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Introduction by the Organisers

The meeting focused on several areas of current excitement in geometric group
theory, unified by the important role that non-positive curvature plays in each.
The geometric approach to group theory dominates the modern study of finitely
generated groups. A central idea in this approach is that one illuminates the nature
of groups by studying their actions on spaces with appropriate geometric structure.
The quality of information one gleans from the action depends on the richness of
the geometric structure and the quality of the action (discrete and cocompact by
isometries being the most desirable). A powerful illustration of this is provided by
the study of isometric actions on spaces of non-positive curvature. The curvature
hypothesis alone tells one a great deal about the algebraic structure of the group,
but the theory becomes much richer when one imposes further hypotheses on the
space. Prime illustrations of this are the the theory of buildings (J. Tits) and,
most classically, the actions of discrete subgroups of semi-simple Lie groups on
Riemannian symmetric spaces (É. Cartan).
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The topics covered during this workshop can each be seen as a natural extension
of an aspect of this last beautiful subject: rigidity, fixed point theorems, questions
of linearity and residual finiteness, analysis at infinity, cohomological issues, etc.
The diverse techniques involved in the topics that emerge under these headings
typically lie far from these classical origins, and the spaces that arise are typically
highly singular — buildings, CAT(0) cube complexes, asymptotic cones, the curve
complex and other spaces related to Teichmüller space, Outer Space, etc. But the
classical situation still provides a stimulating analogy.

This diversity within a common framework was widely reflected in the speakers
of the workshop. We concentrated on specific topics that have seen recent exciting
progress. These include: the study of new classes of buildings, of CAT(0) cube
complexes, lattices in the isometry groups of the latter spaces and related embed-
ding results; recent insights into the nature of mapping class groups of surfaces and
automorphism groups of free groups; recent definitive results on the nature of the
full isometry groups of CAT(0) spaces that admit parabolics; and the introduc-
tion of powerful new tools of an analytic nature. More details can be seen in the
individual abstract below. We had 55 participants from a wide range of countries,
and 23 lectures. In addition, there were two special sessions in the evening, with
lectures by Arthur Bartels on the recent proof of the Farrell-Jones Conjecture for
hyperbolic and CAT(0) groups and by Mark Sapir on conjugacy growth in groups.

The staff in Oberwolfach was—as always—extremely supportive and helpful.
We are very grateful for the additional funding for five young PhD students and
recent postdocs through Oberwolfach-Leibniz-Fellowships. In addition, there was
one young student funded through the DMV Student’s Conference. We think that
this provided a great opportunity for these students.

We feel that the meeting was exciting and highly successful. The quality of
all lectures was outstanding, and outside of lectures there was a constant buzz
of intense mathematical conversations. We are confident that this conference will
lead to both new and exciting mathematical results and to new collaborations.
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Abstracts

Divergence and quasimorphisms of right-angled Artin groups

Ruth Charney

(joint work with Jason Behrstock)

Let X be a geodesic metric space and let ρ be a linear function. The divergence
function of a geodesic α with respect to ρ is the function divρ α (r) defined as
the length of the shortest path from α(−r) to α(r) that stays outside the ball of
radius ρ(r) about α(0). The divergence of the space X is defined by divρX (r) =
sup{divρ α (r)} where the supremum is taken over all geodesics α.

In this project we consider the divergence of geodesics in right-angled Artin
groups. Given a finite, simplicial graph Γ, the right-angled Artin group AΓ is
the finitely presented group with generators corresponding to vertices of Γ and
relators [x, y] = 1 whenever the vertices x and y are adjacent in Γ. Right-angled
Artin groups form a rich family of groups interpolating between Zn, the group
corresponding to the complete graph on n vertices, and the free group Fn, corre-
sponding to the graph with n vertices and no edges.

If Γ is disconnected, then AΓ is a free product of two infinite groups and the
divergence in AΓ is infinite. If Γ1 and Γ2 are two graphs, their join is the graph J
obtained by connecting every vertex of Γ1 to every vertex of Γ2 by an edge. The
Artin group AJ associated to a join is the direct product of two infinite groups,
AΓ1 × AΓ2 , hence it has linear divergence. It is not surprising then, that for any
graph Γ, subgraphs that decompose as joins are central to our understanding of
divergence of geodesics in AΓ.

We define a notion of join length of an element g ∈ AΓ, as follows.

ℓJ(g) = min{k | g = a1 . . . ak where ai lies in AJ for some join J ⊂ Γ}.

For a bi-infinite geodesic word α in AΓ, we say α has finite join length if the join
lengths of its finite segments are bounded by a constant. We prove

Theorem 1. Let Γ be a connected graph and let α be a bi-infinite geodesic in AΓ.
Then α has linear divergence if and only if it has finite join length.

The proof uses the action of AΓ on a CAT(0) cube complex, XΓ, whose 1-
skeleton is the Cayley graph of AΓ. We show that the join length of a geodesic
edge path g determines the behavior of the walls in XΓ crossed by g. Two walls
H1, H2 in XΓ are said to be strongly separated if no wall of XΓ intersects both.
Define the separation length of g to be

ℓS(g) = max{k | g crosses a sequence of k strongly separated walls}.

We give a group theoretic characterization of when two walls are strongly separated
from which it follows that the join length and separation length of a bi-infinite
geodesic grow at the same rate.

We show that two strongly separated walls are connected by a unique minimal
geodesic (called the bridge) and the distance between points on these walls diverges
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linearly with the distance from the bridge. It follows that the divergence function
of a bi-infinite geodesic α is bounded below by a linear function of r times the
separation length, or equivalently the join length, of the segments [α(−r), α(r)].

Moreover, if Γ is connected, any two join subgroups can be connected by a se-
quence (of uniformly bounded length) of join subgroups in which any two consec-
utive subgroups have infinite intersection. Using the fact that divergence in each
join subgroup is linear, it follows that the divergence function of α is bounded
above by a linear function times its join length. We conclude

Corollary 2. Let Γ be a connected graph. AΓ has linear divergence if and only if
Γ is a join; otherwise its divergence is quadratic.

Divergence gives information about the large scale geometry of a group. By the
work of Drutu, Mozes and Sapir [DS, DMS], divergence of geodesics in a group is
closely related to cut points in asymptotic cones. As an application of our results,
we obtain a complete characterization, for any asymptotic cone of AΓ, of when
two points can be separated by a cut-point.

A second application of divergence is to produce quasimorphisms of AΓ. A
function φ : G → R is a homogeneous quasimorphism if φ(gn) = nφ(g) for all
n > 0, and there exists a constant D ≥ 0 such that

|φ(gh)− φ(g)− φ(h)| ≤ D

for every g, h ∈ G. The vector space of homogeneous quasimorphisms, modulo

the subspace of true homomorphisms, is denoted Q̃H(G) and is related to the
bounded cohomology of G.

Bestvina and Fujiwara [BF2] have shown that for (nice) group actions on a
CAT(0) space, rank-one isometries (i.e. hyperbolic isometries whose axes do not
bound a half-flat) give rise to non-trivial quasimorphisms. Since geodesics with
super-linear divergence cannot bound a half-flat, we obtain the following.

Theorem 3. Let Γ be an arbitrary graph.

(1) If G ⊆ AΓ is any subgroup which is not contained in a conjugate of a join
subgroup, then G contains a rank-one isometry of XΓ.

(2) If G is any non-abelian subgroup of AΓ, then Q̃H(G) is infinite dimen-
sional.

We remark that these results can also be derived from the work of of Bestvina-
Fujiwara [BF1] or Caprace and Fujiwara [CF] by embedding the right-angled Artin
group into a mapping class group or a right-angled Coxeter group.

Finally, from the work of Burger and Monod on nonexistence of quasimorphisms
of higher rank lattices [BM1, BM2, Mon1], we conclude

Corollary 4. If Λ is an irreducible lattice in a connected semisimple Lie group with
finite center, no compact factors, and rank at least 2, then every homomorphism
ρ : Λ → AΓ is trivial.
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Finiteness properties of S-arithmetic groups over global function fields

Ralf Gramlich

(joint work with Kai-Uwe Bux, Stefan Witzel)

The purpose of this note is to sketch how, for an S-arithmetic group Γ, Harder’s
reduction theory allows one to define a Γ-invariant Γ-cocompact Morse function on
the appropriate product X of affine buildings with uniquely determined gradients
whose sublevel sets locally look like the intersection of the complements of finitely
many horoballs, and to indicate some applications.

Let K be a global function field over Fq, let G be a reductive K-isotropic
algebraic K-group considered as a subgroup of some matrix group GLm(K), let
S be a finite non-empty set of places of K, let X =

∏
s∈S Xs be the product of

the affine buildings of the groups G(Ks), and let Γ be the S-arithmetic lattice in∏
s∈S G(Ks).

Definition 1. Let P be a maximal K-parabolic subgroup of G and let x =
(xs)s∈S ∈ X be a tuple of special vertices xs ∈ Xs. In analogy to [Har69, Sec-
tion 1.3] define

π(P, x) :=

∫

Ru(P (AK))∩G(AK)x

ω,

where ω denotes a non-trivial volume form on Ru(P ) defined over K. This Haar
integral does not depend on the choice of the volume form ω; cf. [Wei82, Section
2.4].

Theorem 2 ([Har69, Satz 1.3.2], [Har77, 1.4.1]). Let P be a maximal K-parabolic
and let χ : P → Gm be the character “sum of roots” ([Har69, p. 39, Section 1.3]).
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For each tuple of special vertices x ∈ X and each g ∈
∏

s∈S P (Ks) one has

logq(π(P, gx)) = logq(π(P, x)) + logq(|χ(g)|
−1
S ) = logq(π(P, x)) +

∑

s∈S

s(χ(g)).

In particular, there exists a Busemann function p(P, ·) : X → R whose restriction
to the set of tuples of special vertices of X equals logq(π(P, ·)).

Let B be a minimal K-parabolic subgroup of G, let R(B) be the radical of B,
let Ru(B) be the unipotent radical of B, let T = R(B)/Ru(B), let S ⊆ T be the
maximalK-split subtorus of T , let π = {α1, ..., αr} ⊂ X(S) be the system of simple
roots, and let X(B) = HomK(B,Gm) be the module of K-rational characters of
B so that X(B) ⊗ Q = X(S) ⊗ Q, let Pi ⊇ B be the maximal parabolic of type
π − {αi}, let χPi

: Pi → Gm be the sum of roots of Pi, and let χi := χPi |B.

The χi form a basis of X(B) ⊗ Q and, if (·, ·) is a positive definite bilinear
form on X(B) ⊗ Q which is invariant under the action of the Weyl group, then
(χi, αj) = 0, if i 6= j, and (χi, αi) > 0 for all i.

Definition 3. Let α1, ..., αr and χ1, ..., χr be as above and let ci,j ∈ Q such that
αi =

∑r
j=1 ci,jχj . In analogy to [Har69, p. 47] define

pi(B, x) := p(Pi, x),

ni(B, x) :=

r∑

j=1

ci,jpj(B, x).

Let (ci)1≤i≤r be a family of positive real numbers such that each pi(B, ·) :=
cipi(B, ·) is a Busemann function with respect to a unit speed geodesic.

Theorem 4 ([Har69, Satz 2.3.2], [Har77, 1.4.2]). There exists C1 ∈ R such that
for each x ∈ X there exists a minimal K-parabolic B with ni(B, x) ≥ C1 for all
1 ≤ i ≤ r.

Theorem 5 ([Har68, Satz 2.2.13], [Har69, Satz 2.1.2], [Har69, Satz 2.3.3]). There
exist constants C2 > γ > C1 such that for x ∈ X, a minimal K-parabolic B with
ni(B, x) ≥ C1 for all 1 ≤ i ≤ r, the family (Pi)1≤i≤r of maximal K-parabolic
subgroups of G containing B, and j ∈ {1, ..., r} with nj(B, x) ≥ C2, each minimal
K-parabolic subgroup B′ of G with ni(B

′, x) ≥ C1 for all 1 ≤ i ≤ r

(1) satisfies nj(B
′, x) ≥ γ, and

(2) is contained in Pj.

Definition 6. A pair (B, x) consisting of a minimal K-parabolic subgroup B of
G and an element x ∈ X such that ni(B, x) ≥ C1 for all i ∈ I is called reduced.

Let B be a minimal K-parabolic subgroup of G and let Pj ⊇ B be a maximal
parabolic. An element x ∈ X is called close to the boundary of X with
respect to Pj , if (B, x) is a reduced pair and nj(B, x) ≥ C2.

An element x ∈ X is called close to the boundary of X , if there exists a
maximal K-parabolic P such that x is close to the boundary of X with respect to
P .
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Let x ∈ X be close to the boundary of X . Define

Px :=
⋂

{P ⊂ G | x is close to the boundary of X with respect to P}.

By Theorem 5 the group Px is a K-parabolic subgroup of G. It is called the
isolated parabolic subgroup of G corresponding to x.

Proposition 7. Let x ∈ X be close to the boundary of X, let Px be the corre-
sponding isolated parabolic subgroup of G, and let γ be a geodesic ray in X with
γ(0) = x and whose end point lies in the simplex of the building at infinity corre-
sponding to Px. Then each y ∈ γ([0,∞)) is close to the boundary of X, one has
Py = Px, and for each minimal K-parabolic B the pair (B, y) is reduced if and
only if (B, x) is reduced.

Proposition 8 ([Har69, Satz 2.2.2], [Har77, 1.4.3], [Beh98, Section 2.4]). For
C ∈ R the filtrations

Xn(C) = {x ∈ X | (B, x) reduced implies ni(B, x) ≤ C for all 1 ≤ i ≤ r},

Xp(C) = {x ∈ X | (B, x) reduced implies pi(B, x) ≤ C for all 1 ≤ i ≤ r}

are Γ-cocompact and Γ-invariant.

Observation 9 ([Beh98, Proposition 1]). There exists a constant C3 such that
pi(B, x) ≥ C3 implies ni(B, x) ≥ C2 for each reduced pair (B, x) and all 1 ≤ i ≤ r.
In particular, Xn(C2) ⊆ Xp(C3).

Proposition 10. Let x ∈ X\Xp(C3) and let x ∈ Xp(C3) an element at which the
function Xp(C3) → R : z 7→ d(x, z) assumes a local minimum. Then Px = Px.

Moreover, the function Xp(C3) → R : z 7→ d(x, z) assumes a global minimum at
x. Furthermore, there exists a unique unit speed geodesic ray γx : [0,∞) → X with
γ(0) = x along which the function X\Xp(C3) → R : x 7→ d(x,Xp(C3)) assumes
its steepest ascent; its end point lies in the simplex at infinity corresponding to Px.

Definition 11. Define h : X → R : x 7→ d(x,Xp(C3)). For x ∈ X\Xp(C3) the
unit speed geodesic ray γx from Proposition 10 is called the flow line of h in x.
The gradient ∇xh is defined as the direction of γx at x.

In case the global rank of G is 1, the sublevel sets of the Morse function h
locally look like the complement of one horoball. Investigation of connectedness
properties of horospheres in affine buildings yields the following result.

Theorem 12 ([BW, Theorem 1.2]). If G is connected, noncommutative, absolutely
almost simple of K-rank 1, then the finiteness length of Γ is

(∑
s∈S rkKs

(G)
)
− 1.

If G is an absolutely almost simple Fq-group of rank n ≥ 1, then G(Fq[t, t
−1])

admits a root group datum. Hence the theory of twinnings of Bruhat–Tits build-
ings, which is a special case of reduction theory, applies and allows one to prove
the following result.

Theorem 13 ([BGW, Theorem A]). If G is an absolutely almost simple Fq-group
of rank n ≥ 1, then the finiteness length of G(Fq[t]) equals n− 1.
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A geometric construction of lattices in two-dimensional affine buildings

Jan Essert

In recent years, lattices in the automorphism groups of non-positively curved poly-
hedral complexes have been studied by various authors. A very interesting survey
on current problems and open questions is [FHT09].

We are interested in lattices in the automorphism groups of two-dimensional
locally finite affine buildings. It is well known that there are countably many
so-called classical two-dimensional affine buildings associated to isotropic alge-
braic groups over local fields, but also uncountably many exotic two-dimensional
buildings with potentially small automorphism groups.

Classically, one obtains lattices in the automorphism group of a classical build-
ing X by considering arithmetic lattices in the associated algebraic group G and
using a result by Tits in [Tit74], stating that G is always cocompact in Aut(X).

There are different, geometric constructions of lattices in both classical and ex-
otic two-dimensional buildings by Köhler-Meixner-Wester [KMW84, KMW85], Ro-
nan [Ron84], Kantor [Kan86] and Cartwright-Steger-Mantero-Zappa [CMSZ93a,
CMSZ93b]. We propose a new construction which produces lattices acting simply
transitively on a fixed type of panel of the building.

The lattices are obtained as fundamental groups of complexes of groups which
are constructed using so-called Singer polygons, generalised polygons with a point-
regular automorphism group. Using this construction, we obtain panel-regular
lattices in buildings of type Ã2 and C̃2 with explicit presentations. These concise
presentations also allow a simple description of the associated buildings as well as
the calculation of group homology. In particular, we obtain the following results.

Classification If a lattice acts regularly on one type of panel in an Ã2-building, it
acts regularly on all types of panels. Using this fact, we obtain for each such lattice
some combinatorial data involving finite projective planes. Conversely, for each
such piece of data, one can construct an Ã2-building with a panel-regular lattice.
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The question whether two different pieces of data lead to isomorphic buildings or
commensurable lattices remains open. Likewise, it is unclear whether the corre-
sponding buildings are classical or exotic.

Lattices of type Ã2: In buildings of type Ã2, we obtain a very explicit con-
struction of lattices using the notion of classical difference sets. In this case, the
vertex stabilisers are cyclic groups. Using a list of these difference sets, it is easy
to construct short presentations. The smallest example is

Γ = 〈x1, x2, x3 |x
7
1 = x72 = x73 = x1x2x3 = x31x

3
2x

3
3 = 1〉.

It can be shown that this lattice is actually contained in SL3(F2((t))), but this is
unknown for all larger examples.

Lattices of type C̃2: In buildings of type C̃2, one can produce different series
of examples acting regularly on one or two types of panels of the building. The
vertex stabilisers are Heisenberg groups or elementary abelian 2-groups. The most
curious lattice among these is

Λ =
(
Z/q ∗ Z/q

)
/
〈
[x, y] : for certain pairs (x, y) ∈ Z/q × Z/q

〉
,

where q = 2k for k > 1. The associated building is necessarily exotic.

All results outlined in this abstract can be found in [Ess09] and [Ess10].
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McCool groups and stabilizers on the boundary of outer space

Gilbert Levitt

(joint work with Vincent Guirardel)

Let C be a finite set of conjugacy classes in a free group Fn. Let OutC(Fn) be the
pointwise stabilizer of C in Out(Fn). If for instance C is the class of [a, b][c, d] in
F (a, b, c, d), then OutC(Fn) is a mapping class group. We call OutC(Fn) a McCool
group because of:

Theorem 1 (McCool [1]). OutC(Fn) is finitely presented.

McCool’s proof used peak reduction. Using JSJ theory and outer space, we
prove:

Theorem 2. OutC(Fn) is VFL: some finite index subgroup has a finite K(π, 1).

Here is a sketch of the proof. It also applies if C is infinite, or if Fn is replaced
by a torsion-free hyperbolic group.

One considers splittings of Fn (equivalently, graphs of groups decompositions,
or actions on trees) which are relative to C: every element of C must be contained
in a vertex group (i.e. fix a point in the tree). There are two cases.

If Fn is freely indecomposable rel C, one considers its cyclic JSJ decomposition
rel C. There is an OutC(Fn)-invariant JSJ tree T and one understands OutC(Fn)
through its action on T .

If Fn is not freely indecomposable rel C, there is no OutC(Fn)-invariant tree
and one has to consider outer space rel C. This is the set of projective classes of
actions of Fn on simplicial trees, with edge stabilizers trivial and vertex stabilizers
freely indecomposable rel the elements of C which they contain. OutC(Fn) acts
“cocompactly” on this contractible space, and stabilizers are controlled by the
previous case.

McCool groups come up when studying the action of Out(Fn) on the boundary
of (ordinary) outer space. A point on this boundary is a projective class [T ] of
actions of Fn on R-trees, and we distinguish between Out[T ](Fn) (the stabilizer
of the projective tree) and OutT (Fn) (the stabilizer of the R-tree). The quotient
Out[T ](Fn)/OutT (Fn) embeds into the multiplicative reals, and a result by M.
Lustig implies that the image is trivial or cyclic. It it thus enough to study
OutT (Fn).

Theorem 3. OutT (Fn) has a finite index subgroup Out0T (Fn) fitting in an exact
sequence

1 → Fn1 × · · · × Fnp
→ Out0T (Fn) →M1 × · · · ×Mq → 1

where Fni
is free and Mi is a McCool group.

In particular, Out[T ](Fn) and OutT (Fn) are VFL.

If for example T is the Bass-Serre tree of a cyclic amalgam F ∗C F ′ where the
amalgam identifies a ∈ F with b ∈ F ′, the exact sequence is

1 → Z → Out0T (Fn) → Outa(F )×Outb(F
′) → 1
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with the kernel generated by the Dehn twist (acting on F as conjugation by a and
on F ′ as the identity).

If [T ] is fixed by an irreducible automorphism of Fn, then Out[T ](Fn) is virtually
cyclic (Bestvina-Feighn-Handel).

To prove Theorem 3, one considers the preimage AutT (Fn) of OutT (Fn) in
Aut(Fn). The action of Fn on T extends to an isometric action of AutT (Fn), and
we view an element H of AutT (Fn) as an isometry of T .

If T is simplicial, the first step is to restrict to the finite index subgroup PG(T ) ⊂
AutT (Fn) consisting of elements acting trivially on the quotient graph T/Fn. The
letters P and G stand for “Piecewise Group” because each element H ∈ PG(T )
piecewise agrees with an element of the group Fn: given an edge e of T , there
exists g ∈ Fn such that H and g agree on e.

In general, we define a subgroup PG(T ) ⊂ AutT (Fn) as follows: H ∈ AutT (Fn)
belongs to PG(T ) if and only if every arc in T may be subdivided into finitely
many subarcs, and on each subarc H agrees with some element of Fn. Letting
PG(T ) be the image of PG(T ) in OutT (Fn), we show that PG(T ) has finite index
and admits a description as in Theorem 3.
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The Farrell-Jones Conjecture for hyperbolic groups and
CAT(0)-groups

Wolfgang Lück

(joint work with Arthur Bartels)

Let G be a discrete group and let R be an associative ring with unit. We explain
and state the following conjectures and discuss their relevance.

Kaplanski Conjecture. If G is torsionfree and R is an integral domain, then 0
and 1 are the only idempotents in RG.

Conjecture. Suppose that G is torsionfree. Then Kn(ZG) for n ≤ −1, K̃0(ZG)
and Wh(G) vanish.

Novikov Conjecture. Higher signatures are homotopy invariants.

Borel Conjecture. An aspherical closed manifold is topologically rigid.

Serre’s Conjecture. A group of type FP is of type FF.

Conjecture. If G is a finitely presented Poincaré duality group of dimension
n ≥ 5, then it is the fundamental group of an aspherical homology ANR-manifold.

Conjecture If G is a hyperbolic group with Sn as boundary, then there is a closed
aspherical manifold M whose fundamental group is G.
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Farrell-Jones Conjecture. Let G be torsionfree and let R be regular. Then the
assembly maps for algebraic K- and L-theory

Hn

(
BG;KR

)
→ Kn(RG);

Hn

(
BG;L

〈−∞〉
R

)
→ L〈−∞〉

n (RG),

are bijective for all n ∈ Z.
There is a more complicate version of the Farrell-Jones Conjectures which makes

sense for all groups and rings and allows twistings of the group ring. We explain
that it implies all the other conjectures mentioned above provided that in the
Kaplanski Conjecture R is a field of characteristic zero, in the Novikov Conjecture
and the Borel Conjecture the dimension is greater or equal to five and in the
conjecture about boundaries of hyperbolic groups the dimension of the sphere is
greater or equal to five.. We present the following result:

Theorem [Bartels-Lück]. Let FJ be the class of groups for which the Farrell-
Jones Conjecture is true in its general form. Then:

(1) Hyperbolic groups belong to FJ ;
(2) CAT(0) groups belong to FJ ;
(3) Cocompact lattices in almost connected Lie groups belong to FJ ;
(4) Fundamental groups of (not necessarily compact) 3-manifolds possibly

with boundary) belong to FJ ;
(5) If G0 and G1 belong to FJ , then also G0 ∗G1 and G0 ×G1;
(6) If G belongs to FJ , then any subgroup of G belongs to FJ ;
(7) Let {Gi | i ∈ I} be a directed system of groups (with not necessarily

injective structure maps). If each Gi belongs to FJ , then also the direct
limit of {Gi | i ∈ I}.

(8) Let 1 → H → G
p
−→ Q → 1 be an extension of groups. If Q and for all

virtually cyclic subgroups V ⊆ Q the preimage p−1(V ) belongs to FJ ,
then G belongs to FJ ;

Since certain prominent constructions of groups yield colimits of hyperbolic
groups, the class FJ contains many interesting groups, e.g. limit groups, Tarski
monsters, groups with expanders and so on. Some of these groups were regarded
as possible counterexamples to the conjectures above but are now ruled out by the
theorem above.

There are also prominent constructions of closed aspherical manifolds with ex-
otic properties, e.g. whose universal covering is not homeomorphic to Euclidean
space, whose fundamental group is not residually finite or which admit no trian-
gulation. All these constructions yield fundamental groups which are CAT(0) and
hence yield topologically rigid manifolds.

However, the Farrell-Jones Conjecture is open for instance for solvable groups,
SLn(Z) for n ≥ 3, mapping class groups or automorphism groups of finitely gen-
erated free groups.
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Asymptotic dimension of mapping class groups is finite

Mladen Bestvina

(joint work with Ken Bromberg and Koji Fujiwara)

The asymptotic dimension asdim(X) of a metric space X is said to be ≤ n if for
every R > 0 there is a covering of X by sets Ui such that every metric R-ball in X
intersects at most n+1 of the Ui’s, and sup diamUi <∞. This definition is due to
Gromov and it is invariant under quasi-isometries (or even coarse isometries). In
particular, asymptotic dimension of a finitely generated group is well-defined. It is
not hard to see that asdim(R2) ≤ 2 by considering the usual “brick decomposition”
of R2 (with large bricks), and more generally, asdim(Rn) ≤ n. This inequality is
also easily seen using the product formula asdim(X×Y ) ≤ asdim(X)+asdim(Y ).

A generalization of the product formula is Bell-Dranishnikov’s Hurewicz theo-
rem: Suppose f : X → Y is a Lipschitz map between geodesic metric spaces such
that for every M > 0 the family {f−1(B(y,M))} of preimages of metric balls of
radius M has asymptotic dimension ≤ n uniformly (this means that coverings as
in the definition can be found with a diameter bound independent of the center
y). Then asdim(X) ≤ asdim(Y ) + n.
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For example, if 1 → A → B → C → 1 is a short exact sequence of finitely
generated groups then asdim(B) ≤ asdim(A) + asdim(C). Likewise, asymptotic
dimension of the hyperbolic plane is ≤ 2 by considering the projection to a line
whose fibers are horocycles tangent to a fixed point at infinity (e.g. the projection
to the y-coordinate in the upper half-space model). More generally, if G = KAN is
a semi-simple Lie group with symmetric space X = AN , then the projection X =
AN → A shows that asdim(X) ≤ asdim(A) + asdim(N) = dim(A) + dim(N) =
dim(X). In this example equality holds by considering a factorization of the
identity through the nerve (up to bounded error) and its effect on top dimensional
locally finite homology.

A theorem of Yu says that groups of finite asymptotic dimension (and finite
classifying space) satisfy the Novikov conjecture.

Gromov proved that δ-hyperbolic groups have finite asymptotic dimension.
Here is a proof. Let X be the Cayley graph of the group and suppose that R ≫ δ
is an integer. For every vertex v at distance 5kR from 1, k = 1, 2, 3, · · · , consider
the set

Uv = {x ∈ Γ | d(1, x) ∈ [5(k + 1)R, 5(k + 2)R] and v lies on some geodesic [1, x]}

An easy thin triangle argument shows that if v, w are two vertices at distance 5kR
such that both Uv and Uw intersect the same R-ball, then d(v, w) ≤ 2δ. This gives
a bound on the number of Uv’s that can intersect the same R-ball, and this bound
is independent of R; thus asdim(Γ) <∞.

Bell-Fujiwara modified this argument to show that curve complexes have finite
asymptotic dimension. They are hyperbolic by the celebrated work of Masur-
Minsky, but not locally finite, resulting in an infinite bound. The trick is to
use tight geodesics in place of arbitrary geodesics. Finiteness properties of tight
geodesics proved by Bowditch imply that asymptotic dimension is finite.

We now outline a proof of the main theorem:

Theorem. Asymptotic dimension of mapping class groups is finite.

Let Σ be a surface of finite type and MCG(Σ) its mapping class group.
Step 1. Produce an action of MCG(Σ) on a finite product X1 ×X2 × · · · ×Xk

of metric spaces. An orbit map MCG(Σ) → X1×X2×· · ·×Xk is a quasi-isometric
embedding. This reduces us to showing asdim(Xi) <∞ for all i.

Step 2. Show each Xi is hyperbolic and has a Lipschitz map Xi → Ti satisfy-
ing the Hurewicz theorem with fibers curve complexes of subsurfaces of Σ. This
reduces us to showing asdim(Ti) <∞.

Step 3. Show that each Ti is quasi-isometric to a tree (i.e. it is a quasi-tree)
and hence asdim(Ti) = 1.

The last step is the most interesting and leads one to wonder which groups
admit interesting actions on quasi-trees. An axiomatic construction is as follows:

Let Y be a set and assume that for every Y ∈ Y we have a function dY :
(Y− {Y })2 → [0,∞) such that
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• dY (A,B) = dY (B,A),
• dY (A,C) ≤ dY (A,B) + dY (B,C),
• there is ξ > 0 such that for any A,B,C ∈ Y at most one of

dA(B,C), dB(A,C), dC(A,B)

is > ξ, and
• there is K0 such that for any A,B the set

{C ∈ Y | dC(A,B) > K0}

is finite.

The simplest example comes from considering a discrete group of isometries of
hyperbolic space containing a loxodromic element g with axis A. Take Y to be
the set of translates of A and for B,C,D ∈ Y put dB(C,D) = diam(πB(C) ∪
πB(D)), where πB is the nearest point projection to B. Similar examples can
be obtained from hyperbolic groups, or CAT (0) groups with rank 1 elements, or
Out(Fn) (thanks to the work of Yael Algom-Kfir). Of interest to us is the setting
of subsurface projections, where Y is a family of essential subsurfaces of Σ such
that A,B ∈ Y implies ∂A∩∂B 6= ∅. The distance dA(B,C) is given by restricting
∂B and ∂C to A and measuring the distance in the curve complex of A. The
axioms for this case are part of the work of Masur-Minsky and Behrstock.

One can then consider the projection complex SK(Y). Fix a large K > 0. The
vertices of SK(Y) are the elements of Y, and two vertices A,B are joined by an
edge if dC(A,B) < K for all C. (Technically, we first perturb d by ≤ 2ξ before
defining SK(Y); this is ignored here.) We then argue that SK(Y) is a quasi-tree.

To finish the argument, we divide the collection of all essential subsurfaces
of Σ into finitely many classes Y1, · · · ,Yk so that each Yi satisfies the above
“transversality” property. Moreover, this can be done so that each Yi is invariant
under a certain fixed finite index subgroup G ⊂ MCG(Σ). We obtain quasi-trees
T1, · · · , Tk, and replacing each vertex A ∈ Ti by the corresponding curve complex
C(A) gives rise to Xi. The fact that orbit maps are QI-embeddings follows from
a distance formula due to Masur-Minsky.

A Survey on Measure Equivalence

Damien Gaboriau

There are several excellent surveys with different approaches to measure equiv-
alence to which the reader is referred for further information and references, for
instance [Gab05, Sha05, Pop07, Fur09]. This note essentially follows [Gab10],
where (many) more references can be found.

Two groups Γ1 and Γ2 are virtually isomorphic if there exist Fi ⊳ Λi < Γi

such that Λ1/F1 ≃ Λ2/F2, where Fi are finite groups, and Λi has finite index in
Γi. This condition is equivalent with: Γ,Λ admit commuting actions on a set Ω
such that each of the actions Γ y Ω and Λ y Ω has finite quotient set and finite
stabilizers.
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A finite set admits two natural generalizations, a topological one (compact set)
leading to geometric group theory and a measure theoretic one (finite measure
set) leading to measured group theory.

Definition 1 ([Gro93]). Two countable groups Γ1 and Γ2 are measure equiva-
lent (ME) if there exist commuting actions of Γ1 and Γ2, that are (each) measure
preserving, free, and with a finite measure fundamental domain, on some standard
(infinite) measure space (Ω,m).

The ratio [Γ1 : Γ2]Ω := m(Ω/Γ2)/m(Ω/Γ1) of the measures of the fundamental
domains is called the index of the coupling Ω. The typical examples, besides
virtually isomorphic groups, are lattices in a common (locally compact second
countable) group G with its Haar measure, acting by left and right multiplication.
See [Fur99] for the basis.

The topological analogue was shown to be equivalent with quasi-isometry
(QI) between finitely generated groups [Gro93], thus raising measured group
theory (i.e. the study of groups up to ME) to parallel geometric group theory.
Measure equivalence and orbit equivalence are intimately connected by considering
the relation between the quotient actions Γ1 y Ω/Γ2 and Γ2 y Ω/Γ1. In fact two
groups are ME iff they admit SOE free actions.

Definition 2 (Stable Orbit Equivalence). Two p.m.p. actions Γi y (Xi, µi) are
stably orbit equivalent (SOE) if there are Borel subsets Yi ⊂ Xi, i = 1, 2 which
meet almost every orbit of Γi and a measure-scaling isomorphism f : Y1 → Y2 s.t.

f(Γ1.x ∩ Y1) = Γ2.f(x) ∩ Y2 a.e.

The index or compression constant of this SOE f is [Γ1 : Γ2]f = µ(Y2)
µ(Y1)

.

The state of the art ranges from quite well understood ME-classes to mysterious
and very rich examples. For instance, the finite groups obviously form a single ME-
class. The infinite amenable groups form a single ME-class (Ornstein-Weiss). The
ME-class of a lattice in a center-free simple Lie group G with real rank ≥ 2 (like
SL(n,R), n ≥ 3) consists of those groups that are virtually isomorphic with a
lattice in G (Furman). If Γ is a non-exceptional mapping class group, its ME-class
consists only in its virtual isomorphism class (Kida). Kida extended this kind of
result to some amalgamated free products.

On the opposite, the ME-class ME(F2) of the (mutually virtually isomorphic)
free groups Fr (2 ≤ r < ∞) remains far from being understood. It contains the
free products ∗ri=1Ai of infinite amenable groups, surface groups π1(Σg) (g ≥ 2).
It also contains certain branched surface groups (Gaboriau) and more generally,
elementarily free groups (Bridson-Tweedale-Wilton).

Question 1. Are all limit groups ME with a free group?

The latter follows from the fact that the commutator [a, b] in the free group
F2 = 〈a, b〉 appears to be a free factor in a measurable sense [Gab05]. This is a
particular feature of measure equivalence, that the study of subgroups is extended
to a much flexible family of sub-objects. For instance, Gaboriau-Lyons proved a
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measurable version of von Neumann’s problem [GL09]: every non-amenable group
Γ contains a free group F2 in a measurable sense, i.e. there are p.m.p. free
actions Γ y (X,µ) and F2 y (X,µ) such that for almost every x ∈ X , F2.x ⊂ Γ.x.

There is a considerable list of ME-invariants (see [Gab05, Gab10] and the refer-
ences therein). For instance Kazhdan property (T), Haagerup property, the sign
of the Euler characteristic (when defined)... Recently exactness and belonging
to the class S of Ozawa were proved to be ME-invariants (Brown-Ozawa, Sako).
There are also numerical invariants which are preserved under ME modulo multi-
plication by the index: Cost(Γ)− 1, the ℓ2-Betti numbers (β(2)

n (Γ))n∈N.
ME is stable under some basic constructions:

(a) if Γi
ME
∼ Λi for i = 1, · · · , n then Γ1 × · · · × Γn

ME
∼ Λ1 × · · · × Λn

(b) if Γi
ME
∼ Λi with index 1, then Γ1 ∗ · · · ∗ Γn

ME
∼ Λ1 ∗ · · · ∗ Λn (with index 1).

In order to study when the converses hold (Monod-Shalom, Ioana-Peterson-
Popa, Chifan-Houdayer, Alvarez-Gaboriau...), one has of course to impose some
irreducibility conditions on the building blocks, and these conditions have to be
strong enough to resist the measurable treatment. These requirements are achieved
(a) (for direct products) if the Γi,Λi belong to the class Creg of Monod-Shalom (for
instance if they are non-amenable non-trivial free products): the non-triviality of
the bounded cohomology H2

b(Γ, ℓ
2(Γ)) is an ME-invariant preventing Γ to decom-

pose (non-trivially) as a direct product;
(b) (for free products) if the Γi,Λi are MFI (for instance if they have β(2)

1 = 0
and are non-amenable) [AG10]: they are not ME with a (non-trivial) free product.

We prove for instance: If Γ1 ∗ · · · ∗ Γn
ME
∼ Λ1 ∗ · · · ∗ Λp, where both the Γi’s and

the Λj ’s belong to distinct ME-classes and are MFI, then n = p and up to a
permutation of the indices Γi

ME
∼ Λi [AG10].

Ioana-Peterson-Popa and Chifan-Houdayer considered such a situation, where
the groups have Kazhdan property (T), or are direct products, under extra ergod-
icity hypothesis. The delicate point of removing ergodicity assumptions in [AG10]
was achieved by using a measurable version of Kurosh’s theorem due to Alvarez
[Alv09].

Similar “deconstruction” results were obtained by Sako for building blocks made
of direct products of non-amenable exact groups by taking free products with amal-
gamation over amenable subgroups or by taking wreath product with amenable
base.

Refinements of the notion of ME were considered by Sauer, Shalom and their
collaborators.
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Boundary amenability of groups acting on buildings

Jean Lécureux

One of the main utility of buildings is to study and understand the structure of
reductive groups over local fields and their lattices. However, there are also some
other groups which act on buildings, such as for example Kac-Moody groups.
We prove that all these groups have a topologically amenable action on a compact
space. This compact space is described geometrically as a combinatorial boundary
of a building.

1. Buildings

First, let me recall briefly the definition and the basic vocabulary about buildings.
A Coxeter group is a group defined by a presentation of the form 〈s ∈ S | (st)mst =
1〉, where mst are natural integers (or possibly infinite) such that mss = 1: the
generators have order two.

For example, regular tilings of the euclidean plane or the hyperbolic plane give
rise to Coxeter groups, generated by the reflections with respect to the lines (or
geodesics) of the tiling. More generally, to every Coxeter group W is associated
a metric simplicial complex, called the Davis complex, which is CAT(0), and on
which W acts.

Let us introduce a few words of vocabulary. A reflection in W is a conjugate of
an element of S. A wall is the set of fixed points of a reflection in Σ. A chamber
is the closure of a connected component of Σ deprived of all its walls. A panel is
an intersection of two adjacent chambers.

A building is a tessellation of such Davis complexes. More precisely:

Definition. Let (W,S) be a Coxeter group, and Σ its Davis complex.
A building of type (W,S) is a gluing of chambers along their panels, covered by

subcomplexes called apartments, such that:

• Every apartment is isomorphic to Σ;
• Every two chambers are contained in some apartment;
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• For every apartments A and A′, there is an isomorphism from A to A′

which fixes A ∩ A′.

2. Combinatorial boundary of buildings

This section is a joint work with Pierre-Emmanuel Caprace [1].
Recall that there is a notion of projection in buildings: the projection of a

chamber C on a panel σ is the unique chamber which is adjacent to σ and at
minimal distance from C.

Let X a building. Denote ch(X) the set of chambers of X and, for any panel
σ, lk(σ) the link of σ (i.e. the set of chambers containing σ). From this notion of
projection, we get an injection

ich : ch(X) →
∏

lk(σ),

the product being taken over all panels σ in X . Each of the links lk(σ) is endowed
with the discrete topology, and the product is endowed with the product topology.

Definition. The combinatorial compactification Cch(X) of a building X is the
closure of ich(ch(X)).

One of the interests of this compactification is that it parametrizes amenable
subgroups of the automorphism group:

Theorem ([1]). Let X be a locally finite building, and G a group acting properly
on X. Then G is amenable if and only if it virtually fixes a point in Cch(X).

Remark. It is also possible to define a compactification of the set of spherical
residues instead of the set of chambers. In this case, the theorem above remains
true even without the hypothesis that X is locally finite.

3. Boundary amenability

The notion of a topological amenable action is defined as follows:

Definition. Let G be a locally compact group acting on a locally compact space
S. The action of G on S is topologically amenable if there exists a sequence of
continuous maps µn : S → Prob(G) such that

lim
n→+∞

‖µn(gs)− gµn(s)‖ = 0,

uniformly on every compact subset of G× S.

This notion has many applications. In particular, the class of discrete groups
that admit a topologically amenable action on a discrete space is a very inter-
esting one (see for example [5]). It implies for example that the group can be
coarsely embedded into a Hilbert space [3], which in turn implies that it satisfies
the Novikov conjecture [6].

For groups acting on buildings, we prove the following theorem:

Theorem ([4]). Let G be a group acting properly on a locally finite building X.
Then the action of G on Cch(X) is topologically amenable.
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Let us give two important elements of the proof. The first one is the notion
of generalized sectors in a building. Such a sector should be seen as kind of
combinatorial convex hull of a chamber and a point at infinity. More precisely, the
sector Q(x, ξ) is defined as the pointwise limit of the convex hulls between x and
Cn, where (Cn) is a sequence converging to ξ.

These sectors are very useful because of two points: a sector is contained in
an apartment, and two sectors converging to the same point always intersect.
These two features allow us, by constructing our measure µn(ξ) with support in
a sector converging to ξ, to reduce the problem to the construction of µn(ξ) in an
apartment.

In restriction to an apartment, we use a second idea, which was already used
in a similar context in [2]: a Coxeter complex – and in fact its combinatorial
compactification – can be embedded equivariantly into a finite product of trees.
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Trees of manifolds as Gromov boundaries of hyperbolic groups

Jacek Świa̧tkowski

We present a rich class of explicitly defined metric compacta X that can be real-
ized, up to homeomorphism, as Gromov boundaries ∂Γ of word hyperbolic groups
Γ. If one restricts to compacta that are connected and have no local cut points
(which corresponds to JSJ-indecomposability of groups), the only so far known
examples seem to be: spheres Sn with n ≥ 2, Sierpinski compacta Mn,n+1 in all
dimensions n ≥ 1, Menger universal compacta Mn,2n+1 in dimensions n = 1, 2, 3
and Pontryagin surfaces Πp for prime p – certain 2-dimensional compacta.

Trees of manifolds are compacta obtained as inverse limits of appropriate se-
quences of iterated connected sums of copies of manifolds M from a family Mn

(infinite or finite), where eachM is closed, connected, oriented and n-dimensional.
By a theorem of Jakobsche [Jak91], for any family Mn an inverse limit as above
is unique up to homeomorphism; therefore we denote it X(Mn).
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Theorem. Given a finite family Mn, suppose Y is a piecewise hyperbolic CAT(-1)
complete oriented pseudomanifold with 0-dimensional set Σ of topological singu-
larities, such that

(1) ∀p ∈ Σ Lk(p, Y )
PL
∼= M ∈ Mn, and

(2) ∀M ∈ Mn the subset ΣM = {p ∈ Σ | Lk(p, Y ) =M} is a net in Y .

Then ∂Y is homeomorphic to X(Mn).

The theorem, combined with the procedure of oriented strict hyperbolization of
Charney-Davis-Gromov-Januszkiewicz, yields:

Corollary. Let Mn = {M1, . . . ,Mk} be a finite family of manifolds as before, and

suppose that the disjoint union
∐k

i=1 ki ·Mi bounds a compact oriented connected
(n+ 1)-manifold Wn+1, where the ki are positive integers. Then X(Mn) realizes
as ∂Γ, the Gromov boundary of a hyperbolic group Γ.

Sketch of proof. Cap all components of ∂Wn+1 disjointly with cones, getting X ,

strictly hyperbolize it to get Xh. Then the universal cover X̃h is as in the above
theorem, and hence Γ = π1(Xh) does the job. �

Question. Is X(CP 2) homeomorphic to the Gromov boundary ∂Γ of any hyper-
bolic group Γ?
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Isomorphism problem for complex hyperbolic lattices and beyond

Vincent Guirardel

(joint work with François Dahmani)

We give a solution of the isomorphism problem for some classes
of relative hyperbolic groups with residually finite parabolic sub-
groups. This gives a solution to the isomorphism problem for
fundamental groups of manifolds with pinched negatively curved
manifolds with finite volume.

The isomorphism problem for a class of groups C asks for an algorithm that takes
as input two presentations of groups G,G′ in C, and which decides whether G
is isomorphic to G′. This is known to be unsolvable for the class of all finitely
presented groups since the 50’s [Ady55, Rab58]. In fact, the isomorphism problem
is unsolvable for some very natural classes of groups, including the class of free-by-
free groups (Miller [Mil71]), the class of [free abelian]-by-free groups (Zimmermann
[Zim85]) or the class of solvable groups of derived length 3 (Baumslag-Gildenhuys-
Strebel [BGS85]).
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On the positive side, the isomorphism problem is known to be decidable for the
class of nilpotent groups and virtually polycyclic groups (Grunewald-Segal [GS80],
Segal [Seg90]), and, following Sela, for the class of hyperbolic groups ([Sel95, DG08,
DG10]), and toral relatively hyperbolic groups [DG08]. As a corollary, Dahmani
and Groves give a solution to the isomorphism problem for fundamental groups of
hyperbolic manifolds with finite volume [DG08].

In pinched variable negative curvature, the parabolic subgroups are virtually
nilpotent instead of virtually abelian. Our initial motivation is to generalize this
solution for fundamental groups of such manifolds, and more generally, to a class of
relative hyperbolic groups with virtually nilpotent parabolic subgroups. However,
one cannot rely on the same approach. Indeed, the solutions to the isomorphism
problem for classes of hyperbolic and relative hyperbolic groups mentioned above
fundamentally rely on a solution of the equations problem in these groups. But
this problem is known to be unsolvable in the class of nilpotent groups [Rom79].

Instead, our strategy is to use Dehn filling theorems by Groves-Manning and
Osin [GM08, Osi07] to produce sequences of canonical hyperbolic quotients of
the given groups, and then to use our solutions of the isomorphism problem for
hyperbolic groups with torsion to compare these Dehn fillings. The success of this
approach might be surprising since there exists non-isomorphic nilpotent groups
having the same finite quotients.

Theorem 1. The isomorphism problem is solvable for the class of relative hyper-
bolic groups with virtually polycyclic parabolic groups, and which do not split over
virtually polycyclic groups relative to their non virtually cyclic parabolic subgroups.

In particular, the isomorphism problem is solvable for the class of fundamental
groups of manifolds with pinched negative curvature and finite volume. In fact,
we prove the following more general statement.

Theorem 2. Let C be a recursively enumerable class of finitely presented groups
that are residually finite and universally parabolic. Then there is an algorithm as
follows. It takes as input two presentations of groups G,G′ such that

(1) G is hyperbolic relative to some family of groups P1, . . . Pn in C, G non-
elementary

(2) G does not split over an elementary subgroup, relative to P1, . . . , Pn

and similarly for G′.
Then it says whether G is isomorphic to G′.

In this statement, P is universally parabolic if whenever P is contained in a
relative hyperbolic group, P is contained in parabolic subgroup.

The theorem applies in particular to the class C of semi-direct products Fr⋉Zn

with r, n ≥ 2. Since the isomorphism problem in C is unsolvable, the following
corollary might be surprising.

Corollary 3. The isomorphism problem is solvable for the class of non-elementary
relative hyperbolic groups with parabolic groups in C that do not split over an
elementary subgroup, relative to its parabolic subgroups.
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Almost automorphisms of trees and lattices

Shahar Mozes

(joint work with Uri Bader, Pierre-Emmanuel Caprace, and Tsachik Gelander)

Recall that by a theorem of A. Borel every simple Lie group contains a lattice.
There are locally compact groups which do not admit lattices. The easiest way
to show the existence of such a group is to observe that a locally compact group
which admits a lattice must be unimodular. One also has examples of certain
nilpotent groups which do not admit lattices. In the talk we showed an example
of a simple group not admitting a lattice.

Let d ≥ 2 be a fixed integer, T be a (non-rooted) (d+1)-regular tree and G the
group of almost automorphisms (also sometimes called spheromorphisms)
of T . An element in G is defined by a triple (A,B, ϕ) where A,B ⊂ T are finite
subtrees with |∂A| = |∂B| and ϕ : T \ A→ T \ B is an isomorphism between the
complements, and two such triples define the same element in G if and only if up
to enlarging A,B they coincide.
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The group G was first introduced by Neretin [3]; it is known to be abstractly
simple [2]. For each vertex v ∈ T , the stabilizer Aut(T )v is a compact open sub-
group of Aut(T ) and it is not difficult to see that G commensurates Aut(T )v. (In
fact, the group G can be identified with the group of all abstract commensura-
tors of Aut(T )v or, equivalently, with the group of germs of automorphisms
of Aut(T ), see [1, Th. E].)

We endowG with the group topology defined by declaring that the conjugates of
Aut(T ) in G form a sub-basis of identity neighbourhoods. Since G commensurates
the compact open subgroups of Aut(T ), it follows that the embedding Aut(T ) →֒
G continuous. In this way, the group G becomes a totally disconnected locally
compact group containing Aut(T ) as an open subgroup. In particular elements of
G close to the identity can be realised as true automorphisms of T . As a locally
compact group, the group G is compactly generated; in fact it contains a dense
copy of the Higman–Thompson group Γd,2, which is finitely generated.

Theorem 1. G does not contain any lattice.
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Cannon Coxeter Groups

Marc Bourdon

(joint work with Bruce Kleiner)

Every word hyperbolic group Γ has a canonical action on its boundary at infinity
∂Γ; with respect to any visual metric on ∂Γ, this action is by uniformly quasi-
Moebius homeomorphisms. This structure has a central role in the proofs of
Mostow’s rigidity theorem and numerous other results in the same vein, which are
based on the analytic theory of quasiconformal homeomorphisms of the boundary.

Using a combinatorial analogue of the classical modulus on the 2-sphere, we
obtain a proof of Cannon’s conjecture in the special case of Coxeter groups (see
[2] Theorem 1.3):

Theorem 1. Let Γ be a word hyperbolic Coxeter group whose boundary is home-
omorphic to the 2-sphere. Then there is a properly discontinuous, cocompact, and
isometric action of Γ on the 3-dim real hyperbolic space H3.

This result was essentially known (Mike Davis has communicated to us a differ-
ent proof). Our view is that the principal value of the proof is that it illustrates
the feasibility of the asymptotic approach (using the ideal boundary and modulus
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estimates), and it may suggest ideas for attacking the general case. It also gives
a new proof of the Andreev’s theorem on realizability of polyhedra in H3, in the
case when the prescribed dihedral angles are submultiples of π.

We now give an indication of the ideas that go into the proof. Let Z be a
compact metric space. For every k ∈ N, let Gk be the incidence graph of a ball
cover {B(xi, 2

−k)}i∈I , where {xi}i∈I ⊂ Z is a maximal 2−k-separated subset.
Given p ≥ 1 and a curve family F in Z, we denote by Modp(F , Gk) the Gk-
combinatorial p-modulus of F .

By [4], if Γ is a hyperbolic group and ∂Γ is quasi-Moebius homeomorphic to the
Euclidean 2-sphere, then Γ admits a properly discontinuous, cocompact, isometric
action on H3. Also, as a consequence of the uniformization theorem established in
[1], we obtain:

Corollary 2. Suppose Z is an approximately self-similar metric space homeomor-
phic to the 2-sphere. Assume that for d0 > 0 small enough, there exists a constant
C = C(d0) ≥ 1 such that for every k ∈ N one has

(1) Mod2(F0, Gk) ≤ C.

Then Z is quasi-Moebius homeomorphic to the Euclidean 2-sphere.

Thus, we are reduced to verifying the hypotheses of the above corollary when
Z is the boundary of a Coxeter group Γ. We note that an alternate reduction to
the same assertion can be deduced using [3].

One of the main results of the paper [2] is the existence of a finite number of
“elementary curves families”, whose moduli govern the modulus of every (thick
enough) curve family in ∂Γ. Each elementary curve family is associated to a
conjugacy class of an infinite parabolic subgroup.

In consequence, to obtain the bound (1), it is enough to establish that every
connected parabolic limit set ∂P enjoys the following property: there exists a non
constant continuous curve η ⊂ ∂P , such that letting Uǫ(η) be the ǫ-neighborhood
of η in the C0 topology, the modulus Mod2(Uǫ(η), Gk) is bounded independently
of k, for ǫ > 0 small enough.

To do so, two cases are distinguished: either ∂P is a circular limit set i.e. it is
homeomorphic to the circle, or it is not.

In the second case one can find two crossing curves η1, η2 ⊂ ∂P . Since ∂Γ is a
planar set, one gets that mini=1,2 Mod2(Uǫ(ηi), Gk) is bounded independently of
k, for ǫ small enough.

Let r > 0, and denote by F1 the subfamily of F0 consisting of the curves γ ∈ F0

which do not belong to the r-neighborhood Nr(∂P ) of any circular limit set ∂P .
At this stage one knows that for r small enough, Mod2(F1, Gk) is bounded inde-
pendently of k. To bound the modulus of F0 \F1, we proceed as follows. Consider
a curve γ ∈ F0 contained in Nr(∂P ), where ∂P is a circular parabolic limit set.
The idea is to break γ into pieces γ1, . . . , γi, such that for each j ∈ {1, . . . , i}, the
maximal distance max{d(x, ∂P ) ; x ∈ γj} is comparable to diam(γj). Then for
each j, applying a suitable group element g ∈ Γ, we can arrange that both gγj
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and g∂P have roughly unit diameter. Since g γj lies close to g ∂P , but not too
close, it cannot lie very close to a circular limit set; it follows that g γj belongs to
a curve family with controlled modulus. We then apply g−1 to the correspond-
ing admissible function, and renormalize it suitably; by summing the collection of
functions which arise in this fashion from all such configurations, we arrive at an
admissible function for all such curves γ. The fact that the conformal dimension
of S1 is < 2 allows us to bound the 2-mass of this admissible function, and this
yields the desired bound (1).
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Bruhat-Tits Buildings

Richard M. Weiss

Let (W,S) be a Coxeter system and let Σ = Σ(W,S) be the corresponding Coxeter
complex. The conjugates of elements of S in W are called reflections. Each
reflection gives rise to a partition of Σ into two halves. Each of these halves is
called a root of Σ. For each subset J of S, the pair (〈J〉, J) is also a Coxeter
system. A Coxeter system is irreducible if it is not a direct product of Coxeter
systems. If |W | < ∞, then (W,S) is called spherical. In this case, Σ has a
canonical embedding in a sphere of dimension |S| − 1. The irreducible spherical
Coxeter systems of rank ℓ ≥ 3 are Aℓ,Bℓ = Cℓ,Dℓ, . . . ,Hℓ (with ℓ = 3 and 4).

A building of type (W,S) is a geometrical structure two of whose principal
features are its apartments and its residues. The apartments are substructures
isomorphic to Σ(W,S) and the residues (more precisely, the J-residues, where
J ⊂ S) are certain distinguished subbuildings of type (〈J〉, J). A building of type
(W,S) is called irreducible if (W,S) is irreducible. The cardinality |S| is called the
rank of the building, and thus the rank of a J-residue is |J |. (We are implicitly
assuming that all buildings in this essay are thick as defined in [5, 1.6].)

A generalized polygon is a bipartite graph whose diameter is half the length of
a shortest circuit. A generalized polygon is also called a generalized n-gon, where
n denotes its diameter. A spherical building of rank 2 (i.e. a building of spherical
type (W,S) with |S| = 2) is the same thing as a generalized n-gon. It is irreducible
if and only if n ≥ 3. Its apartments are the circuits of length 2n.

A root in a building is, by definition, a root of one of its apartments (and, in
fact, a root of many of its apartments). Thus a root in a generalized n-gon ∆ is
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simply a path of length n. To each root α = (x0, x1, . . . , xn) in a generalized n-gon
∆ we associate the corresponding root group Uα. This is the pointwise stabilizer
in Aut(∆) of all the vertices at distance at most 1 from some vertex in the set
{x1, x2, . . . , xn−1}. See [5, 11.1] for the definition of a root group in an irreducible
spherical building of arbitrary rank.

A spherical building of rank at least 2 is called Moufang if it is irreducible and
if for each root α, the root group Uα acts transitively on the set of apartments
containing α. This notion was introduced by Tits, who named it in honor of Ruth
Moufang. Its importance stems from the following facts:
(a) The generalized polygon associated with an absolutely simple algebraic group
of k-rank 2 is always Moufang (see [4, 43.2.6]).
(b) An irreducible spherical building of rank greater than 2 is always Moufang as
are all its irreducible residues of rank at least 2 (see [5, 11.6 and 11.8]).
(c) An irreducible spherical building of rank greater than 2 is uniquely determined
by its irreducible residues of rank 2 (see [5, 10.2]).

Moufang polygons were classified in [4]. There are nine families, one each of
triangles, hexagons and octagons and six families of quadrangles. (In particular,
n = 3, 4, 6 and 8. The fact that there are no Moufang pentagons implies by (b)
that there are no irreducible spherical buildings of type H3 or H4. It was this
discovery that led Tits to the idea that Moufang polygons could be classified.)

The polygons in a given family are classified by a corresponding family of alge-
braic structures. For example, Moufang triangles are classified by fields, skew fields
and octonion division algebras. What we mean by this is that for each field, skew
field or octonion division algebra K, there is a corresponding Moufang triangle
T (K) that arises by applying a certain recipe to K, that every Moufang trian-
gle arises in this way and that non-isomorphic K’s yield non-isomorphic Moufang
triangles (i.e. K is an invariant of the triangle).

The first family of Moufang quadrangles are those classified by anisotropic qua-
dratic spaces (K,L, q)—here K is a commutative field, L is a vector space over K
and q is a quadratic form on L such that q(u) = 0 if and only if u = 0. (Actually,
it is only the similarity class of (K,L, q) that is an invariant of the corresponding
quadrangle.) The second family of Moufang quadrangles are those classified by
“involutory sets,” by which we mean pairs (K,σ), where K is a field or skew field
and σ is an involution of K, that is to say, an anti-automorphism of order 2.

We will not say anything about the remaining Moufang quadrangles (or the
Moufang hexagons and octagons) except to observe that among them are the
Moufang quadrangles of type E6, E7 and E8. These are the spherical buildings
associated to certain rank 2 forms of absolutely simple algebraic groups of type
E6, E7 and E8 (as opposed to the split forms of these algebraic groups which give
rise to buildings of type E6, E7 and E8).

Irreducible spherical buildings of rank greater than 2 can be described in terms
of their irreducible rank 2 residues. For example, buildings of type E8 are classified
by fields, and for a given field K, the irreducible rank 2 residues of the building
E8(K) are all isomorphic to the Moufang triangle T (K). To give another example,
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there is for each anisotropic quadratic space (K,L, q) a unique building of type
Bℓ whose irreducible rank 2 residues are isomorphic either to T (K) or to the
Moufang quadrangle that arises from (K,L, q)—but there are several other families
of buildings of type Bℓ as well.

In every case, the algebraic structure that classifies the corresponding family
of Moufang irreducible spherical buildings of rank ℓ ≥ 2 involves a field or skew
field or octonion division algebra K, and this K is an invariant (with some minor
caveats) of the corresponding building ∆. We call K the defining field of ∆; see
[6, 30.29]. (If ∆ is the spherical building associated with an absolutely simple
algebraic group of k-rank 2, then k is either the center of K or, in those cases
involving an involution σ of K, the set of fixed points of σ in the center of K.)

The classification of irreducible spherical buildings of rank greater than 2 was
first carried out in [2]. A “second generation” proof based on (c) above and the
classification of Moufang polygons can be found in Chapter 40 of [4]. The results
of the classification are summarized in Appendix B in [6].

The affine Coxeter systems are those whose Coxeter complex has a natural
embedding in a Euclidean space. The irreducible affine Coxeter systems are pre-
cisely the Coxeter systems Ãℓ, B̃ℓ, C̃ℓ, etc., associated with the extended Dynkin
diagrams (where ℓ is the dimension of the Euclidean space), and an irreducible
affine building X is one whose type is one of these Coxeter systems. A building
X of type Ãℓ, B̃ℓ, C̃ℓ, etc., has, in addition to its apartments and residues, a third
principal feature, namely its building at infinity X∞. This is a spherical building
of type Aℓ, Bℓ, Cℓ, etc. It is usual to call X a Bruhat-Tits building if, in addition,
X∞ is Moufang.

Let A be an apartment of a Bruhat-Tits building X . Every root of A belongs
to a unique “parallel class” consisting of a discrete chain of roots · · · ⊂ αi−1 ⊂
αi ⊂ αi+1 ⊂ · · · of A. Corresponding to A is an apartment A∞ of ∆ := X∞.
Now let α be a root of A∞ and let Uα be the corresponding root group of ∆. Tits
showed that each element g of U∗

α is induced by a unique element g̃ of Aut(X).
Furthermore, there is a parallel class of roots {αi | i ∈ Z} of A and a map ϕα from
U∗
α to Z such that for each g ∈ U∗

α, the fixed point set of g̃ in A is αϕα(i). Writing
Uα additively, even though it might not be abelian, and setting ϕα(0) = ∞, we
observe that ϕα(−g) = ϕα(g) and ϕα(g+h) ≥ min{ϕα(g), ϕα(h)} for all g, h ∈ Uα.
It follows that the formula

dα(g, h) = 2−ϕα(g−h)

defines a metric dα on Uα. The group Uα, it turns out, must be complete with
respect to this metric. Moreover, the root α can be chosen so that Uα (or a
canonical subgroup of Uα in certain cases) is isomorphic to the additive group of
the defining field K of ∆ and for this choice of α, the map ϕα (or its restriction
to the canonical subgroup) is given by a discrete valuation on K with respect to
which K is complete.

Suppose conversely that ∆ is an arbitrary Moufang spherical building of rank
at least 2 whose defining field K is complete with respect to a discrete valuation.
There is a recipe (depending on the family to which the building belongs) that
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starts with the valuation on K and produces a set of functions ϕα : U
∗
α → Z, one

for each root α in an apartment of ∆. The classification of Bruhat-Tits buildings
consists of a uniqueness assertion and an existence assertion. The uniqueness
assertion says that if ∆ = X∞ for some Bruhat-Tits buildingX , thenX is uniquely
determined by ∆. The existence assertion is more difficult to state. It says that if
the maps ϕα satisfy certain compatibility conditions which include the requirement
that the map dα defined in terms of ϕα as in the formula above is a metric on Uα,
then there exists a Bruhat-Tits building such that X∞ = ∆.

In [1], the compatibility conditions on the maps ϕα were shown to hold in
every case except when ∆ is a Moufang quadrangle of type E6, E7 or E8. The
compatibility condition was recently shown (in [7]) to hold in the case that ∆ is a
Moufang quadrangle of type E6 or E7. The case E8 remains an open problem.

We thus have the following conclusion: Bruhat-Tits buildings of dimension ℓ ≥ 2
(with the possible—but unlikely—exception of those whose building at infinity is
a Moufang quadrangle of type E8) are classified by irreducible Moufang spherical
buildings of rank ℓ whose defining field K is complete with respect to a discrete
valuation such that each of its root groups Uα is complete with respect to the
metric dα referred to above.

(If ∆ is the spherical building associated to an absolutely simple algebraic group
of k-rank at least 2—but not a quadrangle of type E8—and k is complete with
respect to a discrete valuation, then K is also complete with respect to a discrete
valuation and all its roots groups are automatically complete. Hence X always
exists in this case. See [6, 27.7 and 30.32].)

The classification of Bruhat-Tits buildings—and much more—was first carried
out in [1] and [3]. See [6] for a reworking of the proof.

If a Bruhat-Tits building X is locally finite, then in addition to being complete
with respect to a discrete valuation, the defining field K of ∆ = X∞ must have
finite residue field K̄. This puts strong constraints on the algebraic structures
that can occur. For example, there are no such octonion division algebras, and
anisotropic quadratic spaces over such a field exist only in dimension at most 4.
In Chapter 28 of [6] a precise description of all the possibilities is given and locally
finite Bruhat-Tits building are split up into 35 families according to the dimensions
of the various algebraic structures involved and the structure of the residues.

The irreducible residues of rank at least 2 of a Bruhat-Tits building are always
Moufang. For example, the irreducible rank 2 residues of the building Ẽ8(K) are

all isomorphic to the Moufang triangle T (K̄). (Here Ẽ8(K) denotes the unique
Bruhat-Tits building whose building at infinity is E8(K).) For any given prime
power q, there are infinitely many complete fields K such that K̄ ∼= Fq. This
observation yields examples of distinct Bruhat-Tits buildings which agree on balls
of any given radius. In particular, Bruhat-Tits buildings, in contrast to spherical
buildings, are not uniquely determined by their rank 2 residues.
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The Current State of Knowledge of Cohomological Dimension and
other Homological Finiteness conditions for Soluble Groups,

Elementary Amenable Groups and Groups in General, in a nutshell

Peter H. Kropholler

How much easier it would be to make a short crisp title if we had short crisp
answers. Much is known yet some relatively innocent looking questions remain
tough. In this talk I simply take a little historical survey without the details and
begin with some landmarks:

• [Hall, 1959] Every finitely generated abelian-by-nilpotent group is residu-
ally finite. Philip Hall was one of the first to see deep connections between
soluble group theory and other branches of mathematics. In this case he
was motivated by Hilbert’s Basissatz and Nullstellensatz both of which
are embedded in some form in this theorem.

• [Jateogaonkar, Roseblade, 1973] Every finitely generated abelian-by-poly-
cyclic group is residually finite.

• [Bieri–Strebel, 1982] The characterization of finitely presented metabelian
groups.

• [Kropholler, 1984] Every finitely generated soluble group either
– is minimax; or
– has a section (S/T for some T ⊳ S ≤ G) isomorphic to a wreath

product Cp ≀ C∞ where p is a prime.
Notation: C∞ is the abstract notation for the additive group Z, and Cp

is what you think it is. The base of the wreath product is an elementary
abelian p-group of infinite rank, the infinite cyclic group permutes a basis
of this p-group regularly. A soluble group is called minimax if and only if
there is a series of finite length 1 = G0 ⊳G1 ⊳ . . .⊳Gn = G in which the
factors Gi+1/Gi are either cyclic or quasicyclic. A quasicyclic group is one
of the groups Cp∞ for some prime p. Each quasicyclic group is the colimit
(directed union) of finite cyclic groups of some fixedprime power order and
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these groups are seen concretely as the groups of p-roots of unity in the
field R of complex numbers. Minimax groups are not fashionable but they
are here to stay.

• [Gildenhuys, Bieri, Kropholler, Strebel, Nucinkis, Martinez-Perez, Mislin]
For any soluble group, or more generally, any elementary amenable group
G, the following are equivalent:

– G is of type FP∞;
– G admits a cocompact model for the classifying space EG of proper

actions;
– the Hirsch length and virtual cohomological dimension of G are finite

and equal;
– G is constructible in the sense that it can be built from the trivial

group by a series of ascending HNN-extensions and finite extensions.
Moreover, groups satisfying these conditions are virtually soluble minimax.

In general, Bieri, Strebel and Gildenhuys use the term constructible to allow ar-
bitrary HNN-extensions and amalgamated free products from pieces already con-
structed, as well as finite extensions. For soluble groups the only amalgamated
free product that is relevant is one in which both indices are two: it is the same as
extending by an infinite dihedral groupD∞ and so is accounted for by a stationary
HNN-extension and a finite (index 2) extension.

It is time for examples: two examples will be more than enough!

• The lamplighter group C2 ≀ C∞ and its cousins, the traffic light groups
Cp ≀C∞. We have already seen how these groups fit neatly into a dichotomy
of finitely generated soluble groups.

• Fox’s group F = 〈x, y; y−1xy = x2〉 and its siblings the ascending HNN-
extensions 〈x, y; y−1xy = xn〉 where n is a non-zero integer.

Fox’s group is a lovely example. It is an ascending HNN extension and also a
soluble minimax group. It is a member of the family of Baumslag–Solitar groups,
although not generic in that family by a very long way. It is not the fundamental
group of any 3-manifold but it has infinite cyclic derived factor group, trivial Schur
multiplier and is finitely presented which means that it arises as the fundamental
group of a higher knot complement. According to Kervaire’s theorem, since it
additionally has a presentation of deficiency 1 as you can see, it is the fundamental
group of a complement of S2 in S4. So why do I call it Fox’s group? Inside Fox’s
group is the series

F ⊲ 〈xF 〉⊲ 〈x〉⊲ 1.

in which the factors are C∞, C2∞ , C∞. It has Hirsch length 2.
Now, let’s look at the natural conjectures on dimension of soluble groups. For

measuring dimension we will fix a commutative ring k and write

cdk(G) := sup{n; Hn(G,M) 6= 0 for some kG-module M}

hdk(G) := sup{n; Hn(G,M) 6= 0 for some kG-module M}

for the cohomological and homological dimensions ofG over k. Note that if k1 → k2
is a ring homomorphism then cdk1 ≥ cdk2 and hdk1 ≥ hdk2 , and since Z is an
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initial object in the category of rings, the dimensions of Z always bound above the
dimensions over other rings.

Conjecture 1. Let G be an elementary amenable group. Then G has finite co-
homological dimension over k if and only if the following three conditions are
satisfied:

• G has finite Hirsch length;
• G has cardinality less than ℵω; and
• finte subgroups of G have orders invertible in k.

Theorem 2. Let G be a group. Then

• cdk(G) = 0 if and only if G is finite with order invertible in k;
• hdk(G) = 0 if and only if G is locally finite with orders of finite subgroups
invertible in k;

• cdk(G) ≤ 1 if and only if G admits an action on a tree with finite vertex
and edge stabilizers whose orders are invertible in k.

• cdk(G) ≤ n if G admits a model for an n-dimensional model of EG and
the finite subgroups of G have order invertible in k. The converse is true
for n 6= 2. There is a counterexample when n = 2.

• hdk(G) ≤ n if G is a filtered colimit of groups with cdk ≤ n.

Conjecture 3. For any group G, hdk(G) ≤ 1 if and only if G is a filtered colimit
of groups with cdk ≤ 1.

Lemma 4. If G is an elementary amenable group then hdk(G) ≤ 1 if and only if
G is a filtered colimit of groups with cdk ≤ 1.

Conjecture 5. Let G be an elementary amenable group. Then cdk(G) = 2 if and
only if G admits an action on a 2-dimensional contractible complex with stabilizers
finite of orders invertible in k and this happens if and only if exactly one of the
following three conditions is satisfied.

(1) There is a non-zero integer n such that G has a subgroup of finite index
isomorphic to 〈x, y; y−1xy = xn〉.

(2) G has a countably infinite locally finite normal subgroup T such that G/T
is either infinite cyclic or infinite dihedral.

(3) G is locally finite and has cardinality ℵ1.

Quasi-isometry invariance of splittings and the lamplighter group

Panos Papasoglu

Stallings showed that a finitely generated group has more than one end if and only
if it splits over a finite group. This gives a geometric characterization of finitely
generated groups which split over a finite group, where geometric here means in
the sense of quasi-isometries.

One has a similar geometric characterization for splittings over 2-ended groups
which applies to finitely presented groups. It was shown in [2] that a one ended
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finitely presented group, which is not virtually a surface group, splits over a 2-
ended group if and only if its Cayley graph is coarsely separated by a quasi-line.It
is natural to ask whether the characterization given in [2] applies in fact to all one
ended finitely generated groups (as it is the case for Stallings’ theorem).

We show that there is a one-ended finitely generated group (the lamplighter
group) which is coarsely separated by a quasi-line but does not split over a 2-
ended group. It turns out that the same group can be used to answer a question
of Kleiner ([3], problem 4.5): we show the Cayley graph of the lamplighter group
is coarsely separated by quasi-circles. Note that if the Cayley graph of a finitely
presented groups is coarsely separated by quasi-circles then the group is virtually
a surface group (see [1]).
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Cocompact lattices in complete Kac–Moody groups

Anne Thomas

(joint work with Inna (Korchagina) Capdeboscq)

A classical theorem of Siegel [4] states that the minimum covolume among lattices
in G = SL2(R) is π

21 , and determines the lattice which realises this minimum.
More recently, Lubotzky [5] and Lubotzky–Weigel [6] constructed the lattice of
minimal covolume in G = SL2(K), where K is a nonarchimedean local field, such
as Qp or the field Fq((t

−1)) of formal Laurent series.
The group G = SL2(Fq((t

−1))) is the first example of a complete Kac–Moody
group of rank 2 over a finite field. Such Kac–Moody groups are locally compact,
totally disconnected topological groups, which in general are non-linear. The Kac–
Moody groups G that we consider have Bruhat–Tits building a regular tree X
(see [2]), and the action of G on X induces an edge of groups

G =
P1 P2

B
s s

where P1 and P2 are the standard parahoric subgroups of G, and B = P1 ∩ P2 is
the standard Iwahori subgroup. Now letm,n be integers ≥ 2. An (m,n)–amalgam
is a free product with amalgamation A1∗A0A2, where the group A0 has index m in
A1 and index n in A2. The amalgam is faithful if A0, A1 and A2 have no common
normal subgroup. In Bass–Serre theory, an (m,n)–amalgam is the fundamental
group Γ of an edge of groups

A = A1 A2

A0

s s
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with universal cover the (m,n)–biregular tree, and this amalgam is faithful if and
only if Γ = π1(A) ∼= A1 ∗A0 A2 acts faithfully on the universal cover.

The question of classifying amalgams is, in general, difficult. A deep theorem
of Goldschmidt [3] established that there are only 15 faithful (3, 3)–amalgams of
finite groups, and classified such amalgams. Goldschmidt and Sims conjectured
that when both m and n are prime, there are only finitely many faithful (m,n)–
amalgams of finite groups. On the other hand, Bass–Kulkarni [1] showed that if
either m or n is composite, there are infinitely many faithful (m,n)–amalgams of
finite groups. This result implies that in the automorphism group of an (m,n)–
biregular tree, there is no positive lower bound on the set of covolumes of lattices.

Now let Γ be a cocompact lattice in the complete Kac–Moody group G which
acts transitively on the edges of the Bruhat–Tits tree X . Then Γ is the fundamen-
tal group of an edge of groups A as above, with A0, A1 and A2 finite groups. Hence
to classify the edge-transitive cocompact lattices in G, we classify the amalgams
A1 ∗A0 A2 which embed in G. We note that, since the action of G on X is not in
general faithful, an amalgam Γ may embed as a cocompact edge-transitive lattice
in G even though it is not faithful.

Our first main result is Theorem 1 below, which classifies the edge-transitive
lattices in G. There are some exceptional edge-transitive lattices for small values
of p and q, which we do not discuss here for reasons of space. The group G in
our results is a topological Kac–Moody group, meaning that it is the completion
of a minimal Kac–Moody group Λ with respect to some topology. We use the
completion in the ‘building topology’ (see [2]).

Our notation is as follows. We write Cn for the cyclic group of order n and Sn for
the symmetric group on n letters. Since for a finite field Fq and the root system A1

there exist at most two corresponding finite groups of Lie type (one isomorphic to
SL2(Fq), and the other to PSL2(Fq)), to avoid complications we use Lie-theoretic
notation, and write A1(q) which stands for both of these groups. We denote by
T a fixed maximal split torus of G with T ≤ P1 ∩ P2. The centre Z(G) of G is
then contained in T , and T is isomorphic to a quotient of F∗

q × F∗
q (the particular

quotient depending upon G). Finally, since each parabolic/parahoric subgroup Pi,
i = 1, 2, admits a Levi decomposition, we denote by Li a Levi complement of Pi,
i = 1, 2. Since Li = MiT , where Mi

∼= A1(q) is normalized by T , let Hi be a
non-split torus of Mi such that NT (Hi) is as big as possible.

We say that two edge-transitive cocompact lattices Γ = A1 ∗A0 A2 and Γ′ =
A′

1 ∗A′
0
A′

2 in G are isomorphic if Ai
∼= A′

i for i = 0, 1, 2 and the obvious diagram
commutes; our classification of edge-transitive lattices is up to isomorphism. In
particular, this means that we assume Ai ≤ Pi for i = 1, 2.

Theorem 1. Let G be a topological Kac–Moody group of rank 2 defined over a
finite field Fq of order q = pa where p is prime, with symmetric generalised Cartan

matrix

(
2 −m

−m 2

)
, m ≥ 2. Assume that q ≥ 60. Then G has edge-transitive

cocompact lattices Γ of each of the following isomorphism types, and every edge-
transitive cocompact lattice Γ in G is isomorphic to one of the following amalgams.
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(1) If p = 2 then Γ = A1 ∗A0 A2 where for i = 1, 2:
(a) Ai = A0Hi with Hi

∼= Cq+1; and
(b) A0 ≤ Z(G).

(2) If p is odd and Li/Z(Li) ∼= PSL2(q), then one of the following holds:
(a) q ≡ 1 (mod 4) and G does not contain any edge-transitive cocompact

lattices.
(b) q ≡ 3 (mod 4) and Γ = A1 ∗A0 A2 where for i = 1, 2:

Ai = A0NMi
(Hi) where A0 ≤ Z(G).

(3) If p is odd and Li/Z(Li) ∼= PGL2(q), then
(a) When q ≡ 1 (mod 4), let Qi ∈ Syl2(Z(Li)) and Q0

i be a unique
subgroup of Qi index 2. Then:

(i) If Q0
i 6= 1 is not contained in Z(G), then there are no edge-

transitive lattices.
(ii) If Q0

i ≤ Z(G), then one of the following holds:
(A) Γ = A1 ∗A0 A2 where for i = 1, 2, A1

∼= A2 and Ai =
HiO2(Ci)〈ti〉Z0 where Ci := CLi

(Hi), ti ∈ NT (Hi) −
CT (Hi) is of order 2, Z0 ≤ Z(G) and A0 = Qi〈ti〉Z0.

(B) If Qi 6≤ Z(G), there are no other edge-transitive lattices,
but if Qi ≤ Z(G), Γ = A1 ∗A0 A2 where for i = 1, 2,
A1

∼= A2 with Ai = HiO2(Ci)Z0 where Ci = CLi
(Hi),

Z0 ≤ Z(G) and A0 = QiZ0.
(b) When q ≡ 3 (mod 4):

(i) Γ = A1 ∗A0 A2 with A1
∼= A2 such that Ai = C′

iT0Z0 with
C′

i ≤ CLi
(Hi) and |C′

i : Hi| = 2. Moreover, T0 ∈ Syl2(T ),
Z0 ≤ Z(G) and A0 = T0Z0.

(ii) If Z(Mi) 6≤ Z(G), then there are no other edge-transitive lat-
tices; but

(iii) If Z(Mi) ≤ Z(G), then also Γ = A1 ∗A0A2 with A1
∼= A2 where

either Ai = C′
iA0 with C′

i is as described above, C′
i ∩ A0 =

Z(Mi) and A0 ≤ Z(G), or 2(b) holds.

Our second main result, on covolumes, is Theorem 2 below. The Haar measure
µ on G may be normalised so that the covolume µ(Γ\G) of an edge-transitive co-
compact lattice Γ = A1∗A0A2 is equal to |A1|−1+|A2|−1. Using this normalisation,
we obtain the following.

Theorem 2. Let G be as in Theorem 1 above and q ≥ 540. Then

min{µ(Γ\G) | Γ a cocompact lattice in G} =
2

(q + 1)|Z(G)|δ0

where δ0 ∈ {1, 2, 4} (depending upon the particular group G). Moreover, the co-
compact lattice of minimal covolume in G is edge-transitive whenever G admits
such a lattice, and otherwise acts on the Bruhat–Tits tree for G with two orbits of
edges and two orbits of vertices.

A key tool for the proofs of Theorems 1 and 2 above is Proposition 3 below,
which we use together with classical results of finite group theory.
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Proposition 3. Let G be as in Theorem 1 above. If Γ is a cocompact lattice in
G, then Γ does not contain p–elements.

Proposition 3 is proved geometrically, by considering the action of root groups on
the tree for G, and the stabilisers of ends of this tree.
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Rays in locally symmetric spaces and singular vectors

Cornelia Drutu

(joint work with Irina Tita)

This talk investigates the relationship between families of linear
forms with exceptional behaviour, in particular singular, and ge-
odesic rays in locally symmetric spaces.

This talk presents one of the numerous topics situated at the interface of the
geometry of non-positively curved spaces, that of spherical buildings, and the
geometry of numbers. In Geometry of Numbers an important object of study is
the non-increasing function defined, for an arbitrary matrix L with ℓ rows and m
columns, as ψL : N → R+ ,

ψL(k) = inf
‖q‖max≤k,q∈Zm,p∈Zℓ

‖Lq− p‖max .

By Dirichlet’s theorem for every L, ψL(k) ≤ k−
m
ℓ .

One can naturally associate to a matrix L a locally geodesic ray in the locally
symmetric space Xn = SL(n,Z)\SL(n,R)/SO(n) , where n = ℓ +m, and to the
behaviour of ψL the behaviour of this ray in the cuspidal end of Xn. The first to
note this was Dani in [Dan85].

The generic matrices satisfy two important properties:

(1) There exists a constant C = C(ℓ,m) such that for almost every L ∈
Mℓ,m(R)

lim sup
k→∞

k
m
ℓ ψL(k) > C .

This corresponds to the fact that an arbitrary ray in Xn returns in a
large enough compact infinitely often.
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(2) Groshev’s theorem implies that for almost every L ∈Mℓ,m(R),

• for every ǫ > 0, lim infk→∞ k
m
ℓ (ln k)

1
ℓ
+ǫψL(k) = ∞ .

• lim infk→∞ k
m
ℓ (ln k)

1
ℓ ψL(k) < 1 .

These statements correspond to what is known as the logarithm law,
established by Sullivan and Kleinbock-Margulis.

The set of exceptional matrices L, that is matrices with non-generic behaviour,
contains many interesting subclasses. Two natural questions to ask are:

(1) what are all the possible exceptional behaviours ?

(2) how large are the corresponding ‘exceptional sets’ ?

More is known about the exceptional behaviour with respect to the generic
statement (2). Given a matrix L one can define the supremum αL of all the
exponents β > 0 such that

lim inf
k→∞

kβψL(k) < 1 .

Groshev’s theorem implies that for almost every L the exponent αL is equal
to m

ℓ
. For every real number α > m

ℓ
, the set of matrices L ∈ Mℓ,m(R) such

that αL = α, even though of Lebesgue measure zero, has Hausdorff dimension
(m− 1)ℓ+ m+ℓ

1+α
([Dod92], [DV97]). The calculation of the Hausdorff dimension of

the set vectors on a rational quadric with αL = α > 1 can be found in [Dru05].
These sets of exceptional matrices and vectors correspond to rays in the sym-

metric space Xn (respectively in a locally symmetric space determined by the
rational quadric) that infinitely often rise at the time t at some height βt (height
measured with respect to the appropriate Busemann function), where β is related
by a precise equation to the parameter α.

As for the ‘exceptional matrices’ with respect to the generic statement (1),
much less is known. Following the terminology in [Cas57], Chapter V, Section 7,
a matrix L ∈Mℓ,m(R) is called singular if

(1) lim
k→∞

k
m
ℓ ψL(k) = 0 .

Such a matrix corresponds to a geodesic ray that eventually leaves every com-
pact in the locally symmetric space Xn .

For ℓ = m = 1 the only singular matrices (i.e. numbers) are the rational num-
bers. It is proved in [Che07] that for every n ≥ 2 the set of n-tuples (x1, x2, ..., xn)
such that

(2) lim
k→∞

k min
i∈{1,2,...n}

ψxi
(k) = 0 ,

has Hausdorff dimension n− 1
2 . Note that the set of n-tuples contained in rational

hyperplanes is of Hausdorff dimension n − 1, thus most of the n-tuples with the
above property are independent over Q.

When max(ℓ,m) > 1 singular matrices do exist. As shown in [Cas57, Chapter
V, Section 7, Theorem XIV], for instance in the case m = 1, ℓ = 2, for every
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function ω : N → R+ there exists a linear form L : R2 → R with rationally
independent coefficients such that

(3) ψL(k) ≤ ω(k) for every k ∈ N .

The purpose of this talk is to explain how the following two results in Geometry
of Numbers can be obtained from results in [Wei04], and arguments of non-positive
curvature in various symmetric spaces and of geometry of spherical buildings in
their boundaries.

Theorem 1. Let ω : (0,∞) → (0,∞) be an arbitrary continuous function.

(a) (systems of linear forms) For every ℓ ≥ 1 and every m ≥ 2 there exists
an irrational matrix L in Mℓ,m(R) and a T0 such that for every T ≥ T0
the following system has a solution q ∈ Zm

(4)

{
‖q‖ ≤ T

‖Lq‖Zℓ ≤ ω(T ) .

(b) (vectors) Assume that ω is continuous non-increasing and T 7→ Tω(T ) is
increasing and unbounded. Then for every ℓ ≥ 2 there exists an irrations
column vector x in Mℓ,1(R) and a T0 such that for every T ≥ T0 the
following system has a solution q ∈ Z

(5)

{
|q| ≤ T

‖qx‖Zℓ ≤ ω(T ) .

Assume now that the function T 7→ Tω(T ) is bounded. Then any vector
x such that the system (5) has a solution q ∈ Z for every T greater than
some T0 is contained in an affine line over Q.

Assume that limT→∞ Tω(T ) = 0. Then any vector x such that the
system (5) has a solution q ∈ Z for every T greater than some T0 is a
rational vector.

Theorem 2. Consider a rational quadric Qq (i.e. a hypersurface defined by a
rational quadratic equation) containing an affine line over Q.

(a) Let ω : (0,∞) → (0,∞) be an arbitrary continuous non-increasing function
such that the function T 7→ Tω(T ) is increasing and unbounded. Then
there exists an irrational vector x ∈ Qq and a T0 such that for every
T ≥ T0 the following system has a solution 1

q
p ∈ Qq

(6)

{
|q| ≤ T

|q|‖x− 1
q
p‖ ≤ ω(T ) .

(b) Assume now that ω : (0,∞) → (0,∞) is a function such that T 7→ Tω(T )
is bounded. Then any vector x such that the system (6) has a solution
1
q
p ∈ Qq for every T greater than some T0 is contained in an affine line

over Q entirely contained in Qq. More precisely, there exist two rational
vectors r and r′ in Qℓ such that for some t ∈ R

x = r+ tr′ ,
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moreover r + Rr′ ⊂ Qq. If moreover limT→∞ Tω(T ) = 0 then x is a
rational vector.
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Contractibility of the Kakimizu complex

Piotr Przytycki

(joint work with Jennifer Schultens)

We study a generalisation MS(E) of the following simplicial complex MS(L)
defined by Kakimizu [4]. Let E = E(L) be the exterior of a tubular neighbourhood
of a knot L in S3. A spanning surface is a surface properly embedded in E, which
is contained in some Seifert surface for L. Let MS(L) be the set of isotopy
classes of spanning surfaces which have minimal genus. The vertex set of MS(L)
is defined to be MS(L). Vertices σ, σ′ ∈ MS(L) span an edge if they have
representative spanning surfaces which are disjoint. Simplices are spanned on all
complete subgraphs of the 1–skeleton. In other words, MS(L) is the flag complex
spanned on its 1–skeleton.

The general setting in which we defineMS(E(L)), or more generallyMS(E, γ, α),
is the following. Let E be a compact connected orientable, irreducible and ∂–
irreducible 3–manifold. In particular, for any non-splittable link L in S3, the
complement E(L) of a regular neighbourhood of L satisfies these conditions. Let
γ be a union of oriented disjoint simple closed curves on ∂E, which does not sepa-
rate any component of ∂E. For E = E(L) an example of γ is the set of longitudes
of all link components (or its subset). We fix a class α in the homology group
H2(E, ∂E,Z) satisfying ∂α = [γ]. For E = E(L) and γ the set of longitudes, there
is only one choice for α. It is the homology class dual to the element of H1(E,Z)
mapping all oriented meridian classes onto a fixed generator of Z. A spanning
surface is an oriented surface properly embedded in E in the homology class α
whose boundary is homotopic with γ.
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We now define the simplicial complex MS(E, γ, α), which we abbreviate to
MS(E), if E = E(L) and γ is the set of all longitudes. The vertex set of
MS(E, γ, α) is defined to be MS(E, γ, α), the set of isotopy classes of span-
ning surfaces which have minimal genus. However, we span an edge on σ, σ′ ∈
MS(E, γ, α) only if they have representatives S ∈ σ, S′ ∈ σ′ such that the (con-
nected) lift of E \S′ to the infinite cyclic cover associated with α intersects exactly
two lifts of E\S. This is not always true for disjoint S, S′ (because they are allowed
to be disconnected).

For every link L it is a basic question to determine the complex MS(E(L))
which encodes the structure of the set of all minimal genus spanning surfaces.
This has been done for all prime knots of at most 10 crossings by Kakimizu [5,
Theorem A]. Moreover, questions about common properties of all MS(E(L)) (or
rather MS(L)) have been asked. Here is a brief summary (for a broader account,
see [6]).

Scharlemann–Thompson proved [9, Proposition 5] thatMS(E(L)) is connected,
in the case where L is a knot. Later Kakimizu [4, Theorem A] provided another
proof for links. Schultens [10, Theorem 6] proved that, in the case where L is
a knot, MS(E(L)) is simply-connected (see also [8] for atoroidal genus 1 knots).
For atoroidal knots bounds on the diameter of MS(E(L)) have been obtained
([6, 8]). Kakimizu conjectured (see [7, Conjecture 0.2]) thatMS(L) is contractible.
This was verified for special aborescent links by Sakuma [7, Theorem 3.3 and
Proposition 3.11], and announced for special prime alternating links by Hirasawa–
Sakuma [3]. In the present article, we confirm this conjecture, under no hypothesis,
for the complex MS(E, γ, α).

Theorem 1. MS(E, γ, α) is contractible.

Using the same method we are also able to establish the following. Note that
for E = E(L) all mapping classes of E fix α and the homotopy class of γ.

Theorem 2. Let G be a finite subgroup of the mapping class group of E fixing
α and the homotopy class of γ. We consider its natural action on MS(E, γ, α).
Then there is a simplex in MS(E, γ, α) fixed by all elements of G.

Sakuma argued [7, Proposition 4.9(1)] (see also [10, Theorem 5] for knots) that
the set of vertices of any simplex of MS(E, γ, α) can be realised as a union of
pairwise disjoint spanning surfaces. Hence in the language of spanning surfaces
Theorem 2 amounts to the following.

Corollary 3. Let G be a finite subgroup of the mapping class group of E fixing α
and the homotopy class of γ. Then there is a union of pairwise disjoint spanning
surfaces of minimal genus which is G–invariant up to isotopy.

In the case where E is atoroidal and ∂E is a union of tori, its interior admits,
by the work of Thurston and the theorem of Prasad, a unique complete hyperbolic
structure. Then the mapping class group of E coincides with the isometry group
of its interior, hence it is finite. Moreover, after deforming the metric in a way
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discussed in [6, Chapter 10] we can assume that each element ofMS(E, γ, α) has a
unique representative of minimal area. In this case Corollary 3 gives the following.

Corollary 4. If E is atoroidal and ∂E is a union of tori, then there is a union
of pairwise disjoint spanning surfaces of minimal genus which is invariant under
any isometry fixing α (the homotopy class of γ is then fixed automatically). In
particular, if E = E(L), then this union is invariant under any isometry.

A related result concerning periodic knots was proved in Edmonds [1].
Finally, Theorem 1 turns out to be a special case (G trivial) of the following.

Theorem 5. Let G be any subgroup of the mapping class group of E fixing α
and the homotopy class of γ. Then its fixed-point set FixG(MS(E, γ, α)) is either
empty or contractible.

Outline of the idea. We now outline the main idea of the article. The
central object is the projection map π, which assigns to a pair of vertices σ, ρ ∈
MS(E, γ, α) at distance d > 0 a vertex πσ(ρ) adjacent to ρ at distance d− 1 from
σ. Kakimizu [4] used the projection to prove that MS(E(L)) is connected, but
in fact he did not need to verify that it is well-defined — he worked only with
representatives of vertices. We verify that π is well-defined using a result of Oertel
on cut-and-paste operations on surfaces with simplified intersection.

We explain how to prove contractibility of MS(E, γ, α). Assume for simplicity
that MS(E, γ, α) is finite (which is the case for E atoroidal by the work of Haken
[2]). We fix some σ ∈ MS(E, γ, α). Then we prove that among vertices farthest
from σ there exists a vertex ρ which is strongly dominated by πσ(ρ). This means
that all the vertices adjacent to ρ are also adjacent to or equal πσ(ρ). Hence there
is a homotopy retraction of MS(E, γ, α) onto the subcomplex spanned by all the
vertices except ρ. Proceeding in this way we retract the whole complex onto σ.

Remaining questions. Finally, we indicate that questions about the structure
of the set of all incompressible spanning surfaces remain open. Kakimizu [4] con-
siders the complex IS(L) whose vertices are isotopy classes of spanning surfaces
which are incompressible and ∂–incompressible but not necessarily of minimal
genus. The edges of IS(L) are defined like edges of MS(L), in particular we have
an embedding of MS(L) into IS(L). Kakimizu asks if IS(L) is contractible as
well. He proves that IS(L) is connected, using a composition of the projection π
with an additional operation, which we do not know how to make well-defined on
the set of isotopy classes of surfaces. This is why we do not know if we can extend
Theorem 5 or even Theorem 1 to the complex IS(L) (or rather to IS(E, γ, α),
appropriately defined). Note however that, since MS(E, γ, α) would be a sub-
complex of IS(E, γ, α), Theorem 2 would trivially carry over to IS(E, γ, α).
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[2] W. Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375.



1208 Oberwolfach Report 20/2010

[3] M. Hirasawa and M. Sakuma, Minimal genus seifert surfaces for alternating links, KNOTS
’96 (Tokyo), 1997, pp. 383–394.

[4] O. Kakimizu, Finding disjoint incompressible spanning surfaces for a link, Hiroshima Math.
J. 22 (1992), no. 2, 225–236.

[5] , Classification of the incompressible spanning surfaces for prime knots of 10 or less
crossings, Hiroshima Math. J. 35 (2005), no. 1, 47–92.

[6] R. C. Pelayo, Diameter bounds on the complex of minimal genus Seifert surfaces for hyper-
bolic knots, (2007).

[7] M. Sakuma, Minimal genus Seifert surfaces for special arborescent links, Osaka J. Math.
31 (1994), no. 4, 861–905.

[8] M. Sakuma and K. J. Shackleton, On the distance between two Seifert surfaces of a knot,
Osaka J. Math. 46 (2009), no. 1, 203–221.

[9] M. Scharlemann and A. Thompson, Finding disjoint Seifert surfaces, Bull. London Math.
Soc. 20 (1988), no. 1, 61–64.

[10] J. Schultens, The Kakimizu complex is simply connected, (2010).

Rank rigidity for CAT(0) cube complexes

Pierre-Emmanuel Caprace

(joint work with Michah Sageev)

Let X be a CAT(0) space. A rank one isometry of X is a hyperbolic isometry
g ∈ Is(X) none of whose axes bounds a flat half-plane. If X is Gromov hyperbolic,
then every hyperbolic isometry of X is a rank one isometry. However, there are
examples of CAT(0) spaces which admit rank one isometries but also contain (not
necessarily isolated) Euclidean flats of arbitrary large dimensions. However, in all
cases, the existence of a rank one isometry implies that the space X is subjected
to some kind of hyperbolic behaviour, at least when X is locally compact. The
following conjecture suggests that rank one isometries play a major role in the
structure of general locally compact CAT(0) spaces.

Conjecture (Ballmann–Buyalo [4]). Let X be a locally compact geodesically com-
plete CAT(0) space and Γ be a discrete group acting properly and cocompactly by
isometries on X. Then one of the following (mutually exclusive) assertions holds.

(a) X splits as a product X ∼= X1 ×X2 with non-compact CAT(0) factors.
(b) Γ contains a rank one isometry.
(c) X is an irreducible symmetric space of non-compact type and rank ≥ 2.
(d) X is an irreducible Euclidean building of dimension ≥ 2.

The main evidence for this conjecture is provided by the case of complete simply
connected Riemannian manifolds of non-positive curvature, where the conjecture
holds (see [1] and references therein). Other known cases include piecewise Eu-
clidean CAT(0) cell complexes in dimension ≤ 3 (see [2] and [3]). The main result
of this note is the following.

Theorem A. Let X be a finite-dimensional CAT(0) cube complex and Γ ≤
Aut(X). If (X ∪ ∂X)Γ = ∅, then there is a Γ-invariant convex sub-complex
Y satisfying one of the following (mutually exclusive) assertions.



Non-positive Curvature and Geometric Structures in Group Theory 1209

(a) Y splits as a product Y ∼= Y1 × Y2 with non-compact CAT(0) cubical factors.
(b) Γ contains an element whose restriction to Y is a rank one isometry.

If in addition X is infinite and locally compact and if Γ acts properly and co-
compactly, then the same conclusion holds even without the assumption that (X ∪
∂X)Γ = ∅.

A first application is a purely geometric proof of the Tits alternative for groups
acting on finite-dimensional CAT(0) cube complexes, a result which was first es-
tablished by M. Sageev and D. Wise [8]. Amongst other applications, we mention
the following result related to the Flat Closing Conjecture.

Theorem B. Let X be a locally compact CAT(0) cube complex and Γ ≤ Aut(X)
be a discrete group acting properly and cocompactly. If X splits as a product of n
non-compact CAT(0) cubical factors, then Γ contains a free Abelian subgroup of
rank n.

In order to present another application, we recall that a quasi-morphism of a
group G is a map f : G→ R such that supg,h∈G |f(gh)−f(g)−f(h)| <∞. The set
QH(G) of all quasi-morphisms is a real vector space containing the space ℓ∞(G)
of all bounded functions as well as the space Hom(G,R) of usual homomorphisms.

We set Q̃H(G) = QH(G)/
(
ℓ∞(G) ⊕ Hom(G,R)

)
. The vector space Q̃H(G) can

be identified with the kernel of the canonical map H2
b(G,R) → H2(G,R) from

the bounded cohomology of G with trivial coefficients to the usual Hochschild
cohomology in degree two. For a non-elementary Gromov hyperbolic group G as

well as numerous other groups admitting a ‘rank one behaviour’, the space Q̃H(G)
is infinite-dimensional (see [5]). On the other hand, for an irreducible lattice Γ in

an adjoint semi-simple Lie group of higher rank, the space Q̃H(Γ) vanishes (see
[6]).

Theorem C. Let X be a locally compact CAT(0) cube complex such that Aut(X)
acts cocompactly and let Γ ≤ Aut(X) be a lattice. Then the following assertions
are equivalent.

(i) Q̃H(Γ) is finite-dimensional.

(ii) Q̃H(Γ) = 0.
(iii) X admits an Aut(X)-invariant convex subcomplex Y which admits a canoni-

cal splitting Y ∼= T1×· · ·×Tn, where each Ti is a quasi-tree and the Γ-action
on Ti is quasi-distance-transitive.

Here, a quasi-tree is a space which is quasi-isometric to a simplicial tree. The
Γ-action on Ti is called quasi-distance-transitive if there is a constant δ > 0
such that for all pairs (x, y) and (x′, y′) ∈ Ti × Ti, there is some γ ∈ Γ such that
dist(x, γ.x′) < δ and dist(y, γ.y′) < δ.

The implication (iii) ⇒ (ii) is due to Burger–Monod [6], while the implication
(i) ⇒ (iii) requires to combine Rank Rigidity with the constructions of quasi-
morphisms elaborated by Bestvina–Fujiwara [5]. For more details as well as other
applications, we refer to [7].
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Cohomology computations for relatives of Coxeter groups

Michael Davis

(joint work with Boris Okun)

We compute the group cohomology H∗(G;ZG) or the reduced L2-cohomology,
H∗(G;L2G) when G is either

• a graph product of infinite groups,
• an Artin group, or
• a Bestvina-Brady group.

The proofs will appear in [8].
Suppose (W,S) is a Coxeter system. A subset T ⊂ S is spherical if it generates

a finite subgroup of W . Let S denote the poset of spherical subsets of S. The
nerve of (W,S) is the simplicial complex L with vertex set S and with one simplex
for each nonempty T ∈ S. Let K := Flag(S) be the simplicial complex of all flags
in S (the geometric realization of S). Note that K is isomorphic to the cone on
the barycentric subdivision of L. For each s ∈ S, put Ks := Flag(S≥{s}) and for
each T ≤ S, put

KT :=
⋂

s∈T

Ks and KT :=
⋃

s∈T

Ks.

(K is the Davis chamber and Ks is a mirror of K.) Also, for each T ∈ S,
∂KT := Flag(S>T ) (which is isomorphic to the barycentric subdivision of the link
of T in L).

Previous results. The following theorem was proved in [2] (also see [3]).

Theorem A. ([2, 5]).

H∗(W ;ZW ) =
⊕

T∈S

H∗(K,KS−T )⊗AT ,

where AT is a certain nontrivial free abelian group.
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Essentially the same result holds for the compactly supported cohomology of
any locally finite building of type (W,S) (except that the free abelian group AT

is larger), cf. [4]. In particular, since any graph product of finite groups acts
properly and cocompactly on a right-angled building, Theorem A also holds for
graph products of finite groups.

Theorem B. (Davis-Leary [7]). Suppose A is the Artin group associated to (W,S)
and that X is its Salvetti complex. Then

H∗(X ;L2W ) = H∗(K, ∂K)⊗ L2(A).

When the K(π, 1)-Conjecture holds for A, this formula computes H∗(A;L2W ).
(Recall that the K(π, 1)-Conjecture asserts that X = BA.)

The von Neumann dimension of Hk(X ;L2A) is called the kth L2-Betti number,
and denoted L2bk(X ;A). So, Theorem B gives: L2bk(X ;A) = bk(K, ∂K), where
bk(K, ∂K) denotes the ordinary Betti number of (K, ∂K).

Theorem C. (Jensen-Meier [9]). Suppose A is the right-angled Artin group (the
RAAG) associated to the right-angled Coxeter system (a RACS) (W,S). Then

Hn(A;ZA) =
⊕

T∈S

Hn−|T |(KT , ∂KT )⊗B,

where B is a certain free abelian group.

Computations. Suppose that Γ is a graph with vertex set S and that (W,S)
is the associated RACS. Let (Gs)s∈S be a family of groups and G =

∏
ΓGs, the

corresponding graph product. For each spherical subset T , define GT to be direct
product

∏
s∈T Gs (it is a subgroup of G). The proofs of following computations

use a spectral sequence and in the end, only an associated graded module to a
cohomology group is computed which we denote GrH∗( ).

Theorem 1. Suppose each Gs is infinite. Then

GrHn(G;ZG) =
⊕

T∈S

⊕

p+q=n

Hp(K, ∂KT ;H
q(GT ;ZG)).

Similarly, for L2-cohomology, we have,

L2bn(G) =
∑

T∈S

∑

p+q=n

bp(KT , ∂KT )L
2bq(GT ).

We note that Hq(GT ;ZG) and L2bq(GT ) can be calculated from their values
for the Gs by using the Künneth Formula. We also note that if each Gs = Z, then
G is a RAAG. Moreover, GT = ZT , so Hq(ZT ;ZZT ) is nonzero only in degree
q = |T | (where it is = Z) and we recover Theorem C. Since all L2-Betti numbers
of ZT vanish for T 6= ∅ we also recover Theorem B in the right-angled case.

It is known that any Artin groups AT of spherical type is a |T |-dimensional
duality groups, i.e., H∗(AT ;ZAT ) is concentrated in degree |T | and is free abelian.
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Theorem 2. Suppose A is the Artin group associated to (W,S) and that X is its
Salvetti complex. Then

GrHn(A;ZA) =
⊕

T∈S

Hn−|T |(KT , ∂KT )⊗ (ZA ⊗AT
H |T |(AT ;ZAT )).

Suppose A is the RAAG associated to the RACS (W,S) with nerve L. Let BBL

denote the kernel of the map A→ Z which sends each standard generator to 1. If
L is acyclic, then BBL is called a Bestvina-Brady group (in which case Bestvina
and Brady proved it was type FP).

Theorem 3. Suppose BBL is a Bestvina-Brady group. Then its cohomology with
group ring coefficients is the same as that of the corresponding Artin group, shifted
in degree by 1,

GrHn(BBL;ZBBL) =
⊕

T∈S>∅

Hn−|T |+1(KT , ∂KT )⊗ Z(BBL/(BBL ∩ AT )).

Similarly, for L2-cohomology, we have,

L2bn(BBL) =
∑

s∈S

bn(Ks, ∂Ks).

A spectral sequence. For all of these computations the proofs involve the
following lemma concerning a Mayer-Vietoris type spectral sequence. Suppose
a CW-complex X is a union of a collection of subcomplexes {Xa}a∈P indexed by
a poset P giving it the structure of a “poset of spaces” as in [8]. There is a spectral
sequence converging to H∗(X) with E1-page:

Ep,q
1 = Cp(Flag(P);Hq),

whereHq denotes the constant coefficient system σ 7→ Xminσ, where minσ denotes
the minimum element of the flag, σ. For each a ∈ P , put X<a :=

⋃
b<aXb.

Consider the following hypothesis:

(*) For each a ∈ P , the map induced by the inclusion, H∗(Xa) → H∗(X<a)
is the 0-homomorphism.

Lemma. Suppose (*) holds. Then the spectral sequences decomposes into a direct
sum at E2 and E2 = E∞:

Ep,q
∞ = Ep,q

2 =
⊕

a∈P

Hp(Flag(P≥a),Flag(P>a);H
q(Xa)).

In each case in which we are interested, P = S; moreover, the appropriate space
associated to the group in question is covered by subcomplexes indexed by S and
condition (*) is easily verified.
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Isoperimetric and finiteness properties of arithmetic groups

Kevin Wortman

(joint work with Mladen Bestvina and Alex Eskin)

A coarse manifold Σ in a metric space X is a function from the vertices of a
triangulated manifold M into X . In a slight abuse of language, we refer to the
image of a coarse manifold as a coarse manifold, thus a coarse manifold in X will
be regarded as a subset of X .

Given a coarse manifold Σ, we define ∂Σ as the restriction of the function
defining Σ to ∂M .

We say Σ has scale r > 0 if every pair of adjacent vertices in M map to within
distance r of each other in X . We define the volume of Σ to be the number of
vertices in M .

If M is an n-manifold, we call Σ a coarse n-manifold. If Σ′ is a coarse manifold
as well whose domain is the triangulated manifold M ′, we say that Σ and Σ′ have
the same topological type if M and M ′ are homeomorphic.

Let K be a global field (number field or function field), and let S be a set
of finitely many inequivalent valuations of K including one from each class of
archimedean valuations. The ring OS ⊆ K will be the corresponding ring of
S-integers.

For any v ∈ S, we let Kv be the completion of K with respect to v so that Kv

is a locally compact field.
Let G be a noncommutative, absolutely almost simple K-isotropic K-group.

Let GS be the semisimple Lie group

GS =
∏

v∈S

G(Kv)

endowed with a left-invariant metric.
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Under the diagonal embedding, the arithmetic group G(OS) is a lattice in GS .
The lattice being nonuniform is equivalent to the assumption thatG isK-isotropic.
The metric on GS restricts to a metric on G(OS).

Denote the euclidean, or geometric, rank of GS by k(G, S), so that

k(G, S) =
∑

v∈S

rankKv
G

The interest is in proving the following conjecture from [7]

Conjecture 1. Given G(OS) as above and a scale factor r1, there exists a linear
polynomial f and a scale factor r2 such that if Σ ⊆ GS is a coarse n-manifold of
scale r1, with ∂Σ ⊆ G(OS), and n < k(G, S), then there is a coarse n-manifold
Σ′ ⊆ G(OS) of scale r2 and of the same topological type as Σ such that ∂Σ′ = ∂Σ
and vol(Σ′) ≤ f(vol(Σ)).

The theorem of Lubotzky-Mozes-Raghunathan that higher rank irreducible lat-
tices in semisimple Lie groups quasi-isometrically embed in their ambient Lie
groups is a special case of the above conjecture [10], as would be that any ir-
reducible lattice in a semisimple Lie group of rank at least 3 has a quadratic Dehn
function. More generally, a proof of the above conjecture would imply Euclidean
isoperimetric inequalities for irreducible lattice in low dimensions, where “low” is
determined by the rank of the ambient semisimple group. In particular, it would
imply that G(OS) is of type Fk(G,S)−1.

Known cases from the above paragraph include the aforementioned Lubotzky-
Mozes-Raghunathan, Druţu’s theorem that Q-rank one lattices have a Dehn func-
tion that is asymptotically bounded by n 7→ n2+ε [9], Young’s theorem that
SLn(Z) has quadratic Dehn function when n ≥ 5 [13], Raghunathan’s proof that
G(OS) is of type F∞ when OS is a classical ring of algebraic integers [11], Borel-
Serre which established that G(OS) is of type F∞ when K is a number field [5],
and various special cases of the conjecture that G(OS) is of type Fk(G,S)−1 when
K is a function field that have been shown by Stuhler, Behr, Abels, Abramenko,
Bux-Wortman, and Bux-Gramlich-Witzel [12], [4], [1],[2], [3], [8], [6].

Notice that |S| ≤ k(G, S), as |S| measures the number of irreducible factors of
GS .

In joint work with Mladen Bestvina and Alex Eskin, we have established the
following weakened and special case of Conjecture 1

Theorem 2. Given G(OS) as above and a scale factor r1, there exists a polyno-
mial f of unspecified degree and a scale factor r2 such that if Σ ⊆ GS is a coarse
n-manifold of scale r1, with ∂Σ ⊆ G(OS), and n < |S|, then there is a coarse
n-manifold Σ′ ⊆ G(OS) of scale r2 and of the same topological type as Σ such that
∂Σ′ = ∂Σ and vol(Σ′) ≤ f(vol(Σ)).

If n = 1, then we may assume f is linear.

Theorem 2 implies polynomial isoperimetric inequalities in low dimensions and
that G(OS) is of type F|S|−1.
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Quasi-isometric classification of 3–manifold groups

Jason Behrstock

(joint work with Walter D. Neumann)

The word metric on a finitely generated group, although non-unique — as it de-
pends on a choice of finite generating set — is canonical when considered up to
quasi-isometry (i.e., maps of bounded multiplicative and additive distortion). A
fundamental question in group theory, as discussed in Gromov [7], is to classify
finitely generated groups up to quasi-isometry.

An important and rich family of groups are provided by fundamental groups
of 3–manifolds, and the quasi-isometric geometry of these groups has received
significant attention, e.g., [4, 5, 6, 8, 9, 10, 11, 13, 14]. Through work of Papasoglu–
Whyte on quasi-isometries of free-product decompositions [12], the quasi-isometric
classification of general 3–manifolds reduces to the classification of irreducible ones.

Perelman’s Geometrization Theorem show that any irreducible 3–manifold (with
zero Euler characteristic) can be decomposed along tori and Klein bottles (the JSJ-
decomposition) into pieces which admit geometric structures; when the collection
of tori and Klein bottles is non-empty, such a manifold is called non-geometric.
The quasi-isometric classification in the case of geometric closed manifolds is an
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immediate consequence of the Milnor–Švarc Lemma. For geometric 3-manifolds
with boundary the quasi-isometric and commensurability classifications agree: this
is a deep theorem of R. Schwartz in the hyperbolic case [14], the Seifert fibered
space case was first proven by Kapovich–Leeb.

Until recently, the main results in the non-geometric case were due to Kapovich–
Leeb who showed that quasi-isometries preserve the decomposition into geometric
pieces and that quasi-isometries preserve the presence of hyperbolic components
[9, 10, 11]. This work of Kapovich–Leeb prompted them to ask about the quasi-
isometric classification of fundamental groups of closed graph manifolds [11]. In
joint work with W. Neumann, we resolved this question with the following result,
which as a special case shows that any two closed non-geometric graph manifolds
have bilipschitz homeomorphic universal covers and hence, in particular, have
quasi-isometric fundamental groups.

Theorem 1 (QI classification of graph manifolds; [2]). If M and M ′ are non-
geometric graph manifolds (possibly with boundary) then the following are equiva-
lent:

(1) The universal covers, M̃ and M̃ ′, are bilipschitz homeomorphic.
(2) π1(M) and π1(M

′) are quasi-isometric.
(3) The Bass-Serre trees for M and M ′ are isomorphic as two-colored trees.

(Where the vertex groups of π1(M), resp. π1(M
′), are colored correspond-

ing to whether the associated Seifert fibered pieces does or does not contain
boundary components of M , resp. M ′.)

(4) The minimal two-colored graphs in the bisimilarity classes of the decompo-
sition graphs associated to M and M ′ are isomorphic. (Again, the vertices
are colored corresponding to whether the associated Seifert fibered piece
does or does not contain boundary components of M , resp. M ′.)

Bisimilarity — a notion which arises in computer science — is an algorithmically
checkable equivalence relation on colored finite graphs. Each equivalence class has
a unique, canonical element which we call minimal. One can list the minimal
two-colored graphs of small size, using Theorem 1 this allows us to conclude that,
for instance, there are exactly 2, 6, 26, 199, 2811, 69711, 2921251, 204535126, . . .
quasi-isometry classes of fundamental groups of non-geometric graph manifolds
composed of at most 1, 2, 3, 4, 5, 6, 7, 8, . . . Seifert fibered pieces [2], see also [15].

For non-geometric manifolds with hyperbolic pieces we have discovered a simi-
lar, albeit more intricate, classification in terms of bisimilarity of certain labelled
graphs. For non-geometric manifolds with only hyperbolic pieces of which at
least one is non-arithmetic (we call these NAH–manifolds), the classifying objects
are also minimal labelled graphs, but now the edges are labelled as well as the
vertices, and the labellings are more complicated: each vertex is labelled by the
isomorphism type of an orientable, complete, hyperbolic orbifold and each edges is
labelled by a linear isomorphism between certain 2-dimensional Q–vector spaces.
We call such a graph an NAH–graph. Bisimilarity for NAH–graphs is defined sim-
ilarity as for two-colored graphs, namely these are open graph-homomorphisms
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which preserve labels in a controlled way. In the case of such manifolds, with
Neumann, we proved:

Theorem 2 (QI classification of NAH-manifolds; [3]). Each NAH–manifold has
an associated minimal NAH–graph and two such manifolds have quasi-isometric
fundamental groups (in fact: bilipschitz equivalent universal covers) if and only if
their minimal NAH–graphs are isomorphic.

In certain cases we have also related the commensurability and quasi-isometric
classification of NAH-manifolds via the following:

Theorem 3 (Commensurability and quasi-isometry; [3]). Assuming CCC3, if
two NAH-manifolds have quasi-isometric fundamental groups and their common
minimal NAH-graph is a tree with manifold labels then they (and in particular,
their fundamental groups) are commensurable.

Here CCC3 is the 3-dimensional version of the following conjecture about the
structure of hyperbolic manifolds; in [3] we showed that this conjecture follows
from the conjecture that all hyperbolic groups are residually finite (although we
find the present conjecture much more plausible).

Cusp Covering Conjecture. Let M be a finite-volume hyperbolic n-manifold.
Then for each cusp C of M there exists a sublattice ΛC of π1(C) such that, for
any choice of a sublattice Λ′

C ⊂ ΛC for each C, there exists a finite cover M ′ of
M whose cusps covering each cusp C of M are the covers determined by Λ′

C .
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When does a Coxeter group surject onto a virtually free group

Tadeusz Januszkiewicz

Let (W, S) be a Coxeter group, with the presentation given by the Coxeter matrix
mst: 〈S|s

2 = 1 = (st)mst〉. Results of Gonciulea, Cooper-Long-Reid and (a corol-
lary of) Vinberg-Margulis assert that if W is infinite, then it admits a subgroup
of finite index W+ which surjects onto Z. Moreover if W is not a product of
finite and affine groups, then it is large, i.e., it admits a subgroup of finite index
surjecting onto a free group on two generators.

It is natural to ask what can one say about quotients of W rather than W+.
For example: can a quotient of W be virtually free. It turns out that there is a
simple answer to this.

Proposition. (W,S) surjects onto a virtually free group if and only if at least one
mst is ∞, that is if W is not 2-spherical.

Moreover W surjects onto a nonelementary virtually free group if and only if
it is not a product of a 2-spherical group with (some number of) infinite dihedral
groups.

Sketch of the proof. One implication is fairly well known: a 2-spherical group has
Property FA, cf. [Ser03], hence cannot surject onto a virtually free group. The
other direction uses the Tits representation:

If mst = ∞, then W is free product of WS−s ∗WS−(s,t)
WS−t.

Let T : WS → GLS(R) be the Tits representation, cf. [Bou02]. The entries of
the matrices representing elements ofW are algebraic (in fact cyclotomic) integers.
Hence if we pick an ideal p and reduce modulo it, the image of WS will be a finite
group. Moreover the reduction is functorial for maps induced by inclusions of
subgroups of WS .

We apply the reduction procedure to all groups in the amalgam WS−s ∗WS−(s,t)

WS−t (but not to WS). The resulting amalgam of finite groups clearly receives a
surjection from WS and gives an action on the Bass-Serre tree.

One further sees that the tree is a line if and only if W{s,t} commutes with
WS−s,t. This and a simple induction gives the statement of the Proposition. �

The considerations above are a warmup to the following question:

Question. Does a large Coxeter group surject onto a hyperbolic group?

Largeness is clearly a necessary condition. I have a candidate for the hyperbolic
quotient.
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LetWS be a large Coxeter group, letWA be a minimal large parabolic subgroup
(it is then either a cocompact or a cofinite volume hyperbolic group with (perhaps
ideal) simplex fundamental domain). Let B = S −A.

One takes then a simplex of groups, which to a proper subset T ⊂ A associates
the reduction mod p of the image in Tits representation of WS of the parabolic
subgroup WT∪B . It is clearly a quotient of WS , and my hope, supported by low
dimensional examples, is that it is hyperbolic.

After my talk Mark Sapir pointed out that one does not need to answer the
Question to obtain that a Coxeter group is large if and only if it is SQ universal
(this was one of my original motivations to look at the Question). This follows
from a theorem of Peter Neumann, see [Neu73].
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