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Abstract. The workshopMathematical Billiards, organised by Serge Tabach-
nikov (Penn State) and Serge Troubetzkoy (Marseille) was held April 4th–
April 10th, 2010. This meeting was well attended by over 40 participants
including a number of master and PhD students, with broad geographic rep-
resentation. This workshop was a nice blend of researchers with various
backgrounds who brought in their various point of views to cover the classics
as well as recent advances in mathematical billiards and flat surfaces.

The report consists in the abstracts for the 18 lectures, followed by the
abstracts for the 4 short talks that took place in the evenings. During the
workshop, there was also a demo of the mathematical software Sage.
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Introduction by the Organisers

The Billiard system. The billiard dynamical system describes the motion of
a free particle in a domain with a perfectly reflecting boundary.

More technically, a billiard tableQ is a subset of a Riemannian manifold (usually
R2) with a piece-wise smooth boundary. We define the billiard flow as follows: the
billiard ball is a point particle, it moves along geodesic lines in Q with elastic
collisions with ∂Q. The latter means that, at the impact point, the velocity vector
of the particle is decomposed into two components, tangential and normal to ∂Q;
then the normal component instantaneously changes signs, whereas the tangential
component remains the same, after which the free motion continues. In dimension
two, this is the famous law of geometrical optics: the angle of incidence equals the
angle of reflection.
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Many mechanical systems with elastic collisions, that is, collisions preserving
the total momentum and energy of the system, reduce to billiards. Perhaps the
most famous example is an idealized gas made of massive elastically colliding
balls. Here is an interesting lesser known example: the system of three elastically
colliding point masses on a circle reduces, after fixing the center of mass, to the
billiard inside an acute triangle whose angles depend on the ratios of masses. There
are many physically motivated variations on billiards, such as magnetic billiards,
in which free particles are subject to the action of a magnetic field.

The dynamical behavior of billiards is strongly influenced by the shape of the
boundary. Billiards naturally fall into three classes: depending on whether the
pieces of the boundary curve out, curve in, or are flat. In each of the cases the
mathematical machinery used in the study is quite different. The presentation of
talks below is organized accordingly.

The final group of talks will study outer (also known as dual) billiards, which
are played outside a convex table Q in the Euclidean plane. Dual billiards are
defined as follows. Fix an orientation of Q. Given a point x outside Q, draw
the segment xy, with y ∈ Q, of the tangent line to Q such that its orientation
agrees with that of Q. Extend this segment through y to the point T (x) such that
dist(Tx, y) = dist(x, y). The map T of the exterior of Q to itself is the dual billiard
transformation. This map is area-preserving; its definition extends to the spherical
and hyperbolic geometry (in the former, outer and inner billiards are equivalent
via the spherical duality). Outer billiards can be also defined in even-dimensional
Euclidean spaces.

The following books are devoted to billiards: [1, 3, 8, 9].

Hyperbolic billiards. If the boundary of Q curves out, then parallel incoming
orbits scatter, or disperse, producing hyperbolic behavior. A second mechanism of
hyperbolicity exists: if two smooth curving in components are placed sufficiently
far apart, then parallel orbits first focus, but then have time to diverge before the
next collision. One of the main motivations of the study of hyperbolic billiards is
Boltzmann’s ergodic hypothesis, see [7].

The mathematical tools used to study hyperbolic billiards are the same as
the ones used to study hyperbolic dynamical systems (Anosov systems, Axiom
A systems, expanding maps, etc). There are serious additional difficulties, the
presence of singularities (tangent orbits and orbits hitting non-smooth points of
the boundary).

Elliptic billiards. The billiard in an ellipse is completely integrable: a subset
of full measure in its phase space is foliated by invariant curves, corresponding to
the billiard trajectories tangent to confocal ellipses and hyperbolas, the caustics
of the billiard system (note however that one leaf of this foliation is singular: this
is the invariant curve consisting of the trajectories that pass through the foci of
the ellipse). Similar complete integrability holds for billiards inside ellipsoids in
multi-dimensional space.

It turns out that part of this structure is shared by arbitrary convex tables.
Lazutkin showed that one can apply the celebrated KAM theorem to show that
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a set of positive measure of caustics exist for sufficiently smooth tables. Birkhoff
showed that periodic orbits always exists in plane billiards with sufficiently smooth
boundary with positive curvature. On the other hand, Mather proved that if the
curvature vanishes at a point then the billiard possesses no caustics.

Polygonal billiards. Billiards in polygons come in two classes: rational and
irrational polygons. Rational polygons are those for which the angles between sides
are rational multiples of π. A rational billiard table determines a flat surface, this
construction allows one to use the tools of Teichmüller theory to study rational
billiards, and many deep results have been obtained this way, see, e.g., [4, 10].
Most of the polygonal talks will be on rational polygons, since in the irrational
case there is essentially no machinery available, other than elementary geometry
and computer simulation. As a consequence, the available results are considerably
more scarce.

Dual or outer billiards. In the first volume of the Mathematical Intelligencer,
Jurgen Moser wrote an article proposing the outer billiard as a toy model to study
the question of the stability or not of the solar system [5]. The recent progress in
the study of polygonal outer billiards is the subject of the two talks. See [2] for
a survey of outer billiards and [6] for a monograph devoted to a special class of
quadrilaterals, the irrational kites, for which some outer billiard orbits escape to
infinity.
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Abstracts

Introduction to Hyperbolic Billiards

Heiko Gimperlein

A billiard is the dynamical system generated by the free motion of a point particle
in a domain Q ⊂ R2 or T2 with piecewise smooth boundary ∂Q = Γ1 ∪ · · · ∪ Γk.
When the particle hits a boundary point at which the normal vector is well-defined,
it is elastically reflected so that the angle of incidence equals the angle of reflec-
tion. The motion corresponds to a Hamiltonian system with a constant potential
in Q that becomes infinite at ∂Q, and we are going to assume that the reflections
do not have an accumulation point. The particle trajectories then give rise to a
Hamiltonian flow {Φt}t∈R on (a dense subset of) the phase space Ω = S∗Q/ ∼,
where ∼ identifies the incoming and outgoing velocity vectors over ∂Q. Φt extends
continuously to a multiple-valued map on Ω and preserves the Liouville measure µ.
Its lack of differentiability at glancing points and corners is responsible for many
of the particular difficulties of billiard systems, even though they correspond to a
set of measure 0.

Question: Give an explicit example of a billiard with a cusp on the boundary,
such that reflections accumulate in the tip in finite time.

The billiard dynamics is conveniently described in terms of wave fronts, i.e.
families of particles parameterized by smooth curve segments with a continuous
choice of a normal “velocity” vector field. Away from ∂Q, the curvature κ of the
wave front evolves according to

κt =
κ0

1 + tκ0
.

Upon reflection, κ jumps according to the mirror equation

κt+0 = κt−0 +
2K(q)

cos(ϕ)

depending on the angle of incidence ϕ and the curvature of the boundary K(q)
at the point of reflection. The two equations completely determine the evolution,
though practically they are most useful for the hyperbolic billiards defined below.

If all trajectories are eventually reflected, the dynamics can be reduced to ∂Q:

A particle hitting the boundary corresponds to a point in M =
⋃k

i=1 Γi× [−π
2 ,

π
2 ],

and the billiard map F : M → M maps a reflection to the next one. As for
the flow, it is first defined on regular trajectories and then extends by continuity
to a multiple–valued map on all of M. Conversely, we may recover Φt from F
and the return–time T : M → (0,∞) of the particle to M. When applied to
the Liouville measure on Ω, this correspondence naturally yields the F–invariant
measure ν = cos(α) dr ∧ dα on M.
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The billiard map is particularly useful to analyze the stability of the system. An
important computation shows that if (r1, α1) = F(r, α) and the curvatures of the
Γi are bounded, the derivative behaves like ‖DF(r, α)‖ ∼ 1

cos(α1)
, which is singular

at glancing points. The singularities of F are hence contained in ∂M∪F−1(∂M),
and the explicit formula for ν shows

∫

M
log+ ‖DF±1‖ dν <∞ .

To discuss linearized stability, we may appeal to a general theorem by Oseledets:

Theorem: Let M be a Riemannian manifold (with corners), N ⊂ M an open
dense subset and F ∈ C2(N ,M) a diffeomorphism onto its image. Suppose
that F preserves a probability measure ν and

⋂

n∈Z
Fn(N ) is of full measure.

If
∫

M log+ ‖DF±1‖ dν < ∞, then for each x in a full–measure DF–invariant

subset TxM admits a DF invariant decomposition E1
x ⊕ · · · ⊕ E

m(x)
x such that

lim
n→±∞

1

n
log ‖DFnv‖ = λix (v ∈ Ei

x) .

If F is ergodic, the Lyapunov exponents λix are a.e. constant. Loosely speaking,

‖DFn|Ei
x
‖ ∼ enλ

i
x , so that for λix > 0 small perturbations in the direction Ei

x at
time 0 are expected to grow exponentially in the future, making the long–term
evolution “chaotic” and practically inaccessible.

If the Lyapunov exponents exist and are nonzero a.e., the map F is said to
be hyperbolic. For two–dimensional billiards, the preservation of the Liouville
measure assures λ1x + λ2x = 0, and the billiard map is hyperbolic unless both
exponents vanish.

Because of the above correspondence between the continuous and the discrete
system, hyperbolicity turns out to be a property of the actual billiard flow on
phase space: The tangent space of Ω splits into orthogonal subspaces T 0Ω and
T⊥Ω tangent resp. perpendicular to the flow, and the exponents associated to Φt

on T⊥Ω agree with those of F . T 0Ω merely contributes an additional exponent 0.
A powerful method to determine the stable and unstable subspaces associated

to the positive resp. negative Lyapunov exponents is the method of cone fields [1].
Here, a cone Cx is determined by a line Lx ⊂ TxM and an angle αx ∈ (0, π2 ),
such that Cx = {v ∈ TxM : ∠(v,Lx) ≤ αx}. Intuitively, application of DFn to
a cone should stretch out the unstable directions and “converge” to the unstable
subspace Eu

x for n→ ∞. A convenient criterion goes back to Wojtkowski [4, 5]: If
for almost all x ∈ M one finds cones Cu

x satisfying the strict invariance condition
DF(Cu

x ) ⊂ int Cu
F(x) ∪ {0}, then F is hyperbolic and Eu

x =
⋂∞

n=0DFn(Cu
F−n(x)) .

Replacing F by F−1 leads to the corresponding assertions for the stable subspace.
Once the infinitesimal case has been clarified, one would, of course, want to

use it to investigate the long–time behavior of the flow. The appropriate notion is
that of an unstable manifold, which is defined as a smooth curve Wu ⊂ M such
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that F−n is smooth on Wu for all n ≥ 1 and limn→∞ |F−n(Wu)| = 0. Similarly,
a stable manifold is an unstable manifold for F−1.

Dispersing billiards provide a prototypical example of a hyperbolic system.
We consider the simple case where the Γi are nonintersecting, concave outward,
smooth closed curves in T2 and all trajectories eventually get reflected. The two
basic equations for the propagation of wave fronts assure that a dispersing wave
front (κ ≥ 0) will remain dispersive. A bit more work establishes hyperbolicity by
applying Wojtkowski’s criterion to the cone field

Cu
x = {(linearized) wave fronts at x with κ−0 ≥ 0} .

To construct stable and unstable manifolds through a point x ∈ M, which lies
on a regular trajectory, we recall that the singularities of F are contained in
∂M ∪ F−1(∂M). Similarly, the singularities Sn of Fn, n ∈ Z, are given by a
union of compact smooth curves in M, and we let Qn(x) the connected component
of M \ Sn containing x. Qn(x) is a curvilinear polygon that shrinks to a line
for n → −∞, and we obtain the maximal unstable manifold containing x quite
explicitly as Wu =

⋂

n≥1Q−n(x) \ {endpoints}. Replacing F by F−1 yields a
maximal stable manifold through x.

We conclude with some remarks on the local ergodicity of dispersive billiards:

Theorem (Sinai [3]): Any x ∈ M which lies on at most one smooth singularity
curve has an open neighborhood that belongs to a single ergodic component of F .

Like most proofs of ergodicity for hyperbolic systems, Sinai’s proof relies on
Hopf’s method and informally proceeds in two steps:
1) A.e. stable or unstable manifold belongs to a single ergodic component of F .
2) Generic x, y ∈ M are connected by a finite sequence of stable and unstable
manifolds W1, . . . ,Wk such that Wi ∩Wi+1 6= ∅, a so–called Hopf chain.
While 2) is based on the construction of stable and unstable manifolds, the heuris-
tic idea behind 1) is as follows: If M1/2 ⊂ M are distinct ergodic components,
then F preserves the conditional ergodic measures µ1/2. The trajectory of µ1–
a.e. x ∈ M1 is distributed according to µ1, and similarly for y ∈ M2. Therefore,
given e.g. a stable manifold Ws intersectingM1 andM2, the trajectories of typical
points x ∈ Ws ∩M1, y ∈ Ws ∩M2 are distributed according to µ1 resp. µ2. But
lying on Ws, the future trajectories of x and y converge to each other and hence
must lead to identical distributions. Contradiction to µ1 6= µ2.
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The Boltzmann-Sinai Conjecture, a sketch of the proof

Marcello Seri

When Boltzmann was laying down the foundations of statistical physics, in the
1880s, he made the hypothesis that gases of hard balls are ergodic. Only in 1963
did Sinai give a formal mathematical foundation of the problem stating that the
gas of N ≥ 2 identical hard balls (of “not too big” radius) on a torus Tν , ν ≥ 2 is
ergodic, of course on the submanifold of the phase space specified by the obvious
conservation laws and provided that the Chernov-Sinai Ansatz holds true.

There is a standard way to transform a hard ball gas into an equivalent billiard
and the difficulty in proving the conjecture is mainly due to the fact that it is
semi-dispersing: in fact while in dispersing billiards strong hyperbolicity ensures
a nice behavior, in the semi-dispersing situation it is more and more difficult to
control what happens to the singularity manifolds and the flow.

What one would like to show is that almost every singular orbit is geometrically
hyperbolic and it lies in the unique full measure ergodic component of the system.
To achieve this goal one mainly has to get rid of the exceptional separating mani-
folds, i.e. codimension-one submanifolds of the phase space that separate distinct,
open ergodic components of the billiard flow.

The Boltzmann-Sinai Conjecture was proved by Simányi in 1999 (see [2]). His
proof can be divided in three steps.

Step I Prove that every finite non-singular (i.e. smooth) trajectory segment S[a,b]x0
with a combinatorially rich symbolic collision sequence (in a well defined
sense) is automatically “geometrically hyperbolic” (or sufficient), provided
that the phase point x0 does not belong to a countable union J of smooth
sub-manifolds with codimension at least two (a “slim” set containing the
exceptional phase points).

Step II Assume as inductive step that all hard ball systems with N ′ balls (2 ≤
N ′ < N) are (hyperbolic and) ergodic. Prove that there exists a slim set
E ⊂ M such that for every phase point x0 ∈ M \ E the entire trajectory
SRx0 contains at most one singularity and its symbolic collision sequence
is combinatorially rich.

Step III By using again the induction hypothesis, prove that almost every singular
trajectory is sufficient in the time interval (t0,+∞), where t0 is the time
moment of the singular reflection.

In this proof, the key point is given by the Main Lemma that states that every
separating manifold J ⊂ M would contain at least one sufficient phase point. In
fact the three steps above ensure that the Local Ergodic Theorem can be applied
and the Main Lemma says that if the exceptional separating manifold J exists,
it must contain some regular points that are in the same ergodic component as
the points in a neighborhood, thus J cannot exist. In conclusion there must be
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only one full measure connected ergodic component for the flow and the theorem
is proved.

In the talk a brief historical introduction on the conjecture and the main ideas
of this proof and of the proof of the Main Lemma were given.
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Introduction to Hyperbolic Billiards

Nándor Simányi

Semi-dispersing billiards are defined as follows: We take a C2-smooth, con-
nected, Riemannian manifold M without boundary and with a positive injectiv-
ity radius ρ, and we remove from M finitely many compact, geodesically convex
subsets Bi ⊂ M (the so-called scatterers, i = 1, · · · , n) that have C1-smooth
boundaries ∂Bi. The billiard table (confiuration space) is the set

B =M \
n
⋃

i=1

Int(Bi).

We assume that B is compact. The billiard flow (M, {Φt}µ) describes the
uniform motion (with unit speed) of a point particle in B along geodesic lines,
enduring elastic reflections when hitting a boundary component ∂Bi of B. If a
trajectory ever hits an intersection Bi∩Bj (i 6= j), then such a trajectory is simply
undefined. We always assume that all sectional curvatures κ of M are bounded
above by a real number K.

It has been very well known since the early studies of mathematical billiards by
Ya. G. Sinai in the 1960s [S63], [S70], that obtaining upper bounds (in particular,
finiteness) for the number of collisions in terms of the length of trajectory segments
plays a pivotal role in studying the fine ergodic and statistical properties of such
systems. Such bounds are especially useful in effectively estimating the topological
entropy of hard ball systems, as Burago, Ferleger and Kononenko showed in 1998,
[BFK98].

Our goal is to review the main results in this area of research by also giving
the audience a glimps into the intricate geometric tools developed to tackle such
problems. We will be discussing the geometric aspects (of the proofs) of the results
below.

One of the early results is due to L. N. Vaserstein [V79] and G. Galperin [G81].
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Theorem. If a natural non-degeneracy condition (see below) holds true for the
semi-dispersing billiard flow (M, {Φt}, µ), then in any trajectory the number of
collisions during any finite time interval is finite.

Definition. The billiard table B (of a semi-dispersing billiard) is non-degenerate
in an open subset U of M with the constant C > 0 if for every non-empty subset
I ⊂ {1, 2, · · · , n} and for every y ∈ (U ∩B) \⋂j∈I Bj

(1) max

{

dist(y,Bk)

dist (y, ∩j∈IBj)

∣

∣

∣

∣

∣

k ∈ I

}

≥ C,

whenever
⋂

j∈I Bj 6= ∅. (We note that this is a local geometric property.)

Definition. B is non-degenerate in an open domain U ofM if there exist constants
δ > 0, C > 0 such that B is non-degenerate with the constant C in any δ-ball of
U .

In 1998 Burago, Ferleger, and Kononenko [BFK98] proved the following crucial
result.

Theorem. Assume B is non-degenerate in an open neighborhood U ⊂ M of a
point x ∈ ∂B. Then there exists a neighborhood Ux of x (in M) and a number
Px > 0 such that every billiard trajectory entering Ux leaves it after making at
most Px collisions.

As an immediate corollary, we get that
Corollary. For every nondegenerate semi-dispersing billiard there exists a con-
stant P > 0 such that every trajectory of the billiard flow makes no more than
P · (t+ 1) collisions during any time interval of length t.

For open ball systems in the euclidean space Rk, the same authors also proved
in [BFK98] the following theorem.
Theorem. The number of collisions of N elastic balls in Rk is not larger than

(

32 ·
√

mmax

mmin
· rmax

rmin
·N3/2

)N2

.

Heremmax (mmin) denotes the maximum (minimum) mass of the particles, whereas
rmax (rmin) is the maximum (minimum) value of the radii.
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Billiards with external force

Sylvie Oliffson Kamphorst

The billiard problem is the study of the movement of a point particle inside a
region (the billiard table), undergoing collisions with its boundary. In the absence
of external forces the movement between impacts is free and the particle moves
along a polygonal line at constant speed. Moreover, if the collisions are elastic,
the reflexion law applies and the kinetic energy is conserved.

When external forces act inside the region, the trajectory beetween impacts may
no longer be a straight segment and the energy may also change. One can also
consider external forces acting only at impacts, giving rise to inelastic collisions,
gain or loss of energy, or change in the reflexion law. In a very general setup, the
external forces may depend on the position, velocity and time. For a very nice
review of the subject, including a list of recent results and open problems, see [10].
We mainly report the recent results of N. Chernov and D. Dolgopyat about the
Lorentz gas under gravity [5, 6].

The laws of Statistical Mechanics and Thermodynamics rely on the Boltzmann-
Sinai Ergodic Hypothesis, which states that molecules in a container will evolve
in such a way that time average is equivalent to state average. The Lorentz Gas
is a simplified version of a gas of molecules: in dimension 2, one particle (with
mass equal 1) moves freely in a periodic array of circular scatters in the plane.
The model reduced to its fundamental domain is equivalent to the dispersing Sinai
Billiard, where the billiard table consists of a square with a disk removed from its
center. The proof of ergodicity and the probability description [2, 3] of this billiard
model is an important result to Statistical Mechanics. The position q(t) of the
Lorentz particle at time t evolves as a 2D Brownian motion. More precisely

q(t)√
t
⇒ N (0, D)

where N denotes the normal distribution and the diffusion matrix D is determined
by the scatters. Observe that the result is independent of the constant kinetic
energy K = v2/2.

The Lorentz gas with a constant external force is introduced to study the motion
of the particles of a gas under gravity or of charged atoms in a constant electric
field. The motion betwee impacts is given by q̇ = v, v̇ = g. If the external
force is small (compared to the initial kinetic energy of the particle), one expect,
the particle to describe a Brownian motion driven by the external force (under
the effect of the collisions). The first results were obtainned for the so called
thermostated Lorentz gas [7, 8], in which the kinetic energy of the particle is fixed
by means of a ficticious friction force (Gaussian thermostat) q̇ = v, v̇ = g−projvg.
In this case (with the speed fixed to the value 1) we have

q(t)− at√
t

⇒ N (0, D) with
a

g
→ D

where the limit of the drift coefficient a expresses Ohm’s law.
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In [5] the Lorentz gas under constant external field and without thermostat is
studied. If the initial kinetic energy is large and the external force is small, it is
shown that

x(t)

t2/3
⇒ B

where x is the vertical position down from an initial level and B is a distribution
with probability density proportional to exp(−z3/2)/g. This result applies to the
closed board situation, where the particle hitting a top lid reflects down. In the
open top board, where the particle bouncing to the top escapes, it is shown that
the particle will escape with probability one.

To prove these results, a key observation is that the dynamics is described by
the evolution of slow-fast variables. The fast variables are the position and the
direction of motion, and the slow variable is the kinetic energy. The fast dynamics
(collision dynamics) is well approximated by the thermostated Lorentz gas and
thus the fast variables behave like normal random variables. This implies that the
evolution of the kinetic energy is approximately described by a stochastic diffusion
process K satisfying the stochastic differential equation

dK =
〈g,Dg〉
2
√
K

dτ + (2K)1/4〈g,Dg〉1/2dWτ , K(0) = K

where Wτ is the standard Brownian motion. The solution of this equation is
related to square Bessel processes and this leads to the result stated above.

This was a brief summary of the contents of references below which present the
Lorentz gas under gravity and included a very short list of other models: billiards
with moving boundaries and the question of Fermi acceleration [9, 10, 12, 14, 15],
non elastic billiards [16] and billiards in different metrics [1, 11, 13, 17].
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Existence and non-existence of (convex) caustics

Rafael Raḿırez-Ros

We consider the billiard dynamics inside a planar domain —a billiard table—
whose border is a smooth closed convex curve: a particle follows straight lines
inside the billiard table and it is reflected at the border following the rule “the angle
of incidence equals the angle of reflection”. From now on, the term convex means
that the border of the table has curvature everywhere non-negative, the term strict
means that it has no flat points —points at which the curvature vanishes—, and
the term smooth means that it admits a sufficiently high number of continuous
derivatives, the number being different for each result.

We recall that a smooth curve inside the table is a caustic if a billiard trajectory,
once tangent to it, stays tangent after every reflection. We refer to the books [9, 10]
for a background on billiards and caustics.

There exist several negative and positive results about convex caustics. First,
we shall describe some qualitative and quantitative non-existence theorems, which
go back to Mather, Gutkin and Katok. Next, we shall state the classical existence
result of Lazutkin, whose regularity was later improved by R. Douady. Finally, we
shall present a negative result for higher dimensional tables found by Berger.

Theorem 1 (Mather [6]). If the border of the table is C2 and has some flat point,
then there are no smooth convex caustics inside the table.

This result follows from a formula known in geometrical optics as the mirror
equation, see [10]. Mather used another method of proof based on the Lagrangian
formulation of billiard dynamics. Both proofs are elementary.

Gutkin and Katok obtained the following quantitative versions of Mather’s
theorem. Let d, w, and r be the the diameter, the width, and the inradius of the
billiard table. Let κ and κ be the minimal and maximal values of the curvature of
the border of the billiard table, and let L be its length.

Theorem 2 (Gutkin & Katok [4]). If some of the following quantitative geometric
conditions holds, the billiard table Ω contains a region Ω′ free of convex caustics.
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Condition Description of Ω′
√
2κd2 ≤ r A disc of radius r′ such that r′ > r −

√
2κd2√

2κd2 ≤ w/3 A disc of radius r′ such that r′ > w/3−
√
2κd2√

2κκd2 ≤ 1 A disc of radius r′ such that κr′ > 1−
√
2κκd2√

2κκd2 ≤ 1 A convex set such that Area(Ω \ Ω′) ≤
√
2κd2L

We note that if the border of the table has a flat point, then κ = 0 and Ω′ = Ω,
so we recover Mather’s theorem. In particular, if we have a one-parameter family
of strictly convex billiard tables Ωt whose minimal curvature approaches zero at
some critical parameter t = t∗ of the family, while the global shape of the table
remains essentially unchanged, then the convex caustics are gradually pushed out
to the boundary in the limit t → t∗. An example of this situation is given by the
strictly convex tables

Ωt =
{

(x, y) ∈ R2 : x2 + ty2 + y4 ≤ 1
}

, t > t∗ = 0.

A key step in the proof of this quantitative theorem is to establish a suitable
set of upper and lower bounds on the Lazutkin parameter that arises in the string
construction. This construction is a geometric method —similar to the gardener’s
method to draw ellipses with given foci— to draw all billiard tables with a given
smooth convex closed caustic. These billiard tables are parameterized by the
Lazutkin parameter, which quantifies the distance between the caustic and the
border of the table. Small Lazutkin parameters correspond to caustics close to
the border. Gutkin and Katok showed that too big Lazutkin parameters are
incompatible with the geometric hypotheses of their theorem.

The non-existence of convex caustics implies the existence of billiard trajectories
whose past and future behaviours differ dramatically. To be more precise, we
say that a billiard trajectory is positively (respectively, negatively) ǫ-glancing if,
for some bounce, the angle of reflection with the positive (respectively, negative)
tangent vector is smaller than ǫ. Mather established, under the non-existence of
smooth convex caustics, the existence of infinitely many billiard trajectories that
are both positively and negatively ǫ-glancing for any ǫ > 0. To bound the number
of impacts n = n(ǫ) of such glancing billiard trajectories between its positive and
negative ǫ-bounces as ǫ → 0 is an open problem, similar to bound the speed of
Arnold diffusion in Hamiltonian Systems.

The only positive result of this talk is the following one.

Theorem 3 (Lazutkin [5], Douady [2]). If the border of the table is C6 and strictly
convex, then there exists a collection of smooth convex caustics close to the border
of the table whose union has positive area.

Originally Lazutkin asked for C553 regularity. Douady reduced it to C6, and
conjectured that C4 regularity may suffice. There exist C1 examples —C2 except
for a finite set of points— without caustics.

This result is deduced from an Invariant Curve Theorem for area-preserving
twist maps on the annulus that was one of the first results in KAM theory. The
reader is referred to the book [8] for a proof of the Invariant Curve Theorem in
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the analytic case; the differentiable case contained in [5, 2] is technically more
involved, so it is not recommended as a first reading.

As a by-product of standard KAM-like results, all the caustics obtained in
Lazutkin’s theorem have two important properties. First, they persist under small
enough C6 perturbations of the table. Second, their rotation numbers are poorly
approximated by rational numbers since they belong to a Cantor set of the form

C = Cλ,τ,y∗
:=
{

y ∈ (0, y∗) : |y −m/n| ≥ λn−τ , ∀n ∈ N,m ∈ Z
}

for some constants λ > 0, τ > 2, and y∗ > 0. This set can be viewed as the open
interval (0, y∗) with a countable number of small gaps centered at rational values.

On the contrary, resonant caustics —the ones whose tangent trajectories are
closed polygons— have rational rotation numbers and can be destroyed under
arbitrarily small perturbations of the billiard table. See the example in [7].

Finally, let us consider the higher dimensional case. That is, we deal with
hypersurfaces of the Euclidean n-dimensional space instead of smooth curves of
the plane, for any n ≥ 3. We assume that we have three open hypersurfaces
V−, U , and V+ of class C2 with non-degenerate second fundamental form at their
respective points y−, x, and y+. We also suppose that any line tangent to V− at
a point enough close to y− intersects transversely U at a point close to x and its
reflection is tangent to V+ at a point close to y+. All these hypotheses are local.

Theorem 4 (Berger [1]). Under these hypotheses of regularity, non-degeneracy,
and tangent reflection, the billiard hypersurface U is part of a quadric Q, and both
caustic hypersurfaces V− and V+ are part of the same quadric Q′ confocal to Q.

The proof follows from a duality argument once a higher dimensional version of
the planar mirror equation is established. In particular, the principal curvatures
of the hypersurface U at points close to x play a role similar to the one played by
the (planar) curvature in the planar case.

Gruber proved a similar theorem under weaker regularity hypotheses in [3].
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Periodic orbits in convex billiards

Yuliy Baryshnikov

Let D ⊂ Rd be a convex billiard domain (with smooth enough boundary ∂D.
We are concerned here with n-periodic trajectories of the billiard map. They are
important from the ergodic theory viewpoint, and also appear at the quasiclassical
interface between billiard dynamics and spectral theory for Laplace operator on
D.

The overarching principle in understanding periodic trajectories in billiards is
to dispense with the dynamics, and consider instead the space of cyclically ordered
n-tuples on ∂D, potential candidates for periodic orbits. Topology and differential
geometry of this space can be used to understand the structure of n-periodic orbits
of the billiard map.

In this talk two manifestations of this principle have been discussed: one dealing
with estimating from below the number of distinct periodic orbits, and the other
dealing with the billiard domains with many periodic orbits.

Cyclic configuration spaces and periodic orbits

Consider the space Cycn = (∂D)n −∪i∆ii+1, of n-tuples of points on ∂D with
xi 6= xi+1, i running cyclically through 1, . . . , n. As is well known, the periodic
orbits of the billiard mapping correspond to the critical points of length functional
l : Cycn → R+ given by l(x) =

∑

i |xi − xi+1|. This opens the door for the
Morse theoretic estimatesml ≥ hl for the number of non-degenerate critical points
ml of a smooth function on a manifold via its Betti numbers, hl = rankHl(M)
(singular homologies with coefficients in R)‘: these estimates work for generic
billiard boundaries ∂D. For general boundaries, one would need to use some
version of Lusternik-Schnirelman category, a far harder to compute invariant of a
topological space.

The archetypal result in the area belongs to Birkhoff and deals with the planar
case, d = 2. Before stating it, recall that for in this dimension (where ∂D = S1),
one can define the rotation number r of a trajectory x ∈ Cycn as the index of
the mapping of S1 → ∂D constructed by gluing together oriented subsegments
[xi, xi+1] of ∂D. Rotation number r takes values from 1 through (n−1); reversing
the ordering of the points takes r 7→ n− r, making only the r = 1, . . . , ⌈(n− 1)/2⌉
values interesting geometrically.

Theorem 5. For any n, there exist at least 2 geometrically distinct1 (that is,
not obtained from each other by cyclically changing or reflecting the indices of
the vertices) n-periodic orbits of the billiard map for each rotation number r =
1, . . . , ⌈(n− 1)/2⌉.

The key observation here is that the space Cycn is a disjoint union of manifolds
with corners corresponding to trajectories with different rotation numbers; each

1One should note here that for r not coprime with n, the periodic trajectories include those
traversing themselves several times.
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component is homeomorphic to the product of the circle with a ball. One can
easily verify that there exists a gradient flow of the length function l transversal
to the boundary, yielding two critical points for each of the components.

Generalizations of Birkhoff’s result to higher dimensions follow the same route
(using Morse, or Lusternik-Schnirelman estimates), with the critical difference of
far more involved topology of the space cycn of cyclic trajectories. The first steps
towards these generalizations were done by Babenko [4]. The main body of results
on the higher-dimensional versions of Birkhoff’s theorems were obtained by Farber,
Tabachnikov [5, 6] and, recently, Karasev [8]. Some of the key ingredients of these
results were: the idea [4] to study the topology of Cycn (clearly independent of the
specific boundary shape) using the round spheres, which leads to nice symmetries
of l; the work [12] on the topology of configuration spaces on general manifolds,
which bear quite a few similarities with Cycn; the usage of equivariant (with
respect to the natural action of the dihedral group) cohomologies [5].

For generic boundaries, Farber and Tabachnikov [5] found the lower bound on
the total number of n-periodic trajectories to be (n− 1)(d− 1).

For general boundaries, the situation is far more complicated; I will just sum-
marize some of the strongest results obtained thus far:

• The number of geometrically distinct n-periodic trajectories, n an odd
integer, d ≥ 3 is at least ⌊log2(n− 1)⌋+ d− 1 [5];

• n if d ≥ 4 is even, and ⌈n/2⌉+ 1 if d ≥ 3 is odd [6];
• If in addition n is prime, then the lower bound improves to (n1)(d− 2)+2
[8];

It is not clear how much more information can be squeezed out of the topology
of Cycn; perhaps some work towards construction of billiard domains with few
periodic trajectories might be useful.

Non-integrable distributions and billiard domains with many

periodic orbits

What about the billiard domains with many periodic trajectories, specifically
with k-parametric families of those? Again, to approach this question, it is useful
to consider k-parametric families of cyclic tuples of points in Rd, and ask, when
they form a family of trajectories in some (undefined yet) billiard domain.

We consider a slightly different version of the space of cyclic configurations
Cycln with distinct consecutive points, dropping the condition that xi ∈ ∂D. On
this manifold, one can construct B ⊂ TCycl, a codimension n distribution (i.e. a
subbundle of the tangent bundle, see [10] for definitions and survey) given as the
annulator of the forms ωi = p∗i (di(l)), where di is the differential of the length
function l considered as a function of xi; pi is the projection pi : x 7→ xi. In words,
the distribution B is generated by the infinitesimal moves of xi’s orthogonal to the
bisectors of the angle xi−1xixi+1. One can easily prove the following result:
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Theorem 6. A germ of a k-dimensional manifold U in Cycln is a germ of k-
parametric family of n-periodic trajectories in a (smooth) billiard domain if and
only if U is an integral manifold for the distribution B (that is TU ⊂ B|U).2

The following family of examples is easy to visualize: for d = 2 and n = 2,
the billiard domains with 1-parametric complete families of 2-periodic trajectories
(that implies that each point on ∂D belongs to a two-periodic trajectory) are
exactly the planar bodies of constant width. One can think of a mechanical system
consisting of an axis (of length w) with a couple of independent wheels attached
at its ends and moving without sliding; a trajectory which rotates the axis by
180o while keeping the wheels moving with positive speed each sweeps a curve of
constant width w; at the same time its motion is described by a non-holonomic
distribution locally diffeomorphic to the standard contact structure in R33

The distribution B is completely non-integrable on the level sets of l, meaning
that there are no further global integrals for B, or, equivalently, that the Lie
brackets of the vector fields tangent to B generate the tangent spaces to {l =
const}.

This construction seems to be useful to address the following (surprisingly stub-
born) conjecture by Ivrii:

There are no convex planar billiard domains with 2-dimensional
families of n-periodic orbits.

In particular, the proof of (known, due to Rychlik – and others, [11]) the this
result for 3-[periodic orbits becomes a rather transparent exercise in non-integrable
distributions. More generally, there exists an algorithm (Cartan’s prolongation
method) which implies that if a germ of k-dimensional integral manifold for a
real-analytic distribution (such as B) does not exist, this will be detected after
a finite number of steps, involving differentiations and algebraic operations [9].
Unfortunately for computers, even the n = 4 case seems to be too involved for a
purely machine-generated solution.

On the positive side, the distributional approach led to the following results:

• There are no 2-dimensional families of 3- or 4-periodic trajectories in the
dual planar billiards ([7, 13], resp);

• The spherical billiards with 2-dimensional families of 3-periodic trajecto-
ries are all equivalent to the domain bounded by right equilateral triangle
[1].
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Birkhoff’s conjecture

Maxim Arnold

Elliptic billiards represent the most ancient part of the mathematical billiards the-
ory. Arising from geometrical optics, elliptic billiards are now considered as a toy
model for the general theory of integrable Hamiltonian systems. That is the main
reason why elliptic billiards attract so much attention. Besides their extremely
simple structure, billiards in elliptic tables develop almost every phenomenon any
low-dimensional Hamiltonian system has.

An ellipse can be considered somehow as an internal perturbation of a disc.
Thus many qualitative properties of the billiard transform may survive under
such perturbation. For example it is well-known that elliptic billiards are also
completely integrable. Any trajectory, except those which pass trough the foci, is
tangent to some confocal conic. As the interior of a disk is foliated by caustics
having the form of concentric circles, the neighbourhood of the boundary of an
elliptic billiard table is foliated by caustics having the form of confocal ellipses.

Birkhoff conjectured that the only billiards in strictly convex domains with this
property are elliptic billiards. It is hard to believe that such a natural question
still remains unsolved.

The aim of the present talk is to provide the proof of Bialy’s theorem (see [1],[2])
which is a partial answer to the conjecture. If the whole phase space of the billiard
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transform is foliated by continuous closed invariant curves then the billiard table
is a disk.

In this purely educational talk, the concepts of convex billiard phase space and
area form will be introduced. I shall provide the connection between the area
form on the phase space of a billiard transform and the area form for the space
of oriented lines in order to derive isoperimetric inequality and mirror equation.
These two expressions lead to the cornerstone contradiction of the miraculous
looking proof of Bialy’s result.
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Interpolating Hamiltonians and length spectrum

Peter Spaeth

Let Ω be a bounded strictly convex domain in R2 with smooth boundary. The
collection Γ(m,n) of periodic billiard trajectories within Ω is non-empty for any
winding number 0 < m/n < 1/2 by the Poincaré–Birkhoff Theorem. So a natural
question to then ask is what can be determined about the lengths of periodic
billiard trajectories within Ω. In the early 1980s Marvisi and Melrose [1] studied
the lengths of periodic trajectories close to the boundary of Ω.

Let L(Γ(m,n)) be the collection of all lengths of elements of Γ(m,n) and denote

L(Ω) =
⋃

m,n

L(Γ(m,n)) ∪ NL∞,

where L∞ is the length of the boundary ∂Ω of Ω. L(Ω) is closed and every number
mL∞ is a limit point from below of ∪nL(Γ(m,n)) whenever m ≥ 1. Set

Tm,n = supL(Γ(m,n)), tm,n = inf L(Γ(m,n).

To study periodic billiard trajectories in a neighborhood of ∂Ω, up to deriva-
tives of all order, the billiard map agrees with a so-called interpolating Hamiltonian
[1]. Hence the billiard map can be reinterpreted as the Hamiltonian flow of the
interpolating Hamiltonian. The following result is deduced from this point of view.

Theorem 7. [1] For every m ≥ 1 and every k ∈ N

(1) nk(Tm,n − tm,n) −→ 0 as n→ ∞.

Furthermore there exist constants ck,m = ck,m(Ω) such that

(2) Tm,n ∼ mL∞ +
∞
∑

k=1

ck,mn
−2k (as n→ ∞).

�
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The constants ck,m depend on the geometry of the domain Ω and, remarkably,
are related to the spectrum of the Dirichlet problem

{

∆u = λ2u in Ω ⊂ R2,
u|∂Ω = 0.

We would also like to remark that if ∂Ω is analytic one can improve the poly-
nomial convergence in (1) with exponential convergence [2].

Now for outer billiards, one studies not the length spectrum but rather the area
spectrum, in other words the areas enclosed by periodic outer billiard trajectories.
Tabachnikov [4] obtains a similar expansion to that of equation (2).

Tabachnikov also asks if the area spectrum can be related to the spectrum of
some differential operator as is the case for the inner billiard above. Because the
outer billiard map is invariant under affine transformations so too should such an
operator be.
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Introduction to rational polygons

Karsten Kremer

Let Q be a polygonal billiard table. If Q is simply connected and its angles are
rational multiples of π, then the billiard flow on Q corresponds to the geodesic
flow F θ on a translation surface M . After explaining the construction of M and
introducing some basic facts about translation surfaces we show that the billiard
flow on Q is minimal in almost every direction. The main reference for this talk
is [1].

1. Unfolding

The main idea for investigating billiards on a polygonal table is to reflect the
table instead of reflecting the ray. This process of unfolding the billiard table is
called the Katok-Zemliakov-construction: Each time the billiard ray hits a side s
of Q we reflect the table Q using the reflection σs on s. Then the ray continues
travelling on a straight line on σs(Q). When the ray again hits a side σs(t) (for
some side t of Q) the table is again reflected. Note that σσs(t) = σsσtσs, hence all
possible reflections are contained in the group A(Q) := 〈σs : s side of Q〉 which is
a subgroup of the group R2 ⋊ O2(R) of motions in the plane. A ray in direction
v is mapped by σs to a ray in direction σ̄s(v), where σ̄s is the projection of σs to
the second component. Let G(Q) be the subgroup of O2(R) generated by the σ̄s.

Definition 1. Q is rational if G(Q) is finite.
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Being a rational polygon thus means that once started a billiard ray can only
move in finitely many directions. If Q is simply connected this is equivalent to
the angles of Q being ki

ni
π for ki, ni ∈ N coprime (i = 1, . . . , ℓ). Then G(Q) is

isomorphic to the dihedral group DN , where N = lcm(ni).
The phase space of the billiard was Q×S1/∼ with (x, v) ∼ (x, σ̄s(v)) for x ∈ s.

We now replace this by M := Q×G(Q)/∼ with (x, g) ∼ (x, σ̄s ◦ g) for x ∈ s. As
G(Q) is finite this is an oriented compact surface with a flat metric, i. e. constant
curvature 0 except in the vertices of Q (called saddle points). The billiard flow on
Q with starting direction θ now becomes the geodesic flow F θ on M .

Remark 2. g(M) = 1 + N
2

(

ℓ− 2−
ℓ
∑

i=1

1
ni

)

Proof. We use the tiling of M by copies of Q to compute the Euler characteristic
χ(M): The number of faces is 2N , the number of edges ℓN , and the number of
vertices

∑

2N
2ni

= N
∑

1
ni
. Thus we have 2−2g(M) = χ(M) = N

(

2−ℓ+∑ 1
ni

)

. �

2. Translation surfaces

The surface M is defined as a set of (possibly transformed) copies of Q glued
together by translations. We identify the copies of Q with subsets of C, thus
M becomes a Riemann surface, where (almost) all coordinate change maps are
translations:

Definition 3. A Riemann surface X together with an atlas zα : Uα → C is called
a translation surface with singularities Σ = {P1, . . . , Pn} ⊂ X if

• ϕ = zα ◦ z−1
β : z 7→ z + c for (Uα ∪ Uβ) ∩Σ = ∅

• Pi ∈ Uβ ⇒ zβ(Pi) = 0 and ϕ : z 7→ zk for k ∈ N>1.

On a translation surface we have dzα
dzβ

= ϕ′ = 1, therefore dzα = dzβ, thus we

can define globally the (so called Abelian) differential

dz :=

{

dzα on Uα

0 at Pi

on X. On the other hand given an Abelian differential ω on X , we can define charts
U → C by x 7→

∫ x

x0
ω for some arbitrary x0 ∈ U . Then two different charts differ

only by a constant, hence these charts define a translation structure on X .
For a half-translation surface we also allow coordinate change maps ϕ of the

form z 7→ −z + c. In this case we get dzα = ±dzβ, thus we cannot define a
differential dz globally, but for the quadratic differential dz2 this is possible. We
can also get back the half-translation structure from a quadratic differential ω as
above, we only have to replace ω by a branch of its square root when integrating.

3. SL2(R)-action on translation surfaces

For a translation surface S = (X, {zα}) and a matrix A ∈ SL2(R) we define

A ·X := (X, {cA ◦ zα}) where cA : R2 → R2, z 7→ Az.
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This is again a translation surface, thus we have an action of SL2(R) on the set of
translation surfaces. The stabiliser Γ(S) of S under this action is called the Veech
group of S.

Example 4. Let S be the regular octagon of side length 1 with opposite edges
glued together. Obviously the rotation 1

2

√
2
(

1 −1
1 1

)

by 45◦ is an element of Γ(S).
We also can divide S into two horizontal cylinders: one with height 1 and width
1 +

√
2, the other with height 1

2

√
2 and width 2 +

√
2. Then the matrix

(

1 2
√
2

0 1

)

maps both cylinders onto themselves and induces the identity on the boundary of
the cylinders. Hence it is also contained in Γ(S).

4. Minimality of F θ

Let F θ be the geodesic flow in direction θ on the surface M with at least one
saddle point. We denote the orbit of x by F∗(x) and its half orbits by F+(x) :=
{Ft(x) : t > 0} and F−(x) := {Ft(x) : t < 0}.

Definition 5. F θ is minimal if every trajectory F θ
∗ (P ) is dense.

Lemma 6. If a periodic trajectory exists in direction θ, then there is also a cylinder
and a saddle-connection in this direction.

Proof. Parallel trajectories stay parallel if there is no saddle point between them.
Thus by moving the starting point of a periodic trajectory a bit perpendicular to
θ we get a cylinder. The only obstruction to enlarging this cylinder further is a
saddle-connection. �

Lemma 7. If F θ
+(P ) is infinite and β := (P,Q ] is an interval perpendicular to θ,

then F θ
+(P ) hits β again.

Proof. The set S :=
{

first intersection of F θ
−(X) with β : x ∈ Σ ∪ {P}

}

is finite.

ChooseQ′ on β such that (P,Q′ ] contains no point of S. Now the strip F θ
+((P,Q

′ ])
hits β again (because its area is bounded) without hitting P or Σ before (by
definition of S). �

Theorem 8. If there is no saddle-connection in direction θ, then F θ is minimal.

Proof. Suppose there is X ∈ M such that the closure of its orbit A := F θ
∗ (X) is

not equal to M . Then A is an F θ-invariant set. Choose P in its boundary ∂A,
and let α be an interval containing P perpendicular to θ. As P ∈ ∂A there is
Q ∈ α \A.

The complement Ac of A is open, thus Q is contained in an open interval
β ⊂ α ∩ Ac. Enlarge β as far as possible to find P ′ ∈ A such that (P,Q ] ⊂ Ac.
There is no saddle-connection and by Lemma 6 also no periodic trajectory in
direction θ, hence F θ(P ′) is infinite in (at least) one direction. By Lemma 7
therefore F θ(P ′) hits (P ′, Q ] ⊂ Ac. This contradicts P ′ ∈ A. �
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Periodic Orbits for Billiards

Jon Chaika

Recall that if P is a polygon the billiard flow F on P × S1 is defined by the rule
that (x, θ) travels at unit speed in direction θ in the interior of P and at the
boundary θ changes according to elastic collision. Given a polygon P we say that
the trajectory of (x, θ) is periodic if there exists L such that FL(x, θ) = (x, θ).
Notice that FL(x, θ) = (x, θ) does not necessarily imply that FL(y, θ) = (y, θ).

It is often convenient to invoke symbolic dynamics for billiards. Given a polygon
P with n sides label the sides by {1, 2, ..., n}. One can identify a point (x, θ) with
the sides it hits. That is let τ : P ×S1 → {1, 2, ..., n}Z by τ(x, θ) = ...c−1, c0, c1, ...
where ci is the label of the ith side hit by the billiard flow of (x, θ). This map is
defined for the full measure set of (x, θ) whose orbits avoid the vertices of P . If the
orbit of x in direction θ is periodic then the coding is as well. The cominatorial
class of a periodic trajectory is this coding and all of its shifts (which form a finite
set).

A seminal result in the study of periodic trajectories deals with the asymptotics
of periodic trajectories with a given length. Let N(P,L) denote the number of
combinatorially different orbits of length less than or equal to L.

Theorem 1. (Masur) For every rational polygon P there exist constants cp, Cp

such that lim inf
L→∞

NP (L)
L2 ≥ cP and lim sup

L→∞

NP (L)
L2 ≤ CP .

Question 1. For every rational polygon P does lim
L→∞

NP (L)
L2 exist?

Vorobets has computed estimates on cP , CP which still leave an enormous gap.
Masur also showed that the directions of periodic trajectories were dense. Using
Masur’s result this was improved.

Theorem 2. (Boshernitzan, Galperin, Krüger, Troubetzkoy) Let P be a rational
polygon, for a residual set of x ∈ P the set of periodic directions is dense in S1.

The previous two results provide asymptotics, but one can ask for explicit pe-
riodic orbits.

Theorem 3. (Boshernitzan and Galperin, Stepin, Vorobets) Let P be a rational
polygon and S be a side. If x ∈ S and θ is perpendicular to S then the trajectory
of (x, θ) is periodic (if it avoids vertices).

The proof is based on the Poincaré recurrence theorem and the fact that a
trajectory in a rational polygon only travels in finitely many angles.

This result has been applied to general right triangles.
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Theorem 4. (Troubetzkoy) Every right triangle has a periodic trajectory in the
direction perpendicular from its base.

In fact he showed that most points on the base belong to a periodic orbit in
this direction.

Definition 1. A periodic trajectory in a polygon P is called stable if there is
a neighborhood of P such that all the polygons in the neighborhood have periodic
trajectories with the same combinatorics.

Fix a direction. For each side k let αk denote the angle this side makes with
the fixed direction.

Theorem 5. (Galperin, Stepin, Vorobets) A periodic trajectory with combina-
torics (a1, a2, ..., ar) is stable iff each side appears equally often with odd subscripts
and even subscripts.

Theorem 6. (Galperin, Stepin, Vorobets) There are no stable periodic trajectories
in rectangles nor in countably many right triangles.

Theorem 7. (Hooper) No right triangle has a stable periodic orbit.

Question 2. Does every triangle have a periodic orbit?

It is classical that any triangle with angles less than 90◦ has a periodic trajectory,
the Fagnano orbit. This orbit is given by marking the intersection of altitude with
the opposite side. There is a periodic orbit connecting these three points. This
construction fails whenever a triangle has an angle greater than or equal to 90◦

because one of the altitudes no longer lies in the interior of the triangle.

Theorem 8. (Schwartz) Every triangle with angles less than 100◦ has a periodic
trajectory.

The proof of this result is involved. It requires finding infinite families of pe-
riodic orbits for triangles. In particular the (30◦, 60◦, 90◦) right triangle presents
complications.

Theorem 9. (Schwartz) For every ǫ > 0 there exists a triangle within ǫ of the
(30◦, 60◦, 90◦) triangle whose smallest periodic orbit has length greater than 1

ǫ .

This is much stronger than saying that (30◦, 60◦, 90◦) has no stable periodic or-
bits. It proves that an infinite number of different combinatorics of stable periodic
orbits are found in open sets close to (30◦, 60◦, 90◦).
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The complexity of billiard coding

Frank Herrlich

Let Q ⊂ R2 be a compact polygon with sides C1, . . . , Ck. As usual, a billiard
ray in Q is a straight line that is reflected at the sides of Q according to the
rule “incoming angle = outgoing angle”; if it hits a vertex, the billiard ray stops.
For any billiard ray L in Q, the the sides that it hits define a cutting sequence
c(L) = (c0, c1, . . . ) where the ci are elements of {C1, . . . , Ck}.
We consider two types of coding associated with Q:

A) Directional coding

Fix a billiard ray L which does not hit a vertex of Q. We define LL to be the
language of subwords of c(L). In particular

LL(n) = {subwords of c(L) of length n}.
B) Q-coding

Here we consider subwords of the cutting sequences of all billiard rays in Q. Any
such subword is also the beginning of the cutting sequence of a billiard ray which
starts on the boundary Γ = ∂Q of Q. We call this language LQ, explicitly

LQ(n) = {initial segment of length n of some ray L emanating at Γ}.
For a language L we denote by pL(n) the number of different words of length n in
L; the function pL is called the complexity of L.
The main results on the complexity of the two types of coding associated with
billiard rays in Q are:

Theorem 8 (Hubert [3]). Let Q be convex and rational with angles ki

ri
π, i =

1, . . . , k. Assume ki and ri relatively prime and let r = lcm(r1, . . . , rk). Let L
be a billiard ray in Q that does not hit a vertex and is not parallel to a saddle
connection. Then for all sufficiently large n we have

pL(n) = n(k − 2)r + 2r,

where we write pL instead of pLL
.
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Theorem 9 (Cassaigne, Hubert and Troubetzkoy [1]). For any rational polygon
Q we have

pQ(n) ∼ n3,

where again we write pQ instead of pLQ
.

Here ∼ means that the ratio
pQ(n)
n3 is bounded by constants from above and from

below. The statement in [1] requires Q to be convex, but N. Bedaride showed that
this assumption is not necessary.

Theorem 10 (Galperin, Krüger and Troubetzkoy [2]). For an arbitrary polygon
Q, the complexity of LQ grows subexponentially, i. e.

lim
n→∞

log pQ(n)

n
= 0.

The classical example for Q is the square. Here any line L with an irrational
slope α satisfies the hypothesis of Theorem 1. Moreover any such line is dense in
Q. It follows that the language LL depends only on α, not on the initial point.
By elementary reasoning one finds pL(n) = 4n+ 4 for any n ≥ 1.
Traditionally, the two vertical sides of the square are labelled by the same symbol,
say 0, and the two horizontal sides by 1. Then the complexity of the cutting se-
quence is reduced to p(n) = n+1; such sequences are known as Sturmian sequences.

For the proof of the first two theorems, the polygon Q is unfolded by reflections
at the sides to a compact surface X . Note that with the notation of Theorem 1, X
is triangulated by 2r copies of Q. The total number of sides in this triangulation

is kr, and the number of vertices is
∑k

i=1
r
ri
. The copies of Q endow X − V (X)

with a translation structure, where V (X) is the set of vertices. Each vertex v is a
cone singularity for this structure of order ki if v is a copy of the i th vertex of Q.

The sum of the orders of the vertices is
∑k

i=1
r
ri
· ki. Since on the other hand, the

sum of the angles in Q is
∑k

i=1
ki

ri
· π = (k − 2)π, we find the useful formula

∑

v∈V (X)

ord(v) = (k − 2) · r.

The billiard ray L on Q transforms into a straight line L′ on X . This line
intersects the edges of the triangulation of X in a new cutting sequence c(L′). We
label the edges of X as E(X) = {Cij : i = 1, . . . , k; j = 1, . . . , r}. Then c(L′) has
entries in E(X) and defines a new language LL′ with a complexity p′ = pLL′

. The
proof of Theorem 1 is achieved by the following two propositions:

Proposition 1. p′(n) = n(k − 2) r + 2r for all n.

Proposition 2. p′(n) = pL(n) for all sufficiently large n.

For the proof of Proposition 1, we consider the difference p′(n + 1) − p′(n):
Any contribution to this difference corresponds to a ray which is parallel to L and
intersects n edges of X properly and then ends in a vertex. Conversely, in any
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vertex v ∈ V (X) there are ord(v) different directions parallel to L′. Therefore we
find with the help of the above formula

p′(n+ 1)− p′(n) =
∑

v∈V (X)

ord(v) = (k − 2) · r.

Since p′(1) = k · r, the proposition follows by induction.

For the proof of Proposition 2, we consider the closure W of the set of all
σm(c(L′)) of the cutting sequence under iterates of the shift map σ. The closure
is taken in the space E(X)N of all sequences with entries in the set of edges of
X , endowed with the product topology for the discrete topology on X . It turns
out that W consists of the cutting sequences c(L̃) for lines L̃ parallel to L′, and of
sequences which, after an arbitrary finite initial segment, are of that type. Now
if pL(n) would be strictly smaller than p′(n) for infinitely many n, we could find
sequences zn and yn of distinct elements in LL′(n) that have the same image in
LL. These sequences could be assumed to converge in W . The limits would have
to be equal which would contradict our assumption.

The main ingredient in the proof of Theorem 2 is counting generalized diagonals
in the polygon Q, i. e. billiard rays that begin and end in a vertex. On the unfolded
surface X , they correspond to saddle connections, i. e. geodesics connecting two
vertices of X .

Recall that there are countably many generalized diagonals even in the simplest
case where Q is the square: Any line with a rational slope gives a periodic orbit
thus its parallel through a vertex is a generalized diagonal.

For a saddle connection s on X which is not an edge, denote by l(s) the number
of its links, i. e. connected pieces cut out by the edges of X . Thus s starts in a
vertex v0(s), then crosses l(s)− 1 edges, and finally ends in a vertex v1(s).

For n ≥ 0 let N(n) be the number of generalized diagonals in Q whose corre-
sponding saddle connections s on X satisfy l(s) ≤ n. Note that N(0) = k, the
number of vertices of Q, and that the edges of Q are not counted as generalized
diagonals.

The main result of [1] relates the number of generalized diagonals of Q to the
complexity p = pLQ

of the billiard coding on Q:

Theorem 11 ([1] Thm. 1.1).

p(n) =
n−1
∑

i=0

N(i).

From this result, Theorem 2 follows using Masur’s well known estimates of the
number of saddle connections:

Theorem 12 (Masur [4], [5]). There exist constants C1, C2 such that for all n,

C1 · n2 ≤ N(n) ≤ C2 · n2.



Arbeitsgemeinschaft: Mathematical Billards 985

It should be noted that Theorem 4 holds for arbitrary polygons, while Theo-
rem 5 makes essential use of the fact that Q is rational. As already mentioned,
the proof of Theorem 4 in [1] requires Q to be convex, but N. Bedaride found a
proof without this assumption.

A key role in the proof of Theorem 4 is played by the bispecial words in the
language L = LQ. They are defined as follows: For n ≥ 1 and c = (c1, . . . , cn) ∈
L(n), let ml(c) be the number of edges e such that ec = (e, c1, . . . , cn) ∈ L(n+1),
similarly let mr(c) be the number of e such that ce ∈ L(n + 1) and mb(c) the
number of pairs (e1, e2) of edges such that e1ce2 ∈ L(n+2). An element c ∈ L(n)
is called bispecial if both mr(c) > 1 and ml(c) > 1. Denote by B(n) the set
of bispecial elements in L(n). With these notations, the following lemma can be
proved by elementary reasoning:

Lemma 1 ([1] Thm. 2.1). For n ≥ 0 let s(n) = p(n+ 1)− p(n). Then

s(n+ 1)− s(n) =
∑

c∈B(n)

(mb(c)−ml(c)−mr(c) + 1).

For c ∈ B(n) let gd(c) be the number of generalized diagonals in Q whose
corresponding saddle connections s on X satisfy l(s) = n + 1 and whose cutting
sequence is c(s) = c. Note that by definition

N(n)−N(0) =

n−1
∑

i=0

∑

c∈B(i)

gd(c).

The crucial step in the proof of Theorem 4 now is

Lemma 2 ([1] Lemma 3.1). For any n ≥ 1 and any c ∈ B(n)

mb(c) = ml(c) +mr(c) + gd(c)− 1.

It follows by Lemma 1 that s(n + 1) − s(n) =
∑

c∈B(n) gd(c) for any n ≥ 0.

Now Theorem 4 easily follows using the above formula for N(n).

For the proof of Lemma 2 consider the space

TΓ = {(x, ϕ) : x ∈ Γ = ∂Q, 0 < ϕ < π}
of tangent vectors at boundary points of Q that are directed to the interior of Q.
TΓ consists of k rectangles, each containing the billiard rays in Q that start at a
specific side. These rectangles are considered as the 0-cells of TΓ.

Let f : TΓ → TΓ be the billiard map, that sends a vector (x, ϕ) to the vector of
the corresponding ray at the point of its first reflection. The map f is not defined
in the points where the corresponding billiard ray runs directly into a vertex. The
set of these points is a union of curves that subdivide TΓ into subsets called 1-cells.
Inductively we obtain n-cells as the connected components of the complement of
the set where fn is not defined.
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Note that for all billiard rays in a fixed n-cell, the first n entries of the cutting
sequence are the same. More precisely, the n-cells correspond bijectively to the
words of length n in LQ.

Now fix c ∈ L(n) and denote by C the corresponding n-cell. Then mb(c) is the
number of cells obtained by subdividing C by the curves where fn or f−1 is not
defined. The number of these curves is i = mr(c) − 1 and j = ml(c) − 1, resp.
Each intersection point of two such curves corresponds to a generalized diagonal;
thus the total number of intersection points is l = gd(c). It is proved in [1] Lemma
3.1 that all these intersection points are ordinary double points. Thus we obtain
a cell decomposition of C with mb(c) faces, l + l0 vertices (where l0 denotes the
number of vertices on ∂C) and i+ l + j + l + l0 edges. Euler’s formula gives

1 = mb(c) + l + l0 − i− l− j − l − l0,

which proves Lemma 2.
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Coding billiards in regular 2k-gons

Gabriela Schmithüsen

In this talk we study cutting sequences of geodesics rays in translation surfaces
obtained from regular 2k-gons (k ≥ 2). The content is taken from [1], [2] and [3].

Suppose that we are given a translation surface obtained from glueing parallel
edges of a polygon with 2k edges. Suppose further that the edges of the polygon
are labelled with the letters a1, . . . , ak, where edges that are identified on the
translation surface carry the same letter. Recall that the cutting sequence of a
geodesic τ is the bi-infinite word in the letters a1, . . . , ak obtained by reading off
the labels of the edges that τ crosses. The following two questions naturally arise:

• Which bi-infinite sequences over the alphabet A = {a1, . . . , ak} are cutting
sequences?

• Can one reobtain the geodesic from its cutting sequence?
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These questions can be satisfactorily answered, if the polygon is a regular 2k-
gon. We will first describe the classical result for the square (i.e. k = 2) that
states that the cutting sequences of non-periodic geodesics are precisely the Stur-
mian sequences. We then explain the recent result of Smillie and Ulcigrai which
gives a nice explicit description of the cutting sequences in the same flavour for
regular 2k-gons with k ≥ 3.

1. The torus - case

Consider the torus obtained by glueing parallel edges of a unit square and let us
label the vertical edges by 0 and the horizontal edges by 1. We may lift a geodesic
τ on the torus to a line l on its universal covering, the Euclidean plane R2. The
cutting sequence of τ becomes the cutting sequence of the line l with the unit
lattice Λ = < e1, e2 > where e1 and e2 are the two standard basis vectors of
R2. We assume that the line l does not meet any vertex of the lattice and that
the slope of l is irrational. A first simple but crucial observation is that if the
geodesic line l : y = mx+ b has slope m ≤ 1, then it cannot cross two consecutive
horizontal edges, i.e. its cutting sequence does not contain two consecutive 1’s.
Similarly, if m ≥ 1 it does not contain two consecutive 0’s. One calls a sequence
of type 0 if it does not contain the subword 11 and of type 1 if it does not contain
the subword 00. The fact that cutting sequences on the torus are of type 0 or of
type 1 also follows from the result that the complexity of the cutting sequence c
is pc(n) = n+1 (use n = 2), as it was shown in the previous talk. Recall that the
complexity pc(n) is the number of subwords of c of length n. Since we assume that
the slope of the line l is not rational, we have the following remark.

Remark 1. The cutting sequence of a geodesic on the torus is a Sturmian sequence,
i.e. it has complexity n+ 1 and is not eventually periodic.

It turns out that this actually is the only restriction and that both of our
questions are answered by the following theorem.

Theorem 2. ([1, Theorem 6.4.22]) Every Sturmian sequence is the cutting sequence
of some geodesic on the torus and uniquely determines it.

To give some idea of the proof, we explain how to reobtain the slope m of
a line l from its cutting sequence. This involves two steps: in the first step one
develops a deriving process, which leads to the so called additive and multiplicative
coding sequence. In a second step, one reobtains m from the multiplicative cutting
sequence using the continued fraction algorithm.

Definition 3. Suppose that c is a Sturmian sequence of type 0. Then c consists of
blocks of 0’s which are separated by single 1’s. The derived sequence c′ is obtained
from c by removing one 0 from each block. If c is of type 1, one similarly obtains
c′ by removing one 1 from each block of 1’s.
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The derived sequence c′ of a cutting sequence c can be geometrically understood
as follows. Consider the sheared lattice Λ′ = fA(Λ), where fA is the affine map

fA :

(

x
y

)

7→ A ·
(

x
y

)

with A =

(

1 1
0 1

)

in type 0 and A =

(

1 0
1 1

)

in type 1.

Observe that looking at its image on the torus, we have in the first case replaced
the vertical segment and in the second case the horizontal segment by the diag-
onal. From this one directly sees that the cutting sequence of the same geodesic
with respect to Λ′ instead of Λ is c′. Instead of taking the cutting sequence of l
with respect to Λ′ = fA(Λ), one may alternatively take the cutting sequence of
l′ := f−1

A (l) with respect to the original lattice Λ. It follows in particular that
c′ is again a cutting sequence. We denote by s0 the type of c, by s1 the type of
c′ and recursively by sn+1 the type of c(n+1) = (c(n))′. The sequence sn is then
the additive coding sequence of c. We obtain from this the multiplicative coding
sequence an by counting consecutive equal letters in sn, i.e. let ψ(c) = c(n), where
n ≥ 1 is minimal such that c(n) is of different type than c and define an ≥ 1
recursively to be the smallest number such that (ψn(c))(an) = ψn+1(c).

A short calculation shows that the slope m′ of the line l′ is m
1−m in type 0 and

m− 1 in type 1. From this it is fast to see, that

m =
1

a0 +
1

a1+
1

a2+...

is the continued fraction [0; a0, a1, a2, a3, . . .] in type 0. A similar result holds in
type 1.

2. The 2k - gon

In their recent work [3], Smillie and Ulcigrai mimic the approach for the torus and
obtain a beautifully explicit answer for the translation surface obtained by glueing
parallel edges of a regular 2k-gon for k ≥ 3. We deal in this talk only with the
case k = 4. This is not really a restriction, since the other cases work very much
in the same way.

A
B

C

D
A

B

C

D

Figure 1: The case k = 4
– the regular octagon

A B C D

Figure 2: The admissibility graph

A first observation is that instead of the two types of slopes in the case of the
torus, one should distinguish eight different types for the direction of the geodesic
τ , namely: θ ∈ [0, π8 ), θ ∈ [π8 , 2

π
8 ), . . . and θ ∈ [ 78π, π]. Here θ denotes the angle

that τ forms with the horizontal direction. One easily reads off from Figure 1 that
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for θ ∈ [0, π8 ) the cutting sequence of τ defines a bi-infinite path in the admissibility
graph in Figure 2. The other seven cases are obtained from the case θ ∈ [0, π8 ) by
applying a symmetry of the surface. In order to transfer the deriving process, let
us summarize what we did in the torus case. We applied an affine map depending
on the type of the slope. Then c′ was the cutting sequence of the preimage of the
line. In the octagon case something similar turns out to work. Consider the affine
map γ = σ ◦ ν, where σ is the reflection on the vertical axis and ν is the parabolic
element fixing the horizontal direction, such that the derivatives of σ and ν are:

(

−1 0
0 1

)

and

(

1 2(1 +
√
2)

0 1

)

, respectively.

For the other seven types, one obtains the affine map γ by conjugating σ◦ν by the
corresponding symmetry of the surface. τ ′ is then by definition the preimage of the
geodesic τ under γ. A main ingredient of [3] is to give a combinatorial description
of the cutting sequence of τ ′: Let c be a bi-infinite sequence that describes a path
in the graph in Figure 2. Form the sequence c′ by keeping only sandwiched letter,
i.e. letters which are preceded and followed by the same letter. E.g. the word ...
CACCCDBDCD... becomes ....ACBC... . We call c′ the derived sequence of c.

Theorem 4. If c = c(τ) is the cutting sequence of a geodesic τ , then for the derived
sequence c′ holds: c′ = c(τ ′).

Similarly as in the torus case one obtains a multiplicative coding sequence in the
letters 0,1, . . . , 7, by keeping track of the type when applying the deriving process.
This is used to describe which cutting sequences may occur and to reobtain the
slope of the geodesic from its coding by a continued fraction-like algorithm.
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Introduction to the theorem of Kerkhoff, Masur and Smillie

Thierry Monteil

The theorem of Kerkhoff, Masur and Smillie [5] asserts that for any connected
translation surface S (in particular for any rational polygonal billiard), and for
almost every θ ∈ S1, the flow in the direction θ is uniquely ergodic.
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1. Rough idea

To define the flow on a polygonal billiard, we need the Euclidean notion of
angle, whereas for translation surfaces we only need the affine notion of straight
line.

In particular, we can apply the matrix gt =

(

et 0
0 e−t

)

on a translation surface S

without changing the dynamical properties of the flow defined on it.
By contracting the vertical direction, gt accelerates the time of the vertical flow, so
that the asymptotic behaviour of the trajectory {gtS} on the space of translation
surfaces will provide some informations about the dynamics of the vertical flow
defined on S.

2. Remark

Applying the flow gt to the standard flat torus R2/Z2 will lead to a degenerate
torus (its vertical meridians are shrunk), but it is not always the case, since it is
sometimes possible to reorganise the translation surface while applying gt. For

example, let us consider the action of A =

(

2 1
1 1

)

on the standard flat torus,

which is well defined since A ∈ SL(2,Z).

A reorganise

The matrix A is diagonalisable, with two orthogonal eigenlines corresponding to
the eigenvalues λ = (3 +

√
5)/2 and λ−1. If we rotate the torus so that the

eigenlines become vertical and horizontal, we obtain a new torus S and the action
of A on R2/Z2 corresponds to the action of glog λ on S, hence glog λS = S and the
trajectory {gtS} is periodic.

glogλ reorganise

3. Strategy of the proof

The proof of the theorem is split into three parts:

(1) In order to deal with the asymptotic behaviour of the trajectory {gtS},
we will define a convenient topology on the set of translation surfaces and
provide a criterion for compactness.
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(2) Masur’s criterion [6]: if {gtS} does not converge to infinity (that is, if there
exists a subsequence tn → ∞ such that gtnS stays in a given compact),
then the vertical flow is uniquely ergodic.

(3) For any translation surface S and for almost every θ ∈ S1, the flow in
the direction θ does not converge to infinity (meaning that the previously
discussed degeneration is a rare phenomenon).

We will focus on the first two parts.

4. Topology on the set of translation surfaces

Any translation surface can be triangulated so that the edges are saddle con-
nections, and any collection of saddle connections having disjoint interiors can be
extended to such a triangulation. Thanks to the Euler characteristic, the number
of triangles in a triangulation depends only on the number of singularities and on
the genus of the surface.
Let S be a translation surface and T be a triangulation of S. We define a small
neighbourhood of S by letting the edges of T (viewed as a vectors of R2) move
slightly around their initial position. In particular, two nearby translation surfaces
admit triangulations that have the same combinatorics of glueing (and therefore
have the same genus). Each saddle connection in S can be written as a sum of
edges of T , so that the choice of the triangulation is not relevant.

Let systole(S) denote the length of a shortest saddle connection in S. Let us
prove that, given g ≥ 1 and ε > 0, the set of translation surfaces of genus g (and
of constant area 1) satisfying systole(S) ≥ ε is compact.
For this, let Sn be a sequence of translation surfaces of genus g whose systole is
larger than ε. To get compactness, we have to ensure that it is possible to find
a triangulation of each Sn whose edges have uniformly bounded length. We can
achieve this by starting from any triangulation Tn of Sn, and assume that the
longest edge e of Tn is very long. This edge bounds two triangles whose edges
have length at least ε. Since the area of Sn is 1 and e is the longest edge, the
angles that the triangles make with e are very small.

small acute angle

new shorter edge

longest edge e of Tn

length ≥ ε

So we can reorganise the triangulation of S to get a better triangulation, by re-
placing (with a flip) e by a shorter saddle connection whose length if smaller by
a constant of at least ε/2. So after finitely many such reorganisations, we get a
triangulation of Sn whose edges have uniformly bounded length (the bound is of
the order of 1/ε).
Since the number of triangles is bounded, there are only finitely many combina-
torics of glueings, so that we can assume that the type of the triangulation is
fixed along a subsequence. Up to another subsequence, each edge of each triangle
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converges, so that we can construct a limit translation surface S∞.

We also would like to say that two points in two close surfaces are close to each
other if they are close in a common triangulation. Some tricky stuff can happen
near a surface which admits two symmetric triangulations (different points of the
surface will be identified). This problem can be solved by considering marked
translation surfaces to break the symmetry, we will not take care about this later.

5. Proof of Masur’s criterion

Let S be a translation surface whose trajectory {gtS} does not converge to
infinity. Let {tn} be a subsequence such that Sn := gtnS converges to a translation
surface S∞.
Assume by contradiction that the vertical flow in S is not uniquely ergodic: there
exist two distinct ergodic probability measures µ 6= ν that are invariant under the
vertical flow. Let Q be a horizontal rectangle in S such that µ(Q) 6= ν(Q).
Let x be a generic point for µ. We can follow the trajectory {xn} of x on {Sn}
under gtn . Passing to a subsequence, we can assume that this trajectory converges
to some x∞ ∈ S∞. Do the same for y with ν.
Let us first assume that there exists an open set that does not meet any singularity
which contains a rectangle R∞ in S∞ such that x∞ (resp. y∞) is the lower-left
(resp. upper-right) corner of the rectangle. So, for n big enough, we can still
embed a rectangle Rn in Sn, whose dimensions (wn, hn) are very close to the ones
of R∞, and such that xn (resp. yn) is the lower-left (resp. upper-right) corner of
it. Let us apply g−1

tn to Rn: we get a very long rectangle in S (of height etnhn).

gtn limit
S

y
•

x•

g−1
tn

Rn

Q

Sn

•

•

xn

yn

Rn

S∞

•

•

x∞

y∞

R∞

Its right side corresponds to the orbit of x under the vertical flow from time 0
to time etnhn, and its left side corresponds to the orbit of y under the vertical
flow from time −etnhn to time 0. If φt denotes the vertical flow on S, Birkhoff’s
ergodic theorem applied to the characteristic function of Q tells us that

1

T

(

∫ T

t=0

χQ(φ
t(x))dt −

∫ 0

t=−T

χQ(φ
t(y))dt

)

−−−−→
T→∞

µ(Q)− ν(Q) 6= 0



Arbeitsgemeinschaft: Mathematical Billards 993

For T = etnhn, the parenthesis on the left side is the difference between the length
of the intersection of Q with the right side of the rectangle g−1

tn (Rn) and the

length of the intersection of Q with the left side of the rectangle g−1
tn (Rn), which is

bounded by two times the height of Q (a defect happens when g−1
tn (Rn) is astride

a vertical side of Q, which can happens at most twice). So, we get a contradiction
when n goes to infinity.

We assumed the possibility to embed a nice rectangle R∞ in S∞ with x∞ and
y∞ as opposite corners. If this is not the case, since x and y are not on the
vertical of some singularity, we can ensure (up to shifting some elements of the
subsequence {tn}) that {xn} and {yn} stay uniformly far from the singularities, so
that x∞ and y∞ are not singularities of S∞. Then, since S∞ is connected, there
exists a path in S∞ between x∞ and y∞, which can be surrounded by an open set
not meeting any singularity (by compactness). So, there exists a finite sequence
x∞ = x1∞, x

2
∞, . . . , x

k
∞ = y∞ such that each rectangle with opposite corners xi∞

and xi+1
∞ lies in the open set.

•

•

•

•

•

•

•

x1
∞

this might not be a generic point
for some ergodic measure

x2
∞

x3
∞

xk

∞

If, up to taking more subsequences, each xi∞ is a limit point of the trajectory of
some point xi in S under gtn that is generic for some invariant ergodic measure
µi (for φt), then we can apply the previous reasoning on each rectangle and prove
that µ = µ1 = µ2 = · · · = µk = ν, which concludes the proof.
To ensure this, we can notice that each xi∞ (1 ≤ i ≤ k − 1) can be moved a bit,
so, given a small open neighbourhood U i

∞ of xi∞ in the open set, we have to find
a good substitute for xi∞ in U i

∞. The open set U i
∞ can be backported to an open

set U i
n in Sn, for n big enough. This set and therefore its preimage g−1

tn U
i
n have

uniformly positive Lebesgue measure (in n). Since the Lebesgue measure is an
average of ergodic measures, there exists an ergodic measure µi (for φt in S) that
gives positive measure to the set of points that belong to infinitely many g−1

tn U
i
n,

in particular, there exists a generic point xi for µi in S such that the trajectory
{gtnxi} has a limit point xi∞ in U i

∞.

6. Related results

6.1. Approximating irrational polygonal billiards by rational ones. Bosher-
nitzan and Katok [5] proved that the set of n-gons on which the billiard flow is
ergodic is a dense Gδ subset of the set of n-gons. The result also holds if we re-
strict ourselves to a subspace X of n-gons such that for any N , the set of rational
tables P with |G(P )| ≥ N is dense in X (e.g. the set of right-angled triangles).
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Vorobets [9] gave a quantitative version of this theorem: if P is a polygonal bil-
liard table whose angles θ = (θ1, . . . , θn) are such that there exist infinitely many
rationals of the form P/q = (p1/q, . . . , pn/q), with gcd(p1, . . . , pn, q) = 1 and

||θ − P/q||∞ ≤ 1/22
22

q

, then the billiard flow is ergodic on P .

6.2. Hausdorff dimension of the set of non-uniquely ergodic directions.
Masur [6] proved that for any translation surface S, the Hausdorff dimension of
the set of non-uniquely ergodic directions is less than or equal to 1/2. Cheung
[2] proved that this bound is sharp: there exists translation surfaces whose set
of non-uniquely ergodic directions has Hausdorff dimension equal to 1/2. Masur
and Smillie [7] proved that for any connected component C of any stratum (in
genus at least 2), there exists δ > 0 such that for any generic translation surface
S in the component C, the Hausdorff dimension of the set of non-uniquely ergodic
directions is δ.

6.3. Slow divergence still implies unique ergodicity. Cheung and Eskin [3]
proved that there exists ε > 0, depending only on the stratum of the translation
surface S, such that the condition lim inft→∞ tεsystole(gtS) > 0 implies that the
vertical flow is uniquely ergodic.
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Veech surfaces of genus 2 surfaces and L-shape rectangular billiard

Vincent Delecroix

Flat surfaces can be seen from two points of vue

• a compact Riemann surface S together with a non null Abelian differential
ω ∈ Ω(S)−{0} up to scaling of the Abelian differential and isomorphisms
of the surface,

• a set of polygons of R2 with identification on their boundary up to cut
and paste equivalence.

The flat metric associated to the second definition corresponds to the symmetric
tensor |ω|2. To pass from the first definition, to the second, one has to use a
coordinate chart for which ω = dz or to consider the foliations induced by the
vector fields X and Y of S satisfying ω(X) = 1 and ω(Y ) = i. We refer to [5] for
details.

Starting from a flat surface one can forget its flat structure and consider only its
complex structure. The main argument of McMullen in the classification of genus
2 surfaces consists at looking at all flat structures that exist on a given Riemann
surface. For a Riemann surface S of genus g, the set of Abelian differential Ω(S)
is a complex vector space of dimension g. Hence one can think of the space of flat
surfaces of genus 2 as a topological complex vector bundle of dimension 2 over the
moduli space Mg of Riemann surfaces. The main object used in McMullen’s work
to understand the set of flat structures on a given Riemann surface, is the Jacobian
which is a complex tori endowed with a polarization constructed from the vector
space of Abelian differential Ω(S) and the first homology group H1(S,Z).

1. Geometry and dynamic of SL2(R) action

1.1. Symmetries of a flat surface. As shown in Thierry Monteil’s talk, there
is a well defined action of SL2(R) on the set of flat surfaces. Let us consider the
following particular elements of SL2(R)

gt =

(

et 0
0 e−t

)

rθ =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

nt =

(

1 t
0 1

)

Proposition 3. Any element in SL2(R)−{id} is conjugated to exatly one of the
preceding. An element of SL2(R)− {id} is called

• hyperbolic if it is conjugated to an gt,
• elliptic if it is conjugated to an rθ,
• parabolic if it is conjugated to an nt.

In THIERRY’S TALK, a link was made between the recurrence of the surface
S in the stratum under the flow Gθ = {rθ gt r−θ}t∈R and unique ergodicity of the
directionnal flow in direction θ in the surface S. We refer to his talk for details
about geometry of hyperbolic transformations.

The geometry of parabolic transformations is associated to periodic orbits (see
[2])
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Proposition 4. Let (S, ω) be a flat surface. Then there exists t > 0 such that
nt · (S, ω) = (S, ω) if and only if the horizontal direction is completely periodic and
the associated cylinders have commensurable moduli.

1.2. SL2(R) orbit. There is a natural metric on Mg that gives rise to nice em-
bedding of the SL2(R) orbit.

Proposition 5. Let (S, ω) be a flat surface, then there is a local isometry

H ≃ SL2(R)/SO(2) → Mg

induced by the SL2(R) action on (S, ω).

Moreover, McMullen for its classification uses the fact that this isometry extends
to the moduli space of Jacobian of curves of genus g Ag (this moduli space is the
Siegel half-plane quotiented by a symplectic group).

Proposition 6 (Kra, [3]). The (S, ω) be a flat surface then the composition

H → Mg → Ag

is an isometry.

1.3. Dynamical properties of Veech surfaces. The shape of the SL2(R) orbit
of a flat surface gives information on the surface. Veech surfaces have “small” orbits
because of their symmetries. Veech prooves

Theorem 13 (Veech alternative). Let (S, ω) be a Veech surface. The directional
flow in the vertical direction is either parabolic or uniquely ergodic.

This theorem allows us to have a precise understanding of periodic directions on
a Veech surface. If (S, ω) is a Veech surface, each direction for which there exists
a saddle connection is completely periodic and the geometry of the associated
cylinder decomposition are associated to cups of the surface H/SL(S, ω).

2. Calta and McMullen classification in genus 2

In [1] it is prooved using geometry of periodic directions that Veech surface in
genus 2 can be completely described. She showed in particular that the periods of
a surface must lives in a quadratic field. In [3] using parametrization of Jacobian
multiplications by Hilbert modular surfaces and some argument strongly related
to the dimension 2 McMullen gives another point of vue on Calta’s classification.

Theorem 14 ([1], [3]). A flat surface (S, ω) ∈ H(2) is a Veech surface if and
only if the Jacobian of S admits real multiplication and ω is an eigenform for this
action.

In particular, all periods lives in a quadratic field which is the trace group of
the Veech goup.

For the other stratum in genus 2 McMullen obtained the following theorem.

Theorem 15 (McMullen). The only non primitive Veech surface in H(1, 1) is the
double pentagon.
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Theorem 14 can be used to give explicit examples of Veech surface obtained
from billiard.

Theorem 16 ([3]). The L-shape rectangular billard L(a, b) gives a Veech surface

under the unfolding procedure if and only if a = x + z
√
d and b = y + z

√
d for

some x, y, z ∈ Q with x + y = 1 and d ∈ N . In the latter case, the trace field of
P (a, b) is Q(

√
d).
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Billiards on Infinite Tables

David Ralston

1. The Infinite Staircase

The Infinite Staircase is a flat surface which is non-compact. Formally, the
surface is comprised of infinitely many 2 by 1 rectangles Ri, where each rectangle
has its own vertical edges identified, and then

([0, 1]× {0})i ∼ ([1, 2]× {1})i−1 ,

([1, 2]× {0})i ∼ ([0, 1]× {1})i+1 .

Because all identifications take place between parallel sides, the resulting structure
is a flat surface, albeit of infinite area. The flow Fθ is simply the linear flow at
angle θ on this flat surface. See Figure 1.

Though the flat surface is of infinite area, we may still define its Veech group
in the normal way, and the Veech group of this surface is seen to be generated by
the matrices

[

1 2
0 1

]

,

[

−1 0
0 1

]

.

Then, following the argument of [5], the dynamics of any trajectory starting
with rational slope p/q is essentially unchanged (in terms of periodic cylinders)
under the action of an element of this Veech group. However, we see that both
matrices leave invariant the property that exactly one of p, q is even or neither are
even. It is a classical result (and easy to verify) that any rational slope may be
achieved using these two actions (and their inverses) starting with only the two
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Figure 1. The Infinite Staircase: a trajectory begins at a point
and flows linearly, with opposite vertical edges identified (labelled
here 1, 2, 3...) and opposite horizontal edges identified (labelled
here a, b, c, d...).
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b

3

c

b

1

c

2

d

3

start

etc...

slopes 1/1 and 0/1. As the flow in slope zero clearly consists of infinitely many
periodic cylinders and the flow in slope one consists of two nonrecurrent cylinders,
the same behavior is experienced by rational slopes with one or no even terms,
respectively.

In irrational directions, by tracking the return to any linear flow to the “bottom
of a rectangle,” which happens at constant intervals, we see that the flow can be
represented by the following transformation:

T (x, n) = (x + α, n− χ[0,1/2)(x) + χ[1/2,1)(x)),

after identifying the vertical edges of the staircase to form a cylinder and simply
considering the rectangles to be of width one. When the flow hits the left half of
the bottom of a rectangle, it is sent down a level, but when it hits the right half, it
continues up to the next level. This cylinder transformation, a skew product over
an irrational circle rotation, has been extensively studied, shown to be ergodic in
[2].

The underlying irrational circle rotation is uniquely ergodic, which implies very
strong uniform convergence for ergodic sums. In the infinite measure situation,
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however, distributional properties are considerably more intricate, with certain
anomalous behaviors depending on the continued fraction expansion of α studied
in [6][1]; the infinite measure scenario admits stranger and less predictable behavior
than the much simpler irrational rotation.

2. Z-covers of Flat Surfaces

One natural way to generalize this situation is to consider what are termed
Z-covers of flat surfaces; considering a flat surface to be a compact Riemannian
surface M with a set of punctures P and a flat metric (P 6= ∅ in all but the
genus one setting), consider an element ω ∈ H1(M,P ;Z). Then we create an
infinite measure surface by taking an infinite collection (M \ P )i for i ∈ Z with
identification along ω. When a linear flow crosses ω from one side, the flow is
transferred to a higher index copy, and when the flow crosses from the other side,
it is transferred to a lower index. In this way it is natural to see that the crossing
number is intrinsic in the formal definition; see [3].

It is shown further in [3] that recurrence of the resulting flow on a flat surface
of infinite area is equivalent to ergodicity of the same flow on the original surface
if the relative loop ω was chosen to have zero holonomy. Necessity is not difficult
to see: nonzero holonomy of ω will manifest itself as the linear flow in a ‘typical’
direction θ crossing ω more from one side than the other, resulting in a drift in
the linear flow on the infinite surface. The sufficiency, however, relies on a result
of Schmidt [7] and is highly reliant on the fact that the crossing number, which
was used to define the transition from one copy of (M \ P ) to another, has one-
dimensional range. The questions of studying recurrence or even ergodicity of the
flow in Z2-covers of flat surfaces are therefore still very much unanswered. Recent
progress in the study of the Ehrenfest Wind-Tree Model, a periodic distribution of
rectangular obstacles in the plane (and a Z2-cover of a flat surface), appears in [4]
and was extensively mentioned in another talk at this workshop.
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Probabilité de Rennes, 1976, 1-21.
[3] W.P. Hooper and B. Weiss, Generalized Staircases: Recurrence and Symmetry, preprint.
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Security, or finite blocking property

Glenn Merlet

A translation surface or a billiard, is said two have the finite blocking property
(FBP) if, for any two points O and A, there is finite set of points, disjoint from
{O,A} that intersect every trajectory between O and A. Such a surface is also
called secure.

This property is preserved by linear action, and finitely branched coverings, so
that it can be studied for translation surfaces rather than billiards. The torus has
the FBP because all the middles of segments between two points in an unfolding
are mapped on only four points M,M + (1/2, 0),M + (1/2, 0),M + (1/2, 1/2) in
the torus, thus all finitely branched covering of the torus (FBCT) have the FBP.

In a series of four papers [3, 4, 5, 6], T. Monteil has shown that having the
FBP is equivalent to being a FBCT for several classes of surfaces, including Veech
surfaces, n-regular polygons, (which have the FBP if and only if n is 3, 4 or 6),
convex translation surfaces or L-shaped translation surfaces (which have the FBP
if and only if the lengths of their edges are commensurable). For Veech surfaces,
the result has been proved independently by E. Gutkin in [2].

The strongest result is the following : a translation surface with FBP is purely
periodic, that is its flow is periodic in every direction that admits a periodic orbit
and in any purely periodic translation surface, the holonomy generated by the
periodic orbits is a lattice. Since the finitely branched covering of the torus are
the translation surface whose holonomy is a lattice, the equivalence between having
the FBP and being a FBCT holds for the surfaces whose holonomy is generated by
the periodic orbits. This includes convex translation surfaces and an open dense
set of surfaces with full measure. However, the conjecture of equivalence between
having the FBP and being a FBCT is still open for general translation surfaces.
Actually, some surfaces whose holonomy is not generated by their periodic orbits
are known, but they have the FBP.

T. Monteil also proved the equivalence for Veech surfaces and for surfaces of
genus 2, without introducing holonomy. For surfaces of genus 2, it deeply relies
on the classification of surfaces with genus 2 by K. Calta in [1].

In this talk, we concentrate on an important lemma that states that a transla-
tion surface that contains two adjacent cylinders with non-commensurable perime-
ters can not have the FBP and on the proof that FBP implies pure periodicity.
The proofs are based on elegant elementary arguments of geometry, constructing
infinitely many trajectories in unfoldings of the surfaces and using similar triangles
two prove that FBP would lead some ratios to be both rational and irrational.
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Dual (or outer) polygonal billiards

Stefan Müller

Let Q be an oriented strictly convex closed curve in the plane R2 (the dual billiard
table). For a point x in the exterior E ⊂ R2 of Q, draw the unique tangent line (if
Q is not smooth, the supporting line) to Q through the point x whose orientation
agrees with that of Q. If A denotes the point of tangency, the dual billiard map
T is defined by Tx = rAx, where rA is the reflection in the point A.

If Q is convex but not strictly convex, let U be the union of lines containing
straight segments of Q. Then T is defined on E\U (cf. corners in inner billiards).
For generic x ∈ E, all iterations {T kx | −∞ < k <∞} (the orbit of x) are defined.

In this talk, let Q be a convex polygon. The dual billiard map is discontinuous
(along U). Locally (in regions bounded by U), T is a reflection in the same vertex.
In particular, it is area-preserving, and a neighborhood of an n-periodic point
consists of periodic points of period n or 2n (the latter only occurs for n odd).

Question 1. Are the orbits of T bounded? Periodic?

In this talk, we prove the following results.

Theorem 2 ([2]). If Q is quasi-rational, all orbits are bounded.

Theorem 3 ([2]). If Q is rational, all orbits are periodic.

Theorem 4 ([4]). For any Q, T has a periodic orbit.

See also the surveys [1, 3]. The question whether for a general polygon, some
orbits may escape to infinity, is discussed in the next talk.

Fix a generic point o ∈ E. There is a unique vertex A1 of Q = Q0 such that
To = rA1

o. Let Q1 = rA1
Q0 be the reflection of Q in its vertex A1 (cf. unfolding

technique for inner billiards). Denote by T1 the dual billiard map corresponding
to the dual billiard table Q1. We obtain a vertex A2 of Q1 such that T1o = rA2

o.
Proceeding inductively, we obtain dual billiard maps Tk (use the inverse map
T−1 to define W k(Q) := Qk for negative integers) and a necklace of polygons
N (Q, o) = {Qk | −∞ < k < ∞}. The following proposition allows us to study
necklace dynamics in place of the orbits of T regarding our questions above.

Proposition 5. For a dual billiard map T ,

(i) T = rA1
T1rA1

,
(ii) T ko = rA1

· · · rAk
o, −∞ < k <∞,
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(iii) N (Q, o) is bounded if and only if the T -orbit of o is, and
(iv) N (Q, o) is periodic if and only if the T -orbit of o is.

The proof of (i) is a simple geometric argument, while (ii) is proved by induction
on k using (i). Since reflections preserve distance, (iii) follows directly from (ii),
i.e. dist(T ko,Q) = dist(o,Qk), and (iv) is proved similarly.

Note that each Qk belongs to the collection P of polygons P not containing o
that are either translations or reflections in some point of the plane of Q. Each
such P has two distinct vertices A+ and A−, where W (P ) is the reflection of P in
the vertex A+, and W

−1(P ) is the reflection of P in the vertex A−.
We next introduce the important notions of necklace vector and necklace poly-

gon. Consider straight lines through the point o (the “origin”) parallel to the sides
of the n-gon Q (there are m ≤ n such lines). This partitions the plane into 2m
cones Ci with right boundary rays Ri (counted clockwise mod 2m). For P ∈ P ,
P contained in a cone C belonging to the above partition of the plane, define the
necklace vector ~c = A−A+. It is straightforward to prove this is independent of the
choice of P . Next choose a point A1 on the ray R1, and follow the necklace vector
~c1 of the cone C1 until intersection with R2 at the point A2. Continue this process
until return to R1 to obtain a polygonal line Q′ = A1 . . . A2m+1. Q

′ = Q′(Q) is
called the necklace polygon of Q. The name is justified by the following result.

Proposition 6. Q′ has the following properties.

(i) A2m+1 = A1, i.e. Q
′ is a closed polygon,

(ii) Q′ is determined by Q uniquely up to translations and dilations (from the
choices of o, R1, and A1),

(iii) Q′ is convex, and
(iv) Q′ is a centrally symmetric 2m-gon.

For (i), if A2m+1 6= A1, Q
′ spirals into o (replace T by its inverse if necessary).

Continue Q′ to an infinite polygonal line in both directions. One can now show
that {Qk | k > 0} remains a bounded distance from o, while {Q−k | k > 0}
spirals away to infinity (it is unbounded). Suppose Q is rational, that is, its
vertices lie in some lattice (the dual billiard map is invariant under affine linear
maps of the plane, so one may assume the lattice is Z2). In particular, the set
{Qk | −∞ < k <∞} is discrete. Being discrete and bounded, the set {Qk | k > 0}
is finite, thus periodic. But then {Q−k | k > 0} is periodic as well, a contradiction
to unboundedness. This proves (i) for rational polygons. Any polygon Q can be
approximated by rational ones, and Q′ clearly depends continuously on Q (in the
obvious sense). Therefore the general case of (i) follows from the case of rational
polygons previously established. The proof of (ii) and (iii) is easy, and (iv) can be
shown by recalling that the definition of the necklace vector implies ~cm+i = −~ci.

With the notations from above, there exists real numbers t1, . . . , tm satisfying
AiAi+1 = ti~ci, which by part (ii) of the previous proposition are defined up to a
common multiple, or (t1 : . . . : tm) ∈ RPm up to cyclic permutation. Q is called
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quasi-rational if the ti are rational multiples of each other, or (t1 : . . . : tm) ∈ QPm.
For example, every rational or regular polygon is quasi-rational.

We are now in a position to prove Theorem 1. Each P ∈ P is uniquely deter-
mined by the vertex A+ and the information whether it is obtained from Q by
a translation or a reflection (denoted by ± respectively). Let S±

i be the set of
points A such that the corresponding P ∈ P intersects the ray Ri, and also write
Si = S+

i ⊔ S−
i (thought of as subsets of two different copies of the plane). The

necklace dynamics induce maps Fi : Si → Si+1 as follows: add the necklace vector
~ci until it intersects the ray Ri+1. (The points A move under the necklace map
W along the necklace vectors, and the polygons themselves are translated under
W 2 by twice the necklace vector.) The first return map F : S1 → S1 is defined as
the composition of all Fi. It is easy to see that the necklace N (Q, o) is bounded if
and only if the first return map is bounded.

Next consider translations Ri+1 − k~ci of Ri+1. Together with the rays Ri and

Ri + ~ci they define parallelograms with sides ~ai and ~bi (pointing away from the
origin) and one diagonal ~ci. By definition of the map Fi, we have Fi(x + 2~ai) =

Fi(x) + 2~bi. If Q is quasi-rational, we may without loss of generality assume the
ti are integers (they are defined up to a common multiple only). Then the point

Ai lies on Ri+1 − ti~ci, and the triangles oAiAi+1 and ~ai~bi~ci are similar. As a

consequence, AiAi+1 = ti~ci, oAi = ti~ai, and oAi+1 = ti~bi = ti+1~ai+1. We thus

have Fi(x+ 2ti~ai) = Fi(x) + 2ti~bi = Fi(x) + 2ti+1~ai+1. Iterating this equality, we
obtain for the first return map F (x+ 2t1~a1) = F (x) + 2t1~a1, i.e. F is periodic.

It therefore suffices to show the orbits of points in the first two parallelograms
(viewed from o) are bounded. Call their union π. By definition, F k(x) = Gk(x) +
ik(x)2t1~a1 for some map Gk : π → π and an integer ik(x) ≥ −1. The return map
F and its iterates are of course invertible, and making the same argument for F−k

we see that −ik(x) ≥ −1, or ik(x) ∈ {−1, 0, 1}. That proves that F k(x) remains
a bounded distance from π. The proof of Theorem 1 is complete.

Theorem 2 follows at once: a rational polygon is quasi-rational, so its orbits are
bounded by Theorem 1. As remarked above, its orbits are also discrete, therefore
they must be finite, i.e. periodic.

To prove Theorem 3, consider a closed polygon P with sides ±2pi~ci for positive
integers p1, . . . pm to be determined in the course of the proof. Fix a necklace
polygon Q′ (recall this was determined up to translations and dilations only), and
consider dilations qQ′ for real q > 0. A moment’s thought convinces the reader
that if |qti−2pi| is sufficiently small (say less than some ǫ > 0), the orbit of a point
x in the cone C1 near the point qA1 under the necklace dynamics follows precisely
the polygon P , in particular, its orbit is closed, i.e. x is a periodic point. In
order to choose p1, . . . pm, q appropriately, consider the linear flow in the direction
(t1, . . . , tm) on the m-torus Rm/(2Z)m. Then |qti − 2pi| < ǫ for some integers pi
if and only if the image of the origin under the time-q map is ǫ close to the origin.
By Poincaré recurrence, this happens infinitely many times. Thus the proof in
fact establishes the existence of infinitely many fixed points.
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Outer billiard on kites

Nicolas Bedaride

We are interested in outer dual billiard on polygon. A kite is a polygon KA with
vertices (0;−1), (−1; 0), (0; 1), (A; 0) where A ∈ (0 : 1). Schwartz in [1] consider
outer billiard on the kite and prove the following theorem where E = R ∗ {−1}.
Theorem 17. Let A be an irrational number, then there exists an uncountale set
C ⊂ E such that all defined orbits in C are unbounded. For all defined orbit of
point in E, either the orbit is periodic or the point is in C. The set of periodic
points in E is open and dense. The set C has zero lebesgue measure, the map
A 7→ Hdim(CA) is almost every where constant and the first return map to C is
defined and conjugated to an odometer.

In this talk, we will present the structure of the proof of this theorem, following
[1]. The principal idea is to approximate A by a suitable sequence pn/qn of odd
rationals, and to study in detail the outer billiard in Kpn/qn . Then the limit
of periodic orbit will converge in Hausdorff topology to an unbounded orbit. A
rational p/q is odd if pq is an odd number. First the first return map to E is well
defined and denoted ψ. The main tool is the arithmetic graph. It is defined by
the map

T : Z2 → E
(m,n) 7→ (2Am+ 2n+ 2α, (−1)m+n+1)

This map is injective if A is irrational, and injective on ball of radius 1/q if A = p/q.
Now the graph has vertices in Z2, and there is a edge between (m,n) and (m′, n′)

if and only if ψT (m,n) = T (m′, n′) and the two points are at distance at most
√
2.

Denote this graph by Γ and Γ̂ the component containing (0, 0). The map T mut be
understood as the description of the first return map to E of a point (α,−1). Three

theorems are proved on the structure of this graph: First Γ̂ is the disjoint union
of closed polygons and embedded infinite polygonal arc (embedding theorem).
Secondly the graph is diriged by six families of lines (Hexagrid theorem). Finally

Γ̂ has a cantor structure (Copy theorem). The proofs of these three theorems
involve another theorem: the master picture theorem. This theorem relates
the structure of the arithmetic graph to a partition of a three dimensional torus in
polyhedrons. The proof of this theorem uses two important lemmas, the pinwheel
lemma and the torus lemma. The pinwheel lemma is a generalization of a well
known result on outer billiard.
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The second part of the proof consists in the approximation of A by a strong
sequence. For an odd number Γ̂ is an infinite periodic polygonal arc. A strong
sequence is a sequence of odd rationals which fulfills some hypothesis related
to Γpn/qn . Roughly speaking each period of the graph must contains a part of
Γpn−1/qn−1

. Then there exists a subsequence of graphs which converge in the
Hausdorff topology to a graph Γ∞. We can prove that this graph is the arithmetic
graph of a point (α,−1) in E. Then the orbit of this point will be unbounded
since the graph rises infinitely far away from the base line. The construction can
be generalized to obtain a cantor set of unbounded orbits. The existence of the
strong sequence is due to a combination of arithmetic results and combinatorics
structure of Γ for odd rational numbers.

Then a deep analyzis of the structure of periodic point in a kite corresponding
to a strong sequence allows to obtain some dynamical results. Once again, the
structure of the arithmetic graph via the Hexagrid theorem is in the heart of the
proof.

After this work, a lot of open questions appear. For a dynamical point of view
we can ask:

• what is the dynamic for points outside E ?
• Is almost every orbit in a kite periodic ?
• What can be done for other polygon ?

In symbolic dynamics we can define a coding map on four letters by associating a
letter to each cone in which the outer billiard map is continuous. This map is of
zero entropy, thus the complexity function is not exponential.

• Can we describe the language in a given Kite ?
• What is the complexity of this language ?
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A Family of Periodic Orbits of the Koch Snowflake Fractal

Robert G. Niemeyer

(joint work with Michel L. Lapidus)

The Koch snowflake KS is a fractal that encloses a region with finite area;
see Figure 1. However, the nowhere differentiability of the closed non-rectifiable
curve prevents one from considering Ω(KS) as a well-defined billiard (i.e., there
is a priori no well-defined phase space “Ω(KS)× S1/ ∼” where ∼ is the standard
equivalence relation on the boundary that identifies outward pointing vectors with
inward pointing vectors). In order to understand how one may begin to define
the compact region Ω(KS) with boundary KS as a billiard, we investigate the
behavior of orbits in Ω(KSn), where KSn is the nth prefractal approximation of
KS; see Figure 1.
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Figure 1. Ω(KSi), i = 0, 1, 2, 3. The ellipses in the figure are
meant to indicate that the process continues ad infinitum. Ω(KS)
would then be the limiting object.

The compact region Ω(KSn) is a rational billiard with interior angles measur-
ing 4π/3 and π/3. The associated flat surface S(KSn) has (nonremovable) conic
singularities at points corresponding to the obtuse angles of the prefractal approx-
imations, and we may extend the geodesic flow on S(KSn) continuously at the
(removable) conic singularities corresponding to acute angles. Moreover, S(KSn)
is a branched cover of the hexagonal torus S(KS0) := S(∆) with two branch
points.

A consequence of the fact that S(KSn) is a branched cover over the surface
S(KS0) corresponding to the equilateral triangle billiard Ω(KS0) is that directions
which are periodic in Ω(KS0) are periodic in Ω(KSi) for all i ≥ 0, and vice-versa;
the same holds for uniquely ergodic directions. In addition, the Veech group
Γ(KSi) is a subgroup of Γ(KS0) for all i ≥ 0.

We are then in a position to define what we call a compatible sequence of orbits.
Such a sequence is comprised of orbits with compatible initial conditions (x0i , θ

0
i ).

These initial conditions are either all (eventually) the same or contain base-points
x0i on the boundaries KSi such that they are all collinear in the direction θ00 .
Consequently, (x0i , θ

0
i ) = (x0i , θ

0
0) for all i.

In this talk, we show that it is possible to construct a family of periodic orbits of
the Koch snowflake that is both dynamically relevant and geometrically relevant.
We call such orbits piecewise Fagnano orbits for their obvious geometric relation
to the Fagnano orbit of the equilateral triangle. Such orbits can be phrased as
inverse limits of piecewise Fagnano orbits of the prefractal approximations; see
Figure 2. We detail many of the claims made in this talk in [LaNi2].

We then make conjectures on the existence of an associated “fractal flat sur-

face” and the existence of a well-defined phase space “Ω(KS) × S̃1”, where S̃1

is presumably a collection of inward pointing directions. It is the case that the
genus of the surfaces S(KSi) increases with the number of sides ki of KSi. Since
the Veech group Γ(KSn) of S(KSn) is a subgroup of Ω(KS0), we conjecture that
the inverse limit of Veech groups will be dynamically relevant and offer insight
into how to properly define a “fractal flat surface” S(KS) in such a way that 1)
a geodesic flow is defined and 2) such a flow is dynamically equivalent to the yet

to be determined billiard flow on the conjectured phase space “Ω(KS)× S̃1”. For
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Figure 2. The primary piecewise Fagnano orbits ppFi of
Ω(KSi), i = 0, 1, 2.

more detailed conjectures and statements of open problems, please see [LaNi1] on
the Mathematics ArXiv (arXiv:0912.3948).
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Recurrence in periodic Ehrenfest wind-tree models

Samuel Lelièvre

(joint work with Pascal Hubert, Serge Troubetzkoy)

In the original wind-tree model proposed by Tatyana and Paul Ehrenfest in 1912
[EhEh] for a Lorentz gas, a point particle evolves horizontally and vertically bounc-
ing elastically on randomly located identical square obstacles at a π/4 angle with
the trajectory.

The periodic wind-tree model Ta,b is a variation where obstacles are a × b
rectangles aligned on the Z2 lattice. J. Hardy and J. Weber in 1980 [HaWe]
study trajectories of slope ±1 in tables Ta,b with a + b = 1, using skew products
over rotations and the Denjoy–Koksma inequality. When a/b 6∈ Q they show the
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particle recurs and diffuses ‘abnormally’, i.e. staying up to time t in a domain
whose diameter increases like log t log log t.

We let (a, b) vary in the whole parameter space (0, 1)2 and consider all possible
starting directions for the billiard flow. The complete understanding achieved in
recent years of the SL(2,R) orbits of L-shaped translation surfaces in genus two,
and in particular of torus coverings (Kani [Ka1, Ka2], Hubert–Lelievre [HuLe],
McMullen [Mc]), allows for a precise description of the billiard flow on Ta,b. For
(a, b) ∈ Q2 it has a strong link to the linear flow on a square-tiled L-shaped
translation surface.

Using this, we prove:

• for a class of rational parameters, the existence of completely periodic
directions

• for another class of rational parameters, the escaping of certain trajecto-
ries, and a lower bound for the rate of escape in almost all directions.

These results extend to a dense Gδ of parameters:

Theorem 18. There is a dense Gδ of parameters (a, b) for which

• the billiard flow in Ta,b is recurrent
• the set of periodic points is dense in the phase space of Ta,b
• ∀k ≥ 1, for a.e. slope α, for a.e. starting point x, the following estimate

holds for the diffusion of the directional billiard flow φαt :

lim sup
t→∞

dist(φαt x, x)

log t log log t... log log ... log t
= +∞.
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Veech groups for holonomy free covers

Martin Schmoll

We calculate the lattice Veech groups for (branched) cyclic covers

pw,z : Σk,l(w, z) → T

of the standard torus T := C/Z⊕ iZ. The construction of the covers pw,z is
explained below.

To begin, let p : C → T be the standard projection z 7→ [z] := z mod Z⊕ iZ.
Denote the oriented line segment connecting 0 ∈ C with z ∈ C by [0, z]. The
standard projection of the line segment [0, z] to T defines a relative cycle [[0, z]] ∈
H1(T, {[0], [z]};Z). In a similar fashion we associate to each pair (w, z) ∈ C2\{0}
and (k, l) ∈ N2 with gcd(k, l) = 1 a relative homology class

k[[0, w]] + l[[0, z]] ∈ H1(T, {[0], [w], [z]};Z).
Relative homology classes of that shape are called k-l-slit classes.

By a standard topological construction we can associate each (nontrivial) k-l-slit
class a cyclic T cover unbranched outside {[0], [w], [z]} ⊂ T. The cover pw,z :
Σk,l(w, z) → T, is up to minor differences for particular configurations of (w, z) ∈
C2\{0} the cover associated to the cycle k[[0, w]] + l[[0, z]] ∈ H1(T, {[0], [w], [z]};Z)
by means of the topological construction. Pulling back the standard 1-form
dz ∈ Ω1(T) gives a holomorphic 1-form ωw,z ∈ Ω(Σk,l(w, z)) and defines a trans-
lation structure on Σk,l(w, z). We call a cyclic translation cover of the shape
(Σk,l(w, z), ωw,z) a k-l-slit surface. We are interested in the Veech group

Γ(Σk,l(w, z)) := Γ(Σk,l(w, z), ωw,z),

whenever that group is a lattice subgroup of SL2(Z).

k-l-slit surfaces which are Lattice surfaces. With the convention

Σk,l(n) := Σk,l

(

l

n
,−k

n

)

,

we have:

Theorem 19. Any k-l-slit surface Σk,l (w, z) (gcd(k, l) = 1) lies on the SL2(Z)
orbit of one of the surface Σk,l(n) for some n ∈ N. The Veech-groups of the Σk,l(n)
are congruence groups of level 1, namely

Γ(Σk,l(n)) = Γ1(n).

The way we prove the Theorem is to study the Hurwitz space H∞
k.l (for trans-

lation structures also known as Kernel foliation) of k-l-slit covers. Because of the
translation structure of the covers, that space H∞

k.l admits not only a translation
structure, but is also a T-cover. The SL2(Z) action on k-l-slit covers equals the
(natural) SL2(Z) action on the kernel foliation H∞

k.l. The k-l-slit surfaces with
trivial holonomy define a translation torus inside H∞

k.l containing all isomorphy
classes of k-l-slit surfaces which are lattice surfaces. The SL2(Z) action on the
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zero holonomy torus is (up to some coordinate changes) well studied and gives the
above Theorem.
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Recurrence of quenched random Lorentz tubes and related questions

Marcello Seri

(joint work with Giampaolo Cristadoro, Marco Lenci)

A Lorentz tube is a system of a particle (or, from a statistical viewpoint, many
non-interacting particles) freely moving in a domain extended in one direction
and performing elastic collisions with randomly placed obstacles. These kinds
of “extended billiards” are, on the one hand, paradigms of systems where some
transport properties can be studied in a rigorous mathematical way and, on the
other hand, reliable models for real situations. The primary interest in their
study lies on such properties as recurrence, diffusivity, and transmission rates.
Unfortunately, few rigorous results are available and their proofs typically rely on
some periodic structure.

In [1] a more realistic situation is taken into account: the so-called quenched
disorder.

Consider the billiard dynamics in a cylinder-like set that is tessellated by count-
ably many translated copies of the same d-dimensional polytope and place in each
copy a random configuration of “good” semi-dispersing obstacles. The ensemble of
dynamical systems thus defined, one for each global choice of scatterers, is called
quenched random Lorentz tube.

For d = 2 is proved that, under general conditions, almost every system in the
ensemble is recurrent.

Assumed that the scatterers are smooth enough, mutually disjoint, and not too
big or small, and assumed that the distribution of the scatterers is ergodic under
shift and the finite horizon condition is fulfilled, one can construct for almost all
the configurations a suitable Poincaré section with an associated 1-dimensional
commutative discrete cocycle such that the new system has finite measure and is
ergodic.

The key point of the proof is that the cocycle can be proved to be recurrent
and this recurrence is equivalent to the recurrence of the corresponding Lorentz
tube. The ergodicity, then, follows in a quite standard way because it is possible
to define the local stable and unstable manifolds and the connectivity of almost
all the pairs of point in the Poincaré section is guaranteed by the assumptions.

Here a remark has to be done to say that for such systems, the very fundamen-
tals of ordinary ergodic theory do not work, in particular the Poincaré Recurrence
Theorem can be applied only on the reduced finite-measure system but this would
give no information as whether the system is totally recurrent, totally transient,
or mixed.
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In this talk the main idee of the proof were discussed and some related problem
and extensions were presented, with particular care to d > 2 systems and “exotic”
d = 2 tubes.
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