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Introduction by the Organisers

The workshop continued a series of Oberwolfach meetings on algebraic groups,
started in 1971 by Tonny Springer and Jacques Tits. This time, the organizers
were Michel Brion and Jens Carsten Jantzen.

During the last years, the subject of algebraic groups (in a broad sense) has
seen important developments in several directions, also related to representation
theory and algebraic geometry. The workshop aimed at presenting some of these
developments in order to make them accessible to a ”general audience” of algebraic
group-theoretists, and to stimulate contacts between participants.

Several series of talks were dedicated to areas of research that have recently
seen decisive progress :

• classical and quantum cohomology of homogeneous varieties (Chaput, Per-
rin, Tamvakis)
• representation theory and its connections to orbits and flag varieties (Good-

win, Riche, Rumynin, Vasserot)
• intersection cohomology in positive characteristics (Fiebig, Juteau)
• geometry and classification of spherical varieties (Avdeev, Gandini).



1102 Oberwolfach Report 19/2010

Other talks introduced to several recent advances in different areas: classical
questions on the subgroup structure and the representations of reductive groups
(Hille, Littelmann, Ressayre, Roehrle), Schubert and Deligne-Lusztig varieties
(Goertz, Kuttler), generalizations of Newton polytopes (Kiritchenko), versal ac-
tions of algebraic groups (Reichstein), geometry of symmetric Lie algebras (Bulois),
quantum homogeneous spaces (Lehrer).

In order to leave enough time for fruitful discussions, the number of talks (gen-
erally of one hour) was limited to five per day, and to 21 altogether.

Besides the scientific program, the participants enjoyed a piano recital on Thurs-
day evening, by Pierre-Emmanuel Chaput, Peter Fiebig and Harry Tamvakis.

The workshop was held under special circumstances: due to lasting disruptions
of the airplane traffic, 15 registered participants could not make the trip to MFO,
and had to cancel their participation. This includes several mathematicians who
very likely would have given a talk. As partial replacements, 6 participants (from
universities in Germany or France) could join the workshop at the last minute.

There were 40 participants, coming mainly from Europe and North America.
This includes 6 young researchers who participated as Oberwolfach Leibniz Grad-
uate Students. The organizers are grateful to the Leibniz-Gemeinschaft for this
support, and to the MFO for providing excellent working conditions.
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Abstracts

On solvable spherical subgroups of semisimple algebraic groups

Roman Avdeev

This report contains a new approach to classification of solvable spherical sub-
groups of semisimple algebraic groups. This approach is completely different from
the approach by D. Luna [1] and provides an explicit classification.

Let G be a connected semisimple complex algebraic group. We fix a Borel
subgroup B ⊂ G and a maximal torus T ⊂ B. We denote by U the maximal
unipotent subgroup of G contained in B. The Lie algebras of G, B, U , . . . are
denoted by g, b, u, . . ., respectively. Let ∆ ⊂ X(T ) be the root system of G
with respect to T (where X(T ) denotes the character lattice of T ). The subsets
of positive roots and simple roots with respect to B are denoted by ∆+ and Π,
respectively. For any root α ∈ ∆+ consider its expression of the form α =

∑
γ∈Π

kγγ.

We put Supp α = {γ ∈ Π | kγ > 0}. The root subspace of the Lie algebra g

corresponding to a root α is denoted by gα. The symbol
〈
A
〉

will denote the linear
span of a subset A ⊂ X(T ) in X(T )⊗

Z
Q.

Let H ⊂ B be a connected solvable algebraic subgroup of G and N ⊂ U its
unipotent radical. We say that the group H is standardly embedded into B (with
respect to T ) if the subgroup S = H ∩ T is a maximal torus of H . Obviously, in
this case we have H = S ⋌N .

Suppose that H ⊂ G is a connected solvable subgroup standardly embedded
into B. Then we can consider the natural restriction map τ : X(T ) → X(S).
Put Φ = τ(∆+) ⊂ X(S). Then we have u =

⊕
λ∈Φ

uλ, where uλ ⊂ u is the weight

subspace of weight λ with respect to S. Similarly, we have n =
⊕
λ∈Φ

nλ, where

nλ = uλ ∩ n ⊂ uλ. Denote by cλ the codimension of nλ in uλ.
Recall that a subgroup H ⊂ G is called spherical if the group B has an open

orbit in G/H . The following theorem provides a convenient criterion of sphericity
for connected solvable subgroups of G.

Theorem 1. Suppose H ⊂ G is a connected solvable subgroup standardly embed-
ded into B. Then the following conditions are equivalent:

(1) H is spherical in G;
(2) cλ 6 1 for every λ ∈ Φ, and the weights λ with cλ = 1 are linearly indepen-

dent in X(S).

Now we suppose that H is spherical.

Definition. A root α ∈ ∆+ is called marked if gα 6⊂ n.

An important role of marked roots in studying solvable spherical subgroups is
clear from the theorem below.
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Theorem 2. Up to conjugation by elements of T , the subgroup H is uniquely
determined by its maximal torus S ⊂ T and the set Ψ ⊂ ∆+ of marked roots.

Remark 1. The subgroup H is explicitly recovered from S and Ψ.

Marked roots have the following property: if α ∈ Ψ and α = β + γ for some
roots β, γ ∈ ∆+, then exactly one of two roots β, γ is marked. Taking this property
into account, we say that a marked root β is subordinate to a marked root α, if
α = β + γ for some root γ ∈ ∆+. Given a marked root α, we denote by C(α) the
set consisting of α and all marked roots subordinate to α. Further, we say that a
marked root α is maximal if it is not subordinate to any other marked root. Let
M denote the set of all maximal marked roots.

Proposition 1. For any marked root α there exists a unique simple root π(α) ∈
Suppα with the following property: if α = β+γ for some roots β, γ ∈ ∆+, then the
root β is marked iff π(α) /∈ Suppβ (and so the root γ is marked iff π(α) /∈ Suppγ).

Definition. If α is a marked root, then the simple root π(α) appearing in Propo-
sition 1 is called the simple root associated with the marked root α.

From Proposition 1 we see that for any marked root α the set C(α) is uniquely
determined by the simple root π(α). Therefore, the whole set Ψ is uniquely deter-
mined by the set M and the map π : M→ Π.

Theorem 3 (Classification of marked roots). All possibilities for a marked root
α and the simple root π(α) are presented in Table 1.

Notations used in Table 1. The symbol ∆(α) denotes the root system
generated by Supp α, i. e. ∆(α) =

〈
Supp α

〉
∩ ∆. We suppose that Supp α =

{α1, . . . , αn}. The numeration of simple roots of simple Lie algebras is the same
as in [2].

Table 1. Marked roots

type of ∆(α) α π(α)
1 any of rank n α1 + α2 + . . . + αn α1, α2, . . . , αn

2 Bn α1 + α2 + . . . + αn−1 + 2αn α1, α2, . . . , αn−1

3 Cn 2α1 + 2α2 + . . . + 2αn−1 + αn αn

4 F4 2α1 + 2α2 + α3 + α4 α3, α4

5 G2 2α1 + α2 α2

6 G2 3α1 + α2 α2

For any root α ∈ ∆+ consider the (connected) Dynkin diagram D(α) of the set
Supp α. We say that a root δ ∈ Supp α is terminal with respect to Supp α if the
node of D(α) corresponding to δ is connected by an edge (possibly, multiple) with
exactly one other node of D(α).

Now we introduce some conditions on a pair of marked roots (α, β). These
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Figure 1.

conditions will be used later.
(D0) Supp α ∩ Supp β = ∅
(D1) Supp α ∩ Supp β = {δ}, δ is termi-

nal with respect to both Supp α and Supp β,
π(α) 6= δ 6= π(β)

(D2) the Dynkin diagram of the set
Supp α ∪ Supp β has the form shown on Fig-
ure 1 (for some p, q, r > 1), α = α1 + . . . +
αp + γ0 + γ1 + . . . + γr, β = β1 + . . . + βq +
γ0 + γ1 + . . . + γr, π(α) /∈ Supp α ∩ Supp β,
π(β) /∈ Supp α ∩ Supp β

(E1) Supp α ∩ Supp β = {δ}, δ is terminal with respect to both Supp α and
Supp β, δ = π(α) = π(β), α− δ ∈ ∆+, β − δ ∈ ∆+

(E2) the Dynkin diagram of the set Supp α ∪ Supp β has the form shown on
Figure 1 (for some p, q, r > 1), α = α1 + . . . + αp + γ0 + γ1 + . . . + γr, β =
β1 + . . . + βq + γ0 + γ1 + . . . + γr, π(α) = π(β) ∈ Supp α ∩ Supp β

Next, we need to introduce an equivalence relation on M. For any two roots
α, β ∈ M we write α ∼ β iff τ(α) = τ(β). Having introduced this equivalence
relation, to each connected solvable spherical subgroup H standardly embedded
into B we assign the set of combinatorial data (S,M, π,∼).

Theorem 4. The above assignment is a one-to-one correspondence between the
following two sets:

(1) the set of all connected solvable spherical subgroups standardly embedded
into B, up to conjugation by elements of T ;

(2) the set of all sets (S,M, π,∼), where S ⊂ T is a torus, M is a subset of ∆+,
π : M → Π is a map, ∼ is an equivalence relation on M, and the set (S,M, π,∼)
satisfies the following conditions:

(A) π(α) ∈ Supp α for any α ∈ M, and the pair (α, π(α)) is contained in
Table 1;

(D) if α, β ∈M and α 6∼ β, then one of conditions (D0), (D1), (D2) holds;
(E) if α, β ∈ M and α ∼ β, then one of conditions (D0), (D1), (E1), (D2), (E2)

holds;
(C) for any α ∈M the condition Supp α 6⊂

⋃
β∈M\{α}

Supp β holds;

(T) Ker τ |R =
〈
α− β | α, β ∈M, α ∼ β

〉
, where R =

〈 ⋃
γ∈M

Supp γ
〉
.

Remark 2. The unipotent radical N ⊂ U of a connected solvable spherical sub-
group H standardly embedded into B is uniquely (up to conjugation by elements
of T ) determined by the set (M, π,∼) satisfying conditions (A), (D), (E), (C).

To complete the classification of connected solvable spherical subgroups of G
up to conjugation, it remains to determine all sets of combinatorial data that
correspond to one conjugacy class of such subgroups. Consider again a connected
solvable subgroup H ⊂ G standardly embedded into B. We say that a marked
root α is regular if the projection of n to the root space gα is zero. Choose any



1108 Oberwolfach Report 19/2010

regular marked simple root α ∈ ∆+ and fix an element nα ∈ NG(T ) such that
its image in the Weyl group W is the simple reflection rα corresponding to α
(here NG(T ) is the normalizer of T in G). Obviously, the group nαHn−1

α is also
standardly embedded into B. Its set of combinatorial data is (nαSn

−1
α ,M′, π′,∼′)

for some M′, π′, and ∼′. In order to determine M′, π′, and ∼′, we consider two
cases:

(1) if α ∈ Supp δ for some δ ∈ rα(M\{α}), then M′ = rα(M\{α}), π′(β) =
π(rα(β)) for any β ∈ M′, β ∼′ γ iff rα(β) ∼ rα(γ) for any β, γ ∈M′;

(2) if α /∈ Supp δ for any δ ∈ rα(M\{α}), then M′ = rα(M\{α}) ∪ {α},
π′(rα(β)) = π(β) for any β ∈ M\{α}, π′(α) = α, rα(β) ∼′ rα(γ) iff β ∼ γ
for any β, γ ∈M\{α}, α 6∼′ β for any β ∈M′\{α}.

Transformations of the form H 7→ nαHn−1
α described above are called elemen-

tary transformations.

Theorem 5. Suppose H1, H2 ⊂ G are two connected solvable spherical subgroups
standardly embedded into B, and H2 = gH1g

−1 for some g ∈ G. Then:
(1) H2 = σH1σ

−1 for some σ ∈ NG(T );
(2) H2 can be obtained from H1 by applying a finite sequence of elementary

tramsformations.

Thus, Theorems 4 and 5 give a complete classification of connected solvable
spherical subgroups of G.

References
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Sheets of semisimple symmetric Lie algebras

Michaël Bulois

When H is an algebraic group acting on a variety X , the H-sheets of X are the
irreducible components of the sets of the form

X(m) := {x ∈ X | dimH.x = m} for some m ∈ N.

The Lie algebra case. In [1], Borho and Kraft studied H-sheets when X is a
vector space and H acts linearly on it. They also gave a parameterization when
X = g is a finite dimensional complex semisimple Lie algebra and H = G is
its adjoint group [1, 2]. This parameterization mainly relies on the knowledge of
Jordan classes. The Jordan class of an element x ∈ g can be defined by

JG(x) := {y ∈ g| ∃g ∈ G, g.gx = gy}.

Jordan classes are equivalence classes and one can show that g is a finite disjoint
union of these classes. Then, it is easily seen that a G-sheet is the union of Jordan
classes. So the goal is to explain which Jordan classes are embeded in the closure
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of another Jordan class. This is what Borho and Kraft did and their method is
heavily based on the induction of nilpotent orbits.

Katsylo proved in [5] the existence of a geometric quotient S/G for any G-sheet
S of g. More recently, Im Hof showed that the G-sheets are smooth when g is
of classical type [4]. The parametrization of G-sheets used in [5, 4] differs from
the one given in [1, 2] by the use of “Slodowy slices”. More precisely, let S be a
G-sheet containing a nilpotent element e and embed e into an sl2-triple (e, h, f).
Following the work of Slodowy [6, §7.4], the associated Slodowy slice e + X of S
is defined by

e + X := (e + gf ) ∩ S.

Then, one has S = G.(e+X) and S/G is isomorphic to a the quotient of e+X by
a finite group [5]. Furthermore, since G× (e+X)→ S is smooth [4], the geometry
of S is closely related to that of e + X .

The symmetric Lie algebra case. A symmetric Lie algebra is a couple (g, θ)
where g is a (finite dimensional complex semisimple) Lie algebra and θ is a Lie
algebra involution of g. It yields an eigenspace decomposition g = k⊕ p associated
to respective eigenvalues +1 and −1. The connected subgroup K ⊂ G satisfying
Lie(K) = k acts linearly on the vector space p. Moreover the G-action on g can
be seen as a particular case of this construction.

The talk aimed to present recent results obtained on K-sheets of symmetric Lie
algebras in [3].

First, the notion of Jordan class have a symmetric analogue. The Jordan K-
class of x ∈ p is defined in [7, §39] by

JK(x) := {y ∈ p| ∃k ∈ K, k.px = py}.

Again, it is possible to show that a K-sheet is a finite union of Jordan classes.
However, the parameterization of G-sheets of [1] does not seem generalizable to
K-sheets of symmetric Lie algebras.

In order to get some parameterization results, the use of Slodowy slices seems
more appropriate. If e ∈ p is a nilpotent element of a K-sheet SK , we embed e in
a normal sl2-triple (e, h, f) (i.e. e, f ∈ p, h ∈ k) and we define a p-Slodowy slice of
SK by

e + Xp := (e + pf) ∩ SK .

In type A, the result is the following.

Theorem 1. If g ∼= gln then

SK = K.(e + Xp)
reg

.

More generally, it is possible to provide some conditions on SK that are sufficient
to get this result in the general case. It seems manageable to say whether these
conditions are satisfied or not when g is classical.

The main difference with the Lie algebra case is the necessity of considering the
closure of K.(e + Xp). Therefore a result similar to Katsylo’s geometric quotient
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seems hard to reach with the p-Slodowy slice. However, we can hope gluing to-
gether several K.(e + Xp) for different nilpotent elements e ∈ SK in order to get
the whole variety SK . Whence the following question (at least in type A).

Question 1. Do K-sheets have a geometric quotient? If yes, can we describe this
quotient by means of the p-Slodowy slice?

As a by-product of the proof of Theorem 1, we get several informations on
Jordan K-classes. For example

Theorem 2. If x ∈ p then JG(x) ∩ p is equidimensional and its irreducible com-
ponent are some Jordan K-classes JK(xi). Moreover we can assume that the
elements xi ∈ p have the same semisimple part than x.

Finally, a fixed point theorem yield the following

Theorem 3. K-sheets of classical symmetric Lie algebras are smooth.
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Littlewood-Richardson rule for minuscule Schubert cells

Pierre-Emmanuel Chaput

In general, I am interested in “all that can be said” about rational homogeneous
spaces, and particularly exceptional homogeneous spaces. Recently, I have studied,
with Nicolas Perrin and Laurent Manivel, the classical and quantum cohomology
of some spaces which seem more tractable, that we call (co)minuscule spaces and
(co)adjoint spaces. Computing the quantum cohomology was a good motivation
to understand the geometry of the rational curves in those homogeneous spaces.

More recently, I started a project with Laurent Evain on the equivariant coho-
mology of the Hilbert schemes of A2.

I am also interested in the geometry of subvarieties of homogeneous spaces.
The idea is to replace the study of embeddings X ⊂ Pn by the embeddings X ⊂
G/P . Questions such as the existence of a connexity theorem in this context are
attractive to me.
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1. Quantum cohomology : algebraic aspects

Laurent Manivel, Nicolas Perrin and I studied the quantum cohomology of so-
called (co)minuscule varieties, namely, the Grassmannians (homogeneous under
SLn), the spinor varieties (Spin2n), the Lagrangian Grassmannians (Sp2n), the
quadrics (SOn), and two exceptional examples homogeneous under groups of type
E6 or E7.

Here we gave insight into the quantum cohomology and the ordinary coho-
mology of other homogeneous spaces under semi-simple groups, and even under
Kac-Moody groups. First of all, we gave a combinatorial formula allowing one
to compute some intersection numbers in such general spaces. The most striking
example of such a formula is the celebrated Littlewood-Richardson rule computing
these coefficients for Grassmannians using jeu de taquin. This rule was conjectured
by D.E. Littlewood and A.R. Richardson in [9] and proved by M.P. Schützenberger
in [12]. Generalisation to minuscule and cominuscule homogeneous spaces of clas-
sical types were proved by D. Worley [14] and P. Pragacz [11]. Recently, this rule
has been extended to exceptional minuscule homogeneous spaces by H. Thomas
and A. Yong [13].

In [5], we largly extended their rule to any homogeneous space X under a Kac-
Moody group but only for certain cohomology classes called Λ-minuscule. For X
minuscule, any cohomology class is Λ-minuscule.

Let us once again confess that this rule, very efficient to compute some particular
intersection numbers, does not compute all of them. However, in [6], we considered
the case when X is the closed G-orbit in the projectivisation of the Lie algebra g

of G (which we call adjoint varieties), and we showed that our rule yields all the
intersection coefficients of X up to half the dimension of X plus one, and that this
is enough to get a presentation of H∗(X).

While performing the two works [5, 6], we developped a software, written
in Java, which allows one to make the combinatorial computations, as well as
the algebraic computations, involved to get a presentation of the cohomology.
We hope that this software could be usefull to the mathematical community.
It is available at the webpage www.math.sciences.univ-nantes.fr/~chaput/

quiver-demo.html.

2. Quantum cohomology : geometric aspects

If quantum cohomology attracts much of the recent mathematical research for
itself, for us it is also creating some challenging interesting questions about the
geometry of rational curves. In our study of quantum cohomology of homogeneous
spaces, the above results are the consequence of some geometric constructions we
were able to perform.

For example the so-called recursion formula is one of our main ingredients in
order to prove the Littlewood-Richardson rule. It relies on geometric properties of
the Bott-Samelson resolution of Schubert varieties and intersections therein, see
[5, Lemma 2.24].
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In the adjoint case, this follows from an explicit decomposition of g as an L-
module, where L is the subgroup of G stabilizing two generic points in X . In fact,
using this decomposition we are able to produce explicitly infinitly many curves
through 3 fixed points.

In the coadjoint case, X is a hyperplane section of another homogeneous space
that we call a Scorza variety. We show using the geometry of this Scorza variety
that the locus covered by all rational curves of degree 3 passing through 2 fixed
points is in all these cases a particular horospherical variety, such that through a
third point pass infinitly many curves of degree 3.

We also show that Gromov-Witten invariants of degree 1 can be computed as
classical invariants in the variety of lines in X , which is itself a homogeneous space
under G. This is a comparison result in the spirit of [3].

Another intriguing question was raised by Buch and Mihalcea in their study of
the K-theoretical Gromov-Witten invariants. Let dmax denote the least integer d
such that through any two points in X there passes a curve of degree d. They
made the following

Conjecture 1. (Buch-Mihalcea) Let X be a cominuscule variety and let d >
dmax. If x1, x2, x3 are general points in X, then the Gromov-Witten variety
GWd(x1, x2, x3) is rational.

This conjecture is true in type A by [1, Corollary 2.2], and we show that it is
true for any cominuscule space except exactly in the case where X = E6/P1 and
d = 3. In fact, in this case the Gromov-Witten variety is not rational but empty.

3. Dual varieties of subvarieties of homogeneous spaces

When X ⊂ PV is a subvariety of a projective space, then the variety of tangent
hyperplanes to X is a subvariety of the dual projective space denoted X∗ ⊂ PV ∨.
The biduality theorem (X∗)

∗
= X holds, and as a consequence tangency loci are

linear. In [2], I define an analogue for subvarieties of some homogeneous spaces.
For example, if X is a subvariety of a Grassmannian then there is a natural notion
of a dual variety X∗ in the dual Grassmannian, with the property (X∗)

∗
= X .

This also holds for subvarieties of odd spinor varieties and subvarieties of E6/P1

and E6/P3. In [2], the dual varities of all Schubert varieties are computed.

4. Equivariant cohomology of Hilbert schemes

I have interest in questions such as: understand better the connection between
H∗

T (Hilbn(A2)) and symmetric polynomials, compute the equivariant product of
two elements in the Bialinicki-Birula base of H∗((Hilbn(A2)), find a model for
H∗(Hilbn(P2)), understand the quantum cohomology of Hilbn(P2).
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The p-smooth locus of Schubert varieties

Peter Fiebig

(joint work with Geordie Williamson)

Let X be an irreducible complex variety and let k be a field.

Definition. (1) X is k-smooth if the local cohomology of X with coefficients
in k behaves at any point as if it was a smooth point of X , i.e. if for any
y ∈ X we have

Hd(X,X \ {y}, k) ∼=

{
k, if d = 2 dimC X,

0, if d 6= 2 dimC X.

(2) The k-smooth locus of X is the largest open k-smooth subvariety of X .

We have various results on rational smooth (i.e., the Q-smooth) loci (see, for
example,[1, 4]). In our paper [6] we determine the p-smooth (i.e., the FP -smooth)
locus of certain varieties X that carry additional structure: we assume that there
is a torus T ∼= (C×)r acting on X and that we are given a (finite) stratification
X =

⊔
λ∈Λ Xλ. We assume that these data satisfy the following hypotheses:

• There is only a finite number of T -fixed points in X and each fixed point
is attractive.
• There is only a finite number of one-dimensional T -orbits and the closure

of each is smooth.
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• X admits a covering of open affine T -stable subvarieties, each of which
contains an attractive fixed point.
• For each λ ∈ Λ there is a T -equivariant isomorphism Xλ

∼= Cnλ , where
Cnλ carries a linear T -action.
• The T -equivariant derived category DT,Λ(X, k) of Λ-constructible sheaves

of k-vector spaces is preserved by Verdier duality.

Note that our assumptions imply that each Xλ contains a unique T -fixed point.
We denote this point by λ, which gives us an identification of the set of fixed points
with Λ. The closure relation on strata induces a partial order on Λ: we set λ ≤ µ
if Xλ is contained in the closure of Xµ.

To such data we assign a moment graph G as follows. Its set of vertices is the
set of T -fixed points in X . We connect the fixed points λ and µ by an edge if
λ 6= µ and if there is a one-dimensional T -orbit E in X that contains λ and µ in
its closure. Then we choose a T -equivariant isomorphism E ∼= C×

αE
, where on the

right T acts via the character αE ∈ X∗(T ) := Hom(T,C×). We finally label the
edge corresponding to E by the character αE (note that αE is well-defined up to
a sign).

In order to formulate our main result, we have to put some restrictions on the
field k of coefficients.

Definition. We say that (G, k) is a GKM-pair if for any vertex λ the labels of
any two distinct edges adjacent to λ are k-linearly independent.

More precisely, the GKM-condition means that for any two distinct edges

E : λ
α

——— µ, E′ : λ
α′

——— µ′ we have that α ⊗ 1 6∈ k(α′ ⊗ 1) as elements in the
vector space X∗(T ) ⊗Z k. Clearly, this is a condition on the characteristic of k.
The main result in [6] is:

Theorem 1. Suppose that X is a projective variety that satisfies the assumptions
above, and that k is a field such that (G, k) is a GKM-pair. Then the k-smooth
locus of X is

⊔
λ∈ΩXλ, where

Ω =

{
λ ∈ Λ

∣∣∣∣
for any µ ≥ λ there are exactly

dimC X edges adjacent to µ

}
.

In the following we sketch a proof of the above result. We first need a version
of the localization theorem of Goresky, Kottwitz and MacPherson (cf. [7]) for the
case that the field of coefficients C is replaced by k. For this, we follows the proof
of the localization theorem in [3] closely.

For F ∈ DT (X, k) let us consider the localization map H•
T (F) → H•

T (FXT ) =⊕
λ∈Λ H•

T (Fλ) (here, and in the following, we write FY for the restriction of F to
a subvariety Y ⊂ X). Then we get

Theorem 2. Suppose that H•
T (F) is free over Sk = S(X∗(T ) ⊗Z k). Then the

localization map H•
T (F)→

⊕
λ∈Λ H•

T (Fλ) is injective and becomes an isomorphism
after inverting all the labels αE of G.
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In the second step, we determine the image of the localization. For this it is
convenient to use the language of sheaves on moment graphs.

Definition. A k-sheaf M = ({M λ}, {ME}, {ρλ,E}) on G is given by

• a graded Sk-module M λ for any vertex λ,
• a graded Sk-module ME for any edge E such that αEME = 0,
• a graded Sk-module homomorphism ρλ,E : M λ →ME whenever the ver-

tex λ is adjacent to the edge E.

To any F ∈ DT (X, k) we can assign a k-sheaf W(F) on G as follows: we set
W(F)λ := H•

T (Fλ), W(F)E := H•
T (FE) and we define ρλ,E as the map

H•
T (Fλ)

33
H•

T (FE∪λ)
∼

oo // H•
T (FE).

For any k-sheaf M on G and any subset I of Λ we define the space of sections of
M over I as

Γ(I,M ) :=



(mλ) ∈

⊕

λ∈I

∣∣∣∣∣∣

ρλ,E(mλ) = ρµ,E(mµ)
for all λ, µ ∈ I

that are connected by E



 .

The GKM-condition is crucial for the following result:

Theorem 3. Suppose that F ∈ DT (X, k) is such that H•
T (F) and H•

T (Fλ) for any
λ are free Sk-modules. Then H•

T (F) = Γ(Λ,W(F)) as subspaces in
⊕

λ∈Λ H•
T (Fλ) =⊕

λ∈Λ W(F)λ.

Now let P ∈ DT (X, k) be the T -equivariant parity sheaf on X that restricts to
the constant sheaf on the open stratum (note that the definition of a T -equivariant
parity sheaf is analogous to the definition of parity sheaves [8], cf. Daniel Juteau’s
talk at this conference). Let B be the Braden–MacPherson k-sheaf on G (cf. [2]).
We show:

Theorem 4. Suppose P exists. Then W(P) ∼= B.

We have the following multiplicity one theorem for Braden–MacPherson sheaves:

Theorem 5 ([5]). We have Bλ ∼= Sk if and only if λ ∈ Ω.

Here, again, the GKM-assumption is crucial. We deduce from the above two
theorems that Pλ

∼= kλ if and only if λ ∈ Ω. Using the Verdier self-duality of P
we then prove that the stalk at λ of the IC-complex on X (with coefficients in k)
is of dimension 1 if and only if λ ∈ Ω. Finally, we prove that this is the case if any
only if Xλ is contained in the k-smooth locus of X . This finishes the proof of our
main theorem.
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Spherical orbit closures in simple projective spaces

Jacopo Gandini

Let G be a semisimple simply connected algebraic group over C, fix a maximal
torus T and a Borel subgroup B ⊃ T . Denote R the root system of G associated
to T and S ⊂ R the basis associated to B. If Gi ⊂ G is a simple factor, denote
Si ⊂ S the corresponding subset of simple roots. If λ is a dominant weight, denote
Vλ the associated simple module and define its support as follows

Supp(λ) = {α ∈ S : 〈α∨, λ〉 6= 0}.

Suppose that Gx0 ⊂ P(Vλ) is a spherical orbit : this means that B has an open
orbit in Gx0. Then we are interested in its closure X = Gx0, and in particular in
the normality of X .

Particular cases are that of the adjoint group Gad ≃ (G × G)/NG(diag(G)),
regarded as a (G×G)-space, which is spherical because of the Bruhat decomposi-
tion, and more generally that of a symmetric space, i. e. of the shape G/NG(Gσ),
where σ : G → G is an algebraic involution, which is spherical because of the
Iwasawa decomposition.

1. The case of the adjoint group. If Supp(λ) ∩ Si 6= ∅ for every i, then Gad

is identified with the orbit of the identity line in P(End(Vλ)); since End(Vλ) is a
simple (G × G)-module, the situation is the one considered above. In joint work
with P. Bravi, A. Maffei and A. Ruzzi, we gave a complete classification of the
normality of the of the associated compactification Xλ = (G×G)[Id], proving the
following theorem:

Theorem 1 (see [1]). The variety Xλ is normal if and only if λ satisfies the
following condition, for every connected component Si ⊂ S:

(N) If Supp(λ)∩Si contains a long root, then it contains also the short simple
root that is adjacent to a long simple root.
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A main tool in the proof of Theorem 1 is the multiplication map between
sections of globally generated line bundles on the wonderful completion of Gad:
such completion coincides with the variety associated as above to any regular
dominant weight and it was studied by C. De Concini and C. Procesi in [5] in the
more general setting of a symmetric space. Unlike the general case of a wonderful
variety, in the case of the group such map is explicitly described; moreover it was
proved to be surjective by S. Kannan in [7] and more generally by R. Chiriv̀ı and
A. Maffei in [4] in the case of a wonderful symmetric variety. These facts allow to
describe a set of generators of the projective coordinate ring of the normalization of
Xλ and they allow to give a criterion of normality which turns out to be equivalent
to condition (N).

Moreover we gave an explicit characterization of the smoothness of Xλ, proving
the following theorem:

Theorem 2 (see [1]). The variety Xλ is smooth if and only if, for every con-
nected component Si ⊂ S, λ satisfies condition (N) of Theorem 1 together with the
following conditions:

(QF1) Supp(λ) ∩ Si is connected and, in case it contains a unique element, then
this element is an extreme of Si;

(QF2) Supp(λ) ∩ Si contains every simple root which is adjacent to three other
simple roots and at least two of the latter ones.

(S) S r Supp(λ) is of type A.

While conditions (QF1) and (QF2) characterize Q-factoriality following a theo-
rem given by M. Brion in [2] which holds for a general spherical variety, condition
(S) follows by a theorem given by D. Timashev in [10] which holds for a projec-
tive group embedding. However Theorem 2 holds in a similar way for any simple
normal completion of a symmetric space (see [1]).

Even if Xλ is non-normal, actually it is homeomorphic to its normalization.
This follows considering the more general case of a symmetric orbit, which was
considered by A. Maffei in [9], where it is proved that the corresponding orbit
closure X is always homeomorphic to its normalization.

2. The model case. A very different behaviour, somehow opposite to the one
which occurs in the symmetric case, occurs in the model case, i. e. if the considered
orbit is of the shape G/NG(H), where G/H is a model space: a model space for
G is an homogeneous space G/H such that every simple G-module occurs with
multiplicity one in C[G/H ]. Model spaces were classified by D. Luna in [8], where
it is defined a wonderful variety Mmod

G (called the wonderful model variety of
G) whose orbits naturally parametrize up to isomorphism the model spaces for
G: more precisely any orbit in Mmod

G is of the shape G/NG(H) where G/H is a
model space, and this correspondence gives a bijection up to isomorphism. This
construction highlights a principal model space, namely the model space which
dominates the open orbit in Mmod

G .
If Gi ⊂ G is a simple factor of type B or C, number the simple roots in Si =

{αi
1, . . . α

i
r(i)} starting from the extreme of the Dynkin diagram of Gi where the
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double link is; define moreover Seven
i , Sodd

i ⊂ Si as the subsets whose element index
is respectively even and odd; set

N even
i (λ) = min{k 6 r(i) : αi

k ∈ Supp(λ) ∩ Seven
i },

Nodd
i (λ) = min{k 6 r(i) : αi

k ∈ Supp(λ) ∩ Sodd
i }.

Finally, if Gi is of type F4, number the simple roots in Si = {αi
1, α

i
2, α

i
3, α

i
4}

starting from the extreme of the Dynkin diagram which contains a long root.
Then we proved the following theorem:

Theorem 3 (see [6]). Let x0 ∈ P(Vλ) be such that Stab(x0) = NG(H), where G/H
is the principal model space of G. Then X is homeomorphic to its normalization
if and only if following conditions are fulfilled, for every connected component
Si ⊂ S:

(i) If Si is of type B, then either αi
1 ∈ Supp(λ) or Supp(λ) ∩ Seven

i = ∅;
(ii) If Si is of type C, then Nodd

i (λ) > N even
i (λ) − 1;

(iii) If Si is of type F4 and αi
2 ∈ Supp(λ), then αi

3 ∈ Supp(λ) as well.

3. The strict case. Let’s go back to a generic spherical orbit Gx0 ⊂ P(Vλ) and
set H = Stab(x0). It has been shown by P. Bravi and D. Luna in [3] that such
an orbit admits a wonderful completion M ; this allows us to describe the orbits of
X and those of its normalization from a combinatorial point of view in terms of
their spherical system, which is a triple of combinatorial invariants that D. Luna
attached to a spherical homogeneous space which admits a wonderful completion
and which uniquely determines it.

Suppose moreover that M is strict, i. e. that the stabilizer of any point x ∈M is
self-normalizing: this includes the symmetric case as well as the model case. Then,
following the description of the orbits of X and of those of its normalization, we
get a complete classification of the simple modules Vλ endowed with an embedding
G/H →֒ P(Vλ) (which, if it exists, it is unique) which gives rise to an orbit closure
homeomorphic to its normalization (Theorem 6.9 in [6]). The classification is based
on a combinatorial condition on Supp(λ) which is easily read off by the spherical
diagram of G/H , which is a very useful tool to represent its spherical system
starting by the Dynkin diagram of G. Such condition of bijectivity is substantially
deduced from the model case, where the classification is expressed by Theorem 3,
whereas it is always fulfilled if H is a symmetric subgroup or if G is simply laced.
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Representations of finite W -algebras

Simon Goodwin

Let g be a reductive Lie algebra over C and let e ∈ g be nilpotent. The finite W -
algebra U(g, e) associated to the pair (g, e) is a finitely generated algebra obtained
from U(g) by a certain quantum Hamiltonian reduction. Finite W -algebras were
introduced to the mathematical literature by Premet in [15], where he showed that
U(g, e) can be viewed as a quantization of the Slodowy slice through the nilpotent
orbit of e; see also [8].

There is a close connection between finite dimensional irreducible representa-
tions of U(g, e) and primitive ideals of U(g) stemming from Skryabin’s equiva-
lence, [19]. This link was investigated further by Premet Losev and Ginzburg in
[16, 17, 11, 12, 9] culminating in [12, Thm. 1.2.2], which says that there is a bijec-
tion between: the primitive ideals of U(g) whose associated variety is the closure
of the adjoint orbit of e; and the orbits on the component group of the centralizer
of e on the isomorphism classes of finite dimensional irreducible U(g, e)-modules.
This also gives rise to a relationship between 1-dimensional U(g, e)-modules and
completely prime ideals of U(g). The former have been shown to exist for g of
classical type in [11] and, using a reduction to the case of rigid nilpotents from
[18], g exceptional not of type E8 in [10].

Further motivation for the study of finite W -algebras comes from: noncom-
mutative deformations of singularities, see [15]; representation theory of modular
reductive Lie algebras, see [15, 17, 18]; and representation theory of degenerate
cyclotomic Hecke algebras, see [7].

In [4], Brundan, Kleshchev and the author developed a highest weight theory for
finite W -algebras including a definition of Verma modules for U(g, e). Each Verma
module has an irreducible head and any finite dimensional irreducible module for
U(g, e) is isomorphic to the head of a Verma module. This gives rise to a strategy
for classifying finite dimensional irreducible U(g, e)-modules in the usual way. An
analogue O(e) of the BGG category O for finite W -algebras is also defined. It
was conjectured in [4], and subsequently proved by Losev in [13], that O(e) is
equivalent to a certain category of generalized Whittaker modules; this category
has been studied in the literature, most recently by Milicic and Soergel, [14].

For g = gln(C), the representation theory of U(g, e) was studied by Brundan and
Kleshchev in [5, 6]. They obtained a classification of finite dimensional irreducible
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modules along with numerous other results. Their classification is stated nicely in
terms of the pyramid associated to e. Recent work of Brown gives a classification
of finite dimensional irreducible U(g, e)-modules when g is of classical type and e
is rectangular, see [1, 2].

In recent joint work with Brown, we have been working on the representation
theory of U(g, e) when g is of classical type. We have obtained a classification finite
dimensional irreducible U(g, e)-modules with integral central character when e is
even multiplicity, [3]. In analogy to the type A situation this classification is
nicely stated in terms of the pyramid associated to e. The proof depends on
the aforementioned relationship of O(e) with a category of generalized Whittaker
modules. This is a step towards the major open problem of understanding the
structure and representation theory of finite W -algebras associated to classical Lie
algebras.
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Reduction of Shimura varieties and Deligne-Lusztig varieties

Ulrich Görtz

We discuss some analogies, and direct relations, between Deligne-Lusztig vari-
eties and Kottwitz-Rapoport strata in the reduction of Siegel modular varieties
with Iwahori level structure.

1. Deligne-Lusztig varieties

Let G0 be a connected reductive group over Fq, the finite field with q elements.
Fix a maximal torus and a Borel subgroup T0 ⊂ B0 in G0, both defined over Fq.
Denote by k an algebraic closure of Fq, and by G, B, T the base change to k.
Let W be the absolute Weyl group, and σ the Frobenius automorphism. In [2],
Deligne and Lusztig defined the following locally closed subvarieties of G/B, which
nowadays are called Deligne-Lusztig varieties:

X(w) = {gB ∈ G/B; g−1σ(g) ∈ BwB}.

We have the following “local model diagram”:

G/B G
proj.

oo
L

// G
proj.

// G/B

X(w)
?�

OO

X̃(w)oo

?�

OO

// C(w)
?�

OO

where L is the Lang map g 7→ g−1σ(g), C(w) = BwB/B denotes the Schubert

cell attached to w, and X̃(w) is equal to the inverse image of X(w) under the pro-
jection, and at the same time to the inverse image of C(w) under the composition
proj. ◦L. All horizontal arrows in this diagram are smooth and surjective, and we
obtain a similar diagram by replacing X(w) and C(w) by their closures in G/B

(and replacing X̃(w) accordingly). Therefore we obtain as a direct corollary:

Proposition 1. The Deligne-Lusztig variety X(w) is smooth. Its dimension is

dimX(w) = dimC(w) = ℓ(w), the length of w. Its closure X(w) is smoothly

equivalent to the Schubert variety C(w), and in particular is normal and Cohen-
Macaulay. We have

X(w) =
⊔

v≤w

X(v) (as sets),

where ≤ denotes the Bruhat order on W .

Haastert showed that all Deligne-Lusztig varieties are quasi-affine. Further-
more, we note the following result (see [4]):
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Proposition 2. Let S′ be a subset of the set S of simple reflections such that S′

meets every σ-orbit. Then ⋃

s∈S′

X(s) ∪X(1)

is connected.

The proposition is a refinement of Lusztig’s criterion for the connectedness
criterion which says that X(w) is connected if and only if S′ := {s ∈ S; s ≤ w}
satisfies the condition of the proposition.

2. Reduction of Shimura varieties

Fix an integer g ≤ 1 and a prime number p. We consider the moduli space A of
g-dimensional principally polarized abelian varieties over k, an algebraic closure
of Fp. It is a smooth k-variety, and we use a level structure away from p such that
it is connected. Furthermore, we consider the moduli space AI of abelian varieties
with Iwahori level structure at p, which parametrizes chains

A0 → A1 → · · · → Ag

of isogenies of order p of g-dimensional abelian varieties with principal polarizations
λ0, λg on A0, Ag, such that the pull-back of λg to A0 is pλ0.

Denote by Λi the following chain of k-vector spaces: Λi = k2g, i = 0, . . . , g,
and we fix maps αi := diag(0, . . . , 0, 1, 0, . . . , 0): Λi → Λi+1, where the 1 is in
the (i + 1)-th position, i = 0, . . . , g − 1. We equip Λ0 and Λg with the standard
symplectic pairing.

We recall the definition of the “local model” à la de Jong [1], Deligne/Pappas
and Rapoport/Zink:

M loc(S) = {(Fi)i ∈

g∏

i=0

Grassg(Λi)(S); αi(Fi) ⊆ Fi+1,

F0,Fg totally isotropic}.

The local model can be identified with a union of Schubert varieties in the affine
flag variety for the group GSp2g. and the corresponding local model diagram:

AI ÃI
oo // M loc

Aw

?�

OO

Ãw
oo

?�

OO

// C(w)
?�

OO

Here ÃI is the space of pairs ((A•)•,Ψ), where (A•)• ∈ AI and Ψ is an isomor-

phism of chains H1
DR(A•/S)

∼
→ Λ• ⊗OS . The morphism ÃI → AI is a torsor for

the automorphism group scheme of the chain Λ• which is smooth, and using the

theory of Grothendieck and Messing, one can show that the morphism ÃI →M loc

is smooth, too. In the lower row of the diagram, w is an element of the extended
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affine Weyl group such that the corresponding Schubert cell C(w) lies in M loc,

and Ãw is the inverse image of C(w) in ÃI .
The locally closed subvarieties Aw ⊂ AI are defined by the above diagram;

they are called Kottwitz-Rapoport (KR) strata, and by the definition the local
structure of these strata and their closures is the same as the structure of the
corresponding Schubert cells and Schubert varieties in the affine flag variety.

Using that the Hodge bundle onAg is ample, one can show that all KR strata are
quasi-affine, [7] Theorem 5.4. It turns out that KR strata are usually connected:

Theorem 1 ([7] Theorem 7.4, Corollary 7.5). Every KR-stratum which is not
contained in the supersingular locus of AI is connected.

One of the ingredients of the proof is the above mentioned result on Deligne-
Lusztig varieties (in the special case of certain unitary groups, where it was first
proved by Ekedahl and van der Geer). The structure of those KR strata that are
contained in the supersingular locus can be made very explicit. We have

Theorem 2 ([6] §6, [7] Corollary 7.5). Let Aw be a KR stratum which is contained
in the supersingular locus. Then there exists 0 ≤ i ≤ g

2 such that for every point
(A•)• ∈ k, the abelian varieties Ai and Ag−i are superspecial. Furthermore Aw

is the union of copies of Deligne-Lusztig varieties for a (non-split) group whose

Dynkin diagram is obtained from the extended Dynkin diagram of type C̃2 by omit-
ting the vertices i and g − i.

As a corollary of these results and a computation of the dimension of the p-rank
0 locus in AI , one obtains

Corollary 1 ([7] Theorem 1.1). If g is even, then the supersingular locus in AI

has dimension g2/2. If g is odd, then its dimension lies between g(g − 1)/2 and
(g + 1)(g − 1)/2.

This should be compared with the result of Li and Oort [8] that the dimension
of the supersingular locus in Ag is [g2/4]. Note also that th supersingular locus
in AI is not equidimensional as soon as g ≥ 2. In joint work with Maarten Hoeve
we investigated the relationship between KR strata (also in the general parahoric
case) to the Ekedahl-Oort stratification, see [5]. Compare also the work of Ekedahl
and van der Geer [3].
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Prehomogeneous spaces, the volume of a tilting module, and parabolic

group actions

Lutz Hille

1. The Action of GlN on a product of flag varieties

GlN /P1 ×GlN /P1 × . . .×GlN /Ps

We consider the General Linear Group GlN and parabolic subgroups Pi for i =
1, . . . , s. Then the group GlN acts on the product of quotients GlN /P1×GlN /P1×
. . . × GlN /Ps via left multiplication (see also [5]). Any parabolic subgroup Pi is
the stabilizer of a flag V i

1 ⊂ V i
2 ⊂ . . . ⊂ V i

r(i), with dim V i
j = aij . We denote the

vector (N, a11, . . . , ar(1), a
2
1, . . . , a

s
r(s)) just by a. Moreover, we denote the product

of the flag varieties by X(a) and consider it as a GlN–variety.
For such an action we are interested in the following main questions:

(M1) Does GlN act with a finite number of orbits on X(a)?
(M2) Does GlN act with a dense orbit on X(a)?
(M3) If GlN acts with a dense orbit on X(a) find a representative of the dense
orbit.

In fact one should study the set of all vectors a so that the answer to (M1)
repectively (M2) is Yes. It turns out that there is an equivalent formulation in
terms of quivers.

Consider the quiver Q with vertices qi,j with i = 1, . . . , s and j = 1, . . . , r(i)− 1
and one central vertex 0 identified with qi,r(i). The quiver Q has arrows
(i, j)−→(i, j + 1) for j = 1, . . . , r(i). Thus Q becomes a star like quiver with
s arms of length r(1), r(2), . . . , r(s), respectively.

For the quiver Q and a dimension vector a = (N, a11, . . . , a
s
r(s)) we define the

representation space

R(Q, a) :=
⊕

α:(i,j)−→(i,j+1)∈Q1

Hom(ka
j

i , ka
j+1

i ).

On this affine space we consider the action of the group Gl(a) :=
∏

Gl(aji )×GlN
via base change. We say a is injective, if aij ≤ aij+1 for all possible pairs (i, j)

(with our convention above we have in particular aij ≤ N). Note that a is injective

for the action of GlN on X(a) by definition. It turns out that all questions above
for an injective dimension vector have the same answer (however we do not claim
that there exists a bijection between the orbits, this does only hold if we restrict
the action to the subspace in R(Q, a) consisting of injective maps).
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Lemma 1. Let a be an injective dimension vector.
(1) The group GlN acts with a finite number of orbits on X(a) precisely when
Gl(a) acts with a finite number of orbits on R(Q, a).
(2) The group GlN acts with a dense orbit on X(a) precisely when Gl(a) acts with
a dense orbit on R(Q, a).

The proof just uses the fact that for maps that are not injective we can write
them as a direct sum of some injective maps with some non-injective maps and
the non-injective maps only consist of finitely many isomorphims classes.

This equivalence motivates to consider the three main questions for any quiver
Q in the next section.

2. The Action Associated to a Quiver

In this section we consider the three main questions for quiver representations
and the associated action of a product of General Linear Groups on the repre-
sentation space. For, let Q be a quiver (with t vertices), with set of vertices
Q0 and set of arrows Q1 and let d = (d1, . . . , dt) be a dimension vector. Then
the group G(d) :=

∏
q∈Q0

Gl(dq) acts via base change on the representation space

R(Q, d) := ⊕α∈Q1
Hom(kd(s(α)), kd(t(α))). It turns out that an element x in a dense

orbit corresponds to a module x over the path algebra without selfextensions. Such
a module can be completed to a tilting module T (it has no selfextensions and t
pairwise non-isomorphic direct summands). Thus T = ⊕t

i=1T
ai

i with some multi-
plicities ai > 0. Then we define a cone and the volume

σT := convex hull of {dimTi}
t
i=1, vol(T ) =

t∏

i=1

1/ dimTi.

The definition of the cone makes sense for all representations of Q, however we use
it only for representations x with Ext1(x, x) = 0. Then we define a set of cones
associated to Q

ΣQ := {σx | Ext1(x, x) = 0}.

We formulate the main theorem and explain the terminology afterwards. With
T we denote the set of isomorphism classes of tilting modules, that contain each
indecomposable direct summand only with multiplicity one.

Theorem 1. a) The set of cones ΣQ is a smooth, quasi-complete (in Rt
≥0), pure-

ley t–dimensional fan in the positive quadrant Rt
≥0.

b)The group G(d) acts with a dense orbit on R(Q, d) precisely when d is a lattice
point in the support of ΣQ, that is d is a dimension vector of a rigid representation
of Q.
c) The fan is finite precisely when Q is a Dynkin quiver. In this case

∑
T∈T vol(T ) =

1 is a finite sum.
d) The fan is infinite with

∑
T∈T vol(T ) = 1 precisely when Q is tame, but not

Dynkin.
e)

∑
T∈T vol(T ) < 1 precisely when Q is wild. In this case the fan is also infinite.
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f) Assume we have a subset S of T with
∑

T∈S vol(T ) = 1 then T = S and Q is
tame.

Note that we allow infinite fans. Except for this generalization, our notion of
a fan coincides with the notion in toric geometry (see e.g. [2]). A fan is smooth
if each cone is generated by a part of a Z–basis. A fan is purely t–dimensional, if
each cone is contained in a t–dimensional cone. For such a fan smooth just means
that each t–dimensional cone is generated by a Z–basis. The fan is quasi-complete
if for each t–dimensional cone σ in the fan and each facet µ of σ either there exists
precisely one cone τ with τ ∩ σ = µ or µ is already contained in the hyperplane
defined by di = 0 (it is in the boundary of the positive quadrant Rt

≥0).

The theorem allows to answer question (M2) and (M3) in a recursive way. One
starts with some tilting modules and, using that Σ is quasi-complete, one can
recursively construct all other tilting modules. Using induction on the boundary
(that corresponds to the tilting modules over a quiver with t− 1 vertices) one can
in fact construct all d so that G(d) acts with a dense orbit on the representation
space. Any such tilting module, considered as an element in the representation
space, is a representative of the dense orbit. Finally, also the answer to question
(M1) is known for Dynkin and tame quivers. Only for wild quivers there are some
dimension vectors were the answer is not known.

3. Parabolic Group Actions

The main motivation for the techniques developed in the previous section is an
open question for parabolic group actions. The methods therin cannot be used,
here we need to consider quivers with relations. However, the results for parabolic
group actions are quite similar. In this section we fix a natural number t > 1. For
any flag

V0 = {0} ⊆ V1 ⊆ . . . Vt−1 ⊆ Vt

of length t and dimension vector d := (dim V1, dimV2 − dimV1, . . . , dimVt −
dimVt−1) we can define several groups and Lie algebras as follows. The para-
bolic group P (d) is the stabilizer of the flag. It acts on the Lie algebra of its
unipotent radical

pu(d) := {f ∈ End(Vt) | f(Vi) ⊆ Vi−1}

via conjugation. Moreover, we have the P (d)–invariant Lie subalgebras

nh(d) := {f ∈ End(Vt) | f(Vi) ⊆ Vh(i)},

where h is any function h : {1, 2, . . . , t}−→{0, 1, . . . , t − 1} satisfying h(i) < i for
all i = 1, 2, . . . , t. The instances where P (d) acts with a finite number of orbits
on pu(d), respectively on its derived Lie algebras pu(d)(l) for all d were classified
in [4] and [1] (in fact even for the other classical groups as well). By Richardson’s
result P (d) acts always with a dense orbit on pu(d). In contrast, the set

Dh := {d ∈ Zt
≥0 | P (d) acts with a dense orbit on nh(d)}
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is only known for some functions of h. It is, for example, not known for h(i) = i−2
and t > 9.

In our main result that follows from [3] and the previous work on quasi-hereditary
algebras associated to bimodule problems, we claim that Dh consists of lattice
points in a smooth fan. The cones in this fan are defined for some modules without
selfextensions over a certain quasi-hereditary algebra associated to h. Moreover,
the normal form of a representative of the dense orbit does only depend on the
cone σ containing d.

Open problem: The main open problem is whether the fan defining the set
Dh is connected via facets to the boundary. To be precise, does there exist for
each cone σ a sequence of cones σi so that σi ∩ σi+1 is a facet of both, σ1 = σ and
one facet of σr is defined by di = 0 for some i = 1, . . . , t.

A positive answer to this problem for parabolic group actions, like it is already
known for quivers, solved the (algorithmic) construction of all cones covering Dh.
Thus we could describe all actions with a dense orbit at least recursively.
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Parity sheaves

Daniel Juteau

(joint work with Carl Mautner, Geordie Williamson)

1. Motivation

One can often translate a problem in representation theory into a problem
about perverse sheaves on a related algebraic variety equipped with a stratifica-
tion X =

⊔
λ∈Λ Xλ. For example, the stalks of the simple perverse sheaves (which

are also called intersection complexes) can encode the answer of the problem. This
approach has been very successful in characteristic zero, that is if we consider ordi-
nary representation theory and sheaves with coefficients in characteristic zero. The
first example is the proof (due to Beilinson-Bernstein and Brylinski-Kashiwara)
of the Kazhdan-Lusztig conjectures about representations of semi-simple Lie alge-
bras.

The main reason why this is useful is because intersection complexes are com-
putable, mostly due to the decomposition theorem. For example, one can often
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compute their stalks inductively because a given intersection complex will appear
as a direct summand in a direct image whose stalks are computable (these stalks
are just the cohomology groups of the fibers), and the other summands will be
intersection complexes on lower strata whose stalks are known by induction, ap-
pearing with a computable multiplicity (for example, if the map is semi-small, a
condition which ensures that the direct image is a perverse sheaf, then one just
has to study the top cohomology of the fibers).

Unfortunately, the decomposition theorem does not hold anymore if we consider
sheaves with coefficients in a field k of characteristic p > 0. There are still relations
between modular representation theory and perverse sheaves, like the version of
the geometric Satake correspondence due to Mirkovic and Vilonen (see the last
part). So it would be very desirable to compute the stalks of intersection complexes
with k coefficients, but it becomes very quickly extremely difficult.

Taking advantage of the fact that the varieties appearing in representation
are not random but usually have very particular properties, we propose in [1] to
consider a new class of “sheaves” (we actually mean complexes in the derived
constructible category). Namely, the fibers of the resolutions that we consider
usually have odd-vanishing cohomology over Q, and hence also over Fp for p large
enough, or better, very often the cohomology is free and concentrated in even
degrees over Z (like Bott-Samelson resolutions of Schubert varieties, or the Springer
resolution of the nilpotent cone). A resolution whose fibers have even cohomology
over k will be called k-even (or just even if the cohomology is even and free over Z).
It is interesting to note that by Kaledin’s results, a symplectic resolution is semi-
small and Q-even, and actually Fp-even for p greater than twice the dimension of
the variety, because there is a resolution of the diagonal in K-theory, and one can
use the Chern character to go to cohomology.

Since a direct image under a resolution is no longer a semi-simple complex,
one can instead study its indecomposable summands. However, whereas simple
objects are parametrized by pairs consisting of a stratum and an irreducible local
system, it is not clear how to classify all the indecomposable summands appearing
in direct images of resolutions. In [2], Soergel undertook this program for Bott-
Samelson resolutions in finite flag varieties (stratified by Bruhat cells), and found
that the indecomposable summands that appear, which he called special sheaves,
are parametrized by the Weyl group, just as the simple perverse sheaves (Bruhat
cells are simply connected so only trivial local systems can appear). His proof
goes through representation theory. Moreover, he shows that specific instances
of Lusztig’s conjectures about modular representations of reductive groups (for
weights “around the Steinberg weight”) is equivalent to the decomposition theorem
to hold for certain morphisms between generalized flag varieties. 1

1Fiebig later pursued this idea to give a new proof of Lusztig’s conjectures for big primes,
using the affine flag variety and sheaves on moment graphs. He actually found the first general
explicit bound, though it is huge compared to the Coxeter number. He also got the multiplicity
one case for all p greater than the Coxeter number.
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We take another point of view. We remark that direct summands of the direct
image of the constant sheaf under an even resolution are parity complexes, by
which we mean the following: their stalks and costalks are concentrated in degrees
of a fixed parity. It turns out that this is enough to characterize them, in the
situations we typically consider.

2. Definition and first properties

Assumption. From now on, we assume that the cohomology of the strata Xλ

with coefficients in any local system L is concentrated in even degrees.

Let us point out that sometimes we actually need to consider the equivariant
setting (and thus use equivariant cohomology, and the equivariant derived cate-
gory). For example, the nilpotent cone of gln stratified by the GLn-orbits satisfies
the assumption in the GLn-equivariant setting, but not in the classical setting.

Theorem 1. Suppose the assumption above is satisfied.

(1) Let Xλ be a stratum and let L be an irreducible local system on it. Then
there is at most one indecomposable parity complex E(Xλ,L) supported on
Xλ and whose restriction to Xλ is L[dimXλ].

(2) Moreover, any indecomposable parity complex is isomorphic to E(Xλ,L)[n]
for some λ ∈ Λ, some irreducible local system L and some integer n.

We call the E(Xλ,L) parity sheaves. To prove the existence of a parity sheaf
for a given pair, the only method we know is to use proper even pushforwards.
We can prove existence and uniqueness in the following situations: (Kac-Moody)
Schubert varieties (and notably the affine Grassmannian), toric varieties (with
torus action), and the nilpotent cone of gln (with GLn action).

While intersection complexes quickly become horribly difficult to compute in
characteristic p, one can in principle compute stalks of parity sheaves inductively
using direct images of resolutions, but this involves computing the ranks of certain
intersection forms, which is not easy to do in practice. However, in some situations
including the case of Schubert varieties, Fiebig and Williamson proved that the
moment graph algorithm of Braden and MacPherson, applied with characteristic
p coefficients, gives the stalks of parity sheaves.

3. Parity sheaves and tilting modules

Let G be a simple, simply connected reductive group over k, and let G∨ be its
dual over C. We fix a maximal torus T ⊂ G and a Borel subgroup containing T . We
denote by Λ = X(T )+ the dominant characters associated to this choice. Let K =
C((t)), O = C[[t]]. We consider the affine Grassmannian G∨(K)/G∨(O), stratified
by the G∨(O)-orbits which are parametrized by Λ. It is an ind-variety. The strata
are simply-connected, so that only trivial local systems can occur. We have the
existence and uniqueness of a parity sheaf E(λ) for each λ ∈ Λ. Recall that the
geometric Satake correspondence is an equivalence of tensor categories between the
representation category of a reductive algebraic group scheme equipped with the
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usual tensor product and a category of perverse sheaves on the affine Grassmannian
of the Langlands dual group, equipped with a convolution product.

Theorem 2. Assume that p > 2 in types Bn or Dn, p > n in type Cn, p > 3 in
types G2, F4 or E6, p > 19 in type E7, and p > 31 in type E8. Then, for λ ∈ Λ,
the parity sheaf E(λ) is perverse, and corresponds to the tilting module T (λ) under
the geometric Satake correspondence.

The proof of this theorem goes through representation theory. We have an un-
derstanding of the geometric situation in the case of a minuscule weight and in
the highest short root case (for which we have a minimal nilpotent singularity).
Then we use the fact that convolutions of parity complexes are again parity com-
plexes, and that tensor products of tilting modules are again tilting modules, and
the game is to generate all fundamental tilting modules using the ones mentioned
above. For bad primes, we know that parity sheaves may fail to be perverse. This
is related to the torsion in the stalks of standard sheaves. It is well possible that a
better bound is possible in types E7 and E8. However, in type Cn, for p less than
n, Donkin pointed out that one cannot always generate all fundamental tilting
modules in this way, so either the result fails for those primes, or one would have
to find a new idea to prove the result in those cases.

In the cases we know where E(λ) is not perverse, it turns out that the 0-th
perverse cohomology sheaf is the one corresponding to the tilting module. This
leads to conjecture that for any prime, and any λ ∈ Λ, the tilting module with
highest weight λ corresponds to pH0E(λ) under the geometric Satake equivalence.
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From moment polytopes to string bodies

Valentina Kiritchenko

In toric geometry, a central role is played by moment (or Newton) polytopes of
projective toric varieties. In the past decades, various analogs of Newton poly-
topes for other reductive group actions were constructed culminating in a recent
construction of string bodies (special Newton-Okounkov convex bodies). My talk
was mostly devoted to this construction [3]. A future objective is to use string
bodies to study geometry of varieties with a reductive group action (as in the toric
case). Below we discuss such an application in a non-toric example.

String bodies for the varieties of complete flags are just string polytopes (e.g.
Gelfand–Zetlin polytopes in the case of GLn(C)). Together with Evgeny Smirnov
and Vladlen Timorin we develop a new approach to the Schubert calculus on
the variety of complete flags in Cn using the volume polynomial on Gelfand–
Zetlin polytopes. This approach allows us to compute the intersection product
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of Schubert cycles on the flag variety by intersecting faces of the Gelfand–Zetlin
polytope. The Gelfand–Zetlin polytope thus gives a combinatorial model for the
intersection theory on the flag variety.

First recall the definition of the volume polynomial. Let P be a convex polytope
in Rn. Two convex polytopes are called analogous if they have the same normal
fan. The polytopes analogous to P form a semigroup with respect to Minkowski
sum. We can embed this semigroup into its Grothendieck group VP , which is a
real vector space (its elements are called virtual polytopes). The volume polynomial
vol is a homogeneous polynomial of degree n on the vector space VP such that its
value vol(Q) on any convex polytope Q ∈ VP is equal to the volume of Q.

The volume polynomial on the space VP was used by Pukhlikov and Khovan-
skii to describe the cohomology rings of smooth toric varieties. Recall that each
integrally simple lattice polytope P (that is, only n edges meet at every vertex,
and the primitive lattice vectors on these edges form a basis in Zn ⊂ Rn) defines
a smooth polarized toric variety XP . The Chow ring of XP (or equivalently, the
cohomology ring H∗(XP ,Z), which lives only in even degrees) is isomorphic to
the quotient RP of the ring of differential operators on VP with constant integer
coefficients. To get RP we quotient by the operators that annihilate the volume
polynomial. This description is functorial. It is clear that the ring RP lives only
in degrees up to n (since the volume polynomial has degree n) and that RP has a
non-degenerate pairing (Poincaré duality) defined by (D1, D2) := D1D2(vol) ∈ Z
for any two homogeneous operators D1 and D2 of complementary degrees. In
fact, the Poincaré duality on the ring RP is the key ingredient in the proof of the
isomorphism between RP and H2∗(XP ,Z) (see [2] for more details).

Note that if P is not simple, we can still define the ring RP , which will still live
in degrees up to n and satisfy Poincaré duality. However, its relation to the Chow
ring of (now singular) toric variety XP is unclear. On the other hand, the ring
RP for non-simple polytopes is sometimes related to the Chow rings of smooth
non-toric varieties.

We now consider the ring RP for the Gelfand–Zetlin polytope P = Pλ (which is
not simple) associated with a strictly dominant weight λ = (λ1, . . . , λn) ∈ Zn of
the group GLn(C). Recall that the Gelfand-Zetlin polytope Pλ is a convex lattice
polytope in Rd, where d = n(n − 1)/2 (see e.g. [4] for more details). Note that
Gelfand–Zetlin polytopes Pλ and Pµ are analogous for any two strictly dominant
weights λ and µ, and hence define the same space VP and the same ring RP .
The ring RP is isomorphic to the Chow ring (or to the cohomology ring) of the
complete flag variety X for GLn(C) (note that dim X = d) so that the differential
operators ∂

∂λ1
, . . . , ∂

∂λn
get mapped to the first Chern classes of the tautological

line bundles on X . This follows immediately from the results of Kaveh [2] and
can also be deduced directly from the Borel presentation for the cohomology ring
H∗(X,Z) using that the volume of Pλ (regarded as a function of λ) is equal to∏

i<j(λi − λj) times a constant.
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We now discuss an important feature of the isomorphism RP ≃ CH∗(X): the
isomorphism allows us to identify the algebraic cycles on X with the linear com-
binations of the faces of P . We first recall the easier case of simple polytopes [6,
§2]. If P is simple then the dimension of the space VP is equal to the number
l of facets of P (since we can move independently by parallel transport each of
the hyperplanes containing the facets of P ). Note that for non-simple P the di-
mension of VP is strictly less than l (e.g. if P is an octahedron, then VP is just
one-dimensional). For simple P , the space VP has natural coordinates (H1, . . . , Hl)
called the support numbers. They are defined by fixing l covectors h1,. . . , hl on Rn

such that the facet Γi of P (for each i = 1,. . . , l) is contained in the hyperplane
hi(x) = Hi(P ) for some constant Hi(P ) and the polytope P satisfies the inequal-
ities hi(x) ≤ Hi(P ). Then any collection of real numbers (H1, . . . , Hl) uniquely
defines a (possibly virtual) polytope in VP by the inequalities hi(x) ≤ Hi. The
ring RP then has multiplicative generators ∂1 := ∂

∂H1
, . . . , ∂l := ∂

∂Hl
. We now

assign to each product ∂i1 . . . ∂ik (for distinct i1,. . . , ik) the face Γi1 ∩ . . . ∩ Γik

of P (if we identify RP with the Chow ring of the smooth toric variety XP then
this becomes the well-known correspondence between the (cycles of) torus orbits
in XP and the faces of P ).

It easy to check that all linear relations between ∂1,. . . ,∂l have form h1(v)∂1 +
. . . + hl(v)∂l = 0, where v ∈ Zn ⊂ Rn (because the volume of a polytope does not
change if the polytope is parallely transported by the vector v). Using these linear
relations we can always reduce any monomial in ∂1,. . . ,∂l to the linear combination
of monomials containing only pairwise distinct ∂i. Geometrically, this corresponds
to computing the intersection product of the closures of torus orbits by using linear
equivalence relation on the closures of codimension one orbits. Polytope P and
ring RP allows one to make these computations more explicit by using geometric
invariants of P (such as volume of P , integer distances to the facets etc.).

If P is not simple, then things become more complicated. I now state our
results in this case. It is still possible (though less straightforward) to identify
each element of RP with a linear combinations of faces of P , but not every face
of P would correspond to an element of RP . Namely, we embed the ring RP into
a certain RP -module MP whose elements can be regarded as linear combinations
of arbitrary faces of P modulo some relations. The module MP depends on the

choice of a simple resolution P̃ of P (that is, P̃ is obtained from P by generic
parallel transports of the hyperplanes containing the facets of P ), and is also
defined using the volume polynomial. The product of an element in MP by an
element of RP can again be computed by intersecting faces (and applying linear
relations if necessary to make the faces transverse). While all of these applies to
any convex polytope P it is especially interesting to study the case where P = Pλ

is a Gelfand–Zetlin polytope due to the isomorphism RP ≃ CH∗(X) for the flag
variety X . Recall that CH∗(X) (as a group) is a free abelian group with the basis
of Schubert cycles. We now give the answer to the following natural question: how
to express Schubert cycles as linear combinations of faces of the Gelfand–Zetlin
polytope?
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The relation between Schubert cycles and faces of the Gelfand–Zetlin polytope
was first investigated in [5], and then by different methods also in [6] and [4]. We
noticed that the ring RP and its realization by faces via the module MP provide the
uniform setting for all previously known results on the cycle-face correspondence as
well as for some new results. In particular, we proved the following formula, which
is formally similar to the Fomin–Kirillov theorem on Schubert polynomials and
uses the correspondence between rc-graphs (or reduced pipe-dreams) and certain
faces of the Gelfand–Zetlin polytope described in [5]. Denote by Xw the Schubert
cycle corresponding to the permutation w as in [6, §4]. Then the following identity
holds in MP :

Xw =
∑

w(Γ)=w

Γ, (1)

where the sum is taken over all rc-faces (see [6, §4] for the definition) of Pλ with
permutation w. Note that (1) can not be deduced from the Fomin–Kirillov theorem
because the faces Γ will not usually belong to RP (only to MP ) and hence can not
be identified with the monomials in the corresponding Schubert polynomial. Our
proof of (1) uses simple convex geometry arguments.

Once we have identity (1) it is easy to get many other presentations of Schubert
cycles via faces by applying to (1) the relations in RP . We have described all linear
relations between facets, which turned out to be quite simple and used them to
represent each Schubert cycle as a sum of faces that are transverse to all rc-faces.
Hence, the intersection of any two Schubert cycles can also be written as the sum
of faces (that is, with nonnegative coefficients). We hope that further investigation
will lead to a transparent Littlewood–Richardson rule (different from the one in
[1]) for the varieties of complete flags. A simple example (for n = 3) illustrating
our approach to Schubert calculus via Gelfand–Zetlin polytopes can be found in
[4, §4].
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Singularities of affine Schubert varieties

Jochen Kuttler

(joint work with V. Lakshmibai)

Let A = C[[t]] be the ring of formal power series and F = C((t)) be its field of
fractions (the field of formal Laurent series). The affine Grassmannian is defined as
X = G/P where G = G(F ) and P = G(A) and G = SLn (of course this definition
makes sense for other algebraic groups). To be more precise, X is defined as a
specific projective ind variety whose C-valued points are given by G(F )/G(A); as
such it is a direct limit (directed union) of finite dimensional irreducible projective
varieties. G(F ) can be thought of as an algebraic analogue of the loop group LG of
holomorphic maps from C∗ to G(C). X on the other hand is also a homogeneous

space for the Kac-Moody group associated to the affine root system of type Ân−1,
and it is the ”right” object to study the analogues of Schubert varieties for this
group.

Let B ⊆ G be the group of lower triangular matrices and let B ⊆ P be the
pre-image of B under the evaluation map e : G(A) → G = G(C) that sends the
matrix (gij) to (gij(0)). An affine Schubert variety is a B-orbit closure in X , they
are parameterized by certain elements of the affine Weyl group; we write X(w)
for the Schubert variety B · wP ⊂ X . These varieties have been studied by many
authors from various viewpoints. We focus on the following question:

Determine the singular locus of X(w) (which itself is a union of
Schubert varieties).

Let T be the torus of rank n obtained as T × S where T is the diagonal torus
in SLn and S = C∗ acts by ”rotating the loops.” Every Schubert variety is T -
stable. In the following we will use the concrete ind-variety structure as outlined
in Kumar [4] and Magyar [7]: the points of X may be identified with certain A-
lattices in Fn which in turn admit an identification with a subset of the infinite
Grassmannian Gr(∞). The upshot is that X is the direct limit of varieties of the
form G(d,N)u where u is a certain unipotent element in GLN (C) and G(d,N)
is the Grassmannian of d-planes in N -space. B acts on G(d,N) linearly and
commutes with u, and every Schubert variety in X has the form X(w) = Y u

where Y is a Schubert variety in G(d,N) for the lower triangular Borel subgroup
of GLN (here d, N , and Y of course depend on w). The B-orbits in G(d,N)u then
are parameterized by sequences 1 ≤ i1 < i2 < · · · < id ≤ N such that the following
holds: if an integer i appears in such a sequence then either i + n also appears,
or i + n > N . (The sequence x = (x1, x2, . . . , xd) corresponds to the T -stable
subspace ex := 〈ei1 , ei2 , . . . , eid〉 spanned by those coordinate lines appearing in
the sequence. The associated B-orbit is then Bex.) Let Iu be the set of all
sequences with this property; by abuse of notation we denote by X(w) = Bew the
Schubert variety associated to w ∈ Iu (no confusion should arise with the earlier
convention). For w ∈ Iu, let L(w) = (l1, l2, . . . , l2n) where li = |{xj | xj ≡ i
mod n}| if i ≤ n, and li = li−n + 1 if i < n. w is uniquely determined by L(w).
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We construct two types of ”patterns” in L(w) that give rise to singularities
similar to the classical setting of the full flag variety in type A (cf. [6]). As an
example, one of these patterns is defined as follows: there exist 1 ≤ i < g < j <
k ≤ 2n such that li ≥ lj > lg ≥ lk (moreover i ≤ n, j < i + n and k < g + n). In
addition there are two degenerate forms of these patterns, and finally what we call
an ”imaginary” pattern. This last pattern gives rise to singularities as it implies
the existence of tangent vectors of purely imaginary T -weight (ie. a weight that
is zero on T ), that cannot be tangent to any T -stable curve. The other patterns
yield singularities by forcing a specific point in X(w) (depending on the pattern)
to have too many T -stable curves through it (see [5] for details).

Recently, Billey and Mitchell completely classified all the (globally) smooth and
rationally smooth Schubert varieties in the affine Grassmannians of all types (see
[1]). They showed that for each given type, there are only finitely many smooth
Schubert varieties. Even in type A however, the list of rationally smooth Schubert
varieties is strictly bigger than the list of smooth ones (it is in fact infinite).

Recall that in the classical setting, whenever a Schubert variety in the sim-
ply laced types ADE is given, a point is smooth if and only if it is rationally
smooth (this is Peterson’s ADE-Theorem, cf. [3]). Moreover, by results of Carrell-
Peterson, a point x in X(w) is rationally smooth, if and only if the number of curves
stable under the maximal torus through the given point x, equals the dimension
and the same holds at all points which ly above in the Bruhat-Chevalley order
([2]). They also show that these curves correspond bijectively to the collection of
all reflections sα̂ in the affine Weyl group for which x 6= sα̂x ≤ w (here we write
α̂ = α + hδ for a root (of the affine system) with α an ordinary root and δ the
generator of the character group X(S)).

Together with a student of mine (Valerie Cheng) we seem to be able to show
that x ≤ w is a smooth point, if and only if x is rationally smooth, and if for all
points y such that x ≤ y ≤ w, and all sα̂ for which y < sα̂y ≤ w we have h = 0, or
h = 1 and α > 0. The main point here is that this is a completely combinatorial
criterion involving only the (decorated) Bruhat graph.
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[5] J. Kuttler, V. Lakshmibai, Singularities of Affine Schubert Varieties, SIGMA 5 (2009), 048,
31 p.

[6] V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varieties in SL(n)/B,
Proc. Indian Acad. Sci., Math. Sci. 100 (1990), 45–52.

[7] P. Magyar, Affine Schubert Varieties and Circular Complexes, preprint (2002),
arXiv:math/0210151v1 [math.AG].



1136 Oberwolfach Report 19/2010

Equivariant K-theory of non-commutative quantum spaces

Gustav I. Lehrer

Summary. This is a report of joint work with R. Zhang. Let g be a complex
semisimple Lie algebra and let Uq(g) be the corresponding quantised enveloping
algebra (quantum group), as defined by Drinfeld. Regarding a (noncommuta-
tive) space with Uq(g)-symmetry as a Uq(g)-module algebra A, we may think of
equivariant vector bundles on A as projective A-modules with compatible Uq(g)-
action. We construct an equivariant K-theory of such quantum vector bundles
using Quillen’s exact categories, and provide means for its computation. The
equivariant K-groups of quantum homogeneous spaces and quantum symmetric
algebras of classical type are computed. This work was motivated in part by the
1987 work of Bass and Haboush [1] on the G-equivariant K-theory of algebraic
G-varieties, where G is a reductive linear algebraic group, of which our work is a
quantum generalisation.

Notation. We regard Uq(g) as a k-Hopf algebra, where k is the function field

C(q
1
2 ), and write the comultiplication as ∆(x) =

∑
x(1)⊗x(2). The permutation

map P takes a⊗b ∈ A⊗B to b⊗a, so that ∆′ := P∆ is the opposite comultiplica-

tion. The Drinfeld R-matrix [4] will be regarded as an element R in ˜Uq(g)⊗Uq(g),
a completion of Uq(g)⊗Uq(g). We shall use U and Uq(g) interchangably.

The category Uq(g)-mod of Uq(g) modules which we shall consider is the cat-
egory of locally finite Uq(g)-modules of type (1, 1, . . . , 1). Note that if M,N are

Uq(g)-modules, then Ř := P ◦ R is a Uq(g)-homorphism : M⊗N → N⊗M . A
Uq(g) module algebra (cf. [3, 9]) is a k-algebra, which is also a Uq(g)-module, and
satisfies x(ab) =

∑
x(1)ax(2)b (for a, b ∈ A and x ∈ Uq(g)). It is known that if A,B

are Uq(g) module algebras, then so is A⊗B, provided multiplication is defined by

a⊗b · a′⊗b′ =
∑

aa′(1)⊗b(2)b
′, where Ř(b⊗a′) =

∑
a′(1)⊗b(2). Examples of module

algebras are T (V ) = ⊕r≥0V
⊗r, where V is a Uq(g)-module. See [2, 5] for other

examples.
In our situation, the notion of ‘Uq(g)-equivariant vector bundle’ will be inter-

preted as a Uq(g)-equivariant A-module M , for appropriate A modules. Such an
M , which we refer to as an A − U-module, is a k-module with A-action α and
Uq(g)-action µ such that the two obvious maps Uq(g)⊗A⊗M →M coincide.

Some module categories. Denote the category of A−U-modules by A−U-mod,
its full subcategory of those objects which are finitely generated as A-modules by
M(A,U), and by P(A,U) the full subcategory of projectives in M(A,U). Recall
that a left Noetherian algebra A is (left) regular if every finitely generated left
A-module has a finite resolution by finitely generated projective A-modules.

Theorem 1. If A is a left regular algebra which has the structure of a Uq(g)-
module algebra, then every object in M(A,U)admits a finite P(A,U)-resolution.
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Quillen’s theory and Uq(g)-equivariant vector bundles. In [7], Quillen ex-
plains how to associate with certain categories, a type of homotopy theory, called
higher algebraic K-theory. An exact category is an additive category M with a
class E of short exact sequences which satisfy certain axioms. Any abelian cate-
gory (with E taken to be all exact sequences) is exact, as are many subcategories of
abelian categories. An important example for us is the full subcategory of finitely
generated projective left R-modules of the category of R-modules, where R is any
ring.

To any exact categoryM, we associate its Quillen category QM, whose objects
are those of M but whose morphisms (M →M ′) are diagrams of the form

M ′ j
← N

i
→M,

where i, j are respectively injective and surjective maps in E. One then forms the
classifying space BQM (assumingM is small), which is a CW-complex, and then
the K-groups Ki(M) are defined by Ki(M) = πi+1(BQM).

Accordingly, if A is a Uq(g)-module algebra, thought of as the ring of functions
on a non-commutative space, define its Uq(g)-equivariant K-groups as KU

i (A) :=
Ki(P(A,U)). It is known that KU

0 (A) is the Grothendieck group of P(A,U).

Theorem 2. Let A be a left regular algebra with the structure of a Uq(g)-module

algebra. Then there are isomorphisms KU
i (A)

∼
→ Ki(M(A,U)) for i = 0, 1, 2, . . .

The proof of the above theorem uses Quillen’s resolution theorem for the em-
bedding P(A,U)→M(A,U).

This theorem may be effectively applied to filtered module algebras by dévissage.
Suppose S is a Uq(g)-module algebra with a filtration 0 = F−1S ⊂ F0S ⊂ . . . such
that FiS is Uq(g)-stable, 1 ∈ F0S and FiSFjS ⊆ Fi+jS. Then griS := FiS/Fi+1S
and grS := ⊕i≥0griS are Uq(g)-modules, and A := F0S and grS are Uq(g)-module
algebras, the latter being graded.

Theorem 3. Assume that grS is left noetherian and A-flat (meaning that S⊗A−−
is exact). If A(= F0S) has a finite projective grS-resolution, then there exist

isomorphisms : Ki(M(A,U))
∼
→ Ki(M(grS,U)). Further if A is regular, then S

is regular, and we have isomorphisms KU
i (A)

∼
→ KU

i (S).

Application to quantum symmetric algebras. In practice many Uq(g)-module
algebras arise as quadratic algebras, and therefore are amenable to Koszul resolu-
tion methods. Let V be a Uq(g)-module, and let I be a subspace of V⊗V . Define
k(V, I) := T (V )/(I), where (I) is the ideal of T (V ) generated by I. We say k(V, I)
is a quantum symmetric algebra if it has a PBW basis, or equivalently if it has
Poincaré series (1 − t)− dimV . For examples of such algebras see [5]. These may
arise by considering the action of the R-matrix endomorphism Ř on V⊗V . The
quantum analogues of the symmetric spaces of the natural representations of the
quantum groups of classical type are incuded in this class of examples. We then
have the following analogue of the theorem of Bass-Haboush.
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Theorem 4. Let k(V, I) be a quantum symmetric algebra, and assume that A is
left Noetherian. Then

(i) A is regular.

(ii) KU
i (A) :∼= Ki(P(A,U))

∼
→ Ki(Uq(g)−mod)

The proof involves proving that k (the trivial Uq(g)-module) has a finite pro-
jective resolution by A-modules. Such a resolution is constructed from the Koszul
complex. Our argument proves the following statement.

Theorem 5. Let A = k(V, I) be a quantum symmetric algebra, with A! its Koszul
dual. Then

(i) A is Koszul, i.e. Ext.(k,k) ∼= A! as graded algebra.
(ii) The Koszul complex provides a projective A-resolution of k of length dimV .

An immediate consequence is

Theorem 6. Let A be a quantum symmetric algebra. Then KU
i (A)

∼
→ KU

i (k)
∼
→

Ki(Uq(g)−mod).

Quantum homogeneous spaces. We now apply the above results to quantum
analogues of the homogeneous spaces G/K. Recall that the finite dual Uq(g)

∗
of

Uq(g) is a Hopf algebra with multiplication defined by fg(x) =
∑

f(x(1))g(x(2))
and comultiplication defined by ∆(f)(x1⊗x2) = f(x1x2). Let Ag be the subalge-
bra of Uq(g)∗ generated by all coefficient functions of all Uq(g)-modules. There
are standard ways of defining left and right actions of Uq(g) on Ag: Lxf =∑
〈f(1), S(x)〉f(2), while Rxf =

∑
〈f(2), x〉f(1).

Let Uq(l) be a ‘Levi subalgebra’ of Uq(g), generated by a subset of the ei, fi,

and all of the k±1
i . We then define A := A

L(Uq(l))
g . This has a right Uq(g) action,

and is a Uq(g) module algebra analogous to C[G/K] in the classical case. It is
what we refer to as a quantum homgeneous space. The next result is the quantum
analogue of a well known result in classical equivariant K-theory.

Theorem 7. We have isomorphisms KU
i (A)

∼
→ Ki(Uq(l)−mod) for all i.
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Bott-Samelson varieties, one-skeleton galleries and the path model

Peter Littelmann

(joint work with Stéphane Gaussent)

The aim of our work is twofold: we want to give a direct geometric interpretation of
the path model for representations and the associated Weyl group combinatorics
[8], and we want to get a geometric compression for Schwer’s formula for Hall-
Littlewood polynomials [10].

Concerning the connection with the path model, a first step in this direction
was done in [1]. The advantage of the present approach (in comparison with [1]) is
that galleries in the one-skeleton of the apartment can directly be identified with
piecewise linear paths running along the one-skeleton in the standard apartment,
and they can be concatenated. The goal now is to show that the original ap-
proach by Lakshmibai, Musili and Seshadri [4, 5] towards what later became the
path model has an intrinsic geometric interpretation in the geometry of the affine
Grassmannian, respectively in the geometry of the associated affine building.

To give a more precise description of both aims and of the results, let G be a
semisimple algebraic group defined over C, fix a Borel subgroup B and a maximal
torus T . Let U− be the unipotent radical of the opposite Borel subgroup. Let
O = C[[t]] be the ring of complex formal power series and let K = C((t)) be the
quotient field. For a dominant coweight λ and an arbitrary coweight µ consider
the following intersection in the affine Grassmannian G(K)/G(O):

Zλ,µ = G(O).λ ∩ U−(K).µ.

Let Fq be the finite field with q elements and replace the field of complex numbers
by the algebraic closure K of Fq. Assume that all groups are defined and split over
Fq. Replace K by Kq = Fq((t)) and O by Oq = Fq[[t]]; the Laurent polynomials
Lλ,µ defined by Lλ,µ(q) = |Zq

λ,µ| show up as coefficients in the Hall-Littlewood

polynomial: Pλ =
∑

µ∈X∨

+

q−〈ρ,λ+µ〉Lλ,µmµ (see [3, 10]).

Based on the description of Zλ,µ in [1], Schwer gives a decomposition Zq
λ,µ =⋃

Sδ, where the δ are certain galleries of alcoves in the standard apartment of
the associated affine building. The structure of the Sδ is quite simple and hence
|Sδ| is easy to compute, but the decomposition has the disadvantage that the sum
|Zq

λ,µ| =
∑
|Sδ| has many terms.

For G of type An, there are other formulas for the coefficients of the Hall-
Littlewood polynomials. For example, there is a combinatorial formula using
semistandard Young tableaux in Macdonald’s book [9], or one can specialize
the Haglund-Haiman-Loehr formula for Macdonald polynomials. By analyzing
the combinatorics involved in the Haglund-Haiman-Loehr formula, Lenart [7] has
shown that in type An certain terms in Schwer’s formula can be naturally grouped
together such that the resulting formula coincides with the specialization of the
Haglung-Haiman-Loehr formula, he calls this the compression phenomenon.
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Our approach to “compression” is geometric and independent of the type of the
group, but, of course, the aim still is to recover with these geometric methods in
the type An-case for example the formula in Macdonalds book.

We replace the desingularization of the Schubert variety Xλ in [1] by a Bott-
Samelson type variety Σ which is a fibred space having as factors varieties of the
form H/Q, where H is a semisimple algebraic group and Q is a maximal parabolic
subgroup. In terms of the affine building, a point in this variety is a sequence of
parahoric subgroups of G(K) reciprocative contained in each other.

More precisely, in terms of the faces of the building, a point in Σ is a sequence of
closed one-dimensional faces, where successive faces have (at least) a common zero-
dimensional face (i.e. a vertex). So if the sequence is contained in an apartment,
then the point in Σ corresponds to a piecewise linear path in the apartment joining
the origin with a special vertex.

We introduce the notion of a minimal one-skeleton gallery (which always lies
in some apartment) and of a positively folded combinatorial gallery in the one-
skeleton. The points in Σ corresponding to the points in the open orbit G(O).λ ⊂
Xλ are exactly the minimal galleries. Since Σ is smooth, by choosing a generic one
parameter subgroup of T in the anti-dominant Weyl chamber, we get a Bia lynicki-
Birula decomposition, the centers δ of the cells Cδ correspond to combinatorial
one-skeleton galleries δ (i.e. the galleries lying in the standard apartment). We
show that Cδ ∩G(O).λ 6= ∅ if and only if δ is positively folded.

The Bia lynicki-Birula decomposition of Σ can be used to define a decomposi-
tion Zλ,µ =

⋃
δ(Zλ,µ ∩ Cδ), the indexing set of the strata are positively folded

one-skeleton galleries. To see the geometric compression compared to the decom-
position in [1], consider the case for G of type An. It is known that Zλ,µ has at
least dimV (λ)µ irreducible components. Now in the An-case the galleries can be
translated into the language of Young tableaux, and the positively folded galleries
ending in µ correspond exactly to the semi-standard Young tableaux of shape λ
and weight µ. In this sense the new decomposition can be viewed as the optimal
geometric decomposition for type An. The general feature of the new approach is
that there are much less non-LS-galleries (see below) than in the old approach.
For example in the case of type An, all positively folded galleries are LS-galleries.

To investigate the intersection Zλ,µ∩Cδ we need to unfold the (possibly) folded
gallery δ. As a consequence of the unfolding procedure we present the formula for
the coefficients of the Hall-Littlewood polynomials, the summands below counting
the number of points in the intersection of Zq

λ,µ ∩Cδ for δ being positively folded:

Theorem 1. [2]

Lλ,µ(q) =
∑

δ∈Γ+(γλ,µ)
qℓ(wD0

)

(∏r
j=1

∑
c∈Γ+

s
j
Vj

(ij ,op)
qt(c)(q − 1)r(c)

)
.

To explain what this formula means let γλ denote the starting gallery joining
the origin with the dominant weight λ and let Γ+(γλ, µ) denote the set of all one-
skeleton galleries of the same type that are positively folded. Each such gallery is
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a sequence of pairs of edges having a common vertex, say

(V0 = 0 ⊂ E0 ⊃ V1 ⊂ E1 ⊃ . . . ⊂ Er ⊃ Vr+1).

Each triple (Ei−1 ⊃ Vi ⊂ Ei) corresponds to one of the factors in the product in
the formula. Presently we have a second sum within the product, we hope that
in the near future we will be able to ameliorate this part. In fact, in the An case,
this can be avoided and one gets the formula in Macdonalds book [9].

To explain now the second sum, for each triple (E ⊃ V ⊂ F ) of edges E,F
having a common vertex V let s be a sector containing E and let ws = w(C−

V , sV )
be the element in the local Weyl group W v

V at the vertex V that sends the residue
class C−

V of the anti-dominant Weyl chamber to sV . Let D be the closest cham-

ber to C−
V containing FV . Since (E ⊃ V ⊂ F ) is positively folded, w−sV =

w(C−
V ,−sV ) ≤ wD = w(C−

V , D). Fix a reduced decomposition of wD = si1 · · · sir
in W v

V and denote its type by i = (i1, ..., ir). The set Γ+
sV

(i, op) denotes the set of

all galleries c = (C−
V , C1, ..., Cr) of residue chambers of type i which are positively

folded with respect to sV and have the property that the face F ′
V ⊂ Cr of the

same type as FV forms a ”minimal pair” (i.e. are contained in opposite sectors)
with EV in the local apartment AV .

The positively folded one-skeleton galleries having q〈λ+µ,ρ〉 as a leading term in
the counting formula for |Zq

λ,µ ∩ Cδ|, are called LS-galleries; this is an abbrevia-
tion for Lakshmibai-Seshadri galleries. These galleries play a special role and are
connected with the indexing system by generalized Young tableaux introduced by
Lakshmibai, Musili and Seshadri in a series of papers, see for example [4, 5, 6].
Recall that these papers were the background for the path model theory started
in [8]. An important notion introduced in the theory of standard monomials is
the defining chain [4, 5], which was a breakthrough on the way for the definition
of standard monomials and generalized Young tableaux. In the context of the
crystal structure of the path theory this notion again turned up to be an impor-
tant combinatorial tool to check whether a concatenation of paths is in the Cartan
component or not. Still, the definition had the air of an ad hoc combinatorial tool.
But in the context of Bia lynicki-Birula cells, the folding of a minimal gallery by the
action of the torus occurs naturally: during the limit process (going to the center
of the cell) the direction (= the sector in the language of buildings) attached to a
minimal gallery is transformed into the weakly decreasing sequence of Weyl group
elements, the defining chain for the positively folded one-skeleton gallery in the
center of the cell.

The connection between the path model theory and the one-skeleton galleries
is summarized in the following corollary. For a fundamental coweight ω let πωi

:
[0, 1]→ X∨

R
, t 7→ tω be the path which is just the straight line joining o with ω and

let γω be the one-skeleton gallery obtained as the sequence of edges and vertices
lying on the path.

Corollary 2. Write a dominant coweight λ = ωi1 + . . . + ωir as a sum of funda-
mental coweights, write λ for this ordered decomposition. Let Pλ be the associated
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path model of LS-paths of shape λ defined in [8] having as starting path the con-
catenation πωi1

∗ . . . ∗ πωir
. For a path π in the path model denote by γπ the

associated gallery in the one-skeleton of A obtained as the sequence of edges and
vertices lying on the path. The one-skeleton galleries γπ obtained in this way are
precisely the LS-galleries of the same type as γωi1

∗ . . . ∗ γωir
.

In fact, the notion of a defining chain for LS-paths coincides in this case with
the notion of a defining chain for the associated gallery.

Since the number of the LS-galleries is the coefficient of the leading term of
Lλ,µ, and since Pλ → sλ for q → ∞, we get as an immediate consequence of
Theorem 1 the following character formula. This provides a geometric proof of the
path character formula, first conjectured by Lakshmibai (see for example [6]) and
proved in [8]:

Corollary 3. CharV (λ) =
∑

δ e
target(δ), where the sum runs over all LS-galleries

of the same type as γλ.
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On the quantum K-theoretic product for some homogeneous spaces

Nicolas Perrin

(joint work with A. Buch, P.-E. Chaput and L. Mihalcea)

The quantum K-theory is a generalisation of both K-theory and quantum coho-
mology. It has been introduced by A. Givental in [4] for rational homogeneous
spaces G/P where G is a semisimple algebraic group over C and P is a parabolic
subgroup. In a common work with A. Buch, P.-E. Chaput and L. Mihalcea, we
concentrate on the case where P is a maximal parabolic subgroup or equivalently
on the case where the Picard group Pic(G/P ) is Z.
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The group structure QK(G/P ) is simply the tensor product of the K-theoretic
group K(G/P ) of G/P by a power series ring in a quantum parameter q. However,
one of the main differences with the quantum cohomology is that the K-theoretic
quantum product is defined by an infinite sum. Indeed, there is a natural basis
of the K-theory for G/P given by ([Ow])w∈WP where [Ow] is the class of the
structure sheaf of the Schubert variety X(w) in G/P and WP is an index set for
Schubert varieties. The product is given by

[Ou] ∗ [Ov] =
∑

d≥0

∑

w∈WP

Nw
u,v(d)qd[Ow]

where the Nw
u,v(d) are defined using the K-theoretic ring of the moduli space of

stable maps. Contrarily to the quantum cohomology case, the structure constants
Nw

u,v(d) do not, a priori, vanish for large degrees d. Therefore A. Givental had to
define the product in the completed group QK(G/P ) = K(G/P )⊗Z Z[[q]] rather
than in the polynomial one K(G/P ) ⊗Z Z[q]. The main question we adress here
is the following:

Question 1. Is the quantum K-theoretic product defined over the tensor product
K(G/P )⊗ZZ[q]? In other words, is the quantum K-theoretic product polynomial?

In the paper [1], A. Buch and L. Mihalcea computed Pieri and Giambelli for-
mulas for the quantum K-theoretic ring of Grassmannian varieties. In particular
they proved that in that case the quantum K-theoretic product is polynomial. We
generalise this last result.

Let us denote by Md,3(x, y, z) the locus, in the moduli space of stable maps
of degree d with 3 marked points, of the maps sending the three marked points
respectively on x, y and z. Our main result in the

Theorem 1. Assume that for d large enough, and for (x, y, z) general in (G/P )3,
the variety Md,3(x, y, z) is rationaly connected, then the quantum K-theoretic prod-
uct for G/P is polynomial.

Using the results of [3], we obtain unconditional results for some homogeneous
spaces.

Corollary 1. Assume that G/P is homogeneous under a classical group, comi-
nuscule or adjoint of type different from A or G2, then the quantum K-theoretic
product for G/P is polynomial.

We call adjoint variety the projectivisation of the closed orbit of a semisim-
ple group G in its adjoint representation, these varieties are also called minimal
nilpotent orbits. Cominuscule homogeneous spaces are natural generalisations of
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Grassmannian varieties. Here is a list of them.

Type V ariety Dimension Index
An−1 G(k, n) k(n− k) n
Bn Q2n−1 2n− 1 2n− 1

Cn Gω(n, 2n) n(n+1)
2 n + 1

Dn Q2n−2 2n− 2 2n− 2

Dn GQ(n, 2n) n(n−1)
2 2n− 2

E6 OP2 16 12
E7 E7/P7 27 18

Cominuscule varieties.

In the above list, we denoted by G(k, n) (resp. GQ(n, 2n), resp. Gω(n, 2n)) the
Grassmann variety of k-dimensional subspaces in a n-dimensional vector space
(resp. a connected component of the Grassmann variety of isotropic n-dimensional
subspaces in a 2n-dimensional vector space with a non degenerate symmetric
form, resp. the Grassmann variety of isotropic n-dimensional subspaces in a 2n-
dimensional vector space with a non degenerate symplectic form). We denoted by
Qm the m-dimensional smooth quadric by OP2 = E6/P1 the Cayley plane and by
E7/P7 the Freudenthal variety.

We also have explicit lower bounds on d for the vanishing of Nw
u,v(d). Let drc

be an integer such that for all d ≥ drc, Md,3(x, y, z) is rationally connected, and
let dcl be the minimal degree of a chain of lines connecting any two points in G/P .
We prove

Theorem 2. For d ≥ drc + dcl, we have Nw
u,v(d) = 0.

For cominuscule homogeneous varieties we are even able to prove a better (and
even sharp) bound for the vanishing of Nw

u,v(d). It is the same bound as in the
quantum cohomology. Denote by dmax the smallest interger d such that any two
points of G/P are connected by a degree d rational curve

Theorem 3. For d > dmax, we have Nw
u,v(d) = 0.
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Versal actions with a twist

Zinovy Reichstein

We will work over a base field k of characteristic 0.
Recall that an action of a linear algebraic group G on an algebraic k-variety X

is called generically free if X has a dense G-invariant open subset U such that the
stabilizer StabG(x) = {1} for every x ∈ U(k). Here k denotes an algebraic closure
of k. Equivalently, X has a G-invariant dense open subset X0 (possibly smaller
than U), which is the total space of a G-torsor

π : X0 → Y .

Suppose K/k is a finitely generated field extension. Then elements of H1(K,G) can
be interpreted as birational isomorphism classes of generically free G-varieties (i.e.,
k-varieties with G-action) equipped with a k-isomorphism of fields k(X)G ≃ K.
An element of H1(K,G) corresponding to X is represented by the G-torsor π, as
above, restricted to the generic point Spec(K)→ Y of Y .

Elements of H1(K,G) often have an alternative interpretation as algebraic ob-
jects of a certain type, defined over K. The type depends on G. For example, if
G = On, these objects are non-degenerate n-dimensional quadratic forms and if
G = PGLn then these objects are central simple algebras. This makes it possible,
at least in principle, to study such objects by geometric means, i.e., by studying
actions of G on algebraic varieties, up to birational isomorphism.

An important notion in this context is that of a versal action. We say that
a generically free G-variety X is versal if for every generically free G-variety Z
and every dense open G-invariant subset U ⊂ X , there exists an equivariant map
Z → U . Informally speaking, this means that every G-torsor over a field extension
of k can be obtained from π : X0 → Y (as above) by pull-back; cf. [4, Section 5].

Versal G-varieties X carry a great deal of information about the algebraic group
G. One can often prove assertions of the form “all generically free G-actions have
property P” by checking that a single versal G-action has property P . For this
reason special cases and variants of this notion have played an important role
in Galois theory under the name of “generic field extensions” (here G is a finite
group), in the theory of central simple algebras, under the name of ”universal
division algebras” (here G = PGLn), and in the theory of quadratic forms (here
G = On).

Versal G-varieties are not unique, and versal varieties with special properties are
often of particular interest. For example, the existence of a G-variety X such that
the field k(X)G of G-invariant rational functions on X is related to the Noether
problem for the group G, and the existence of low-dimensional versal varieties is
related to the problem of computing the essential dimension of G; see [5].

We are interested in constructing (or more precisely, recognizing) versal actions.
Specifically, given a generically free G-variety, how do we tell whether or not it is
versal?
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I will now state some partial answers to this question obtained jointly with Alex
Duncan. The starting point is the following simple lemma. Part (a) was suggested
by the anonymous referee of [1].

Lemma 1. (a) (cf. [1, Lemma 3.4]) Consider a generically free action of an
algebraic group G on an al algebraic variety X defined over k. If L-points are
dense in TX for every field extension L/k and every G-torsor T → Spec(L) then
the G-action on X is versal.

(b) The converse is true if X is a (pseudo)-homogeneous space for some linear
algebraic group Γ containing G.

Here TX denotes “twist of X by T ”, which is defined as the geometric quotient
of X×T by the natural (diagonal) action of G. For details of this construction, see,
e.g., [3, Section 2] or [1, Section 2]. Note that TX is an algebraic variety defined
over the field L. It is, in fact, an L-form of X , i.e., it is isomorphic to X over the
algebraic closure of L. We also remark that there is no natural G-action on X ;
we lose the G-action in the process of constructing TX . However, TX carries a
natural action of the twisted group TG.

Example 1. ([1, Proposition 3.3]) Suppose G acts on a linear algebraic group Γ
by group automorphisms. If this action is generically free then it is versal.

Indeed, as we mentioned above, in this case the twisted variety TG is a linear
algebraic group over L. Hence, by a theorem of Chevalley, L-points are dense in
TG. �

Theorem 1. Let Γ be a linear algebraic group, G,H be closed subgroups, and
X = Γ/H. Suppose the natural G-action on X is generically free. Then this
action is versal if and only if the image of the natural map H1(L,G)→ H1(L,Γ)
lies in the image of the map H1(L,H)→ H1(L,Γ) for every field extension L/k.

Example 2. ([5, Proposition 7.1], [4, Ex. I.5.4]) Every generically free linear
action of G on a vector space V is versal. Here we think of V as a homogeneous
space for the group Γ = GL(V ), and H1(L,Γ) is trivial for every L by Hilbert’s
Theorem 90.

Example 3. H = {1}. The translation action of a subgroup G on Γ is versal
if and only if the map H1(L,G) → H1(L,Γ) is trivial. The same is true for the
translation G-action on Γ/H if H is a special group. (This means that H1(L,H)
is trivial for every L/k.)

Example 4. ([2, Corollary 3.3]) Let G be a finite subgroup of PGLn. Then the
natural action of G on Pn−1 is versal if and only if G lifts to GLn.

Example 5. H = G. If the translation action of G on Γ/G is generically free
then it is versal.

Example 6. H = N = normalizer of a maximal torus in Γ. If the translation
action of G on Γ/N is generically free then it is versal.

This follows from a well-known fact (originally due to Springer) that the map
H1(L,N)→ H1(L,G) is surjective for every L.
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The Horn conjecture and related questions

Nicolas Ressayre

The basic question we consider is:

What can be said about the eigenvalues of a sum of two Hermitian matrices, in
terms of the eigenvalues of the summands?

If A is a Hermitian n by n matrix, we will denote by λ(A) = (λ1 ≥ · · · ≥ λn)
its spectrum. Consider the following set:

Horn(n) = {(λ(A), λ(B), λ(C)) :
A,B,C are 3 Hermitian matrices
s.t. A + B + C = 0}.

Let P(r, n) denote the set of parts of {1, · · · , n} with r elements. Let I = {i1 <
· · · < ir} ∈ P(r, n). We set: λI = (ir− r, ir−1− (r− 1), · · · , i2− 2, i1− 1). We will
denote by 1r the vector (1, · · · , 1) in Rr. In 1962, Horn conjectured the following
inductive description of Horn(n):

Conjecture 1. Let (λ, µ, ν) be a triple of nonincreasing sequences of n real num-
bers. Then, (λ, µ, ν) ∈ Horn(n) if and only if

∑

i

λi +
∑

j

µj +
∑

k

νk = 0(1)

and for any r = 1, · · · , n− 1, for any (I, J,K) ∈ P(r, n)3 such that

(λI , λJ , λK − (n− r)1r) ∈ Horn(r),(2)

we have:
∑

i∈I

λi +
∑

j∈J

µj +
∑

k∈K

νk ≤ 0.(3)

A consequence of the Horn conjecture is that Horn(n) is convex. This fact
and another Horn’s result (namely the Schur-Horn Theorem) motivated several
important works on convexity in Hamiltonian geometry. B. Kostant in 1970 in-
terprets the Schur-Horn Theorem as a special case of a more general theorem for
compact Lie groups. In 1982, M. Atiyah, and independently V. Guillemin and
S. Sternberg proved a wider generalization to Hamiltonian action of compact tori.
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Finally, F. Kirwan in 1984 obtained a generalization to an Hamiltonian action of
any compact Lie group. Kirwan’s theorem allows to prove that Horn(n) is convex.

For I in P(r, n), we denote by σI the corresponding Schubert class in the coho-
mology of the Grassmanian of r-dimensional subspaces of Cn. We have explained
how to use the Rayleigh to prove that if σI .σJ .σK ∈ N∗[pt] then inequality (3)
holds. Then, we state the much harder

Theorem 1 (Klyachko, 1998). Conjecture 1 holds after replacing condition (2)
by σI .σJ .σK ∈ N∗[pt].

We are going to explain one of the ingredients used by Klyachko. The irreducible
representations Vλ of GLn correspond bijectively with the set Λ+

n the nonincreasing
sequences λ of n integers (using the notion of dominant weight). In this context,
the basic question is

Given two irreducible representations λ and µ of GLn, what are the irreducible
subrepresentations of Vλ ⊗ Vµ ?

We define the Littlwood-Richardson coefficients by the following

Vλ ⊗ Vµ =
∑

ν

cνλµVν .(4)

We set

LR(GLn) = {(λ, µ, ν) ∈ (Λ+
n )3 : (Vλ ⊗ Vµ ⊗ Vν)GLn 6= {0}}.

The relation with the Horn problem is

Theorem 2. Let (λ, µ, ν) be a triple of nonincreasing sequences of n rational
numbers. Then, (λ, µ, ν) ∈ Horn(n) if and only if (kλ, kµ, kν) ∈ LR(n) for some
positive integer k.

The counterpart of the convexity of Horn(n) is the fact that LR(GLn) is stable
by addition. Now, the existence of an invariant in Vkλ⊗Vkµ⊗Vkν for some positive
integer k can be interpreted in terms of semistability in GIT. Then, inequalities (3)
are interpreted as semistability conditions.

The inductive nature of Horn(n) is now explained by a classical Lesieur Theorem
which asserts that if σI .σJ .σK ∈ cIJK [pt], for some integer cIJK then

cIJK = dim
(
(VλI

⊗ VλJ
⊗ VλK−(n−r)1r)GLn−r

)
.(5)

By equation (5), Theorems 1 and 2, the Horn conjecture is a consequence of the
following saturation conjecture

ckνkλ kµ 6= 0⇒ cνλ µ 6= 0.(6)

In 1999, Knutson-Tao proved this conjecture ending the proof of the Horn conjec-
ture.

It turns out that the Horn conjecture gives redundant inequalities. Indeed,
Belkale proved that a list of inequalities extracted to Horn’s one (or Theorem 1)
is sufficient to characterize Horn(n).
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Theorem 3 (Belkale, 1999). Inequalities (3) coming from I, J and K such that
σI .σJ .σK = [pt] give a complete list of inequalities.

Moreover, we cannot improve the Belkale Theorem:

Theorem 4 (Knutson-Tao-Woodward, 2004). The list of inequalities determined
by Belkale to be sufficient is in fact minimal.

Let G ⊂ Ĝ be two connected reductive groups. Generalizing the above basic
question about the tensor product decomposition of GLn, we now consider the
following one:

What irreducible representations of G appear in a given irreducible

representation of Ĝ?

The story of this question also start with a finitely generated semigroup namely
LR(G, Ĝ) and the generated cone ⊔LR. The first complete list of inequalities was
determined by Berenstein-Sjamaar. For LR(G,Gs), Belkale-Kumar obtained in
2006 a smaller list and still sufficient of inequalities. In 2010, R. obtained the
minimal list of inequalities for ⊔LR(G, Ĝ), proving in particular that the Belkale-
Kumar’s list is minimal.

Then, we have discussed some recent results of Kapovich-Millson, Belkale-
Kumar about the saturation problem for LR(G,G2).

Finally, we have discussed the condition “ σw1
⊙0 σw2

⊙0 σw3
= [pt]” which

parametrizes the inequalities for ⊔LR(G,G2).

Geometry of the Steinberg variety, affine Hecke algebras and modular

representations of semisimple Lie algebras

Simon Riche

(joint work with Roman Bezrukavnikov)

Let G be a connected, simply-connected, semisimple algebraic group over an alge-
braically closed field k of positive characteristic. Let B ⊂ G be a Borel subgroup
of G, and let b ⊂ g be their respective Lie algebras. Consider the flag variety
B = G/B, its cotangent bundle

Ñ := T ∗B ∼= {(X, gB) ∈ g∗ × B | X|g·b = 0}

(called the Springer resolution) and the Grothendieck resolution

g̃ := {(X, gB) ∈ g∗ × B | X|g·[b,b] = 0}.

Let g∗reg ⊂ g∗ be the open subset of regular semisimple elements, and let g̃reg
be its inverse image in g̃. It is well-known that there exists an action of the Weyl
group W of G on g̃reg. For w ∈ W , we denote by Zw the closure (in g̃ × g̃) of
the graph of the action of w. We denote by Z ′

w the scheme-theoretic intersection

Zw ∩ (Ñ × Ñ ).
Let also Baff be the extended affine Weyl group attached to G. It has a natural

set of generators {Tw, w ∈ W}∪{θx, x ∈ X∗(T )} (see e.g. [7, Appendix]). Finally,
let S ⊂W be the set of simple reflections. Our main result is the following.
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Theorem 1. (i) Assume p 6= 2 if G has a component of type F4, and p 6= 3 if G
has a component of type G2. Then there exists a unique action of the group Baff

on the category DbCoh(g̃), resp. DbCoh(Ñ ), such that

• Ts acts by convolution with OZs
, resp. OZ′

s
, for any s ∈ S;

• θx acts by tensor product with the line bundle Og̃(x), resp. OÑ (x), natu-
rally attached to x.

(ii) Assume p = 0, or p is bigger than the Coxeter number of G. Then the
action of Tw is given by the convolution with OZw

, resp. OZ′
w
.

A proof of (i), under stronger assumptions on p, has appeared in [7]. A simpler
proof will appear in [4]. This action can be considered as an extension, to the
whole of g̃, of the W -action on g̃reg.

A proof of (ii), based on Representation Theory, will also appear in [4]. It would
be desirable to find a geometric proof of this result. To find such a proof, it would
certainly be necessary to understand the geometric properties of the varieties Zw

better. For example, it follows from our proof that, if p = 0 or if p is bigger than
the Coxeter number of G, then Zw is Cohen-Macaulay. In many examples, Zw is
also normal, but we could not find a general proof of this property.

Let us explain the representation-theoretic meaning of this result. First, assume
for simplicity that p = 0. It is well-known (see [5, 6]) that the extended affine
Hecke algebra Haff (i.e. the quotient of the group algebra of Baff over Z[v, v−1] by

the quadratic relations) is isomorphic, as an algebra, to KG×k
×

(Ñ ×g∗ Ñ ), the

G×k×-equivariant K-theory of the Steinberg variety Ñ ×g∗ Ñ , endowed with the
convolution product. The same holds for the variety g̃×g∗ g̃. Our result provides,

for any element b ∈ Baff , an object Kb in DbCohG×k
×

g̃×g∗ g̃
(g̃× g̃), defined up to isomor-

phism. Here Kb is the kernel by which b acts. Passing to the Grothendieck group,
one can check (see [7, §6]) that the assignment b 7→ [Kb] induces the isomorphism
constructed in [6]. In other words, statement (i) of our result “lifts” the geometric
construction of the affine Hecke algebra to the level of (derived) categories. In this
context, statement (ii) gives a geometric description, in terms of coherent sheaves,
of the standard basis in Haff given by the products Twθx (w ∈W , x ∈ X∗(T )).

Now if p is bigger than the Coxeter number of G, our action is the geometric
counterpart of the action contructed in [3] on some derived categories of represen-
tations of the Lie algebra g over our field k of positive characteristic, under the
equivalences of [2] (see [7, §5]). This interpretation is crucial for our proof of state-
ment (ii). The geometric description of this action is used in [1] to characterize
the t-structure on DbCoh(g̃) arising from the equivalences of derived categories
proved in [2], and to prove Lusztig’s conjectures from [6].
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Serre’s notion of G-complete reducibility: recent results

Gerhard Röhrle

(joint work with Michael Bate, Benjamin Martin and Rudolf Tange)

I gave a brief overview of some of the main results from [2], [4], and [5].

1. Serre’s notion of complete reducibility

Let G be a connected reductive linear algebraic group defined over an alge-
braically closed field k of characteristic p ≥ 0. Following Serre [11], we say that a
(closed) subgroup H of G is G-completely reducible (G-cr) provided that whenever
H is contained in a parabolic subgroup P of G, it is contained in a Levi subgroup
of P ; for an overview of this concept see for instance [10] and [11]. In the case
G = GL(V ) (V a finite-dimensional k-vector space) a subgroup H is G-cr exactly
when V is a semisimple H-module, and likeweise for other classical groups for
p 6= 2, [11, Ex. 3.2.2(b)]. So this faithfully generalizes the notion of complete
reducibility from representation theory. If H is a G-cr subgroup of G, then H0 is
reductive, [11, Prop. 4.1]. If p = 0, also the converse holds, [11, Prop. 4.2].

2. Richardson’s Philosophy and relative G-cr subgroups

Let G act diagonally on Gn by simultaneous conjugation:

g · (x1, . . . , xn) = (gx1g
−1, . . . , gxng

−1).

For x = (x1, . . . , xn) ∈ Gn let H = 〈x1, . . . , xn〉, be the algebraic subgroup of G
generated by (the terms of) x. In [8], Richardson characterized the closed G-orbits
in Gn by means of his notion of strong reductivity. In [1, Thm. 3.1] we showed that
this is equivalent to Serre’s concept of G-complete reducibility. As a consequence,
we get the following geometric interpretation of the latter, [1, Cor. 3.7]:

Theorem 1. Let H be a subgroup of G. Let h ∈ Gn be a generating tuple of H.
Then H is G-cr if and only if the G-orbit G · h of h in Gn is closed.
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In [5], we study the closed H-orbits in Gn for an arbitrary reductive subgroup
H of G, generalizing Richardson’s work [8]. This in turn leads to a generalization
of Serre’s concept of G-complete reducibility, as follows. Let Y (G) denote the set
of cocharacters of G, i.e., the set of homomorphisms λ : k∗ → G. For a subgroup H
of G let Y (H) denote the set of cocharacters of H . Clearly, we have Y (H) ⊆ Y (G).
Recall that for any pair (P,L) of a parabolic subgroup P of G and a Levi subgroup
L of P there is a λ ∈ Y (G) such that P = Pλ = {g ∈ G | lima→0 λ(a)·g exists} and
L = Lλ = {g ∈ G | lima→0 λ(a) ·g = g}. Let cλ : Pλ → Lλ, by g 7→ lima→0 λ(a) ·g,
cf. [8, 2.3]. Let K,H ≤ G with H reductive. We say that K is relatively G-
completely reducible with respect to H provided whenever K ≤ Pλ for λ ∈ Y (H),
there exists a µ ∈ Y (H) so that Pµ = Pλ and K ≤ Lµ. For H = G we recover
Serre’s concept of G-complete reducibility; also, if K is a subgroup of H , then K
is relatively G-cr with respect to H if and only if K is H-cr.

In [5, Thm. 1.1] we obtain the following generalization of Theorem 1:

Theorem 2. Let H be a reductive subgroup of G. Let k ∈ Gn and let K be the
algebraic subgroup of G generated by k. Then H · k is closed in Gn if and only if
K is relatively G-cr with respect to H.

Theorem 2 characterizes the closed H-orbits in Gn algebraically and for H = G
it recovers Theorem 1. Unlike in the case of G-cr subgroups, there is no known
simple characterization of relative G-cr subgroups when p = 0, not even in the
case G = GL(V ). This notion is more sublte that it appears at first glance. In
general, G-cr-ness does not imply, nor is it implied by relative G-cr-ness, [5, Rem.
3.2]. For a further discussion, see [5].

3. Uniform S-instability and complete reducibility

Theorem 1 allows to employ methods from GIT in the study of G-cr subgroups
of G. However, there are several drawbacks in this construction. For instance,
the associated destabilizing parabolic subgroup of a non-G-cr subgroup H of G
depends on the choice of a generating tuple and not on H itself.

In [4], we strengthen the optimality results of Kempf–Rousseau [7, 9] by combin-
ing them with ideas of Hesselink [6]: Let V be an affine G-variety, S a non-empty
closed G-invariant subset and X a non-empty subset of V . Extending [6], we
say that X is uniformly S-unstable provided there exists λ ∈ Y (G) such that
lima→0 λ(a) · x exists and belongs to S for every x ∈ X . In [4, Thm. 4.2], we
prove the analogue of Kempf’s key instability theorem [7, Thm. 4.2] in this set-
ting. In particular, there always exists an optimal class Ω(X,S) of cocharacters of
G which uniformly destabilze X into S and this class gives rise to a unique optimal
destabilizing parabolic subgroup P (X,S) of G.

Let H ≤ G and let λ ∈ Y (G) with H ≤ Pλ. Let M = cλ(H). Suppose that H
is not G-cr. Then H and M are not G-conjugate [4, Thm. 5.8]. Suppose that Hn

admits a generating tuple of H . Setting S = G ·Mn, we see that H is uniformly
S-unstable in the sense above. Our next theorem ([4, Thm. 5.16]) is an application
of our strengthening of Kempf’s result ([4, Thm. 4.2]) to G-cr subgroups of G.
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Theorem 3. Let H ≤ G and n ∈ N such that Hn contains a generating tuple of
H. Let λ ∈ Y (G) with H ⊆ Pλ and set M = cλ(H). Set S = G ·Mn and put
Ω(H,M) := Ω(Hn, S). Then the following hold:

(i) Pµ = Pν for all µ, ν ∈ Ω(H,M). Let P (H,M) denote the unique parabolic
subgroup of G so defined. Then H ⊆ P (H,M) and Ru(P (H,M)) acts
simply transitively on Ω(H,M).

(ii) We have Ω(gHg−1, gMg−1) = g · Ω(H,M) and P (gHg−1, gMg−1) =
gP (H,M)g−1 for any g ∈ G. In particular, NG(H) ≤ P (H,M, k).

(iii) If µ ∈ Ω(H,M), then dimCG(cµ(H)) ≥ dimCG(M). If M is G-conjugate
to H, then Ω(H,M) = {0} and P (H,M) = G. If M is not G-conjugate
to H, then H is not contained in any Levi subgroup of P (H,M).

Note, Theorem 3(ii) shows that NG(H) ≤ P (H,M). Moreover, P (H,M) only
depends on H and not on the choice of a generating tuple for H . For further
consequences and results concering this notion of uniform S-instability, see [4, §4].

4. Rationality Questions

In this section let k be any field, let k be its algebraic closure. Assume that
G is defined over k. Following Serre again [11] we say that a subgroup H of G is
G-completely reducible over k if whenever H is contained in a k-defined parabolic
subgroup P of G, there exists a k-defined Levi subgroup of P containing H .

Our first aim here is to give a “geometric” characterization of this notion anal-
ogous to Theorem 1. For that we require the following definition, [4, Def. 3.8]. Let
V be a k-defined affine G-variety. Let v ∈ V . We say that the G(k)-orbit G(k) · v
is cocharacter-closed over k if for any k-defined cocharacter λ ∈ Y (G) such that
v′ := lima→0 λ(a) · v exists, v′ is G(k)-conjugate to v. Note that we do not require
v to be a k-point of V .

It follows from the Hilbert-Mumford Theorem that G · v is closed if and only
if G(k) · v is cocharacter-closed over k. We thus consider the G(k)-orbits that
are cocharacter-closed over k as a generalization to non-algebraically closed fields
of the closed G-orbits in V . In [4, Thm. 5.9] we obtain the desired analogue to
Theorem 1 in this setting:

Theorem 4. Let H be a subgroup of G and let h ∈ Hn be a generating tuple of
H. Then H is G-cr over k if and only if G(k) · h is cocharacter-closed over k.

For further results on this notion of cocharacter-closed G(k)-orbits, see [4, §3].
In particular, note the subtlety that the cocharacter-closed G(k)-orbits in V (k)
need not coincide with the Zariski closed G(k)-orbits in V (k), [4, Rem. 3.9]. Our
next rationality result, conjectured by Serre, is proved in [2, Thm. 1.1].

Theorem 5. Let k1/k be a separable field extension, let G be defined over k, and
H ≤ G be k-defined. Then H is G-cr over k if and only if H is G-cr over k1.

Remarks. (i). For GL(V ), Theorem 5 is readily seen to hold, [4, Ex. 5.12].
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(ii). Theorem 5 was proved in [1, Thm. 5.8] for k perfect, by passing back and
forth between k and its algebraic closure k and between k1 and k. In general this
approach fails, because the extension k/k need not be separable.

(iii). There are examples showing that each implication in Theorem 5 fails
without the separability assumption on k1/k; see [1, Ex. 5.11] and [3, Ex. 7.22].

(iv). The reverse implication in Theorem 5 is proved in [4, Thm. 5.11]. The
proof of [4, Thm. 5.11] rests on a general rationality result, [4, Thm. 3.1], concern-
ing G-orbits in an affine variety. The proof of the forward direction in [2] is based
on the recently established Tits Centre Conjecture, see [2] for a statement and the
relevant references of various parts of the proof.
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New age subregular representations of F4

Dmitriy Rumynin

Let g be a simple Lie algebra of type F4 over an algebraically closed field of
characteristic p > 5 (or even 12). Let e ∈ g be a nilpotent element of type F4(a3)
and S4 = C(e)/C0(e). The reduced enveloping algebra Ue = Ue(g) splits into
blocks

Ue =
⊕

[λ]∈(Λ/pΛ)/W

Aλ.

We discuss the problem of computing IrrAλ as an S4-set of centrally extended
points.
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Giambelli formulas for classical G/P spaces

Harry Tamvakis

The classical Giambelli formula writes any Schubert class in the cohomology ring
of the Grassmannian X as a polynomial in the special Schubert classes, which are
the Chern classes of the universal quotient bundle over X . We will describe an
analogue of this result which holds in the cohomology ring of any classical G/P
space. The answer involves some new algebraic expressions using raising operators
which interpolate between Schur determinants and Pfaffians. Much of this work
is in collaboration with Anders Buch and Andrew Kresch.

1. The type A Grassmannian

We begin with the usual Grassmannian G(m,N) which parametrizes linear
subspaces Σ of CN with dim(Σ) = m. Let n = N − m. The cohomology ring
H∗(G(m,N),Z) is a free abelian group with basis given by the Schubert classes
σλ, one for each partition λ = (λ1, . . . , λℓ) whose Young diagram fits inside an m×n
rectangle. Now σλ is the class of a Schubert variety Xλ of complex codimension
|λ| =

∑
i λi. When λ = p is a positive integer, we get the special Schubert varieties

Xp = {Σ | Σ ∩ Cn+1−p 6= 0}, where Ck = Ck × 0 ⊂ CN . The special Schubert
classes σp = [Xp] for 1 ≤ p ≤ n generate the ring H∗(G(m,N),Z); moreover, σp

is equal to the Chern class cp(Q) of the universal rank n quotient vector bundle
Q→ G(m,N). The classical Giambelli formula is the statement that

(1) σλ = det(σλi+j−i)1≤i,j≤ℓ

in H∗(G(m,N),Z). Here and in the rest of this note we understand that σ0 = 1
and σp = 0 if p < 0.

2. The Giambelli problem for G/P

The Schubert calculus on G(m,N) has an analogue on any homogeneous space
G/P , where G is a complex reductive Lie group and P a parabolic subgroup of
G. We wish to generalize (1) to a corresponding formula which is true on any
G/P space. The Bruhat decomposition of the Lie group G induces a natural
decomposition of G/P into Schubert cells, which in turn gives rise to the Z-basis
of Schubert classes for the cohomology of G/P . However there appears to be no
uniform way to define the notion of a special Schubert class in this generality.

When G is a classical Lie group, one can define special Schubert class generators
for the cohomology ring H∗(G/P,Z) uniformly, as follows. In this situation, the
variety G/P parametrizes partial flags of subspaces of a vector space, which in
types B, C, and D are required to be isotropic with respect to an orthogonal or
symplectic form. First, the special Schubert varieties on any Grassmannian are
defined as the locus of (isotropic) linear subspaces which meet a given (isotropic or
coisotropic) linear subspace nontrivially, following [2]. The special Schubert classes
are the cohomology classes determined by these Schubert varieties. Finally, the
special Schubert classes on a partial flag variety G/P are the pullbacks of special
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Schubert classes on Grassmannians. This agrees with the conventions used in Lie
type A. In most cases, these special classes are equal to the Chern classes of the
universal quotient vector bundles over G/P , up to a factor of two.

3. Symplectic Grassmannians

We describe here our answer to the Giambelli problem in the case of the Grass-
mannians which are quotients of the symplectic group Sp2n. Equip C2n with a
symplectic form and fix an integer k with 0 ≤ k ≤ n. Let IG(n−k, 2n) denote the
symplectic Grassmannian which parametrizes isotropic subspaces Σ of C2n with
dim(Σ) = n−k. Say that a partition λ is k-strict if it has no repeated parts larger
than k. The Schubert varieties Xλ in IG are indexed by the k-strict partitions λ
whose diagrams fit inside an (n− k)× (n + k) rectangle. More precisely, we have

Xλ = {Σ ∈ IG | dim(Σ ∩ Cpj(λ)) ≥ j, 1 ≤ j ≤ ℓ(λ)},

where

pj(λ) = n + k + j − λj −#{i < j : λi + λj > 2k + j − i}.

The cohomology H∗(IG,Z) is a free abelian group on the basis of Schubert classes
σλ = [Xλ]. The special Schubert classes satisfy σp = [Xp] = cp(Q), as in type A.

For any i < j and integer sequence α = (α1, α2, . . .) with finite support, we
define Rij(α) = (α1, . . . , αi + 1, . . . , αj − 1, . . .). A raising operator R is any finite
monomial in these Rij ’s. We set mα = σα1

σα2
· · · and Rmα = mRα for any

raising operator R. For any k-strict partition λ, consider the formal expression

Rλ =
∏

(1−Rij)
∏

λi+λj>2k+j−i

(1 + Rij)
−1

where the first product is over all pairs i < j and second product is over pairs
i < j such that λi + λj > 2k + j − i.

Theorem 1 ([3]). For any k-strict partition λ, we have σλ = Rλmλ in the coho-
mology ring H∗(IG(n− k, 2n),Z).

The Giambelli formula of Theorem 1 agrees with (1) when λi ≤ k for all i.
Moreover, the Giambelli problem for the Lagrangian Grassmannian (case k = 0)
was first solved by Pragacz [5], who expressed the answer using a Schur Pfaffian.

4. Type A partial flag varieties

Suppose now that X = GLN/P parametrizes partial flags of subspaces

0 ⊂ E1 ⊂ · · · ⊂ Er ⊂ CN

with dim(Ej) = dj for 1 ≤ j ≤ r. Let SP denote the set of permutations w ∈ SN

such that w(i) < w(i + 1) for each i not in {d1, . . . , dr}. For every w ∈ SP , we
have a Schubert class σw ∈ H2ℓ(w)(X,Z), where ℓ(w) denotes the length of w. The
classes σw for w ∈ SP form a Z-basis of H∗(X,Z). If Qj = CN/Er+1−j , then the
Chern classes cp(Qj) are the special Schubert classes on X .
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Given two sequences c = {ci}i≥0 and d = {di}i≥0 with c0 = d0 = 1, let {hi}i≥0

be the sequence defined by the equation of formal power series
∞∑

r=0

hrt
r = (1− c1t + c2t

2 − · · · )−1(1 − d1t + d2t
2 − · · · )

and set sλ(c − d) = det(hλi+j−i)i,j . Given any two vector bundles E and F over
the same base X , we let sλ(E − F ) = sλ(c(E)− c(F )).

Theorem 2 ([4]). For any permutation w ∈ SP , we have

(2) σw =
∑

λ

cwλ sλ1(Q1)sλ2(Q2 −Q1) · · · sλr (Qr −Qr−1)

in H∗(X,Z), where the sum is over all r-tuples λ = (λ1, . . . , λr) of partitions, and
cwλ is a nonnegative integer.

We note that the coefficient cwλ in (2) is a ‘quiver coefficient’, and that there

exist several combinatorial interpretations for these integers. Formula (2) was
inspired by the work of Buch and Fulton [1] on degeneracy loci of type A quivers.

5. Type C partial flag varieties

In this section we let X = Sp2n/P parametrize partial flags of subspaces

E• : 0 ⊂ E1 ⊂ · · · ⊂ Er ⊂ C2n

with dim(Ej) = dj for 1 ≤ j ≤ r and Er isotropic with respect to the symplectic
form on C2n. Let WP denote the set of signed permutations w in the Weyl group
W of type Cn whose descent positions are not included among the dj . We have a

Schubert class σw ∈ H2ℓ(w)(X,Z) for any w ∈ WP , and the quotient bundles Qj

and special classes cp(Qj) are defined as in §4. Finally, let k = n− dr.

Theorem 3 ([6]). For every element w ∈ WP , we have

(3) σw =
∑

λ

ewλ Θλ1(Q1)sλ2 (Q2 −Q1) · · · sλr (Qr −Qr−1)

in H∗(X,Z), where the sum is over all r-tuples λ = (λ1, . . . , λr) of partitions with

λ1 k-strict, ewλ is a nonnegative integer, and Θλ1(Q1) = Rλ1

cλ1(Q1).

Remarks. 1) The theta polynomial Θλ in (3) is the type C analogue of a Schur
polynomial in type A. The coefficients ewλ have a combinatorial interpretation.

Moreover, the mixed nature of the ingredients in (3) is compatible with the ge-
ometry. Indeed, the morphism which sends E• to Er realizes X as a fiber bundle
over IG(n− k, 2n) with fiber equal to a type A partial flag variety.

2) There are more general versions of Theorems 2 and 3 which hold for the torus-
equivariant cohomology of any classical G/P space; this includes the case when G
is an orthogonal group. Furthermore, our Giambelli formulas for Grassmannians
have extensions which are valid in the small quantum cohomology ring.



1158 Oberwolfach Report 19/2010

3) It would be interesting to have answers to the following natural questions: (i)
Can the exceptional groups be included in this story? (ii) Does the Giambelli
formula of Theorem 1 appear in the theory of group representations?
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Canonical bases and Affine Hecke algebras of classical types

Eric Vasserot

(joint work with Michela Varagnolo)

A new family of graded algebras, called KLR algebras, has been recently intro-
duced in [9], [11]. These algebras yield a categorification of f , the negative part
of the quantized enveloping algebra of any type. In particular, one can obtain a
new interpretation of the canonical bases, see [12]. In type A or A(1) the KLR
algebras are Morita equivalent to the affine Hecke algebras and their cyclotomic
quotients. Hence they give a new way to understand the categorification of the
simple highest weight modules and the categorification of f via some Hecke alge-
bras of type A or A(1). One of the advantages of KLR algebras is that they are
graded, while the affine Hecke algebras are not. This explain why KLR algebras
are better adapted than affine Hecke algebras to describe canonical bases. Indeed
one could view KLR algebras as an intermediate object between the representation
theory of affine Hecke algebras and its Kazhdan-Lusztig geometric counterpart in
term of perverse sheaves. This is central in [12], where KLR algebras are proved
to be isomorphic to the Ext-algebras of some complex of constructible sheaves.

In the other hand, the (branching rules for) affine Hecke algebras of type B have
been investigated quite recently, see [4], [5], [6], [7], [8]. Lusztig’s description of
the canonical basis of f in type A(1) in [10] implies that this basis can be naturally
identified with the set of isomorphism classes of simple objects of a category of
modules of the affine Hecke algebras of type A. This identification was used in
[3]. More precisely, there is a linear isomorphism between f and the Grothendieck
group of finite dimensional modules of the affine Hecke algebras of type A, and
it is proved in [3] that the induction/restriction functors for affine Hecke algebras
are given by the action of the Chevalley generators and their transposed operators
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with respect to some symmetric bilinear form on f . In [4], [5], [6], [7] a similar
behavior is conjectured and studied for affine Hecke algebras of type B. Here f

is replaced by an explicit module V (λ) over an explicit algebra B. First, it is
conjectured that V (λ) admits a canonical basis. Next, it is conjectured that this
basis is naturally identified with the set of isomorphism classes of simple objects
of a category of modules of the affine Hecke algebras of type B. Further, in this
identification the branching rules of the affine Hecke algebras of type B are given
by the B-action on V (λ). The first conjecture has been proved in [4] under the
restrictive assumption that λ = 0. Here we prove the whole set of conjectures.
Indeed, our construction is slightly more general, see the appendix.

Roughtly speaking our argument is as follows. In [4] a geometric description
of the canonical basis of V (0) was given. This description is similar to Lusztig’s
description of the canonical basis of f via perverse sheaves on the moduli stack
of representations of some quiver. It is given in terms of perverse sheaves on
the moduli stack of representations of a quiver with involution. First we give a
analogue of this for V (λ) for any λ. This yields the existence of a canonical basis
B(λ) for V (λ) for arbitrary λ. Then we compute explicitely the Ext-algebras
between complexes of constructible sheaves naturally attached to quivers with
involutions. These complexes enter in a natural way in the definition of B(λ). This
computation yields a new family of graded algebras Rm where m is a nonnegative
integer. We prove that the algebras Rm are Morita equivalent to the affine Hecke
algebras of type B. Finally we describe V (λ) and the basis B(λ) in terms of the
Grothendieck group of Rm.
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Johannes Kübel
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