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Iain M. Johnstone, Stanford

Vladimir Spokoiny, Berlin

March 28th – April 3rd, 2010

Abstract. During the years 1975 - 1990 a major emphasis in nonparamet-
ric estimation was put on computing the asymptotic minimax risk for many
classes of functions. Modern statistical practice indicates some serious limita-
tions of the asymptotic minimax approach and calls for some new ideas and
methods which can cope with the numerous challenges brought to statisti-
cians by modern sets of data.

Mathematics Subject Classification (2000): 62Gxx.

Introduction by the Organisers

The workshop took place during the period March 28 - April 2 and, as usual, talks
were planned from Monday morning to Friday morning (most participants leaving
on Friday afternoon) with a break on Wednesday afternoon for the traditional
walk to Saint-Roman.

There were finally 48 participants, due to some late cancellations. Unfortunately,
Iain Johnstone could not attend the meeting since he had a very important com-
mittment in the US with the NSF during that week. However, he could participate
quite actively in the organization up to the last minute since we, organizers, had
the opportunity to meet together during a previous workshop and also exchange
extensively by e-mail through which the list of participants and talks and all final
details were set up. Therefore we were really three organizers and the success of
the meeting should be put on the three of us. Actually, the list of speakers and
the schedule of the talks were ready before our arrival and only minor changes
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were made during that week. This precise schedule can be found at the end of our
report.

During the years 1975 - 1990 (roughly speaking) a major emphasis in nonpara-
metric estimation was put on computing the (possibly asymptotic) minimax risk
for many classes of functions, starting from the simplest Hölder classes to the more
sophisticated Besov balls in the beginning of the 90’s. It was clear, at that time,
that this minimax point of view was quite pessimistic, since it was directed towards
the worse case and also unrealistic, since one never knows to which smoothness
class (or other specific class) the true parameter does belong. Nevertheless, this
approach allowed to design useful estimators, which could be more or less practi-
cally calibrated (by cross-validation for instance) and provided some benchmarks
for the performance of a given method.

Then, by the beginning of the 90’s (approximately), started an important move-
ment towards what is now called adaptation, either to some smoothness class or to
the specific function that was to be estimated. This was made via different tools
like Lepski’s method, the use of localized basis and thresholding, model selection
. . .

More recently, many new methods (aggregation of estimators, Lasso, etc.) ap-
peared in order to cope with the numerous challenges brought to statisticians by
modern sets of data and the huge progress of computing : huge data sets or situ-
ations where the number of unknown parameters is much larger than the number
of data, together with some sparsity assumption. This also coincides with an im-
portant renewal of Bayesian methods due to much better and powerful computing
facilities.

Workshop organization

In view of the importance of the numerous new techniques that are presently
studied and used to solve the challenges offered by the modern sets of data, we
decided that the main purpose of the workshop would be to expose many young
researchers to those new techniques. We invited a number of confirmed specialists
and experts together with younger professionals, PhD. students, postdocs, new
assistant professors, in order to get a mix of generations and experiences. We also
selected 5 senior professors to give longer talks (one hour and a half, one each
morning) in order to develop their subject. These persons were especially asked,
several months before the workshop, to deliver these special conferences.

We also spent a lot of time and discussion in order to select the talks among
the proposals by the participants in order to keep a maximal coherence between
the subjects and keep the level as high as possible, finally limiting the number
of talks to 24, including the five major ones mentioned above, and avoiding the
multiplication of short talks. All normal talks were of 45mn, with the exception of
the last morning since it was asked to us by the MFO organization to shorten the
session for an early lunch (apparently for Easter vacation).

It was also an occasion for us to invite an unusually large number of participants
(mostly young researchers and some more senior French) that visited the MFO for
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the first time, which gave them an occasion to discover this very nice place, the
wonderful library, the numerous working facilities and the excellent MFO organi-
zation (as usual).

We tried, as much as possible, to organize our 8 sessions around themes like
Model Selection, Adaptive Density Estimation, High-dimensional Data and Spar-
sity, Statistics for Processes, Nonparametric Bayesian Methods, with also some
talks by young and promising researchers which were given exactly the same time
as the more senior ones.
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Optimal Rates for Conjugate Gradient Regularization . . . . . . . . . . . . . . . . 893
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Abstracts

Adapting to inhomogeneous and anisotropic smoothness via dyadic
partition selection

Nathalie Akakpo

Our research work is devoted to adaptive functional estimation by selection of a
best partition into dyadic intervals, cubes or rectangles. Our estimation procedure
can be described as follows. Assume that you want to estimate some function s,
which is square integrable over [0, 1]d (d ∈ N⋆) on the basis of the observation
of n independent random variables. For instance, s may be the marginal density
of an i.i.d. sample or a regression function. We first give ourselves a collection
of partitions into dyadic rectangles with prescribed minimal sidelength. On each
partition, we define a piecewise polynomial estimator obtained by minimization of
an adequate least-squares type criterion. Then, we select from the data the best
estimator in that collection by using a penalized criterion. Such a procedure thus
generalizes the one introduced by Donoho [4] in a regression framework.

From a theoretical point of view, we obtain two kinds of results. On the one
hand, our estimator satisfies in many frameworks non-asymptotic oracle-type in-
equalities, up to a factor that does not depend on the size n of the sample. On
the other hand, it reaches the minimax risk, still up to a factor that does not de-
pend on n, over classes of functions that may be of inhomogeneous and anisotropic
smoothness. Such a property – that, up to our knowledge, has never been shown
for any estimator – heavily relies on approximation results in the spirit of the
paper [3] by DeVore and Yu that we prove in [1]. Moreover, our estimator can be
implemented with a complexity which is linear in the sample size.

In this talk, we present that procedure in the framework of conditional density
estimation, which is part of the joint work [2] with Claire Lacour (Université Paris
Sud).
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Data-driven penalties for linear estimators selection

Sylvain Arlot

(joint work with Francis Bach)

We consider the fixed-design regression framework, where one observes

Y = (Y1, . . . , Yn) = F + ε ∈ R
n ,

where ε1, . . . , εn are i.i.d., with E[ε1] = 0 and E[ε21] = σ2 . The goal is to find from
data some t ∈ Rn having a small least-squares loss

n−1 ‖t− F‖22 =
1

n

n∑

i=1

(ti − Fi)
2 .

We then tackle the problem of selecting among several linear estimators, i.e., of
the form

F̂λ = AλY ,

where Aλ is a deterministic n× n matrix. This problem includes:

• model selection for linear regression,
• the choice of a regularization parameter in kernel ridge regression or spline
smoothing,

• the choice of a kernel in multiple kernel learning,
• the choice of the number of neighbors (and of a distance in the feature
space) for nearest-neighbor regression,

• the choice of a bandwidth (and of a kernel function) for Nadaraya-Watson
estimators.

Given a family (Aλ)λ∈Λ of matrices, the goal is to choose some data-driven λ̂ ∈ Λ

such that the corresponding estimator F̂λ̂ has a quadratic risk n−1E‖F̂λ̂ − F‖2 as
small as possible. When Card(Λ) ≤ Knα for someK,α ≥ 0 , a well-known strategy

is to follow the unbiased risk estimation principle, i.e., to choose λ̂ by minimizing

over λ ∈ Λ an unbiased estimator of n−1E‖F̂λ − F‖22 . In particular, penalization
methods select

(1) λ̂ ∈ argmin
λ∈Λ

{
n−1‖F̂λ − Y ‖22 + pen(λ)

}
,

where pen : Λ → R is called a penalty. Following the unbiased risk estimation

principle, for every λ ∈ Λ , pen should be close to n−1‖F̂λ−F‖22−n−1
∥∥∥F̂λ − Y

∥∥∥
2

2
.

Under mild conditions, concentration inequalities show that the risk n−1‖F̂λ −
F‖22 and the empirical risk n−1‖F̂λ−Y ‖22 both are close to their respective expec-
tation. Therefore, the two key quantities in our problem are

E

[
n−1‖F̂λ − F‖22

]
=

‖(Aλ − In)F‖22
n

+
tr(A⊤

λAλ)σ
2

n
= bias + variance ,(2)

E

[
n−1

∥∥∥F̂λ − Y
∥∥∥
2

2

]
=

‖(Aλ − In)F‖22
n

−
(
2tr(Aλ)− tr(A⊤

λAλ)
)
σ2

n
+ σ2 .(3)
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By (2), (3) and the unbiased risk estimation principle, an optimal penalty in
(1) would be

(4) penopt(λ) = E

[
n−1‖F̂λ − F‖22

]
− E

[
n−1

∥∥∥F̂λ − Y
∥∥∥
2

2

]
− σ2 =

2tr(Aλ)σ
2

n
,

known as Mallows’ CL penalty [7]; its main drawback is its dependence on σ2 ,
usually unknown. Note that tr(Aλ) is often called generalized degrees of freedom.

We extend the notion of minimal penalty [4, 3] in order to define an estimator of
σ2 that could be plugged into (4) for designing a fully data-driven penalty. Indeed,
let

penmin(λ) =

(
2tr(Aλ)− tr(A⊤

λAλ)
)
σ2

n

and ∀C > 0, λ̂min(C) ∈ argmin
λ∈Λ

{
n−1‖F̂λ − Y ‖22 + Cpenmin(λ)

}
.

By (3), up to concentration inequalities that are detailed in [1, 2], λ̂min(C) behaves
like a minimizer of

gC(λ) = E

[
‖F̂λ − Y ‖22

n
+ Cpenmin(λ)

]
−σ2 =

‖(Aλ − In)F‖22
n

+(C−1)penmin(λ) .

Therefore, two main cases can be distinguished:

• if C < 1 , then gC(λ) decreases with tr(Aλ) so that tr(Aλ̂min(C)) is huge:

λ̂min(C) overfits.
• if C > 1 , then gC(λ) increases with tr(Aλ) when tr(Aλ) is large enough,
so that tr(Aλ̂min(C)) is much smaller than when C < 1 .

As a conclusion, penmin(λ) is the minimal amount of penalization needed so that

a minimizer λ̂ of a penalized criterion is not clearly overfitting.

Since σ−2penmin(λ) is known, we deduce the following algorithm:

Input: Λ a finite set with Card(Λ) ≤ Knα for some K,α ≥ 0 , and matrices Aλ .

• ∀C > 0 , compute λ̂0(C) = λ̂min(Cσ
−2) ∈ argminλ∈Λ{‖F̂λ − Y ‖22 +

C(2tr(Aλ)− tr(A⊤
λAλ))} .

• Find Ĉ corresponding to the largest jump of C → tr(Aλ̂0(C)) .

Output: λ̂ ∈ argminλ∈Λ{‖F̂λ − Y ‖22 + 2Ĉtr(Aλ)} .

We prove in [1, 2] that if the εi are Gaussian, under mild assumptions on the bias

term ‖(Aλ − In)F‖22 , then |σ−2Ĉ − 1| ≤ κ
√
ln(n)n−1/4 with large probability, for

some constant κ > 0 . Furthermore, we deduce that λ̂ satisfies an oracle inequality
with leading constant 1 + ǫn on an event of probability at least 1− n−2 .

Previous results on minimal penalties [4, 3, 6] considered the case of projection
estimators, for which tr(A⊤

λAλ) = tr(Aλ) , so that the minimal penalty is exactly
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half the optimal penalty. Our result shows that for general linear estimators, the
optimal and minimal penalties have different shapes, and their ratio

penopt(λ)

penmin(λ)
=

2tr(Aλ)

2tr(Aλ)− tr(A⊤
λAλ)

can take any value in (1; 2] .

Simulation experiments with kernel ridge regression and multiple kernel learning
show that the proposed algorithm often improves significantly existing calibration
procedures such as 10-fold cross-validation or generalized cross-validation [5], for
moderate values of the sample size [1, 2].
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Estimator selection

Yannick Baraud

Consider a collection E = {ŝλ, λ ∈ Λ} of arbitrary estimators based on an ob-
servation X ∼ Ps in view of estimating the parameter s. We propose a selection
procedure, based on X as well, which aims at selecting an estimator ŝλ̂ among
E whose risk is as close as possible to the infimum of those among the collec-
tion. The procedure we propose requires little assumption both on s and E , the
dependency of the estimators ŝλ with respect to X being possibly unknown. We
establish non-asymptotic risk bounds for the selected estimator and show how one
can deduce oracle-type inequalities under a posteriori information on the ŝλ. The
problem of selecting among a given family of estimators arise in many statistical
approaches among which model selection, aggregation, construction of robust es-
timators, etc. The procedure also provides an alternative, at least theoretically, to
the resampling techniques such as cross-validation and V -fold, the aim of which is
to calibrate a tuning parameter λ. Finally, we show how the procedure can be used
in the regression setting for the problem of variable selection, when the number of
variables is larger than the number of observations and the errors admit no finite
moment.
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Optimal Rates for Conjugate Gradient Regularization

Gilles Blanchard

(joint work with Nicole Krämer)

Summary We prove optimal rates of convergence (up to a logarithmic factor)
in the statistical sense for conjugate gradient (with early stopping) regularization
of kernel-based regression problems. (The property of universal consistency of this
kind of method was established earlier [1].) The rates are obtained under the
assumption that the true regression function belongs to the reproducing kernel
Hilbert space. If this assumption is not fulfilled, we obtain convergence rates if
additional unlabeled data are available. The rates in these two cases match those
obtained by A. Caponnetto [3] for linear regularization operators.

Conjugate Gradient Regularization We observe an i.i.d. sample of n ob-
servations (Xi, Yi) ∈ X × Y where P (X,Y ) follows

Yi = f∗(Xi) + εi .

We assume that the true regression function f∗ belongs to the space L2(PX) of
square-integrable functions.
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We implicitly map the data to a reproducing kernel Hilbert space Hk with
a kernel k. We denote by Kn = (k(Xi, Xj)) ∈ Rn×n the kernel matrix and by
Y ∈ Rn the n centered response observations Y1, . . . , Yn.

We propose conjugate gradient (cg) techniques in combination with early stop-
ping for the regularization of the kernel based learning problem. These techniques
restrict the learning problem on a nested set of data-dependent subspaces, so-called
Krylov subspaces

Km(Y ,Kn) = span
{
Y ,KnY , . . . ,K

m−1
n Y

}
.

We define theKn-norm as ‖α‖Kn
=
√
〈α,Knα〉 . The cg solution afterm iterations

is formally defined as

αm = arg min
α∈Km(Y ,Kn)

‖Y −Knα‖Kn

and can be conveniently computed using an iterative formula only involving for-
ward multiplications by Kn. The kernel coefficients αm define an estimate

fm(X) =

n∑

i=1

αm,ik(Xi, X)

of the true regression function f∗. The number m of cg iterations is the model
parameter. We defined in earlier work an early stopping rule for m ensuring uni-
versal consistency [1]. The results presented here consider a different stopping rule
based on a variation of the discrepancy principle (the latter has been shown by
Nemirovski to yield optimal convergence rates for CG in a derministic setting; see
[4] for a recent comprehensive account of the topic)

Assumptions The kernel is bounded, k(x, x′) ≤ κ for all x, x′ ∈ X , and the
noise is bounded, |ǫ| ≤M almost surely. We define the kernel operator

K : L2(PX) → L2(PX), g 7→
∫
k(., x′)g(x′)dP (x′) .

The regularity of the function f∗ is measured in terms of the source condition
SC(r, ρ): f∗ = Kru with ‖u‖ ≤ κ−rρ . (In particular, if r ≥ 1/2, f∗ lies in Hk.)
The regularity of the kernel operatorK is measured in terms of its intrinsic dimen-
sionality ID(s,D): There exists D ≥ 1 such that Tr(K(K + λ)−1) ≤ D2(κ−1λ)−s

for all λ ∈ (0, 1].
Case 1: r ≥ 1/2, which implies f∗ ∈ Hk. We set

λ∗ = κ
((
4D/

√
n
)
log (6/γ)

) 2
2r+s for γ > 0

and assume n is large enough to ensure λ∗ ≤ κ . For τ > 0 , consider the following
stopping rule

m̂ = min
{
m
∣∣∣‖fm(Xi)− Y ‖ ≤ (2 + τ)λ

1
2∗ δ(λ∗)

}
,

where δ(λ∗) := (3/4)M (λ∗/κ)
r
.
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Theorem 1. If conditions SC(r, ρ) and ID(s) are satisfied with r ≥ 1/2, the
above stopping rule ensures that, with probability larger than 1− 3γ ,

‖fm̂ − f∗‖2 ≤ c(r, τ)(M + ρ)

(
4D√
n
log

6

γ

) 2r
2r+s

.

Case 2: r < 1/2. Similar to the setting studied by Caponnetto, we assume that
we have additional unlabeled data of order n(λ∗)−(1−2r). After reformulating cg in
a semi-supervised setting (using both labeled and unlabeled data), we obtain the
same convergence rates as those for linear regularization operators if r + s ≤ 1/2.
The details are omitted.
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Sparse graphs and causal inference

Peter Bühlmann

(joint work with Marloes H. Maathuis and Markus Kalisch)

We assume that we have observational data, generated from an unknown underly-
ing directed acyclic graph (DAG) model. A DAG is typically not identifiable from
observational data, but it is possible to consistently estimate the equivalence class
of a DAG. Moreover, for any given DAG, causal effects can be estimated using
intervention calculus. Here, we combine these two parts. For each DAG in the
estimated equivalence class, we use intervention calculus to estimate the causal ef-
fects of the covariates on the response. This yields a collection of estimated causal
effects for each covariate. We show that the distinct values in this set can be con-
sistently estimated by a new algorithm that uses only local information of the
graph. Sparsity and so-called faithfulness for the distribution are the two key as-
sumptions for the asymptotic analysis which also covers the framework with many
more variables than sample size. Our local approach is computationally fast and
feasible in high-dimensional problems. We demonstrate the merits of our methods
on a large-scale biological system.

Our work is motivated by the following problem in biology. We want to know
which genes play a role for a certain phenotype, say a disease status or the ex-
pression of another gene. To be more precise, our goal is to infer which genes have
an effect on the phenotype in terms of an intervention: if we knocked down single
genes, which of them would show a relevant or important effect on the pheno-
type? The difficulty is, however, that the available data are only observational.
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Using such observational data, we want to infer all (single gene) intervention ef-
fects. This task coincides with inferring causal effects, a well-established area in
statistics, cf. [1] or [2]. We emphasize that in our applications, it is exactly the in-
tervention or causal effect which is of interest, rather than a regression-type effect
of association.

[1, p.285] formulates the distinction between associational and causal concepts
as follows: An associational concept is any relationship that can be defined in
terms of a joint distribution of observed variables, and a causal concept is any
relationship that cannot be defined from the distribution alone. Every claim in-
voking causal concepts must be traced to some premises that invoke such concepts;
it cannot be inferred or derived from statistical associations alone. Thus, in order
to obtain causal statements from observational data, one needs to make additional
assumptions. One possibility is to assume that the data were generated by a di-
rected acyclic graph (DAG) which is known beforehand. DAGs describe causal
concepts, since they code potential causal relationships between variables: the ex-
istence of a directed edge x → y means that x may have a direct causal effect on
y, and the absence of a directed edge x → y means that x cannot have a direct
causal effect on y.

Given a set of conditional dependencies from observational data and a corre-
sponding DAG model, one can compute causal effects using intervention calculus
[1].

Here, we consider the problem of inferring causal information from observational
data, under the assumption that the data were generated by an unknown DAG.
This is a more realistic assumption, since in many practical problems, one does not
know the DAG. In this scenario, the causal effect is typically not defined uniquely,
and that is not surprising given the description of causality by [1] above.

A DAG is typically not identifiable from observational data, because conditional
dependencies only determine the skeleton and the so-called v-structures of the
graph. The skeleton and v-structures determine an equivalence class of DAGs that
all correspond to the same probability distribution. This equivalence class, which
is identifiable from observational data, can be described by a completed partially
directed acyclic graph (CPDAG).

We describe a new, computationally feasible algorithm, even if the number of
variables (i.e. nodes in the graph) is large, which uses the CPDAG as input for
inferring lower bounds on intervention or causal effects. Furthermore, we show
that in the case of noise and estimation error, we can still asymptotically infer the
CPDAG and the lower bounds for causal effects even if the number of variables p
(number of nodes in the graph) is much larger than sample size n, p≫ n. Such a
consistency result relies on sparsity of the (causal) DAG and the so-called faith-
fulness assumption for the data-generating probability distribution with respect
to the underlying DAG. Details are given in [4] and some of the results there rely
on [3]. Furthermore, we validate the method to predict the strongest intervention
effects in a large-scale biological system from S.Cerevisiae [5].
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Adaptive nonparametric estimation for several conditional functions

Fabienne Comte

(joint work with Elodie Brunel, Claire Lacour, Stéphane Gäıffas, Agathe
Guilloux)

This talk aimed to present results of works by Brunel, Comte and Lacour (2007,
2008), Comte, Gäıffas and Guilloux (2008) and Brunel and Comte (2009). The
questions studied in those papers are all related with survival analyis. In such a
context indeed, it is natural to introduce covariates in the model, and to look for
estimators not only of the hazard rate of the patients, for instance, but also of
their hazard rate given their age. This context also leads to wonder if censoring
can be taken into account.

Therefore, I explained in my talk how nonparametric bivariate estimators can be
built, which are regression estimators in the x-direction (the “covariate-direction”)
and density (or other type of) estimators in the y-direction. A strategy can be de-
veloped to provide definition of collections of nonparametric estimators of the
conditional density (or the conditional cumulative distribution function (c.d.f.),
the conditional hazard rate, the conditional mean residual life) of Y given X =
x. These estimators admit developments following product bases, which can be
anisotropic. Model selection can then be done in order to keep only a relevant
number of coefficients in the decomposition. In all cases, it is performed via con-
trast penalization. The risk bounds which are obtained for the final estimators
are nonasymptotic and follow from Talagrand type inequalities, or Bernstein type
inequalities associated with chaining methods. Then, asymptotic anisotropic rates
can be deduced and proved to be optimal.

The method can be illustrated through the four examples studied in the afore-
mentioned papers, to show both similarities and differences between them and to
derive general principles.
The first idea for the study lies in the way the contrasts are built. For instance in
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the conditional density setting we take:

Γ(1)
n (T ) =

1

n

n∑

i=1

∫
t2(Xi, y)dy −

2

n

n∑

i=1

T (Xi, Yi),

and for the conditional c.d.f.

Γ(2)
n (T ) =

1

n

n∑

i=1

∫
t2(Xi, y)dy −

2

n

n∑

i=1

∫
T (Xi, y)1{Yi≤y}dy.

It is interesting to study and compare these contrasts, and to understand in what
sense the second one is associated with one-dimensional type model selection and
rates, in the x-direction only. Note that the definition of minimizers for these
contrasts are not always straightforward.

The limit of the strategy is that, when censored variables are considered in this
setting, we may obtain results only under the “strong” assumption of independence
between the censoring variable and the couple (Y,X) of the variable of interest
and the covariate. This is what happens in the case of the conditional density
or of the conditional c.d.f. More precisely, assume that the observations are no
longer the sequence (Xi, Yi)1≤i≤n but (Xi, Zi, δi)1≤i≤n where Zi = Yi ∧ Ci and
δi = 1{Yi≤Ci}, which is the standard context of right-censoring. The sequence (Ci)
is an i.i.d. sequence, and two types of assumptions are considered concerning the
mechanism:

(Strong) (Ci)1≤i≤n independent of (Xi, Yi)1≤i≤n

or

(Weak) (Ci)1≤i≤n independent of (Yi)1≤i≤n conditionally to (Xi)1≤i≤n.

In the case (Strong), the censoring correction called IPCW (Inverse Probability
Censoring Weights) is simple and works well. In the density case for instance, the
contrast can simply be modified as follows:

Γ(1)
n (T ) =

1

n

n∑

i=1

∫
t2(Xi, y)dy −

2

n

n∑

i=1

δi
ˆ̄G(Zi)

T (Xi, Zi),

where ˆ̄G(.) is the Kaplan Meier estimator of Ḡ = 1−G the survival function of the
Ci’s. As this estimator, in the same way as the empirical c.d.f., converges to the
true function with paprametric rate, the modification just involves an additional
negligible residual term.

Unfortunately, a censoring correction of the same type in the (Weak) case would

require to use weights δi/
ˆ̄G(Xi, Zi) for an estimator ˆ̄G(Xi, Zi) of the conditional

survival function. Here, the loss is the rate is unavoidable and corresponds to the
mean square risk of estimation of Ḡ(x, y); moreover, in the c.d.f. case, the same
thing happens, and it is not relevant to need an estimator of a conditional c.d.f.
to estimate another conditional c.d.f.

In fact, to be able to study the (Weak) case, we show, in the case of hazard rate
estimation, that the underlying reference measure associated to the problem must
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be changed. This is what happens with the contrast

Γ(1)
n (T ) =

1

n

n∑

i=1

∫
t2(Xi, y)1{Zi≥y}dy −

2

n

n∑

i=1

δiT (Xi, Zi).

Indeed, if h(x, y) denotes the conditional hazard rate, we have:

E(Γ(3)
n (T ) =

∫∫

A

(T (x, y)− h(x, y))2dµ(x, y) +

∫∫

A

h2(x, y)dµ(x, y)

where

dµ(x, y) = (1− L(x, y))fX(x)dxdy

with fX denoting the density of X1 and L(x, .) the conditional c.d.f. of Z1 given
X1 = x.

Then, an adequate estimator can be found, for direct and anisotropic estimation
of the hazard rate, under the weak independence assumption. Nonasymptotic risk
bounds can also be proved, as well as optimality asymptotic results.

Consequently, the way to get optimal properties for the estimation of the con-
ditional density f(x, y) starting from h(x, y) under the assumtpion (Weak) is to
use the link

f(x, y) = h(x, y) exp(−
∫ y

0

h(x, u)du)

which ensures that h and f have the same regularity. As the link between the
functions involves regular functions and the estimation is performed on compact
sets, the optimal rate obtained for the estimation of h implies optimal rate for f .

The work on conditional hazard regression is generalized to the study of the es-
timation of the conditional density of marker-dependent counting processes. In all
cases, theoretical estimators are first studied in the case of theoretical penalty func-
tions depending on unknown quantities like the supremum of h on the compact of
estimation. In a second time, these unknown terms are replaced by estimators and
random penalties are used; in that case, the result are of more asymptotic flavour,
to make sure that these random penalties are not too far from their theoretical
counterpart.
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High-dimensionality effects in quadratic programs with linear
constraints

Noureddine El Karoui

It is often the case in statistics and various branches of applied mathematics that
one wishes to solve optimization problems involving parameters that are estimated
from data. It is therefore natural to try to characterize the relationship between the
solution of the optimization problem involving estimated parameters (the sample
version) and the solution we would get if we knew the actual value of the param-
eters (the population version). An example of particular interest to some is the
classical Markowitz portfolio optimization problem in finance, which is an instance
of a quadratic program with linear equality constraints.

I discussed some of these questions in the large dimensional setting when the
optimization is performed over vectors of size p, and p is comparable to n, the
number of observations we use to get our estimates. From a practical standpoint,
this asymptotic setting (p and n go to infinity while p/n does not go to zero) tries
to capture the difficulties arising from the fact that we have limited amount of
data to estimate the parameters appearing in the problem.

I presented results showing that the high-dimensionality of the data (i.e p/n
not small) implies significant and quantifiable risk underestimation, in both the
case of quadratic programs with linear equality constraints and linear inequality
constraints, when the number of constraints is fixed in the asymptotics. I also
considered the question of robustness of the conclusions to various distributional
assumptions, focusing on understanding the sensitivity of the results to heavy-
tails and time correlation. Finally, I discussed the impact of working with non-
independent observations and a significant non-classical failure of the bootstrap.
A possible robust correction of the problems was also proposed.

The analysis is based on random matrix theory.

l1/l2 penalities

Sara van de Geer

A high-dimensional regression model is one where the number of variables p is
much larger than the number of observations n. A popular estimation method is
least squares with an l1 - penalty on the regression coefficients. From a practical
point of view however, it is often natural to group variables that ”belong together”.
One may then consider applying an l1/l2 penalty proportional to the l1 - norm of
the l2 - norm of coefficients within groups. We present several versions of this idea,
including models with within group structure, and multiple regression models, say
panel data models with time dependent (smoothly) related coefficients. We show
that l1/l2 - penalities lead to sparsity oracle inequalities, assuming compatibility
between the l2 - norm of the regression and the l1/l2 - norm of the coefficients.
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Selection of kernel density estimators: Lp–risk oracle inequalities

Alexander Goldenshluger

(joint work with Oleg Lepski)

Let X be a random variable in Rd having density f with respect to the Lebesgue
measure. We want to estimate f on the basis of the iid sample Xn = (X1, . . . , Xn)

drawn from f . By an estimator f̂ we mean any measurable function f̂(t) =

f̂(Xn; t) : (Rd)n×Rd → R. Accuracy of an estimator f̂ is measured by the Ls–risk:

Rs[f̂ , f ] :=
[
E‖f̂ − f‖qs

]1/q
, s ∈ [1,∞), q ≥ 1,

where E is the expectation with respect to the probability measure of the obser-
vations Xn. The objective is to develop an estimator with small Ls–risk.

The oracle approach to density estimation is based on selection of estimators or
models. Given a family of density estimators F , the goal is to propose a measurable

choice, say f̂ , from the family F so that for every f from a large functional class
F the following oracle inequality holds

(1) Rs[f̂ ; f ] ≤ C inf
f̃∈F

Rs[f̃ ; f ] + δn,

where C is a constant independent of f and n, and the remainder δn does not
depend on f . Oracle inequalities with ”small” remainder term δn and constant C
close to one are of prime interest; they are key tools for establishing minimax and
adaptive minimax results in estimation problems. To the best of our knowledge,
inequalities of the type (1) in the context of density estimation were established
only in the cases s = 1 and s = 2 (see, e.g., [2], [4], [1], and [5]).

In this paper we develop a selection procedure for a family of kernel density
estimators. Let K : R

d → R be a fixed kernel with
∫
K(x)dx = 1. Given a

bandwidth vector h = (h1, . . . , hd) define Vh :=
∏d
i=1 hi and consider the kernel

estimator of f

(2) f̂h(t) :=
1

nVh

n∑

i=1

K

(
t−Xi

h

)
=

1

n

n∑

i=1

Kh(t−Xi).

Here by u/v for u, v ∈ Rd we mean the coordinate–wise division, and Kh(•) :=

V −1
h K(•/h). Let hmin =

(
h
(1)
min, . . . , h

(d)
max

)
and hmax =

(
h
(1)
max, . . . , h

(d)
max

)
be two

vectors in Rd such that 0 < h
(i)
min < h

(i)
max ≤ 1, ∀i. For brevity, we will write

Vmin = Vhmin and Vmax = Vhmax . Consider the family of kernel estimators

F(H) :=
{
f̂h : h ∈ H

}
, H :=

d⊗

i=1

[
h
(i)
min, h

(i)
max

]
.

We refer to the problem of selecting an estimator from F(H) as the bandwidth
selection problem. This problem is central in the area of density estimation.
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We propose a measurable choice ĥ ∈ H such that the resulting estimator f̂ = fĥ
satisfies the following oracle inequality

(3) Rs[f̂ ; f ] ≤
(
C(s) + 3‖K‖1

)
inf
h∈H

Rs[f̂h; f ] + δn,s, ∀f ∈ F.

If s ≥ 2 then F is the set of all probabilty densities uniformly bounded by a
constant f∞, C(s) depends only on K and f∞, and

δn = κ1(lnn)
κ2n1/2 exp

{
− κ3

V
2/s
max

}
, Vmax :=

d∏

i=1

h(i)max.

for some explicitly given constants κi, i = 1, 2, 3. It should be emphasized that
construction of our selection rule does not require knowledge of f∞. If s ∈ [1, 2)
then the above oracle inequality holds for any density f with C(s) depending on
K only and the remainder term

δn = κ1(lnn)
κ2n1/s exp

{
− κ3n

2
s
−1
}
.

These results allow to derive adaptive minimax results in a wide variety of density
estimation settings. In particular, the selection rule leads to a kernel density es-
timator that is adaptive minimax over a scale of the anisotropic Nikol’ski classes.
Minimax estimation of densities from such classes was studied in [3].

Our results are easily extended to more general families of kernel estimators F .
Let K be a class of kernels, and consider the family

F(K,H) =
{
f̂(K,h) : K ∈ K, h ∈ H

}
,

where f̂(K,h) denotes the estimator given in (2) and associated with kernel K ∈ K
and bandwidth h ∈ H. Under metric entropy assumptions on the class K we show

that our selection rule applied to the family F(K,H) leads to the estimator f̂ that
satisfies basically the same oracle inequality (3); now the remainder δn,s depends
on the entropy of the class K of kernels.
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On Universal Oracle Inequalities Related to High Dimensional Linear
Models

Yuri Golubev

This talk deals with a classical problem of recovering an unknown vector ϑ ∈ Rn

from the noisy data
Y = Aϑ+ σξ,

where A is a known m×n - matrix and ξ =
(
ξ(1), . . . , ξ(m)

)⊤
is a standard white

Gaussian noise in Rm with Eξ(k) = 0, Eξ2(k) = 1, k = 1, . . . ,m. The noise level
σ is assumed to be known.

We start out by considering the maximum likelihood estimate of ϑ

ϑ̂0 = argmin
ϑ∈Rn

‖Y −Aϑ‖2 = (A⊤A)−1A⊤Y,

where ‖•‖ stands for the standard Euclidian norm. Its mean square risk is com-
puted as follows :

E‖ϑ̂0 − ϑ‖2 = σ2
n∑

k=1

λ−1(k),(1)

where λ(k) and ϕk ∈ Rn are eigenvalues and eigenvectors of A⊤A.
In what follows, it is assumed solely that λ(1) > λ(2) > · · · > λ(n). So, A may

be severely ill-posed and Equation (1) reveals the principal difficulty in ϑ̂0: Its risk
may be very large when n is large or when A has a large condition number.

The simplest way to improve ϑ̂0 is to suppress large λ−1(k) in (1) with the help

of a linear smoother; that is, to estimate ϑ by Hϑ̂0, where H is a properly chosen
n × n - matrix. In what follows, we deal with smoothing matrices admitting the
following representation H = Hα(A

⊤A), where Hα(λ) is a function R+ → [0, 1]
which depends on a regularization parameter α ∈ [0, ᾱ] such that

lim
α→0

Hα(λ) = 1, lim
λ→0

Hα(λ) = 0.

So, we estimate ϑ with the help of the following family of linear estimators

ϑ̂α = Hα(A
⊤A)(A⊤A)−1A⊤Y

and our main goal is to choose the best estimator within this family, or equivalently,

the best regularization parameter α. Note that the mean square risk of ϑ̂α is
computed as follows :

Lα(ϑ)
def
= E‖ϑ̂α − ϑ‖2 =

n∑

k=1

[
1− hα(k)

]2〈ϑ, ψk〉2 + σ2
n∑

k=1

λ−1(k)h2α(k),(2)

where here and below

hα(k)
def
= Hα[λ(k)], ψk

def
= Aϕk/‖Aϕk‖ and 〈ϑ, ψk〉 def

=
n∑

l=1

ϑ(l)ψk(l).

The heuristical motivation of our approach is based on the idea that a good data-
driven regularization should minimize in some sense the risk Lα(ϑ) (see (2)). To
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implement this idea we take the classical way related to the famous principle
of unbiased risk estimation which goes back to Akaike (1973). This is why we
make use of the empirical risk minimization suggesting to compute data-driven
regularization parameters as follows :

(3) α̂ = argmin
α∈(0,ᾱ]

Rα[Y, Pen],

where

Rα[Y, Pen] = ‖ϑ̂0 − ϑ̂α‖2 + σ2Pen(α),

and Pen(α) : (0, ᾱ] → R+ is a given penalty function. The main difficulty in
this approach is related to the choice of the penalty. Intuitively, we want that the
method mimics the oracle regularization parameter α∗ = argminα Lα(ϑ). There-
fore we are looking for a minimal penalty ensuring the following inequality

(4) Lα(ϑ) . Rα[Y, Pen] + C,
where C = −‖ϑ− ϑ̂0‖2.

A traditional approach to solving (4) is based on the unbiased risk estimation
defining the penalty as a root of the equation

Lα(ϑ) = ERα[Y, Pen] +EC.
Is is easily seen that

Pen(α) = 2

n∑

k=1

λ−1(k)hα(k).

Unfortunately, in spite of its very natural motivation, this penalty fails for ill-posed
inverse problems (see e.g. [2]).

Our main idea is to compute the penalty in a little bit different way, namely,
as a minimal function assuring the following inequality

E sup
α6ᾱ

[
Lα(ϑ)−Rα[Y, Pen]− C

]
+
6 KE

[
Lᾱ(ϑ)−Rᾱ[Y, Pen]− C

]
+
,(5)

where [x]+ = max{0, x} and K > 1 is a constant. The heuristical motivation
behind this approach is rather transparent : We are looking for a minimal penalty
that balances all excess risks uniformly in α ∈ (0, ᾱ].

In the general case, solving (5) is a hard numerical problem, but for the class
of ordered smoothers this problem becomes feasible. This class of regularizing
matrices Hα(•) is defined, according to Kneip (1994), as follows :

Definition 1. The family of functions {Hα(λ), α ∈ (0, ᾱ], λ ∈ R+} is called
ordered smoothers if:

(1) For any given α ∈ (0, ᾱ], Hα(λ) : R+ → [0, 1] is a monotone function.
(2) If for some α1, α2 ∈ (0, ᾱ] and λ′ ∈ R+,

Hα1(λ
′) < Hα2(λ

′)

then for all λ ∈ R
+

Hα1(λ) 6 Hα2(λ).
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Note that the class of ordered spectral regularizations is rather vast including
spectral cut-off, Tikhonov-Phillips and Landweber methods.

Suppose the penalty has the structure

Pen(α) = 2

n∑

k=1

λ−1(k)hα(k) + (1 + γ)Q(α),

where γ is a positive number and Q(α), α > 0 is defined as follows :

Q(α) = 2D(α)µα

n∑

k=1

ρ2α(k)

1− 2µαρα(k)
,

where

D(α) =

{
2

n∑

k=1

λ−2(k)
[
2hα(k)− h2α(k)

]2
}1/2

, ρα(k) =

√
2
[
2hα(k)− h2α(k)

]

D(α)λ(k)

and µα is a root of equation

n∑

k=1

F [µαρα(k)] = log
D(α)

D(ᾱ)
, with F (x) =

1

2
log(1− 2x) + x+

2x2

1− 2x
.

The following theorem representing the main result in this talk controls the
performance of the empirical risk minimization in terms of the penalized oracle
risk

r(ϑ)
def
= inf

α6ᾱ
R̄α(ϑ),

where

R̄α(ϑ)
def
= E

{
Rα[Y, Pen] + C

}
= Lα(ϑ) + (1 + γ)σ2Q(α).

Theorem 1. The mean square risk of ϑ̂α̂ with α̂ defined by (3) is bounded uni-
formly in ϑ ∈ Rn by

E‖ϑ− ϑ̂α̂‖2 6 r(ϑ)

{
1 +

[
C

γ
log−1/2 Cr(ϑ)

σ2D(ᾱ)
+
Cσ2D(ᾱ)

γ4r(ϑ)

]1/2}
,

where C is a constant.
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Higher Criticism thresholding: optimal feature selection when useful
features are rare and weak

Jiashun Jin

(joint work with David Donoho)

Consider a two-class classification setting where we have a set of n training samples
(Yi, Xi), 1 ≤ i ≤ n. For each i = 1, 2, . . . , n, Yi is the class label which equals to 1
if the i-th sample comes from one class and equals to −1 otherwise, Xi ∈ Rp is the
feature vector which is distributed asN(Yi•µ, Ip) for some unknown contrast mean
vector µ ∈ Rp. Given a new test feature X ∼ N(Y •µ, Ip) where the corresponding
label Y is unknown, our goal is to predict Y as 1 or −1 with an error as small as
possible.

Following our papers [2, 3, 4, 10], we model the coordinates of µ as samples
from the mixture of two point masses (1− ǫ)ν0+ ǫνµ0 . Note that a feature is useful
for classification if and only if the corresponding coordinate of µ is nonzero. Let
τ =

√
nµ0. Our main interest is in the case where ǫ is small and τ is small or

moderately large, so that the useful features are both rare and weak. We denote
such a model by RW (ǫ, τ ;n, p).

We adopt an asymptotic framework where p tends to ∞ and (ǫ, τ, n) are linked
to p through some fixed parameters as p ranges. In detail, fixing a parameter
β ∈ (0, 1), we let

ǫ = ǫp = p−β .

This models the case where the useful features get increasingly rare as p grows.
To counter this effect, τ must grow with p. Fixing another parameter r ∈ (0, 1),
we let

τ = τp =
√
2r log p.

This captures the most interesting range of τp: when r > 1, the feature selection
problem is relatively easy and we can select features by thresholding at

√
2 log p

(say); when r ≈ 0, successful classification is impossible.
In addition, we consider three different types of linkage between n and p, where

as p tends to ∞, n = np may have no growth, slow growth, or regular growth.

• No Growth. np = n0 for some fixed integer n0.
• Slow Growth. np → ∞, but np/p

ϑ → 0 for any ϑ > 0.
• Regular Growth. np = pϑ for some ϑ ∈ (0, 1).

Combining the above linkages we have the asymptotic rare/weak model
ARW (β, r, np). It turns out that, for each of type of growth of np, there is an
interesting two-phase structure in the region (β, r) ∈ (0, 1)2 which we now de-
scribe.

Introduce the standard phase boundary function [6, 1, 9]

ρ(β) =





0, 0 < β ≤ 1/2,
β − 1/2, 1/2 < β < 3/4,
(1 −√

1− β)2, 3/4 ≤ β < 1.
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For each of the three growth types of np, define ρ
⋆(β) for ⋆ = N,S,R by

ρN(β) = ρN (β, n0) =
n0

n0 + 1
ρ(β), 0 < β < 1,

ρS(β) = ρ(β), 0 < β < 1,

and

ρR(β) = (1− ϑ)ρ(
β

1 − ϑ
), 0 < β < 1− ϑ.

In the β-r plane, for each of the three growth types of np, we call the region below
the curve (β, ρ⋆(β)) Region of Impossibility, and that above the curve Region of
Possibility.

For each growth type of np and a fixed point (β, r) in the interior of Region of
Impossibility, consider the sequence of problems ARW (β, r, np) and a sequence of
trained classification methods, perhaps dependent on p. As p→ ∞, the misclassi-
fication error rate of the resulting trained classifier tends to 1/2. In this region, the
measurement are effectively non-informative, and random guessing does almost as
well as any other methods.

At the same time, for each growth type of np and a fixed point (β, r) in the
interior of Region of Possibility, consider the sequence of problems ARW (β, r, np).
It is possible to have a sequence of trained classification methods, perhaps depen-
dent on p, such that the misclassification error rate tends to 0 as p tends to ∞. In
particular, combining Fisher’s LDA with a new approach to feature selection (to
be described below) yields such a sequence of trained classification methods.

For a p-dimensional weight vector w to be determined, Fisher’s LDA classify
Ŷ = ∓1 according to L(X) <> 0, where L(X) is the weighted sum of the test
features:

L(X) = L(X ;w) =

p∑

j=1

w(j)X(j).

Let Z be the summarizing z-vector of the training data:

Z =
1√
n

n∑

i=1

YiXi.

For a threshold t > 0 to be determined, we set weights by
(1)

w(j) = w⋄
t (j) =





sgn(Z(j))•1{|Z(j)|≥t}, ⋄ = Clipping,
Z(j)•1{|Z(j)|≥t}, ⋄ = Hard Thresholding,
sgn(Z(j))(|Z(j)| − t)•1{|Z(j)|≥t}, ⋄ = Soft Thresholding.

Seemingly, the key for the weight assigning is how to select the threshold t.
In Donoho and Jin (2008, 2009), we select t by Higher Criticism, a notion

developed earlier [1] in the context of signal detection. To use Higher Criticism for
feature selection, we let πj = P (|N(0, 1)| ≥ |Z(j)|) be the p-values associated with
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the j-th feature. We then sort the p-values in the ascending order π(1) < π(2) <
. . . < π(p), and define the j-th Higher Criticism score by

HCp,j =
√
p

[
j/p− π(j)√
j/p(1− j/p)

]
.

Let ĵHC = ĵHC(Z(1), Z(2), . . . , Z(p); p) be the index at which HCp,j reaches
the maximum over all j satisfying 1 ≤ j ≤ α0p. We set the threshold for feature
selection by the jHC -th largest z-score (in absolute value). We call such a threshold
by tHCp = tHCp (Z(1), Z(2), . . . , Z(p)). The choice of the threshold is not sensitive
to the tuning parameter α0, which is set as 1/2 in default.

For each growth type of np and a fixed point (β, r) in the interior of Region of
Possibility, consider the sequence of problems ARW (β, r, np). For ⋄ = Clipping,

Hard Thresholding, or Hard Thresholding, suppose we classify Ŷ = ∓1 according
to ( p∑

j=1

wt(j)X(j)

∣∣∣∣
{t=tHC

p }

)
< > 0.

Then the misclassification error of the resulting sequence of classification methods
tend to 0 as p tends to ∞. The proofs are given in [3] (when np has a slow growth)
and [4] (all three types of growth of np).
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Sparse Recovery in Infinite Dictionaries

Vladimir Koltchinskii

(joint work with Stas Minsker)

Let (X,Y ) be a random couple in S × T, where (S,A) is a measurable space and
T ⊆ R is a Borel set. Let P denote the distribution of (X,Y ) and Π denote the
distribution of X. Measurable functions f : S 7→ R will be called prediction rules.
Let ℓ : T ×R 7→ R+ be a loss function. Assume that, for all y ∈ T, ℓ(y, •) is convex
and denote (ℓ • f)(x, y) := ℓ(y; f(x)). The risk of a prediction rule f : S 7→ R is
defined as

P (ℓ • f) :=
∫

S×T
(ℓ • f)dP = Eℓ(Y ; f(X)),

the optimal prediction rule is

f∗ := argminf :S 7→RP (ℓ • f)
and the excess risk of f is

E(f) := P (ℓ • f)− P (ℓ • f∗).
A class H of measurable functions h : S 7→ [−1, 1] will be called a dictionary.

It will be equipped with a σ-algebra BH and with a measure µ. For λ ∈ L1(µ),
denote

fλ(•) :=

∫

H
λ(h)h(•)µ(dh).

Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. copies of (X,Y ). Denote Pn
the empirical distribution based on this sample (Πn will denote the empirical
distribution based on (X1, . . . , Xn)). We are interested in the following penalized
empirical risk minimization problem:

(1) λ̂ε := argminλ∈D

[
Pn(ℓ • fλ) + ε‖λ‖L1(µ)

]
,

where D ⊆ L1(µ) is a convex set and ε > 0 is a regularization parameter. In the
case of finite dictionaries, this is a well known ℓ1 or LASSO type penalization
frequently used in sparse recovery problems. We would like to extend a part of
the existing theory for such methods to the case of infinite dictionaries. In what
follows, we study only the case of loss functions of quadratic type (including, of
course, the loss ℓ(y, u) = (y − u)2) and we also assume that D is a bounded set
in L1(µ). Our goal is to derive so called sparsity oracle inequalities for the excess
risk E(fλ̂ε) of the solution of (1) in spirit of recent results in the case of finite
dictionaries (see, e.g., Bickel, Ritov and Tsybakov [1], Koltchinskii [2, 3], van de
Geer [4]).

Alignment coefficients. Let K : L2(µ) 7→ L2(µ) denote the following integral
operator

(Ku)(h) =

∫

H
〈h, g〉L2(Π)u(g)µ(dg), h ∈ H, u ∈ L2(µ),
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that can be called the ”Gram operator“ of the dictionary H. For w ∈ L2(µ), define
its alignment coefficient with the dictionary H as

a(w) = aH(w) = sup
‖fu‖L2(µ)≤1

〈w, u〉L2(µ).

It is easy to see that for w ∈ Im(K1/2), a(w) = ‖K−1/2w‖L2(µ). In a number

of concrete examples, H := {h(t, •) : t ∈ G}, where G is a domain in Rd, and
functions on H can be viewed as functions on G. For smooth functions w, it is
often the case that a(w) is dominated by a Sobolev norm of w :

a(w) ≤ C‖w‖W2,α(G).

This includes, for instance, such dictionaries as H = {cos〈t, •〉 : t ∈ G}, H =
{h(• − t) : t ∈ [0, 2π)d}, H = {I[0,t] − I(t,1] : t ∈ [0, 1]} (among others). In such
cases, if w is a sum of d ”spikes“ (i.e., d components that are smooth and have

disjoint supports), then a(w) ≤ C
√
d. Similar bounds on the alignment coefficient

hold also when the dictionaryH can be partitioned in a large number N of ”almost
orthogonal“ sets in L2(Π) and w is supported in the union of d of them. In what
follows, we denote

∂|λ| :=
{
w : H 7→ [−1, 1] : w(h) = sign(λ(h)), h ∈ supp(λ)

}
, λ ∈ D,

and we will use the alignment coefficients of functions w ∈ ∂|λ|. We will also use
the following notation: Sw := {h ∈ H : |w(h)| ≥ 1/2}, w ∈ ∂|λ|.

Complexity assumptions. We need some complexity assumptions on the
dictionary H that can be expressed in many different ways using random entropy,
bracketing entropy, etc. To be specific, let us assume that the following bound on
the L2(Πn)-covering numbers holds:

logN(H;L2(Πn);u) ≤ H(u), u > 0 a.s.,

where H is a nonnegative nonincreasing function, H(u) → ∞, u → 0 and H is
regularly varying of exponent α ∈ [0, 2).

Approximation by finite-dimensional subspaces. Given a linear subspace
L ⊆ L2(Π) of dim(L) < +∞ and a subset H′ ⊆ H of the dictionary, denote

ρ(H′;L) := sup
h∈H′

‖PL⊥h‖L2(Π),

where PL is the orthogonal projection on a subspace L ⊆ L2(Π) and L⊥ is the
orthogonal complement of L.

We will also use the quantity

U(L) := sup
h∈L,‖h‖L2(Π)≤1

‖h‖L∞

that characterizes ”smoothness” of functions in L (note that if there exists an

L2(Π) orthonormal basis of L of cardinality d, then U(L) ≍
√
d).
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Sparsity Oracle Inequality. We now formulate our main result.

Theorem 1. There exist constants C,D > 0 depending only on ℓ and D such that
the following holds. Let t > 0 and denote tn := t + 4 log log2 n + 2 log 2. For all
λ ∈ D, w ∈ ∂|λ|, L ⊆ L2(Π) with d := dim(L) and ρ := ρ(Sw;L), and for all

ε ≥ D

√
H(1/

√
d)

n , with probability at least 1− e−t, we have

E(fλ̂ε) ≤ E(fλ) +
√
E(fλ)ξn + ξ2n,

where

ξ2n := C

[
a2(w)ε2

∨ d+ tn
n

∨
ρ

√
H(ρ/

√
d)

n

∨ U(L)H(ρ/
√
d)

n

]
.
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Uniform bounds for positive random functionals with application to
density estimation

Oleg V. Lepski

The talk consists of three parts. In the first one we presents upper functions for
very general stochastic objects namely for positive random functionals. The cor-
responding results are used for deriving the uniform bounds for gaussian random
fields and for the empirical processes. This part is ended by the discussion on
the relation of the obtained abstract probabilistic results to the well-known phe-
nomena arising in minimax and minimax adaptive estimation. In the second part
we consider some special random processes such that kernel density estimation
process and convoluting kernel density estimation process. Both of them are the
special cases of empirical processes. Using the results obtained in the first part
of the talk we prove non-asymptotical versions of the law of iterated logarithm
and the law of logarithm and compare them with existing asymptotical results.
Moreover, we establish also some moments inequalities for the supremum norm
of the both mentioned above processes. These results are the crucial tool for the
considerations done in the third part of the talk. This part is devoted to statistical
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problems and the presented results are subject of the joint work with Alexander
Goldenshluger. We study the estimation of a probability density on Rd and con-
sider the risk described by supremum norm. We propose very general selection rule
from the family of kernel estimators. The main ingredient of our construction are
majorants which are the upper functions for the processes considered in the second
part. For the selected estimator we prove so-called sup-norm oracle inequality. Be-
ing established, an oracle inequality is the informative tool for deriving minimax
adaptive results. We use our sup-norm oracle inequality in order to prove that the
selected estimator is adaptive over the scale of anisotropic Hölder classes.

Global Uniform Risk Bounds for Wavelet Deconvolution Estimators

Karim Lounici

(joint work with Richard Nickl)

Consider the statistical deconvolution model

Y = X + ǫ

where X is a real-valued random variable with unknown probability density f :
R → R

+ and ǫ is an error term independent of X that is distributed according to
the known probability measure ϕ on R. The law P of Y equals the convolution
f ∗ ϕ and we denote its density by g. Let Y1, . . . , Yn be i.i.d replications of Y ,
and denote by Pn the associated empirical measure. The deconvolution problem is
about recovering the unknown density f from the noisy observations (Y1, . . . , Yn).
This problem has been extensively studied (see, e.g., [1, 2, 4, 5, 7]).

One key lesson from the above mentioned literature is that some condition on
the regularity of the signal ǫ is necessary to be able to estimate f with reasonable
accuracy. This condition is often quantified by a lower bound on the decay of
the Fourier transform F [ϕ] of ϕ, and Fourier inversion techniques are applied to
construct estimators for f .

Let (ϕ, ψ) be any scaling and wavelet functions such that ϕ, ψ ∈ Lp(R) for
every 1 6 p 6 ∞, and for some 0 < a′ < a we have supp(F [ϕ]) ⊆ [−a, a]
as well as supp(F [ψ]) ⊆ [−a,−a] \ [−a′, a′]. We shall assume furthermore that
supx∈R

∑
k |ϕ(x − k)| < ∞, supx∈R

∑
k |ψ(x − k)| < ∞. These conditions are

satisfied for Meyer wavelets. Assume the density f admits the formal decomposi-
tion f =

∑
k∈Z

αjkϕjk +
∑∞

l=j

∑
k∈Z

βlkψlk, αjk = 〈f, ϕjk〉, βlk = 〈f, ψlk〉 where

∀u, v ∈ L2(R) 〈u, v〉 =
∫
R
u(x)v(x)dx.

For any integer j > 0 consider the estimator fn(x, j) = 1
n

∑n
m=1K

∗
j (x, Ym)

where

K∗
j (x, y) = 2j

∑

k∈Z

ϕ(2jx− k)ϕ̃jk(y), ϕ̃jk(y) = F−1

[
2−l

F [ϕ0k](2
−l•)

F [ϕ]

]
(y).
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Note that the above estimator is well-defined if we assume |F [ϕ](t)| > 0 on
[−2ja, 2ja]. Define

δj = min
t∈[−2ja,2ja]

|F [ϕ](t)|.

Set j′ = j ∨ 1. Assume that f is bounded. Then there exists a constant c =
c(ϕ, ψ) > 0 such that ∀n > 1

E sup
x∈R

|fn(x, j) − Efn(x, j)| 6
c

δj

(
‖g‖1/2∞

√
2jj′

n
+

2jj′

n

)
.

If n > c′2jj′ for some c′ > 0 then we have ∀j > 0 and u > 0

P

{
sup
x∈R

|fn(x, j)− Efn(x, j)| >
C

δj

(
G

√
(1 + u)

2jj′

n
+ (1 + u)

2jj′

n

)}
6 e−(1+u)j′

where G = max(‖g‖1/2∞ , 1) and C = C(ϕ, ψ, c′) > 0.
The originality of our approach appears in the computation of an upper bound

on the entropy of the class {δjϕ̃jk, k ∈ R}. We combine recent results on VC-
property of functions of quadratic variation [3] with Paley-Littlewood theory and
the fact that wavelet bases are compatible with both the L2 and L∞ structure
simultaneously. Note that our results also cover the standard density estimation
problem (in this case ϕ ≡ 0 and consequently δj ≡ 1) and improve upon [3] where
some moment condition was imposed on the density.

The above uniform deviation results can be readily applied to derive the optimal
rates of convergence for densities f ∈ Bs∞,∞(R).

The Besov ball Bs∞∞(L) is defined as the set of functions f such that f ∈ L∞(R)
and

‖f‖s,∞,∞ = ‖α0•‖∞ +max
l>0

{
2l(s+1/2)‖βl(•)‖∞

}
6 L.

Assume |F [ϕ](t)| > C(1 + |t|2)−w
2 e−c0|t|

α

, ∀t ∈ R where C,α > 0 and c0, w > 0.
Consider the linear estimator fn(•, jn) with resolution jn taken such that

2jn ≍





(
n

logn

) 1
2(s+w)+1

if c0 = 0

(τ log2 n)
1
α , with c0a

ατ < 1/2 if c0 > 0.

Then there exists a constant C′ = C′(s, L, ϕ, ψ, C,w, c0, α) > 0 such that ∀n > 2

sup
f∈B(s,L)

E sup
x∈R

|fn(x, jn)− f(x)| ≤ C′





(
1

logn

) s
α

if c0 > 0
(

logn
n

) s
2s+2w+1

if c0 = 0

We established our result under the minimal condition on |F [ϕ](t)| to be bounded
from below on growing intervals [−2ja, 2ja] and no condition whatsoever on the
support of f . Note also that the rate we derived are the minimax rates of sup-norm
deconvolution.
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In the moderately ill-posed case c0 = 0, the optimal choice of the resolution jn
depends on the unknown regularity s of f . We show that the thresholded estimator
defined below is minimax adaptive on the Besov balls Bs∞∞(L):

fTn (y) = fn(y, 0) +

j1−1∑

l=0

∑

k

β̂lk1|β̂lk|>τψlk(y),

where

β̂lk =
2l/2

n

n∑

m=1

ψ̃lk(Ym), ψ̃lk(y) = F−1

[
2−l

F [ψ0k(2
−l•)]

F [ϕ]

]
(y),

τ = κ2wlG
√

logn
n , 2j1 ≍

(
n

logn

)1/(2w+1)

, j1 > 0 and κ > 0 is a numerical constant

sufficiently large.
Assume that |F [ϕ](t)| > C(1 + |t|2)−w

2 for all t ∈ R where C > 0,w > 0. Then
we have for every n > 2 and every s > 0

sup
f∈Bs

∞∞
(L)

E sup
y∈R

|fTn (y)− f(y)| ≤ D

(
logn

n

) s
2(w+s)+1

where D > 0 depends only on L,ϕ, ϕ, ψ. This result was established without any
moment condition on f and covers the case of standard density estimation.

Note finally that our results can be applied to derive adaptive confidence bands.
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Nonparametric Regression on a Generated Covariate with an
Application to Semiparametric GARCH-in-Mean Models

Enno Mammen

(joint work with Christian Conrad)

We consider time series models in which the conditional mean of a response variable
Yt given the past Ft depends on an unobserved covariate ht. More precisely, we
assume that for t = 1, ..., T :

Yt = m0(ht) + εt,

where εt fulfills E[εt|Ft−1] = 0 for an increasing σ-field Ft with the property that
(εt, ht+1) is Ft-measurable.

The covariate process ht is an unobserved one-dimensional process. We assume

that ht can be consistently estimated by known functions ĥt that depend on pa-
rameters ψ and m and on the past observations Yt−1, Yt−2, . . .. We denote the true

parameter values by ψ0 and m0, i.e. ht = ĥt(ψ0,m0). A typical example could be
that ht follows a GARCH(1, 1) process or another specification from the GARCH
family. Most importantly, we allow ht to depend on the function m0. In particu-

lar, this is the case if ĥt depends on ψ0 and on the residuals ε1, ..., εt−1. Then one
needs the function m0 to get the residuals from the observations Yt−1, Yt−2, . . ..

Our central assumption on ĥt is that this function is measurable with respect to
Ft−1.

We discuss estimation of m and testing parametric specifications of m.
Our testing procedure is based on iterative fits of the covariate and nonpara-

metric kernel smoothing of the conditional mean function. The test statistic is
given by the L2 norm of the difference between the kernel estimator and the para-
metric estimator of m. We show that this test statistic is asymptotically normal
and discuss its asymptotic power.

For estimation we consider nonparametric quasi-maximum likelihood sieve es-
timators of m and ψ:

(m̂, ψ̂) = arg min
(m,ψ)∈Mn

T∑

t=1

ln(ht(m,ψ)) +
(Yt −m(ht(m,ψ)))

2

ht(m,ψ)
,

where Mn is an increasing class (sieve) of parameters. We assume entropy con-
ditions on the class Mn. Under these assumptions we show the following result:

(m̂, ψ̂) converges to (m,ψ) with rate oP (n
−α−δ) for all δ > 0, where α is the op-

timal rate in a nonparametric regression problem with regression class that has
the same entropy as Mn. This shows that the function m0 can be estimated with
nearly the same rate as if the unobserved covariate ht would be known.

The proofs of our results are based on empirical process methods.
We apply our approach for testing economic theories that postulate functional

relations between macroeconomic or financial variables and their conditional sec-
ond moments. We illustrate the usefulness of the methodology by testing the linear
risk-return relation predicted by the ICAPM.
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In a related paper Mammen, Rothe and Schienle (2010) consider a nonpara-
metric regression model:

Y = m0(R) + ε,

E[ε|R] = 0

with one-dimensional response Y and q-dimensional covariate R where again the

covariate R is unobserved but a nonparametric estimator R̂ of R is available. In
that paper the question is studied how the outcome of an estimator of m0 changes

if one regresses on R̂ instead of regressing on R. Leading examples in that paper are
control variable approaches for nonparametric regression models with endogenous
covariates.
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Finite-Sample Confidence Bands in Density Estimation

Richard Nickl

Let X1, ..., Xn be a random sample from some unknown probability density f
defined on the unit sphere Sd of Rd+1, d > 1. Consider the needlet frame {ϕjη}
describing the needlet projection onto the space of spherical polynomials of de-
gree less than 2j. We prove non-asymptotic concentration inequalities for the uni-
form deviations of the linear needlet density estimator fn(j) obtained from an
empirical estimate of the needlet projection

∑
η ϕjη

∫
fϕjη of f . We apply these

results to construct nonasymptotic confidence bands for the unknown density f .
The confidence bands are shown to be adaptive over classes of differentiable and
Hölder-continuous functions on Sd that attain their Hölder exponents on Sd. As a
byproduct of independent interest we obtain a characterization of Hölder function
spaces on Sd by the needlet approximation spaces.
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Asymptotic equivalence for inference on the quadratic variation of
Gaussian martingales

Markus Reiß

In recent years volatility estimation from high-frequency data has attracted a lot
of attention in financial econometrics and statistics. Due to empirical evidence
that the observed transaction prices of assets cannot follow a semi-martingale
model, a prominent approach is to model the observations as the superposition
of the true (or efficient) price process with some measurement error, conceived as
microstructure noise. The main features are already present in the basic model of
observing

(1) Yi = Xi/n + ǫi, i = 1, . . . , n,

with an efficient price process Xt =
∫ t
0
σ(s) dBs, B a standard Brownian motion,

and ǫi ∼ N(0, δ2) all independent. The aim is to perform statistical inference on
the volatility function σ : [0, 1] → R

+, e.g. estimating the so-called integrated

volatility
∫ 1

0
σ2(t) dt over the trading day.

The mathematical foundation on the parametric formulation of this model has
been laid by [2] who prove the interesting result that the model is locally asymp-
totically normal (LAN) as n→ ∞, but with the unusual rate n−1/4, while without
microstructure noise the rate is n−1/2. Starting with [11], the nonparametric model
has come into the focus of research. Mainly three different, but closely related
approaches have been proposed afterwards to estimate the integrated volatility:
multi-scale estimators [10], realized kernels or autocovariances [8] and preaverag-
ing [4]. Under various degrees of generality, especially also for stochastic volatility,
all authors provide central limit theorems with convergence rate n−1/4 and an as-

ymptotic variance involving the so-called quarticity
∫ 1

0 σ
4(t) dt. Recently, also the

problem of estimating the spot volatility σ2(t) itself has found some interest [6].
The aim of the present work is to provide a thorough mathematical understand-

ing of the basic model, to explain why statistical inference is not so canonical and
to propose a simple estimator of the integrated volatility which is efficient. To this
end we employ Le Cam’s concept of asymptotic equivalence between experiments.
In fact, our main theoretical result states under some regularity conditions that
observing (Yi) in (1) is for n → ∞ asymptotically equivalent to observing the
Gaussian shift experiment

dYt =
√
2σ(t) dt+ δ1/2n−1/4 dWt, t ∈ [0, 1],

with Gaussian white noise dW . Not only the large noise level δ1/2n−1/4 is apparent,
but also a non-linear

√
σ(t)-form of the signal, from which optimal asymptotic

variance results can be derived. Note that a similar form of a Gaussian shift was
found to be asymptotically equivalent to nonparametric density estimation [7].
A key ingredient of our asymptotic equivalence proof are the results by [3] on
asymptotic equivalence for generalized nonparametric regression, but also ideas
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from [1] and [9] play a role. Moreover, fine bounds on Hellinger distances for
Gaussian measures with different covariance operators turn out to be essential.

Roughly speaking, asymptotic equivalence means that any statistical inference
procedure can be transferred from one experiment to the other such that the as-
ymptotic risk remains the same, at least for bounded loss functions. Technically,
two sequences of experiments E n and G n, defined on possibly different sample
spaces, but with the same parameter set, are asymptotically equivalent if the Le
Cam distance ∆(E n,G n) tends to zero. For Ei = (Xi,Fi, (P

i
ϑ)ϑ∈Θ), i = 1, 2, by

definition, ∆(E1, E2) = max(δ(E1, E2), δ(E1, E2)) holds in terms of the deficiency
δ(E1, E2) = infM supϑ∈Θ

∥∥MP 1
ϑ − P 2

ϑ

∥∥
TV

, where the infimum is taken over all ran-

domisations or Markov kernels M from (X1,F1) to (X2,F2), see e.g. [5] for de-
tails. In particular, δ(E1, E2) = 0 means that E1 is more informative than E2 in the
sense that any observation in E2 can be obtained from E1, possibly using additional
randomisations. Here, we shall always explicitly construct the transformations and
randomisations and we shall then only use that ∆(E1, E2) 6 supϑ∈Θ

∥∥P 1
ϑ − P 2

ϑ

∥∥
TV

holds when both experiments are defined on the same sample space.
The asymptotic equivalence is deduced stepwise. The regression-type model (1)

is shown to be asymptotically equivalent to a corresponding white noise model with
signalX . Then a very simple construction yields a Gaussian shift model with signal
log(σ2(•) + c), c > 0 some constant, which is asymptotically less informative, but
only by a constant factor in the Fisher information. Inspired by this construction,
we present a generalization where the information loss can be made arbitrarily
small (but not zero), before applying nonparametric local asymptotic theory to
derive asymptotic equivalence with our final Gaussian shift model for shrinking
local neighborhoods of the parameters. The global result is based on an asymptotic
sufficiency result for simple independent statistics.
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Adaptive test of homogeneity for Poisson processes when the
alternative belongs to Weak Besov bodies

Patricia Reynaud-Bouret

(joint work with Magalie Fromont, Béatrice Laurent)

The presentation consists in a comparison between adaptive test and adaptive
estimation for Poisson processes. We observe a Poisson process N with unknown
intensity s(x) wrt Ldx on [0, 1] where L is a known constant to derive rates of
convergence. We assume that ‖s‖∞ < ∞ and that one can decompose s on the
Haar basis :

s = α0ϕ0 +
∑

j∈N

2j−1∑

k=0

α(j,k)ϕ(j,k),

with ϕ0(x) = 1[0,1](x) and ϕ(j,k)(x) = 2j/2ψ(2jx − k) where ψ(x) = 1[0,1/2[(x) −
1[1/2,1[(x). We want either to estimate s or to test H0: ”s is constant” (ie N is
homogeneous) against H1: ”s is not constant”.
First let us understand what happens on one finite vectorial subspace. Let Λ ⊆
{(j, k), j ≥ 0, k = 0, ..., 2j − 1} and SΛ = Span(ϕ0, ϕλ, λ ∈ Λ). The dimension of
SΛ is denoted DΛ. The least-square estimator is defined by

ŝΛ = α̂0ϕ0 +
∑

λ∈Λ

α̂λϕλ,

with α̂λ = 1
L

∫
[0,1] ϕλ(x)dNx. Let sΛ the orthogonal projection of s on SΛ, then

the risk if this estimator satisfies

E(‖s− ŝΛ‖2) ≤ ‖s− sΛ‖2 +
DΛ‖s‖∞

L
.

When we want to test the homogeneity, we actually want to reject when the
distance between s and S0 = Span(ϕ0) is too large. The procedure is consequently
decomposed as follows:

(1) We approximate d(s, S0)
2 by

∑
λ∈Λ α

2
λ.

(2) We estimate it unbiasly by TΛ =
∑

λ∈Λ Tλ with

Tλ = α̂2
λ −

1

L2

∫
ϕ2
λdN.
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(3) Under H0 the law of TΛ given that N[0,1] = n is free of s, so there exists

t
(n)
Λ,α such that

P(TΛ > t
(n)
Λ,α|N[0,1] = n) ≤ α.

(4) We consequently reject when TΛ > t
(N[0,1])

Λ,α = t
(N)
Λ,α.

(5) One possible choice is t
(n)
Λ,α = q

(n)
Λ,α the 1 − α quantile of the conditional

distribution.

The performance of the test is measured in term of separation distance, i.e. the
question is: under H1, how far from S0 should s be to obtain P(accept H0) ≤ β?

If P(t
(N)
Λ,α ≥ AΛ,α,β) ≤ β/3, and if

d2(s, S0) ≥ ‖s− sΛ‖2 +�β,‖s‖∞

√
DΛ

L
+AΛ,α,β ,

then the error of second kind is less than β. Remark that with respect to the
estimation part

√
DΛ is replacing DΛ. Test are consequently usually thought to

be easier than the corresponding estimation. However the presence of AΛ,α,β is
crucial.
If t

(N)
Λ,α = q

(N)
Λ,α ,

AΛ,α,β = �β,‖s‖∞

[√
DΛ log(α−1)

L
+

log(α−1)

L
+
EΛ log2(α−1)

L2

]
,

where EΛ =
∑
j/(j,k)∈Λ 2j, which may be much larger than DΛ.

The next step consists in combining tests or estimators. Whereas the estimation in
a collection of SΛ may be difficult (but classical), the testing procedure in a family
of tests is quite easy. Let M be a collection of possible Λ’s. Then one rejects H0

when there exists one Λ ∈ M such that TΛ > t
(N)
Λ,αΛ

= q
(N)
Λ,αΛ

, where under H0,

P(∃Λ ∈ M, TΛ > t
(N)
Λ,αΛ

) ≤ α.

The basic choice for αΛ is the Bonferroni choice ie αΛ = α/|M|. This allow us to
define a ”nested collection of tests” ie M = {Λ1, ...,ΛJ̄}, with ΛJ = {(j, k), j ≤
J, k = 0, ..., 2j − 1} whose separation distance is at least

inf
J

‖s− sΛJ
‖2 +�α,β,‖s‖∞

[√
2J J̄

L
+
J̄

L
+

2J J̄2

L2

]
.

In the same way, the thresholding estimation procedure has a ”test” version which
is defined by the following rule: one rejects H0 when there exists λ ∈ ΛJ̄ such that
(λ = (j, k))

Tλ > q
(N)

λ,α/(2j J̄)
.

This is equivalent to ask if there exists Λ ⊆ ΛJ̄ such that
∑

λ∈Λ

Tλ = TΛ >
∑

λ∈Λ

q
(N)

λ,α/(2j J̄)
= t

(N)
Λ,α.
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Then the separation distance of this test is at least

infΛ⊆ΛJ̄
‖s− sΛ‖2 +�α,β,‖s‖∞

[
DΛJ̄

L
+
DΛJ̄

22J̄

L2

]
.

One can see the difference between both tests by looking at the minimax separation
rate over Bδ2,∞(R) ∩Wγ(R

′) where the classical Besov body is defined by

Bδ2,∞(R) =
{
s ≥ 0

/
∀j ∈ N,

2j−1∑

k=0

α2
(j,k) ≤ R22−2jδ

}

and the weak Besov body is defined by

Wγ(R
′) =

{
s ≥ 0

/
∀t > 0,

∑

j∈N

2j−1∑

k=0

α2
(j,k)1α2

(j,k)
≤t ≤ R′2t

2γ
1+2γ

}
.

If δ ≥ max (γ/2, γ/(1 + 2γ)), then the minimax separation rate is

infΦSep.Dist
2 ≃ L− 4δ

1+4δ

which is achievd by an appropriate choice of the Nested collection of tests up to a
ln lnL.
If δ < γ/2 and γ > 1/2, then

infΦSep.Dist
2 ≥ �

(
lnL

L

) 2γ
1+2γ

,

which is achieved by the thresholding test when δ ≥ γ
1+2γ and which is also the

minimax rate of estimation over those spaces. That means that when weak Besov
bodies are involved, it is not easier to test than to estimate. More details may be
found in [1].
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Estimation in Sparse High-Dimensional Trace-Regression

Angelika Rohde

(joint work with Alexandre B. Tsybakov)

Suppose that we observe (Y1, X1), .., (YN , XN ) related by the trace-regression model

(1) Yi = trace
(
X ′
iA

∗) + ξi, i = 1, ..., N,

where the matrix A∗ and the ”design” matrices Xi belong to Rm×T , A∗ is the
unknown parameter of interest and ξi are i.i.d. random errors. The emphasis is on
estimation of A∗ in high-dimensional case, in particular, when the dimension is
much greater than the sample size, mT ≫ N . To make the estimation possible in
this setting we assume that A∗ is of small rank. Another important remark is that
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we mainly focus on very sparse matrices Xi. This means that each Xi contains
only a small percentage of non-zero entries. Therefore, multiplication of A∗ by Xi

masks most of the entries of A∗. Such design matrices will be called masks. The
following two examples are of particular interest.

(i) Point masks; matrix completion. Here Xi ∈ X with X =
{
ek(m)e′l(T ) : 1 ≤

k 6 m, 1 6 l ≤ T
}
and ek(m) are the canonical basis vectors of Rm. Then each

observation Yi is just one selected entry of A∗ corrupted by noise, and the problem
is to reconstruct all the entries of A∗ (matrix completion). We focus on two special
cases of matrix completion, namely, (a) USR (uniform sampling at random): Xi

are i.i.d. uniformly distributed on X , and (b) collaborative filtering, i.e., the trace
regression model such that the masks Xi (random or deterministic) belong to X
and are all distinct.

(ii) Column or row masks. Each Xi has only one non-zero column or row.
This covers the problem known in Machine Learning as multi-task learning. In
its simplest version, N = nT with T the number of tasks and n the number of
observations per task. The tasks are characterized by vectors of parameters a∗t ∈
Rm, t = 1, . . . , T , which constitute the columns of matrix A∗: A∗ = (a∗1 · · · a∗T ). In
this case the trace regression model (1) can be written as a collection of T standard
linear regression models with unknown parameters a∗t .

We denote by ‖A‖Sp
the Schatten-p quasi-norm of matrix A ∈ Rm×T , 0 < p 6

∞. In order to shrink towards a low-rank representation, we investigate penalized
least squares estimators Â with a Schatten-p penalty term, 0 < p ≤ 1:

Â ∈ argmin
A∈Rm×T

{ 1

N

N∑

i=1

(
Yi − trace(X ′

iA)
)2

+ λ‖A‖pSp

}
.

We study the convergence of these estimators w.r.t. the Schatten-q quasi-norms
and w.r.t. the prediction loss

d̂2,N
(
Â, A∗)2 =

1

N

N∑

i=1

trace2
(
X ′
i(Â−A∗)

)
.

We assume below that ξi are i.i.d. Gaussian N (0, σ2) random variables; for ex-
tension to more general ξi, see Rohde and Tsybakov (2009). We also assume
that X1, . . . , XN are independent from ξ1, . . . , ξN . We say that the linear map
L : A 7→

(
trace(X ′

1A), ..., trace(X
′
NA)

)
/
√
N (the sampling operator) is uniformly

bounded if there exists a constant c0 < ∞ such that |L(A)|22 ≤ c0‖A‖2S2
for

all matrices A ∈ R
m×T where |•|2 is the Euclidean norm in R

N . An important
quantity for our results is the ”effective noise level” τ whose values under vari-
ous assumptions are given in the table below. Here the constants c > 0, c(p) > 0
depend only on σ (see Rohde and Tsybakov (2009) for explicit expressions).

Theorem 1. Let 0 < p ≤ 1, λ = 4τ . Then, for cases listed in the table above,

d̂2,N
(
Â, A∗)2 ≤ 16τ‖A∗‖pSp

with probability at least 1− ε,

where ε = exp(−C(m+ T )) with a constant C > 0 independent of N,m, T .
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Assumptions on Xi Assumptions on N,m, T, p Value of τ

Uniformly bounded L p = 1 c((m+ T )/N)1/2

Uniformly bounded L 0 < p < 1, m = T c(p)(m/N)1−p/2

USR matrix completion p = 1, (m+ T )mT > N c(m+ T )/N

Collaborative filtering p = 1 c(m+ T )1/2/N

Our second result is valid under a strong condition on the design matrices Xi.
We say that the sampling operator L satisfies the restricted isometry (RI) condition
RI(r, ν) for some integer 1 ≤ r ≤ min(m,T ) and some 0 < ν <∞ if there exists a
constant δr ∈ (0, 1) such that

(1− δr)‖A‖S2 ≤ ν|L(A)|2 ≤ (1 + δr)‖A‖S2

for all matrices A ∈ Rm×T of rank at most r. This differs from the RI condition
introduced by Candes and Tao (2005) in the vector case or from its analog for
the matrix case suggested by Recht et al. (2007) because we have here the scaling
factor ν 6= 1. It accounts for the fact that the masks Xi can be very sparse, so that
they do not induce isometries with coefficient close to one.

Theorem 2. Let 0 < p ≤ 1 and rank(A∗) 6 r. Assume that condition RI ((2 +
a)r),ν) holds with some 0 < ν < ∞, with a sufficiently large a = a(p) depending
only on p and with 0 < δ(2+a)r 6 δ0 for a sufficiently small δ0 = δ0(p) depending
only on p. Then, for λ = 4τ with τ as in the first two lines of the table above we
have

d̂22,N
(
Â, A∗) ≤ C1r τ

2
2−p ν

2p
2−p ,

‖Â−A∗‖qSq
≤ C2r τ

q
2−p ν

2q
2−p , ∀ q ∈ [p, 2],(2)

with probability at least 1 − ε, where ε is as in Theorem 1, and C1, C2 > 0 are
constants such that C1 depends only on p and C2 depends on p and q.

On the difference from Theorem 1, here we have bounds not only for the pre-
diction loss but also for direct estimation of A∗, cf. (2). However, the restricted
isometry is not suitable for sparse design matrices as in examples (i) and (ii) above,

since there ν is large. For the multi-task learning model ν ∼
√
T , while for USR

we have ν =
√
mT . What is more, for USR, the RI condition can be satisfied

only if N > mT , which is in contradiction with the matrix completion context.
Nevertheless, we can still use Theorem 1 where the bound depends on the mag-
nitude of singular values of A∗. This dependence is weaker for smaller p. which
leads us to considering p = p(N,m, T ) that is small for large N . We show that,
under the assumptions of the second line in the table above and provided the sin-
gular values of A∗ are not exponentially large, the estimator Â with λ = 4τ and
p = (log(N/m))−1 satisfies, with probability at least 1− ε,

(3) d̂22,N
(
Â, A∗) ≤ C

rm

N
log
(N
m

)
, where r = rank(A∗),

ε is as in Theorem 1 and constant C > 0 depends only on σ.
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The proofs are based on tools from the theory of empirical processes. As a
by-product we derive bounds for the kth entropy numbers of the quasi-convex
Schatten class embeddings Smp →֒ Sm2 , p < 1, which are of independent interest.

Optimality issues. The singular value decomposition reveals that an m × m-
matrix A of rank(A) = r has (2m−r)r degrees of freedom, i.e., is characterized by
this number of parameters (effective dimension). Under some regularity conditions
on the masks Xi one can show that the optimal rate of estimation under the loss

d̂22,N
(
•, •
)
has the form ”(effective dimension)/sample size”. In case r ≪ m this is

of order rm/N , which coincides with the bound in (3) up to a log factor. Under the
RI condition with ν = 1, this lower bound for estimation in the Frobenius norm has
recently been proved by Candès and Plan (2010). Note that imposing this condition
(which is also the case in the work of Negahban and Wainwright (2009) parallel to
ours) means focusing on ”full” (non-sparse) matrices Xi, such as matrices with all
entries being i.i.d. Rademacher or Gaussian random variables. These two papers
prove results analogous to (2) with ν = 1, p = 1, q = 2.
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Optimal rates of sparse estimation and universal aggregation

Alexandre Tsybakov

(joint work with Philippe Rigollet)

Let Z = {(x1, Y1), . . . , (xn, Yn)} be a collection of independent random couples
such that (xi, Yi) ∈ X × IR, where X is an arbitrary set. We consider the regression
model

Yi = η(xi) + ξi, i = 1, . . . , n ,

where η : X → IR is the unknown regression function and the errors ξi are inde-
pendent Gaussian N (0, σ2). The covariates are deterministic elements x1, . . . , xn
of X . For any function f : X → IR define ‖f‖2 = n−1

∑n
i=1 f

2(xi).
Given a dictionary H = {f1, . . . , fM} of functions fj : X → IR such that

max16j6M ‖fj‖ 6 1, and a subset Θ ⊆ IRM , the goal of aggregation is to find an

estimator η̂ that mimics the best linear combination fϑ =
∑M

j=1 ϑjfj, ϑ ∈ Θ, in
the sense that the excess risk defined by

IE‖η̂ − η‖2 −min
ϑ∈Θ

‖fϑ − η‖2
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is as small as possible. For different choices of Θ this problem has been studied
by Nemirovski [3], Tsybakov [5], Bunea et al. [1], Lounici [2]; the performance of
η̂ is usually assessed via an oracle inequality of the form

(1) IE‖η̂ − η‖2 6 (1 + ε)min
ϑ∈Θ

‖fϑ − η‖2 +∆n,M (Θ) , ǫ > 0 .

The smallest possible (in a minimax sense) remainder term ∆n,M (Θ) characterizes
the price for aggregation over Θ and is called optimal rate of aggregation on Θ,
using the terminology in Tsybakov [5]. Here we focus on exact oracle inequalities,
i.e., those with ǫ = 0 allowing for meaningful bounds on the excess risk. The best
approximation is obtained by choosing Θ = IRM . In this case it can be shown that
the smallest possible remainder term is large, ∆n,M (IRM ) = CM/n,C > 0, and
that it is attained by a simple least squares estimator.

We propose an estimator η̂ = fϑ̃es , that satisfies a stronger type of oracle in-
equality than (1). In particular it can still give an informative result when M is
much larger than n by adapting to the underlying sparsity of the problem.

Let |•|1 denote the ℓ1 norm in IRM andM(ϑ) denote the ℓ0 norm of ϑ ∈ IRM , i.e.,
the number of non-zero coordinates of ϑ. Set Bi(r) = {ϑ ∈ IRM : |ϑ|i 6 r}, r > 0,
i = 0, 1. For two real numbers a and b define a∨b = max(a, b) and a∧b = min(a, b).
We denote by X the n×M design matrix with elements Xi,j = fj(xi) and rank

R = rank(X) 6M ∧ n. Finally, for any ϑ ∈ IRM , define M̃(ϑ) =M(ϑ) ∧R.
We call the sparsity pattern a binary vector p ∈ P = {0, 1}M and define |p| =

M(p) the number of ones in p. Let IRp ⊆ IRM defined by IRp = {ϑ•p : ϑ ∈ IRM},
where ϑ•p ∈ IRM is the vector with coordinates (ϑ•p)j = ϑjpj , j = 1 . . . ,M . Then,

for any p ∈ P , we can define a least squares estimator ϑ̂p on IRp by

ϑ̂p ∈ argmin
ϑ∈IRp

|Y −Xϑ|22 .

Let ν = (νp)p be a probability measure on P defined by νp = 0 if |p| > R and by,

νp ∝ exp
(
− 1

4σ2

n∑

i=1

(Yi − fϑ̂p

(xi))
2 − |p|

2

)( |p|
2eM

)|p|
, if |p| 6 R.

Notice that second factor in the definition of νp exponentially downweights sparsity
patterns p with large |p|, i.e., that are not sparse.. The Exponential Screening (ES)
aggregate is defined as the linear combination fϑ̃es where

ϑ̃es =
∑

p∈P
ϑ̂pνp .

A tractable numerical approximation of ϑ̃es using the Metropolis-Hastings algo-
rithm is detailed in [4].

Theorem 1. For any M > 1, n > 1, the ES aggregate fϑ̃es satisfies

(2) IE‖fϑ̃es − η‖2 6 min
ϑ∈IRM

{
‖fϑ − η‖2 + ϕn,M (ϑ)

}
+
σ2

n
(5 log(1 + eM) + 8 log 2).
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where ϕn,M (0) = 0 and, for ϑ 6= 0,

ϕn,M (ϑ) = min

{
5σ2M̃(ϑ)

n
log

(
eM

M̃(ϑ) ∨ 1

)
,
8σ|ϑ|1√

n

√
log

(
1 +

3eMσ

|ϑ|1
√
n

)}
.

Furthermore, if there exists ϑ∗ ∈ IRM such that η = fϑ∗ , we have

IE‖fϑ̃es − fϑ∗‖2 6 ψn,M (ϑ∗) +
8σ2

n
log 2 .

where ψn,M (0) = 0 and, for ϑ 6= 0,

ψn,M (ϑ) =min

{
5σ2M̃(ϑ)

n
log

(
eM

M̃(ϑ) ∨ 1

)
,
8σ|ϑ|1√

n

√
log

(
1 +

3eMσ

|ϑ|1
√
n

)
, 4|ϑ|21

}
.

Moreover, we show that the rate ψn,M (ϑ) is optimal in a minimax sense on the
intersection of ℓ0 and ℓ1 balls. Note that the sparsity oracle inequality (2) is much
stronger than oracle inequalities such as (1). Indeed, if there exists a sparse vector
ϑ̄ such that both the approximation term ‖fϑ̄ − η‖2 and the stochastic error term
ϕn,M (ϑ̄) are small, then the ES aggregate adapts to it. Furthermore, this result
captures three measures of sparsity: the ℓ0 norm M(ϑ), the ℓ1 norm |ϑ|1 and the
rank R.

For a given Θ ⊆ IRM , the goal of aggregation is to find an estimator η̂ (possibly
depending on Θ) that satisfies (1), ideally with ǫ = 0. Five choices for Θ have been
proposed and studied in the literature. They are summarized in the accompanying
table, where D is an integer between 1 and M . Bunea et al. [1] raised the issue of

Problem Θ Description

(MS) Θ(MS) = B0(1) ∩B1(1) Best in dictionary
(C) Θ(C) = B1(1) Best convex combination
(L) Θ(L) = IRM = B0(M) Best linear combination

(LD) Θ(LD) = B0(D) Best D-sparse linear comb.
(CD) Θ(CD) = B0(D) ∩B1(1) Best D-sparse convex comb.

universal aggregation, i.e., of finding estimators that solve all aggregation problems
at once. They proved that the bic estimator, which does not depend on Θ, solves
the first four problems in the table above in an approximate sense. The next
theorem shows that the ES aggregate fully realizes universal aggregation, i.e.,
solves simultaneously all five problems with remainder terms ∆∗

n,M (Θ), which we
prove to be optimal rates of aggregation in a minimax sense.

Theorem 2. For any M > 2, n > 1, D 6 M , and for either of the five sets Θ in
the table above the ES aggregate fϑ̃es satisfies the following oracle inequality

IE‖fϑ̃ES − η‖2 6 min
ϑ∈Θ

‖fϑ − η‖2 + C∆∗
n,M (Θ) ,
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where C > 0 is a numerical constant and

∆∗
n,M (Θ) =





σ2 logM
n if Θ = Θ(MS),√
σ2

n log
(
1 + eMσ√

n

)
∧ σ2(M∧R)

n log
(
1 + eM

M∧R
)

if Θ = Θ(C),

σ2(M∧R)
n log

(
1 + eM

M∧R
)

if Θ = Θ(L),
σ2(D∧R)

n log
(
1 + eM

D∧R
)

if Θ = Θ(LD),√
σ2

n log
(
1 + eMσ√

n

)
∧ σ2(D∧R)

n log
(
1 + eM

D∧R
)

if Θ = Θ(CD) .

This theorem improves upon the previously known results for two reasons: uni-
versal aggregation is solved by ES with ǫ = 0 and the rates can be better if R is
small.
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Bayesian Regularization

Aad van der Vaart

The last decades have seen a growing interest in Bayesian methods for recovering
curves, surfaces or other high-dimensional objects from noisy measurements. The
object ϑ is modelled as a realization from some prior probability distribution Π,
and the observed data X is viewed as drawn from a probability density x 7→ pϑ(x)
that depends on the realization of ϑ. The posterior distribution of the “parameter”
ϑ is then given by Bayes’ rule as

dΠ(ϑ|X) ∝ pϑ(X) dΠ(ϑ).

To investigate the quality of the posterior distribution we put ourselves in a non-
Bayesian framework, where it is assumed that the data X are generated according
to the density pϑ0 determined by a fixed parameter ϑ0, and view the posterior
distribution as just a random measure on the parameter space. The Bayesian
procedure is considered accurate if this random measure concentrates its mass near
the parameter ϑ0. We wish this to be true for many ϑ0 simultaneously, preferably
uniformly in ϑ0 belonging to a class of test models. For instance, a set of surfaces
known to have a certain number of bounded derivatives.
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Figure 1. Observations in a regression problem. One realization
from a Gaussian process prior (left panel) and 10 from the poste-
rior distribution (right panel). The true regression curve and the
posterior mean are indicated in the right panel. The Bayesian up-
dating is successful: the realizations from the posterior are much
closer to the truth than those from the prior.

Except in very special cases this question can be investigated only in an asymp-
totic setting. We consider data Xn depending on an index n (for instance sample
size) and study the resulting sequence of posterior distributions dΠn(ϑ|Xn) as
n → ∞. In a setting where the informativeness of the data increases indefinitely
with n, we desire that this sequence contracts to the Dirac measure at ϑ0, mean-
ing complete recovery “in the limit”. Given a metric structure d on the parameter
space, we can more precisely measure the rate of contraction. We say that this is
at least εn if, for any sequence of constants Mn → ∞,

Πn
(
ϑ : d(ϑ, ϑ0) < Mnεn|Xn

)
→ 1.

The convergence can be in mean, or in the almost sure sense. Thus the posterior
distribution puts almost all its mass on balls of radius of the order εn around ϑ0.

In classical finite-dimensional problems, with ϑ a vector in Euclidean space
and n the sample size, the rate of contraction εn is typically n−1/2, relative to
for instance the Hellinger distance, for any prior with full support. The Bernstein-
Von Mises theorem makes this preciser in a normal approximation to the posterior
distribution. The prior distribution does not appear in this approximation and is
said to “wash out” as n → ∞. In nonparametric problems this is very different.
First there are many priors which do not lead to contraction of the posterior at
all. Second many natural priors yield a rate of contraction that depends on the
combination of the prior and the true parameter. The positive news is that a good
match between prior and ϑ0 may lead to an optimal rate of contraction, equal to
the minimax rate for a problem.

In practice such “good matches” may not be easy to achieve. It is never trivial
to have a proper intuitive understanding of a prior probability distribution on an
infinite-dimensional set. Furthermore, and more importantly, one does not know
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Figure 2. A realization of the squared exponential processes and
its rescaling to the unit interval.

the fine properties of the true parameter ϑ0. The elegant solution to the dilemma
of prior choice (a classical point of criticism to Bayesian methods) is to work with
many priors at the same time. We start with a collection of priors Πα, indexed
by some parameter α in an index set A, which is assumed to contain at least
one appropriate prior for each possible truth ϑ0. Next we combine these priors by
putting a prior distribution, a hyper prior, on the index α. If A is countable and
the hyper prior is denoted by (lα : α ∈ A), then this this just leads to the overall
prior

Π =
∑

α

lαΠα.

Inference, using Bayes’ rule, proceeds as before. The hope is that the data will
automatically “use” the priors Πα that are appropriate for ϑ0, and produce a
posterior that contracts at an optimal rate, given that at least one of the priors
Πα would produce this rate if used on its own.

This automatic adaptation of the posterior distribution sounds too good to be
true. Obviously, it depends strongly on the weights l = (lα : α ∈ A) and the prior
distributions Πα. Because the latter often possess very different “dimensionali-
ties”, finding appropriate weights can be delicate. However, quite natural schemes
turn out to do the job, although sometimes a logarithmic factor is lost. In our
talk we first presented an abstract result, which shows that adaptation is easy, in
the sense that many weight distributions l work. Next we considered adaptation
to the regularity of a surface ϑ0 using Gaussian process priors. We showed that
the “Bayesian” regularity of the sample paths can be changed by stretching or
shrinking them. By scaling a process with analytic sample paths (for instance the
squared exponential process) with a random variable, it becomes a suitable prior
for truths of any regularity. Finally we considered adaptation to sparsity in the
many normal means problem, where the parameter (the mean vector) is a vec-
tor in Rn, many of whose coordinates are thought to be zero. By putting a prior
on the number of nonzero means, next and independent heavy-tailed (Laplace
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or polynomial-tailed) on a randomly chosen subset of nonzero parameters, it is
possible to adapt to spaces of sparse parameters.

Details on these results can be found in the papers [2], [3] and [1].
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Statistical recovery in high dimensions: A unified analysis of
decomposable regularizers

Martin Wainwright

(joint work with Sahand Negahban, Pradeep Ravikumar and Bin Yu)

There are a variety of results on the behavior of differentM -estimators under high-
dimensional scaling, including ℓ1-regularized linear regression, block-norm regular-
ization for multivariate problems, and nuclear-norm regularizer for low-rank matri-
ces. In this talk, we present a single theorem that isolates some properties common
to many high-dimensional analyses, and yields optimal rates for a class of regular-
ized M -estimators. The result depends on two intuitive conditions: the regularizer
needs suitably constrain the parameter space via the notion of decomposability,
and the loss function needs to be sufficiently curved, formalized via the notion of
restricted strong convexity. When applied to specific high-dimensional models, we
recover various results (some known and some new), including rates for regression
models under both weak and hard sparsity constraints, estimating sparse (gener-
alized) linear models, structured covariance matrices, and near low-rank matrices.
In many cases, the upper bounds are matched (up to constant factors) by minimax
lower bounds.
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Adaptive Threshold estimation: Minimaxity, Empirical Bayes and Loss
Minimization

Cun-Hui Zhang

1. Summary. We discuss a number of optimality criteria in the normal mean
problem with the ℓ2 loss, including adaptive minimaxity, general empirical Bayes,
and minimum risk and loss for threshold estimation. A general maximum likelihood
empirical Bayes method is shown to possess adaptive ratio optimality and adaptive
minimax properties via an oracle inequality. The FDR threshold level is shown to
nearly minimize the risk and loss among all soft threshold estimators. An oracle
inequality is provided for the adaptive soft-threshold estimator for dependent data.

2. Adaptive minimaxity. Let

X ∼ N(ϑ,Σ), Xi ∼ N(ϑi, 1).

We consider the estimation of ϑ ∈ Rn with data X under the ℓ2 loss. For Θ ⊆ Rn,
the minimax risk is defined as

Rn(Θ) = inf
all δ

sup
ϑ∈Θ

E‖δ(X)− ϑ‖2/n.

Let ‖ϑ‖p = (
∑n

i=1 |ϑi|p)1/p for p > 0 and ‖ϑ‖0 = #{i 6 n : ϑi 6= 0}. The ℓp
balls are defined as Θp,C,n = {ϑ : ‖ϑ‖pp/n 6 Cp} for p > 0 and Θ0,C,n = {ϑ :
‖ϑ‖0/n 6 C}. Let Ts and Th be respectively the classes of soft and hard threshold
estimators. For 0 6 p 6 2, the minimax risk in small ℓp balls can be approximated
by the minimax risk of threshold estimators:

inf
T

sup
ϑ∈Θp,Cn,n

E‖δ(X)− ϑ‖2/n = (1 + o(1))Rn(Θp,Cn,n),

where T = Ts or T = Th, provided 0 < Rn(Θp,Cn,n) ≪ 1. This result was
proved earlier by Donoho and Johnstone (1994) under the condition (log n)/n ≪
Rn(Θp,Cn,n) ≪ 1.

A sequence of estimators {δn, n > 1} is adaptive minimax if

sup
ϑ∈Θn

E‖δn(X)− ϑ‖2/n = (1 + o(1))Rn(Θn)

for many (large and small) sequences parameter classes {Θn}, Θn ⊆ Rn.
3. Empirical Bayes. The general empirical Bayes benchmark is

R∗
n(ϑ) = inf

t(•)
E‖t(X)− ϑ‖2/n,

where the infimum is taken over all univariate Borel functions (Robbins, 1951,
1956). This benchmark is attained with the Bayes rule

R∗
n(ϑ) = E‖t∗Gn

(X)− ϑ‖2/n, t∗G(x) =
∫
ϑf(x|ϑ)G(dϑ)∫
f(x|ϑ)G(dϑ)

where Gn(dϑ) =
∑n

i=1 I{ϑi ∈ dϑ}/n and f(x|ϑ) is the N(ϑ, 1) density.
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In empirical Bayes, the performance of an estimator is typically measured
through an oracle inequality, or equivalently an upper bound on

the regret = E‖δ(X)− ϑ‖2/n−R∗
n(ϑ).

The empirical Bayes benchmark focuses on the risk at the “true” ϑ. Greenshtein
and Ritov (2009) proved

R∗
n(ϑ) = (1 + o(1)) inf

δ∈E

E‖δ(X) − ϑ‖2/n,

where E is the class of all estimators satisfying δ(T (X)) = T (δ(X)) for all per-
mutations T . Empirical Bayes is connected to the minimax criterion via

max
ϑ∈Θp,C,n

R∗
n(ϑ) = (1 + o(1))Rn(Θp,C,n).

The general empirical Bayes approach requires nonparametric estimation of
the oracle Bayes rule t∗Gn

. Parametric Bayes approaches include the James-Stein
(1961) estimator (Efron and Morris, 1972, 1973) and the EBThresh of Johnstone
and Silverman (2004).

4. General maximum likelihood empirical Bayes. Jiang and Zhang (2009)
proposed the following general maximum likelihood empirical Bayes (GMLEB)
estimator:

ϑ̂ = t∗
Ĝn

(X), Ĝn = argmax
G

n∏

i=1

∫
f(Xi|ϑ)G(dϑ).

For Σ = I, they proved the following oracle inequality:

E‖t∗
Ĝn

(X)− ϑ‖2/n 6
(√

R∗(ϑ) +M0

√
ǫ(n,Gn, p)

)2

for all ϑ ∈ Rn and 2/ logn 6 p 6 ∞, where M0 is a universal constant and

ǫ(n,G, p) = max
{2 logn

n
,
[√lognµwp (G)

n

]p/(1+p)}
(logn)4,

with µwp (G) = {supx |x|pG([−x, x]c)}1/p being the weak p-norm of G. It follows
from this oracle inequality that the general empirical Bayes benchmark is approx-
imately achieved when
infp>2/ logn ǫ(n,Gn, p) ≪ R∗(ϑ). Moreover, the oracle inequality implies the adap-
tive minimaxity of the GMLEB in ℓp balls Θp,Cn,n within the range

(logn)4+p/2+3/p/n≪ Cpn ≪ np/(logn)4+9p/2.

These theoretical results indicate that the GMLEB should perform well for sparse
and dense ϑ in general, except for extremely sparse ϑ. Our simulation results
support this claim.

5. Adaptive threshold estimation. The logarithmic factor in the lower
bound of Cpn for the adaptive minimxity of the GMLEB in ℓp balls leads to our
consideration of adaptive thresholding methods for the estimation of a (possibly
extremely) sparse ϑ.

For Σ = I, Abramovich, Benjamini, Donoho and Johnstone (2006) proved
that at the FDR threshold level with a nominal FDR level q0 ∈ (0, 1/2], the
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hard threshold estimator is adaptive minimax in ℓp balls when (log n)6−p/2/n ≪
R(Θp,Cn,n) ≪ n−δ0 , δ0 > 0, but the same method with q0 ∈ (1/2, 1) is not adaptive
minimax in such ℓp balls (off by a constant factor). Johnstone and Silverman (2004)

proved the adaptive rate minimaxity of the EBThresh when (logn)3−p/2/n ≪
R(Θp,Cn,n) ≪ 1.

We propose to use the soft threshold estimator at the FDR threshold level:

ϑ̂ = sλ̂(X), λ̂ = min
{
k : N(ξk) > k

}
,

where sλ(x) = sgn(x)(|x|−λ)+ , N(t) = #{i 6 n : |Xi| > t} and 2Φ(−ξk) = q0k/n
with the N(0, 1) distribution function Φ(•).

We prove the following oracle inequalities for this adaptive soft threshold esti-
mator:

E‖sλ̂(X)− ϑ‖2/n 6
(√

Rsoftn (ϑ) +M0

√
ǫsoftn (ϑ)

)2
, ∀ ϑ ∈ R

n,

where ǫsoftn (ϑ) = ‖Σ‖(logn)κ/n+
∑n

i=1(|ϑi|2 ∧ 1)/n with κ = I{Σ 6= I} and the
spectrum norm ‖Σ‖, and

Rsoftn (ϑ) = min
λ>0

{
2Φ(−λ) +

n∑

i=1

ϑ2i ∧ (λ2 + 1)

n

}
.

For Σ = I, this oracle inequality implies the adaptive minimaxity of the estimator
in all ℓp balls satisfying 1/n ≪ Rn(Θp,Cn,n) ≪ 1. Moreover, for dependent data,
we proved that the adaptive soft threshold estimator approximately achieves loss
minimization in the sense of

E‖sλ̂(X)− ϑ‖2/n 6 (1 + o(1))E inf
λ

‖sλ(X)− ϑ‖2/n+M0ǫ
soft
n (ϑ),

for all ϑ ∈ Rn.
6. A final remark. Similar to the empirical Bayes and adaptive threshold

approaches where parameters of estimators (Gn and λ) are replaced by suitable
estimates, aggregation methods (Rigollet and Tsybakov, 2010) take a convex or
other types of combination of estimators within a certain class. It is unclear if
such aggregation methods possesses similar or stronger oracle properties than the
maximum likelihood empirical Bayes and adaptive soft threshold estimators.
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Optimal Estimation of Large Covariance Matrices

Harrison H. Zhou

(joint work with T. Tony Cai, Cun-Hui Zhang)

Suppose we observe independent and identically distributed p-variate random vari-
ables X1, . . . ,Xn with covariance matrix Σp×p and the goal is to estimate the
unknown matrix Σp×p based on the sample {Xi : i = 1, ..., n}. This covariance
matrix estimation problem is of fundamental importance in multivariate analysis.
A wide range of statistical methodologies, including clustering analysis, principal
component analysis, linear and quadratic discriminant analysis, regression analy-
sis, require the estimation of the covariance matrices. With dramatic advances in
technology, large high-dimensional data are now routinely collected in scientific in-
vestigations. Examples include climate studies, gene expression arrays, functional
magnetic resonance imaging, risk management and portfolio allocation and web
search problems. In such settings, the standard and most natural estimator, the
sample covariance matrix, often performs poorly. Regularization methods, origi-
nally developed in nonparametric function estimation, have recently been applied
to estimate large covariance matrices.

Following Bickel and Levina (2008a) we consider estimating the covariance ma-
trix Σp×p = (σij)1≤i,j≤p over the following parameter space

(1)

Fα =

{
Σ : max

j

∑

i

{|σij | : |i− j| > k} ≤Mk−α for all k, and λmax (Σ) ≤M0

}

where λmax(Σ) is the maximum eigenvalue of the matrix Σ, and α > 0, M > 0
and M0 > 0. Note that the smallest eigenvalue of any covariance matrix in the
parameter space Fα is allowed to be 0 which is more general than the assumption
in equation (5) of Bickel and Levina (2008a). The parameter α in (1), which
essentially specifies the rate of decay for the covariances σij as they move away
from the diagonal, can be viewed as an analog of the smoothness parameter in
nonparametric function estimation problems. The optimal rate of convergence for
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estimating Σ over the parameter space Fα (M0,M) critically depends on the value
of α.

The distribution of the Xi’s is assumed to be subgaussian in the sense that
there is ρ > 0 such that

(2) P{|v′(X1 − EX1)| > t} ≤ e−t
2ρ/2 for all t > 0 and ‖v‖2 = 1.

Let Pα = Pα (M0,M, ρ) denote the set of distributions of X1 that satisfy (1)
and (2). Write an ≍ bn if there are positive constants c and C independent of
n such that c ≤ an/bn ≤ C. For a matrix A its operator norm is defined as
‖A‖ = sup‖x‖2=1 ‖Ax‖2. We assume that p ≤ exp (γn) for some constant γ > 0.

We have the following optimal rate of convergence for estimating the covariance
matrix under the operator norm.

Theorem 1. The minimax risk of estimating the covariance matrix Σ over the
class Pα given in (1) satisfies

(3) inf
Σ̂

sup
Pα

E

∥∥∥Σ̂− Σ
∥∥∥
2

≍ min

{
n− 2α

2α+1 +
log p

n
,
p

n

}
.

The following result gives the minimax rate of convergence for estimating the
covariance matrix Σ under the Frobenius norm based on the sample {X1, . . . ,Xn}.
Theorem 2. The minimax risk under the Frobenius norm satisfies

(4) inf
Σ̂

sup
Pα

E
1

p

∥∥∥Σ̂− Σ
∥∥∥
2

F
≍ min

{
n− 2α+1

2(α+1) ,
p

n

}

In addition, we discussed adaptive estimation, estimation under other matrix
norms and sparse (inverse) covariance matrices estimation. For instance, the mini-
max risks of estimating the covariance matrix Σ under the matrix l1 norm satisfies

(5) inf
Σ̂

sup
Pα

E

∥∥∥Σ̂− Σ
∥∥∥
2

1
≍ min

{
n− α

α+1 +

(
log p

n

) 2α
2α+1

,
p2

n

}
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