements are indeed sufficient to reconstruct two
coefficients. Moreover, we observe that the reconstruction is stable in the sense
given in (7). In this mathematical framework, photoacoustics indeed displays good
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resolution properties and corresponds to a well-posed (mildly ill-posed) inverse
problem, unlike optical tomography which is a severely ill-posed inverse problem.
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An accurate approximate algorithm for motion compensation in
two-dimensional tomography

Alexander Katsevich

Reconstruction of objects which change during data acquisition is an important
challenge facing modern computed tomography (CT). The prime example is car-
diac CT, where one needs to reconstruct the beating heart. Another example is the
reduction of artifacts related to the patient’s breathing. It appears that the most
promising approach to the reconstruction of dynamic objects is based on incorpo-
rating a motion model into the reconstruction algorithm (see e.g. [2, 3, 4, 5, 6]).
This approach is commonly referred to as motion compensation. Since all avail-
able data are used by motion compensation algorithms (as opposed to gating
approaches, which use only the data least contaminated by noise), they have the
potential to provide the best image quality with the least x-ray dose. Typically
these algorithms are of iterative nature, but some progress has been achieved to-
wards noniterative reconstruction [2, 7, 8]. As is common in literature on motion
compensation, we assume throughout the paper that motion is known. In prac-
tice this is frequently not the case, so one has to deal with the motion estimation
problem (which is not considered here).

Mathematically, the problem of motion compensation is equivalent to inverting
the generalized Radon transform (RT) Rǫ, where one integrates the unknown
function f over a family of curves. Here ǫ is a parameter, which controls how
far Rǫ is from the classical RT R that integrates along straight lines. Thus, we
will assume in what follows that Rǫ → R as ǫ → 0. In [1] it was shown how
to invert Rǫ modulo a smoothing pseudo-differential operator (PDO). A similar
result was obtained recently in [9]. In [9] a function fpl is proposed such that,
analogously to [1], f − fpl is smoother than f in the scale of Sobolev spaces. The
main novel point is that computation of fpl can be done efficiently using a Filtered
Backprojection (FBP) algorithm. While these results are useful when one wants
to recover singularities of the unknown function f , there are no estimates on how
small the smooth error term is. In particular, such inversion formulas cannot be
used for finding pointwise values of f .

Alternative results are in [11] and [10]. It is shown in [11] that by selecting the
appropriate dual Radon transform R∗ and singular convolution operator K one
has: Eǫ := R∗KRǫ−Id is a PDO of order -1, and the norm of Eǫ : L2

0(U)→ L2
loc(U)
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goes to zero if ǫ → 0. Here U is an open set containing the support of f , and Id
is the identity operator. Even though the error term is smoother than f , it does
not have to be small in a norm stronger than that of L2(U).

Assuming that the manifold of curves is sufficiently close to the family of straight
lines (i.e., when ǫ→ 0), the following results are established in [10]: Aǫ := R−1Rǫ

is a zero-order Fourier Integral operator, AT
ǫ Aǫ = Id + Eǫ, and the norm of Eǫ :

L2(R2) → L2(R2) is less then one. Here R = Rǫ=0 is the classical RT. This
implies, in particular, that the approximate inversion formula for the generalized
RT is R−1

ǫ ≈ AT
ǫ R

−1, and the error term is small in the L2-norm. Notice that
applying the operator AT

ǫ R
−1 is computationally cumbersome, and the error term

is as smooth as the original function.
In this talk we propose two approximate inversion formulas for Rǫ in the cases

of parallel beam and fan beam geometries. As before, let Eǫ be the operator which
gives the error term Eǫf of the inversion formula. In both cases (parallel beam and
fan beam) we establish the following result: for any integer m ≥ 0 the operator
Eǫ : Hm

0 → Hm+1
0 is bounded and ||Eǫ|| → 0 as ǫ → 0. Thus the error term is

guaranteed to be smoother than f in the Sobolev scale. Also, if ǫ > 0 is small, the
stronger norm of the error term is small as well. An additional benefit is that the
formulas can be easily implemented numerically.

In the second part of the talk we propose a motion-compensated local tomog-
raphy function for cone beam CT. We study its main properties, including the
location and strength of the non-local artifacts. As opposed to cone beam local
tomography in the static case, it is not possible here to find the direction of dif-
ferentiation, which reduces the strength of the artifact by one order in the scale of
Sobolev spaces.
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Texture analysis and Funk transform in the rotation group

Victor Palamodov

Reconstruction of a function on the group SO (3) from data of circular integrals
is the mathematical model for the quantitative texture analysis of polycrystalline
materials by means of X-ray or neutron diffraction data, see [6]. The integrand is
called in this context ”orientation distribution function” (ODF) and the mean of
integrals over a union of two orthogonal circles - ”pole density function” (PDF).
A numerical data of PDF is obtained from X-ray diffraction experiments. The
problem of texture analysis is to extract information on ODF from knowledge of
PDF. Several methods of reconstruction (the even part of) an ODF from data of
PDF are known since sixties: expansion in spherical harmonics [3],[6] a Funk-type
inversion formula [1],[4],[5], backprojection inversion [7] and inversion by singular
integral operator [8]. In fact only even Fourier coefficients of ODF can be re-
constructed from PDF. These methods work also for reconstruction of a function
in the group from data of its circle integrals instead of PDF, but anyway they
were applied only to the complete 4D data. The complete data is however not
technically attainable and redundant.

We describe explicit methods that allow to reconstruct a function from some
nonredundant samplings of circle integrals. We discuss the range conditions for
the Funk transform. The classical group SO (3) possesses a natural invariant
metric and is isometric as a Riemannian manifold to the projective space RP3.
Therefore there are many closed geodesics in SO (3) (projective lines) and many
toitally geodesic 2-manifolds which are projective planes. The variety of circles is
parametrized by two unit 3-vectors h,y ∈ S2. The manifold Σ is isomorphic to
S2 × S2/Z2 since C (−h,−y) = C (h,y) . A circle C (h,y) is the set of rotations
g such that gh = y. Any circle is a projective line and has a natural angular
parametrization 0 ≤ ϕ < 2π. For a continuous function f in SO (3) the Funk
transform is defined as the function

Mf (C) =

∫

C

fdϕ

in the manifold Σ. We describe two analytic methods of reconstruction of a func-
tion f from nonredundant data of integrals Mf on a 3D subvariety Z ⊂ Σ.
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Theorem 1. Let Γ be an arbitrary noncontractible plane curve in SO (3) . Any
square integrable function f in the group can be explicitly reconstructed from known
integrals Mf (C (h,gh)) for h ∈ S2, g ∈ Γ.

Theorem 2. Let Γ be an arbitrary noncontractible curve in SO (3) . Any contin-
uous function f can be explicitly recovered from data of integrals Mf (C (h,−gh))
for h ∈ S2, g ∈ Γ.

There is apparent symmetry between these results. The reconstructions can be
considered as solutions of a boundary value for the John-type equation (cf. [2])
which expresses a range condition of the Funk operator M . This boundary value
problem is in fact a Goursat-type problem since the manifold Z of circles C (h,gh)
as in Theorem 1 is characteristic with respect to the John-type operator. The
same true also for the manifold Z ′ = {C (h,− gh)} as in Theorem 2.
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[1] Funk P. 1915 Über eine geometrische Anwendung der Abelschen Integralgleichung. Mathe-
matische Annalen 77(1) 129–135

[2] John F 1938 The ultrahyperbolic differential equation with 4 independent variables Duke
Math. J. 4 300-322

[3] Roe R 1965 Description of crystallite orientation in polycrystalline materials: III. General
solution to pole figure inversion J. Appl. Phys. 36 2024–31

[4] Matthies S 1979 On the reciprocity of the orientation distribution function of texture sam-
pled from pole figures (ghost phenomeha). Physica Status Solidi B 92 K135-K138

[5] Esling C, Bunge H-J and Muller J 1981 An inversion formula expressing the texture function
in terms of angular distribution functions J. Physique 42 161–165

[6] Bunge H 1982 Texture Analysis in Materials Science. Mathematical Methods. Butterworths:
London, Boston

[7] Bernstein S and Schaeben H 2005 A one-dimensional Radon transform on SO(3) and its
application to texture goniometry Mathematical Methods in the Applied Sciences 28 1269–
1289
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A Mumford-Shah level set approach for tomography

Esther Klann

(joint work with Ronny Ramlau, Wolfgang Ring)

Abstract. In this article, a Mumford-Shah based approach for tomography is
presented. We consider simultaneous reconstruction and segmentation of activity
and density distribution from hybrid SPECT/CT data as well as the reconstruction
of the singularity set from limited tomography data. The functions are modelled
as piecewise constant with respect to a set of contours. Shape sensitivity analysis
is used to find a descent direction for the cost functional which leads to an update
formula for the contour in a level set framework.
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1. The Mumford-Shah functional for inverse problems

Tomography, a widely used technique in medical imaging, is known to be an
inverse and ill-posed problem and therefore requires a regularization. In recent
years [2, 3], we have investigated methods for the simultaneous reconstruction and
segmentation of a function f from tomographic data A(f) by generalizing the
ideas of Mumford and Shah [1]. The segmentation is represented by a geometrical
variable Γ that describes the singularity set of the function f . The simultaneous
reconstruction and segmentation is gained as minimizer of the Mumford-Shah like
functional

(1) JMS(f,Γ) = ‖A(f)− yδ‖2Y + α|Γ|+ βP(f) .
The first term measures the data fit, the second term is a regularization on the
length of the segmenting contour and the third term realizes additional properties
of f that might also be necessary in order to guarantuee stability of the functional
reconstruction in (1). As inner organs (liver, lung) and also bones have closed sur-
faces as boundaries and approximately constant density, it is reasonable to restrict
the reconstructions to piecewise constant functions. With these assumptions, the
third term in (1) can be neglected.

Let Γ denote a finite collection of pairwise disjoint, closed, bounded curves, and

{ΩΓ
i }n(Γ)i=1 denote the set of all bounded connected components of R2 \Γ. We define

the space of piecewise constant functions with respect to a geometry Γ, i.e., any
finite collection of pairwise disjoint, closed, bounded curves, as

PC(Γ) =
{ n(Γ)∑

i=1

αi χΩΓ
i
: αi ∈ R

}
⊂ L2(D)

where χΩ denotes the characteristic function of the set Ω.

2. Minimization Algorithm

An algorithm for the minimization of the functional (1) which updates both
variables Γ and f independently is difficult to formulate. This is mainly due to
the fact that the geometry Γ defines the domain of definition for the functional
variable f and thus does not allow to treat f and Γ as independent. We therefore
choose a reduced formulation where we alternately fix the geometric variable and
minimize with respect to the functional variable and vice versa, see [2, 3] for details.

Step 1: Choose an initial estimate Γ0.
Step 2: Fix Γ and solve the optimality system ∂fJ(f(Γ),Γ) · δf = 0.
Step 3: Find a descent direction F such that

dJ(Γ;F ) = ∂fJ(f(Γ),Γ)f
′(Γ;F ) + dΓJ(f(Γ),Γ;F ) < 0.

Step 4: Update Γ by moving it in the chosen descent direction.
Step 5: Repeat Steps 2-4; check for optimality; introduce new components.

Remark: In Step 1, an inital estimate can be gained from the backprojection of
the given data. In Step 2, for f ∈ PC(Γ) we have to solve a low-dimensional (linear
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or non-linear depends on the operator) system of equations for the coefficients αi.
In Step 3, the derivative of J with respect to Γ is computed using techniques
from shape sensitivity analysis [4, 5, 2]. According to Step 2, we have dJ(Γ;F ) =
dΓJ(f(Γ)Γ;F ). In Step 4, the update of the geometry is done using a level-set
formulation [6, 7]. In Step 5, we repeat Steps 2 to 4 and check for optimality by
computating the shape and functional derivatives. A heuristic method is used to
enhance the segmentation by introducing new components.

3. SPECT/CT and limited tomography

3.1. SPECT/CT. We assume that we have two (noisy) data sets yδ and zδ of
activity f and density µ from an integrated SPECT/CT scanner. With R and
A denoting the Radon and the attenuated Radon transform, it is zδ ∼ Rµ and
yδ ∼ A(f, µ).

With the Mumford-Shah approach, we find simultaneously the singularity sets
Γf , Γµ and the functions f ∈ PC(Γf ) and µ ∈ PC(Γµ) such that the given data
yδ and zδ are fitted best possible in a least-squares sense. The functional (1) for
the SPECT/CT problem is [3]

(2) J(f, µ,Γf ,Γµ) = ‖A(f, µ)−yd‖2L2(R×S1)+β‖Rµ−zd‖2L2(R×S1)+α(|Γf |+|Γµ|).
The realization of Step 3 of the minimization algorithm (descent direction for
the geometry update) requires the implementation of the adjoints of the Frechet
derivative of the attenuated Radon transform A(·, ·) as well as the evaluation of
several boundary integrals.

Figure 1: Left to right:

Heart phantom (gap in the

blood flow). Reconstruction

from SPECT/CT data with

10% noise. Contours: orig-

inal (gray, solid) and recon-

structed (black, dashed).

3.2. Limited Angle Tomography (joint work with Todd Quinto). Singu-
larities of an object can be detected from limited angle tomographic data when
one has measurements over a line perpendicular to the singularity (e.g., tangent
to a part of the boundary of the object) [8]. We adapted the Mumford-Shah
functional (1) to limited angle data. We generated an ellipsoid test phantom con-
taining two narrow rectangles, one in horizontal and one in vertical direction, two
squares, two triangles and a circle. Measurements are taken over a range of ±60◦
from the vertical axis. Figure 2 shows results from first test computations from
full (left) and limited data (right). From the limited data reconstruction one can
see that all singularities (boundaries) in vertical orientation are detected well. For
the horizontally oriented rectangle the narrow sides are also reconstructed well,
reconstruction of boundaries oriented exclusively horizontal is impossible [8].

The work was supported by FWF-projects P19029-N18 and P19496-N18.
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Figure 2. Test phantom: original contours (gray, solid) and reconstructed
contours (black, dashed) Left: reconstruction from full Radon data. Right:
reconstruction from limited angle tomographic data (measurements are miss-
ing over the horizontal line ±30◦).
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Computing Complex Frequency Dependent Shear Moduli

Joyce R. McLaughlin

(joint work with Kui Lin)

Introduction: Shear stiffness imaging of tissue is a rapidly evolving medical imaging
technology where the goal is to image shear biomechanical properties to identify
disease, such as cancer or fibrosis, where tissue stiffness changes occur. The start-
ing point for the associated inverse problems is movies of displacement throughout
a region of tissue. These movies are made by processing a sequence of B-scans
or a sequence of MR data sets acquired while the tissue is moving as a result of
mechanical excitation.

Section 2: The Mathematical Model: Tissue is viscoelastic and gives a 3D response
to mechanical excitation. In the experiments considered here the displacement am-
plitude is on the order of tens of microns. We assume a linear solid model governs
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the response; that u (x, t) satisfies

(2.1) ρ utt = ∇(λ∇ · u) + ∇ · [µ0ǫ +

∫ t

0

n∑

α=1

e−(t−s)/τα
∂

∂s
(µαǫ)ds]

where ǫ = ∇u + (∇u)T , λ is the bulk modulus, ρ the density per unit
volume, which is assumed to be constant, µ0 a spring constant and µα, τα the
spring constants and relaxation constants, α = 1, . . . , n, associated with Maxwell
elements which are in parallel with the single spring.

The experiment is often designed so that one displacement component is larger
than the others; furthermore often only one component of data is acquired. In
this case, by necessity, we eliminate the bulk modulus term as well as the (∇u)T
term in the strain, ǫ. The three equations in (2.1) then decouple. The decoupled
equation for the component u that is measured is then, for the purposes of this
paper, Fourier Transformed in time to obtain û(x, ω). At any given frequency, ω,
then, û(x, ω) is assumed to satisfy

(2.2) ∇ · (µ̃ ∇û) + ω2û = 0

where µ̃ is complex valued and

µ̃ = µ̃1 + iµ̃2 =

[
µ0 +

n∑

α=1

iωµατα
1 + iωτα

]
/ρ.

For the forward problem we are given µ0, µα, τα, α = 1, . . . , n, ρ and we find u; for
the inverse problem we are given û(x, ω) and we recover µ̃ = µ̃1 + iµ̃2.

To recover µ̃ in (2.2), since (2.2) is a first order partial differential equation
we will need µ̃ for at least some values on the boundary of the region of interest.
In general these boundary values are not measured so some approximate values
must be selected. Our approximation, when these values are needed, will be

µ̂ = −ω2û/∇û.

This choice is exact when µ̃ is constant and is justified by the bound given in [1]
when µ̂ is real; the same bound can be shown to be valid when µ̂ is complex
valued.

Section 3: The Inverse Problem: In this problem we are given complex, time
Fourier Transformed, data which is displacement û(x, ω) when x ∈ Ω ⊂ R2.
The unknown µ̃ = µ/ρ satisfies

(3.1) ∇ · (µ̃∇û) + ω2û = 0 x ∈ Ω,

where û is the given data. We assume that µ̃ is known for any x ∈ ∂Ω where
boundary data is needed. In practice we use the approximation given in Section
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2. We rewrite (3.1) as

(3.2) µ̃x + ãµ̃y + b̃µ̃ + c̃ = 0 where ã =
ûy
ûx
, b̃ =

∆û

ûx
, c̃ =

ω2û

ûx

where now the first order p.d.e. is in standard form. If we have measurements û1

and û2, from two independent experiments, we make a non-linear combination of
(3.1) for each û1, û2 to obtain

0 =
1

| û1x |2 + | û2x |2
[¯̂u1x (∇·(µ̃∇û1) + ω2û1)+ ¯̂u2x(∇·µ̃∇û2) + ω2û2]

(3.3) = µ̃x + ˜̃aµ̃y + ˜̃bµ̃ + ˜̃c

where ˜̃a,
˜̃
b, ˜̃c can be straight forwardly calculated.

In each case we arrive at a similar form for the first order p.d.e. At the same
time, since the coefficients in the first order p.d.e.’s (3.2) and (3.3) are different,
the stability properties due to errors in the boundary conditions may be different.

Three different examples show that the stability can be improved by changing
the marching direction or using two well chosen distinct data sets, û1, û2. Stability
is governed by the signs of the imaginary part of a , see [2], and the real part of b .

Section 4: Methods and Images: Our true value of µ̃ = µ̃1 + i µ̃2 is given
pictorially in Figure 1. Our solutions û1, û2 are computed synthetically and are
generated by sources at opposite sides of the image plane.

Our recoveries are given in Figures 2-3. These recoveries are generated using
a finite difference explicit/implicit method that we prove always controls the ex-
ponential error growth that can occur due to the sign of Ima. Our experience is
that we can reduce the instability that can occur due to the Reb by changing the
marching direction or using multiple data sets.

The recovery is best when we use two data sets and this recovery is a signifi-
cant improvement over the image obtained when our marching direction is in the
direction away from the source.

Figure 1. Exact complex valued µ̃.
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Figure 2. Recovery of µ̃ using (3.2) where in (a), (b) ((c), (d))
the marching direction is toward (away from) the source.

Figure 3. Recovery of µ̃ using (3.3) with two displacements.
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Comparing and Combining Two Methods of Two-Dimensional
Region-of-Interest Reconstruction

Rolf Clackdoyle

(joint work with Catherine Mennessier, Michel Defrise, Dilip Ghosh Roy)

1. Region-of-Interest Reconstruction

In classical (two-dimensional) tomography, the forward model is the Radon
transform (or X-ray transform). We use p for the Radon transform of f , so
p(φ, s) =

∫
f(rα + sβ)dr for (φ, s) ∈ [0, π) × [−∞,∞], where α = (cosφ, sinφ)

and β = (− sinφ, cosφ). In practice, the support of f is known, or at least known
to be contained within some fixed volume, so p(φ, s) only needs to be measured
for the lines that pass through this volume, since the other values are zero. In
this situation the Radon inversion formula can be applied. In the popular filtered-
backprojection (FBP) format the inversion takes the following form.

f(x) =

∫ π

0

p*(φ, x · β) dφ, where p*(φ, s) =
1

2π

∫
p(φ, s′)h′ǫ(s− s′) ds′

and where h′ǫ, defined below, is a regular function that approximates the ramp-
filter kernel [1]. All equations are understood to be taken in the limit as ǫ→ 0.

h′ǫ(s) =





−1
πs2

if |s| ≥ ǫ

1

πǫ2
if |s| < ǫ

hǫ(s) =





1

πs
if |s| ≥ ǫ

s

πǫ2
if |s| < ǫ

The expression for hǫ on the right is a regular approximation to the Hilbert trans-
form kernel, compatible with the ramp-filter kernel h′ǫ (recalling that ramp-filtering
is the composition of the derivative with the Hilbert transform). In region-of-
interest (ROI) reconstruction, the Hilbert transform plays a major role.

The two-dimensional (2D) ROI reconstruction problem can be stated as follows.
If p(φ, s) is known for all (φ, s) in a proper subset of [0, π)× [−∞,∞], what is the
maximal ROI that can stably reconstructed? There have been a number of recent
(since 2002) results published on this problem, and virtually all of the analytic
results are based either on the principles of the virtual fanbeam (VFB) method
or the method of differentiated backprojection with Hilbert filtering (DBP-H). In
this work we fix a specific ROI problem, and we use it to examine the difference
between the VFB and DBP-H approaches.

The support of f is an ellipse centered at the origin, with major axis of 2a = 40
cm aligned with the x1-axis, and minor axis 2b = 20 cm. The measured data
corresponds to the set of all lines that pass through the field-of-view (FOV) of the
scanner, which is a circle with the same center as the ellipse, and with diameter
2r = 30 cm. For the purposes of this work an ROI consisting of (a neighborhood
of) the single point x* = (x1, x2) = (3, 5) suffices.
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2. The VFB Method

The idea behind the VFB method is that parallel projections that are not trun-
cated can be treated in the usual fashion (FBP equation (1)), and truncated pro-
jections are handled by finding a virtual fanbeam projection to supply the Hilbert
transform of the parallel projection. See [2], [3], [4] for detailed descriptions.

We refer here to the VFB method as method A for short, and write fA(x) for
the reconstruction formula according to the VFB approach. Note that fA(x) is
just a VFB formula applied to the specific ROI problem identified above, and it is
one of many possible VFB formulas for this problem.

fA(x) =

∫ π

0

p*(φ, x · β) dφ

p*(φ, s) =
1

2π






∫
p(φ, s′)h′ǫ(s− s′)ds′ if φ ∈ [0, π]\[φc, φc]

(∂/∂s) pH(φ, s) if φ ∈ [φc, φc]

Here φc = arctan
√
(r2 − b2)/(a2 − r2) and φc = π − φc indicate the transition

angles between truncated and non-truncated projections. The Hilbert transform
of the projection p(φ, ·) is given by

pH(φ, s) = gH(vφ,s, φ) =

∫ 2π

π

g(vφ,s, φ
′)hǫ(sin(φ− φ′))dφ′

with virtual fanbeam projection g(vφ,s, φ
′) = p(φ′, vφ,s · β′) and virtual vertex

vφ,s = sβ +
√
r2 − s2α.

3. The DBP-H Method

We refer to the DBP-H approach as method B. The idea is to identify and
treat just one line segment that traverses the object and is completely measured;
see [5], [6], [7], [8]. In our specific problem we use the segment S joining the points
[x1,−R] to [x1, R] where R = 14 (and recalling that x1 = 3). Because all lines
intersecting this line segment are measured, we can form the backprojection of the
derivative of the projection data,

b(x) =

∫ 3π/2

π/2

p′(φ, x · β) dφ x ∈ S

where p′(φ, s) = (∂/∂s)p(φ, s). The reconstructed image fB is found by applying
a finite Hilbert inverse [9] along the line segment S, with constant K found from
f(x1, y) = 0 where (x1, y) = (3, 13).

fB(x) =
1

2π
√
R2 − x22

(
K −

∫ R

−R

√
R2 − t2 b(x1, t) hǫ(x2 − t) dt

)
, x ∈ S

K =

∫ R

−R

√
R2 − t2 b(x1, t) hǫ(y − t) dt
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4. Comparing the Two Methods

The mathematical formulations of the VFB and DBP-H methods are so different
that it is difficult to establish the connections between them. By putting both in
the form of an inner product with the data, the ‘weight functions’ of the inner
products can be compared. So fA(x) =< wA, p >=

∫ ∫
wA(φ, s) p(φ, s) dφds and

similarly for fB(x). Here the weight wA(φ, s) indicates the contribution of the
line-integral p(φ, s) to the reconstruction. Note that wA depends on x; here wA

and wB are the weight functions for the point x* = (3, 5).
It can be shown [10] that the VFB weight function for this geometry is

wA(φ, s) =
1

2π
h′ǫ(x · β − s)χNT

φ + wV (φ, s)χV
φ,s

The details of the full expression are given in [10]. Briefly, the characteristic func-
tion χNT

φ is equal to 1 for the non-truncated projections, and zero otherwise. The

other characteristic function χV
φ,s is equal to 1 for any line intersecting the virtual

fanbeam trajectory, an arc on the circle of radius r whose endpoints are defined in
terms of the x*, φc, and φc; and zero otherwise. The weighting behavior associated
with the virtual fanbeam projections is given in a complicated expression for wV .

For the DBP-H case, the weight function takes the form

wB(φ, s) = wDBP−H(φ, s)χB(φ, s)

where the explicit expression for wDBP−H(φ, s) can be found in [10], and χB(φ, s)
is equal to 1 if the line (φ, s) intersects the segment S, and zero otherwise.

A discussion of the features of these two weight functions appears in [10]. Here
we only make two remarks concerning the regions where the weight functions are
zero (corresponding to sinogram values that make no contribution to the recon-
struction of f(x*)). The first remark is that both weight functions are zero for all
lines that lie outside the scanner FOV (the truncated measurements, outside the
circle of radius r); this is the mechanism by which the methods are able to per-
form accurate ROI reconstruction. The second remark is that the regions where
the weight functions vanish are not the same. Each method discards some of the
measured values, but the discarded values differ. This second point is important
as it shows that these two methods act react differently to noisy data.

5. Combining the Two Methods

If the noise in the measurement data is known then the effect of this noise on
the two reconstructions fA(x*) and fB(x*) can be established. We write σ2(φ, s)
for the variance of the measurement p(φ, s) and we assume that the measurements
are statistically independent. Writing σ2

A for the resulting variance in fA(x*), we
obtain σ2

A =< w2
A, σ

2 > and similarly for method B. Comparing σ2
A to σ2

B shows
which method reacts better to the measurement noise.

We can go further. We consider a combined reconstruction fλ = λfA+(1−λ)fB
whose corresponding weight function is obviously wλ = λwA+(1−λ)wB . Now the
variance σ2

λ of fλ(x*) is σ
2
λ =< w2

λ, σ
2 >=< (λwA + (1− λ)wB)

2, σ2 > which is a
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quadratic function in λ with positive leading coefficient. The minimum variance
σ2
λm

is found at λm =< w2
B − wAwB , σ

2 > / < (wA − wB)
2, σ2 > and we easily

verify that σ2
λm

< σ2
A and σ2

λm
< σ2

B.
In general, a different λm can be computed for each point in the ROI to pro-

vide a minimum-variance reconstruction throughout the ROI using different linear
combinations of the two methods. Note that only two reconstructions are needed
(method A and method B), and these reconstructions are combined pointwise
using different values of λm. However λm depends on wA(x) and wB(x) so the
weight functions must be calculated for each point.

Numerical examples will be presented at the Image Formation in X-ray CT
meeting in Salt Lake City in June 2010, see
http://www.ucair.med.utah.edu/CTmeeting/
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Reconstruction and Motion Correction in SPECT Imaging – a
Combined Approach

Bernd Fischer

(joint work with Hanno Schumacher, Jan Modersitzki)

Due to the long imaging times in SPECT, patient motion is inevitable and
constitutes a serious problem for any reconstruction algorithm. The measured in-
consistent projection data lead to reconstruction artifacts which can significantly
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affect the diagnostic accuracy of SPECT if not corrected. To address this prob-
lem a new approach for motion correction is introduced. It is purely based on
the measured SPECT data and therefore belongs to the data-driven motion cor-
rection algorithm class. However, it does overcome some of the shortcomings of
conventional methods. This is mainly due to the innovative idea to combine re-
construction and motion correction in one optimization problem. The scheme
allows for the correction of abrupt and gradual patient motion. To demonstrate
its performance several test runs are presented.

In Single Photon Emission Computed Tomography (SPECT), the imaging time
is typically in the range of 5-30 minutes. Here, patient movement, which has fre-
quently been reported in clinical applications [1], constitutes a serious problem
for any reconstruction scheme. The movements cause misalignment of the projec-
tion frames, which degrades the reconstructed image and may introduce artifacts.
These motion artifacts may significantly affect the diagnostic accuracy [2, 3, 4].
Different methods have been proposed for the correction of motion in SPECT
studies. These methods may be divided into two categories.

The first category includes hardware methods, for example the triple scan [5]
or dual scan [6] protocol. These methods do produce motion corrected projections
and thus may be used in conjunction with any reconstruction method. Unfor-
tunately not all types of motion, for example gradual motion, can be corrected.
Other methods in this category rely on the placement of some markers on the
patient and use camera or tracking systems to detect or estimate patient motion
during the SPECT imaging [7, 8]. Here, in list-mode the position of each detected
photon can be corrected directly in conjunction with every reconstruction algo-
rithm. Yet another way is to subdivide the measured data in sets belonging to the
same patient position and employing a reconstruction method based on the esti-
mated motion information [9, 10]. The marker-based approaches clearly decrease
the motion artifacts for the price of having to place the markers on each patient
and the need for additional equipment.

In this note we advocate the employment of a novel method within the second
category, the software methods. These approaches are working solely with the
measured raw data. Here one distinguishes between projection- and image-space
based approaches. One idea is to reconstruct the image followed by a simulation
of SPECT-imaging based on the obtained reconstructed data [11, 12]. Next, the
measured projections and the computed forward-projections are compared in order
to estimate and to correct for patient motion in the projection-space. It should be
noted, that due to the projection geometry, this method is not able to compensate
for rotational movement. Therefore a method, the so called Data-Driven Motion
Correction (DDMC) approach [13, 14], was developed. Here the idea is to estimate
the motion and to correct for it within the image-space by applying a registration
scheme onto the images obtained by corresponding partial reconstructions. This
method can handle full rigid-body motion. Unfortunately it was designed only
for SPECT systems with perpendicular camera-heads. Furthermore, the partial
reconstructions have to be based on at least 30% of all measured projections as
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the success of the registration scheme relies on high quality partial reconstruction
images. Consequently, the DDMC method can only correct for abrupt patient
motion and can not be employed for gradual motion problems.

In this note, we report on a novel motion correction approach, working solely
on the raw data, which does overcome the above mentioned shortcomings. The
new scheme, which Combines Reconstruction and Motion Correction in one opti-
mization step is called CRMC and was briefly introduced in [15]. One may find a
similar idea within the super-resolution methodology [16], where roughly speaking,
the goal is to obtain a ”nice image” out of two or more related ”bad images”. As it
turns out, the CRMC approach is able to correct for abrupt and gradual motion.
Furthermore, it works successfully with any one-, two-, or triple-head SPECT
system. As it is characteristic for inverse problems, the reconstruction process is
ill-posed and its formulation and implementation does need special care. To this
end we introduce a novel regularization term which overcomes possible problems
and works just fine in practice.
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2D Phase Unwrapping Problem

Ming Jiang

(joint work with Zhi-Quan Luo, Jin-Jun Xiao)

Phase unwrapping is a classical problem in many applications, such as optical
interferometry, x-ray phase contrast imaging and tomography, MRI, and synthetic
aperture radar, etc. Phase unwrapping problem is to restore the true phase from
the measured phase which are wrapped and corrupted by noise. It is to estimate
the true value ϕ from the following phase wrapping equation

(1) θ(x) =W [ϕ(x) = [ϕ(x)]
W

= ϕ(x) mod (2π), x ∈ Ω,

where ϕ is the true phase, W is the wrapping operator, θ is the wrapped phase
in the principal range (−π, π], Ω is a domain in Rn. The wrapping operator, W ,
wraps its argument into one principle range, typically, (−π, π] after 2π modulation.
The wrapping process results in discontinuities in the measured phase values. Noise
and aliasing are other difficulties for phase unwrapping. Phase unwrapping is
essentially ill-posed.

Methods for phase unwrapping depend on how the true phase gradient ∇ϕ is
extracted or estimated from the phase wrapping equation (1) [3]. For n = 1, when
the Itoh’s condition [5]

(2) −π < ∇ϕ(x) ≤ π, x ∈ Ω,

holds, the following estimate of the derivative of the true phase is utilized

(3) ϕ′(x) =W [θ′(x)], x ∈ Ω.

In this case, the true phase can be restored simply by integration,

(4) ϕ(x) =

∫ x

−∞

W [θ′(t)] dt x ∈ Ω.

For n ≥ 2, path integration is applied in (4). However, such an integration can
be path dependent if there are curves with non-zero residues [3]. The residue of a
closed curve C in Ω is defined as

(5)
1

2π

∮

C

∇ϕdC.



Mathematics and Algorithms in Tomography 1053

Therefore, it leads to non-unique results to restore the true phase by path integra-
tion, even if Itoh’s condition is valid. To resolve this path dependent issue, branch
cut or graph cut methods have been developed [4, 1]. Any path not intersecting
the cuts can then be used for path integration.

Another important approach for phase unwrapping is by Lp norm minimization
[3]. It is to restore the true phase by minimizing the following functional

(6)

∫

Ω

‖∇ϕ−∇θ‖p dx.

for ϕ ∈ H1
p (Ω). p = 2 leads to a boundary value problem of the Poissonian

equation. Zero residue condition can be incorporated as a constriant. Various
regularization techniques and Bayesian frameworks are also reported.

In [8], we consider the 2D phase unwrapping problem and propose a Maximum
a Posteriori (MAP) framework. Assuming a Gaussian prior for the true phase
image, the MAP formulation leads to a quadratic integer minimization problem
with the zero residue constraint. When the gradient of the true phase satisfies a
relaxed Itoh’s condition ‖∇ϕ‖ < 2π, the MAP formulation is reduced to a binary
quadratic minimization problem. The latter can be efficiently solved by semidef-
inite relaxation (SDR). Numerical results demonstrate that the SDR approach
significantly outperforms the methods based on L1 or L2 norm minimization.

There are several methods based on partial differential equations (PDE) [7], in-
cluding some from Lp norm minimization [3]. In this talk, a new phase unwrapping
method based on PDE is reported. Our method is based on another estimate of
the gradient of the true phase. The phase wrapping equation can be equivalently
written as

(7) eiϕ(x) = eiθ(x) = u(x) + iv(x), x ∈ Ω,

where u(x) = cos θ(x) and v(x) = sin θ(x) for x ∈ Ω. Although the wrapped phase
usually contains discontinuities, its sine u and cosine v are of the same smoothness
as the true phase. Computing gradients at both sides of (7), we obtain

(8) ieiϕ∇ϕ = ∇u+ i∇v.
It follows that

(9) ∇ϕ = −i (u− iv) (∇u + i∇v) = u∇v − v∇u.
Define an operator G as

(10) G[θ] = cos θ · ∇ [sin θ]− sin θ · ∇ [cos θ] ,

which serves as another estimate of the gradient of the true phase, different from
the estimate in (3). Computing divergences at both sides of (9), we obtain,

(11) ∆ϕ = u∆v − v∆u.
By (9) again, the outward normal derivative of ϕ at the boundary Γ of Ω is

(12)
∂ϕ

∂n
= u

∂v

∂n
− v ∂u

∂n
.
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Then the true phase can be restored by solving the following boundary value
problem (BVP)

(13)






∆ϕ = u∆v − v∆u, x ∈ Ω,

∂ϕ

∂n
= u

∂v

∂n
− v ∂u

∂n
, x ∈ Γ.

The estimate in (9) was reported in [2]. A BVP same as (13) was proposed in [6].
However, a zero Neumann boundary condition was applied in [6].

When smoothness of involved terms holds, it can be proved that solutions of
the BVP (13) exist and are subject to arbitrary constant shifts. The BVP (13) is
the Euler equation for the following functional

(14) K(ϕ) =
1

2

∫

Ω

‖∇ϕ−G[θ]‖2 dx,

for ϕ ∈ H1(Ω). Hence, minimizing K(ϕ) for ϕ ∈ H1(Ω) is equivalent to finding
a least-squares solution for the first order PDE (9). To confine the solutions from
arbitrary constant shifts from solving the BVP (13) or equivalently the variational
problem (14), we add another term to K as follows

(15) Kλ(ϕ) =
1

2

∫

Ω

‖∇ϕ−G[θ]‖2 dx+
λ

2

∫

Ω

∣∣eiϕ − eiθ
∣∣2 dx,

to push solutions to be subject to shifts of integer multiples of 2π, provided that
λ is small. The following is one representative simulation result of our proposed
method.

(a) True Phase (b) Wrapped Phase (c) Unwrapped Phase

Figure 1. Result obtained by solving the BVP for the functional (15).
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Exact shape-reconstruction by one-step linearization in electrical
impedance tomography

Bastian Harrach

(joint work with Jin Keun Seo)

The goal of electrical impedance tomography (EIT) is to produce spatial and
temporal images of the conductivity within an electrically conducting subject such
as the human body from measurements of boundary voltage data resulting from
the injection of electrical currents. The mathematical problem behind EIT is how
to reconstruct the coefficient σ(x) in the elliptic partial differential equation

∇ · σ(x)∇u(x) = 0, x ∈ Ω,(1)

from knowledge of all possible Dirichlet and Neumann boundary values, u|∂Ω and
σ∂νu|∂Ω of the solutions. We thereby assume that σ ∈ L∞

+ (Ω) where Ω ⊂ Rn,
with n ≥ 2, is a bounded domain with smooth boundary ∂Ω and outer normal
ν. Knowing the set of all possible Dirichlet and Neumann boundary values is
equivalent to knowing the Neumann-to-Dirichlet operator

Λ(σ) : g 7→ u|∂Ω,
where u solves (1). For fixed σ, this is a compact and self-adjoint linear operator
from L2

⋄(∂Ω) to L
2
⋄(∂Ω), where the subscript ”⋄“ denotes the subspace of functions

with vanishing integral mean on ∂Ω.
The most widely used reconstruction algorithms for EIT rely on linearizing the

forward mapping Λ : σ 7→ Λ(σ) around some reference conductivity σ0. Then the
linear equation

(2) Λ′(σ0)κ = Λ(σ)− Λ(σ0),

is solved to obtain an approximation κ ≈ σ − σ0. Λ′(σ0) denotes the Fréchet-
derivative of Λ evaluated at σ0.

Herein, we report on the crucial question of how close the thus reconstructed
κ is to the true conductivity change σ − σ0. We sketch our recent result [4] that
shows that κ and σ−σ0 have the same (outer) support, no matter how large σ−σ0
is. The outer support ”supp∂Ω“ is, roughly speaking, the support together with
all regions that cannot be reached from ∂Ω, cf. [9, 2] for the origins of this concept.
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Theorem 1. [4, Corollary 3.5(c)] Let σ and σ0 be piecewise-analytic. If there
exists an exact piecewise-analytic solution κ of the linearized equation (2) then
supp∂Ω(σ − σ0) = supp∂Ωκ.

Furthermore, for all points on the boundary of supp∂Ω that have a neighbourhood
in supp∂Ω in which σ, σ0 and κ are continuous, it holds that

(3)
σ0
σ
(σ − σ0) ≤ κ ≤ σ − σ0,

where the evaluations are taken from inside supp∂Ω.

Sketch of the proof. The proof of the theorem relies on a monotony argument
together with the technique of localized potentials derived by one of the authors
in [1]. The monotony relation is frequently being used in some form or another in
the EIT-literature, cf. [6, 7, 5, 3]. In the sense of quadratic forms on L2

⋄(∂Ω), it
holds that ([4, Lemma 2.1])

Λ′(σ0)(σ − σ0) ≤ Λ(σ)− Λ(σ0) ≤ Λ′(σ0)
(σ0
σ
(σ − σ0)

)
.

Using the assumption that Λ′(σ0)κ = Λ(σ)−Λ(σ0) and writing out the quadratic
forms, we deduce that

∫

Ω

(σ − σ0)|∇u0|2dx ≥
∫

Ω

κ|∇u0|2dx ≥
∫

Ω

σ0
σ
(σ − σ0)|∇u0|2dx(4)

holds for all solutions u0 of the EIT equation (1) with reference conductivity σ0.
Hence, in order to obtain a relation between κ and σ − σ0 we have to control

the squares (of gradients of solutions) |∇u0|2, which physically correspond to the
electrical energy of the potentials u0. In [1, Theorem 2.7], one of the authors has
shown that these squares can be controlled in quite a general way (the so-called
technique of localized potentials). It is possible to make the energy of u0 arbitrarily
large in some subset of Ω, while at the same time making it arbitrarily small in
another part. The only restriction is that there must exist a connection between
the large energy part and (a part of) the boundary ∂Ω that does not intersect
the small energy part. The left side of figure 1 shows a sketch of what is possible

to achieve. There exists a sequence of potentials u
(k)
0 such that (the L2-norm of)

∇u(k)0 tends to infinity in the small circle at the end of the curved domain and,

at the same time, ∇u(k)0 tends to zero outside the curved domain. Note that the
curved domain connects the small circle to a part of the boundary.

We can now use these localized potentials to deduce the theorem from the
monotony relation (4). Assume that supp∂Ωκ is not the same as supp∂Ω(σ − σ0).
Then there must be some part of supp∂Ω(σ−σ0) which does not belong to supp∂Ωκ
(or vice versa) and, since this is the outer support, this part can be reached from
the boundary. By analyticity arguments, we can assume that σ − σ0 is either
strictly positive or strictly negative there. Now we use a localized potential that
is large on this overlapping part but small on all other parts of supp∂Ωκ and
supp∂Ω(σ − σ0), cf. the right side of figure 1, and obtain a contradiction to the
monotony relation (4). With the same arguments we can show (3). 2
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|∇u0|
2 large

|∇u0|
2 small supp∂Ωκ

supp∂Ω(σ − σ0)

Figure 1. Sketch of the use of localized potentials.

Note that the theorem also implies that the Calderón-problem is uniquely
solvable for piecewise-analytic conductivities (which is a famous result of Kohn
and Vogelius [8]), and that the same arguments also show that the linearized
Calderón-problem is uniquely solvable for piecewise-analytic conductivities (which
was shown for piecewise polynomials in [10]).

For practical applications, there is a flaw in the formulation of this theorem.
It is not clear whether an exact solution of the linearized equation exists. Even
if it exists, it does not have to be piecewise analytic, and, even if it exists and it
is piecewise-analytic, one would only be able to find an approximate solution in
practice.

However, under an additional definiteness condition and taking a slightly more
technical approach, the theorem and its proof can be extended to derive a globally
convergent method to calculate the outer support by approximately solving (2).
The details are given in [4].
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Local SONAR inversion

Andreas Rieder

(joint work with Todd Quinto and Thomas Schuster)

One mathematical model for SONAR is the spherical mean transform that recovers
a function in 3D from its means over spheres centered on a plane, (e.g., the surface
of the ocean). Indeed, assume the acoustic wave is excited at point z ∈ P =
{(z′, 0): z′ ∈ R2}. Then, the resulting acoustic pressure field u(t;x) in x ∈ R3 (x3
is the depth coordinate) at time t ≥ 0 is governed by the acoustic wave equation

∆xu−
1

ν2
∂2t u = −δ(x− z)δ(t)

where ν = ν(x) is the speed of sound.
The corresponding inverse problem is to reconstruct ν from the backscattered

(reflected) field us observed on the plane P for all times t > 0. Cohen and Bleis-
tein [1] assumed ν to be a slight perturbation of a constant background velocity c:

1

ν2(x)
=

1 + n(x)

c2

with an acoustic profile n(x) whose absolute value being significantly less than 1.
Using the fundamental solution of the wave equation with constant sound speed
together with a linearization they obtained that

Rn
(
z′,

cτ

2

)
= −4c2

∫ τ

0

(τ − t)us(t, z) dt

where τ is the observation period and

Rf(z′, r) :=
1

4π r2

∫

S2

f(z′ + rξ, rη)dS(ξ, η)

denotes the spherical mean transform mapping functions to their means over
spheres centered at (z′, 0) with radius r > 0.

Obviously, functions being odd with respect to x3 cannot be recovered as all
their spherical means vanish. Therefore, we restrict our investigation to functions
in C∞0,even(R3), the space of even, infinitely differentiable functions with compact
support. Those functions can be recovered by Klein’s [2] inversion formula

f =
1

2π
(I ⊗ I ⊗H)

√
∆R∗

∂Rf, f ∈ C∞0,even(R3), 1

where ∆ is the three-dimensional Laplacian,

R∗
∂g(x) =

∫

R2

∂x3g
(
z′,
√
|z′ − x′|2 + x23

)
dz′

is the backprojection operator, and H is the Hilbert transform.
Klein’s formula requires complete data, that is, Rf has to be known on all of

R2 × [0,∞). Obviously, complete data can never be recorded and applying the

1By duality the inversion formula may be extended to special classes of distributions.
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inversion formula to incomplete data results in the typical artefacts corrupting the
inversion.

To overcome these drawbacks we replace the non-local operations H and
√
∆

in Klein’s formula by I and ∆, respectively. Furthermore, we cut off the data with
respect to large radii (so that we can interchange integration and differentiation
in R∗

∂). Instead of f we propose to recover Λf from Rf by

Λf := ∂x3∆R∗ΦRf

where R∗ is as above without derivative ∂x3 and

Φg(x, r) = ϕ(r)g(x, r)

with a smooth cutoff function ϕ being 1 on a compact set around the origin and
being 0 for radii larger than, say, a chosen rmax.

Lemma: The operator Λ is pseudodifferential of order 1 with top order symbol

σ(x, ξ) = −ıπ ϕ
(
x3
|ξ3|
|ξ|
)
sgn(ξ3) |ξ|, ξ ∈ R

3, x3 > 0.

As such Λ: Hs
c (R

3)→ Hs−1
loc (R3

x3>0) is continuous for any s ∈ R.

The symbol tells us that Λ basically behaves like the differential operator −∂x3 .
Thus, f and Λf share the same singularities (to be precise: they share the same
singular support).

The numerical evaluation of Λ needs to be stabilized. To this end we follow
ideas of the approximate inverse [3]. Instead of computing Λf(p), p ∈ R3

x3>0,
directly we like to recover its smoothed version

〈Λf, ep,s,k〉L2(R3)

where

ep,s,k(x) =
Γ(k + 5/2)

π3/2 Γ(k + 1) s3+2k

{
(s2 − d2)k : d < s,

0 : d ≥ s,
d = |x− p|,

is a mollifier with s, k > 0,
∫

R3

ep,s,k(x) dx = 1 and supp ep,s,k = Bs(p).

The parameter s > 0 scales the mollifier and plays the role of a regularization
parameter: the larger s the smoother the reconstruction. Note that k is only a
design parameter.

In the following theorem we give analytically a reconstruction kernel allowing
the computation of 〈Λf, ep,s,k〉L2(R3) from the spherical means of f .

Theorem: We have that

〈Λf, ep,s,k〉L2(R3) = 〈Rf, ψp,s,k〉L2(R2×[0,∞[,r2dz′dr)



1060 Oberwolfach Report 18/2010

with reconstruction kernel

ψp,s,k(z
′, r) = −ϕ(r) Ck,s k p3A

k−2

L

[
(2k + 1)A

[
1

Lk

(
k − 2 +

B

2rL

)
− 1

r

]

+ 2(k − 1)s2
[
1

r
− 1

L(k − 1)

(
k − 3 +

B

2rL

)]]

for r ∈ [L− s, L+ s] where

L = |(z′, 0)− p|, A = s2 − (L− r)2 and B = (r + L)2 − s2.
For r 6∈ [L− s, L+ s]: ψp,s,k(z

′, r) = 0.

First numerical experiments showed that singularities of f , which are in principle
visible from the limited data set, can be stably recovered.
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Synthetic focusing in Acousto-Electric Tomography

Leonid Kunyansky

(joint work with P. Kuchment)

Electrical Impedance Tomography (EIT) is known as a harmless and inexpensive
imaging modality [2]. Unfortunately, it suffers from low resolution and instability
(see e.g. [3]). Recently, it was proposed [9] to combine the traditional EIT mea-
surements with simultaneous perturbation of the medium by a focused acoustic
beam. Such a technique, called Acousto-Electric Tomography (AET), is based
on the recent discovery that tissue conductivity can be changed by application of
acoustic pressure [7, 8]. It has been understood [1, 5] that if one could focus the
ultrasound on a small spot inside the body, knowledge of this location would have
a stabilizing effect on the reconstruction in otherwise highly unstable EIT.

Since perfect focusing of acoustic waves is almost impossible to achieve in prac-
tice, we propose an alternative approach where the medium is perturbed by a
series of spherical acoustic fronts of varying radii and with centers lying outside of
the object. Then the changes in the electric potential corresponding to perfectly
focused perturbations are synthesized from the measurements made using realistic
(spherical) acoustic waves. As explained below, such a synthesis is achieved by
the inversion of the spherical mean Radon transform. Our numerical experiments
confirm the efficiency of such ”synthetic” focusing and show vast improvement in
stability and image resolution as compared to EIT.



Mathematics and Algorithms in Tomography 1061

Formulation of the problem. The propagation of the electrical currents in
a conductive medium is governed by the divergence equation

(1) ∇ · σ(x)∇u(x) = 0,

where σ(x) is the conductivity and u(x) is the electric potential, x ∈ Ω. Let us
assume that σ − 1 is compactly supported within region Ω, and that σ(x) = 1 in
the neighborhood of the boundary ∂Ω. We also assume that the currents ψ(x) =
σ ∂

∂nu(x) through the boundary are fixed and the values of the resulting potential
are measured on the boundary ∂Ω.

The acoustic wave propagating through the object slightly perturbs the conduc-
tivity σ(x). Following the observations made in [7, 8] we assume that the pertur-
bation is proportional to the local value of the conductivity; thus, the perturbed
conductivity σnew(x) equals to σ(x) exp(η(x)) where |η(x)| ≪ 1 and is compactly
supported. Let unew(x) = u(x) + w(x) be the potential corresponding to the
perturbed conductivity σnew(x) and w(x) be the perturbation thereof. Then, by
linearizing the problem about the unperturbed solution u(x) we find that w(x)
satisfies equation

∇ · σ(x)∇w(x) = −σ(x)∇u(x) · ∇η(x)
subject to the homogeneous Neumann boundary conditions. Since the values of
u(x) and unew(x) are measured on the boundary, the Dirichlet data for w(x) are
known.

Perfect focusing. Let us first consider the case of a perfectly focused pertur-
bation η(x) that can be approximated by the Dirac δ-function δy(x) = δ(x − y).
Let us denote the corresponding solution by wδy . Then

∇ · σ(x)∇wδy (x) ≈ −σ(y)∇u(y) · ∇δ(x − y).
Our immediate goal is to reconstruct ∇u(y) from the values of wδy on ∂Ω. To
this end we introduce functions h1(x) and h2(x) defined on ∂Ω and orthogonal to
a constant, and we define measurement functionals Mδ(y, hj) as follows

Mδ(y, hj) =

∫

∂Ω

wδx0
(z)hj(z)dz, j = 1, 2.

One can show that

(2) Mδ(y, hj) = −σ(y)∇u(y) · ∇Hj(y), j = 1, 2.

where functions H1(x), H2(x) are the solutions of the divergence equation

(3) ∇ · σ(x)∇Hj(x) = 0,

subject to the Neumann boundary conditions ∂
∂nHj(y) = hj(y) on ∂Ω, j = 1, 2.

Now, if some initial approximation to σ(y) is known (one can start, for example,
with initial guess σ(x) = 1), functions H1(x), H2(x) can be computed as solutions
to (3), and, for a fixed y, values of ∇u(y) can be found from the system of two
linear equations (2). When ∇u(y) is reconstructed on a computational grid on Ω
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(a) (b)

Figure 1. Example of a reconstruction: (a) phantom (b) reconstruction

by repeating the above procedure at all the nodes of the grid, the conductivity
can be computed by solving the transport equation

(4) ∇u(y) · ∇ lnσ(y) = −∇ · ∇u(y).
Once an approximation to σ(x) is obtained, one can compute a better approxima-
tion to Hj ’s, and thus to σ(x). In our simulations such iterations converged not
only for σ(x) close to 1, but even when σ(x) significantly varied across Ω.

Synthetic focusing. Unfortunately, creating physically a δ-like perturbation
within the body of interest is nearly impossible. It is much easier to measure func-
tionals corresponding to time-harmonic waves or propagating spherical fronts with
centers lying outside the body. We thus propose to synthesize the measurements
Mδ(y, h) corresponding to δ-perturbations from the data obtained using realistic
acoustic waves. Such a synthesis is possible due to the smallness of the acousto-
electric effect, which justifies the use of the linearized model of the perturbations.

Suppose perturbation ηz,r(x) approximates the spherical front of radius r cen-
tered at z, i.e. ηz,r(x) ≈ δ(r − |z − x|). Let us denote the corresponding mea-
surement functional by MS(z, r, h). Since a spherical front can be represented as
a linear combination of delta functions δ(y − x),

ηz,r(x) ≈
∫

S1

δ(z + r̟ − x)d̟ =

∫

S1

δ(x− y) |y=z+r̟ d̟,

then, by the linearity of the measurement functional

MS(z, r, h) =

∫

S1

Mδ(z + r̟, h)d̟.

In other words, the measured data MS(z, r, h) are equal to the spherical mean
transform of Mδ(y, h)! Therefore, if one measures MS(z, r, h) for all z ∈ S(R, 0)
and all r ∈ [0, 2R], the electric response to the δ-like perturbations Mδ(y, h) can
be reconstructed from MS(z, r, h) using known 2-D inversion formulas [4, 6].

An example of reconstruction is presented in Figure 1. The measurements were
simulated using acoustical perturbations in the form of spherical fronts. There
were 320 acoustical sources and 257 fronts of varying radii for each source. The
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potential was ”measured” on each side of a square domain, at 513 points per side.
We added 15% noise (in L2 norm) to each point value of the potential.

There are considerable differences between our methods and results, and those
of [1]. In the latter work, under the assumption of a perfectly focused acous-
tic perturbation the problem is reduced to a solution of a non-linear equation.
The present work uses realistic measurements; then, by exploiting the smallness
of acousto-electric effect the problem is solved by a repeated solution of linear
transport equation (4).
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Ultrasound Tomography for Breast Cancer Screening: From Theory
to Applications

Jovanović, Ivana

(joint work with Martin Vetterli)

One woman in two receives a breast cancer scare in her lifetime. Today’s gold
standard for breast cancer screening is mammography. It has been shown to reduce
the mortality rate by up to 35%. However, mammography involves transmission of
x-rays, which is potentially harmful. It is also known that mammography generates
many abnormal findings not cancer related, leading to a false positive rate that
can be as high as 80%, and a high false negative rate that is up to 50% for women
with dense breasts.

Ultrasound tomography is a promising modality for breast cancer screening.
The speed of sound propagation and its attenuation could help detect cancer and
differentiate benign from cancer masses. Unlike the x-rays, ultrasound is deviated
by refraction and distorted by inhomogeneities in tissue. For a long time, the
propagation of ultrasound and the non-linear inverse problem that had to be solved
were difficult tasks. Today, with enhanced computing power and advances in
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transducers technologies, the future of ultrasound tomography is bright and the
prospects are showing great promise.

The ultimate goal of this research is to improve the quality of ultrasound imag-
ing in terms of its accuracy and image resolution aimed at creating an easy, safe,
non-ionizing, reliable, operator independent and inexpensive method for breast
cancer screening.

In this work we examine the inverse problem behind the ultrasound tomography.
The subjects related to the signal acquisition (i.e., time-of-flight estimation) and
image reconstruction (i.e., inversion) are addressed in more details in the following.

1. Time-of-flight estimation

A number of reconstruction methods in ultrasound tomography rely on a sim-
plified model for sound propagation, the so called ray model. It assumes that the
inhomogeneities in the medium are much larger compared to the probing wave-
length. In this case, the only information needed to reconstruct the sound speed
image are time-of-flight measurements, i.e. the time taken by a sound wave to
propagate from a transmitter to a receiver.

To increase the SNR in the received signal and to annihilate the reflections and
late arrivals, we propose to use a beamforming technique [1]. This technique allow
better time-of-flight estimation even in very inhomogeneous and absorbent tissue
and shows to overcome some of the ultrasound artifacts due to the simplified model
for sound propagation.

2. Inversion

In [2], we designed a bent-ray tomography reconstruction algorithm. It involves
solving a non-linear system of equations. The main difficulty of this kind of algo-
rithms is to ensure the convergence and robustness to noise. To solve this problem
we propose a non linear conjugate gradient method. First, the gradient is derived
using Fermat’s principle. Then, the optimal step is found using the backtrack-
ing line search. This approach is guaranteed to converge to a local minimum of
the cost function. Moreover, the method has the potential to easily incorporate
regularity constraints such as sparsity as a priori information on the model. Al-
though the reconstruction involves solving a non-linear problem, this method has
a reasonable complexity.

3. Regularization

The medical images, whether they represent the sound speed, the attenuation
or some other parameter, are not random images and they have a certain structure
and common features. For example, the variation of the unknown parameter is
bounded and the changes are mostly smooth, which gives a possibility to exploit
these a priori assumptions to regularize the image reconstruction. We propose
to use an inverse method based on sparsity. The idea is to find a transform that
sparsifies the image. This concept is know as Compressed Sensing [3, 4]. By
assuming that the image to be reconstructed is sparse in an appropriate set of
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bases the measurements can be used in more efficient way. This can increase the
resolution of the image. The preliminary results in [5, 8, 9] show that this approach
overcomes the limitations of classical tomography sampling.

Besides the standard image bases like wavelets we also propose to reconstruct
images by searching for a sparse image representation in an overcomplete dictio-
nary that is adapted to the properties of ultrasound images [7]. This dictionary is
learned from high resolution MRI breast scans using an unsupervised dictionary
learning method described in [6]. The proposed dictionary-based regularization
method significantly improves the quality of reconstructed breast ultrasound im-
ages. It outperforms the wavelet-based reconstruction and the l2-norm minimiza-
tion, on both numerical and in vivo data.

4. Conclusions and Future Work

It is safe to envision that with the development of more sophisticated acquisition
and inversion techniques ultrasound imaging will become a routine and in some
cases irreplaceable imaging technique in medicine. The next technological step is
the full wave equation inversion method. It will allow to reconstruct breast struc-
ture with accuracy higher than that reported for bent ray model and comparable
to that provided by MRI. Our preliminary results in [10] are encouraging.
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A new reconstruction method for inverse medium scattering for
Maxwell’s equations

A. Lakhal

We present a new method to solve inverse scattering problems for the full three-
dimensional time-harmonic Maxwell’s model. The goal here is to determine the
electromagnetic properties of an unknown inhomogeneous object using near-field
measurements of scattered waves for multiple illuminations at a fixed frequency.
Maxwell’s equations are equivalently formulated as a coupled system of integro-
differential equations for the contrast source. We use the concept of generalized
induced source (GIS) to recast the intertwined vector equations in Maxwell’ s
model into decoupled scalar scattering problems. We apply the localized nonlin-
ear approximation due to Habashy and co-workers. In this framework, we derive
a uniqueness result for determining the contrast function and develop a fast re-
construction method based on Kaczmarz’ algorithm.

1. Formulation of the problem

We consider electromagnetic scattering in inhomogeneous media for a time-
harmonic regime at a fixed frequency ω > 0. In the sequel, we omit the time-
dependence e−iωt, with i2 = −1, in the field notation and only consider the
space variable.
In a homogeneous background with dielectric constant ε0 > 0 and magnetic per-
meability µ0 > 0, let a scattering object be laying within a bounded domain
Ω ⊂ R

3 with smooth boundary ∂Ω. Furthermore, the medium is assumed to
be nonmagnetic and isotropic with constitutive properties given as the electric
contrast function

f :=

(
1− ε−1

0 (ε(x) + i
σ(x)

ω
)

)
.

The functions ε > 0 and σ ≥ 0 denote the electric permittivity and the electric
conductivity, respectively. They are assumed to be smooth enough with compact
support embedded in Ω..
We denote ∇ the nabla operator, ∇× the curl operator, ∇· or div the divergence
operator. The operatrors × and · stand for the vector and scalar products in R3,
respectively.
For each experiment, let an incident electromagnetic wave (Einc,Hinc) impinge
upon the scattering object and denote (E,H) the resulting total field. Then, the
secondary or scattered fields Es := E− Einc andHs := H−Hinc have to satisfy
in R3 the time-harmonic Maxwell equations

∇×Hs + iω ε0E
s = J ,(1)

∇×Es − iω µ0 H
s = 0,(2)

and fulfill, uniformly for x/|x|, x 6= 0, the Silver-Müller radiation condition

(3) lim
|x|→∞

(Hs × x− |x|Es) = 0.
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Hence, the scattered field is to behold as radiating from the induced electric
current sources given as the volume densities

J := iε0ωfE.

Let k = ω
√
ε0µ0 denote the wavenumber. Using the outgoing Green’s function

gk(x, y) = gk(x− y) :=
1

4π

eik|x−y|

|x− y| , x 6= y, x, y ∈ R
3,

for the Helmholtz operator (∆ + k2) in R3, one may derive, (see e.g. [3]), the
integro-differential equation

(4) E(x) = Einc(x) − k2
∫

R3

gk(x, y)q(y) dy −∇x

∫

R3

gk(x, y)∇ · q(y) dy,

with the equivalent source q := fE.
Let Cn(R3) denote the set of n− times continuously differentiable functions on
R3 and Cn0 (Ω) the set of n− times continuously differentiable functions compactly
supported in Ω. The scalar scattering operator A is defined for q ∈ C0(Ω), as

Aq(x) :=

∫

Ω

gk (x, y) q(y) dy, x ∈ R
3.

This operator corresponds to the scalar approximation of the Maxwell equations
by the Helmholtz equation.

Definition 1.1. The scattering operator T is defined for q ∈ C10(R3)3 as

(5) Tq(x) = k2
∫

R3

gk(x, y) q(y) dy +∇x

∫

R3

gk(x, y)div q(y) dy, x ∈ R
3.

To comprehend electric sources of currents and charges we generalized the con-
cept of induced current source in [6]. As a consequence, we recasted the vector
inverse source problem for Maxwell’s equations into decoupled scalar problems for
each component of the field. Indeed, it seems more appropriate to call this concept
as generalized inverse source (GIS) rather than as scattering potential used before.

Definition 1.2. The generalized induced source (GIS) is defined for q ∈ C2(R3)3

as

(6) Pq = k2 q+ grad (div q).

Lemma 1.3. Let Ω be a bounded domain in R3 with a smooth boundary. It holds

(7) T = AP on C20(Ω)3.
Let MΓ denote any measurement operator on some set Γ ⊂ R3\Ω. In practice,

one may measure the total field E(x), x ∈ Γ for a given incident field Einc,
the measurement operator denotes, abusively in this case, MΓE

s(x) = E(x) −
Einc(x), x ∈ Γ, although Es(x) is not directly measurable on Γ.
The inverse scattering is concerned with the problem:
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”To the measured data dj = −MΓE
s
j , determine the contrast function f such

that
MΓ T(f Ej) = dj

holds for all experiments j.”
In this inverse problem, we have to overcome three major aspects of difficulty:

(1) The ill-posedness as a typical feature. It is here twofold since the inverse
problem is under-determined and ill-conditioned. Since data are afflicted
with unavoidable errors related to measurement conditions, we must apply
a regularization to obtain a stable solution.

(2) The coupling between the equations modeling electromagnetic scattering,
which involve integro-differential operators acting on vector fields with
intertwined components. This apparently requires a simultaneous treate-
ment of all equations of the system.

(3) Nonlinearity. Although the operator T is linear, the dependence of the
field Ej on the contrast function f may be highly nonlinear.

2. Localized nonlinear approximation

Habashy et. al. [5], Torres-Verdin and Habashy [10, 11] used the localized
nonlinear approximation to obtain significant improvement in comparison with
Born- or Rytov-approximation, see [1] and the references therein.
In the vicinity of an observation point x ∈ Ω, the contribution of the internal
fields in the integral T(f E)(x) is amplified due to the singularity of the Green’s
kernel at x. Therefore, using the approximation T(f E)(x) ≃ T(f I) · E(x) one
may for nonmagnetic media simplify (dmInteq11) into

(8) E = Einc − T(f I) · E on Ω

with I = (δij ei ⊗ ej)1≤i,j≤3 denoting the identity tensor of order 2. It yields

(9) E = Einc −T(ηEinc) on Ω

for the diagonalised source ηEinc := f E with η = η(f) satisfying

(10) ηI = fI − ηT(f I).

The nonlinear character of the inverse medium problem remains, as η depends
implicitly on f , in contrast to the full linearization by Born- or Rytov-approxima-
tion. The price to compute the seeked contrast function f when we have η, is
to solve Equation (10), which is well-posed. In the sequel, we consider linearly
polarized transverse plane waves as incident electric field. We denote x · y = xT y

the scalar product of x, y ∈ R3, |x| =
√
xTx, and S2 = {x ∈ R3, |x| = 1} the unit

sphere in R3.

Lemma 2.1. Let d = dα,β = −MΓE
s with MΓE

s being the scattered electric

fields measured on the set Γ for transverse incident waves Einc(x) = βeikα
T x

with (α, β) ∈ S ⊂ (S2)2, αTβ = 0.
If q = ηEinc satisfies

(11) d = T(ηEinc) on Γ,
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then η fulfills

(12) βTd = A
(
βTEinc

(
k2η + βT∇2ηβ

))
.

Hence, we obtain a completely decoupled system of scalar equations.

3. Uniqueness

Under the localized nonlinear approximation, we show that from boundary
measurements of the scattered fields for an incident direction α we can uniquely
determine a filtered version of η for frequencies on the Ewald sphere with centre
kα and radius k.

Theorem 3.1. Let η ∈ C20(Ω) and let η2k denote the low-pass filtered function
with cut-off 2k of η, defined as

η̂2k(ξ) =

{
η̂(ξ) if |ξ| < 2k
0 if |ξ| ≥ 2k

.

If Aj η = 0 on ∂Ω for all j = j(α, β), (α, β) ∈ S, then η2k = 0.

Theorem 3.1 confirms a well known fact that varying the directions of incidence
may compensate under-determination.

4. Reconstruction algorithm

In practice, we have a finite number of elements in the set S with a total number
p. . Let the measurement operator MΓ be the trace mapping on the boundary
Γ = ∂Ω of the bounded domain Ω ⊂ R3. LetSp ⊂ {(α, β) ∈ (S2)2, αTβ = 0} be
a finite set with p elements. For j = j(α, β) ∈ {1, · · · , p} with (α, β) ∈ Sp, let

Einc(x) = eikα
T xβ, d = −MΓE

s with MΓE
s being the scattered electric field

measured on the set Γ, and

(13) Ajη = A
(
βTEinc

(
k2η + βT∇2ηβ

))
and dj = βTd.

Hence, we first have to solve the system of scalar equations

(14) Ajη = dj on Γ, for all j = j(α, β), (α, β) ∈ Sp,

then compute the contrast function f from η by solving the well-posed equation
(10).
The Kaczmarz’ algorithm, also called ART-method, is widely used in computer
tomography. It is an iterative method to solve over- or underdetermined linear
systems of equations, see [8]. It may also be adapted to nonlinear problems, see
[9]. In the framework of inverse scattering, Kaczmarz’ algorithm was applied by
Natterer and Wübbelling in [9] for acoustic waves and by Dorn et al. [4], also
by Vögeler [12], for electromagnetic imaging in a context of partial differential
equations. To solve (14), we apply Kaczmarz’ method. For more details as well
as numerical tests with simulated and real data we refer to [7].
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Photoacoustic Imaging taking into account Attenuation

Otmar Scherzer

(joint work with Richard Kowar)

The difficult issue of effects of and corrections for the attenuation of acoustic
waves in photoacoustic imaging has been studied [8, 1, 10, 6], although no complete
conclusion on the feasibility of this models has been reached. Mathematical models
of attenuation are formulated in the frequency domain, since the attenuation is
known to be strongly frequency dependent. Let G0, G be the Green functions of
the wave equation and the attenuated wave equation, respectively. The common
attenuation model reads as follows:

(1) FG(x, ω) = exp (−β(|x|, ω))FG0(x, ω) .

Here F denotes the Fourier transform with respect to time, ω is the frequency, and
x is the space coordinate. The complex function β(|x|, ω) is called the attenuation
coefficient. Well known models, are power laws, Szabo’s model [11, 12], and the
thermoviscous wave equation (see e.g. [4]), which are characterized by different
functions β.
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Distinctive features of unattenuated wave propagation (i.e., the solution of the
standard wave equation) are causality and finite front wave speed. It is reasonable
to assume that the attenuated wave satisfies these distinctive properties as well.

The standard photoacoustic imaging problem consists in backpropagation of
waves p(s, t), where s is an element of the recording surface, to f(x) = p(x, 0),
where x ∈ Ω, and Ω is domain of interest, bounded by the measurement surface.
Thereby p is considered the solution of the wave equation

∂2p

∂t2
(x, t) = ∆p , x ∈ R

3, t > 0

with initial conditions

p(x, 0) = f(x) ,
∂p

∂t
(x, 0) = 0 , x ∈ R

3 .

The parameter f is the imaging parameter in photoacoustics. For a series of
methods for backpropagation we refer to [7]. If attenuation is taken into account,
and equation (1) is considered the basic model for attenuation, then the imaging
problem decouples into the standard photoacoustic imaging problem for the wave
equation and a deconvolution problem with kernel F−1 (exp (−β(|x|, ·))) (t).

[3] state “Power attenuation laws have been used in phenomenological acoustics
because of their extreme simplicity as well as their conformity with the physical
requirements of causality and dissipativity.” However, as it is also been stated in
[3], causality and dissipativity restricts the frequency dependence of attenuation
in a power-law medium where A = Const × |ω|α to 0 < α < 1. This can also
be deduced in a mathematically rigorous way from a distribution theory [2]. In
contrast to previous work the powerful mathematics of distribution theory allows
to prove or disprove causality very efficiently.

Power laws with exponent greater than one are of relevance in photoacoustic
imaging, since for biological specimens and oils, the power law index has been
experimentally identified to be larger than one.

Inversion techniques based on an un-physical model are questionable. We there-
fore propose using an approximate power law [6]: The philosophy behind this ap-
proach is to calculate an attenuation law, which approximates a power law in the
frequency spectrum where it has been experimentally validated and it is extended
outside of the measured spectrum in such a way that the wave model becomes
causal. Based on the results from [6], we developed such approximation models
that satisfy the needs of causality and in addition have a finite front wave speeds.

A work, which is concerned with causal attenuated wave equations, which starts
modeling at constitutive laws is [9]. There the derived equations are defined via
relaxation and currently cannot simulate power laws with fractional index.
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Regularization with sparsity constraints and impedance tomography

Peter Maass

(joint work with Bangti Jin, Taufiquar Khan, Michael Pidcock)

1. Introduction

Sparsity concepts have recently been investigated intensively in several disci-
plines, including signal processing and statistics. Theoretically, such concepts
allow to (exactly) recover signals from far less data than conventional data ac-
quisition rate dictated by Shannon’s law [7] if the sparsity assumption is fulfilled.
Practically, sparsity arises in many physical signals, hence the approach is of sig-
nificant importance, and has found applications in biomedical imaging, astronomy,
geophysics, bioinformatics, and many others.

The present work outlines our ongoing research on sparsity constraint regu-
larization in electrical impedance tomography (EIT), for details see [11, 10]. In
general, the idea of sparsity constraints has been extensively investigated in inverse
problems. For instance, the well-posedness and regularizing properties of Tikhonov
regularization formulation has been established, and efficient algorithms for solv-
ing the optimization problems are developed for both linear and nonlinear inverse
problems [6, 2, 5]. However, the application of sparsity regularization to parame-
ter identification problems like EIT remains challenging, and its success requires
additional efforts.
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We aim at deriving efficient sparse reconstruction algorithms for EIT. We start
with the mathematical model. Let Ω be an open bounded domain with boundary
Γ. Then the EIT forward problem is given by (c.f. [3])

−∇ · (σ∇u) = 0 in Ω,

with a Neumann boundary condition σ ∂u
∂n = j, with j being the input current. The

resulting potential φ is measured on the boundary. We shall denote the forward
operators of the Neumann and Dirichlet problems by F σ

N and F σ
D, respectively.

In practice, several input currents are employed, and the resulting (noisy) po-
tentials are measured. The inverse problem is to estimate the unknown physical
conductivity σ† from these noisy potential data.

We shall adopt a Tikhonov type method, i.e. we attempt to minimize

Jα(σ) =

∫

Ω

σ|∇(F σ
N j − F σ

Dφ)|2dx
︸ ︷︷ ︸

D(σ)

+α
∑

k

|〈δσ, ψk〉|,

where δσ = σ − σ0 stands for the inhomogeneity, with σ0 being the background,
and {ψk} is an orthonormal basis. The scalar parameter α determines the tradeoff
between the two terms: the discrepancy term D(σ) incorporates the data, whereas
the regularization term enforces the a priori knowledge, i.e. away from the back-
ground, the conductivity can be sparsely represented in the basis {ψk}. We assume
that supp(σ − σ0) ⊂ Ω′ ⊂⊂ Ω, and λ ≤ σ ≤ λ−1 for a fixed λ > 0.

Next we sketch the proposed sparsity reconstruction algorithm for EIT.

2. Sparse reconstruction algorithm

A standard approach for minimizing ℓ1 type regularization is iterative soft
shrinkage, which was introduced in the pioneering work [6] for minimizing func-
tionals such as

1
2‖K(x)− yδ‖2 + α‖x‖ℓ1 ,

where K : X 7→ Y is a bounded but nonlinear operator. The algorithm takes the
following form: give an initial guess x0, and the iteration proceeds

xk+1 = Sα(x
k − τK ′(xk)∗(K(xk)− yδ)),

where τ is the step size, and Sα is the soft shrinkage operator defined componen-
twise as below

(Sα(x))i =

{
(|xi| − α)sign(xi), if |xi| > α,
0, otherwise.

So basically, the algorithm consists of two steps: one first performs a gradient de-
scent step with step size τ , and then a shrinkage step. The second step promotes
the sparsity of the reconstruction. Theoretically, it is known that under appropri-
ate conditions on the operator K and the step size τ , the algorithm will converge
to a minimizer of the Tikhonov functional.
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Obviously, the application of the algorithm to EIT, i.e. the function Jα, requires
suitable differentiability of the discrepancy functional. This is ensured by the
following result [10].

Theorem 1. The discrepancy functional D(σ) is Frechét differentiable with respect
to Lp(Ω

′) for p > 2Q/(Q− 2), and the Frechét derivative is given by

D′(σ)[δσ] =

∫

Ω

δσ(|∇F σ
Dφ|2 − |∇F σ

N j|2)dx,

where the constant Q depends on Ω, Ω′ and λ.

In addition to the above analytic result, we need to choose the gradient and
the step size τ carefully. Up to now, the conductivity is a priori only bounded
in L∞ norm, which automatically induces a L∞ weak ∗ compactness. However,
the discrepancy functional D(σ) is not L∞ weak ∗ lower semicontinuous [13].
Numerically, this causes oscillations in reconstructions. In order to remedy the
issue, we propose to smooth the gradient as follows

−∆D′
s(σ) +D′

s(σ) = D′(σ) in Ω′,

together with a homogeneous Dirichlet boundary condition. Upon utilizing the
smoothed gradientD′

s(σ), we implicitly restrict the admissible solution to a smooth
subset, thereby circumventing the problem of insufficient regularity, and also en-
sure the desired boundary condition [10].

The iterative soft shrinkage with fixed step size resembles the classical steepest
descent algorithm, and thus it also suffers from slow convergence. One way to
enhance the convergence speed is to adaptively select the step size. Among various
existing rules, the one due to Barzilai and Borwein [1] seems particularly attractive
due to its easy implementation and theoretical underpinning. We shall employ the
rule to select the step size τi for each iteration.

Now we can give the complete algorithm, which computes an estimate by iter-
ated soft shrinkage iterations, see [10]. One can also incorporate an outer loop for
choosing optimal input currents see [11, 10].

Algorithm 1 Sparse reconstruction algorithm

1: Set δσ0 = 0
2: for j = 1, . . . , J do
3: Compute σj = σ0 + δσj ;
4: Compute the gradient D′(σj);
5: Compute the smoothed gradient D′

s(σ
j);

6: Determine the step size τj ;
7: Update inhomogeneity by δσj+1 = δσj − τjD′

s(σ
j);

8: Threshold δσj+1 by Sτjα(δσ
j+1);

9: Check stopping criterion.
10: end for
11: output approximate minimizer δσ.
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3. Numerical results and discussion

Here we present some reconstructions for simulated noisy data. The experimen-
tal setup is the same as [10]. In particular, we employ five input currents, which
correspond to Isaacson’s iteration [9, 11]. Fig. 1 shows the numerical results for
homogeneous and discontinuous background. It is observed the inclusions are well
separated, and their magnitudes are in excellent agreement with the exact one.
Fig. 2 compares the reconstructions with the standard dipole input (opposite) and
Isaacson’s iteration [11]. The result by the former is far less accurate in terms of
magnitude and separation. However, this can be further improved by using newly
computed optimal currents, see the right panel. Current investigation concerns
the evaluating the method against real data as in [4, 12].

Figure 1. Numerical reconstructions. Left: homogeneous back-
ground and Right: discontinuous background.

Figure 2. Numerical reconstructions. Left: dipole type input
currents, and Right: further enhanced with input currents by
Isaacson’s iteration.
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Backscatter data in impedance tomography

Martin Hanke

(joint work with Nuutti Hyvönen, Stefanie Reusswig)

We consider the following experimental setup: A pair of electrodes is attached next
to a point on the boundary of a two-dimensional (bounded) objectD, and measures
the voltage that is required to drive a fixed current through these electrodes; then
this same experiment is repeated for every point along the boundary. We want to
investigate whether these “backscatter” data suffice to reconstruct one, or several,
inclusion(s) within a homogeneous background with constant positive conductivity.

To analyze this problem it is useful to turn to so-called relative data, i.e.,
to subtract these data from the corresponding measurements for a completely
homogeneous object. Using a realistic model for real-life electrical measurements
it has been shown in [3] that the corresponding relative data taken near xτ ∈ ∂D
are first-order approximations of the quantity

(1) b(xτ ) = − ∂

∂τ
w(xτ ) ,

where w = u− u0 is the relative potential given by the solution u of

∇ · (σ∇u) = 0 in D ,
∂

∂ν
u = −δ′xτ

on ∂D ,
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and u0 of

∆u0 = 0 in D ,
∂

∂ν
u0 = −δ′xτ

on ∂D ,

respectively. Here, τ is the arc length parameter of the boundary, ν the outer
normal of D, and δ′xτ

the tangential derivative of a delta distribution located in xτ ;
physically, this corresponds to a tangential dipole current source at this boundary
point. Finally, we assume that σ equals one in D \ Ω, where Ω = Ω1 ∪ · · · ∪ Ωm,
and that Ωj, j = 1, . . . ,m, are simply connected domains (the inclusions) which

satisfy Ωj ⊂ D and Ωj∩Ωk = ∅ for j 6= k. As stated above, we assume that within
each Ωj the conductivity σ = σj ∈ R

+
0 \ {1} is constant.1

Our interest is in the following inverse problem:

Given the full backscatter data b : ∂D → R of (1), is it pos-
sible to identify and, possibly, reconstruct the inclusion(s) Ωj,
j = 1, . . . ,m?

For a single inclusion this question appears to be fair – a one-dimensional func-
tion is given as data, and one aims to reconstruct a single curve in the two-
dimensional plane – although it may be necessary to provide full information
about the conductivity within the inclusion. In fact, in [5] we could establish the
following result.

Theorem 1. Assume that Ω and Ω̃ are two simply connected insulating inclusions
with C2 boundaries within the unit disk D, that produce the same backscatter data.
Then Ω = Ω̃.

The proof of this theorem makes heavy use of conformal mapping theory. More
precisely, the proof employs a conformal map of D \Ω onto a conformally equiva-
lent annulus, and studies the effect of this transformation on the backscatter data.
For the annulus, it is easy to see that the backscatter data are constant. Using
this transformation one can derive a nonlinear third-order differential equation for
the boundary map associated with this conformal transformation, which invokes
the given backscatter data and the (unknown) constant backscatter for the corre-
sponding annulus. Due to the necessary periodicity requirements of this boundary
map it is possible to prove that the differential equation has a unique solution,
and one can also use this as a constructive means to determine the inclusion nu-
merically. As the latter requires analytic continuation, however, this procedure is
very susceptible to numerical errors, and this has to be treated properly in a nu-
merical implementation. (This aspect will be part of the forthcoming dissertation
of Stefanie Reusswig.)

The particular example of the annulus also shows that a single inclusion can
only be determined uniquely from backscatter data, if the conductivity within the
inclusion is known. In fact, if D is the unit disk, and Ω is a circular inclusion of

1Formally, the case σj = 0, i.e., an insulating inclusion, has to be treated in a slightly different

way; however, all results that we refer to extend to this degenerate situation.
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radius R with conductivity σ, then the corresponding backscatter is given by

βσ,R =
2

π

∞∑

k=1

k
qR2k

1− qR2k
, q =

1− σ
1 + σ

,

from which one can determine R, provided that σ is known, but cannot deter-
mine σ and R. As of today it is not known whether a single inclusion of known
conductivity σ 6= 0 is uniquely determined by the backscatter data.

Unfortunately, the techniques from [5] give little to no hint on how to approach
the inverse problem, if the inclusion fails to be insulating, or if there is more than
one inclusion. However, a side result in [5] shows that if the plane is identified with
C, and if Ω is an insulating inclusion (with C2 boundary) then the backscatter
data extend to an analytic function in D \ Ω. It turns out that this result can be
extended to several inclusions with varying conductivities, cf. [6]:

Theorem 2. Let D be the unit disk, and assume that Ω consists of m simply
connected components with C2 boundaries fulfilling the assumptions listed above.
Then the backscatter data extend as an analytic function to D \ Ω (considered as
a subset of the complex plane).

As the backscatter data are real, this result can be recast in terms of harmonic
functions: There is a function u : D → R, i.e., the real part of the analytic
extension of our backscatter data, that satisfies the Laplace equation

∆u = F in D

with Cauchy boundary data

u = b and
∂

∂ν
u = 0 on ∂D ,

and the source term F has compact support within Ω. Therefore we can attempt
to solve our inverse problem by determining suitable sources that are compatible
with the given Cauchy data.

One such technique has been developed in [4], by carrying over the concept of
convex scattering supports of Kusiak and Sylvester [7] from Helmholtz’ to Laplace’s
equation. It is thus possible to construct numerically a convex set from the given
backscatter data, that provably is contained within the convex hull of the given
inclusions – assuming exact data and arithmetic, of course. Various regularization
strategies are possible to deal with noisy data.

In contrast to the method for a single insulating inclusion indicated above,
however, this result does not give the full inclusion, but only some approximation
of its convex hull. In effect, this may not serve for more than to simply locate the
inclusion. Moreover, as the reconstruction is connected to the convex hull of the
inclusion(s), this method is not suitable to locate several inclusions.

On the other hand, several inclusions can be treated by approximating the
backscatter data by rational functions (of a complex variable), e.g., by utilizing
the concept of Fourier-Padé approximations, cf. Gragg and Johnson [1]. The poles
of these rational approximations tend to indicate the locations of the inclusions.
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The smaller the inclusions, the better will be these approximations. This will be
explored in some forthcoming work [2].

The author appreciates financial support by the Deutsche Forschungsgemein-
schaft (DFG) under grant HA 2121/6.
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Proceedings IFIP Congress 1974, North-Holland, Amsterdam, 1974, pp. 632–637.

[2] M. Hanke, Locating several small inclusions in impedance tomography from backscatter data,
in preparation.

[3] M. Hanke, B. Harrach, and N. Hyvönen, Justification of point electrode models in electrical
impedance tomography, submitted.

[4] M. Hanke, N. Hyvönen, and S. Reusswig, Convex source support and its application to
electric impedance tomography, SIAM J. Imaging Sci. 1 (2008), 364–378.

[5] M. Hanke, N. Hyvönen, and S. Reusswig, An inverse backscatter problem for electric
impedance tomography, SIAM J. Math. Anal. 41 (2009), 1948–1966.

[6] M. Hanke, N. Hyvönen, and S. Reusswig, Convex backscattering support in electric
impedance tomography, Numer. Math., to appear.

[7] S. Kusiak and J. Sylvester, The scattering support, Comm. Pure Appl. Math. 56 (2003),
1525–1548.

Wave equation reflection tomography

Maarten de Hoop

Much research in modern, quantitative seismologyis motivated - on the one hand -
by the need to understand subsurface structures and processes on a wide range of
length scales, and - on the other hand - by the availability of ever growing volumes
of high fidelity digital data from modern seismographs networks.

We discuss a description of elastic-wave (inverse) scattering modelling seismic
reflection data in terms of Fourier integral operators. Through an extension, we
ensure that the (single) scattering operator is microlocally invertible. We represent
this extension in terms of a commutative diagram of operators. We formulate
wave equation reflection tomography in terms of a range criterion, the range being
described by (pseudodifferential) annihilators. We discuss a uniqueness result and
present a construction of such annihilators. The presence of scatterers is required,
but they remain unknown in the process. Finally, we relate the single scattering
operators for different models to one another via a pseudodifferential evolution
equation, viz. by using the corresponding propagator. This propagator opens the
way for developing nonliner updating strategies.
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Inversion algorithms for the spherical Radon and cosine transforms

Martin Riplinger, Malte Spiess

(joint work with Alfred K. Louis, Evgeny Spodarev)

Stationary Poisson processes of cylinders are defined as “locally finite” random
sets of cylinders, where a cylinder is the Minkowski sum of a line (called the
direction space) and a base, i.e. a convex set in the space orthogonal to the direction
space. In our talk we consider stationary Poisson cylinder processes Φd in the most
interesting dimensions d = 2, 3. Such a process has two essential properties:

• Intensity λ: expected total length of the central lines of cylinders per unit
volume,
• Directional distribution α: symmetric probability measure on Sd−1, the
probability that a typical cylinder has a certain direction space.

For the estimation of the intensity there exist well-working methods (see [9]),
whereas the appropriate estimation of the directional distribution is still an open
problem. In our talk we present a new numerically stable method to estimate the
directional distribution.

We assume that we can estimate the rose of intersections g(η), which is the
intensity of Φd∩η⊥, η ∈ Sd−1. For even functions f we define the cosine transform
as

Cf(η) =

∫

Sd−1

|〈η, ξ〉| f(ξ) dξ, η ∈ Sd−1,

where dξ is the spherical surface area measure. If α is absolutely continuous w.r.t.
the spherical surface area measure, i.e. it has a density ϕ, it can be shown that

g(η) =
λ

ωd−1
Cϕ(η), η ∈ Sd−1,(1)

where ωd−1 denotes the surface area of the (d− 1)-dimensional unit sphere. This
means that the cosine transform maps the density of directional distribution to
the intensity of the intersection process of the cylinders with test hyperplanes.
Therefore, to estimate the directional distribution, a numerical inversion of the
cosine transform from finitely many samples has to be performed. This approach
has been investigated e.g. by Kiderlen [2]. But his proposed algorithms only lead
to discrete reconstructions, which are concentrated on a finite number of points
and hence sometimes look artificial. Continuous reconstructions of the directional
distribution, which provide the chance of better model fits, are missing so far in
the literature.

The equation (1) has a unique solution for arbitrary dimension d (see [4]).
Furthermore there already exist some theoretical inversion formulae:

• d = 2: Hilliard [1] (1962), Mecke [5] (1981).
• d = 3: Mecke and Nagel [6] (1980).
• d ≥ 3: Spodarev [10] (2001). (Formulae for absolutely continuous α)
• d ≥ 3: Rubin [8] (2002). (convolution - backprojection method)
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While these formulae form a basis for theoretical considerations, they have to be
stabilized for practical use, because of their numerical instability.

To develop numerical inversion algorithms for the cosine transform in the two-
and three-dimensional case, we apply the method of the approximate inverse [3].
The idea is to solve the auxiliary problem

Cψγ(x, · ) = eγ(x, · )(2)

for a chosen mollifier eγ . The cosine transform is self-adjoint with respect to the
inner product in L2. Since the solution of the problem (2) does not depend on
the given data g, it can be solved in advance. After this we calculate a smoothed
version fγ of the solution, i.e.

fγ(x) := 〈f, eγ(x, ·)〉L2(Sd) = 〈g, ψγ(x, ·)〉L2(Sd) =: Tγg(x).

This leads to very fast algorithms, because we only have to calculate the inner
product of our data g with the precalculated reconstruction kernel.

In the two-dimensional case, directional distribution densities correspond to
π-periodic functions. One usually considers the sine transform

Sϕ(x) =

π∫

0

| sin(x− y)|ϕ(y) dy/π, x ∈ [0, π),

which is in 2D only a translation of the cosine transform, i.e. Cϕ(x) = Sϕ(x+ π
2 ).

Using a result of [5], the reconstruction kernel can be determined by the equation

ψγ(x, y) =
1
2eγ(x, y) +

1
2

∂2

∂y2 eγ(x, y).

In the three-dimensional case we also consider another transform, which is
closely related to the cosine transform, namely the spherical Radon transform
(also known as Funk transform)

Rf(η) =
1

2π

∫

S2 ∩ η⊥

f(ξ) dξ.

In order to apply the approximate inverse for both transforms, we have to de-
termine the reconstruction kernel for a given mollifier. Our idea is to consider a
mollifier depending only on the geodesic distance between x and y and not on the
points themselves. Since both transforms are rotation invariant, it suffices to cal-
culate the reconstruction kernel for one fixed reconstruction point. For this issue
we choose the north pole. As an example, we consider the following even mollifier

eγ(ϕ, θ) =
1

c(γ)
exp

(
− sin2 θ

γ2

)
, ϕ ∈ [0, 2π), θ ∈ [0, π],

which depends only on the polar angle θ. The normalisation factor c(γ) is calcu-
lated to guarantee

∫

S2

eγ(x, y)dy = 1, γ > 0.
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For the spherical Radon transform the corresponding reconstruction kernel is given
by

ψγ(θ) =
1

c(γ)

(
1−
√
π cos θ

γ
exp

(− cos2 θ

γ2

)
erfi

(
cos θ

γ

))

and for the cosine transform by

ψγ(θ) =
1

2πγ5c(γ)

(√
π exp

(− cos2 θ

γ2

)
erfi

(
cos θ

γ

)
cos θ · T1 + T2

)
+ (2π)−1

with

T1 = 3γ2 − 5γ2 cos2 θ − 2 cos2 θ + 2 cos4 θ,

T2 = 2γ(cos2 θ)(1− cos2 θ + 2γ2)− γ2.
More details will be available in our forthcoming paper [7].

Finally, we present one numerical example from simulated data. We simulated
a Poisson cylinder process in the unit cube with intensity 500 and cylinder radius
0.005, made a voxelized image with resolution 5003 and estimated the rose of
intersections from this image in 400 directions.

Original density Reconstruction based on 1
realization

Reconstruction based on an
average over 5 realizations
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On the Meaning of Mathematical Words in Natural Problems

Pierre C. Sabatier

Giving spaces C, E, and a mappingM is called giving a mathematical model(1)

for a problem of measurements, C being the set of parameters that may charac-
terize a system to be evaluated, and E being defined so as to contain all possible
measurement results. It is also called defining a mathematical direct problem. A
method constructing for any element e of E an element c of C such that e =M(c),
or, respectively, e : close− to :M(c), is called a solution, or, respectively, a gener-
alised solution of the mathematical inverse problem. Exact mathematical inverse
problems are those where an exact function f in a class C0 should be exactly de-
termined from an exact function g in a class E0. In ”natural inverse problems”,
i.e. those which appear in natural phenomena, one should always remind that
data are uncertain, uncomplete, contradictory, the model (hence, M), is uncer-
tain, and a ”solution” should reproduce the data through the model within these
two ranges of uncertainties, but cannot be accepted if it has too large variations for
small ones of data (”regularised solutions”): we shall call these requirements the
”global uncertainties requirement”. Clearly, the definition of solution existence
is quite simple both in exact inverse problems and in natural ones. Of course,
the definition of exact solution uniqueness is also quite trivial. As for regularised
solutions, when they exist, they are never unique, but in some cases, those which
are not discarded by physical conditions remain close to each other, in the sense of
the topology chosen in C. In these cases, one can talk of a ”weak nonuniqueness”,
and this concept replaces for ”natural problems” that of ”uniqueness”. But it is a
difficult concept! I gave already exact examples where nonuniqueness was the rule
if C contains all the allowed physical parameters but uniqueness had been restored
by shrinking C into C0 by strong ”a priori” informations: I showed that taking into
account the model uncertainties (unavoidable in any ”natural inverse problem”)
may then produce acceptable solutions that are quite far from the original one,
i.e. a ”strong” nonuniqueness. Hence I called the way of ”restoring uniqueness”
an”artificial restoring of uniqueness”, and I advocated against it. Here, I recall
and comment two examples, and give a remark on ”natural” boundary values.
The simplest (and well known) example is that where the”result” F to be mea-
sured is the Fourier transform of the unknown ”parameter” f . If F is given in
L2(R), and f is sought in L2(R), the I.P. is well-posed, Parseval theorem guaran-
tees a strong stability, and the inversion formula is given by the conjugate Fourier
transform. But suppose the measurements were done behind a linear filter such
that we see F (λ) only on [−b, b]. The reciprocal images of elements F whose sup-
port is outside of it are invisible parameters. The nonuniqueness is removed
if the a priori information on f is such that the values of its image F (λ) inside
[−b, b] determine those outside - which is the case if f is imposed for instance such
an a priori assumption that its image is analytic (e.g. finitely supported or expo-
nentially bounded functions f). But stability problems in the continuation need
regularisations and, even so, data errors or noise result in a strong limitation of the
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resolving power. Hence we see in this linear problem how instability is related to
a neighboring nonuniqueness, and remains if uniqueness is ”artificially” restored.
A still more resistant nonuniqueness is seen if nonlinearity is introduced, e. g. in
the Schrődinger Equation on the line(2), with a real potential V :

(1)

[
− d2

dx2
+ V (x)

]
g(k, x) = k2g(k, x)

where k is the wave number. Assuming V in L1
1(R), we define the ”outgo-

ing” and ”ingoing” Jost solutions of (1), which go respectively to exp [±ikx] as
x→ ±∞. For k 6= 0, f+(k, x) and f+(−k, x) are linearly independent, so that

T (k)f−(k, x) = f+(−k, x) +R(k)f+(k, x)(2)

R(k), (called the reflection coefficient), is the ”measurable” data, T (k) the
transmission coefficient, and for real V, the sum of their squared moduli is unity.

Equation (1) is also that of the spectrum of − d2

dx2 + V , i.e. the union of R,
(continuous spectrum), and, (not for all V ), a discrete spectrum k = iκ1...iκn, ...
, for which(1) has solutions ψn in L2(R). For V ”small enough”, one can derive
the so called (Born) approximation of the mapping V → R which gives R as a
Fourier transform of V : it suggests that knowing R is necessary to construct V ,
which is true, but also that it is sufficient, which is not, and it also suggests that
results of a uniqueness restoration would be similar to those above, which is also
wrong. As a matter of fact, it is known for a long time that for reconstructing
V , the knowledge of R must be completed by that of parameters associated to
the discrete spectrum. Now, recall the example of a one ”eigenvalue transparent
potential”:

(3) V0(x) = −
2κ2

ch2 [κ (x− x0)]
For such a potential, R vanishes, and we can derive exactly the Jost solution

f+. Now, suppose V is truncated ouside of the finite interval [−a, a]. We can
calculate the new Jost solutions (inside the interval) by projecting on f+(k, ), and
f+(−k, ) the free wave functions exp(ikx) and exp(−ikx), and get the new values
of R(k) and T (k). For the sake of simplicity, we write R(k) only, and in the simpler
case where x0 vanishes.

R(k) = 2iexp(4iγ)[

[
p2κ2sin(2(ka+ γ)

(p4 − κ4exp(4i(ka+ γ)

]
(4)

where p4 = κ4 +4k2(k2 + κ2)cosh4(κa), and cos(2γ) = p−2(κ2 +2k2cosh2(κa).
It is easy to see that the integral of |R(k)|2is smaller than 4κcosh−2κa. It follows
that if this is a natural inverse problem, a convenient choice of large values for κ
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and a can make arbitrarily small, both the error on the model and that on data,
which are necessarily known only on a finite interval for k. Hence they would be
consistent, up to these uncertainties, with both a zero potential and one given
by truncating that of (4), and this one could be made, for small x, arbitrarily
large! Now, if we go to solutions of KdV equation which are isospectral evolutions
associated with (1), we see that the impossibility of telling (4) from a vanishing
potential with a knowledge of R only with errors and on a limited range of k, is
related with the well known fact that if we observe, from the coast, a few kilome-
ters of the obviously quiet sea surface during a couple of hours, we may be very
suddenly surprised by the surge of a long wave rounding up to the beach (tsunami!).

Remark In boundary values problems, we should determine a function Φ
that satisfies a given partial differential equation inside a domain Ω from combina-
tions of its values and the values of its normal derivative on ∂Ω. If it is a natural
problem, the boundary contour ∂Ω is in most case complicated and mathemati-
cians use to model it by smooth or straight lines. Suppose now we have a linear
problem, and the ”boundary condition” is for instance Φ(x) = f(x) along ∂Ω. If
we knew the solution S(y, x) for the boundary condition Φ(x) = δ(x− y) , with y
in this ”delta-function” being any point of the boundary, we get the solution Φ(x)
corresponding to f by integrating S(y, x) along ∂Ω. Now, a very simple remark is
directly inspired by old analyses of linear inverse problems: since this is a ”natural
problem”, smoothing the boundary condition may be more justified than smooth-
ing the line where this boundary condition is fixed. Hence why not replacing the
”delta-function” by a smoothed one, provided that it has a ”good” δ−ness? In a
problem of slide-tsunamis, we did it(3) with smoothed ”delta-functions”, for which
the response can be calculated exactly, and its physical meaning is obvious. More
generally, I emphasize the importance of suggesting new modellings (4) or solving
(inverse) problems approximately, to show ”natural features.
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Wavelet-based Bayesian inversion for tomographic problems with
sparse data

Samuli Siltanen

We study a new kind of tomographic X-ray imaging, where the patient is radi-
ated as little as possible while recovering enough three-dimensional information
for the clinical task at hand. The input can be only five to ten projection images
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collected from different directions. Such sparse data often represent limited angle
and local tomography configurations and lead to severely ill-posed reconstruction
problems. This differs from traditional CT imaging, where a comprehensive data
set is collected using a dedicated scanner, and the mildly ill-posed reconstruction
problem is solved using the filtered back-projection (FBP) algorithm [8]. We con-
centrate on situations where a traditional CT scan is impractical due to radiation
dose issues or lack of equipment; examples include dental imaging and screening
mammography.

The incompleteness of our data violates the assumptions of FBP-type algo-
rithms, and they do not provide acceptable reconstruction quality. During 2000–
2009 our Finnish research team developed several new reconstruction algorithms
capable of useful 3D X-ray imaging; the results are reviewed here. Some of the
methods have already entered commercial products: see for example the dental
implant planning device discussed in [1, 5] and demonstrated at http://www.vt-
cube.com.

Sparse data dental 3D imaging using Bayesian inversion and total variation prior
is studied in [13, 4] using the linear measurement model m = Ax+ ǫ with additive
Gaussian errors. The variables m, x and ǫ are vector valued random variables and
A is the deterministic system matrix. The Bayesian answer to the inverse problem
given m, estimate x is the posterior distribution p(x|m) = Cppr(x)pnoise(m−Ax),
where C is a normalization constant. Here the prior distribution ppr(x) models
all a priori information available about the unknown independently of the X-ray
measurements. In practice one computes a representative point estimate from the
probability density p(x|m), for example maximum a posteriori estimate xMAP or
conditional mean estimate xCM defined by

p(xMAP|m) = max p(x|m), xCM =

∫

RM

xp(x|m) dx,

respectively. The Bayesian reconstructions are better than tomosynthetic images
discussed at the time in journals of dental radiology. The visible edges are those
predicted by the microlocal analysis of T. Quinto [10].

However, it was found that the Bayesian use of total variation priors is problem-
atic at the high resolution limit [7]. The total variation prior is not discretization-
invariant, resulting in incompatible convergence of xMAP and xCM when the com-
putational grid is refined. So we started looking for alternative approaches for
edge-preserving Bayesian tomography. One technique we introduced is a modified
level set method producing nicely localised reconstructions [3], see Figure 1.

In [12] we prove that Besov space priors are discretization-invariant. Moreover,
they can be effectively implemented using wavelets, and the space B1

1,1 is especially
promising for edge-preserving reconstruction algorithms. Numerical results using
Besov space priors are reported in [11, 9, 14]; we highlight here the approach
using finer scale wavelet functions only in the local tomography region of interest.

Namely, our numerical results using B
1/2
3/2,3/2 space prior in [9] compare favorably

to Λ-tomography [2], see Figure 2.
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In the future we will study dynamic 3D X-ray imaging using a set of X-ray
sources and corresponding detectors arranged in fixed positions around the region
of interest. The detectors must be capable of recording several images per second
(frame rates up to 200 are commercially available at the time of writing). Our
previous studies have shown that one can achieve useful reconstructions from data
collected from very few (∼ 10) angles of view, so with the above set-up we can
produce a three-dimensional reconstruction at every instant of time when data was
recorded. This kind of imaging is useful for many applications, including cardiac
imaging with high enough frame-rate and no need for gating, dynamic angiography
following the blood flow accurately in time, removing patient movement artifacts
in dental imaging, and small animal imaging allowing the target to move.

Acknowledgements. This research was supported by GE Healthcare Finland,
PaloDEx Group, Finnish Technology Agency (TEKES projects 2844/31/02 and
1107/401/00) and the Academy of Finland (Centre of Excellence project 213476).

Level set (60 angles) FBP (10 angles) Level set (10 angles)

Figure 1. Level set reconstruction of a knee specimen. The data
was collected using a surgical C-arm X-ray device. Left: level set
reconstruction from 60 fan-beam projections covering full angle of
view. This image is considered as the ground truth in comparison
to reconstructions from sparse data. Middle: the result of apply-
ing filtered back-projection to 10 fan-beam projections from full
angle. Right: level set reconstruction from the same data than in
the middle image. See [3] for more details.
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Λ-tomography Wavelet-based Bayesian inversion

Figure 2. Reconstruction of a region of interest inside a dry hu-
man mandible. Left: local reconstruction using Λ-tomography.
Right: local reconstruction using wavelet-based Bayesian inver-
sion with a Besov space prior. See [9] for more details.
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[11] M. Rantala, S. Vänskä, S. Järvenpää, M. Kalke, M. Lassas, J. Moberg and S. Siltanen,

Wavelet-based reconstruction for limited angle X-ray tomography, IEEE Transactions on
Medical Imaging 25 (2006), 210–217.

[12] Lassas M, Saksman E and Siltanen S 2009, Discretization invariant Bayesian inversion and
Besov space priors. Inverse Problems and Imaging 3(1), pp. 87-122.
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Structural inversion with level sets for microwave breast imaging

Oliver Dorn

(joint work with Natalia Irishina, Diego Álvarez and Miguel Moscoso)

Microwave imaging for breast screening is a promising new technology for the
early detection of breast cancer. The breast is illuminated by electromagnetic
waves in the range of 0.5 to 5 GHz, and the response of the breast tissue to this
illumination is measured in surrounding microwave antennas. The goal is to detect
any hidden small anomalies in the breast, and to characterize them as either benign
or malignant.

Mathematically this problem amounts to an inverse problem for Maxwell’s equa-
tions, or in its 2D form using a TM-wave geometry, to an inverse problem of the
2D Helmholtz equation.

Since the mathematical inverse problem is ill-posed, some form of regulariza-
tion needs to be applied when processing the collected data for forming an image
representing the breast. A standard approach would be to do a classical pixel-
based inversion, applying for example Tikhonov Philips regularization, and then
identify and characterize any small anomalies in the reconstructed image. How-
ever, with this technique typically small tumors of a certain contrast to the healthy
background are represented in the reconstruction as smeared-out anomalies with a
significantly smaller contrast, which makes it difficult to detect these small anom-
alies, or if detected, to characterize them as benign or malignant.

In the talk we present a novel level set based approach for tumor detection and
characterization from microwave data [1]. The breast is assumed to be composed
of four different tissue types, namely skin, fatty tissue, fibroglandular tissue and a
possible tumor. These different regions are separated by sharp interfaces, modelled
by a level set technique. Since more than two regions need to be described in this
application, a generalization of the standard level set technique is employed, a so-
called colour level set technique. Moreover, in order to address some very specific
characteristics of our reconstruction algorithm, a variant of this colour level set
technique is proposed which uses three different level set functions for representing
four different regions (tissue types) in the breast.

Since also the possibly inhomogeneous interior profiles in each region are un-
known a priori, a simultaneous evolution of four different profile functions and
of three different level set functions is constructed which points into a descent
direction of the data least squares cost. The result of this structural evolution
is the final image which directly shows the tumor candidate(s), an estimate of
their contrast to the background, and the different region interfaces and profiles
in the breast. Numerical experiments in 2D are presented which demonstrate the
performance of this novel technique for realistic situations of breast screening.
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Motion Correction on 3D Positron Emission Tomographic Data

Mohammad Dawood

1. Introduction

PET (Positron Emission Tomography) is one method of acquiring metabolic in-
formation in patient studies, e.g. to visualize and quantify glucose metabolism in
the body. To achieve this, a radioactive substance is injected in the patient body
prior to image acquisition. The radioactive isotope decays with time and emits
radiation which can be detected in specially built scanners. The distribution of
the radioactivity in the body can thus be visualized and gives information on the
metabolism. In PET, β+ radioactive molecules are used for this purpose. These
molecules emit positrons which collide with electrons and produce two gamma
quanta which fly away from each other in opposite directions. The gamma quanta
can now be detected in the scintillation detectors of the PET scanner. Using spe-
cialized reconstruction methods the activity distribution can thus be reconstructed
[7].

As this process of image acquisition requires a relatively long period of time,
typically several minutes, the motion of the heart due to respiration and due to
the cardiac contraction blurs the images. Image blur may cause wrong staging,
inaccurate localization and wrong quantification of lesions. Thus PET studies have
to take this into account.

This problem is compounded further if computed tomography (CT) data is used
for attenuation correction, as in the case of modern PET/CT scanners. The CT
data represents a snapshot in comparison to the PET images and therefore, the
PET data is not always in spatial correspondence with the CT data.

One method of avoiding this problem is to use respiratory and cardiac signals
from the patient to divide the PET data into phases with respect to either or
both signals[3]. This is called gating. Different methods of gating are known [5].
However, gating always leads to reduction of the amount of information per phase
and thus to a lesser signal to noise ratio.

2. Optical Flow

2.1. Brightness Consistency Based Optical Flow. Optical flow methods es-
timate the motion between two image frames. As a voxel with intensity I(x, y, z, t)
moves between the two frames, its intensity is assumed to remain constant. As-
suming the movement to be small enough and with Taylor expansion we get:

Ixu+ Iyv + Izw = −It or

∇I · u = −It
with u, v, w for the x,y and z components of the velocity or optical flow u, and
Ix,Iy ,Iz ,It for the derivatives of the intensity image I in corresponding directions,
respectively time.
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To find the optical flow from this equation with three unknowns, smoothness
in flow is used as additional condition. The optical flow is found by minimizing
an energy functional whihc is given as:

f = min

∫
((∇I · u+ It)

2 + α(|∇u|2 + |∇v|2 + |∇w|2))dxdydz

where larger values of α lead to a smoother flow. The minimization can be achieved
by calculating the corresponding Euler-Lagrange equations.

Such methods have been applied to the problem of respiratory motion on 3D
PET/CT data successfully [2].

2.2. Mass Conservation Based Optical Flow. The optical flow estimation
presented in the previous section is applicable to data where the intensity of the
objects remains constant. However, in some cases this constraint does not hold
true. Cardiac PET studies are one such example.

The here presented method is based upon the continuity equation, more pre-
cisely upon the conservation of mass. This law can be written as:

∂I

∂t
+ div(Iu) = 0

Deviations from this eqution can be penalized by the following functional:
∫

V

(∇I · u+ It + Idiv(u))2dV

This is again an under-determined system and therefore a smoothing term can be
added to solve it. The resulting optical flow functional is thus:

f = argmin

[∫

V

(div(Iu) + It)
2dV + α

∫

V

(|∇u|2 + |∇v|2 + |∇w|2)dV
]
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Accurate image reconstruction involving all redundant data in helical
cone-beam CT

Frederic Noo

(joint work with Harald Schöndube)

We discuss the problem of performing an accurate reconstruction in helical cone-
beam (CB) tomography while making efficacious use of all measured data. Efficient
theoretically-exact and stable formulas have been suggested for helical CB imaging
in the last decade, but none can handle the redundant data obtained with the
arbitrary helix pitch that is commonly used. We first review an algorithm that we
recently published that can handle redundant data at maximum pitch. Then, we
extend this algorithm to arbitrary pitch, by showing how the issue of interrupted
illumination that appears in this case can be solved. Encouraging preliminary
results are shown, highlighting the need for further work on the selection of the
weights involved in the data combination procedure of the method.

Electron Microscope Tomography over Curves

Eric Todd Quinto

(joint work with Hans Rullg̊ard)

We define a general curvilinear Radon transform in R3, and we develop the
microlocal properties of this transform. There are no inversion formulas for this
transform, in general, and we give a local reconstruction method that recovers
singularities of the object that are stably visible from the data. This is a type of
regularization since we do not recover the function itself but singularities of the
function that are stably reconstructed in a Sobolev sense. Our method is moti-
vated by Lambda tomography, and it is a filtered back projection algorithm with a
derivative filter. We characterize the singularities this algorithm reconstructs, and
we show that some singularities are added to the reconstruction. Added singulari-
ties are inherent in any standard backprojection algorithm for this problem by the
nature of the backprojection. Using our characterization of added singularities, we
choose a derivative filter that will de-emphasize some of the added singularities.
These results, their proofs, and reconstructions will appear in [3].

In single object electron tomography (ET), images are taken of a single object
over a finite number of rotations (called tilts) of the object in the electron beam.
The standard model for single object ET assumes that electrons travel over lines
and that the electron count at the detector is affected by the electrostatic potential
f of the object. A more complete model will include the optics of the electron
microscope, and information about the complete model is given in [1], as discussed
in the talk of H. Kohr at this conference.

The theoretical work we describe here is motivated by practical work of Albert
Lawrence, et al., that shows when imaging larger objects using broader electron
beams, the electrons farther from the center beam travel in helix-like curves. They
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have developed a reconstruction algorithm, TxBR [2], that uses gold markers in
the projections to find the curves that the electrons travel over.

We now describe our general microlocal theory of a curvilinear Radon transform
in R3. For each θ ∈ ]a, b[ (representing a tilt angle) and each y ∈ R2 (representing
a point on the detector plane for tilt θ), a smooth projection pθ : R3 → R2 defines
the curves, which are given for (θ,y) ∈ Y = ]a, b[ ×R2 by

γθ,y := pθ
−1({y}).

The Curvilinear X-ray Transform is given by

Ppf(θ,y) :=

∫

x∈γθ,y

f(x)ds.

The backprojection operator is given by

P∗
p
g(x) :=

∫

θ∈ ]a,b[

ϕ(θ)g (θ,pθ(x)) dθ

where ϕ is a cutoff function on ]a, b[ that is equal to one on most of ]a, b[ and is
in C∞

c ( ]a, b[ ). Since x ∈ γθ,pθ(x)
, P∗

p
g(x) is just an integral of g over all curves

through x.
Finally, our singularity detection operator is

L(f) := P∗
p
DPpf

where D is a second order differential operator in y that is chosen to de-emphasize
certain added singularities that we will describe below.

Clearly some conditions on the curves are necessary, and we will now describe
our conditions and what they mean geometrically. We will let ∂θ be the derivative
in the theta direction, and ∂x will be the gradient in x.

(1) For each θ ∈ ]a, b[ , the curves γθ,y are smooth, unbounded, and don’t in-
tersect. Precisely, we assume that (x, θ) 7→ pθ(x) ∈ R2 is a C∞ map.
Fixing θ, pθ is a fiber map in x with fibers diffeomorphic to lines. This
assumption will imply that ∂xpθ(x) has maximal rank (two).

(2) The curves γθ,y are different for different (θ,y) ∈ Y .
(3) Curves move differently at different points as θ changes. The precise as-

sumption is that for all (θ,y) ∈ Y and for any two distinct points x0 and
x1 in γθ,y, the derivatives ∂θpθ(x0) and ∂θpθ(x1) are not equal.

(4) The curves wiggle enough as θ changes. Precisely, The 4 × 3 matrix(
∂xpθ(x)
∂θ∂xpθ(x)

)
has maximal rank (three). One can show this means that

the normal plane to γθ,y at x ∈ γθ,y changes as θ changes infinitesimally.

We now understand in an elementary way how our algorithm detects singular-
ities. Let x ∈ R3. Note that for each θ ∈ ]a, b[ , x ∈ γθ,pθ(x)

. Therefore, the union
of all curves in Y through x is

Σx :=
⋃

θ∈ ]a,b[

γθ,pθ(x)
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By assumption (3), Σx is smooth immersed surface except at x, where it comes
to a point [3].

For x ∈ R3 and f a function of compact support P∗
p
Ppf(x) first integrates f

over each curve through x and then averages over the curves through x. Therefore,

P∗
p
Ppf(x) =

∫

z∈Σx

f(z)W (z,x) dA

where W (z,x) is a smooth weight on Σx \ {x}. So, P∗
p
Ppf(x) is an integral of

f over the surface Σx. Since L is essentially P∗
p
Pp with a differential operator in

the middle, Lf detects singularities in essentially the same way as P∗
p
Pp.

We use this idea to explain intuitively how L detects singularities. Let x0 ∈ R
3.

If a singularity of f at x0 is conormal to some curve γθ,pθ(x)
then it should be

detected by Ppf [3]. To see this, let’s do a thought experiment in which f is a
characteristic function of a ball, B, and γθ,pθ(x0) is tangent to the ball at x0. Then,
Ppf will not be smooth near (θ,pθ(x0)) since Ppf will go from 0 to nonzero as the
curve moves in and out of the ball. Such singularities (which are called “visible”)
will be detected by L (see [3] for a precise statement).

However, singularities from far away on Σx0 can also affect the reconstruction
at x0. Imagine that Σx0

is tangent to the support of f , B at a point besides x0.
Then, the integral P∗

p
Ppf will not be smooth at x0 since it will go from being

zero to nonzero in a non-smooth way as x moves so that Σx moves in and out of
the ball B. This adds singularities to the reconstruction at x0.

Precisely, in [3], we prove that Pp is a Fourier integral operator associated with
Lagrangian manifold Γ = N∗Z \ 0 where Z is the incidence relation

Z := {(θ,y,x) ∈ Y × R
3
∣∣x ∈ γθ,y}

and N∗Z is its conormal bundle. Then L is a singular operator associated to
the canonical relation Γt ◦ Γ and this relation above x0 is basically the visible
directions (those conormal to curves through x0) × N∗(Σx0

) \ 0. So, singularities
of f conormal at x0 to curves in the data set (visible singularities) will be detected
by Lf at x0, and singularities conormal to Σx0 at other points will be added to
the reconstruction at x0. This is illustrated by our thought experiments above
and is proven in [3].

In [3], we use our microlocal characterization of the added singularities to choose
a differential operator D for L that will de-emphasize added singularities that are
near to the reconstruction, and we show the algorithm works well to de-emphasize
the added singularities.
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