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Introduction by the Organisers

The workshop on Combinatorial Representation Theory, was organised by Chris-
tine Bessenrodt (Hannover), Francesco Brenti (Roma), Alexander Kleshchev (Eu-
gene) and Arun Ram (Melbourne). It was attended by 54 participants coming
from Europe, North America, Japan and Australia. In the 23 long and 8 short
talks – many given by young participants – fascinating new developments and sig-
nificant progress on deep conjectures were presented. The schedule still left ample
time for many discussions; in the ideal environment of the institute there was a
lively exchange of ideas, also with researchers in the ”Research in Pairs” program.
Indeed, there were exciting questions and discoveries every evening, continuing
cooperations as well as starting new joint research.

The scope of the meeting embraced representations coming from many direc-
tions: finite and algebraic groups and different types of algebras and Lie algebras.
The fruitful focus point was the common interest in combinatorial aspects, dealt
with by very different methods; in many cases, the representation theory of the
symmetric groups and related groups or related algebras plays an important rôle.
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A series of talks was dedicated to the recently discovered Khovanov-Lauda-
Rouquier (KLR) algebras. These graded algebras defined for any Lie type have
many important connections to Lie theory, categorification, and representation
theory of symmetric groups and Hecke algebras. D. Hill spoke on his work with
Melvin and Mondragon on the classification of irreducible modules over KLR alge-
bras of finite type along the program initiated by Kleshchev and Ram. M. Vazirani
presented her work with Lauda which yields another classification of irreducible
modules over KLR algebras of arbitrary type via defining and identifying a crystal
structure on them. A. Mathas talked on his work with Hu on a cellular struc-
ture on cyclotomic KLR algebras of finite and affine type A. In view of the work
of Brundan and Kleshchev this transports into a completely new graded cellular
structure on cyclotomic Hecke algebras, which promises to be very important.

Modular representation theory was also a focus point. S. Ariki spoke about
modular branching rules for affine Hecke algebras of type A. This is related to
the identification of various classifications of irreducible modules over affine Hecke
algebras. N. Jacon spoke on canonical bases in higher level Fock spaces in connec-
tion with Ariki’s categorification theorem and modular representation theory of
cyclotomic Hecke algebras. M. Fayers reported on the recent progress concerning
the classification of irreducible Specht modules over cyclotomic Hecke algebras.

His work with S. Khoroshkin on the representation theory of usual and twisted
Yangians was described by M. Nazarov, while S. Goodwin spoke on his work with
J. Brown on representations of finite W -algebras of classical types corresponding
to special nilpotent orbits, generalizing work of Brundan and Kleshchev in type A.

Classical representation theory continues to be a central topic. O. Yacobi’s
talk had classical invariant theory as its core, and I. Gordon discussed problems
from the invariant theory of complex reflection groups, whose solutions involved
the representation theory of rational Cherednik algebras. C. Caselli introduced
projective reflection groups and showed that Gelfand models and bases for their
coinvariant algebras can be obtained via the combinatorics of a dual projective re-
flection group. Some of these results are new even for the Weyl groups of type D.
V. Miemietz explained deep results with W. Turner extending the applications
of the Dlab-Ringel construction from finite dimensional to infinite dimensional
algebras. G. Malle talked on work with G. Navarro, explaining combinatorics un-
derlying the confirmation of a recent conjectured character criterion of nilpotent
blocks of finite groups for many quasi-simple groups, J. Comes spoke on the rep-
resentation theory of Deligne’s tensor category Rep(St) (for each t ∈ C) related to
the symmetric group St, when t is an integer, and G. Han explained techniques
for discovering surprising new hook length formulas. A. Henderson spoke on enu-
merative results for nilpotent orbits in classical groups of type B or C which refine
results by Lusztig.

In an important talk which stood on its own, P. Fiebig spoke on his work with
Arakawa on blocks of representations of affine Kac-Moody algebras at the critical
level. He explained how to relate such blocks to the blocks of the category of
modules over an associated small quantum group.
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Symmetric function theory continues to be a vibrant area of research. M.
Yip explained how the alcove walk techniques from the proof of the Ram-Yip
formula for expanding Macdonald polynomials in terms of monomial symmetric
functions apply to provide a Littlewood-Richardson rule for Macdonald polynomi-
als; this generalizes the classical rule for multiplying Weyl characters and recent
results on the product of Hall-Littlewood symmetric functions. J. Haglund and C.
Lenart covered several aspects of the relation between the Ram-Yip formula and
the Haglund-Haiman-Loehr formula; their relations to expansions in terms of De-
mazure bases and quasisymmetric functions were discussed by Haglund and Yip.
The theory of quasisymmetric functions has seen increasing importance in the last
ten years, including applications to Macdonald polynomials and Kazhdan-Lusztig
theory. As explained by S. van Willigenburg, the quasisymmetric Schur functions
satisfy natural analogues of many results that hold for the classical Schur functions,
providing a good justification for their name. This opens natural major lines of
research. A. Schilling presented a Murnaghan-Nakayama rule for noncommutative
k-Schur functions, a result which is new even in the commutative case.

Connections to mathematical physics and representations of affine Lie algebras
appeared in several talks and blossomed in the talk of J. de Gier explaining how
certain parabolic Kazhdan-Lusztig polynomials and Macdonald polynomial theo-
ries enter in the solutions of eigenvalue problems in statistical physics: specifically,
fully packed loop models. M. Marietti presented a closed combinatorial formula for
the parabolic Kazhdan-Lusztig polynomials of the tight quotients of the symmetric
groups; this implies the known formula for the maximal quotients and relies on a
new class of superpartitions with fermionic number one. The talk of C. Stroppel
focused on the interplay between symmetric functions, geometry, mathematical
physics (quantum cohomology, Bethe Ansatz and Verlinde formulas). J. Kujawa
explained the notion of categorical dimension in ribbon categories and a suitable
graphical calculus; these categories include categories of finite dimensional repre-
sentations of groups, Lie algebras, superalgebras and quantum groups.

Deep connections to geometry appeared also in other talks. S. Gaussent ex-
plained some of the ”compression” by using walks on the one-skeleton of an affine
Tits building. T. Lam gave detailed information about the structure of the totally
positive part of a loop group, and a mysterious similarity between his product
constructions and the cluster algebra constructions of regular functions in the co-
ordinate ring of the unipotent part of a Kac-Moody group which appeared in J.
Schröer’s talk was noticeable. Indeed, the cluster algebras introduced by Fomin
and Zelevinsky are a very important and active research area. L. Williams, J.
Schröer and D. Hernandez impressively used cluster algebra technology in the
study of preprojective algebras, canonical bases, total positivity, moduli spaces of
surfaces, and the finite dimensional representations of affine Lie algebras. A high-
light was L. Williams’ talk on a proof of the celebrated nonnegativity conjecture
for cluster algebras arising from punctured surfaces. Her result gives a combina-
torial interpretation of the coefficients of the Laurent monomials in the cluster
variables, and includes the nonnegativity result for cluster algebras of finite type.
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Abstracts

Catalan Numbers for complex reflection groups

Iain G. Gordon

(joint work with Stephen Griffeth)

This is a report on joint work with S. Griffeth which will be published as [3].
The motivation for the talk was also the beautiful construction by Y. Berest and
O. Chalykh of quasi-invariants in [1]. Underlying both of these works is the ap-
pearance of the so-called KZ-twists, which first appeared in the work of Opdam,
[5], [6].

1.1. Let h be a complex vector space of dimension n and W a finite complex
reflection group with reflection representation h. We assume that h is irreducible
as a representation of W . Denote by A the set of reflecting hyperplanes, andR the
set of pseudo-reflections. We let N := |A| and N∗ := |R|. Define the generalised
Coxeter number h to be the integer

(1) h =
N +N∗

n
.

1.2. Let P denote ring of polynomial functions on h. The coinvariant algebra
P coW := P/(PW+ ) carries the regular representation of W . Given U ∈ Irrep(W ),
the exponents of U

e1(U) ≤ . . . ≤ edimU (U)

are the homogeneous embedding degrees of U in P coW . Set di = ei(V ) + 1 for
i = 1, . . . , n, the degrees of a minimal set of homogeneous elements generating
PW .

1.3. Let q be an indeterminate, and for any positive integer i, set [i]q := 1 +
q + · · · + qi−1. For a non-negative integer m, we define the mth q-Fuss-Catalan
number of (h,W ) to be

(2) C
(m)
W (q) =

n∏

i=1

[mh+ 1 + ei(Ψ
m(h∗)∗)]q

[di]q
,

where Ψ ∈ Perm(Irrep(W )) is to be explained below.

Theorem 1. The rational function C
(m)
W (q) belongs to N[q]. Two reasons 1 for

this are:

(1) C
(m)
W (q) is the Hilbert series of (P/(Θ))W where Θ is a homogeneous sys-

tem of parameters of degree mh+1 carrying theW -representation Ψm(h∗);

(2) C
(m)
W (q) is the graded character of a finite dimensional irreducible repre-

sentation of the spherical rational Cherednik algebra Um+1/h(W ).

1There is actually a restriction on the validity of this theorem at the moment: one must
assume that the Iwahori-Hecke algebras Hq(W )’s form a flat family as q varies. This is known

in all but finitely many cases, and conjectured in general.
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1.4. The proof of the theorem proceeds like many others in this field. One con-
firms the simplest case (here m = 0) and then uses some kind of shift func-
tor to pass from m to m + 1. Iteration proves the theorem. In our case the
shift functor comes from passing from category Oc(W ) for the rational Chered-
nik algebra Hc(W ) (an algebra that depends on the choice of a parameter c ∈
C[R]adW ) to Oc+1(W ). Category Oc(W ) has a set of standard representations
∆c(U) labelled by U ∈ Irrep(W ) and it admits an analytically constructed functor
KZc : Oc(W ) −→ Hq(c)(W ) -mod to the Iwahori-Hecke algebra Hq(c)(W ) where
q(c) = exp(2πic). Now KZc is an equivalence for generic choices of c. So ob-
serving that if s ∈ Z[R]adW then Hq(c)(W ) = Hq(c+s)(W ), one can construct

Ψs ∈ Perm(Irrep(W )) by the rule KZ
−1
c+s ◦KZc(∆c(U)) = ∆c+s(Ψs(U)) for generic

c. The permutation Ψ in the statement of the theorem is then Ψ1.

1.5. The permutation Ψs is called a KZ-twist. It appeared first in the work of
Opdam, [5] and [6], where it was used to explain certain symmetries among the
exponents of irreducible representations of W . In the recent work of Berest and
Chalykh, [1], a new construction is given (based directly on rational Cherednik
algebra representation theory) which links to the study of quasi-invariants and
hence integrable systems, and which removes a great deal of the dependence on
flatness properties of Hecke algebras. It seems that the KZ-twists should play a
fundamental role in the representation theory of rational Cherednik algebras.

1.6. The description of C
(1)
W (q) in the second part of the theorem allows us to

define a (q, t)-Catalan number for all W . This agrees with the definition of Garsia-
Haiman in the symmetric group case.

1.7. The q-Fuss Catalan numbers display a shadow of the cyclic sieving phenom-
enon. Let d be a regular number for (V,W ) and let ζ = exp(2π

√
−1/d). Then

C
(m)
W (ζt) is a positive integer for all m and all t. In general, this is not understood

combinatorially, but do see [2].

1.8. The pair (h,W ) is well-generated ifW can be generated by n pseudo-reflections.
In this case the formula for the q-Fuss-Catalan number simplifies,

C
(m)
W (q) =

n∏

i=1

[mh+ di]q
[di]q

.

This is the standard definition of q-Fuss-Catalan numbers for well-generated groups
which is used throughout the literature. Furthermore, a case-by-case observation
made by Malle [4] in studying Galois automorphisms ofHq(W ) shows that Ψ(h∗) =
h∗ if and only if (h,W ) is well-generated. Thus, the first part of the theorem above
confirms a conjecture of [2]
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Cluster algebras arising in Lie theory

Jan Schröer

(joint work with Christof Geiß, Bernard Leclerc)

Let Q be a finite quiver, and let g be the associated symmetric Kac-Moody Lie
algebra. The Kac-Moody group attached to g as in [4, Chapter VI] comes with a
pair of subgroups N and N− (denoted by U and U− in [4]).

For an element w in the Weyl group W of g let N(w) := N ∩ (w−1N−w)
and N ′(w) := N ∩ (w−1Nw). These are pro-unipotent pro-groups. The group
N(w) is finite-dimensional of dimension length(w), and N ′(w) is infinite dimen-
sional if g is infinite dimensional. Multiplication in N yields a bijective map
N(w)×N ′(w)→ N . Thus the algebra C[N ]N

′(w) of N ′(w)-invariant functions
on N is isomorphic to the coordinate ring C[N(w)] of N(w).

Next, let Λ be the preprojective algebra associated to Q, and let S1, . . . , Sn
be the 1-dimensional simple Λ-modules corresponding to the vertices of Q. For
a nilpotent Λ-module X and a = (ar, . . . , a1) ∈ Nr let Fi,a,X be the projective
variety of flags

X• = (0 = Xr ⊆ · · · ⊆ X1 ⊆ X0 = X)

of submodules of X such that Xk−1/Xk
∼= Sakik for all 1 ≤ k ≤ r. The varieties

Fi,a,X were first introduced by Lusztig for his Lagrangian construction of the
enveloping algebra U(n), where n denotes the positive part of g. Let xi(t) be the
one-parameter subgroup of N associated to the simple root αi of g. For each
reduced expression i = (ir, . . . , i1) of w, we get an injective map

xi : (tr, . . . , t2, t1) 7→ xir (tr) · · ·xi2 (t2)xi1 (t1)

from (C∗)r to N . Dualizing Lusztig’s construction, we can associate with X a
regular function ϕX ∈ C[N ] satisfying

ϕX(x
i
(t)) =

∑

a∈Nr

χ(Fi,a,X)ta.

Here t = (tr, . . . , t1) ∈ (C∗)r, ta := tarr · · · ta22 ta11 , and χ denotes the topological

Euler characteristic. The functions in C[N ]N
′(w) are already determined by their

values on {x
i
(t) | t ∈ (C∗)r}. We want to determine which of the ϕX are contained

in C[N ]N
′(w).

The functions ϕX generate C[N ] as a vector space, and they capture many
aspects of the representation theory of the Kac-Moody algebra g. For example,
one can use ϕ-functions to construct all integrable highest weight g-modules. Also,
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the dual of Lusztig’s semicanonical basis of U(n) consists of a subset of all ϕ-
functions. (One can identify the graded dual U(n)∗gr with C[N ].) Conjecturally,
the specialized dual canonical basis also consists of ϕ-functions.

Buan, Iyama, Reiten and Scott [1] have attached to each element w of the Weyl
group W of g a subcategory Cw of mod(Λ). They show that the categories Cw
are Frobenius categories and the corresponding stable categories Cw are Calabi-
Yau categories of dimension two. (These results were also discovered and proved
independently in [2] in the special case when w is an adaptable element of W .)

For a Λ-module X and a simple module Sj let socle(j)(X) := socleSj
(X) be the

sum of all submodules U of X with U ∼= Sj . For a sequence (jt, . . . , j1) of indices
with 1 ≤ jp ≤ n for all p, there is a unique chain

0 = Xt ⊆ · · · ⊆ X1 ⊆ X0 ⊆ X
of submodules of X such that Xp−1/Xp = socle(jp)(X/Xp). Define

socle(jt,...,j1)(X) := X0.

Again, let i = (ir, . . . , i1) be a reduced expression of an element w of W . By
I1, . . . , In we denote the injective envelopes of the simple Λ-modules S1, . . . , Sn,
respectively. For 1 ≤ k ≤ r let

Vk := socle(ik...,i1)(Iik ),

and set Vi := V1 ⊕ · · · ⊕ Vr. (The module Vi is dual to the cluster-tilting object
constructed in [1, Section III.2].) Let Cw be the subcategory of mod(Λ) generated
by Vi. The category Cw depends only on w, and not on the chosen reduced ex-
pression i of w. (If Q is a Dynkin quiver, and w = w0 is the longest Weyl group
element, then Cw = mod(Λ).)

Theorem 1. For any nilpotent Λ-module X the following are equivalent:

(i) ϕX ∈ C[N ]N
′(w),

(ii) X ∈ Cw.
For each 1 ≤ k ≤ r there is a canonical embedding

ιk : Vk− → Vk

where k− := max{0 ≤ s ≤ k − 1 | is = ik} and V0 := 0. Let Mk be the cokernel
of ιk.

Theorem 2. The following hold:

(i) C[N ]N
′(w) = C[ϕM1 , . . . , ϕMr

].

(ii) The subset S∗w := S∗ ∩ C[N ]N
′(w) of the dual semicanonical basis S∗ of

C[N ] is a C-basis of C[N ]N
′(w).

From the definitions it looks as if the functions ϕX are very difficult to compute.
However, the functions ϕVk

can be interpreted as generalized minors, and they can
be described very explicitly by a simple recursion. The tuple (ϕV1 , . . . , ϕVr

) serves

now as an initial cluster of a cluster algebra structure on C[N ]N
′(w). Starting with

(ϕV1 , . . . , ϕVr
) we can apply (combinatorially defined) Fomin-Zelevinsky cluster
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mutations. This yields again tuples of ϕ-functions (ϕT1 , . . . , ϕTr
), called clusters.

Expressions of the form

ϕm1

T1
ϕm2

T2
· · ·ϕmr

Tr

with mk ≥ 0 for all k are called cluster monomials. The functions ϕTk
can be

described explicitly. In particular, the Euler characteristics χ(Fi,a,Tk
) can be ob-

tained inductively from the initial cluster (ϕV1 , . . . , ϕVr
).

Theorem 3. The algebra C[N ]N
′(w) is a cluster algebra in a natural way, and the

set of cluster monomials is a subset of S∗w.
The proofs of Theorems 1, 2 and 3 can be found in [3].
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[2] C. Geiß, B. Leclerc, J. Schröer, Cluster algebra structures and semicanonical bases for
unipotent groups. 121pp, Preprint (2007), arXiv:math/0703039.
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Positivity and positive bases for cluster algebras from surfaces

Lauren Williams

(joint work with Gregg Musiker, Ralf Schiffler)

Since their introduction by Fomin and Zelevinsky [FZ1], cluster algebras have been
related to diverse areas of mathematics such as total positivity, quiver represen-
tations, Teichmüller theory, tropical geometry, Lie theory, and Poisson geometry.
A main outstanding conjecture about cluster algebras is the positivity conjecture,
which says that if one fixes a cluster algebra A and an arbitrary seed (x,y, B),
one can express each cluster variable x ∈ A as a Laurent polynomial with positive
coefficients in the variables of x.

There is a class of cluster algebras arising from surfaces with marked points,
introduced by Fomin, Shapiro, and Thurston in [FST] (generalizing work of Fock
and Goncharov [FG1, FG2] and Gekhtman, Shapiro, and Vainshtein [GSV]), and
further developed in [FT]. This class is quite large: (assuming rank at least three)
it has been shown [FeShTu] that all but finitely many skew-symmetric cluster
algebras of finite mutation type come from this construction. Note that the class
of cluster algebras of finite mutation type in particular contains those of finite
type.

In this paper we give a combinatorial expression for the Laurent polynomial
which expresses any cluster variable in terms of any seed, for any cluster algebra
arising from a surface. As a corollary, we prove the positivity conjecture for all
such cluster algebras.
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A cluster algebra A of rank n is a subalgebra of an ambient field F isomorphic to
a field of rational functions in n variables. Each cluster algebra has a distinguished
set of generators called cluster variables; this set is a union of overlapping alge-
braically independent n-subsets of F called clusters, which together have the struc-
ture of a simplicial complex called the cluster complex. The clusters are related to
each other by birational transformations of the following kind: for every cluster x
and every cluster variable x ∈ x, there is another cluster x′ = x−{x}∪{x′}, with
the new cluster variable x′ determined by an exchange relation of the form

xx′ = y+M+ + y−M−.

Here y+ and y− lie in a coefficient semifield P, while M+ and M− are monomials in
the elements of x−{x}. There are two dynamics at play in the exchange relations:
that of the monomials, which is encoded in the exchange matrix, and that of the
coefficients.

A classification of finite type cluster algebras – those with finitely many clusters
– was given by Fomin and Zelevinksy in [FZ2]. They showed that this classifica-
tion is parallel to the famous Cartan-Killing classification of complex simple Lie
algebras, i.e. finite type cluster algebras either fall into one of the infinite families
An, Bn, Cn, Dn, or are of one of the exceptional types E6, E7, E8, F4, or G2. Fur-
thermore, the type of a finite type cluster algebra depends only on the dynamics
of the corresponding exchange matrices, and not on the coefficients.

Our main results of [MSW] are combinatorial formulas for cluster expansions
of cluster variables with respect to any seed, in any cluster algebra coming from a
surface. Our formulas are manifestly positive, so as a consequence we obtain the
following result.

Theorem 1. Let A be any cluster algebra arising from a surface, where the coef-
ficient system is of geometric type, and let Σ be any initial seed. Then the Laurent
expansion of every cluster variable with respect to the seed Σ has non-negative
coefficients.

Our results generalize those in [S2], where cluster algebras from the (much more
restrictive) case of surfaces without punctures were considered. This work in turn
generalized [ST], which treated cluster algebras from unpunctured surfaces with a
very limited coefficient system that was associated to the boundary of the surface.
The very special case where the surface is a polygon and coefficients arise from the
boundary was covered in [S], and also in unpublished work [CP, FZ3]. See also
[Pr2]. Recently [MS] gave an alternative formulation of the results of [S2], using
perfect matchings as opposed to T -paths.

Many others have worked on finding Laurent expansions of cluster variables,
and on the positivity conjecture. However, most of the results so far obtained
have strong restrictions on the cluster algebra, the choice of initial seed or on the
system of coefficients. For finite type cluster algebras, the positivity conjecture
with respect to a bipartite seed follows from [FZ4, Corollary 11.7]. Other work
[M] gave cluster expansions for coefficient-free cluster algebras of finite classical
types with respect to a bipartite seed.
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A recent tool in understanding Laurent expansions of cluster variables is the
connection to quiver representations and the introduction of the cluster category
[BMRRT] (see also [CCS1] in type A). The work [CR] used this approach to
make progress towards the positivity conjecture for coefficient-free acyclic cluster
algebras, with respect to an acyclic seed.1 Building on [HL] and [CK2], Nakajima
recently used quiver varieties to prove the positivity conjecture for cluster algebras
that have at least one bipartite seed, with respect to any cluster [N]. This is a very
strong result, but it does not overlap very much with our Theorem 1. Note that
a bipartite seed is in particular acyclic, but not every acyclic type has a bipartite
seed; e.g. the affine type Ã2 does not. Further, the only surfaces that give rise
to acyclic cluster algebras are the polygon with 0, 1, or 2 punctures, and the
annulus (corresponding to the finite types A and D, and the affine types D̃ and

Ã, respectively). All other surfaces yield non-acyclic cluster algebras, see [FST,
Corollary 12.4].
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Combinatorics Associated to Type A Nonsymmetric Macdonald
Polynomials

Jim Haglund

In 1988 Macdonald [8],[9] introduced symmetric functions Pλ(X ; q, t) which con-
tain most of the previously studied families of symmetric functions as special
cases. The Pλ(X ; q, t) are multivariate orthogonal polynomials which have be-
come increasingly important in recent years. In 1995 Macdonald [10] introduced
a refinement of this theory involving polynomials Eα(X ; q, t), now called nonsym-
metric Mcadonald polynomials, which also satisfy an orthogonality relation, and
which are a basis for the polynomial ring Q[x1, . . . , xn](q, t) whose coefficients are
rational functions in q, t. Here λ is a partition and α a weak composition. There
are versions of the Pλ and Eα for arbitrary affine root systems, and Cherednik
showed many of the properties of Macdonald polynomials have an interpretation
in terms of the representation theory of his double affine Hecke algebra.

The Pλ and Eα have “integral forms” Jλ and Eα associated to them, which are
just scalar multiples of them which clear all denominators, resulting in a polyno-
mial (i.e. an element of Q[x1, . . . , xn, q, t]). A few years ago Haiman, Loehr and
the speaker [2] proved a combinatorial formula for the Jλ, and in subsequent work
[3] obtained a corresponding combinatorial expression for the Eα. We will mostly
use the notational conventions occurring in the discussion of the Eα formula from
Appendix C of [1]. It involves nonattacking fillings, which are fillings of the di-
agram α′ whose ith column has height αi, with positive integers so that no two
entries in the same row are equal, and no two entries in successive rows, with the
entry in the upper row strictly to the right of the lower entry, are equal. Then

Eα(X ; q, t) =
∑

σ

xσqmajtcoinv
∏

s∈α′

σ(s)6=σ(South(s))

(1− qleg+1tarm+1)
∏

s∈α′

σ(s)=σ(South(s))

(1 − t),
(1)
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where South(s) is the square right below s. The statistic maj is just the sum of
the major index of the columns, while the more intricate statistic coinv is a sum,
over pairs of squares in the same row, of a generalized concept of coinversion. Arm
and leg lengths for composition diagrams are the same as in work of Knop and
Sahi on Jack polynomials [6].

In (1) there is also a “basement” consisting of a row of squares below the
diagram, which are filled with the numbers (n, n − 1, . . . , 1), and which are used
in the computation of maj, coinv, and the description of nonattacking. To get the
Eα we need to use the diagram with column heights (αn, . . . , α1). A corresponding
formula for Jλ, where λ is the partition rearrangement of α, can be obtained
by simply changing the basement to (2n, 2n − 1, . . . , n + 1). Also, by changing
the basement to (1, 2, . . . , n) and letting the ith column have height αi, we get
the version of the nonsymmetric Macdonald polynomial studied by Marshall [11],
which we denote E ′α, which are essentially related to the Eα by reversing the order
of the variables, reversing the order of the parts of α, and sending q → 1/q,
t→ 1/t.

Note that the Jλ version of (1) implies that for k ∈ N,

Jλ(X ; q, qk)/(1− q)n|mλ
N[q],(2)

i.e. the coefficient of a monomial symmetric function in (2) is a positive polynomial
in q, since when t = qk, each of the factors (1 − qleg+1tarm+1) or (1 − t) becomes
(1 − qm) for some m. There are n of these factors, and combining them with the
n powers of 1− q in the denominator of (2) we get a product of q-integers. Maple
calculations indicate a stronger condition holds, namely Schur positivity.

Conjecture 1 For k ∈ N,

Jλ(X ; q, qk)/(1− q)n|sλ ∈ N[q].(3)

During the talk Arun Ram suggested that Conjecture 1 can be embedded in
a family of conjectures, where you expand Jλ(X ; q, qm) in terms of the basis
Jµ(X ; q, qm−1), with a positivity condition for each m. Since Pµ(X ; q, q) = sµ,
Ram’s conjecture for m = 2, 3, ..., k implies Conjecture 1. (Since the Pµ are not
quite the Jµ, some slight modification in the statement of Ram’s conjecture is
needed.) After the talk Ram described some geometric heuristics involving Mac-
donald polynomials and quotients of determinants to the speaker which led Ram to
his conjecture. These heuristics suggest some version of this phenomenon should
hold for the Eα(X ; q, t).

There is a lot of interesting combinatorics associated to the case q = t = 0 of
(1). It is known that the Demazure character, or key polynomial, Kα(x1, . . . , xn)
equals Eα(x1, . . . , xn; 0, 0), and furthermore the Demazure atom, or standard bases,
Aα(x1, . . . , xn) equals E ′α(x1, . . . , xn; 0, 0). Standard bases were introduced by Las-
coux and Schützenberger [7] in their study of Schubert varieties. They showed that
the Schubert polynomial is a positive sum of key polynomials, and that the key
polynomial is a positive sum of Demazure atoms. Further results on key poly-
nomials were obtained by Reiner and Shimozono [14]. Now if you start with an
identity of Macdonald which expresses Pλ as a sum, over compositions α whose
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rearrangement α+ into partition order is λ, of E ′α(x1, . . . , xn; q, t), and then set
q = t = 0, we get

sλ =
∑
α

α+=λ

Aα(x1, . . . , xn).(4)

S. Mason [12], [13] has given a combinatorial proof of this identity by introducing
a generalization of the RSK algorithm.

Recently K. Luoto, S. Mason, S. van Willigenburg and the speaker [4], [5] have
introduced a new basis for the ring of quasisymmetric functions called quasisym-
metric Schur functions, denoted QSβ(x1, . . . , xn), where β is a (strong) compo-
sition of n. It is defined as the sum, over all (weak) compositions α which are
shuffles of the parts of β and n − ℓ(β) zeros, of Aα. Properties of Mason’s RSK
algorithm are used to show these functions are quasisymmetric, and also to give a
decomposition of them into Gessel’s fundamental basis Fβ . (QSβ equals the sum,

over all standard tableaux T of β+ which get mapped under Mason’s RSK to one
of the shapes α occurring in the decomposition of QSβ into atoms, of Fdes(T ).)
The QS functions satisfy a refinement of the Littlewood-Richardson rule, as well
as many other well-known properties of Schur functions. In a paper to be pre-
sented at the FPSAC 2010 conference this summer, A. Lauve and S. Mason have
used this refined Littlewood-Richardson rule and other properties of QS functions
to obtain an explicit basis of the quotient ring QSYMn/SYMn, where QSYMn

and SYMn are the rings of quasisymmetric functions and symmetric functions in
n variables, thus resolving a conjecture of F. Bergeron and C. Reutenauer.
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A Littlewood-Richardson rule for Macdonald polynomials

Martha Yip

In [M88], Macdonald introduced a remarkable family of orthogonal polynomials
Pλ(q, t) associated with root systems. For special values of q and t, they specialize
to various well-known functions, including Weyl characters and spherical functions
for p-adic groups. These polynomials are a basis for symmetric functions, and are a
common generalization of Schur functions sλ, monomial symmetric functions, Hall-
Littlewood polynomials, and the symmetric Jack polynomials. The symmetric
Macdonald polynomials are indexed by dominant weights of the weight lattice P .

Classically, the Littlewood-Richardson coefficients cνλµ are the structure con-
stants of the ring of symmetric functions with respect to the Schur basis:

sλsµ =
∑

ν

cνλµsν .

In the representation theory of the general linear group GLnC, the Littlewood-
Richardson coefficients also give the multiplicity of the irreducible highest weight
module V (ν) in V (λ) ⊗ V (µ). The coefficient cνλµ is given combinatorially as the

number of Young tableaux of shape ν\λ admitting a Littlewood-Richardson filling
of type µ.

Littelmann introduced the path model in [Li94] as a tool for calculating formulas
for characters of complex symmetrizable Kac-Moody algebras, and showed that it
can also be used to compute Littlewood-Richardson coefficients. Instead of a sum
over tableaux, his formula for cνλµ is a sum over certain paths in the vector space

P ⊗Z R, where the endpoint (weight) of a path takes the place of the filling of a
tableau. Several variations of the Littelmann path model were introduced to obtain
character formulas, including the gallery model of Gaussent-Littelmann [GL02],
and the model of Lenart-Postnikov [LP08] based on λ-chains. In [R06], Ram
developed the alcove walk model for working in the affine Hecke algebra, and the
paper [RY] showed that alcove walks are a useful tool for expanding products of
intertwining operators of the double affine Hecke algebra.

Cherednik developed the theory of double affine Hecke algebras, using it to
solve Macdonald’s constant term conjectures [C95a], and in [C95b], he showed that
products of intertwining operators of the double affine Hecke algebra generate the
nonsymmetric Macdonald polynomials Eλ(q, t), which are a family of orthogonal
polynomials indexed by points of the weight lattice. These polynomials were first
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introduced by Opdam [O95] in the case q → 1 (see [M03, p.147]). By applying a
symmetrizing operator 10 to Eλ, one can obtain the symmetric polynomials Pλ.

In this talk, we show that the alcove walk model can be used to calculate prod-
ucts of monomials and intertwining operators of the double affine Hecke algebra,
and give a product formula for two symmetric Macdonald polynomials

(1) PµPλ =
∑

p

cwt(p)(q, t)P−w0wt(p),

where wt(p) is the weight of the path p, and w0 is the longest element of the Weyl
group. The sum is over alcove walks of type determined by µ and contained in
the dominant chamber, and the coefficients cwt(p)(q, t) are rational functions in q
and t.

This is a generalization of the classical formula for products of Weyl characters.
When q = 0, Equation (1) reduces to Schwer’s product formula [Sc06, Theorem
1.3] for Hall-Littlewood polynomials in terms of positively folded galleries.

In the Type A case, Lenart [Le09] compressed the alcove walk formula in [RY]
to obtain a tableau formula for Macdonald polynomials similar to the Haglund-
Haiman-Loehr formula [HHL05], so it is natural to ask, is there a tableau version
of (1) that generalizes the Pieri rule in Macdonald [M88, (6.24)]?
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On restricted representations of affine Kac–Moody algebras at the
critical level

Peter Fiebig

(joint work with Tomoyuki Arakawa)

I want to give an overview on a recent research project on the structure of the
restricted category O over an affine Kac–Moody algebra at the critical level. In
contrast to the case of any other level, the representation theory at the critical
level is not yet very well understood in general.

There is an approach, due to Frenkel and Gaitsgory, that links D-modules on
an affine Grassmannian to representations at the critical level via a Beilinson–
Bernstein type localization functor (cf. [4] for an outline of this approach). So
far, this approach culminated in the determination of the I0-equivariant category
of critical representations with central characters corresponding to regular opers.
These categories can be thought of as versions of category O with fixed central
character, but generalized action of the Cartan, cf. [5].

We propose an essentially different, rather Koszul-dual approach towards the
critical level representation theory via a Jantzen-type deformation theory. In
particular, we aim to relate critical level representations to the topology of the
Langlands-dual affine Grassmannian.

1.1. Affine Kac–Moody algebras. Let g be a finite dimensional complex simple
Lie algebra, and let ĝ be the associated affine Kac–Moody algebra. Recall that ĝ is
constructed starting from the loop algebra g⊗CC[t, t−1], which turns out to admit a
unique (up to isomorphism) non-split central extension g̃ = g⊗CC[t, t−1]⊕CK, and
ĝ is obtained from g̃ by adding a grading operatorD. If we denote by k(·, ·) : g×g→
C the Killing-form, then Lie bracket on ĝ = g⊗C C[t, t−1]⊕CK ⊕CD is given by

[K, ĝ] = 0,

[D, x⊗ tn] = nx⊗ tn

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n + δn,−mnk(x, y)K

for x, y ∈ g, m,n ∈ Z.
Let us fix a Borel subalgebra b ⊂ g and a Cartan subalgebra h ⊂ b. The

corresponding Borel and Cartan subalgebras of ĝ are

b̂ := g⊗ tC[t]⊕ b⊕ CK ⊕ CD,

ĥ := h⊕ CK ⊕ CD.

Then ĥ acts semisimply on ĝ with finite dimensional weight spaces (via the adjoint
action).

Let us denote by h⋆ and ĥ⋆ the linear duals of h and ĥ, resp. Then the dual

of the projection ĥ = h ⊕ CK ⊕ CD → h along the decomposition is an inclusion

h⋆ → ĥ⋆, which allows us to think of h⋆ as a subspace in ĥ⋆. Let ∆ ⊂ h⋆ be the
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set of roots of g and denote by δ ∈ ĥ⋆ the element that is dual to D with respect

to the decomposition ĥ = h⊕ CK ⊕ CD. Explicitly, δ is the element given by

δ(h⊕ CK) = 0,

δ(D) = 1.

Then the set ∆̂ ⊂ ĥ⋆ of the roots of ĝ with respect to ĥ is

∆̂ = {α+ nδ | α ∈ ∆, n ∈ Z} ∪ {nδ | n 6= 0}.
The first set on the right hand side is called the set of real roots, the second is
called the set of imaginary roots.

1.2. Affine category O. We denote by O the full subcategory of the category

of ĝ-modules that contains all objects on which ĥ acts semisimply and b̂ locally

finitely. The simple objects on O are easy to parametrize: if we denote for λ ∈ ĥ⋆

by L(λ) the simple ĝ-module with highest weight λ, then {L(λ)}λ∈ĥ⋆ is a full set

of representatives for the simple isomorphism classes in O.
The simple highest weight module L(δ) is invertible, i.e. it is one-dimensional

and there is an isomorphism L(δ)⊗C L(−δ) ∼= L(0) = Ctriv. Hence there is a shift
equivalence T = · ⊗ L(δ) on the category of ĝ-modules. Then T , as well as T−1,
preserve the subcategory O, and we have T (L(λ)) ∼= L(λ+ δ).

Let O =
∏

ΛOΛ be a full block decomposition. Then we can identify each index

Λ with the subset {λ ∈ ĥ⋆ | L(λ) ∈ OΛ}. Here is a categorical characterization of
the critical level:

Definition 1. We say that OΛ is critical if it is preserved by T , i.e. if T (OΛ) =
OΛ.

The Kac–Kazhdan theorem [6], together with BGG-reciprocity [3, 7], yield the
following characterization of the critical blocks: OΛ is critical iff for some (or,
equivalently, all) λ ∈ Λ we have λ + δ ∈ Λ iff λ(K) = −ρ(K) for some (or all)

λ ∈ Λ. Here ρ is an element in ĥ⋆ that takes the value 1 on each simple coroot
(note that even though ρ is not well-defined, ρ(K) is). The value λ(K) is called
the level of L(λ), and we call −ρ(K) the critical level.

1.3. The graded center and restricted representations. Let us fix a critical
block OΛ. For n ∈ Z we let An = AΛ,n := Hom′(idOΛ , T

n) be the vector space
of natural transformations z : id → T n (considered as functors OΛ → OΛ) that
have the property that for any M ∈ OA and any m ∈ Z we have TmzM =
zT

mM : TmM → Tm+nM . Then the direct sum

A = AΛ =
⊕

n∈Z

An

carries a canonical structure of a commutative, associative, graded algebra. It is
called the graded center of OΛ.

Definition 2. We call an object M of OΛ restricted if for any n ∈ Z, n 6= 0 and
any z ∈ An the homomorphism zM : M → T nM is zero.
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We denote by OΛ ⊂ OΛ the full subcategory of restricted objects. Note that
the inclusion functor OΛ → OΛ admits a left and a right adjoint.

1.4. The restricted linkage principle. Denote by Ŵ ⊂ GL(ĥ⋆) the affine Weyl

group. It is generated by the affine reflections sα : ĥ⋆ → ĥ⋆ that are associated

to the real roots α. The dot-action of Ŵ on ĥ⋆ is obtained by shifting the linear

action in such a way that −ρ becomes a fixed point, i.e. for w ∈ Ŵ and λ ∈ ĥ⋆ it
is given by

w.λ = w(λ + ρ)− ρ.
Again, this action does not depend on the choice of ρ.

LetOΛ be a critical block, and denote by Ŵ(Λ) ⊂ Ŵ the subgroup generated by
the reflections sα associated to those real roots α that satisfy 2(λ+ρ, α) ∈ Z(α, α),

where (·, ·) : ĥ⋆ × ĥ⋆ → C denotes any non-degenerate, invariant bilinear form.
Again, this definition does not depend on the choice of ρ. Now, by the Kac-
Kazhdan theorem and the BGG-reciprocity, the set Λ is stable under the dot-action

of Ŵ(Λ).
Let OΛ =

∏
ΓOΓ be the full block decomposition. Again we identify Γ with

the set {λ ∈ ĥ⋆ | L(λ) ∈ OΓ}. The main result of [2] is that this decomposition
corresponds to the orbit decomposition of Λ:

Theorem 3. Any Γ ⊂ Λ is a Ŵ(Λ)-orbit.

The main ingredients in the proof of the above result are a deformation theory
for representations at the critical level, and an explicit result on the structure of
the subgeneric blocks that is obtained in [1]. Using the above linkage principle we
hope that we are able to relate a critical restricted block to the principal block
of the category of modules over an associated small quantum group. This should
then yield character formulas for the simple critical highest weight modules and
confirm a conjecture of Feigin and Frenkel (cf. [1]).
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Simple tensor products of representations of quantum affine algebras

David Hernandez

Let q ∈ C∗ which is not a root of unity and let Uq(g) be a quantum affine algebra
(not necessarily simply-laced or untwisted). Let F be the tensor category of finite-
dimensional representations of Uq(g).
In my talk at the Oberwolfach Workshop, I presented the main result of [7], ex-
pected in various papers of the vast literature about F .

Theorem 1 [7] Let S1, · · · , SN be objects of F . The tensor product S1⊗· · ·⊗SN
is simple if and only if Si ⊗ Sj is simple for any i < j.

The “only if” part of the statement is known: it is an immediate consequence
of the commutativity of the Grothendieck ring Rep(Uq(g)) of F proved in [5] (see
[6] for the twisted types). The “if” part of the statement is proved in [7].

The following is an extended version of the introduction of [7].
If the reader is not familiar with the representation theory of quantum affine

algebras, he may wonder why such a result is non trivial. Indeed, in tensor cate-
gories associated to “classical” representation theory, there are “few” non trivial
tensor products of representations which are simple. For instance, let V, V ′ be
non-zero simple finite-dimensional modules of a simple algebraic group in charac-
teristic 0. Then, it is well-known that V ⊗ V ′ is simple if and only if V or V ′ is of
dimension 1. But in positive characteristic there are examples of non trivial sim-
ple tensor products given by the Steinberg theorem. And in F there are “many”
simple tensor products of non trivial simple representations. For instance, it is

proved in [3] that for g = ŝl2 an arbitrary simple object V of F is real, i.e. V ⊗ V
is simple. Although it is known [10] that there are non real simple objects in F in
general, many other examples of non trivial simple tensor products can be found
in [8].

The statement of Theorem 1 has been conjectured and proved by several authors

in various special cases. The result is proved for g = ŝl2 in [3], for a special class
of modules of the Yangian of gln attached to skew Young diagrams in [12], for
tensor products of fundamental representations in [1, 4], for a special class of
tensor products satisfying an irreducibility criterion in [2], for a certain “small”
subtensor category C1 of F when g is simply-laced in [8].

So, even in the case g = ŝl3, Theorem 1 had not been established. Our complete
proof is valid for arbitrary simple objects of F and for arbitrary g.

Let us give a few first comments. Theorem 1 allows to produce simple tensor
products V ⊗ V ′ where V = S1 ⊗ · · · ⊗ Sk and V ′ = Sk+1 ⊗ · · · ⊗ SN . Besides it
implies that S1 ⊗ · · · ⊗ SN is real if we assume that the Si are real in addition to
the assumptions of Theorem 1.

The main ingredients of the proof are the following : the parametrization of
simple objects of F [3], a cyclicity property of tensor product of fundamental
representations [2, 9, 14], the theory of Frenkel-Reshetikhin q-characters [5, 4], a
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“filtration” of F by tensor subcategories [8], the notion of truncated q-characters
[8], a certain property of tensor products of l-weight vectors (analogs of weight
vectors for q-characters) that we establish [7], a compatibility property of inter-
twining operators with a decomposition of q-characters that we establish [7].

Our result is stated in terms of the tensor structure of F . Thus, it is purely
representation theoretical. But we have three additional motivations, related re-
spectively to physics, topology, combinatorics, and also to other structures of F .

First, although the category F is not braided (in general V ⊗ V ′ is not iso-
morphic to V ′ ⊗ V ), Uq(g) has a universal R-matrix in a completion of the tensor
product Uq(g)⊗Uq(g). In general the universal R-matrix can not be specialized to
finite-dimensional representations, but it gives rise to V (z)⊗V ′ → V ′⊗V (z) which
depend meromorphically on a formal parameter z (here the representation V (z) is
obtained by homothety of spectral parameter). From the physical point of view,
it is an important question to localize the zeros and poles of these operators. The
reducibility of tensor products of objects in F is known to have strong relations
with this question. This is the first motivation to study irreducibility of tensor
products in terms of irreducibility of tensor products of pairs of constituents [1].

Secondly, if V ⊗ V ′ is simple the universal R-matrix can be specialized and we
get a well-defined intertwining operator V ⊗ V ′ → V ′ ⊗ V . In general the action
of the R-matrix is not trivial. As the R-matrix satisfies the Yang-Baxter equa-
tion, when V is real we can define an action of the braid group BN on V ⊗N (as
for representations of quantum groups of finite type). It is known [13] that such
situations are important to construct topological invariants.

Finally, in a tensor category, there are natural important questions such as the
parametrization of simple objects or the decomposition of tensor products of simple
objects in the Grothendieck ring. But another problem of the same importance
is the factorization of simple objects V in prime objects, i.e. the decomposition
V = V1⊗· · ·⊗VN where the Vi can not be written as a tensor product of non trivial
simple objects. This problem for F is one of the main motivation in [8]. When we
have established that the tensor products of some pairs of prime representations
are simple, Theorem 1 gives the factorization of arbitrary tensor products of these
representations.

This factorization problem is related to the program of realization of cluster
algebras in Rep(Uq(g)) initiated in [8] when g is simply-laced. A cluster algebra
has a distinguished set of generators called cluster variables. A notion of com-
patibility of cluster variables comes with the definition of cluster algebras (cluster
variables are compatible if they occur in the same seed). A product of compatible
cluster variables is called a cluster monomial. Let us recall the notion of monoidal
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categorification due to Leclerc [8]. A tensor category C is said to be a monoidal cat-
egorification of a cluster algebra A, if there is a ring isomorphism φ : K0(C)→ A,
where K0(C) is the Grothendieck ring of C, such that φ induces bijections

{Classes of real simple objects of C} ↔ {Cluster monomials of A},
{Classes of prime real simple objects of C} ↔ {Cluster variables of A}.

If one can establish a monoidal categorification, we get results about A (positivity,
linear independence of cluster monomials) and C (Clebsch-Gordan coefficients,
factorization in prime modules). A cluster algebra A of finite type (ADE) has a
monoidal categorification C1 which is a tensor subcategory of F for Uq(ĝ) where
g has the type of A. This was proved in [8] for types A, D4 and in [11] for the
other types. In the proof of [8], the statement of Theorem 1 for C1 is a crucial
step (the proof of Theorem 1 in this case is drastically simplified; several new
technical ingredients are used in the general case). It reduces the proof of the
irreducibility of tensor products of representations corresponding to compatible
cluster variables to the proof of the irreducibility of the tensor products of pairs of
simple representations corresponding to compatible cluster variables. We plan to
use Theorem 1 in the future to establish monoidal categorifications associated to
non necessarily simply-laced quantum affine algebras, involving categories different
than the small subcategories C1 considered in [8, 11].
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The modular branching rule for the affine Hecke algebra of type A

Susumu Ariki

(joint work with Nicolas Jacon, Cédric Lecouvey)

Let F be an algebraically closed field, q ∈ F×, and Hn the extended affine Hecke
algebra of type A. We denote the generators by T1, . . . , Tn−1 and X±1

1 , . . .X±1
n

as usual. It is well-known that the classification of simple Hn-modules is reduced
to the case when the eigenvalues of X1, . . . , Xn on the modules are powers of q.
Hence, we consider simple modules with this property hereafter. We assume that
q 6= 1 and its multiplicative order is e. Then, by work of Ginzburg and Lusztig,
we know that if F = C then such simple modules are parametrized by aperiodic
multisegments. Further, the cellular algebra technique in [4] tells us that the
classification depends only on e and does not depend on the characteristic of F .
Hence, as long as the classification of simple modules is concerned, we may assume
F = C and q = e

√
1.

Recall that the geometric method says that such simpleHn-modules are labelled

by the canonical basis of the quantized enveloping algebra of type A
(1)
e−1 when

we vary n through N, and that the aperiodic multisegments label the canonical
basis elements. In particular, the set of aperiodic multisegments carries a crystal
structure: we note that the identification of Hn with the convolution algebra of
the Steinberg variety is given by hand, and there are at least two ways to do
so. The choice of the crystal structure is different for the two identifications, but
both are isomorphic to B(∞). We denote by Lψ the simple Hn-module labelled
by an aperiodic multisegment ψ of size n. It is difficult to obtain explicit matrix
representations of the generators on Lψ, so that purely algebraic construction of
Lψ is desirable. One of our main results is to provide this.

Let Λ be a nonnegative integral linear combination of fundamental weights Λi,
for i ∈ Z/eZ. Then we have the cyclotomic quotient HΛ

n of Hn. Write

Λ = Λγ1 + · · ·+ Λγℓ .

Dipper, James and Mathas showed that the sequence (γ1, . . . , γℓ) defines a cellular
algebra structure on HΛ

n , and simple HΛ
n -modules are parametrized by Kleshchev

multipartitions by [1]. Recall that an ℓ-partition λ = (λ(1), . . . , λ(ℓ)) is Kleshchev
if

λ(ℓ) ⊗ · · · ⊗ λ(1) ∈ B(Λ) ⊆ B(λγℓ)⊗ · · · ⊗B(Λγ1).

Here, B(Λ) is identified with the connected component of the tensor product
crystal that contains the empty ℓ-partition. In particular, if we vary n through N,
the set of Kleshchev multipartitions carries a crystal structure. We denote by Dλ

the simple HΛ
n -module labelled by a Kleshchev multipartition λ of size n.

As any simple Hn-module is a simple HΛ
n -module, for some Λ, we already know

how to construct all simple Hn-modules in the purely algebraic method of cellular
algebras. Thus, to construct Lψ in a purely algebraic manner, it suffices to know
the module correspondence between the geometric construction and the algebraic
construction. This may be done by proving the modular branching conjecture for
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Hn. Note that it is not proved in [7]. The modular branching conjecture for Hn

is the statement that ẽiLψ = Lẽiψ, where ẽi on the left hand side is the module
theoretic Kashiwara operator, and ẽi on the right hand side is the Kashiwara
operator from the crystal structure on the set of aperiodic multisegments. We
note that the modular branching conjecture for HΛ

n is already established in [2].

Theorem 1.
(1) The modular branching conjecture for Hn holds.
(2) The module correspondence Dλ 7→ Lψ is given by the crystal embedding

B(Λ) →֒ B(∞)⊗ TΛ : λ 7→ ψ ⊗ tΛ,

where the crystal TΛ = {tΛ} is such that

wt(tΛ) = Λ, ǫi(tΛ) = ϕi(tΛ) = −∞, ẽitΛ = f̃itΛ = 0.

The proof of (1) uses the multiplicity one result from Vazirani’s thesis [8], but
we do not need [7]. We also remark that in the case when q is not a root of unity,
it was proved in [9] if we assume facts relating the algebraic construction and the
geometric construction in this case.

We briefly explain main ideas of the proof. The first point is how to understand
the modular branching geometrically. Following Ginzburg, let a = (s, q) and

N a
n = {X ∈Mat(n, n,C) | Xn = O, Ad(s)X = qX},

where s is a diagonal matrix whose nonzero entries are powers of q. Then we define

Ñ a
n = {(X,F = (Fk))} πa

n−→ N a
n

to be the first projection, where the complete flag F satisfies the conditions

(i) Fk is spanned by k eigenvectors of s, (ii) XFk ⊆ Fk−1,

for 1 ≤ k ≤ n. If we further assume that Fn is obtained from Fn−1 by adding an
eigenvector of s with eigenvalue qi, for i ∈ Z/eZ, we obtain a union of connected

components of Ñ a
n . We denote it by piÑ a

n .
On the other hand, a = (s, q) defines a central character of Hn and we may

consider the specialized Hecke algebra Ha
n which is obtained by specializing the

center Z(Hn) to C. Then, Ha
n ≃ Ext∗(πan!C, π

a
n!C) by [5]. Let Ha

n−1,n be the C-
subalgebra of Ha

n generated by T1, . . . , Tn−2 and X1, . . . , Xn. Then Xn is central
in Ha

n−1,n and its eigenvalue qi defines a central idempotent pi of Ha
n−1,n. Let

Vj be the eigenspace of s for the eigenvalue qj , for j ∈ Z/eZ. N a
n is nothing but

the space of nilpotent representations of the cyclic quiver of length e having the
dimension vector (dimVj)j∈Z/eZ. We denote dimVi = m+ 1 and consider

πan−1,n : piÑ a
n → N a

n × Pm
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defined by (X,F ) 7→ (X,Fn−1 ∩ Vi). Note that Fn−1 ∩ Vi is a hyperplane in Vi.
We set A = Hb

n−1, B = piH
a
n−1,npi, C = Ha

n and

A′ = Ext∗(πbn−1!
C, πbn−1!

C),

B′ = Ext∗(πan−1,n!
C, πan−1,n!

C),

C′ = Ext∗(πan!C, π
a
n!C),

where b = (s′, q) is obtained from a = (s, q) by ignoring one eigenvalue qi of s. The
modular branching is to consider ẽiLψ = Top(piLψ), for a simple C-module Lψ.
Then piLψ is a B-module and its action on Top(piLψ) factors through A. We may
identify A/Rad A←− B −→ C with A′/Rad A′ ← B′ → C′. In the latter setting,
we may show that Lẽiψ appears in Top(piLψ) by using the following lemma by
Kashiwara.

Lemma 2. Let ϕ be a multisegment of size n− 1. Then

Indi(ICϕ) ≃
(
⊕ǫi(ϕ)j=0 ICf̃iϕ[ǫi(ϕ)− 2j]

)⊕
(⊕j∈ZRϕ,j[j]) ,

where Rϕ,j are certain perverse sheaves and

−ǫi(ϕ) + 2 ≤ j ≤ ǫi(ϕ)− 2.
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Symmetric quasi-hereditary algebras

Vanessa Miemietz

(joint work with Volodymyr Mazorchuk)

Symmetry and quasi-heredity are two important homological properties in the
world of finite-dimensional algebras, which mutually exclude each other. However,
moving from the world of finite-dimensional algebras to infinite-dimensional, but
locally finite-dimensional, ones, there are many examples for algebras that satisfy
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both conditions. Here, locally finite-dimensional can roughly be understood as
having finite-dimensional projectives and injectives, so the infinity of dimension
comes from having a countable number of primitive orthogonal idempotents. The
first examples were rhombal algebras studied in the PhD thesis of Peach [7], and
subsequently cubist algebras defined by Chuang and Turner [1], both of which are
related to weight 2 blocks of symmetric groups. On the other hand, Brundan and
Stroppel [8, 9, 10] study quasi-hereditary covers of Khovanov diagram algebras,
which are Morita equivalent to integral blocks of parabolic categoryO of associated
to the parabolic subalgebra glm × gln in glm+n. Taking a certain limit, these
algebras are also symmetric and quasi-hereditary. Special symmetric and quasi-
hereditary algebras also play and important role in the representation theory of the
algebraic groupGL2(F ) for an algebraically closed field F of positive characteristic
[4, 5]. Assuming that all standard modules in the quasi-hereditary structure have
the same Loewy length, all symmetric quasi-hereditary algebras of Loewy length 4
have been classified by Turner and the author as being in bijection with bipartite
graphs [6].

Recalling a classical result of Dlab and Ringel [2], which states that every
finite-dimensional algebra A can be realised as a centralizer subalgebra of a quasi-
hereditary algebra B (that is, as eBe for some idempotent e ∈ B), we show that
this can be roughly generalised to symmetric quasi-hereditary algebras [3]. Start-
ing with a finite-dimensional algebra A, we construct a locally finite-dimensional
quasi-hereditary algebra C with and idempotent e such that A ∼= eCe. This is
constructed explicitly as a Z-indexed matrix algebra and has a very transparent
quasi-hereditary structure. Assuming the algebra A is symmetric and (as a techni-
cal condition) the trace form induces a non-degenerate pairing between opposing
subquotients in a filtration by two-sided ideals (i.e. highest with lowest, etc.), the
algebra C is also symmetric, hence we have realised A as a centralizer subalgebra
of a symmetric quasi-hereditary algebra. If A is not symmetric, it is easy to see
that such a result cannot hold, but we define a symmetric quasi-hereditary algebra
D with idempotents e and f such that A ∼= eDe/eDfDe, by artificially attaching
a new left socle to A, constructing C for this new algebra, and finally taking the
trivial extension of this with its dual bimodule. This indicates that similarly to
finite-dimensional quasi-hereditary algebras, symmetric quasi-hereditary algebras
are in some sense ’universal’, namely the module category of any finite-dimensional
algebra can be nicely embedded into the module category of a symmetric quasi-
hereditary one.
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Deligne’s category Re p (St)

Jonathan Comes

(joint work with Victor Ostrik)

In [3], Deligne defines a C-linear tensor category Rep(St) for each t ∈ C which has
the following properties: Rep(St) is semisimple if and only if t is not a nonnega-
tive integer. Moreover, when t is a nonnegative integer, Rep(St) “interpolates” the
category Rep(St) of finite dimensional complex representations of the symmetric
group St (in other words there exists a full tensor functor Rep(St) → Rep(St)
which is surjective on objects). One can use partition algebras (a generalization
of the Temperley-Lieb algebras introduced by Martin in [4] and [5]) to construct
Rep(St). More precisely, the category Rep(St) can be realized as the pseudo-
abelian envelope of the partition category (a category whose objects are indexed
by nonnegative integers with endomorphism rings equal to the partition alge-
bras CPn(t)). Consequently, studying Rep(St) can be viewed as simultaneously
studying finitely generated projective modules of the partition algebras CPn(t) for
n = 0, 1, 2, . . ..

Blocks in Rep(St). Let A denote an arbitrary C-linear category. Consider the
weakest equivalence relation on the set of all indecomposable objects in A where
two indecomposable objects are in the same equivalence class whenever there exists
a nonzero morphism between them. We call the equivalence classes in this relation
blocks. We will also use the term block to refer to a full subcategory of A gener-
ated by the indecomposable objects in a single block. We say a block is trivial if it
contains only one indecomposable object and its endomorphism ring is C. In par-
ticular, A is semisimple if and only if all the blocks in A are trivial. Finally, given a
block B with countably many indecomposable objects and finite-dimensional Hom
spaces between those objects, we associate a quiver with relations as follows: Ver-
tices are labelled by the indecomposable objects in B. There are dimC HomA(L,L′)
arrows from L to L′ whose labels form a basis of HomA(L,L′). The relations are
given by compositions of morphisms.

In [1] we explain how the set of indecomposable objects in Rep(St) up to isomor-
phism is in bijective correspondence with the set of Young diagrams of arbitrary
size. Let L(λ) denote an indecomposable object in Rep(St) labelled by Young
diagram λ. The following results on the blocks of Rep(St) are proven in [1]. Their
partition algebra counterparts can be found in [6]
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Result 1. Suppose λ and µ are Young diagrams. L(λ) and L(µ) are in the same
block of Rep(St) if and only if the sequence t − |λ|, λ1 − 1, λ2 − 2, . . . is obtained
from the sequence t − |µ|, µ1 − 1, µ2 − 2, . . . by permuting finitely many of the
terms. In particular, the blocks of Rep(St) are all trivial unless t is a nonnegative
integer, so we recover Deligne’s result on the semisimplicity of Rep(St).

Result 2. Suppose d is a nonnegative integer. There are finitely many nontrivial
blocks in Rep(Sd); these blocks are indexed by Young diagrams of size d. More-
over, all nontrivial blocks are equivalent as categories and the associated quiver is
explicitly computed.

Deligne’s conjecture. One advantage of studying Rep(St) rather than study-
ing partition algebras directly is the ability to ask interesting category theory
questions which do not have obvious counterparts on the level of algebras. For
instance, in [3], Deligne constructs an abelian tensor category Repab(St) which
contains Rep(St) as a tensor subcategory. Deligne conjectures that Repab(St) has
the following universal property: Given an abelian tensor category T and a ten-
sor functor F : Rep(St) → T , either F is an extension of the inclusion functor
Rep(St)→ Repab(St) by an exact tensor functor Repab(St)→ T , or t ∈ Z≥0 and
F factors through the “interpolation functor” Rep(St) → Rep(St). In [2] we use
our result on blocks from [1] to prove Deligne’s conjecture.
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Total positivity for loop groups: intrinsic energy

Thomas Lam

(joint work with Pavlo Pylyavskyy)

The intrinsic energy function plays an important role in the path model for affine
crystals [1]. From the point of view of representation theory, the energy function
is used to calculat the affine weight of a crystal basis element. The energy func-
tion is also related to charge statistic of Lascoux-Schützenberger on semistandard
tableaux (see [3]), which establishes a relation between one dimensional configu-
ration sums arising in solvable lattice models and Kostka-Foulkes polynomials.
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In my talk I discussed an explicit subtraction-free formula for the tensor product
B = B1 ⊗ · · · ⊗Bm of U ′

q(ŝln) Kirillov-Reshetikhin crystals, where each Bi is the
crystal for a symmetric power of the standard representation. Identify Bi with the
semistandard Young tableaux with row shape, filled with the numbers 1, 2, . . . , n.

Let b = b1 ⊗ · · · ⊗ bm ∈ B, and write x
(r+i−1)
i for the number of r’s in bi. The

upper index (r+ i−1) is to be considered as an element of Z/nZ. The main result
of the talk is the following formula for the intrinsic energy function DB of B.

Let δt = (t, t− 1, . . . , 1) denote the staircase shape of side-length t.

Theorem 1. We have

DB(b) = min
T





∑

(i,j)∈(n−1)δm−1

x
(i−j)
T (i,j)



 .

where the minimum is over all semistandard tableaux T of shape (n− 1)δm−1, and
entries in 1, 2, . . . ,m.

In the physical interpretation, each bi represents a particle, and the intrinsic
energy function DB(b) is defined as the sum of

(
m
2

)
local energies of interactions of

particles. Theorem 1 thus has the following interpretation: each tableau T encodes
a way for m particles to interact simultaneously, and intrinsic energy is equal to
the minimum of these.

It is well known that the energy function DB is invariant under the action of
the combinatorial R-matrix on B, which generates an action of the symmetric
group Sm on B. Our point of view is that DB should be viewed as some kind
of symmetric function. Indeed, the formula for DB in Theorem 1 is a piecewise-
linear analogue of a Schur function. Switching from the piecewise-linear world to
the birational world, one is led to study the invariants of the birational R-matrix.
This birational Sm-action was previously studied by Kirillov in the context of
the Robinson-Schensted algorithm, by Noumi-Yamada in the context of discrete
Painléve systems, by Etingof in the context Yang-Baxter equations, by Berenstein-
Kazhdan in the context of geometric crystals, and by the authors in the context
of total positivity of loop groups.

Instead of considering symmetric functions as the invariants of a symmetric
group action on a polynomial ring C[a1, a2, . . . , am], one can alternatively obtain
them as the coefficients of a polynomial p(t) =

∏m
i=1(t − ai) whose roots are

a1, a2, . . . , am. Galois Theory then connects the two points of view. Our general-
ization of symmetric functions, introduced in [2], is obtained by replacing the poly-
nomial p(t), by a polynomial map f : C∗ → GLn(C). One then attemps to factorize
the map f into “linear” factors, using the product structure of the image GLn(C).
In [2], with the additional notion of total positivity, we were able to achieve such
factorizations into factors we called whirls, denoted M(a(1), a(2), . . . , a(n)). These
whrils do not commute in general, and the same Galois theory point of view leads
to a non-trivial birational action of the symmetric group on a polynomial ring.
We call this ring the ring of loop symmetric functions LSym.
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Like usual symmetric functions, the ring LSym has distinguished elements which
we call loop Schur functions. It turns out that the intrinsic energy DB can be lifted
to a polynomial invariant, and thus is an element of LSym. Indeed DB lifts to
exactly one such loop Schur function. The ring LSym appears to be of fundamental
importance. For example, somewhat surprisingly it is a free polynomial ring. In
addition, the crystal structure of B (which commutes with the R-matrix) can be
completely described in terms of LSym. This and other connections we intend to
study in future work.

References

[1] S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashima, and A. Nakayashi:

Affine crystals and vertex models, in Infinite analysis Part A (Kyoto 1991), 449–484, Adv.

Ser. Math. Phys., 16, World Sci. Publishing, River Edge, NJ, 1992.
[2] T. Lam and P.Pylyavskyy: Total positivity in loop groups I: whirls and curls, preprint,

2009; arXiv:0812.0840.
[3] A. Nakayashiki and Y. Yamada: Kostka polynomials and energy functions in solvable

lattice models. Selecta Mathematica 3 (1997), 547–600.

Hook length formulas for integer partitions

Guo-Niu Han

The hook lengths for integer partitions are widely studied in the Theory of Par-
titions, in Algebraic Combinatorics and Group Representation Theory. Let n be
an integer, a partition λ of n is a sequence of positive integers λ = (λ1, λ2, · · · , λℓ)
such that λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0 and |λ| = λ1 +λ2 + · · ·+λℓ = n. Each partition
can be represented by its Ferrers diagram. For each box v in the Ferrers diagram
of a partition λ, define the hook length of v, denoted by hv(λ) or hv, to be the
number of boxes u such that u = v, or u lies in the same column as v and above
v, or in the same row as v and to the right of v.

The classical hook length formula, due to Frame, Robinson and Thrall

(1) fλ =
n!∏
v∈λ hv

,

where fλ is the number of standard Young tableaux of shape λ, can be rewritten
as the following equivalent forms:

(2)
∑

λ

x|λ|
∏

v∈λ

1

h2v
= ex

and

(3)
∑

λ

x|λ|
∏

v∈λ

1

hv
= ex+x

2/2.

Formulas (2) and (3) are referred to as the basic hook length formulas. The purpose
of this talk is to present the hook length expansion technique for discovering new
hook length formulas.
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Definition. Let ρ : N∗ → K be a map of the set of positive integers to some
field K. Also let f(x) ∈ K[[x]] be a formal power series in x with coefficients in
K such that f(0) = 1. If

(4)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x),

the series f(x) is called the generating function for partitions by the weight func-
tion ρ. The left-hand side of (4) is called the hook length expansion of f(x).
Furthermore, when both ρ and f(x) have simple forms, equation (4) is called a
hook length formula.

It is easy to see that the generating function f(x) is uniquely determined by the
weight function ρ. Conversely, the weight function ρ can be uniquely determined by
f(x) in most cases. In the other cases (called singular cases), the weight function
ρ does not exist, or is not unique. We next provide an algorithm for computing ρ
when f(x) is given.

Let PL(n) be the set of partitions λ = (λ1, λ2, . . . , λℓ) of n such that ℓ(λ) = 1
or λ2 = 1. The partitions in PL(n) are usually called hooks. The hook length
multi-set H(λ) of a hook λ of n is simply

H(λ) = {1, 2, · · · ℓ(λ)− 1, 1, 2, · · · , n− ℓ(λ), n}.
Let PZ(n) be the set of partitions λ = (λ1, λ2, . . . , λℓ) of n such that ℓ ≥ 2 and
λ2 ≥ 2. It is easy to see that the hook length multi-set of each partition of PZ(n)
does not contain the integer n. Since P (n) = PL(n) ∪ PZ(n) we have

(5)
∑

λ⊢n

∏

h∈H(λ)

ρ(h) = ρ(n)
∑

λ∈PL(n)

ℓ(λ)−1∏

h=1

ρ(h)

n−ℓ(λ)∏

h=1

ρ(h) +
∑

λ∈PZ (n)

∏

h∈H(λ)

ρ(h).

The value ρ(n) of the weight function can be obtained by (5). Based on this
observation we derive an explicit algorithm for computing the weight function ρ
when f(x) is given.

By using the hook length expansion algorithm we obtained several new hook
length formulas. For example,

(6)
∑

λ∈P

x|λ|
∏

v∈λ

ρ(z;hv) = ex+zx
2/2,

where the weight function ρ(z;n) is defined by

ρ(z;n) =

∑⌊n/2⌋
k=0

(
n
2k

)
zk

n
∑⌊(n−1)/2⌋
k=0

(
n

2k+1

)
zk

and

(7)
∑

λ∈P

x|λ|
∏

h∈Ht(λ)

(
y − tyz

h2
)

=
∏

k≥1

(1 − xtk)t

(1 − (yxt)k)t−z(1− xk)
,

where Ht is the multi-set of hook lengths that is multiple of t.
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Note that identity (6) can be seen as an interpolation between (2) and (3),
and that identity (7) unifies several formulas, including the Jacobi triple product

identity, the Macdonald identities for A
(a)
ℓ , the generating functions for partitions

and for t-cores, the Nekrasov-Okounkov identity.
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Combinatorics of Kazhdan-Lusztig elements: Factorisation and fully
packed loop models

Jan de Gier

(joint work with Alain Lascoux, Mark Sorrell)

The Hecke algebra H of the symmetric group W = Sn generated by the simple
reflections si, is the algebra over C defined in terms of generators Ti ≡ Tsi , i =
1, . . . , n− 1, and relations

(Ti − t)(Ti + t−1) = 0, TiTj = TjTi ∀ i, j : |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1.

The “Baxterised element” Ti(u) ∈ H is defined by

Ti(u) = Ti +
t−u

[u]
, [u] =

tu − t−u
t− t−1

.

A polynomial representation is realised in terms of the divided difference oper-
ator ∂i. The projector Ti(1) induces the operator ∇i,

∇i = (tzi − t−1zi+1)∂i :=
tzi − t−1zi+1

zi − zi+1
(1− si).

We will restrict ourselves to irreducible polynomial representations of maximal
parabolic subalgebras.

1.1. Parabolic Kazhdan-Lusztig and Young bases from the t-Vandermonde
determinant. Let w = si1 · · · sil be a reduced expression of a word w ∈ W , then
define Tw = Ti1 · · ·Til . The Kazhdan-Lusztig (KL) basis Cw, w ∈ W , of H is
defined by

Cw = Cw,

Cw − Tw ∈
⊕

v∈W

t−1Z[t−1] Tv,

where the bar operator sends Ti 7→ T−1
i and t 7→ t−1. Maximal parabolic basis

elements can be labeled by partitions. The parabolic KL basis [3] can be obtained
in the polynomial representation in the following way [6]. Let ρ = (n− 1, . . . , 1, 0)
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be a code, the nonsymmetric Macdonald polynomial M∅ := Mρρ degenerates at
q = t6 to the product of two t-Vandermonde determinants,

Mρρ(x1, . . . , x2n; q = t6, t) = ∆t(x1, . . . , xn)∆t(xn+1, . . . , x2n),

∆t(x1, . . . , xN ) =
∏

1≤i<j≤N

(txi − t−1xj),

which is a homogeneous polynomial. The action of the Hecke algebra on this poly-
nomial generates an irreducible module of homogeneous polynomials. It was shown
in [6, 2] that the KL basis in this maximal parabolic module can be generated by
applying operators of the form Ti(u) to Mρρ, with appropriate arguments u. For
example, for n = 4 we find C[3,1] = T2(1)T5(1)T4(2)T3(3) · C∅, and we represent
this as a labeled partition, the index i of each operator Ti(j) corresponding to the
ith NW-SE diagonal of the Young diagram:

3 2 1
1

The general rule for integer labels uij in each box is given recursively by uij =
max{ui+1,j , ui,j+1}+ 1, and with initial condition that corner box is labeled 1.

1

uij
1

1

uij = max{ui+1,j, ui,j+1}+ 1.

The degenerate nonsymmetric Macdonald polynomials (Mv) indexed by Ya-
manouchi words also form a basis for this module. These homogeneous successor
polynomials of Mρρ retain their vanishing properties, and may also be indexed by
labeled Young diagrams. For the element Mλ with λ ⊆ µ = [n − 1, . . . , 1, 0], the
integer corresponding to box bij ∈ λ is given uij = n − i − j + 2. The following
was conjectured in [2].

Theorem 1. The expansion of the maximal M basis element Mµ in terms of KL
polynomials is given by

Mµ =
∑

λ⊆µ

τ−cλ Cλ, τ = −[2].

Here cλ is defined as the signed sum of boxes between the maximal staircase and
the shape λ, where boxes along each SW-NE diagonal carry the same sign but the
sign across diagonals alternates.

1.2. Specialisations and fully packed loops. The specialisations xi = 1 of
the degenerate Macdonald and KL polynomials, normalised by dividing by the
t-Vandermonde determinants, correspond at τ = 1 (t = eiπ/3) to the enumeration
of fully packed loop (FPL) diagrams (or alternating sign matrices with which they
are in simple bijection). These are diagrams of polygons on a square grid such
that every site is visited by exactly one polygon. The figure below shows on the
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left the grid with prescribed boundary conditions, and also gives three example
FPL configurations.

1

2

3 4

5

8 7

6 :

FPL diagrams can be grouped together according to their link pattern, i.e. the
way they connect the boundary edges to each other. There furthermore is an
easy bijection from link patterns to Dyck paths, and from Dyck paths to Young
diagrams, see below. Hence, FPL diagrams can be labeled by partitions. For
example, the three FPL diagrams above all have loops connecting one to two, three
to eight, four to five and six to seven. The corresponding partition is [2,1,1,1]:

87654321
↔

87654321

These are in fact the only three FPL diagrams corresponding to the partition
[2,1,1,1]. The ratio C[2,1,1,1]/C∅

∣∣
xi=1

= τ2 + 2τ4 which equals 3 at τ = −[2] = 1,

i.e. t = e2iπ/3. This is not a coincidence as we have the following theorem, which
proof is scattered in the literature [6, 5, 4, 2, 1].

Theorem 2. The evaluation Cλ(1, . . . , 1)/C∅(1, . . . , 1)
∣∣∣
τ=1

is equal to the number

of FPL diagrams labeled by a partition of shape λ.

Theorem 1 implies that the total number of FPL diagrams (which equals the
known number of alternating sign matrices) is given by an evaluation of the
nonsymmetric Macdonald polynomial Mµ

∣∣
xi=1,τ=1

= 1, 7, 42, 429, . . . for n =

1, 2, 3, 4, . . . . This evaluation also correspond to the number of totally symmetric
self complementary plane partitions with a weight τ [4]. It is further possible to
define deformed polynomials by choosing the label uij of box bij of a partition λ
as

uij = ui + λi − j + 1.

Theorem 3. The maximal deformed Macdonald polynomial Mµ(u, x; t) is equal
to the sum

Mµ(u, x; t) =
∑

λ⊆µ

cµλ Cλ(x; t),

where the coefficients cµλ are monomials in yi = −[ui]/[ui + 1], of degree at most
1 in each variable, and each KL element appears in the sum.

1.3. Open problems. Many questions remain unanswered. Some open problems
are: Is it possible to find a combinatorial interpretation for evaluations of KL ele-
ments for other, non-maximal, parabolic modules? Is there a Cauchy summation
formula for the KL elements corresponding to a maximally parabolic module?
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Graded cellularity and the quiver Hecke algebras of type A

Andrew Mathas

(joint work with Jun Hu)

In a groundbreaking series of papers Brundan and Kleshchev (and Wang) [2, 4,
3] have shown that the cyclotomic Hecke algebras of type G(ℓ, 1, n), and their
rational degenerations, are graded algebras. Moreover, they have extended Ariki’s
categorification theorem [1] to show over a field of characteristic zero the graded
decomposition numbers of these algebras can be computed using the canonical
bases of the higher level Fock spaces.

The starting point for Brundan and Kleshchev’s work was the introduction
of certain graded algebras RΛ

n which arose from Khovanov and Lauda’s [6, §3.4]
categorification of the negative part of quantum group of an arbitrary Kac-Moody
Lie algebra and, independently, in work of Rouquier [9]. In type A Brundan and
Kleshchev [2] proved that the (degenerate and non-degenerate) cyclotomic Hecke
algebras are Z-graded by constructing explicit isomorphisms to RΛ

n .
The cyclotomic Khovanov-Lauda–Rouquier algebra R

Λ
n is generated by

certain elements {ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ { e(i) | i ∈ (Z/eZ)n } which are
subject to a long list of relations. Each of these relations is homogeneous, so it
follows directly from the presentation that RΛ

n is Z-graded. Unfortunately, it is
not at all clear from the relations how to construct a homogeneous basis of RΛ

n ,
even using the isomorphism from RΛ

n to the cyclotomic Hecke algebras.
The main result of this paper gives an explicit homogeneous basis of RΛ

n . In
fact, this basis is cellular so our Main Theorem also proves a conjecture of Brundan,
Kleshchev and Wang [4, Remark 4.12].

To describe this basis let PΛ
n be the set of multipartitions of n, which is a poset

under the dominance order. For each λ ∈PΛ
n let Std(λ) be the set of standard λ-

tableaux (these terms are defined in §3.3). For each λ ∈PΛ
n there is an idempotent

eλ and a homogeneous element yλ ∈ K[y1, . . . , yn]. Brundan, Kleshchev and
Wang [4] have defined a combinatorial degree function deg :

∐
λ

Std(λ)−→Z and
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for each t ∈ Std(λ) there is a well-defined element ψd(t) ∈ 〈ψ1, . . . , ψn−1〉 and we
set ψst = ψd(s)−1eλyλψd(t). Our Main Theorem is the following.

Theorem 1 (Hu and Mathas [5]). Suppose that O is a commutative integral do-
main such that e is invertible in O, e = 0, or e is a non-zero prime number, and let
RΛ
n be the cyclotomic Khovanov-Lauda–Rouquier algebra RΛ

n over O. Then RΛ
n

is a graded cellular algebra with respect to the dominance order and with homo-
geneous cellular basis {ψst | λ ∈PΛ

n and s, t ∈ Std(λ) }. Moreover, deg (ψst) =
deg s + deg t.

We prove our Main Theorem by considering the two really interesting cases
where RΛ

n is isomorphic to either a degenerate or a non-degenerate cyclotomic
Hecke algebra over a field. In these two cases we show that {ψst} is a homogeneous
cellular basis of RΛ

n . We then use these results to deduce our main theorem
The main difficulty in proving this theorem is that the graded presentation

of the cyclotomic Khovanov-Lauda–Rouquier algebras hides many of the relations
between the homogeneous generators. We overcome this by first observing that the
KLR idempotents e(i), for i ∈ In, are precisely the primitive idempotents in the
subalgebra of the cyclotomic Hecke algebra which is generate by the Jucys-Murphy
elements. Using results from [8] this allows us to lift e(i) to an element e(i)O

which lives in an integral form of the Hecke algebra defined over a suitable discrete
valuation ringO. The elements e(i)O can be written as natural linear combinations
of the seminormal basis elements [7]. In turn this allows us to construct a family
of non-zero elements eλyλ, for λ a multipartition, which form the skeleton of our
cellular basis and hence prove our main theorem.

In fact, we give two graded cellular bases of the cyclotomic Khovanov-Lauda-
Rouquier algebras RΛ

n . Intuitively, one of these bases is built from the trivial
representation of the Hecke algebra and the other is built from its sign represen-
tation. We then show that these two bases are dual to each other, modulo more
dominant terms. As a consequence, we deduce that the blocks of RΛ

n are graded
symmetric algebras, as conjectured by Brundan and Kleshchev[3, Remark 4.7].
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Quasisymmetric Schur functions

Stephanie van Willigenburg

(joint work with C. Bessenrodt, J. Haglund, K. Luoto, S. Mason)

Quasisymmetric functions were introduced as a source of generating functions for
P -partitions [2] but since then they have impacted, and deepened the understand-
ing of, other areas of mathematics in addition to combinatorics. For example, in
category theory they are the terminal object in the category of graded Hopf alge-
bras equipped with a zeta function [1] and in representation theory they arise as
characters of a degenerate quantum group [5]. In order to define quasisymmetric
functions, we first need to recall some combinatorial constructs.

A composition α = (α1, α2, . . . , αk) of n, denoted α � n, is a list of positive
integers whose sum is n. Given compositions α, β we say that α is a coarsening
of β (or β is a refinement of α), denoted α � β, if we can obtain α by adding
together adjacent parts of β, for example, (3, 2, 4, 2) � (3, 1, 1, 1, 2, 1, 2).

A quasisymmetric function is then a bounded degree formal power series in
Q[[x1, x2, . . .]] such that for all k and i1 < i2 < · · · < ik the coefficient of
xα1

i1
xα2

i2
· · ·xαk

ik
is equal to the coefficient of xα1

1 xα2
2 · · ·xαk

k for all compositions
(α1, α2, . . . , αk). The set of all quasisymmetric functions forms a graded Hopf
algebra Q =

⊕
n≥0Qn.

Two natural bases for quasisymmetric functions are the monomial basis {Mα}
and the fundamental basis {Fα} indexed by compositions α = (α1, α2, . . . , αk).
The monomial basis consists of M0 = 1 and all formal power series

Mα =
∑

i1<i2<···<ik

xα1

i1
xα2

i2
· · ·xαk

ik
.

The fundamental basis consists of F0 = 1 and all formal power series

Fα =
∑

α�β

Mβ.

Furthermore, Qn = spanQ{Mα|α � n} = spanQ{Fα|α � n}.
Other bases for Q exist, in particular the basis of quasisymmetric Schur func-

tions introduced in [3], which is defined in terms of composition tableaux.

Definition 1. [3]

Given a composition α = (α1, α2, . . . , αk) let the composition diagram of α, also
denoted by α, be the array of left-justified cells with αi cells in row i from the top.
Furthermore, given a composition diagram α, a composition tableau T of shape α
is a filling of the cells with positive integers such that

(1) the entries in the first column strictly increase when read from top to
bottom,



838 Oberwolfach Report 15/2010

(2) the entries in each row weakly decrease when read from left to right, and
(3) for i < j

T (j, k + 1) ≤ T (i, k)⇒ T (i, k + 1) exists and T (j, k + 1) < T (i, k + 1).

Example 2. 5 4 3 1

6

8 7 2

is a composition tableau of shape (4, 1, 3).

Definition 3. [3]

Given a composition tableau, T , let

xT =
∏

i≥1

x
T (i)
i

where T (i) is the number of times i appears in T .
If α is a composition then the quasisymmetric Schur function Sα is

Sα =
∑

T

xT

where the sum is over all composition tableaux of shape α.

Example 4. Restricting to three variables we calculate

S12 = x1x
2
2 + x1x

2
3 + x2x

2
3 + x1x2x3

from

1

2 2

1

3 3

2

3 3

1

3 2
.

Refined properties of Schur functions. The set of quasisymmetric Schur func-
tions not only forms a Z-basis for Q [3], but also refines a number of properties of
Schur functions including the following. In [3]

• the expression for Schur functions in terms of monomial symmetric func-
tions refines to an expression for quasisymmetric Schur functions in terms
of monomial quasisymmetric functions, giving rise to quasisymmetric Kostka
coefficients;
• the expression for Schur functions in terms of fundamental quasisymmetric

functions naturally refines to quasisymmetric Schur functions;
• the Pieri rule for multiplying a Schur function indexed by a row or a

column with a generic Schur function refines to a rule for multiplying
a quasisymmetric Schur function indexed by a row or a column with a
generic quasisymmetric Schur function.

In [4]

• the Littlewood-Richardson rule for the product of two generic Schur poly-
nomials expanded in terms of Schur polynomials refines to a rule for the
product of a generic Schur polynomial with a generic quasisymmetric Schur
polynomial expanded in terms of quasisymmetric Schur polynomials.
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In joint work of the author with Bessenrodt and Luoto, yet to appear,

• expressions for skew Schur functions in terms of monomial symmetric func-
tions and fundamental quasisymmetric functions refine to expressions for
quasisymmetric skew Schur functions in terms of monomial and funda-
mental quasisymmetric functions;
• the Littlewood-Richardson rule for expressing skew Schur functions in

terms of Schur functions refines to a rule for expressing quasisymmetic
skew Schur functions in terms of quasisymmetric Schur functions.

Open problems. A clear open area of research is to determine which other prop-
erties of Schur functions refine to quasisymmetric Schur functions. Examples in-
clude

• discovering a Jacobi-Trudi or Giambelli formula;
• establishing a representation theoretic interpretation;
• finding a combinatorial rule for expressing the product of two quasisym-

metric Schur functions as a linear combination of quasisymmetric Schur
functions.
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A relative hook formula for character degrees of symmetric groups

Gunter Malle

(joint work with Gabriel Navarro)

We present a factorization of the well-known hook formula for character degrees
of symmetric groups Sn. For λ ⊢ n a partition let χλ denote the corresponding
irreducible character of Sn. Let p be a prime. Then the degree χλ(1) factors into
the degree of χµ, where µ is the p-core of λ, and a second factor consisting of
inverses of hook lengths of a symbol (abacus diagram) attached to the p-quotient
of λ.

This apparently new factorization is obtained by specialization at q = 1 of a
formula for character degrees of unipotent characters of general linear groups which
was obtained in [1] and can be interpreted as an instance of Howlett-Lehrer theory
for d-Harish-Chandra series. Its proof is purely combinatorial, but it would also
follow directly from a conjecture of Broué and the author on the decomposition
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of Lusztig induction. This approach also yields, by specialization of q to a pth
root of unity, a congruence mod p of χλ(1)/χµ(1) to the degree of the associated
relative Weyl group Cp ≀Sw where w is the weight of the p-block indexed by µ.

The relative hook formula was instrumental in showing the following result for
blocks of alternating groups An (see [2, Cor. 9.3]):

Theorem 1. Let p a prime and B a p-block of G = An with n ≥ 5. Then either
p = 3 and B is of weight at most 1, or B contains two height zero characters of
different degrees.

More generally we show ([2, Thm. 6.1]):

Theorem 2. Let G be a quasi-simple finite group, B a p-block which is neither a
spin block of the double cover of the symmetric group, nor a quasi-isolated block
of an exceptional group of Lie type for p a bad prime. Then B is nilpotent if and
only if all height zero degrees in B are equal.

This investigation was motivated by the following:

Question 3. Let G be a finite group, B a p-block of G. Is it true that:

B is nilpotent ⇐⇒ all height zero degrees in B are equal.
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Fusion algebra versus quantum cohomology: a combinatorial
description

Catharina Stroppel

(joint work with Christian Korff)

1. Fusion ring versus quantum cohomology

Let n ≥ 3 and k be fixed non-negative integral numbers and set N = k+n. The
main goal of the talk is a combinatorial description of the relationship between the
(small) quantum cohomology ring of the Grassmannian Gr(n,N) of k-planes in

CN and the fusion algebra of the affine Kac-Moody Lie algebra ŝln at level k. To
motivate our discussion we recall the following theorem due to Witten [12], based
on earlier work of Gepner [1], Vafa [11] and Intrilligator [4] which states that there
is an isomorphism of rings

F(ĝl(n))k ∼= qH•(Grn,N)q=1

between the level k fusion ring of ĝl(n) and the specialised quantum cohomology.
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Let Λ(k) = Z[e1, . . . , ek] be the ring of symmetric polynomials in k variables

and P+
k the natural basis of dominant integral weights of level k for ŝln. As a

consequence of our main theorem we obtain an explicit description of the fusion
ring in terms of commutative symmetric functions:

Theorem 1. The assignment P+
k ∋ λ̂ 7→ sλt defines an isomorphism of rings

F(ŝl(n))k ∼= Z[e1, . . . , ek]/〈hn − 1, hn+1, . . . , hn+k−1, hn+k + (−1)kek〉.

This is naturally a quotient of qH•(Grk,n+k) in its Siebert-Tian presentation [10]
by imposing the additional relations q = ek and hn = 1.

2. The combinatorial models

To understand the combinatorial models note first that the elements of P+
k are

weights λ̂ =
∑n−1

i=0 miωi expressed in the basis of the fundamental weights with
coefficients mi ∈ Z≥0 whose sum is k. This set of weights can be identified with

• partitions whose Young diagram fits into a box of height n− 1 and width
k (such that mi becomes the number of columns of height i).
• “bosonic” configurations of particles on a circle with n sites (such that

there are mi particles at the places i, see Figure 1).

On the other hand, the (integral) quantum cohomology qH•(Grn,N ) is a free Z[q]-
module over the ordinary (integral) cohomologyH•(Grn,N ). Hence a basis is given
by the Schubert classes or Borel orbits which can be labeled by

• partitions whose Young diagram fits into a box of height n and width k.
• words of length n+k in the letters 0 and 1 with precisely k ones (which can

be read off the diagram when walking along the boundary, where moving
to the right translates into a 1 and moving up gives a 0).
• “fermionic” configurations of particles on a circle with n+k sites, at most

one particle at each place (indicated by the corresponding {0, 1}-word).

In either of the two particle pictures, there is for a fixed place i the particle
creation operator ψ∗

i and annihilation ψi. Let H := ⊕Ni=0Hi denote the Z[q]-
module underlying ⊕Ni=0qH

•(Gri,N ) with basis given by say the {0, 1}-words as
above. Then ψ∗

i is the linear endomorphism which sends a word with letter 0 at
the i-th place to the word where this letter is changed to a 1, and annihilates all
other words. Similarly for ψi with the role of 1 and zero swapped. These operators
pass between different quantum cohomology rings, and satisfy the Clifford algebra
relations

(1) ψiψj + ψjψi = ψ∗
i ψ

∗
j + ψ∗

jψ
∗
i = 0, ψiψ

∗
j + ψ∗

jψi = δij .

For the bosonic picture, the operators are graphically displayed in Figure 1 and
satisfy so-called phase algebra relations. Consider the basis element ∅ correspond-
ing to the configuration with no particles and define a C[q]-bilinear multiplication
⋆ on H by
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Figure 1. The dominant integral weight (0, 3, 2, 1, 0, 1, 2) of level
k = 9 as particle configuration on a circle; the processes of creating
and annihilating, and hopping applied to it.

λ ⋆ µ :=
∑

T

ψ̂∗
ℓn(µ)+tn

ψ∗
ℓn−1(µ)+tn−1

ψ∗
ℓn−2(µ)+tn−2

ψ∗
ℓn−3(µ)+tn−3

· · · ∅,(2)

where ψ∗
i+N = (−1)n−1qψ∗

i for 1 ≤ i ≤ N and li(µ) denotes the position of the
i-th 1 from the left in the word µ. The sum runs over all semi-standard tableaux
T = T (λ) of shape λ with fillings from [1, n], where i occurs precisely ti times.

Theorem 2 (Fermion presentation of quantum cohomology).
(H, ⋆) is a commutative, associative, unital algebra. The multiplication agrees with

the multiplication on qH∗(Grn,N ), so the structure constants Cν,dλµ in the product
expansion

λ ⋆ µ =
∑

d

∑

ν

qdCν,dλµ ν

are the Gromov-Witten invariants with Cν,dλµ = 0 unless |λ|+ |µ| − |ν| = Nd.

Remark 3 (Quantum Racah-Speiser and honeycombs). When setting q = 0 only
the structure constants with d = 0 survive and the formula specialises to an
expression for the Littlewood-Richardson coefficients in terms of Kostka numbers.
Recall that the Kostka number Kλ,µ gives the multiplicity of the weight µ in the
sl(n)-representation V (λ) of highest weight λ, while the Littlewood-Richardson
coefficients coincide with the multiplicity of the highest weight representation V (ν)
in the tensor product decomposition of V (λ) ⊗ V (µ). Thus, this result can be
interpreted as a combinatorial derivation of the Racah-Speiser algorithm. When
specializing q = 0, there is a direct connection to Knutson-Tao-Woodward puzzles
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and honeycombs [5], see [3]. Hence the above theorem might be viewed as a
q-version of the latter.

Define now the following endomorphisms of H (“particle hopping”),

(3) ui = ψ∗
i+1ψi , i = 1, . . . , N − 1 and uN = (−1)n−1qψ∗

1ψN ,

then the ui’s generate a (noncommutative) subalgebra in End(H) isomorphic to
the affine nil-Temperley-Lieb algebra, characterized by the following relations

(4) u2i = uiui+1ui = ui+1uiui+1 = 0, uiuj = ujui if |i− j| > 1 modN ,

where all indices are understood modulo N .
Following [7] and [2, Definition 9.4] one can define non-commutative elemen-

tary functions as endomorphisms of H , that is elementary functions {er} in the
non-commuting variables ui. Although the variables do not commute, the endo-
morphisms er do. This is proved in [2] by constructing an interesting simultaneous
eigenbasis using Bethe Ansatz techniques. So it makes sense to define noncommu-
tative Schur polynomials via the determinant formula

(5) sλ = det(eλt
i−i+j

)1≤i,j≤N

And they satisfy all the familiar relations from the ring of commutative symmetric
functions. In particular, one has the special cases s(1r) = er.

Exactly the same construction works on the “bosonic” side. Instead of the affine
nil-Temperley-Lieb algebra we obtain what we call the affine local plactic algebra
in generators ai, 0 ≤ i ≤ n−1. This algebra is an affine version of a plactic algebra
or generic Hall algebra ([6], [8]). In this case, a combinatorial proof that the Schur
polynomials are well-defined is new and will appear in [9]. In [2] this result is again
obtained by Bethe Ansatz techniques. Our two rings we are interested in can now
be described in terms of non-commutative Schur polynomials as follows:

Theorem 4 (Combinatorial quantum cohomology ring). Fix n ∈ Z≥0 and con-
sider the n-particle subspace Hn ⊂ H corresponding to the summand qH(Gr(n,N)).
The assignment

(6) (λ, µ) 7→ λ ⋆ µ := sλµ

for basis elements λ, µ ∈ P≤n,k defines an associative commutative unital ring
structure equal to the quantum cohomology ring. The analogous statement holds
for the fusion ring.

The main idea in the proof is the following: As mentioned above, using Bethe
Ansatz techniques one can construct a simultaneous eigenbasis for the action of the
non-commutative symmetric functions. Expressing the above product in terms of
this basis recovers the so-called Bertram-Vafa intrilligator formulas on the quan-
tum cohomology side and the Verlinde formula on the fusion algebra side. In
this way one can prove that the combinatorially defined multiplication is indeed
the multiplication we were looking for. The fermionic formulas in Theorem 1 are
then deduced complete combinatorially. The presentation of the fusion ring from
Theorem 2 appears naturally, with the ideal generated by Bethe Ansatz equations.
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Using the same techniques we also obtain the Siebert-Tian [10] presentation of the
quantum cohomology.

The details of the results outlined in this talk can be found in [2] and [3].
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[2] C. Korff and C. Stroppel. The ŝl(n)k-WZNW fusion ring: a combinatorial construction and
a realisation as quotient of quantum cohomology, Adv. Math doi:10.1016/j.aim.2010.02.021,
2010.

[3] C. Korff and C. Stroppel. Quantum cohomology and Verlinde algebra: Boson-Fermion cor-
respondence and the Racah-Speiser algorithm, in preparation.

[4] K. Intriligator. Fusion residues. Modern Phys. Lett. A, 6 (38):3543–3556, 1991.
[5] A. Knutson; T. Tao; C. Woodward. The honeycomb model of tensor products II: Puzzles

determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48.
[6] A. Lascoux and M.-P. Schützenberger. Le monöıde plaxique. In Noncommutative structures
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Irreducible representations of Yangians via Howe duality

Maxim Nazarov

(joint work with Sergey Khoroshkin)

The Yangian Y(gln) of the general linear Lie algebra gln arose from the theory of
quantum integrable systems as one the first examples of affine quantum groups.
Much later, the study of quantum integrable systems with boundary conditions
produced the twisted Yangians Y(son) and Y(spn). The latter two are (one-sided)
coideal subalgebras in the Hopf algebra Y(gln), corresponding to the orthogonal
and symplectic subalgebras in the Lie algebra gln. In this talk I outlined a uni-
form construction of irreducible finite-dimensional representations of the Yangians
Y(gln), Y(son) and Y(spn) based on the theory of reductive dual pairs due to
Howe. I used the pairs of reductive Lie groups

(G ,G′) = (GLm,GLn), (O2m ,On), (Sp2m ,Spn)

acting on the Clifford algebra of the vector space Cm ⊗ Cn. The Yangian Y(g′)
corresponds to the Lie algebra g′ of the second group in any of these dual pairs.
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Let g be the Lie algebra of the first group in of these dual pairs. Choose a
triangular decomposition of g with a Cartan subalgebra h. In our construction,
the irreducible representations of Y(g′) correspond to the orbits in h∗ × h∗ by the
(diagonal) shifted action of the Weyl group of g. The irreducible representations
appear as quotients of tensor products of m representations of Y(g′) in the exterior
powers of Cn. The quotient is taken by the kernel of a canonical Y(g′)-intertwining
operator (called the R-matrix in the theory of quantum integrable systems) acting
from the m-fold tensor product, and corresponding to the longest element of the
Weyl group of g. This talk is based on my joint works with Khoroshkin [5, 6, 7, 8, 9]
and extends the results obtained for Y(gln) in [1, 2, 3, 4].
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Finite dimensional irreducible modules for finite W -algebras
associated to even multiplicity nilpotent orbits in classical Lie algebras

Simon Goodwin

(joint work with Jonathan Brown)

Let g be a reductive Lie algebra over C and let e ∈ g be nilpotent. The finite W -
algebra U(g, e) associated to the pair (g, e) is a finitely generated algebra obtained
from U(g) by a certain quantum Hamiltonian reduction. Finite W -algebras were
introduced to the mathematical literature by Premet in [10] and have already
found many striking applications. In particular, there is a close connection between
finite dimensional irreducible U(g, e)-modules and primitive ideals of U(g), see [8,
Thm. 1.2.2]. Consequently, there has been a great deal of research interest in the
representation theory of finite W -algebras, see for example [3, 4, 6, 7, 11].
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Despite the high level of recent interest, the representation theory of finite W -
algebras is only well-understood in certain special cases. For g = gln(C) a thor-
ough study of the representation theory of U(g, e) was undertaken by Brundan
and Kleshchev in [4]; in particular, they obtained a classification of finite dimen-
sional irreducible modules. Recent work of Brown gives a classification of finite
dimensional irreducible U(g, e)-modules for rectangular nilpotent orbits when g is
of classical type, see [1].

We have considered finiteW -algebras U(g, e), where g = sp2n(C) or so2n(C) and
e ∈ g is an even multiplicity nilpotent element; this means all parts of the Jordan
decomposition of e have even multiplicity. In this situation, we have classified all
finite dimensional irreducible U(g, e)-modules.

In [3], Brundan, Kleshchev and the author developed a highest weight theory
for finite W -algebras. This leads to a strategy for classifying finite dimensional
irreducible U(g, e)-modules in the usual way. Using this highest weight theory,
our classification is nicely encoded in terms of the pyramid associated to e – the
classification is of the form “row equivalent to column strict” up to the action of
the component group of the centralizer of e in the adjoint group of g, see [2] for a
precise statement.

The key ingredients for our proof are:

• combinatorics of fillings of the pyramid associated to e;
• a conjecture in [3] relating the category O(e) for U(g, e) to a category of

generalized Whittaker modules that was proved by Losev in [9];
• the algorithm of Barbasch and Vogan from [5] for determining the associ-

ated variety of a primitive ideal of U(g);
• “Levi subalgebras” of U(g, e);
• the type A case from [4];
• the case of rectangular nilpotent orbits from [1]; and
• combinatorics for the two sided cell of the Weyl group of G corresponding

to e.
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Multiplicity Spaces in Symplectic Branching

Oded Yacobi

1. Motivation

The restriction of an irreducible representation of GLn to GLn−1 uniquely de-
composes into a direct sum of irreducible representations, i.e. the branching is
multiplicity-free. Many combinatorial results about the representation theory of
GLn can be reduced to this fact. Thus, it is natural to ask whether such construc-
tions work for other classical groups. Here we study the symplectic groups.

Let Gn = Sp2n and consider the embedding Gn−1 ⊂ Gn. In this case the
restriction of an irreducible representation of Gn to Gn−1 is not multiplicity-free.
Therefore many techniques that work for the general linear groups cannot be
directly applied to this setting.

We use invariant theory to resolve the multiplicities that occur in symplectic
branching. Our main result is that the multiplicity spaces that occur in symplectic
branching carry a canonical irreducible action of a product of SL′

2s. We prove an
isomorphism of so-called branching algebras, which allows us to reduce questions
about symplectic branching to ones about branching from GLn+1 to GLn−1.

2. Preliminaries

Let Λn be the set of partitions of length n. Λn naturally indexes the following
sets of irreducible representations:

Irrpoly(GLn)←→ Λn ←→ Irr(Gn)

Here Irrpoly(GLn) is the set of irreducible polynomial representations of GLn,
and Irr(Gn) is the set of irreducible representations of Gn. For λ ∈ Λn let Vλ
(respectively Wλ) denote the corresponding irreducible representation of GLn (re-
spectively Gn).

For λ ∈ Λn we write

ResGLn

GLn−1
Vλ ∼=

⊕

µ∈Λn−1

Vµ ⊗Nλ
µ ,

where Nλ
µ is the multiplicity space HomGLn−1(Vµ, Vλ). Similarly, for λ ∈ Λn we

write

ResGn

Gn−1
Wλ
∼=

⊕

µ∈Λn−1

Wµ ⊗Mλ
µ ,
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where Mλ
µ is the multiplicity space HomGn−1(Wµ,Wλ). That branching from Gn

to Gn−1 is not multiplicity free is equivalent to the fact that dimMλ
µ is greater

than one for some µ and λ. It’s a classical result that:

dimMλ
µ 6= 0⇔ µ double interlaces λ.

The double interlacing condition here means that λi ≥ µi ≥ λi+2 for all i.

3. Main Results

Let Λn−1,n = Λn−1 × Λn, and let (µ, λ) ∈ Λn−1,n. Our starting point is the
simple observation that Mλ

µ is naturally an SL2-module. Indeed, there is a natural
copy of SL2 that centralizes Gn−1 ⊂ Gn. This leads us to ask, what is the SL2-
module structure of Mλ

µ? We answer this by reducing the problem to an analogous
one concerning the general linear groups.

Let Un ⊂ Gn be the unipotent radical of a Borel subgroup of Gn. Consider the
ring of regular functions on Gn which are left-invariant with respect to Un and
right-invariant with respect to Un−1:

M = O(Un\Gn/Un−1).

By (algebraic) Peter-Weyl theory, M is Λn−1,n-graded:

M =
⊕

(µ,λ)∈Λn−1,n

Mλ
µ .

In other words, the graded components are isomorphic to symplectic multiplicity
spaces. M is an example of a branching algebra.

We want to compareM to a branching algebra corresponding to restriction from
GLn+1 to GLn−1. Now let Un ⊂ GLn be the upper triangular unipotent matrices
and Mm,n the m×n matrices with complex entries. We use (GLn, GLn+1)-duality
to construct a branching algebra:

N = O(Un\Mn,n+1/Un−1) =
⊕

(µ,λ)∈Λn−1,n

Nλ+

µ .

Here if λ ∈ Λn we set λ+ = (λ1, ..., λn, 0) ∈ Λn+1. Thus N is also Λn−1 ×
Λn-graded; its graded components are certain multiplicity spaces that occur in
branching from GLn+1 to GLn−1.

Notice thatM and N are both graded by the same semigroup. Moreover, they
both carry a natural action of SL2. Let f : Gn →Mn,n+1 be defined by taking g
to its principal n× (n+ 1) cut-off. Consider the induced map

f∗ : O(Mn,n+1)→ O(Gn)

on functions. It’s not hard to show that f∗(N ) ⊂M.

Theorem 1 (Theorem 3.1, [2]). f∗ : N →M is an isomorphism of Λn−1 × Λn-
graded SL2-algebras.
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This theorem allows us to reduce questions about the branching of the sym-
plectic groups to ones about branching from GLn+1 to GLn−1. For example, if

(µ, λ) ∈ Λn−1,n, then by the above theorem Mλ
µ is isomorphic to Nλ+

µ as SL2-

modules. Moreover, to determine the SL2-module structure of Nλ+

µ is easy since,
by factoring through GLn, we can simply write down the character. Let Fk be the
k + 1 dimensional irreducible representation of SL2.

Proposition 2 (cf. [1]). Suppose µ double interlaces λ. Then as SL2-modules

Mλ
µ
∼=

n⊗

i=1

Fri(µ,λ),

where SL2 acts by the tensor product representation on the right hand side, and

ri(µ, λ) = min(µi−1, λi)−max(µi, λi+1)

with λn+1 = µ0 = 0.

This answers the question posed above, but it also suggests a deeper ques-
tion. For (µ, λ) ∈ Λn−1,n consider the irreducible L =

∏n
i=1 SL2-module Aλµ =⊗n

i=1 Fri(µ,λ). The above proposition states thatMλ
µ
∼= ResLSL2

Aλµ, where SL2 ⊂ L
is diagonally embedded. We therefore ask, is there a natural action of L on Mλ

µ

such that Mλ
µ
∼= Aλµ as L-modules?

To answer this we investigate the double interlacing condition that characterizes
symplectic branching. An order type σ is a word in the alphabet {≥,≤} of length
n − 1. Suppose (µ, λ) ∈ Λn−1,n and σ = (σ1 · · ·σn−1) is an order type. Then we
say (µ, λ) is of order type σ if for i = 1, ..., n− 1,

{
σi = “ ≥ ” =⇒ µi ≥ λi+1

σi = “ ≤ ” =⇒ µi ≤ λi+1

Let Σ be the set of order types, and for each σ ∈ Σ let Λn−1,n(σ) be the pairs
(µ, λ) of order type σ. It’s easy to check that Λn−1,n(σ) is a semigroup, and
therefore

M(σ) =
⊕

(µ,λ)∈Λn−1,n(σ)

Mλ
µ

is a subalgebra of M. Moreover,M(σ) is SL2 invariant.
Our second result says that the natural SL2 action on Mλ

µ can be extended
canonically to an irreducible action of L, thereby resolving the multiplicities that
occur in symplectic branching. We warn the reader here that the group L is not
the n-fold product of SL′

2s which naturally embeds in Gn. Indeed, this latter
n-fold product does not act on Mλ

µ .

Theorem 3 (Theorem 3.8, [2]). There is a unique representation (Φ,M) of L
satisfying the following two properties:

(1) for all µ, λ, Mλ
µ is an irreducible L-invariant subspace of M isomorphic

to Aλµ, and
(2) for all σ ∈ Σ, L acts as algebra automorphisms onM(σ).
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Moreover, ResLSL2
(Φ) is the natural action of SL2 onM.
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Pieces of nilpotent cones for classical groups

Anthony Henderson

(joint work with Pramod Achar, Eric Sommers)

Any complex reductive group G acts with finitely many orbits in its nilpotent
cone

N (g) = {x ∈ g = Lie(G) |x is nilpotent}.
For example, it is well known that the GLn-orbits in N (gln) are in bijection with
Pn, the set of partitions of n: for λ ∈ Pn, the corresponding orbit OAλ consists of
those x ∈ N (gln) whose Jordan form has blocks of sizes λ1, λ2, · · · . Moreover, the
closure ordering on orbits corresponds to the dominance order on partitions: for

π, λ ∈ Pn, OAπ ⊆ OAλ if and only if λ dominates π.
For general reductive G, the Springer correspondence gives an injective map

G \ N (g) →֒ Irr(W ),

where Irr(W ) denotes the set of isomorphism classes of irreducible representations
of the Weyl groupW of G. IfO is a nilpotent orbit on the left-hand side and x ∈ O,
the associated irreducible representation of W can be realized as Htop(Bx)Gx ,
where Bx is the Springer fibre and we take invariants for the stabilizer Gx. The
special property of G = GLn which makes this injective map bijective is that all
these stabilizers are connected and hence act trivially on H∗(Bx). (In general,
to construct all of Irr(W ) one needs to consider not just Gx-invariants but other
isotypic components for the action of Gx/G

◦
x.)

The groups SO2n+1 (of type Bn) and Sp2n (of type Cn) are dual to each other
and have the same Weyl group W = {±1} ≀Sn. However, the relationship between
their nilpotent orbits is not as simple as one might suppose. We identify Irr(W )
in the usual way with Qn, the set of bipartitions of n. Shoji in [6] showed that
the Springer parameters for the nilpotent orbits are as follows:

SO2n+1 \ N (so2n+1) ←→ QBn := {(µ; ν) |µi ≥ νi − 2, νi ≥ µi+1},
Sp2n \ N (sp2n) ←→ QCn := {(µ; ν) |µi ≥ νi − 1, νi ≥ µi+1 − 1}.

We write OBµ;ν for the orbit in N (so2n+1) corresponding to (µ; ν) ∈ QBn , and OCµ;ν
for the orbit in N (sp2n) corresponding to (µ; ν) ∈ QCn .

To compare the two collections of nilpotent orbits, we consider

Q◦
n = QBn ∩QCn = {(µ; ν) |µi ≥ νi − 1, νi ≥ µi+1},
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which consists of the special bipartitions (those labelling Lusztig’s special represen-
tations of the Weyl group). Spaltenstein observed that every non-special orbit in
N (so2n+1) or N (sp2n) lies in the closure of a unique minimal special orbit; hence
the orbits can be grouped into special pieces SBµ;ν and SCµ;ν , indexed in each case
by Q◦

n. Lusztig proved in [5] that for every (µ; ν) ∈ Q◦
n, the corresponding spe-

cial pieces SBµ;ν and SCµ;ν have the same equivariant Betti numbers (defined using
equivariant cohomology with rational coefficients, relative to the groups SO2n+1

and Sp2n respectively).
Syu Kato has introduced in [3, 4] the exotic nilpotent cone

N := {(v, x) ∈ C2n × gl2n |x is nilpotent, 〈xu, u〉 = 0, ∀u ∈ C2n},
where 〈·, ·〉 denotes a symplectic form on C2n. It carries an action of the symplec-
tic group Sp2n, but also has some affiliation with type Bn, as the results below
indicate. Kato discovered an exotic Springer correspondence

Sp2n \N ←→ Irr(W ) = Qn,
which is bijective: as with the ordinary Springer correspondence for GLn, all
stabilizers are connected. Let Oµ;ν be the orbit in N corresponding to (µ; ν) ∈ Qn.

The closure ordering on orbits in N was determined by Achar and myself:

Theorem 1. [1, Theorem 6.3] For (ρ;σ), (µ; ν) ∈ Qn,

Oρ;σ ⊆ Oµ;ν ⇐⇒

ρ1 ≤ µ1,
ρ1 + σ1 ≤ µ1 + ν1,

ρ1 + σ1 + ρ2 ≤ µ1 + ν1 + µ2,
ρ1 + σ1 + ρ2 + σ2 ≤ µ1 + ν1 + µ2 + ν2,

...
...

...
...

...

Achar, Sommers, and I show in [2] that the induced partial order on the subsetsQBn
and QCn corresponds to the closure ordering on orbits in N (so2n+1) and N (sp2n).

We can define three partitions of N by grouping orbits as dictated by the closure
ordering: a partition into type-B pieces TBµ;ν indexed by QBn , a partition into type-

C pieces TCµ;ν indexed by QCn , and (coarser than either of these) a partition into
special pieces Sµ;ν indexed by Q◦

n. One of our main results gives a numerical
relationship between these pieces and the orbits in N (so2n+1) and N (sp2n):

Theorem 2. [2, Theorem 2.23]

(1) For (µ; ν) ∈ QBn , TBµ;ν has the same equivariant Betti numbers as OBµ;ν .
(2) For (µ; ν) ∈ QCn , TCµ;ν has the same equivariant Betti numbers as OCµ;ν .
(3) For (µ; ν) ∈ Q◦

n, Sµ;ν has the same equivariant Betti numbers as SBµ;ν on

the one hand, and SCµ;ν on the other.

Part (3) follows from (1) and (2), and offers a new explanation of Lusztig’s result.
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Projective and involutory reflection groups

Fabrizio Caselli

1. Introduction

The relationship between the combinatorics and the (invariant) representation
theory of symmetric groups is fascinating from both combinatorial and algebraic
points of view, and the problem of generalizing these sort of results to all (complex)
reflection groups has been faced in many ways. Besides several results that hold
in the full generality of reflection groups, there are some relevant generalizations
which are quite clear for wreath products only, and remain open in the more general
context of reflection groups. For example no basis is known for the free module
of diagonal invariants over the tensor invariants (this is known in type A and B
only [20, 26, 11, 9]), there is no Robinson-Schensted type correspondence (the case
of wreath products was carried out in [28]), no major index statistics is known
that produces nice Hilbert series (wreath products and classical Weyl groups were
studied in [20, 29, 4, 1, 13]), and no general Gelfand model is known (the case of
symmetric groups is studied in [3, 5, 21, 22, 23, 24] and other special classes of
complex reflection groups in [2, 6, 7, 8]). Some attempts to extend these results to
other reflection groups have been made, in particular for Weyl groups of type D,
(see, e.g., [13, 14, 9]) though they are probably not completely satisfactory as in the
case of wreath products. Here we present a unified solution to all these problems
for generic reflection groups G(r, p, n) (with the exception of the construction of a
Gelfand model where we have to assume that GCD(p, n) = 1, 2.)

With these problems in mind we introduce a new class of groups, the projective
reflection groups, which are a generalization of reflection groups. In this report I
will focus on the infinite family G(r, p, q, n) of projective reflection groups, which
includes all the groups G(r, p, n) (in fact G(r, p, 1, n) = G(r, p, n)). Fundamental
in the theory of these groups is the following notion of duality: if G = G(r, p, q, n)
then we denote by G∗ = G(r, q, p, n). We note in particular that reflection groups
G satisfying G = G∗ are exactly the wreath products G(r, n) = G(r, 1, 1, n) and
that in general if G is a reflection group then G∗ is not. We show that, in many
cases, the combinatorics of a projective reflection groupG of the formG(r, p, q, n) is
strictly related to the (invariant) representation theory of G∗, generalizing several
known results for wreath products in a very natural way.
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2. Two results

We start introducing the groups G(r, p, q, n). Let r, p, q, n ∈ N be such that p|r,
q|r and pq|rn. Then we let

G(r, p, q, n) := G(r, p, n)/Cq,

where Cq is the cyclic group of scalar matrices of order divided by q.
Here the groups G(r, p, n) are those appearing in the classification of Shephard-

Todd of complex reflection groups. If g ∈ G(r, p, q, n) one can define, in a simple
combinatorial way (see [16]) a partition λ(g) having length at most n. If q =
p = 1 the partition λ(g) gives an alternative definition for the flag-major index
of Adin and Roichman (see [4]) for wreath products G(r, n): in this case we have
fmaj(g) = |λ(g)|.
The group G = G(r, p, q, n) acts in a natural way on Sq[X ] the subalgebra of
C[x1, . . . , xn] generated by all homogeneous polynomials of degree q. We consider
the actions of Gk and of its diagonal subgroup ∆G on the k-fold tensor product
Sq[X ]⊗k. Then, using the partitions λ(g) we can define a polynomial ag1,...,gk ∈
(Sq[X ]⊗k)∆G, where (g1, . . . , gk) range among all k-tuples in G∗ whose product is
the identity.

Theorem 1. The set of polynomials

{ag1,...,gk : g1, . . . , gk ∈ G∗ and g1 · · · gk = 1},
is a basis for (Sq[X ]⊗k)∆G as a free module over (Sq[X ]⊗k)G

k

.

As a further important application of the duality we present another type of
result. If GCD(p, n) = 1, 2, which implies that the group G = G(r, p, q, n) is
involutory (see [17]), we can construct an explicit (monomial) representation ρ of
G on the vector space V (G∗) spanned by the absolute involutions of G∗. Here
absolute involution means elements g satisfying gḡ = 1.

Theorem 2. The representation (V (G∗), ρ) is a Gelfand model for G, i.e. it is
isomorphic to the direct sum of all irreducible representations of G with multiplic-
ity 1.

This result has been much refined in [18], by showing a finer decomposition
which is extremely well-behaved with respect to the projective Robinson-Schensted
correspondence (see [16]) and the so-called split representations of G.
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Representation Theory of Quiver Hecke Algebras via Lyndon Bases

David Hill

(joint work with George Melvin, Damien Mondragon)

Recently, Khovanov and Lauda [KL1, KL2] and Rouquier [Rq] have indepen-
dently introduced a remarkable family of graded algebras, H(Γ), defined in terms
of quivers associated to the Dynkin diagram, Γ, of a symmetrizable Kac-Moody
algebra, g, known as ‘quiver Hecke algebras’. These algebras categorify ‘one-half’
of the quantum group associated to the Dynkin diagram Γ. That is, there is an
isomorphism of twisted bialgebras

K(Γ) ∼= U∗
A(n),(1)

where K(Γ) is the Grothendieck group of the full subcategory, Rep(Γ), of finite
dimensional graded H(Γ)-modules, n is a maximal nilpotent subalgebra of g, and
U∗
A(n) is an integral form of the quantized enveloping algebra of n.

Further evidence of the importance of these algebras was obtained in [BK2]. In

this work, Brundan and Kleshchev showed that when Γ is of type A∞ or A
(1)
ℓ−1,

there is an isomorphism between blocks of cyclotomic Hecke algebras of symmetric
groups, and blocks of a corresponding cyclotomic quotient of H(Γ). Moreover,
this isomorphism applies equally well to quotients of the affine Hecke algebra
and its rational degeneration, depending only on Γ and the underlying ground
field. In light of the work [BK1], it is expected that a similar relationship should
hold between cyclotomic quotients of H(Γ) and cyclotomic Hecke-Clifford algebras

when Γ is of type B∞ and A
(2)
2ℓ (see also [HKS]).

As in the classical case of the affine Hecke algebra, the cyclotomic quotients
HΛ(Γ) of H(Γ) are in natural correspondence with dominant integral weights, Λ,
of g. Let KΛ(Γ) denote the Grothendieck group of the category RepHΛ(Γ) of
graded finite dimensional HΛ(Γ)-modules. Then, we have the following conjecture
of Khovanov and Lauda:
Khovanov-Lauda Conjecture: [KL1, §3.4] There is an isomorphism of Uq(g)-
modules

Q(q)⊗KΛ(Γ) ∼= V (Λ),

where V (Λ) is the irreducible Uq(g)-module of highest weight Λ. Under this iso-
morphism, KΛ(Γ) corresponds to the minimal admissible lattice inside V (Λ) and
the isomorphism classes of simple modules correspond to the dual canonical basis.

There has been some progress toward the Khovanov-Lauda Conjecture. For

Γ of types A∞ and A
(1)
ℓ−1, Brundan and Kleshchev [BK3] used the isomorphism

they established in [BK2] and the graded Specht modules constructed with Wang
[BKW] to lift Ariki’s theorem [A] to the graded setting, thereby proving the result
in this case. For general Γ, Lauda and Vazirani [LV] have shown that KΛ(Γ)
has the structure of a crystal, where the crystal operators are defined in terms of
induction and restriction functors. Moreover, this crystal coincides with the crystal
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B(Λ) of V (Λ), providing significant combinatorial evidence for the Khovanov-
Lauda Conjecture.

At the same time, Kleshchev and Ram [KR2] completed their investigation of
the representation theory of H(Γ), for Γ of finite type, with the goal of construct-
ing irreducible representations. The parametrization of these representations is
given by the combinatorics of Lyndon words as developed in [LR]. The observa-
tion that these combinatorics should have a representation theoretic interpretation
is due to Leclerc [Le, Sections 6-7] (see [HKS, Section 8] for another application
of these ideas). In particular, Kleshchev and Ram reduced the study of this rep-
resentation theory to generalizations of the segment representations of Bernstein
and Zelevinsky [BZ, Z], which they called cuspidal representations.

Cuspidal representations are in one-to-one correspondence with the set of pos-
itive roots, ∆+, in the root system associated to g, and their definition depends
on a choice of total ordering of the index set I labeling the set of simple roots.
The corresponding lexicographic ordering on the set W =

⊔
d I

d of words in I
induces a convex ordering on ∆+. Corresponding to this convex ordering is a
reduced expression for the longest word in the Weyl group, and a dual PBW and
dual canonical basis for U∗

A(n) via an action of the braid group. These bases are
naturally labeled by a set of dominant words W+ ⊂W .

For each β ∈ ∆+, the associated cuspidal representation corresponds under the
isomorphism (1) to a dual canonical basis element labeled by a minimal element of
weight β in W+, [KR2, Lemma 6.4]. The dual PBW basis corresponds to a basis
for K(Γ) given by standard modules obtained from cuspidal representations by
parabolic induction. The standard modules have unique irreducible quotients and
these quotients are precisely the simple modules up to isomorphism and grading
shift, [KR2, Theorem 7.2]. It is expected that these modules correspond under
the isomorphism (1) to the dual canonical basis. This conjecture is known in the
simply laced case due to the work of Varagnolo-Vasserot [VV]. A more general
result has been announced by Rouquier which would imply the conjecture in all
types, but the details are unavailable.

Kleshchev and Ram produced cuspidal representations for H(Γ) in most cases
relative to a fixed ordering on I, the exceptions being the nontrivial cases in type F4

and 12 cases in type E8. Additionally, they constructed cuspidal representations
for all orderings in type A. Subsequently, Hill, Melvin and Mondragon [HMM]
completed their own investigation of quiver Hecke algebras in finite type following
an observation of Hill, Kujawa and Sussan [HKS]. In this paper they constructed
cuspidal representations of H(Γ) in all finite types, including F4 and E8, with
respect to a different ordering on I. We believe that the cuspidal representations
in [HMM] are as small as possible. For example, in classical type, the dimensions
of these modules are almost always bounded by 2 (the exception being the long
roots in type C). In contrast, the modules constructed in [KR2] typically have
dimensions that grow with the height of the associated positive root. Additionally,
in type E8, all cuspidal representations in [HMM] are homogeneous in the sense
of [KR1] and therefore can be constructed using the machinery developed there.
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Factorization of the canonical bases for higher level Fock spaces

Nicolas Jacon

(joint work with Susumu Ariki and Cédric Lecouvey)

Let HC be an Ariki-Koike algebra (i.e an Hecke algebra of the complex reflection
group G(l, 1, n)) over C where the parameters are power of the same e-root of
unity. In general, this algebra is split but non semisimple. The representations of
this algebra are encoded in a matrix De which is called the decomposition matrix
for HC. By a result of M.Geck and R.Rouquier [2], we know that one can factorize
this matrix by another decomposition matrix D∞ which does not depend on e. As
a consequence, we haveDe = D∞.A where A is a matrix with non negative integers
coefficients. When l = 2 that is when HC is an Iwahori-Hecke algebra of type Bn,
one has closed formulae for the matrices D∞. In this case, they correspond to the
matrices of constructible representations as defined by Lusztig.
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By Ariki’s theorem (generalization of the LLT’s conjecture), the decomposition
matrices De and D∞ have natural quantification: they are the specializations of
the matrices of the canonical bases De(v) and D∞(v) for irreducible highest weight

Uv(ŝle) and Uv(sl∞)-modules at v = 1. In this context, it is then natural to ask
if there exists an analogue of the above factorization for these “v-decomposition
matrices”.

In a common work with S. Ariki and C. Lecouvey [1], we prove that the “ad-
justement matrix” A has also a natural quantization, namely that there exists a
matrix A(v) with entries in N[v] such that De(v) = D∞(v).A(v). In fact, such a
result is not only true for the canonical bases of irreducible highest weight modules
but also true for the canonical bases of the Fock spaces as defined by Uglov [4].
To do this, we study the matrices of the involution on the Fock space and combine
this with results by Grojnowski and Haiman [3] on the positivity of the structure
constants in the affine Hecke algebra of type A.

References

[1] S. Ariki, N. Jacon and C. Lecouvey, Factorization of the canonical bases for higher level
Fock spaces preprint 2010, http://arxiv.org/abs/0909.2954

[2] M. Geck and R.Rouquier, Centers and simple modules for Iwahori-Hecke algebras, Finite
reductive groups (Luminy, 1994), 251–272, Progr. Math., 141, Birkhuser Boston, Boston,
MA, 1997.

[3] I. Grojnowski and M. Haiman, Affine Hecke algebras and positivity of LLT and Macdonald
polynomials, preprint.

[4] D. Uglov, Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig
polynomials. Physical combinatorics (Kyoto, 1999), 249–299, Progr. Math., 191, Birkhäuser
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From Macdonald polynomials to a charge statistic in classical types

Cristian Lenart

There has been considerable interest recently in the combinatorics of Macdonald
polynomials Pµ(x; q, t) [21]. This stems in part from the Haglund-Haiman-Loehr
(HHL) combinatorial formula for the ones corresponding to type A [6], which is in
terms of fillings of Young diagrams. This formula found important applications to
the two-parameter Kostka-Foulkes polynomials [1, 5]. More recently, Ram and Yip
[23] gave a formula (described below) for the Macdonald polynomials of arbitrary
type based on calculations in the double affine Hecke algebra. This formula is in
terms of so-called alcove walks, which originate in the work of Gaussent-Littelmann
[4] and of myself and Postnikov [16, 17] on discrete counterparts to the celebrated
Littelmann path model [18, 19].

Given a dominant weight µ, we associate with it a sequence of roots, called a
µ-chain, namely Γ = (β1, . . . , βm), where m = 2〈µ, ρ∨〉. The Ram-Yip formula is
in terms of pairs (w, J) ∈ W × 2[m] =: F(Γ), which we call folding pairs, where
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W is the Weyl group. Let ri := sβi
be the corresponding reflection. Given (w, J)

with J = {j1 < . . . < js}, we identify it with the chain of Weyl group elements

w = w0, . . . , wi := wrj1 . . . rji , . . . , ws .

Theorem 1. [23] We have

(1) Pµ(X ; q, t) =
∑

(w,J)∈F(Γ)

RY (w, J ; q, t)xweight(w,J) ,

where RY (w, J ; q, t) is a rational function in q, t, and weight(w, J) is a weight.

My goal is to derive from the above Ram-Yip formula simpler and more explicit
formulas in classical types, in terms of fillings of the Young diagram µ. The main
ingredient is the so-called filling map f from F(Γ) to fillings of µ, cf. [14]. One
of my results is a derivation of the HHL formula from the type A instance of the
Ram-Yip formula via a “compression” procedure, as explained below.

Theorem 2. [14] Let F be any filling of µ with 1, . . . , n. We have

(2)
∑

(w,J)∈f−1(F )

RY (w, J ; q, t)xwt(w,J) = HHL(F ; q, t)xcontent(F ) ,

where the right-hand side is a term in the HHL formula.

In (2), HHL(F ; q, t) is a rational function defined in terms of statistics “inv”
and “maj” on the filling F . The compression phenomenon described in Theorem
2 explains the way in which the statistics “inv” and “maj”, originally discovered
via computer experiments, follow naturally from more general concepts. I have
done related work, which also refers to types B and C [12, 13, 15].

Let us now consider the case when the parameter t = 0. The Ram-Yip formula
takes the simpler form

(3) Pµ(X ; q, 0) =
∑

(w,J)∈A(Γ)

qlevel(w,J) xweight(w,J) ,

where A(Γ) is the set of (w, J) ∈ F(Γ) corresponding to nonzero terms in (1).

Proposition 3. Let (w, J) = (w, {j1 < j2 < . . . < js}) in a classical type. We
have (w, J) ∈ A(Γ) if and only if we have a path

w = w0
βj1←− w1

βj2←− . . . βjs←− ws = Id

in the corresponding quantum Bruhat graph.

The quantum Bruhat graph, which first arose in connection with the quantum

cohomology of G/B, is the directed graph on W with labeled edges w
α−→ wsα

for each α such that ℓ(wsα) = ℓ(w) + 1 or ℓ(wsα) = ℓ(w)− 2〈ρ∨, α〉+ 1.
The following theorem gives a more explicit description of A(Γ) in types A and

C in terms of the corresponding Kirillov-Reshetikhin (KR) crystals Bk,1 indexed
by columns of height k. It is conjectured that the same result holds in types B
and D. There are complications in these cases because the corresponding KR
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crystals, viewed as classical crystals, split as direct sums of fundamental crystals
Bk,1 = B(ωk)⊕B(ωk−2)⊕ . . ., whereas in type C we have Bk,1 = B(ωk).

Theorem 4. Let Bµ :=
⊗µ1

i=1 B
µ′
i,1, where µ′ is the conjugate partition to µ. In

types A and C there are bijections (f being the filling map above)

(4) A(Γ)
f−→ f(A(Γ))

r−→ Bµ .

The crystal Bµ is realized in terms of Kashiwara-Nakashima columns [9]. The
map r in (4) is simply sorting the columns. The construction of the map r−1 and
implicitly the combinatorics of the quantum Bruhat order lead to the definition
in types A and C of a charge statistic “ch” on fillings F in Bµ such that ch(F ) =
level(w, J) for F = r(f(w, J)), cf. (3). From (3) we deduce

Pµ(X ; q, 0) =
∑

F∈Bµ

qch(F ) xcontent(F ) .

The above charge coincides with the one due to Lascoux-Schützenberger in type
A [10]. Generalizing the latter to all classical types has been a long-standing
problem, for which we described an approach using Macdonald polynomials.

We now mention the relationship of charge with the one-dimensional (1-d)
sums Xλµ(q) in the theory of solvable lattice models. These can be defined as
graded tensor product multiplicities for Bµ, where the grading on Bµ is given by
the energy function DBµ

[7]. Nakayashiki and Yamada proved that the Lascoux-
Schützenberger charge coincides with the energy function in type A [22]. A joint
project with A. Schilling consists of showing that a similar result holds in type C
(based on the newly defined charge), namely that DBµ

(F ) = ch(F ) for all F in Bµ.
This conjecture, which is believed to generalize to all classical types, is supported
in type D by results in [2, 3, 8] and by recent work of Schilling. These results are
based on the interpretation of Pµ(x; q, 0) as an affine Demazure character.

The 1-d sums are related to Lusztig’s q-analogue of weight multiplicities (or
Kostka-Foulkes polynomials) [20] in all classical types, by [11]. Therefore, I expect
that the newly defined charge can be used to express Lusztig’s q-analogue as well.
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Kazhdan–Lusztig polynomials, tight quotients and Dyck
superpartitions

Mario Marietti

(joint work with Francesco Brenti, Federico Incitti)

In 1979, Kazhdan and Lusztig [5] introduced a combinatorial way to construct
representations of the Hecke algebra of an arbitrary Coxeter group W . The main
ingredient is a family {Pu,v(q)}u,v∈W of polynomials with integer coefficients, in-
dexed by pairs of elements in W , which are now known as the Kazhdan–Lusztig
polynomials of W and play an important role in various areas of mathematics
(see, e.g., [1], [4] and the references cited there). In 1987, Deodhar [3] developed
an analogous theory for the parabolic setup. Given any parabolic subgroup WJ of
W , Deodhar introduced two Hecke algebra modules (one for each of the two roots
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q and −1 of the polynomial x2 − (q − 1)x − q) and two families of polynomials
{P J,qu,v (q)}u,v∈WJ and {P J,−1

u,v (q)}u,v∈WJ indexed by pairs of elements in the set W J

of minimal coset representatives. These polynomials are the parabolic analogues of
the Kazhdan–Lusztig polynomials: while they are related to their ordinary coun-
terparts in several ways, they also play a direct role in several areas such as the
geometry of partial flag manifolds, the theory of Macdonald polynomials, tilting
modules, generalized Verma modules, canonical bases, the representation theory of
the Lie algebra gln, and quantized Schur algebras. The ordinary Kazhdan–Lusztig
polynomials are obtained as a special case of the parabolic Kazhdan–Lusztig poly-
nomials for J = ∅.

The purpose of this work is to study the parabolic Kazhdan–Lusztig polynomials
for the tight quotients of the symmetric group Sn. The tight quotients have been
introduced by Stembridge in [7] who classified them for finite Coxeter groups
[7, Theorem 3.8]. For the symmetric group, the non-trivial tight quotients are
obtained by taking either J = [n − 1] \ {i}, i ∈ [n − 1] (maximal quotients), or
J = [n−1]\{i−1, i}, i ∈ [2, n−1]. The parabolic Kazhdan–Lusztig polynomials for
the maximal quotients have been studied in [2]. The parabolic Kazhdan–Lusztig

polynomials of S
[n−1]\{i−1,i}
n of type −1 can be computed using the argument

in [6], since they are equal to ordinary Kazhdan–Lusztig polynomials indexed
by vexillary permutations. We complete the study for all tight quotients of the
symmetric group giving an explicit closed combinatorial formula for the parabolic

Kazhdan–Lusztig polynomials of S
[n−1]\{i−1,i}
n of type q. The formula, which

implies that these polynomials are always either zero or a monic monomial, can be
used to give another proof of the formula found in [2] for the maximal quotients and
to compute the function µ for the tight quotients (µ gives the labels of the graphs
from which Kazhdan–Lusztig representations can be constructed), and involves a
new class of superpartitions, which we call Dyck.

Although superpartitions can be traced back to MacMahon diagrams, it is es-
pecially in recent years that they attracted much attention, since they have been
shown to arise in several contexts. Superpartitions (or strictly related concepts)
have been extensively studied, sometimes under different names such as dotted par-
titions, joint partitions, colored partitions, jagged partitions, and overpartitions.
This work provides a Lie theoretic application of the concept of superpartition.

The proof of the formula is obtained by describing the combinatorics of the

tight quotients S
[n−1]\{i−1,i}
n in terms of 1-superpartitions (superpartitions with

fermionic degree equal to 1). In fact, there is a bijection between S
[n−1]\{i−1,i}
n and

the set of 1-superpartitions contained in ((n − i + 1)i). Superpartitions not only
encode campactly the elements of the quotients but also their algebraic properties
and their poset structure. For instance, we can describe the length function, the
descent sets, the effect of multiplications by generators, the covering relations and
the Bruhat order in terms of superpartitions. In particular, for every pair of min-
imal coset representatives u, v with u ≤ v in the Bruhat order, the superpartition
associated with u is contained in the superpartition associate with v. We show
that the parabolic Kazhdan–Lusztig polynomial indexed by u and v is encoded in
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the two superpartitions associated with u and v. More precisely, the polynomial
P J,qu,v (q) is non-zero if and only if the two superpartitions form a Dyck skew super-
partition and, in this case, it is a power of q whose exponent is an explicit statistic
of the Dyck skew superpartition. The formula is obtained by showing that Dyck
superpartitions have properties that mirror the complicated recursion satisfied by
the parabolic Kazhdan–Lusztig polynomials (see [3]).
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One-skeleton galleries, Hall-Littlewood polynomials and the path
model

Stéphane Gaussent

(joint work with Peter Littelmann)

The aim of our work is twofold: we want to give a direct geometric interpreta-
tion of the path model for representations and the associated Weyl group com-
binatorics, and we want to get a geometric compression for Schwer’s formula for
Hall-Littlewood polynomials.

Concerning the connection with the path model, a first step in this direction
was done in our first paper using galleries of alcoves. The advantage of the new
approach is that galleries in the one-skeleton of the apartment can directly be
identified with piecewise linear paths running along the one-skeleton, and they
can be concatenated. The goal now is to show that the original approach by
Lakshmibai, Musili and Seshadri towards what later became the path model has
an intrinsic geometric interpretation in the geometry of the affine Grassmannian,
respectively in the geometry of the associated affine building.

To give a more precise description of both aims, let G be a semisimple algebraic
group defined over C, fix a Borel subgroup B and a maximal torus T . Let U−

be the unipotent radical of the opposite Borel subgroup. Let O = C[[t]] be the
ring of complex formal power series and let K = C((t)) be the quotient field.
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For a dominant coweight λ and an arbitrary coweight µ consider the following
intersection in the affine Grassmannian G(K)/G(O):

Zλ,µ = G(O).λ ∩ U−(K).µ.

Let Fq be the finite field with q elements and replace the field of complex numbers
by the algebraic closure K of Fq. Assume that all groups are defined and split over
Fq. Replace K by Kq = Fq((t)) and O by Oq = Fq[[t]]; the Laurent polynomials
Lλ,µ defined by Lλ,µ(q) = |Zqλ,µ| show up as coefficients in the Hall-Littlewood

polynomial: Pλ =
∑
µ∈X∨

+
q−〈ρ,λ+µ〉Lλ,µmµ.

Based on the description of Zλ,µ we obtained, Schwer gives a decomposition
Zqλ,µ =

⋃
Sδ, where the δ are certain galleries of alcoves in the standard apartment

of the associated affine building. The structure of the Sδ is quite simple and hence
|Sδ| is easy to compute, but the decomposition has the disadvantage that the sum
|Zqλ,µ| =

∑ |Sδ| has many terms.
There are other formulas, for example, in type A, one can specialize the Haglund-

Haiman-Loehr formula for Macdonald polynomials. By analyzing the combina-
torics involved in the formulas, Lenart has shown that certain terms in Schwer’s
formula can be naturally grouped together such that the resulting formula coin-
cides with the specialisation of the Haglung-Haiman-Loehr formula, he calls this
the compression phenomenon.

Our approach to “compression” is geometric and independent of the type of
the group. We replace the desingularisation of the Schubert variety Xλ we used
before by a Bott-Samelson type variety Σ which is a fibered space having as factors
varieties of the form H/Q, where H is a semisimple algebraic group and Q is a
maximal parabolic subgroup. In terms of the affine building, a point in this variety
is a sequence of parahoric subgroups of G(K) reciprocative contained in each other,
or, more precisely, in terms of faces, it is a sequence of closed one-dimensional
faces, where successive faces have (at least) a common zero-dimensional face (i.e.
a vertex).

The Bia lynicki-Birula decomposition of Σ can be used to define a decomposition
of Zλ,µ, the indexing set of the strata are positively folded one-skeleton galleries.
For G of type An for example, the galleries can be translated into the language of
Young tableaux and the strata of Zλ,µ can be indexed by the semi-standard Young
tableaux of shape λ and weight µ. Keeping in mind that these diagrams are in
bijection with the components of maximal dimension of Zλ,µ, this can be viewed as
the optimal geometric decomposition. The reason for this compression is that in
Schwer’s picture there are the LS-galleries (see below), which determine the power
of the leading term in |Zqλ,µ|, and there are many positively folded galleries which
are not LS-galleries. In our new approach the variety Σ has less Bia lynicki-Birula
cells, hence there are less combinatorial galleries of fixed type and there are also
less positively folded galleries. In the case of type An considered above, it turns
out that in fact all positively folded galleries are LS-galleries.

We introduce the notion of a minimal one-skeleton gallery and of a positively
folded combinatorial gallery in the one-skeleton. Geometrically the two notions
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have the following meaning: the points in Σ corresponding to the points in the
open orbit G(O).λ ⊂ Xλ are exactly the minimal galleries. Since Σ is smooth,
by choosing a generic one parameter subgroup of T in the anti-dominant Weyl
chamber, we get a Bia lynicki-Birula decomposition, the centers δ of the cells Cδ
correspond exactly to the combinatorial one-skeleton galleries δ, i.e. the galleries
lying in the standard apartment of the building.

To decide whether a cell Cδ contains minimal galleries, we need to unfold the
folded gallery. We prove that the cell Cδ contains minimal galleries if and only
if δ is positively folded. We get the following formula for the coefficients of the
Hall-Littlewood polynomials, the summands below counting the number of points
in the intersection of Zqλ,µ ∩ Cδ for δ being positively folded:

Theorem.

Lλ,µ(q) =
∑

δ∈Γ+(γλ,µ)
qℓ(wD0)

(∏r
j=1

∑
c∈Γ+

s
j
Vj

(ij ,op)
qt(c)(q − 1)r(c)

)
.

The positively folded one-skeleton galleries having q〈λ+µ,ρ〉 as a leading term in
the counting formula for |Zqλ,µ∩Cδ |, are called LS-galleries; this is an abbreviation
for Lakshmibai-Seshadri galleries.

An important notion introduced in the theory of standard monomials is the
defining chain, which was a breakthrough on the way for the definition of standard
monomials and generalized Young tableaux. In the context of the crystal structure
of the path theory this notion again turned up to be an important combinatorial
tool to check whether a concatenation of paths is in the Cartan component or
not. Still, the definition had the air of an ad hoc combinatorial tool. But in the
context of Bia lynicki-Birula cells, the folding of a minimal gallery by the action
of the torus occurs naturally: during the limit process (going to the center of the
cell) the direction (= the sector) attached to a minimal gallery is transformed into
the weakly decreasing sequence of Weyl group elements, the defining chain for the
positively folded one-skeleton gallery in the center of the cell.

The connection between the path model theory and the one-skeleton galleries
is summarized in the following corollary. For a fundamental coweight ω let πωi

:
[0, 1]→ X∨

R , t 7→ tω be the path which is just the straight line joining o with ω and
let γω be the one-skeleton gallery obtained as the sequence of edges and vertices
lying on the path.

Corollary. Write a dominant coweight λ = ωi1 + . . . + ωir as a sum of fun-
damental coweights, write λ for this ordered decomposition. Let Pλ be the associ-
ated path model of LS-paths of shape λ having as starting path the concatenation
πωi1
∗ . . .∗πωir

. For a path π in the path model denote by γπ the associated gallery
in the one-skeleton of A obtained as the sequence of edges and vertices lying on
the path. The one-skeleton galleries γπ obtained in this way are precisely the LS-
galleries of the same type as γωi1

∗ . . . ∗ γωir
.

In fact, the notion of a defining chain for LS-paths coincides in this case with
the notion of a defining chain for the associated gallery.
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Since the number of the LS-galleries is the coefficient of the leading term of
Lλ,µ, and since Pλ → sλ for q → ∞, we get as an immediate consequence of
the previous Theorem the following character formula. In combination with the
above Corollary, this provides a geometric proof of the path character formula,
first conjectured by Lakshmibai and proved by Littelmann:

Corollary. Char V (λ) =
∑

δ e
target(δ), where the sum runs over all LS-galleries

of the same type as γλ.

The crystal graph structure on simple modules of KLR algebras

Monica Vazirani

(joint work with Aaron D. Lauda)

Khovanov-Lauda-Rouquier (KLR) algebras R =
⊕

ν∈Q+
R(ν) were invented to

categorify quantum groups of arbitary type. See [KL09, KL08a, Rou08]. Khovanov-
Lauda in fact showed this algebra categorifies the integral form AU

−
q := AU

−
q (g)

of the negative half of the quantum enveloping algebra Uq(g) associated to a sym-
metrizable Kac-Moody algebra g. In joint work with Aaron Lauda [LV], we show
that the simple R-modules carry the structure of the crystal graph B(∞), which
is the crystal of U−

q .
Set B to be the I-colored directed graph with nodes indexed by isomorphism

classes of simple R-modules, up to grading shift, and edges corresponding to socle
of i-restriction. Let BΛ be the subgraph whose nodes are simple modules for a
given cyclotomic quotient RΛ depending on Λ ∈ P+.

Theorem 1. (1) B is a crystal graph and is isomorphic to B(∞).
(2) BΛ is a crystal graph and is isomorphic to B(Λ).

Another consequence of this theorem is that it computes the rank of the
Grothendieck group K(RΛ(ν)−mod).

1. Generators and Relations

For ν =
∑
i∈I νi ·αi ∈ Q+ ≃ N[I] let Seq(ν) be the set of all sequences of vertices

i = i1 . . . im where ir ∈ I for each r and vertex i appears νi times in the sequence.
The length m of the sequence is equal to |ν| = ∑

i∈I νi. It is sometimes convenient
to identify ν =

∑
i∈I νi · i ∈ N[I]. We also sometimes write 〈i, j〉 = 〈hi, αj〉 to save

space.
For ν ∈ Q+ with |ν| = m, let R(ν) denote the associative, K-algebra on gener-

ators

1i for i ∈ Seq(ν)

xr for 1 ≤ r ≤ m
ψr for 1 ≤ r ≤ m− 1
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subject to the following relations for i , j ∈ Seq(ν):

1i1j = δi ,j 1i ,

xr1i = 1ixr,

ψr1i = 1sr(i)ψr,

xrxt = xtxr,

ψrψt = ψtψr if |r − t| > 1,

ψrψr1i =





0 if ir = ir+1

1i if (αir , αir+1) = 0(
x
−〈ir ,ir+1〉
r + x

−〈ir+1,ir〉
r+1

)
1i if (αir , αir+1) 6= 0 and ir 6= ir+1,

(ψrψr+1ψr − ψr+1ψrψr+1) 1i =

=





−〈ir ,ir+1〉−1∑
t=0

xtrx
−〈ir ,ir+1〉−1−t
r+2 1i if ir = ir+2 and (αir , αir+1) 6= 0

0 otherwise,

(
ψrxt − xsr(t)ψr

)
1i =





1i if t = r and ir = ir+1

−1i if t = r + 1 and ir = ir+1

0 otherwise.

We note that in the literature the idempotent 1i is often denoted e(i).
Define the character ch(M) of a graded finitely-generated R(ν)-module M as

ch(M) =
∑

i∈Seq(ν)

gdim(1iM) · i .

When M is finite dimensional, its character ch(M) is an element of the free
Z[q, q−1]-module with basis Seq(ν). We remark that all simple R-modules are
finite dimensional.

In this talk, we take the point of view that in retrospect, given that we want
Theorem 1 to hold, one could reconstruct the above relations. Following work of
[Gro99, Ari96] we expect the representation theory of R(kαi) to correspond to that
of the block of the affine Hecke algebra Hk on which all polynomial generators act
as qi, which has a unique simple module of dimension k!. It is no surprise we have
the above generators and local relations in the case ir = ir+1 = i.
R(kαi) has a unique (up to grading shift) simple module denoted L(ik) with

graded character [k]i!i
k.

Let M be a simple R(ν)-module and i ∈ I. We set f̃iM := cosoc Indν+iν,i M ⊠

L(i) and ẽiM := soc eiM where eiM := Resν−i,iν−i ◦Resνν−i,iM. Likewise we can

define ẽi
∗ where e∗i := Resi,ν−iν−i ◦Resνi,ν−iM. In [KL09] it is shown ẽiM and ẽi

∗M
are simple or zero. Set

ǫi(M) := max{n ≥ 0 | ẽinM 6= 0̄} and ǫ∗i (M) := max{n ≥ 0 | ẽi∗nM 6= 0̄}.
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We note that we can read ǫi (resp. ǫ∗i ) off the character of M as the maximal k
such that im = im−1 = · · · = im−k+1 (resp. i1 = i2 = · · · = ik) as we range over
all i ∈ Seq with 1iM 6= 0̄.

The next task is to understand relations for which ir = i 6= j = ir+1. To do
this, we examine simple modules of R(cαi + αj).

Theorem 2. (1) Let c ≤ a and let ν = cαi + αj. Up to isomorphism and
grading shift, there exists a unique simple R(ν)-module denoted L(ic−njin)
with ǫi (L(ic−njin)) = n for each n with 0 ≤ n ≤ c. Furthermore,
ǫ∗i (L(ic−njin)) = c− n and

ch(L(ic−njin)) = [c− n]i![n]i!i
c−njin.

(2) Let c > a. Let N be a simple R(ci + j)-module with ǫi(N) = n. Then
c− a ≤ n ≤ c and up to grading shift

N ∼= IndL(n− (c− a)) ⊠ L(ic−a).

2. Crystal graphs

We recall some facts and definitions from the tensor category of crystals follow-
ing Kashiwara [Kas95, KS97].

A crystal is a set B together with maps wt: B −→ P , ǫi, φi : B −→ Z ⊔ {∞}
for i ∈ I, ẽi, f̃i : B −→ B ⊔ {0} for i ∈ I, satisfying certain properties.

Definition 3 (Bi (i ∈ I)). Bi = {bi[n];n ∈ Z} with wt(bi[n]) = nαi,

ǫj(bi[n]) =

{
−n if i = j
−∞ if j 6= i,

φj(bi[n]) =

{
n if i = j
−∞ if j 6= i,

(1)

ẽjbi[n] =

{
bi[n+ 1] if i = j
0 if j 6= i,

f̃jbi[n] =

{
bi[n− 1] if i = j
0 if j 6= i.

(2)

Proposition 4 ([KS97] Proposition 3.2.3). Let B be a crystal and b0 an element
of B with weight zero. Assume the following conditions.

(B1) wt(B) ⊂ Q−.
(B2) b0 is the unique element of B with weight zero.
(B3) ǫi(b0) = 0 for every i ∈ I.
(B4) ǫi(b) ∈ Z for any b ∈ B and i ∈ I.
(B5) For every i ∈ I, there exists a strict embedding Ψi : B → B ⊗Bi.
(B6) Ψi(B) ⊂ B × {f̃i

n
bi[0];n ≥ 0}.

(B7) For any b ∈ B such that b 6= b0, there exists i such that Ψi(b) = b′⊗f̃i
n
bi[0] =

b′ ⊗ bi[−n] with n > 0.

Then B is isomorphic to B(∞).

The module-theoretic strict embedding is given by

Ψi : B → B ⊗Bi
M 7→ (ẽi

∗)c(M)⊗ bi[−c],
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where c = ǫ∗i (M).
Let a = −〈hi, αj〉. Let n ≤ c ≤ a. Using the strict embedding, one can show

that the graph B(∞) has nodes of the form

b0

i−→ ◦ i−→ · · · i−→ p
j−→ q

i−→ ◦ i−→ · · · i−→ r

where ǫ∗i (p) = ǫ∗i (q) = ǫ∗i (r) = c− n but ǫi(p) = c− n, ǫi(q) = 0, ǫi(r) = n.
This tells us for c ≤ a that R(cαi+αj) has simple modules L(ic−njin) with ǫi, ǫ

∗
i

data the same as that of node r. Taking into account we understand the unique
(up to grading shift) simple module L(ik) of R(kαi), we see ch(L(ic−njin)) =
[c− n]![n]!ic−njin.

However, when c > a, the ǫ∗i data changes differently. In particular, when

c = a, whereas ǫi(r) = n, ǫ∗i (r) = a − n, we have ǫi(f̃ir) = n + 1, ǫ∗i (f̃ir) =
a − n + 1 = ǫ∗i (r) + 1. Module-theoretically, this means that up to grading
shift IndL(ia−njin) ⊠ L(i) ≃ IndL(i) ⊠ L(ia−njin) is simple, with character
[a− n]![n]!(ia−njin ∪∪ i), where ∪∪ is the quantum shuffle.

We obviously have a surjection

IndL(ic−n) ⊠ L(j) ⊠ L(in)→ L(ic−njin).

Comparing characters, when c ≤ a the induced module must have maximal sub-
module corresponding to all ψŵ with ℓ(w) 6= 0, w ∈ Sc+1/Sc−n × S1 × Sn and ŵ
a fixed reduced expression for w. However, when c > a, this space fails to be a
proper submodule. This, combined with the fact xn−1

r L(in) 6= 0̄ but xnrL(in) = 0̄,
in part explains the braidlike relation in the case ir = i, ir+1 = j, ir+2 = i. In other
words, in our situation it yields ψrψr+1ψr − ψr+1ψrψr+1 acts as 0 when c ≤ a,
but equals a length 0 term that acts nonzero when c > a. It similarly yields ψrψr
acts as 0 when c ≤ a, but equals a length 0 term that acts nonzero when c > a.
This corresponds to the exponents on xr, xr+1, xr+2 in the right-hand sides of the
corresponding cubic and quadratic relations.

In retrospect, arguments like these help to explain the relations given by KLR.
However, in actuality, [LV] uses the relations extensively to prove Theorem 2 holds,
and then uses it, following the ideas of [Gro99], to prove Theorem 1.
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Generalized trace and modified dimension functions on ribbon
categories

Jonathan Kujawa

(joint work with Nathan Geer, Bertrand Patureau-Mirand)

1.1. In many categories which arise in representation theory the dimension of
an object and trace of a morphism are essential tools. In particular, it is often
of interest to know when these are zero. For example, the vanishing of dimen-
sions arises in the Kac-Weisfeiler conjecture for Lie algebras (proved by Premet
in [9]), the DeConcini, Kac and Procesi conjecture for quantum groups at a root
of unity, 2 and p divisibility for representations of Lie superalgebras [3, 11], and
well known p divisibility results for modular representations of finite groups. The
vanishing of the trace function allows one to define the radical of the category.
The resulting quotient category plays an important role in representation theory.
Andersen constructed a three dimensional quantum field theory from the category
of tilting modules for a quantum group at a root of unity via this technique [1]. In
recent work Deligne [4] and Knop [8] used this approach to show how to construct
categories which interpolate among the representation categories of the symmetric
groups and GL(n,Fq), respectively.

These functions also are intrinsic to the definition of knot invariants [10]. How-
ever, in the case when these functions vanish one obtains trivial invariants. Tack-
ling this problem, Geer and Patureau-Mirand introduced a modified dimension for
representations of quantum supergroups [5], and with Turaev a generalization of
this construction to include, for example, the quantum group for sl(2) at a root of
unity [6].

In joint work with Geer and Patureau-Mirand, we generalize their construction
to the setting of ribbon categories. Our approach generalizes well known results
from representation theory as well as providing new insights and conjectures.

1.2. The setting of our results is within a ribbon category C. That is, roughly
speaking, within a category C with a tensor product bifunctor −⊗− : C × C → C,
a unit object 1, and a braiding; that is, for all V and W in C we have canonical
isomorphisms cV,W : V ⊗W → W ⊗ V . Furthermore, C admits a duality functor
V 7→ V ∗, and morphisms

bV : 1→ V ⊗ V ∗ dV : V ∗ ⊗ V → 1,

b′V : 1→ V ∗ ⊗ V d′V : V ⊗ V ∗ → 1.
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Many categories which naturally arise in representation theory are ribbon cat-
egories. For example, finite dimensional representations of groups, Lie algebras,
and superalgebras over a field of arbitrary characteristic, and finite dimensional
representations of quantum groups. The also arise in topology, algebraic geometry,
physics, and quantum computing.

1.3. Assume K := EndC(1) is a field, and that J in C is a simple object which
admits a linear map

tJ : EndC(J)→ K

which satisfies

tJ ((dJ ⊗ IdJ) ◦ (IdJ∗ ⊗h) ◦ (b′J ⊗ IdJ)) = tJ ((IdJ ⊗d′J) ◦ (h⊗ IdJ∗) ◦ (IdJ ⊗bJ)) ,

for all h ∈ EndC(J ⊗ J). That is, in the graphical calculus of ribbon categories we
have

tJ

(

6
?
h

)
= tJ

(

6
?
h

)

for all h ∈ EndC(J ⊗ J). Such a linear map is called an ambidextrous trace on J
and J is called ambidextrous.

Given J in C, let IJ be the full subcategory of all objects of C, W , such that
there is an object X in C and morphisms α : W → J ⊗ X and β : J ⊗ X → W
such that β ◦α = IdW (that is, roughly speaking, W is a direct summand of J⊗X
for some object X). Then, for example, we have the following results.

Theorem 1. If J in C admits an ambidextrous trace, then there is a unique family
of ambidextrous trace functions {tV }V ∈IJ

on IJ determined by that ambidextrous
trace.

We can then define a generalized dimension function on IJ via

dJ(V ) = tV (IdV ),

for every V in IJ . When J = 1 we recover the ordinary trace and dimension
functions.

Theorem 2. Let C be an abelian category, J be ambidextrous and let V be an
object in IJ with EndC(V ) = K and dV : V ∗ ⊗ V → 1 is an epimorphism. We
then have:

(1) Let U ∈ IV ⊆ IJ . If dJ(V ) = 0, then dJ(U) = 0.
(2) The canonical epimorphism dV ⊗ IdJ : V ∗ ⊗ V ⊗ J −→ J → 0 splits if and

only if dJ(V ) 6= 0.
(3) If J is not projective in C and P is projective in C, then P is an object of
IJ and dJ(P ) = 0.

The above results may become more recognizable when we specialize to the
particular case of finite dimensional representations of a finite group over an alge-
braically closed field of characteristic p and take J to be the trivial module. In this
setting the first statement of the theorem becomes: if p divides the dimension of
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V , then p divides the dimension of any direct summand of V ⊗X for any module
X . The second statement becomes: the trivial module is a direct summand of
V ∗ ⊗ V if and only if p does not divide the dimension of V . In this particular
context these results were proven by Benson and Carlson [2]. The third statement
becomes the well known result that for a finite group whose order is divisible by p,
the projective modules over a field of characteristic p all have dimension divisible
by p. If instead we specialize Theorem 2(1) to when C is the finite dimensional
representations of a quantum group at a root of unity and again J is the trivial
module, we recover a result of Andersen [1]. Thus these results fit within a com-
mon categorical framework.

1.4. To give another example, in the setting of basic classical Lie superalgebras
we have combinatorially defined integers called the defect of g and the atypicality
of a simple supermodule of g. Let us write def(g) for the defect of g and atyp(L)
for the atypicality of a simple supermodule L. In general, the atypicality of a
simple supermodule is among 0, 1, 2, . . . , def(g) and def(g) = atyp(C), where C

is the trivial supermodule. Also, recall that if L = L0̄ ⊕ L1̄ is a supermodule,
then the superdimension is given by: sdim(L) = dimC (L0̄)− dimC (L1̄). Kac and
Wakimoto stated the following intriguing conjecture [7].

Conjecture 3. Let g be a basic classical Lie superalgebra and let L be a simple
g-supermodule. Then

atyp(L) = def(g) if and only if sdim(L) 6= 0.

Partial results are known and recently Serganova has announced a proof for
the classical contragradiant Lie superalgebras. Our framework suggests that this
conjecture is but the “top level” (when J = C and atyp(J) = def(g)) of the
following conjecture.

Conjecture 4. Let g be a basic classical Lie superalgebra, let J be a simple g-
supermodule which admits an ambidextrous trace and let L ∈ IJ be a simple g-
supermodule. Then

atyp(L) = atyp(J) if and only if dJ (L) 6= 0.

Note that Serganova believes that one can use her work with Duflo on associated
varieties to show that all simple modules for the Lie superalgebras gl(m|n) and
osp(m|2n) admit ambidextrous traces. In the case of gl(m|n) we can provide the
following evidence for the generalized Kac-Wakimoto conjecture. Recall that a
simple g-supermodule is, by definition, polynomial if it appears as a composition
factor of some tensor power of the natural module.

Theorem 5. Let g = gl(m|n), let J be a simple g-supermodule which admits an
ambidextrous trace, and let L ∈ IJ be a simple g-supermodule. Then the following
are true.

(1) One always has atyp(L) ≤ atyp(J).
(2) If dJ(L) 6= 0, then atyp(L) = atyp(J).
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(3) If atyp(J) = 0, then atyp(L) = atyp(J) and dJ (L) 6= 0.
(4) If J and L are polynomial, then J necessarily admits an ambidextrous

trace (ie. it does not have to be assumed), and dJ(L) 6= 0 if and only if
atyp(L) = atyp(J).

That is, for gl(m|n) we can prove one direction of the generalized Kac-Wakimoto
conjecture in general, and both directions for both atypicality zero and polynomial
representations.
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The Murnaghan–Nakayama rule for k-Schur functions

Anne Schilling

(joint work with Jason Bandlow, Mike Zabrocki)

The Murnaghan–Nakayama rule [9, 10] is a combinatorial formula for the char-
acters χλ(µ) of the symmetric group in terms of ribbon tableaux. Under the
Frobenius characteristic map, there exists an analogous statement on the level of
symmetric functions, which follows directly from the formula

(1) prsλ =
∑

µ

(−1)ht(µ/λ)sµ.

Here pr is the r-th power sum symmetric function, sλ is the Schur function labeled
by partition λ, and the sum is over all partitions λ ⊆ µ for which µ/λ is a border
strip of size r. Recall that a border strip is a connected skew shape without any
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2×2 squares. The height ht(µ/λ) of a border strip µ/λ is one less than the number
of rows.

In [2], Fomin and Greene develop the theory of Schur functions in noncommuting
variables. In particular, they derive a noncommutative version of the Murnaghan–
Nakayama rule [2, Theorem 1.3] for the nilCoxeter algebra (or more generally the
local plactic algebra)

(2) prsλ =
∑

w

(−1)asc(w)wsλ

where w is a hook word of length r. Here pr and sλ are the noncommutative
analogues of the power sum symmetric function and the Schur function. The word
w is a hook word if w = blbl−1 . . . b1a1a2 . . . am where

(3) bl > bl−1 > · · · > b1 > a1 ≤ a2 ≤ · · · ≤ am
and asc(w) = m− 1 is the number of ascents in w. Actually, by [2, Theorem 5.1]
it can further be assumed that the support of w is an interval.

We derive a (noncommutative) Murnaghan–Nakayama rule for k-Schur func-
tions of Lapointe and Morse [7]. k-Schur functions form a basis for the ring
Λ(k) = Z[h1, . . . , hk] spanned by the first k complete homogeneous symmetric
functions hr, which is a subspace of ring of symmetric functions Λ. Lapointe and
Morse [7] gave a formula for a homogeneous symmetric function hr times a k-Schur
function (at t = 1) as

(4) hrs
(k)
λ =

∑

µ

s(k)µ ,

where the sum is over all k-bounded partitions µ such that µ/λ is a horizontal
r-strip and µ(k)/λ(k) is a vertical r-strip. Here λ(k) denotes the k-conjugate of λ.
Equation (4) is a simple analogue of the Pieri rule for usual Schur functions, called
the k-Pieri rule. This formula can in fact be taken as the definition of k-Schur
functions from which many of their properties can be derived. Conjecturally, the
k-Pieri definition of the k-Schur functions is equivalent to the original definition
by Lapointe, Lascoux, and Morse [4] in terms of atoms.

Lam [3] defined a noncommutative version of the k-Schur functions in the affine
nilCoxeter algebra as the dual of the affine Stanley symmetric functions

Fw(X) =
∑

a=(a1,...,at)

〈hat(u)hat−1(u) · · ·ha1(u) · 1, w〉 xa11 · · ·xatt ,

where the sum is over all compositions of len(w) satisfying ai ∈ [0, k]. Here

hr(u) =
∑

A

udecA

are the analogues of homogeneous symmetric functions in noncommutative vari-
ables where the sum is over all r-subsets A of [0, k] and udecA is the product of
the generators of the affine nilCoxeter algebra in cyclically decreasing order with
indices appearing in A. We denote the noncommutative analogue of Λ(k) by Λ(k).
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Denote by s
(k)
λ the noncommutative k-Schur function labeled by the k-bounded

partition λ and pr the noncommutative power sum symmetric function in the affine
nilCoxeter algebra. There is a natural bijection between k-bounded partitions λ
and (k + 1)-cores, denoted corek+1(λ). We define a vertical domino in a skew-
partition to be a pair of cells in the diagram, with one sitting directly above the
other. For the skew of two k-bounded partitions λ ⊆ µ we define the height as

(5) ht(µ/λ) = number of vertical dominos in µ/λ

Definition 1. The skew of two k-bounded partitions, µ/λ, is called a k-ribbon of
size r if µ and λ satisfy the following properties:

(0) (containment condition) λ ⊆ µ and λ(k) ⊆ µ(k);
(1) (size condition) |µ/λ| = r;
(2) (ribbon condition) corek+1(µ)/corek+1(λ) is a ribbon (in the usual sense

of containing no 2× 2 squares);
(3) (connectedness condition) corek+1(µ)/corek+1(λ) is k-connected;
(4) (height statistics condition) ht(µ/λ) + ht(µ(k)/λ(k)) = r − 1.

Our main result is the following theorem.

Theorem 2. For 1 ≤ r ≤ k and λ a k-bounded partition, we have

prs
(k)
λ =

∑

µ

(−1)ht(µ/λ)s(k)µ ,

where the sum is over all k-bounded partitions µ such that µ/λ is a k-ribbon of
size r.

Let λ, µ be k-bounded partitions of the same size, and ℓ be the length of µ. A
k-ribbon tableau of shape λ and type µ is a filling, T , of the cells of λ with the
labels {1, 2, . . . , ℓ} which satisfies the following conditions for all i:

(i) the shape of the restriction of T to the cells labeled 1, . . . , i is a partition,
and

(ii) the skew shape which is the restiriction of T to the cells labeled i is a
k-ribbon of size µi, denoted by ri.

The weight of a k-ribbon tableau T is

wt(T ) =
ℓ∏

i=1

(−1)ht(ri).

We also define

χ
(k)
λ,µ =

∑

T

wt(T )

where the sum is over all k-ribbon tableaux T of shape λ and weight µ.
Iterating Theorem 2 gives the following corollary. We remark that this formula

may also be considered as a definition of the k-Schur functions.
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Corollary 3. For µ a k-bounded partition, we have

pµ =
∑

λ

χ
(k)
λ,µs

(k)
λ .

There is a ring isomorphism

ι : Λ(k) → Λ(k)

sending the noncommutative symmetric functions to their symmetric function
counterpart. This leads us to the following corollary.

Corollary 4. Theorem 2 and Corollary 3 also hold when replacing pr by the power

sum symmetric function pr and s
(k)
λ by the k-Schur function s

(k)
λ .
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Irreducible Specht modules

Matthew Fayers

(joint work with Sinéad Lyle)

For any finite group G and any prime p, it is a natural question to ask which
ordinary irreducible representations of G remain irreducible in characteristic p.
For the symmetric groups, this amounts to classifying the irreducible Specht mod-
ules. This problem is actually solved, but a slight generalisation to Iwahori–Hecke



Combinatorial Representation Theory 877

algebras of type A is still unsolved. We report on some recent progress with the
outstanding case, as well as some work in progress on the type B case.

To be precise, let F be a field of characteristic p, and let q be a non-zero
element of F. Define the quantum characteristic e to be 0 if q is not a root of
unity in F, to be p if q = 1, or to be the multiplicative order of q in F otherwise.
Let Hn denote the Iwahori–Hecke algebra of type An−1 (with quadratic relations
(Ti − q)(Ti + 1) = 0). For any partition λ of n, there is an Hn-module Sλ called
the Specht module. In the semisimple case (in particular, if e = 0), then the
Specht modules are precisely the irreducible modules of Hn up to isomorphism.
The problem under consideration is to classify the triples (λ,F, q) for which Sλ is
irreducible.

In fact, the reducibility of Sλ depends only on λ, e, p, not on F or q. So we
say that λ is (e, p)-irreducible if Sλ is irreducible for a choice of F, q which yield
these values of e, p. The classification of (e, p)-irreducible partitions is complete in
all cases where e > 2, and also when λ or its conjugate λ′ is 2-regular (i.e. does
not have equal non-zero parts); this result is known as the Generalized Carter
Criterion, and is the result of a series of papers [6, 9, 1, 2, 5, 10]. So we can
restrict attention to the case where e = 2 (i.e. q = −1) and λ is doubly-singular.

In 2004, the speaker and Andrew Mathas carried out some computations in the
case where p = 0; in this case, one can compute the decomposition matrix for any
Hn, and therefore determine whether any given Specht module is irreducible. From
these computations arose a conjecture, but this has not yielded to any attempts
to prove it. A precise statement of this conjecture can be found in [3, Conjecture
2.2], but roughly speaking in says that (2, 0)-irreducible partitions can be obteind
by modifying rectangular partitions in certain ways.

More recent work has concentrated on the case of positive characteristic. This
case is usually more difficult than characteristic zero, but in fact the problem under
consideration is solved in characteristic 2, when Hn is simply the group algebra of
the symmetric group. This result [7] says that there is only one doubly-singular
(2, 2)-irreducible partition. A recent result of the speaker [4] extends this result
to the statement that in any given positive characteristic p there are only finitely
many doubly-singular (2, p)-irreducible partitions. The proof of this requires three
ingredients:

(1) a decomposition map which compares Hn with an Iwahori–Hecke algebra
at a primitive 2pth root of unity in a field of characteristic 0 (and implies
that a (2, p)-irreducible partition must be (2p, 0)-irreducible);

(2) a recent theorem of the speaker and Lyle [3], which says that a partition
which is broken (i.e. satisfies a certain very simple criterion on the Young
diagram of a partition) is necessarily (2, p)-reducible;

(3) a combinatorial lemma which says that for any p there are only finitely
many doubly-singular unbroken (2p, 0)-irreducible partitions.

Now let Bn denote the Iwahori–Hecke algebra of type Bn, with Hn as a subal-
gebra, and with the extra generator T0 satisfying the relation (T0 −Q)(T0 + 1) =
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0 for some Q ∈ F. Using a result of Dipper and James, it suffices for most
representation-theoretic purposes to assume that Q = −qr for some r ∈ Z.
Bn has Specht modules indexed by bipartitions of n. Again, in the semisimple

case these give the irreducible representations, and in general one would like to
know which Specht modules are irreducible. The case e = 0 is now non-trivial,
since this condition no longer implies that the algebra is semisimple. However, it is
easy to classify the irreducible Specht modules in this case, since the decomposition
numbers are known explicitly; these were computed by Leclerc and Miyachi [8]
following work of Lusztig. Using this, one finds a simple criterion for a Specht
modules to be irreducible in the case e = 0, using the beta-sets of the components
partitions.

We also look at irreducible Specht modules for Bn in the case e = 2; in this
case, we can reduce to the type A problem. The result here essentially says that a
Specht module can only be irreducible if the labelling bipartition can be reduced
in a certain well-defined way (corresponding to i-restriction functors from Bn to
Bn−k) until one of the components partitions is empty (at which point the type
A result applies). The proof of the reducibility uses decomposition maps from
Iwahori–Hecke algebras of type B with e = 0 (for a given case there is a variety
of ways to make this ‘lift’, since the equation Q = −(−1)r only determines the
parity of r).
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