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Introduction by the Organisers

This meeting had 45 participants from 10 countries (Australia, Belgium, Canada,
China, France, Germany, Japan, Norway, UK and the US) and 23 lectures were
presented during the five day period. The sponsorship of the European Union and
other organizations allowed the organizers to invite and secure the participation of
a number of young investigators. Some of these young mathematicians presented
thirty-minute lectures. As always, there was a substantial amount of mathematical
activity outside the formal lecture sessions. This meeting explored the applications
of ideas and techniques from algebraic geometry to noncommutative algebra and
vice-versa . A number of lectures presented open problems. Areas covered include

• noncommutative projective algebraic geometry,
• quantum groups,
• combinatorial ring theory,
• representation theory of quivers and preprojective algebras
• applications of categorical techniques in representation theory
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A number of advances in the above areas were presented and possible starting
points for further research proposed. The breadth of the conference is illustrated
by the abstracts.
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Abstracts

A primitive or PI dichotomy for domains of quadratic growth

Jason Bell

Given a field k and a finitely generated k-algebra A, a k-subspace V of A is called
a frame of A if V is finite-dimensional, 1 ∈ V , and V generates A as a k-algebra.

We say that A has quadratic growth if there exist a frame V of A and constants
C1, C2 > 0 such that

C1n
2 ≤ dimk(V

n) ≤ C2n
2 for all n ≥ 1.

We note that an algebra of quadratic growth has Gelfand-Kirillov dimension
2. More generally, the Gelfand-Kirillov dimension (GK dimension, for short) of a
finitely generated k-algebra A is defined to be

GKdim(A) = lim sup
n→∞

log (dim(V n))

log n
,

where V is a frame of A. While algebras of quadratic growth have GK dimension
2, it is not the case that an algebra of GK dimension 2 necessarily has quadratic
growth. Constructions of algebras of GK dimension two that do not have qua-
dratic growth tend to be contrived and are generally viewed as being pathological.
For instance, there are currently no examples of domains, simple rings, or prime
noetherian rings of GK dimension 2 that do not also have quadratic growth. In-
deed, Smoktunowicz [8] has shown that a graded domain whose GK dimension
is in the interval [2, 3) must have quadratic growth. For this reason, quadratic
growth is viewed as being, for all intents and purposes, the same as GK dimension
two for domains.

GK dimension can be viewed as a noncommutative analogue of Krull dimension
in the following sense: if A is a finitely generated commutative k-algebra then the
Krull dimension of A and the GK dimension of A coincide. Thus the study of
noncommutative finitely generated domains of quadratic growth can be viewed as
the noncommutative analogue of the study of regular functions on affine surfaces.

Our main result is the following dichotomy theorem, which shows that a finitely
generated prime Goldie algebra of quadratic growth is either very close to be-
ing commutative or it is primitive. Given a field k, we say that a k-algebra A
satisfies a polynomial identity if there is a nonzero noncommutative polynomial
p(t1, . . . , td) ∈ k{t1, . . . , td} such that p(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈ Ad.
We note that a commutative ring satisfies the polynomial identity t1t2 − t2t1 = 0.
In general, polynomial identity algebras behave very much like commutative alge-
bras; in fact, a finitely generated prime k-algebra satisfying a polynomial identity
always embeds in a matrix ring over a field. Primitive algebras (i.e., algebras with
a faithful simple left module), on the other hand, are very different from commu-
tative algebras; indeed, a commutative algebra that is primitive is a field and a
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theorem of Kaplansky [6, Theorem 13.3.8] generalizes this, showing that a prim-
itive algebra that satisfies a polynomial identity is a matrix ring over a division
algebra and, moreover, the division algebra is finite-dimensional over its centre.

There are many dichotomy results in the literature, which show that an alge-
bra with certain specified properties is either primitive or satisfies a polynomial
identity [1, 2, 4, 5, 7]. Occasionally, a trichotomy is proved in which one adds the
possibility that the algebra may have a nonzero Jacobson radical. Most of these
dichotomies require severe restrictions on the algebra that make it easier to study.
Our dichotomy result for prime Goldie algebras is less restrictive than most of
these other dichotomies, requiring only quadratic growth and an uncountable base
field.

Our main theorem is the following: we show that if k is an uncountable field
and A is a finitely generated prime Goldie k-algebra of quadratic growth. Then
either A is primitive or A satisfies a polynomial identity.

In fact, we show that over any field k, if A is a finitely generated prime Goldie
k-algebra of quadratic growth, then either the set of prime ideals P for which A/P
has GK dimension 1 is finite or A satisfies a polynomial identity.

The way this result is proved is by studying prime ideals P in A for which
A/P has GK dimension 1. We show there are only finitely many such primes
unless A satisfies a polynomial identity. This result was proved by the author and
Smoktunowicz [4] in the case that A is a prime monomial algebra of quadratic
growth using combinatorial techniques. Here we use centralizers to obtain this
result. This intermediate result does not require an uncountable base field. We
then use an argument due to Farkas and Small [5] to show that if A is a finitely
generated prime Goldie algebra of GK dimension 2 over an uncountable base field,
and A has only finitely many prime ideals P for which A/P has GK dimension 1,
then A must be primitive.

We note that the author and Smoktunowicz [4] constructed a finitely generated
prime algebra A of GK dimension 2 that does not satisfy a polynomial identity
and has infinitely many primes P such that A/P has GK dimension 1. We note,
however, this algebra does not have quadratic growth. The author [3] has also
constructed examples of prime rings of GK dimension 2 (but again not of quadratic
growth) that do not satisfy the ascending chain condition on prime ideals. Thus
without some prime Goldie hypothesis, one cannot expect the conclusion of the
statement of our theorem to hold.
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Trees, Amalgams and Calogero-Moser Spaces

Yuri Berest

(joint work with Alimjon Eshmatov and Farkhod Eshmatov)

The theory of infinite-dimensional algebraic groups goes back to the work of
Shafarevich [Sh] (see also [Sh1]). Typically, such groups arise as automorphism
groups of affine surfaces, and their algebraic structure is determined by their struc-
ture (presentation) as a discrete group (see [GD]).

Two interesting examples of different nature arise from noncommutative alge-
bra: these are the group G0 := Autω C〈x, y〉 of “symplectic” (i.e. preserving
ω = xy − yx) automorphisms of the free algebra on two generators and the auto-
morphism group AutA1 of the Weyl algebra A1 = C〈x, y〉/(xy − yx − 1) . By
a theorem of Makar-Limanov [ML], these two groups are naturally isomorphic as
discrete groups (the corresponding isomorphism is induced by the canonical pro-
jection C〈x, y〉 → A1 ); however, their algebraic structures are different (see [BW],
[G]).

In this talk, we will discuss more examples of this phenomenon. Instead of
AutA1 , we consider the automorphism groups of algebras (domains) Morita equiv-
alent to A1. It is known (see [K] and [BW1]) that such algebras are classified, up
to isomorphism, by a single integer n ≥ 0 , and the corresponding isomorphism
classes can be represented by the endomorphism rings Dn := EndA1(Mn) of the
right ideals Mn = xn+1A1 + (xy + n)A1. In particular, note that D0

∼= A1 .
The groups Gn for n > 0 are defined geometrically, in terms of a natural action

of G0 on the Calogero-Moser spaces

Cn := { (X, Y ) ∈ Matn(C)× Matn(C) : rk([X, Y ] + In) = 1 }/ PGLn(C) ,

where PGLn(C) operates on matrices (X, Y ) by simultaneous conjugation (see
[W]). Precisely, the action of G0 on Cn is given by

(1) (X, Y ) 7→ (σ−1(X), σ−1(Y )) , σ ∈ G0 .

It is known that Cn is a smooth affine variety with a natural symplectic structure,
and it is easy to check that G0 preserve that structure.

Now, for each n ≥ 0, we fix a basepoint (X0, Y0) ∈ Cn, with

X0 =

n−1∑

k=1

Ek+1,k , Y0 =

n−1∑

k=1

(k − n)Ek,k+1 ,



1326 Oberwolfach Report 22/2010

where Ei,j denotes the elementary matrix with (i, j)-entry 1, and let

(2) Gn := StabG0(X0, Y0) , n ≥ 0 .

Thus, by definition, the groups Gn ⊆ G0 are the stabilizers of points of the
Calogero-Moser spaces under the action (1).

The following result can be viewed as a generalization of the above-mentioned
theorem of Makar-Limanov [ML].

Theorem 1. There is a natural isomorphism of groups Gn
∼
→ Aut(Dn) .

Theorem 1 is a simple consequence of the main results of [BW]: in fact, it is shown
in [BW] that G0 acts transitively on each Cn and there is a natural G0-equivariant
bijection (called the Calogero-Moser correspondence) between

⊔
n≥0 Cn and the

space of isomorphism classes of right ideals of A1. Under this bijection, the points
(X0, Y0) ∈ Cn correspond precisely to the classes of the ideals Mn.

We will use Theorem 1 to give a geometric presentation for the groups Aut(Dn).
To this end, we associate to each space Cn a graph Γn consisting of orbits of some
simple subgroups of G0 and identify Gn with the fundamental group π1(Γn, ∗) of a
graph of groups Γn defined by the stabilizers of points of those orbits over Γn. The
Bass-Serre theory of groups acting on graphs [Se] gives then an explicit formula
for π1(Γn, ∗) in terms of generalized amalgamated products, see (3) below.

To define Γn we consider the following subgroups of G0: A is the group of
affine symplectic transformations

(x, y) 7→ (ax+ by + e, cx+ dy + f) , a, b, . . . , f ∈ C , ad− bc = 1 ,

B is the group of triangular (Jonquières) transformations

(x, y) 7→ (ax+ p(y), a−1y + h) , a ∈ C
∗, h ∈ C , p(y) ∈ C[y] ,

and U is the intersection of A and B : (x, y) 7→ (ax + by + e, a−1y + h) . Being
subgroups of G0, A, B and U act on each Cn, and we define Γn to be the graph
of their orbits. Precisely, Γn is an oriented bipartite graph, with vertex and edge
sets

Vert(Γn) := (A\Cn)
⊔

(B\Cn) , Edge(Γn) := U\Cn ,

and the incidence maps Edge(Γn)→ Vert(Γn) given by the canonical projections
i : U\Cn → A\Cn and τ : U\Cn → B\Cn .

Now, on each orbit in A\Cn, B\Cn and U\Cn we choose a basepoint and
elements σ ∈ G0 moving these basepoints to the basepoint (X0, Y0) of Cn. Fol-
lowing a standard construction in the Bass-Serre theory, we then assign to the
vertices and edges of Γn the stabilizers Aσ = Gn ∩ σAσ−1 , Bσ = Gn ∩ σBσ−1 ,
Uσ = Gn ∩ σUσ−1 of the corresponding elements σ in the graph of right cosets
of G0 under the action of Gn. These data together with (properly constructed)
homomorphisms aσ : Uσ →֒ Aσ and bσ : Uσ →֒ Bσ define a graph of groups Γn

over Γn, and its fundamental group π1(Γn, T ) relative to a maximal tree T ⊆ Γn

has canonical presentation (see [Se], Sect. 5.1):

(3) π1(Γn, T ) =
Aσ ∗Uσ

Bσ ∗ . . . ∗ 〈 Edge(Γn \ T ) 〉

( e−1aσ(g) e = bσ(g) : ∀ e ∈ Edge(Γn \ T ), ∀ g ∈ Uσ )
.
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In (3), the amalgams Aσ ∗Uσ
Bσ ∗ . . . are taken along the stabilizers of edges of

the tree T , while 〈 Edge(Γn \T ) 〉 denotes the free group based on the set of edges
of Γn in the complement of T .

Our main result is the following

Theorem 2. For each n ≥ 0, the group Gn is isomorphic to π1(Γn, T ) . In
particular, Gn has an explicit presentation of the form (3).

Theorems 1 and 2 reduce the problem of describing the groups Aut(Dn) to a
purely geometric problem of describing the structure of the orbit spaces of A and
B and U on the Calogero-Moser varieties Cn. Using the earlier results of [W] and
[BW] and some basic geometric invariant theory, one can obtain much information
about these orbits (and hence about the groups Gn). In particular, the graph Γn

can be completely described for small n; it turns out to be a tree for n = 0, 1, 2
(see below) but has cycles for n ≥ 3.

Examples. For n = 0, the space C0 is just a point, and so are a fortiori its orbit
spaces. The graph Γ0 is thus the segment, and the corresponding graph of groups

Γ0 is given by [A
U
−→ B ] . Formula (3) then says that G0 = A ∗U B , which is a

well-known result of [ML] and [Cz] (see also [Co]).
For n = 1, we have C1 ∼= C2, with (X0, Y0) corresponding to the origin. Since

each of the groups A, B and U contains translations (x, y) 7→ (x + a, y + b) ,
a, b ∈ C, they act transitively on C1. So again Γ1 is just the segment, and Γ1 is

given by [A1
U1−→ B1 ] , where A1 := G1 ∩ A , B1 := G1 ∩ B and U1 := G1 ∩ U .

Since, by definition, G1 consists of all σ ∈ G0 preserving (0, 0) , the groups A1,
B1 and U1 are obvious:

A1 : (x, y) 7→ (ax+ by, cx+ dy) , a, b, c, d ∈ C , ad− bc = 1 ,

B1 : (x, y) 7→ (ax+ p(y), a−1y) , a ∈ C
∗ , p ∈ C[y] , p(0) = 0 ,

U1 : (x, y) 7→ (ax+ by, a−1y) , a ∈ C
∗ , b ∈ C .

It follows from (3) that G1 = A1 ∗U1 B1 .
For n = 2, the situation is more interesting. A simple calculation shows that

U has three orbits in C2: two closed orbits of dimension 2 and one open orbit of
dimension 4. Moreover, the B-orbits coincide with the U -orbits. Combinatorially,
this means that A acts transitively, and the graph Γ2 is a tree with one nonterminal
(the A-orbit) and three terminal (the B-orbits) vertices. The corresponding graph
of groups Γ2 is given by

G2,y ⋊C∗

C∗
Z2
>

C
∗ >

G
(1)
2,y ⋊ Z2

G2,x ⋊C∗
C

∗

>
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Here G2,x and G2,y are the subgroups of G0 consisting of transformations Φp :
(x, y) 7→ (x, y + p(x)) and Ψq : (x, y) 7→ (x+ q(y), y) , with p ∈ C[x] and q ∈ C[y]

satisfying p(0) = p′(0) = 0 and q(0) = q′(0) = 0 respectively, and G
(1)
2,y :=

{Φ−xΨq Φx ∈ G0 : q ∈ C[y] , q(±1) = 0 } . Formula (3) yields the presentation

G2 = (G2,x ⋊C
∗) ∗C∗ (G2,y ⋊C

∗) ∗Z2 (G
(1)
2,y ⋊ Z2) .

In particular, G2 is generated by its subgroups G2,x, G2,y, G
(1)
2,y and C

∗.
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Dimer models and Calabi-Yau algebras

Nathan Broomhead

Using dimer models, as introduced in string theory [3], we can produce non-
commutative crepant resolutions (NCCRs) of all toric Gorenstein affine three-
folds. In this report we define dimer models, and describe how to construct a
non-commutative algebra A and ring R, which is the coordinate ring of a toric
Gorenstein affine three-fold, from a given dimer model. We then describe a ‘con-
sistency’ condition under which A is an NCCR of R.

The theory begins with a finite bipartite tiling of a 2-torus T , that is, a polygonal
cell decomposition of T whose vertices can be coloured black and white in such
a way that all edges join a black vertex to a white vertex. We often consider
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it as a doubly periodic tiling of the plane. We call such a tiling a dimer model.
Given a dimer model one can construct the dual tiling (or dual cell decomposition).
Crucially, its edges inherit a consistent choice of orientation since the dimer model
is bipartite. Thus the dual graph is a quiver Q with the additional structure that
it provides a tiling of the torus T with oriented faces. We will refer to the faces of
the quiver dual to black/white vertices of the dimer model, as black/white faces.

In the usual way, we denote by Q0 and Q1 the sets of vertices and arrows of
the quiver and by CQ the path algebra of the quiver. The additional set Q2 of
oriented faces encodes a ‘superpotential’

(1) W =
∑

f∈Q2

(−1)f∂f,

a linear combination of cycles in the quiver Q, given by the boundaries of all the
faces. The function (−1)f takes the value +1 on black faces of Q, and -1 on
white faces. By taking ‘cyclic derivatives’ of W with respect to each of the arrows
we obtain relations. Explicitly, since each arrow a ∈ Q1 occurs in precisely two
oppositely oriented faces f+, f− ∈ Q2, each relation ∂

∂aW is the difference of two
paths p+a − p

−
a , where p

±
a is the path from the head of a around the boundary of

f± to the tail. The quotient of the path algebra CQ by the ideal IW generated by
these relations is called the superpotential (or ‘Jacobian’) algebra

A = CQ/IW .

From an algebraic point of view, this is the output of a dimer model.
Example: We consider the tiling of the torus by squares. The figures show

both the bipartite tiling and the dual quiver, drawn together so it is clear how they
are related. The dotted line indicates a fundamental domain. The superpotential
has two cyclic terms corresponding to the black face and the white face:

W = (x1y2x2y1)− (x1y1x2y2).

Applying the cyclic derivative with respect to each arrow, we can obtain four rela-
tions, for example ∂W

∂x2
= y1x1y2 − y2x1y1 = 0.

Now we construct the toric variety associated to a dimer model. Using the fact
that the ‘quiver with faces’ Q forms a cell decomposition of the torus T , we may
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write down a cochain complex

(2) Z
Q0

d
−→ Z

Q1
d
−→ Z

Q2 .

Note that, because of the way the faces are oriented, the coboundary map d : ZQ1 →
ZQ2 simply sums any function of the edges around each face (without any signs).
We consider the one-parameter subgroups ρ : C∗ → Aut(CQ) arising from an ac-
tion on the arrows ρ(t) : a 7→ tvaa, for some v ∈ ZQ1 . Since the coboundary
dv ∈ ZQ2 gives precisely the weights of the ρ-action on the terms in the superpo-
tential W , ρ is a well-defined map to Aut(A) when dv = λ1 for some λ ∈ Z, where
1 is the function taking value 1 on every face. We then call λ the degree of ρ.
We write N = d−1(Z1) ⊂ ZQ1 and let N+ = N ∩ NQ1 be the cone in N defining
non-negative gradings of A. There is an exact sequence of lattices

(3) 0→ Z→ Z
Q0

d
→ N → No → 0

where No is the cokernel of d. Note that the lattice No is rank 3 and fits in the
short exact sequence

(4) 0→ H1(T ;Z) −→ No
deg
−→ Z→ 0

We define N+
o to be the saturation of the image of N+ in No. Using the machinery

of toric geometry this cone defines a three dimensional affine toric variety. In
particular it has coordinate ring R := C[M+

o ], where M+
o := (N+

o )∨ is the dual
cone.

We look for a more explicit combinatorial description of N+
o . In the literature,

a perfect matching on a bipartite graph is usually defined as a collection of edges
such that each vertex is the end point of precisely one edge (see for example [4]).
We take here the dual point of view and consider a perfect matching to be a
1-cochain π ∈ ZQ1 , with all values in {0, 1}, such that dπ = 1. Thus perfect
matchings are actually the degree 1 elements of N+. Moreover N+ is integrally
generated by perfect matchings (Lemma 2.11 in [1]). We can therefore use the
perfect matchings to describe N+

o . Since they are degree 1 elements their images
in N+

o define a polygon in a rank 2 affine sublattice, and No
+ is the cone on this

polygon. Note that this implies that the toric variety constructed is Gorenstein.
Translations of the polygon into H1(T ;Z) ∼= Z2 may be com! puted by various
explicit methods, e.g using the Kastelyn determinant as in [3].

We now construct a second non-commutative algebra from the dimer model.
By dualising diagram (3) we obtain the following:

0 Zoo ZQ0
oo M

δoo Mo
oo 0oo

∪ ∪

M+ M+
o

oo

where M+ := (N+)∨ and M+
o := (N+

o )∨ come from the dual cones. We consider
the rank 2 affine sublattices Mij := δ−1(j − i) of M for i, j ∈ Q0 and define
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M+
ij :=Mij ∩M

+. Then we consider the algebra

B =
⊕

i,j∈Q0

C[M+
ij ]

where C[M+
ij ] is the vector space with a basis of monomials of the form xm for

m ∈ M+
ij . We call this the non-commutative (affine) toric algebra, associated to

the data {ZQ0
d
→ N ⊃ N+}. Note that the ring R = C[M+

o ] = C[M+
ii ] for all

i ∈ Q0, is the coordinate ring of the toric variety associated to the dimer model.
Furthermore, this ring is the centre of algebra B. By construction there is an
algebra morphism ϕ : A → B and we call a dimer model algebraically consistent
if this map is an isomorphism.
Theorem(Theorem 8.5 in [1]) Given an algebraically consistent dimer model, the
algebra A obtained from it is an NCCR of the ring R associated to that dimer
model.

There are several different definitions of ‘consistency’ in the literature. One of
these, which we call geometric consistency, is in practice easier to check and we can
show that it implies algebraic consistency (Theorem 6.1 in [1]). This gives a way
of constructing examples of algebraically consistent dimer models. In particular,
Gulotta [2] and Stienstra [5] show that there exists a geometrically consistent dimer
model associated to every Gorenstein affine toric threefold, yielding the following:
Corollary (Theorem 8.6 in [1]) Every Gorenstein affine toric threefold admits an
NCCR which can be constructed from a dimer model.
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From Lie theory to algebraic geometry and back

Damien Calaque

(joint work with Andrei Caldararu and Junwu Tu)

Given a finite dimensional Lie algebra g over a field k of zero characteristic, Duflo’s
Theorem [5] asserts that the restriction of the symmetrization map (also known
as PBW isomorphism)

σ : S(g) −̃→ U(g)
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to g-invariants, precomposed with the contraction against the series

∂ := det

(√
ead − 1

ad

)
= exp


∑

k≥1
cktr(ad

k)


 ∈ Ŝ(g∗)g

is an algebra isomorphism1.

Analogously, given a smooth algebraic variety over k, we can consider the
Hochschild-Kostant-Rosenberg (HKR) isomorphism

⊕

k

Λk(TX)[−k] −̃→ p1∗ (RHomX×X(OX ,OX))

in D(OX−mod). Like in the above situation the (sheaf of) algebra on the right is
not (graded) commutative in D(OX−mod)2, but its image under RΓ(−) is. Here
again, we need to precompose with the contraction against an element

∂ := det

(√
at

eat − 1

)
∈
⊕

k

Hk(X,Ωk
X)

to get the following result, first guessed by Kontsevich [9]:
Theorem ([3]). HKR ◦ ∂· is an algebra isomorphism.

The element at ∈ H1
(
X,Ω1

X ⊗ End(TX)
)
is the Atiyah class of the tangent

bundle. Recall that the Atiyah class of a vector bundle E → X is the obstruction
against the existence of a connection on E. More abstractly it is the class of the
extension

0→ Ω1
X ⊗ E → J1

X(E)→ E → 0 ,

and can be viewed as a map TX [−1]⊗E → E in D(OX−mod). One can prove (see
e.g. [8]) that when E is TX [−1] this turns g = TX [−1] into a Lie algebra object in
D(OX−mod), and that D(OX−mod) is tautologically equivalent to the represen-
tation category of this Lie algebra object. Later on it was proved (see e.g. [10])
that U(g) ∼= p1∗ (RHomX×X(OX ,OX)). This construction actually becomes more
or less tautological, and also works for singular varieties, if one considers the
(co)tangent complex [7] instead.

From this we observe that HKR is PBW, and that the above Theorem is a
straightforward translation of Duflo’s result. Namely,

RΓ(−) = RHomX(OX ,−) = HomRep(g)(1,−) = (−)g .

Going back to Lie algebras, there are (conjectural) generalizations of Duflo’s
result. They concern homogeneous spaces, or (at the infinitesimal level) inclusions
h ⊂ g of finite dimensional Lie algebras. More precisely, under the assumption that
g = h⊕m with [h,m] ⊂ m Duflo conjectured [6] that the Poisson center of S(m)h is

isomorphic (as an algebra) to the center of (U(g)/hU(g))
h
. This conjecture seems

1Here ad ∈ g∗ ⊗ End(g) is the adjoint action.
2While it is in D(kX−mod).
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far too much difficult for us3. We will therefore concentrate on an easier question:
Question. Under what assumption do we have an isomorphism of h-modules

S (g/h) −̃→ U(g)/hU(g) ?

For this purpose let us rewrite

(U(g)/hU(g))
h
= HomRep(h)

(
1,Res ◦ Ind(1)

)
= HomRep(g)

(
Ind(1), Ind(1)

)
.

Given a closed embedding i : X →֒ Y of algebraic varieties, we are going to
consider the following Lie algebras in D(OX−mod): h = TX [−1] ⊂ TY

∣∣
X
[−1] = g.

Then (U(g)/hU(g))h becomes

ExtY (X,X) := RHomY (i∗OX , i∗OX) = RHomX(i∗i∗OX ,OX) .

Therefore the above question translates into asking under what assumption we do
have an isomorphism

⊕

k

Λk(NX,Y )[−k] −̃→ RHomX(i∗i∗OX ,OX)

in D(OX−mod). To answer this question let us consider the normal bundle exact
sequence

0→ TX → TY
∣∣
X
→ NX,Y → 0 ,

which gives a map NX,Y → TX [1]. By tensoring with NX,Y and composing with

the Atiyah “class” of NX,Y we get an extension αX,Y ∈ Ext2X(N⊗2X,Y ,NX,Y ):

NX,Y ⊗NX,Y → TX [−1]⊗NX,Y [2]→ NX,Y [2] .

Theorem (Arinkin-Caldararu [1]). The following conditions are equivalent:

(1) αX,Y = 0.

(2) NX,Y admits an extension to the first infinitesimal neighbourhood X(1) of
X in Y .

(3) the answer to the question is YES.

Going back once again to Lie algebras, it is now very natural to take a look at
the exact sequence 0 → h → g → g/h → 0 of h-modules, and the induced map
g/h→ h[1] in D(h−mod). Inspired by the geometric situation, we tensor with g/h
and then compose with the h-action to obtain a class αh,g ∈ Ext1

(
(g/h)⊗2, g/h

)
:

g/h⊗ g/h→ h⊗ g/h[1]→ g/h[1] .

By complete analogy with Arinkin-Caldararu result we can prove that:
Theorem ([2]). The following conditions are equivalent:

(1) αh,g = 0.

(2) g/h “admits an extension to the first infinitesimal neighbourhood h(1) of h
in g”.

(3) the answer to the question is YES.

3Even in the symmetric space case, when h is the fixed point subalgebra of an involution on
g, the conjecture is not solved despite some very good improvements by Cattaneo-Torossian [4].
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We now end this short note by explaining the meaning of condition (2) in the
Theorem. First of all we define h(1) to be the Lie algebra freely generated by g

and subjected to the relations

[h, g] = [h, g]g , h ∈ h , g ∈ g .

There is a Lie algera inclusion h →֒ h(1), and we say that an h-module M “admits
an extension to h(1)” if there exists an h(1)-moduleM (1) such that Res(M (1)) =M .
It can be proved that TX(1)

∣∣
X
[−1] is truely isomorphic to h(1) as a Lie algera

object in D(OX -mod) (but since X(1) is not smooth, we have to consider the
tangent complex instead of the tangent sheaf). E.g. when X = {0} ⊂ An = Y
we have that the shifted tangent complex of X(1) is a free Lie algebra in n odd
generators.
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Twisted rings and moduli stacks of fat points

Daniel Chan

In 1990, Artin-Tate-Van den Bergh introduced the notion of point modules in [1]
to study 3-dimensional Sklyanin algebras. These point modules are essentially
torsion-free graded modules with constant Hilbert function 1. Their basic method
of study can be described as follows. Let A be a 3-dimensional Skylanin algebra.
Then they show there is a Hilbert scheme Y parametrising point modules which
is a cubic curve in P2. Moreover, the shift functor on point modules induces an
automorphism σ of Y and associated to the construction of the Hilbert scheme is
a line bundle L on Y . From this data, one can construct a twisted version of the
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homogeneous co-ordinate ring, namely

B =
⊕

i≥0
H0(Y,L ⊗ σ∗L⊗ . . .⊗ σ∗(i−1)L).

Finally, there is a natural map A −→ B and one can try to extract information
about A by studying the twisted ring B. In [3], Rogalski-Zhang extended this
method to the case where A is a strongly noetherian connected graded algebra
generated in degree one. By [2], the hypotheses ensure the existence of Hilbert
schemes. They then produce a canonical map from A to a twisted ring on the
Hilbert scheme of point modules.

In this talk we look at an extension of these ideas to “fat” point modules
which are essentially torsion-free graded modules with constant Hilbert function
m > 1 which we dub m-points. The key difference with the point module case
is that one is forced to consider the moduli stack Y of simple m-points. We
consider now a graded algebra A generated in degree one, satisfying some nice
homological properties, namely, strong χ, finite cohomological dimension, CM1

and projectively connected. Then we show that Y is isomorphic to [H/GLm]
where H is quasi-projective and is a PGLm-torsor over some algebraic space Y .
The shift functor gives an automorphism σ of the stack Y. This data can be
used to construct a twisted ring as follows. The PGLm-torsor correponds to an
Azumaya algebra A on Y and σ corresponds to an invertible A-bimodule B. We
thus obtain a twisted ring

⊕

i≥0
H0(Y,B⊗i).

Finally, we show there is a canonical map from A to this twisted ring. This
result is used to show that a non-commutative projective surface with a surface
worth of fat points is birationally PI.
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Macdonald primitivity and D-modules

Iain Gordon

Let V be an n-dimensional complex vector space, G = GL(V ), g = gl(V ), and set
t to be the subalgebra consisting of diagonal matrices. Let B ≤ G be the Borel
subgroup of upper triangular matrices. The Weyl group, W = Sn, acts on t.
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Let κ : g×g→ g be the commutator. The commuting variety, C, is the scheme-
theoretic fibre κ∗(0). Set T = t×t. Simultaneous conjugation provides an action of
G on C such that the algebraic geometric quotient C/G is isomorphic to T/W . Let
X = [C×T/W T]red, the reduced isospectral commuting variety, and let Xnorm be its
normalisation with morphism ψ : Xnorm −→ X. There is a projection morphism
pC : X −→ C and an induced morphism on the normalisations p : Xnorm −→ Cnorm.

Let g̃ = G×B b be the Grothendieck-Springer resolution. It admits morphisms
µ : g̃→ g and ν : g̃→ t defined by (g, x) 7→ gx, respectively (g, x) 7→ x mod [b, b].
LetM =

∫
µ×ν Og̃, the Hotta-Kashiwara sheaf, a holonomic Dg×t-module.

There is an action of G on X induced from C, of C∗ × C∗ by dilation in both
sets of variables, and of W from the diagonal action on T. All these lift to Xnorm.

We discussed the following remarkable results of Ginzburg.

Theorem 1. [1, Theorem 2.4.1, Theorem 1.6.3, Proposition 1.6.4]

(1) The Hodge filtration on M is such that grM∼= ψ∗OXnorm
.

(2) Xnorm is Cohen-Macaulay and Gorenstein.
(3) Set R = p∗OXnorm

. Over the smooth locus of C, R is a G×W ×C∗ ×C∗-
equivariant vector bundle whose fibres carry the regular representation of
W .

Following this we explained a new approach to the positivity of Macdonald poly-
nomials. Recall the (transformed) Macdonald polynomials H̃µ(z; q, t) are symmet-
ric functions with coefficients that are rational functions of two parameters q and
t. Expanding these in terms of Schur functions H̃µ(z; q, t) =

∑
λ K̃λ,µ(q, t)sλ(z),

Macdonald positivity is the statement that the coefficients K̃λ,µ(q, t) all belong to
N[q, t]. In [2], Haiman confirmed this by proving the n! theorem.

We outlined a new proof of Haiman’s theorem using the combinatorics of R.
The two crucial points are Hotta and Kashiwara’s interpretation of the Springer
correspondence in terms of M, [3], and the following well-known commutative
diagram which relates the commuting variety to the Hilbert scheme of points on
the plane.

C◦ ←− S −→ HilbnC2

Here C◦ is the subvariety of C consisting of pairs of commuting matrices X,Y
which admit a cyclic vector v (i.e. a vector such that C[X,Y ] · v = V ) and S =
{(X,Y, v) : κ(X,Y ) = 0,C[X,Y ] · v = V }. Essentially the Macdonald polynomials
appear as the fibres of R above the principal nilpotent pairs in C.
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Rationality of Brauer-Severi Varieties of Sklyanin Algebras

Colin Ingalls

Let k be a perfect field. We say that k has cohomological dimension less than
or equal to one cd(k) ≤ 1, if Br(K) = 0 for all algebraic extensions K of k. This
include finite fields and fields of rational functions on algebraic curves over an
algebraically closed field.

Theorem 1. Let k be a perfect field with cd(k) ≤ 1 and characteristic prime to
n+ 1. Let π : X → P1

k be a morphism of varieties such that the geometric general
fibre of π is Pn and the degree of the non-smooth locus of π is ≤ 2. Then X is
rational over k.

This Theorem has been proved by Iskovskih [3] for n = 1. As a corollary we
get the following result.

Corollary 1. Let A be three dimensional Sklyanin algebra that is a finitely gen-
erated module over its centre. Then the Brauer-Severi variety of A is rational.

We refer the reader to [1] and [6] for the necessary definitions.
The proof of the Theorem begins with several reductions. Let η be the generic

point of the base P1
k. The Brauer-Severi variety Xη is rational over any twisted

linear subvariety by a result of Roquette [4]. So we may replace X with a non-
empty twisted linear subvariety of minimal dimension. The Fadeev exact sequence,
Corollary 6.4.6 [2], shows that if the non-smooth locus of π has degree ≤ 1 then
X is rational so we may assume the non-smooth locus of π has degree two. Next
we find the division algebra Aη corresponding to Xη and choose a maximal order
A in Aη. We replace X with the the Brauer-Severi variety of A. We extend work
of Artin that uses the structure of maximal orders over discrete valuation rings to
see that étale locally X is the blow up at a flag of Pn × ∆ where ∆ is an étale
neighbourhood of a point in P1

k.

Next we pass to k, an algebraic closure of k, and analyse π : X → P1
k
. We can

contract X → Y → P1
k
to a Pn bundle over P1 with two complete flags marked in

distinct fibres. We need the following Lemma.

Lemma 1. Let k be a field and let Y be a P
n bundle over P

1 with marked flags in
two distinct fibres. Then Y can be given the structure of a toric variety such that
the flags are toric invariant.

With the toric structure we can begin a combinatorial analysis. We study the
normal bundles of the toric invariant sections.

Lemma 2. There is a section s of π so that its normal bundle has no non-zero
global sections.

The following Lemma is the main technical part of the proof.

Lemma 3. The variety X has a non-trivial twisted linear subspace or X is the
blow up at two complementary flags in distinct fibres of Pn × P1.
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The span of the Galois orbit of the section s descends to a twisted linear subva-
riety of X . So X is rational unless all toric invariant sections are isomorphic. So all
normal bundles of the toric invariant sections are the same. The only possibility
is the one stated in the result above.

We then can use the Galois invariant divisors K and a fibre F to construct a
complete linear system | − K − F | which defines a rational map X 99K (P1)n+1.
This map descends to a map X 99K Z where Z is a form of (P1)n+1 which has a
point since k is perfect field with cd(k) ≤ 1, Corollary 1 [5]. Lastly, we use the
point p and the divisor H giving the Segre embedding to show that Z is rational
by mapping with the complete linear system |H − np|.
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Stable categories of Cohen-Macaulay modules and cluster categories

Osamu Iyama

(joint work with Claire Amiot, Idun Reiten)

Let T be a k-linear triangulated category with the suspension functor [1] over a
field k. For an integer n, we say that T is n-Calabi-Yau (n-CY ) if there exists a
functorial isomorphism HomT (X,Y ) ≃ DHomT (Y,X [n]) for any X,Y ∈ T , where
D = Homk(−, k) is the k-dual. In representation theory, there are two important
classes of n-CY triangulated categories. One is the generalized n-cluster categories
[BMRRT, Am, G] appearing in study of Fomin-Zelevinsky cluster algebras. The
other is the stable categories of Cohen-Macaulay modules over Gorenstein isolated
singularities [Au1]. The aim of this paper is to compare these two classes of
categories. We will show that the stable categories of Cohen-Macaulay modules
over certain Gorenstein isolated singularities are triangle equivalent to generalized
n-cluster categories (Theorem 1).

1. Preliminaries

Let n ≥ 1. A key notion in n-CY triangulated categories T is n-cluster tilting
objects M ∈ T defined by addM = {X ∈ T | HomT (M,X [i]) = 0 (0 < i <
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n)}. They are certain analogue of tilting objects, and 1-cluster tilting objects are
nothing but additive generators of T .

1.1. Cluster categories. Let n ≥ 2, and let A be a finite dimensional k-algebra
with gl.dimA ≤ n. We denote by DA the bounded derived category of the category

modA of finitely generated A-modules, and by ν := −
L

⊗A DA : DA → DA

the Nakayama functor. We have Auslander-Reiten-Serre duality HomDA
(X,Y ) ≃

DHomDA
(Y, νX) for any X,Y ∈ DA [Ha]. Let νn := ν ◦ [−n] : DA → DA. If

gl.dimA ≤ 1, then the orbit category C
(n)
A := DA/νn forms an n-CY triangulated

category called the n-cluster category [BMRRT, K1]. This is not the case for

gl.dimA ≥ 2, and the generalized n-cluster category C
(n)
A is defined in [K1, Am, G]

as a ‘triangulated hull’ of the orbit category DA/νn under the assumption that
the functor H0(νn) : modA → modA is nilpotent. This is an n-CY triangulated

category with a triangle functor π : DA → C
(n)
A satisfying a certain universal

property and has an n-cluster tilting object πA ∈ C
(n)
A .

1.2. Stable categories. Let R be a complete local Gorenstein ring of Krull di-
mension d. We denote by CM(R) := {X ∈ modR | ExtiR(X,R) = 0 (0 < i)} the
category of maximal Cohen-Macaulay R-modules, and by CM(R) its stable cate-
gory. It is known that CM(R) forms a triangulated category [Ha], and is triangle
equivalent to DR/perR [B]. Assume that R is an isolated singularity. Then CM(R)
forms a (d − 1)-CY triangulated category by a classical result due to Auslander
[Au1]. If M ∈ CM(R) is (d− 1)-cluster tilting, then Γ := EndR(R ⊕M) satisfies
gl.dimΓ = d and Γ ∈ CM(R) [I2]. In particular Γ is a non-commutative crepant
resolution in the sense of Van den Bergh [V]. The existence of a (d − 1)-cluster
tilting object in CM(R) is closely related to the geometry of resolutions of the
singularity SpecR.

Let S := k[[x1, · · · , xd]] be the formal power series ring over a field k of charac-
teristic zero, and let G be a finite subgroup of SLd(k). If the quotient singularity
R := SG is isolated, then S ∈ CM(R) is (d − 1)-cluster tilting [I1]. In particular,
if d = 2, we have CM(R) = addS and so R is representation-finite [Au2, He].

2. Main results

Let k be a field of characteristic zero. Let G = 1
n (a1, · · · , ad) be a cyclic

subgroup of SLd(k) generated by a diagonal matrix g = diag(ζa1 , · · · , ζad) with a
primitive n-th root ζ of unity and integers ai satisfying 0 < ai < n, (n, ai) = 1

and
∑d

i=1 ai = n. Let S = k[x1, · · · , xd] be a polynomial algebra of d variables.

Then S has a Z

n -graded algebra structure S =
⊕

i≥0 S i
n
defined by degxi :=

ai

n .

The invariant subring R := SG =
⊕

i≥0 Si is a Gorenstein isolated singularity. For

0 ≤ j < n, we define a Z-graded R-module T j :=
⊕

i≥0(T
j)i by (T j)i := Si+ j

n
.

Let T :=
⊕n−1

j=0 T
j. Then B := EndR(T ) has a Z-graded algebra structure B =⊕

i≥0 Bi with the degree zero part A := B0 = EndZR(T ). Let e be the idempotent
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of A corresponding to the direct summand T 0 of T , and A := A/〈e〉. Our main
result is the following [AIR]:

Theorem 1 We have a triangle equivalence CM(R) ≃ C
(d−1)
A .

Remark 2 (a) B is isomorphic to the skew group algebra S∗G [Au2], whose quiver
is given by the McKay quiver of G. The relations are given by higher derivative
of a potential [BSW].

(b) A related result is given in [DV].

(c) Theorem 1 is an analogue of Ueda’s equivalence CMZ(R) ≃ DA [U].

Example 3 Let G = 1
3 (1, 1, 1). The algebras B, A and A are presented by quivers

B : 0
��=

==

��=
==

��=
==

2

@@���
@@���
@@���

1oo oooo

A : 0
��=

==

��=
==

��=
==

2 1oooooo

A :

2 1oooooo

Thus CM(R) is triangle equivalent to the cluster category of 2 1oooooo , and we
recover a result by Keller and Reiten [KR].

Theorem 1 is a special case of the following result:
Let B =

⊕
i≥0 Bi be a graded k-algebra such that dimkBi <∞.

• B is a bimodule d-Calabi-Yau algebra of Gorenstein parameter 1, i.e. B ∈
perBe and RHomBe(B,Be)[d] ≃ B(1).
• A := B0 has an idempotent e such that eA(1− e) = 0.
• B is noetherian and B := B/〈e〉 is a finite dimensional k-algebra.
• C := eBe satisfies EndC(Be) = B and EndCop(eB) = B.

Theorem 4 We have a triangle equivalence F and the commutative diagram:

DA //

��

DA
−

L

⊗ABe // DC

��
C
(d−1)
A

F // CM(C)

The key observation is the following.

Lemma 5 There exists a triangle in D(modZ(Aop ⊗k B)):

A[−1] −→ RHomAe(A,Ae)
L

⊗A B(−1)[d− 1] −→ B −→ A

As an application of Lemma 5, the derived d-preprojective DG algebra [K2] of
A is B. In particular A is (d− 1)-representation-infinite in the sense of [IO] or a
quasi (d− 1)-Fano algebra in the sense of [MM].
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From total positivity to quantum algebras

Stéphane Launois

(joint work with Ken Goodearl and Tom Lenagan)

In recent publications, the same combinatorial description has arisen from three
separate objects of interest: totally nonnegative cells in the totally nonnegative
grassmannian [14, 15]; torus orbits of symplectic leaves in the classical grassman-
nian [3, 10]; and torus invariant prime ideals in the quantum grassmannian [5, 13].
The reasons for this coincidence were recently explored in the matrix case in col-
laboration with Ken Goodearl and Tom Lenagan [8, 9, 12]. Before stating our
main results, we give a bit of background on the three areas involved.

A real matrix is totally nonnegative (tnn for short) if all of its minors are non-
negative. The theory of tnn matrices was pioneered in the 1930’s by Gantmacher,
Krein and Schoenberg. Since then this theory has found numerous applications
not only in pure mathematics, but also in statistics, game theory, mathematical
economics, mathematical biology, etc. (See, for instance, [1, 6, 7].) One can spec-
ify a cell decomposition of the space of tnn matrices by specifying exactly which
minors are to be zero/nonzero. However, some cells are empty. Recently, in [14],
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Postnikov classified the nonempty cells by means of a bijection with certain dia-
grams, known as Le-diagrams. By using this bijection, Williams [15] was able to
count the number of nonempty cells. One natural question is then: what are the
families of minors that define nonempty cells?

The algebra of m × p quantum matrices is a noncommutative deformation of
the coordinate ring of the variety of m × p complex matrices. This algebra is
endowed with a natural action by a torus and a key ingredient in the study of
the structure of this algebra is an understanding of the torus invariant objects.
For instance, the Stratification Theory of Goodearl and Letzter [2] shows that,
in the generic case, a complete understanding of the prime spectrum of quantum
matrices would start by classifying the (finitely many) torus invariant prime ideals.
In [5], Cauchon succeeded in counting the number of torus invariant prime ideals in
quantum matrices. His method involved a bijection between certain diagrams, now
known as Cauchon diagrams, and the torus invariant primes. It was then proved
in [11] that every torus invariant prime ideal is generated by so-called quantum
minors (some distinguished elements of the algebra of quantum matrices). One
natural question here is: what are the families of quantum minors that generate
torus invariant prime ideals?

The semiclassical limit of quantum matrices is the classical coordinate ring of
the variety of matrices endowed with a Poisson bracket that encodes the nature
of the quantum deformation which leads to quantum matrices. As a result, the
variety of matrices is endowed with a Poisson structure, and so the variety of
matrices is a disjoint union of symplectic submanifolds called symplectic leaves.
Again, a natural torus action leads to a stratification of the variety via torus
orbits of symplectic leaves. In [3], Brown, Goodearl and Yakimov showed that
there are finitely many such torus orbits of symplectic leaves. The classification is
given in terms of certain ”restricted” permutations from the relevant symmetric
group with restrictions arising from the Bruhat order. Moreover each torus orbit
is defined by certain rank conditions on submatrices, so that the closure of a torus
orbit of symplectic leaves is defined by the vanishing of a family of minors. A
natural question is then: what are these families of minors?

The interesting observation from the point of view of this work is that in each
of the above three sets of results the combinatorial objects that arise turn out to
be the same, although the methods employed to obtain the results are very dif-
ferent! The definitions of Cauchon diagrams and Le-diagrams are the same, and
the restricted permutations arising in the Brown-Goodearl-Yakimov study can be
seen to lead to Cauchon/Le diagrams via the notion of pipe dreams. Postnikov’s
work is largely combinatorial, Brown-Goodearl-Yakimov employ algebraic geom-
etry, while Cauchon’s work is mainly noncommutative algebra. This coincidence
was first observed in [13], where the work of Cauchon on quantum matrices was
extended to the quantum grassmannian. More precisely, it was shown that torus
invariant prime ideals in the quantum grassmannian are in 1:1 correspondence
with nonempty cells in the totally nonnegative grassmannian–the space of points
in the real grassmannian whose Plücker coordinates are all nonnegative.
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More recently the connection between these three areas have been studied in
the matrix case [8, 9, 12]. The main result can be expressed as follows.

Theorem 1. Let F be a family of minors in the coordinate ring of Mm,p(C), and
let Fq be the corresponding family of quantum minors in Oq(Mm,p(C)). Then the
following are equivalent:

(1) The totally nonnegative cell associated to F is non-empty.
(2) F is the set of minors that vanish on the closure of a torus orbit of sym-

plectic leaves in Mm,p(C).
(3) Fq is the set of quantum minors that belong to a torus invariant prime in

Oq(Mm,p(C)).

The above families of (quantum) minors can then be described explicitly in the
Poisson case, and so in all three areas thanks to the above transfer theorem. As
torus invariant primes are generated by quantum minors in the generic case, this
allows us to describe explicitly the families of quantum minors that generate torus
invariant prime ideals. Recently and independently, Yakimov [16] also described
explicit families of quantum minors that generate torus invariant primes. However
his families of quantum minors are smaller than the ones appearing in Theorem 1
(3). The problem of deciding whether a given quantum minor belongs to the torus
invariant prime associated to a given Cauchon diagram has been studied recently
by Casteels [4] who gave a combinatorial criterion inspired by Lindström’s Lemma.
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Unipotent cells and preprojective algebras

Bernard Leclerc

(joint work with Christof Geiß and Jan Schröer)

The aim of the talk was to give an interpretation of the Chamber Ansatz of Beren-
stein, Fomin and Zelevinsly [2, 3] in terms of preprojective algebras (see also [6]).

Let Q be a finite quiver with vertex set {1, . . . , n} and without oriented cycles.
Denote by Λ the preprojective algebra of Q. Let g be the Kac-Moody Lie algebra
with Cartan datum given by Q, and let W be the Weyl group of g. The graded
dual U(n)∗gr of the universal enveloping algebra U(n) of the positive part n of g
can be identified with the coordinate ring C[N ] of an associated pro-unipotent
pro-group N with Lie algebra n.

For w ∈W , let Nw := N ∩ (B−wB−) be the corresponding unipotent cell in N .
Here B− denotes the standard negative Borel subgroup of a Kac-Moody group
attached to g. Let xi(t) denote the one-parameter subgroup of N associated to
the simple root αi. For each reduced expression i = (ir, . . . , i1) of w, the map

xi : (tr, . . . , t2, t1) 7→ xir (tr) · · ·xi2(t2)xi1(t1) = x

gives a birational isomorphism from (C∗)r to Nw.
In [5] we have described a cluster algebra structure on C[Nw] in terms of the

representation theory of Λ. For a nilpotent Λ-moduleX and a = (ar, . . . , a1) ∈ N
r,

let Fi,a,X be the projective variety of flags

X• = (0 = Xr ⊆ · · · ⊆ X1 ⊆ X0 = X)

of submodules of X such that Xk−1/Xk
∼= Sak

ik
for all 1 ≤ k ≤ r, where Sj denotes

the one-dimensional Λ-module supported on the vertex j of Q. The varieties
Fi,a,X were first introduced by Lusztig [7] for his Lagrangian construction of U(n).
Dualizing Lusztig’s construction, we can associate with X a regular function ϕX ∈
C[N ] satisfying

ϕX(xi(t)) =
∑

a∈Nr

χ(Fi,a,X)ta.

Here t = (tr, . . . , t1) ∈ Cr, ta := tar
r · · · t

a2
2 t

a1
1 , and χ denotes the topological Euler

characteristic.
Buan, Iyama, Reiten, and Scott [1] have attached to w a 2-Calabi-Yau Frobenius

subcategory Cw of the category of finite-dimensional nilpotent Λ-modules. (The
same categories were studied independently in [4] for special elements w called
adaptable.) In [5] we showed that the C-span of

{ϕX | X ∈ Cw}



Interactions between Algebraic Geometry and Noncommutative Algebra 1345

is a subalgebra of C[N ], which becomes isomorphic to C[Nw] after localization at
the multiplicative subset

{ϕP | P is Cw-projective-injective}.

Moreover, we showed that this provides a cluster algebra structure on C[Nw],
whose cluster variables are of the form ϕX for indecomposable modules X in Cw
without self-extension.

The category Cw comes with a remarkable module Vi for each reduced expression
i of w (see [1, Section III.2], [5, Section 2.4]). The ϕ-functions of the indecom-
posable direct summands of Vi are some generalized minors on N which form a
natural initial cluster of C[Nw]. We introduce the new module

Wi := Iw ⊕ Ωw(Vi),

where Ωw = τ−1w is the inverse Auslander-Reiten translation of Cw, and Iw is the
direct sum of the indecomposable Cw-projective-injectives. For a Λ-module X , the
set Ext1Λ(Wi, X) is in a natural way a left module over the stable endomorphism
algebra

E := EndCw (Wi)
op ∼= EndCw (Vi)

op.

Denote by Gr
E
d(Ext

1
Λ(Wi, X)) the variety of E-submodules of Ext1Λ(Wi, X) with

dimension vector d, a so-called quiver Grassmannian. Our first main result is

Theorem 1. For X ∈ Cw and all a ∈ Nr, there is an isomorphism of projective
varieties

Fi,a,X
∼= Gr

E
di,X (a)(Ext

1
Λ(Wi, X)).

Here, di,X denotes an explicit combinatorial bijection from {a | Fi,a,X 6= ∅} to

{d | Gr
E
d(Ext

1
Λ(Wi, X)) 6= ∅}.

It follows easily that the set {a | Fi,a,X 6= ∅} has a unique element if and only

if Ext1Λ(Wi, X) = 0. Now by construction, Wi is a cluster-tilting module of Cw,
that is, Ext1Λ(Wi, X) = 0 if and only if X belongs to the additive hull add(Wi) of
Wi. Moreover, in this case Fi,a,X is reduced to a point. Hence Theorem 1 has the
following important consequence:

Theorem 2. For X ∈ Cw, the polynomial function t 7→ ϕX(xi(t)) is reduced to
a single monomial ta if and only if X ∈ add(Wi).

Let Wi,1, . . . ,Wi,r denote the indecomposable direct summands of Wi. The r-
tuple of regular functions (ϕWi,1

, . . . , ϕWi,r
) is a cluster of C[Nw], and it follows

from Theorem 2 that the ϕWi,k
(xi(t)) are monomials in the variables t1, . . . , tr.

Inverting this monomial transformation yields expressions of the tk’s as explicit
rational functions on Nw, a result originally called Chamber Ansatz by Berenstein,
Fomin and Zelevinsky [2] in type An, because of a convenient description of these
formulas in terms of chambers in a wiring diagram. To present these formulas
in the general Kac-Moody setting, we need more notation. By construction, the
summands Vi,k of Vi are related to the modules Wi,k by short exact sequences

0→Wi,k → P (Vi,k)→ Vi,k → 0
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where for X ∈ Cw, P (X) denotes the projective cover in Cw. We set

ϕ′Vi,k
:=

ϕWi,k

ϕP (Vi,k)
,

a Laurent monomial in the ϕWi,k
(since add(Wi) contains all Cw-projectives).

Denote by q(i, j) the number of edges between two vertices i and j of the
underlying unoriented graph of the quiver Q. For 1 ≤ k ≤ r, put

(1) Ci,k :=
1

ϕ′Vi,k
ϕ′V

i,k−(ik)

·
n∏

j=1

(
ϕ′V

i,k−(j)

)q(ik,j)
,

where k−(j) := max{0, 1 ≤ s ≤ k − 1 | is = j} and Vi,0 is by convention the zero
module.

Theorem 3 (Chamber Ansatz). For 1 ≤ k ≤ r and t = (tr, . . . , t1) we have
Ci,k(xi(t)) = tk. Therefore, for X ∈ Cw we get an equality in C[Nw]:

(2) ϕX =
∑

a∈Nr

χ(Fi,a,X)Car

i,r · · ·C
a2

i,2C
a1

i,1.

For x ∈ Nw, the intersection N ∩ (B−wxT ) consists of a unique element, which,
following [2, 3, 5], we denote by ηw(x). The map ηw is in fact a regular automor-
phism of Nw, and we denote by (η∗w)

−1 the C-algebra automorphism of C[Nw],
defined by

((η∗w)
−1f)(x) = f(η−1w (x)), (f ∈ C[Nw]).

Theorem 4. For every X ∈ Cw, we have

(η∗w)
−1(ϕX) =

ϕΩw(X)

ϕP (X)
.

Thus, the regular functions ϕ′Vi,k
occuring in Theorem 3 are obtained by twisting

the generalized minors ϕVi,k
with η−1w , in agreement with [2, 3] in the Dynkin case.

What Theorem 4 is saying is that the automorphism η−1w of Nw is “induced”
by the auto-equivalence Ωw of Cw, via the map X 7→ ϕX . It would be interesting
to find other examples of automorphisms of Nw which can be “lifted” to auto-
equivalences of Cw.
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Deformations of linear sites and projective schemes

Wendy Lowen

The starting point for this talk is the philosophy that Grothendieck categories
are good models for non-commutative spaces. In joint work with Michel Van den
Bergh in [6], a deformation theory for abelian categories was developed, and in
the same paper we prove that the deformation of a Grothendieck category remains
Grothendieck. We have the following basic result:

Proposition 1. [6] For a linear category a, there is a deformation equivalence

Def lin(a) −→ Defab(Mod(a)) : b −→ Mod(b)

from linear deformations of a to abelian deformations of Mod(a).

Remark 1. (1) Deformations are infinitesimal, in the direction of Artin local
k-algebras R with maximal ideal m, and flat in appropriate senses (see
[6]).

(2) If a has a single object and hence reduces to an algebra, linear deformations
of a are simply algebra deformations of A.

(3) By definition, an abelian category C is embedded in a deformation D in
such a way that C is equivalent to Dk = {D ∈ D | mD = 0}.

The main point in the proof is to associate a linear deformation of a to a given
abelian deformation D of C = Mod(a). Considering the objects A ∈ a as objects
of C, we make essential use of the following two facts:

(1) Ext1,2C (A,A) = 0 (in order to obtain unique flat lifts of the individual
objects of a along the left adjoint k ⊗R − of the embedding C −→ D);

(2) Ext1C(A,A) = 0 (in order to organize the lifted object as a linear deforma-
tion b ⊆ D of a).

Proposition 1 tells us that the non-commutative deformation theory of affine
schemes is entirely controlled by Gerstenhaber’s deformation theory for algebras.

Next, we look into the situation for projective schemes. Consider a projective
scheme X = Proj(A) for some N-graded algebra A. By Serre’s theorem, we have
Qch(X) ∼= Qgr(A). We turn A into a linear category a with Gr(A) = Mod(a) by
putting Ob(a) = Z and a(n,m) = An−m. Since A is N-graded, we have a(n,m) = 0
unless n ≥ m. Thus, a is a positively graded Z-algebra in the sense of [2]. From
now on, we let a be an arbitrary positively graded Z-algebra.

The localization Qgr(A) of Gr(A) is usually captured by quotienting out torsion
modules. Here, we take a different approach. We will define a localization of
Mod(a) by means of a linear topology on a (see eg. [4]). This topology is naturally
induced by a Grothendieck topology on the underlying poset U = (Z,≥). For
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n ≥ m, define the sieve R≥nm covering m by R≥nm = {k ∈ Z | k ≥ n} and define the
tails topology tails on U by

tails(m) = {R≥nm | n ≥ m} = {R sieve | R 6= ∅}.

In the set theoretic world, this almost discrete topology is not very exciting, and
in fact its sheaf category is simply Set. However, when we “linearize” to a, we
do obtain something interesting. More precisely, let (R≥nm )a be the linear sieve
covering m with

(R≥nm )a = {a : k → m in a | k ≥ n}

and put

Latails = {R | ∃ (R≥nm )a ⊆ R}.

Then Latails automatically satisfies the identity and pullback axioms for a topology,
and we define T a

tails to be the closure of Latails under glueings. Finally, we put

Qmod(a) = Sh(a, T a
tails),

the category of linear sheaves on a with respect to T a
tails. On the other hand, let

Tors(a) ⊆ Mod(a) be the subcategory of filtered colimits of right bounded modules.
In joint work with my PhD student Olivier De Deken, we prove:

Proposition 2. [3]

(1) Latails = T
a
tails if and only if Tors(a) is localizing, and in this case Qmod(a) ∼=

Mod(a)/Tors(a).
(2) If all the (R≥nm )a are finitely generated in Mod(a), then Latails = T

a
tails.

(3) If A is a connected N-graded algebra with associated a, then all the (R≥nm )a

are finitely generated if and only if A is finitely generated as an algebra.

It is known that an Artin-Zhang theorem [1] for Z-algebras exists. Such a
theorem has been stated in [8] in the noetherian context, and in [7], a version of
the theorem under weaker coherence assumptions was obtained. In [3], we prove
our own version of the theorem, refining some of the techniques from [4].

Theorem 1. [3] Let (O(n))n be a sequence of objects in a Grothendieck category
C, and put

a(n,m) =

{
C(O(−n),O(−m)) if n ≥ m

0 otherwise.

Suppose that Latails = T
a
tails. The following are equivalent:

(1) a −→ C induces C ∼= Qmod(a).
(2) a −→ C induces a localization C −→ Mod(a) and TC = T a

tails.
(3) (a) (O(n))n generates C.

(b) (O(n))n is tails-projective (i.e. every element in ExtiC(O(−n),M)
can be effaced on a tails-cover of n).

(c) (O(n))n is tails-finitely presented.
(d) for m ≤ n, there is an epimorphism ⊕iO(−ni) −→ O(m) with every

ni ≥ n.
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Remark 2. If C is locally finitely presented and the objects O(n) are finitely pre-
sented, condition (c) is automatic, and (a) and (d) can be combined into the more
familiar

(ad) (O(n))n is ample, i.e. for every finitely presented M there is an n0 such
that for all n ≥ n0 there is an epimorphism ⊕iO(−ni) −→ M with every
ni ≥ n.

Next, we turn to deformations. Suppose (O(n))n induces C ∼= Qmod(a). There
is a natural

Def lin(a) −→ Defab(C) : b 7−→ Qmod(b)

and we are interested when this is in fact a deformation equivalence. In analogy
with the situation in Proposition 1, there are two main types of Ext vanishing
conditions involved. The first one is:

(1) Ext1,2C (O(n),O(n)) = 0 for all n ∈ Z.

The second one, involving Ext’s between different objects, allows for a relaxation
provided we strengthen tails-projectivity in the following sense. We call (O(n))n
strongly tails projective if for all m ∈ Z and M ∈ C there is an n0 ≥ m such that
for all n ≥ n0 we have ExtiC(O(−n),M) = 0.

Remark 3. (1) The combination of ampleness and strong tails projectivity is
called strong ampleness in the papers [9, 10]. These papers were one of
the motivations for the development of the deformation theory in [6].

(2) In the classical geometric situation where (O(n))n is obtained from an
ample line bundle, the sequence is strongly ample.

(3) For our purpose, we only need the strong tails projectivity condition for
all m ∈ Z and M = O(−m).

Suppose (O(n))n induces C ∼= Qmod(a) and is strongly tails projective, and
consider U = (Z,≥). For all m, fix an nm ≥ m such that for all n ≥ nm, we have

ExtiC(O(−n),O(−m)) = 0. Then we define a new order on Z by

n ≥′ m ⇐⇒ [n ≥ nm ∨ n = m].

We obtain a new site U ′ = (Z,≥′) with induced tails topology tails′ (still consisting
of all nonempty sieves), and an induced a′ ⊆ a with Qmod(a′) ∼= Qmod(a). We
have the following

Proposition 3. Suppose (O(n))n induces C ∼= Qmod(a), is strongly tails projective

and satisfies Ext1,2C (O(n),O(n)) = 0 for all n. Let a′ be as above. Then

Def lin(a
′) −→ Defab(C) : b −→ Qmod(b)

is a deformation equivalence.

Remark 4. (1) The fact that there is a deformation equivalence Def lin(a
′) −→

Defab(C) is an immediate application of [6]. To see that this map has the
correct prescription, the tails topology turns out to be very natural (see
[3] in the situation where we can take a′ = a).
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(2) The fact that, regardless of the ground ring towards which we’re deform-
ing, the underlying non-linear tails Grothendieck topology controlls the
entire deformation process, is analogous to the situation in [5] where de-
formations of categories of sheaves of OX -modules are controlled by the
standard (prototypical) Grothendieck topology on the underlying space
X . An important difference, however, is that in our current setup a is not
fibered over (Z,≥). A more general treatment of deformations of linear,
and in particular linearized sites, is work in progress.

Acknowledgement. The author is very grateful to Michel Van den Bergh for the
original idea of using Z-algebras to capture abelian deformations of projective
schemes, and for other interesting ideas.
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Restricted rational Cherednik algebras and Hecke algebras

Maurizio Martino

Let G be a complex reflection group, with reflection representation V . Let S ⊂ G
be the set of reflections inG. Given aG-invariant function c : S → C one can define
the rational Cherednik algebra (at t = 0) Hc. These algebras form a flat family of
deformations of the smash product algebra C[V ⊕V ∗]∗G, which were introduced in
[1] and have interesting connections to representation theory, geometry, integrable
systems and combinatorics.

The Hc are PI algebras and we are interested in their representation theory
and how this relates to the geometry of the centre Zc of Hc. In particular, one
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goal is to understand simple modules for Hc. Schur’s Lemma ensures that all
simple modules are annihilated by a maximal ideal of Zc, and so the strategy is
to consider the finite dimensional quotients Hc/mHc, where m⊳Zc is a maximal
ideal. Unfortunately both the centre Zc and the quotient algebras Hc/mHc are,
in general, poorly understood. One approach is instead to consider the inclusion
of algebras

A := C[V ]G ⊗ C[V ∗]G ⊂ Zc ⊂ Hc,

where each algebra is module-finite over each subalgebra. Then one studies quo-
tients of the form Hc/nHc, where n ⊳ C[V ]G ⊗ C[V ∗]G is a maximal ideal. This
situation is somewhat more manageable since C[V ]G ⊗C[V ∗]G is well-understood
- it is a polynomial ring in 2 DimV variables - and the quotient algebras have a
more transparent structure. The finite-dimensional quotients Hc/nHc are called
reduced rational Cherednik algebras. Of particular interest is the restricted ra-
tional Cherednik algebra Hc := Hc/n+Hc, where n+ ⊳ C[V ]G ⊗ C[V ∗]G is the
maximal ideal consisting of polynomials with zero constant term. These algebras
are Z-graded and have simple modules indexed by the irreducible modules of G.

Our main result concerns the block structure of the algebraHc in the case where
G is a wreath product Sn⋉Zn

m, where Sn denotes the symmetric group on n letters.
In this situation, the irreducible modules of G can be parametrised by the set of
m-multipartitions of n, P(m,n). Thus the partition into blocks can be thought
of as a partition of the set P(m,n). In particular, one can use combinatorics to
describe the blocks. To any multipartition λ ∈ P(m,n) (or more precisely its
Young diagram), one can associate an element of the group algebra of (C,+) over
Z, that is, a polynomial which is a sum of monomials xa with a ∈ C, which is
called the residue of λ and is denoted Res(λ). Given an element d ∈ Cm, one can

define a shifted residue Resd(λ) by multiplying certain summands of Res(λ) by
xdi .

Theorem. There exists an explicit linear function f mapping c into Cm such

that λ, µ ∈ P(m,n) lie in the same block if and only if Resf(c)(λ) = Resf(c)(µ).

Let us say a few words about this result. It has its origins in the work of
Gordon, [2], who proved this theorem under the condition that f(c) has rational
entries and who used geometric techniques. Our proof is algebraic, and relies on
finding a large enough subalgebra of Zc, such that the blocks of Hc are determined
by this subalgebra; the proof then boils down to combinatorial calculations for
representations of the group G. It has been noted in [3] and [4] that this block
decomposition is related to the so-called Rouquier blocks of a cyclotomic Hecke
algebra for G. This observation only makes sense when f(c) has rational entries
(since the Hecke algebra is only well-defined in this sitaution). One can however
compare the theorem with the block decomposition for a degenerate cyclotomic
Hecke algebra at parameters f(c), [5], and one finds that these two descriptions are
equivalent. In fact, it is a type of degenerate Hecke algebra which gives rise to the
central subalgebra used in the proof of the theorem above; the exact relationship,
however, between Hc and Hecke algebras remains unclear for the moment.
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A categorification of the quantum Frobenius on U
+

Kevin McGerty

Let k be a field of charactistic p > 0 and G be an affine algebraic group over
k. Then, as a variety over k, the group G can be equipped with a Frobenius
morphism F : G→ G, which moreover is in fact an endomorphism. The existence
of this map is of fundamental importance in the study of the representation theory
and geometry of G (see for example [14], [1]).

Let Uv(g) be the quantum group attached to a symmetrizable Kac-Moody Lie
algebra g. In the late 80s, Lusztig [9], [10] discovered that when the parameter
v is specialised to ε an ℓ-th root of unity, there is a homomorphism Fr from
the resulting algebra Uε(g) to the integral form of the enveloping algebra UZ(g),
providing a “q-analogue” of the Frobenius morphism in positive characteristic. In
fact the relation is more precise: Lusztig’s map Fr gives an integral lift of the
classical Frobenius morphism: if ℓ = char(k), then after base changing to k one
obtains the transpose of the map F on the hyperalgebra of G. (Here of course our
integers are the ring of cyclotomic integers Z[ε]).

The existence of this map was a basic ingredient in the program, constructed by
Lusztig [11], to compute the characters of irreducible representations of algebraic
groups in fields of positive characteristic [6], [2], [5]. More recently, Kumar and
Littelmann [8], [7] succeeded in obtaining proofs of many theorems on the geometry
of Schubert varieties, (including for example their normality) via the quantum
Frobenius map and its splitting. Finally, the existence of the quantum Frobenius
is also used in establishing the connection between quantum groups at a root of
unity and perverse sheaves on the affine Grassmannian [3].

The classification of quantum groups (or indeed Kac-Moody Lie algebras) al-
lows one to attach to any such algebra a graph, generalising Dynkin’s graphs
for semisimple Lie algebras. Another central discovery in the theory of quantum
groups was Ringel’s realisation [13] that the positive part of a quantum group could
be constructed as a Hall algebra built from the isomorphism classes of represen-
tations of the quiver whose underlying graph is this graph. As well as building a
remarkable bridge between the representation theory of finite-dimensional algebras
and quantum groups, this work led Lusztig to the discovery of the canonical basis,
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by “categorifying” the Hall algebra construction: that is, lifting the Hall algebra
construction to a convolution operation on perverse sheaves on the moduli space
of representations of the quiver.

In my talk I wish to describe a new perspective on the quantum Frobenius which
shows how the map can be constructed in this sheaf-theoretic context. The con-
struction is based a localisation known as “hyperbolic localisation” and Lusztig’s
work on quivers with automorphisms. It both “categorifies” the quantum Frobe-
nius, and at the same time gives a essentially computation free proof of its exis-
tence. At the present time, however, only in the case where the root lengths are
coprime to the integer ℓ – Lusztig’s later work [12] deals also with the special cases
where condition does not hold, but we hope that our construction can be extended
to include all cases.

The realisation of the quantum Frobenius in the context of perverse sheaves also
raises the question of how it acts on the canonical basis. We also discuss the ques-
tion of what compatibility might be expected between the two structures. More
precisely, there are a number of combinatorial constructions which are shadows of
the existence of the canonical basis, and many of these display a kind of ”scaling”
phenomenon (see for example [4]) which appears to be related to the quantum
Frobenius.
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Point modules on naive Blow-ups

Tom Nevins

(joint work with Susan J. Sierra)

1. Introduction

One of the important achievements of noncommutative projective geometry is
the classification of noncommutative projective planes, or equivalently graded rings
that are noncommutative analogs of polynomial rings in three variables; see [SV01]
for a discussion. The technique of Artin-Tate-Van den Bergh for classifying such
noncommutative rings relies heavily on the study of point modules, or cyclic graded
modules with Hilbert series 1 + t + t2 + t3 + . . . . The existence and description
of a moduli scheme for the point modules allow those authors to construct a
homomorphism to a well-understood ring, which provides a first step in describing
the structure of the noncommutative plane itself.

A noetherian algebra R is said to be strongly noetherian if for any commutative
noetherian algebra C, the tensor product C ⊗k R is again noetherian. A general
result of Artin-Zhang shows that if R is any strongly noetherian, connected graded
algebra generated in degree one, then its point modules are parametrized by a
projective scheme. More recently, Rogalski-Zhang have used this to extend the
method of Artin-Tate-Van den Bergh to study general strongly noetherian graded
algebras R.

Although it was believed for a time that all connected graded noetherian al-
gebras would be strongly noetherian, Keeler-Rogalski-Stafford [KRS05, RS07] ge-
ometrically constructed a beautiful class of new examples, called naive blow-ups,
of noncommutative graded k-algebras that are noetherian but not strongly noe-
therian. Along the way, Keeler-Rogalski-Stafford showed that families of R-point
modules for naive blow-ups—viewed as objects of noncommutative projective ge-
ometry, in a way we make precise below—cannot behave well in families: there
can be no fine moduli scheme of finite type for point modules.

In joint work with S. J. Sierra, we systematically develop the moduli theory
of point modules for the naive blow-ups R of [KRS05, RS07]. Roughly speaking,
we show that there is an analog of a “Hilbert scheme of one point on Proj(R)”
that is an infinite blow-up of a projective variety. This infinite blow-up is quasi-
compact and noetherian as an algebraic stack. Furthermore, we prove that there
is a “coarse moduli space for one point on Proj(R)” that is an ordinary projective
variety. These are the first descriptions of moduli structures for the point modules
on a naive blow-up.

More precisely, let k be an uncountable algebraically closed field and let X
be an irreducible projective k-variety of dimension at least 2. Let Z be a zero-
dimensional subscheme of X . Let σ ∈ Aut(X) be an automorphism and assume
that all points in the support of Z have critically dense orbit: each such orbit is
infinite and every infinite subset of it has Zariski closure equal to X . Given such
data together with a σ-ample invertible sheaf L on X , Rogalski-Stafford define a
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graded noncommutative algebra R = R(X,Z,L, σ), the naive blow-up associated
to (X,Z,L, σ). For simplicity, we assume R is generated in degree one.

An ℓ-shifted embedded R-point module is a graded moduleM with Hilbert series
tℓ + tℓ+1 + tℓ+2 + . . . together with a choice of surjection R≥ℓ → M . Two such
quotients M and M ′ are isomorphic if there is an R-module isomorphism from M
to M ′ that intertwines the maps from R≥ℓ. Forgetting the map from R≥ℓ to M ,
we call the module M an ℓ-shifted point module. We call a 0-shifted (embedded)
point module simply an (embedded) point module.

Our first main theorem characterizes moduli of embedded point modules. Recall

that X̃ is a fine moduli space for embedded point modules if there is an R-module

quotient R⊗kOX̃ →M makingM an X̃-flat family of embedded R-point modules,
with the property that, if R ⊗k C → M ′ is any C-flat family of embedded point

modules for a commutative k-algebra C, then there is a morphism Spec(C)
f
−→ X̃

and an isomorphism f∗M ∼= M ′ of families of embedded R-point modules. Let
I1 = IZ be the ideal sheaf of Z and set In = I1 ⊗ σ∗I1 ⊗ · · · ⊗ (σn−1)∗I1. Let
Xn = BlIn X . We get an inverse system · · · → Xn → Xn−1 → . . . of schemes.

Let X̃ = lim
←−

Xn; this inverse limit exists as a stack. In fact:

Theorem 1 ([NS1]). The inverse limit X̃ is a noetherian algebraic stack. The

morphism X̃ → X is quasicompact. Moreover, X̃ is a fine moduli space for em-
bedded R-point modules.

Note that the stack X̃ is discrete: its points have no stabilizers. Thus, X̃ is
actually a k-space in the terminology of [LM]; in particular, this justifies our use

of the phrase “fine moduli space” in the statement of the theorem. However, X̃
does not seem to have an étale cover by a scheme, and hence does not have the
right to be called an algebraic space.

Associated to R there is a noncommutative projective scheme: by definition, this
means the quotient category Qgr-R = Gr-R/Tors-R of graded right R-modules
by the full subcategory of locally bounded modules. A point object in Qgr-R is
the image of an ℓ-shifted point module for some ℓ.

Let ℓ≫ 0 and let F be the moduli functor of embedded ℓ-shifted point modules
over R. Define an equivalence relation ∼ on F (C) by saying that M ∼ N if (their
images) are isomorphic in Qgr-RC . Define a functor G : Affine schemes −→ Sets
by sheafifying (in the étale topology) the presheaf Gpre of sets defined by SpecC 7→
F (C)/ ∼.

A scheme M is a coarse moduli scheme for point objects if it corepresents the
functor G: that is, there is a natural transformation G → Hom(−,M) that is
universal for natural transformations from G to schemes.

Theorem 2 ([NS1]). The variety X is a coarse moduli scheme for point objects
in Qgr-R.

Note that, by Theorem 10.4 of [KRS05], there can be no fine moduli scheme of
finite type for point objects of Qgr-R.
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Corollary 2. There is a fine moduli space X̃ for embedded R-point modules but
only a coarse moduli scheme X for point objects of Qgr-R.

It may be helpful to compare the phenomenon described by the corollary to
a related, though quite different, commutative phenomenon. Namely, let S be a
smooth projective (commutative) surface. Fix n ≥ 1. Let R = C[S] denote a
homogeneous coordinate ring of S (associated to a sufficiently ample line bundle
on S), and, for appropriate fixed ℓ = ℓ(n), consider graded quotient modules
R≥ℓ → M for which hM (t) = ntℓ + ntℓ+1 + . . . and M is generated by Mℓ. By
a general theorem of Serre, the moduli space for such quotients is the Hilbert
scheme of n points on S, denoted Hilbn(S). This is a smooth projective variety of
dimension 2n. Alternatively, remembering only the corresponding objects [M ] of
Qgr-R ≃ Qcoh(S), and imposing the further S-equivalence relation (see Example
4.3.6 of [HL97]), we get the moduli space Symn(S) for semistable length n sheaves
on S, which equals the nth symmetric product of S. The latter moduli space
is only a coarse moduli space for semistable sheaves. One has the Hilbert-Chow
morphism Hilbn(S) → Symn(S) which is defined by taking a quotient R≥ℓ → M

to the equivalence class ofM . It is perhaps helpful to view X̃ → X , in light of the
theorems stated above, as a kind of “noncommutative Hilbert-Chow morphism of
one point” for a naive blow-up algebra R(X,P, σ,L).

In a work in preparation [NS2], we prove a kind of converse theorem that
generalizes the recent work of Rogalski-Zhang. Namely, suppose R is a connected,
graded noetherian ring generated in degree one; and that R has a fine moduli space

X̃ for embedded point modules, that R has a projective coarse moduli scheme X

for point objects of Qgr-R, and that the spaces X̃ and X and the morphism

X̃ → X between them have geometric properties similar to those of the spaces we
encountered in the theorems above. Then, we show, there exist an automorphism
σ of X , a zero-dimensional subscheme Z ⊂ X supported on points with critically
dense orbits, an ample and σ-ample line bundle L on σ, and a homomorphism
φ : R → R(X,Z,L, σ) from R to the naive blow-up associated to (X,Z,L, σ);
furthermore, φ is surjective in large degree. This construction gives a new tool for
analyzing the structure of rings that are noetherian but not strongly noetherian.
Details will appear in [NS2].
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[RS07] D. Rogalski and J. T. Stafford, Näıve noncommutative blowups at zero-dimensional

schemes, J. Algebra 318 (2007), no. 2, 794–833.
[SV01] J. T. Stafford and M. Van den Bergh, Noncommutative curves and noncommutative

surfaces, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 171–216.



Interactions between Algebraic Geometry and Noncommutative Algebra 1357

Quivers and Donaldson-Thomas type invariants

Markus Reineke

If X is a smooth irreducible projective complex variety of dimension three, then
by a result of Cheah, we have

∞∑

n=0

χ(X [n])tn =
∏

i≥1
(1− ti)−iχ(X),

where X [n] is the Hilbert scheme of n points in X , and χ denotes topological Euler
characteristic.

We are interested in a noncommutative analogue of this result, motivated by the
framework of [1] for the definition of Donaldson-Thomas type invariants of non-
commutative Calabi-Yau threefolds.

We start with a finite quiver Q with set of vertices I and arrows α : i → j; its
Euler form is denoted by 〈d, e〉 for d, e ∈ ZI. We choose a functional Θ ∈ (QI)∗

and define the slope of d =
∑

i dii ∈ NI \ {0} as µ(d) = Θ(d)/ dim d, where
dim d =

∑
i di. This allows us to define a notion of (semi-)stability for complex

finite-dimensional representations M of Q.

For dimension vectors d, n ∈ NI, we can then define moduli spaces MΘ−st
d (Q)

parametrizing isomorphism classes of stable representations of Q of dimension vec-
tor d up to isomorphism, and moduli spaces MΘ

d,n(Q) parametrizing pairs (M, f)
consisting of a semistable representation of dimension vector d and a map f from
the projective representation

⊕
i P

ni

i to M such that µ(U) < µ(M) for all proper
subrepresentations U of M containing the image of f .

The family of moduli spaces (MΘ−st
d (Q))d might be viewed as a “noncommutative

(projective) variety”, and the family (MΘ
d,n(Q))d might be viewed as a replacement

for the Hilbert schemes of points.

For i ∈ I, d ∈ NI and µ ∈ Q, we define generating series of Euler characteristic

Qi
µ(x) =

∑

d:µ(d)=µ

χ(MΘ
d,i(Q))xn ∈ Z[[xi : i ∈ I]]

and Sd
µ(x) =

∏
j∈I Q

j
µ(x)

−〈d,j〉. We have the following noncommutative analogue
of Cheah’s result:

Theorem 1. The formal series Sd
µ(X) are determined by the system of functional

equations

Sd
µ(x) =

∏

e:µ(e)=µ

(1 − teSe
µ(x))

〈d,e〉·χ(MΘ−st
e (Q)).

As an example, we consider the quiver Q with a single vertex and m loops, thus
we consider moduli spaces for finite-dimensional representations of free algebras
A = C〈x1, . . . , xm〉. The analogues of Hilbert schemes of points are the Hilbert

schemes Hilbd(A) parametrizing codimension d left ideals in A. These admit a
complex cell decomposition, whose cells are parametrized by m-ary trees with d
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nodes; the generating function F (t) =
∑∞

d=0 χ(Hilb
d(A))td ∈ Z[[t]] is thus deter-

mined by the functional equation F (t) = (1− tF (t)m−1)−1. We have the following
explicit Euler product factorization:

Theorem 2. We have F (t) =
∏

i≥1(1− ((−1)m−1t)i)−iDTi , where

DTi =
1

(m− 1)i2

∑

j|i
µ(i/j)(−1)(m−1)j

(
mj − 1

j

)
∈ Z.

The integers DTi might be viewed as Donaldson-Thomas type invariants of
“noncommutative affine space”.

The relation to [1] is given by the following “wall-crossing” formula:

Assume that Q has no oriented cycles, and label the vertices I = {i1, . . . , in} of
Q such that k > l if there exists an arrow ik → il. Let Φ be the Coxeter element
defined by 〈Φ(d), e〉 = −〈e, d〉. Define a Poisson algebra B = Q[[xi : i ∈ I]] with
Poisson bracket {xd, xe} = {d, e}xd+e, where {, } denotes the antisymmetrization
of the Euler form. In the group Γ of Poisson automorphisms of B, we have elements
Td for d ∈ NI defined by Td(x

e) = xe(1 + xd){d,e}.

Theorem 3. In Γ, we have the following identity:

Ti1 · . . . · Tin =
←∏

µ∈Q
(Tµ : xd 7→ xd · S(id+Φ)(d)

µ (x)).
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Torsion pairs and matrix categories

Claus Michael Ringel

Matrix categories were introduced by Drozd in 1972 in order to provide an abstract
setting for dealing with matrix problems (as considered at that time intensively in
Kiev and elsewhere), but results concerning the use of matrix categories are hidden
in the literature. The theme of the lecture (in particular, its start) was devoted to
a surely folklore result concerning the partial reconstruction of an abelian category
from a torsion pair. By definition, a torsion pair (F ,G) in an abelian category A
is a pair of two full subcategories which are closed under isomorphisms such that
first of all Hom(G,F ) = 0 for all objects G in G and F in F , and second any
object A in A has a subobject tA which belongs to G such that A/tA belongs
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to G (note that we use the convention that the first entry of the pair (F ,G) is
the subcategory F of “torsionless” objects, the second entry the subcategory G
of “torsion” objects; this corresponds to the vision that non-zero maps are drawn
from left to right whenever this is possible).

Given two additive categories A and B, an A-B-bimodule AEB is by definition
a bilinear functor Aop × B → mod k. Given such an A-B-bimodule E = AEB, we
consider the matrix category of E as introduced by Drozd: its objects are triples
(A,B,m), where A is an object of A, B is an object of B and m ∈ E(A,B),
and a morphism (A,B,m) → (A′, B′,m′) is a pair (α, β), where α : A → A′ and
β : B → B′ are morphisms in A, and B respectively, such that mβ = αm′.

Proposition. Let (F ,G) be a torsion pair in the abelian category A. Given
A ∈ A, let ǫA be the equivalence class of the canonical exact sequence 0 → tA →
A → A/tA → 0 with tA in G and A/tA in F , this is an element of the group
Ext1(A/tA, tA). Then η(A) = (A/tA, tA, ǫA) defines a functor η from the category
A to the matrix category of the F-G-bimodule Ext1(F ,G) which is full and dense
and its kernel is the ideal generated by all maps F → G.

In particular, in case A is a Krull-Remak-Schmidt category, then we see that
the kernel of the functor η lies in the radical of A and therefore η provides a
bijection between the isomorphism classes of indecomposable objects of A and of
the matrix category of the bimodule Ext1(F ,G).

The second part of the lecture was devoted to an application concerning the
module category of a cluster-tilted algebra as introduced by Buan, Marsh and
Reiten. Here, one begins with a tilted algebra B, thus with a tilting module T over
a finite-dimensional hereditary algebra A so that B is the endomorphism ring of
T . Note that the global dimension of B is at most 2 and we may consider the B-B-
bimodule I = Ext2(DB,B), where D is the k-duality. The corresponding cluster-
tilted algebra Bc may be defined as the trivial extension of B by the bimodule I.
The tilting module T provides a torsion pair (F ,G) in the module category modA,
as well as a torsion pair (Y,X ) in modB, and the latter is even split (this means
that any indecomposable B-module belongs either to Y or to X )), such that G is
equivalent to Y and F is equivalent to X . The pair (Y,X ) is still a torsion pair in
modBc, but usually no longer split: the indecomposable Bc-modules which are not
B-modules (thus those not annihilated by I) are neither torsion nor torsionfree; it
is the multiplication by I which is responsible for obtaining non-trivial extensions
of torsion modules by torsionfree modules, and these are the modules we are
interested in!

Now the proposition asserts that the category modA/〈Hom(F ,G)〉 is equiva-
lent to the matrix category for the F -G-bimodule Ext1(F ,G). Some calculations
show that for modBc, one may invoke in a similar way the matrix category of the
G-F -bimodule Hom(G, τF). In this way, we see that the module categories modA
and modBc are related to each other via the bimodule Ext1(F ,G) as well as its
dual Hom(G, τF), the duality being one of the basic assertions of the Auslander-
Reiten theory (note that the algebra A we start with is assumed to be hereditary).
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The relationship shows that for k algebraically closed and T a preprojective tilt-
ing module (so that B is a concealed and Bc a “cluster-concealed” algebra) the
dimension vectors of the indecomposable Bc-modules are the absolute values of
the roots of the corresponding Kac-Moody root system. The proof relies on the
one hand on a separation property or the support of torsion and torsionless B-
modules, and on the other hand on an old result of de la Peña and Simson: they
have shown that the indecomposable objects of the matrix category of a bimodule
E correspond bijectively to the positive roots of some quadratic form rE provided
the matrix category of E is directed.

In the special case when A (and therefore also Bc) is representation-finite, we
show in this way that the indecomposable Bc-modules are determined by their
dimension vectors (this result has been independently obtained by Geng and Peng,
and it provides a proof of the Fomin-Zelevinsky denominator conjecture for cluster
algebras of simply laced Dynkin type).
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Birationally commutative projective surfaces of GK-dimension 4

Susan J. Sierra

(joint work with Dan Rogalski)

We construct a family of counterexamples to a conjecture of Rogalski and Stafford,
and show that they have many other unexpected properties.

We begin by summarizing the work of Rogalski and Stafford [RS06] on bira-
tionally commutative graded algebras. We work throughout over an uncountable
algebraically closed field k. A k-algebra S is connected graded if S =

⊕
n≥0 Sn,

where S0 = k and dimkSn < ∞ for all n. If S is a connected graded noetherian
domain (or Ore domain, more generally) we may invert the homogeneous elements
of S to obtain a graded quotient ring

Qgr(S) ∼= D[t, t−1;φ]

for some division ring D and φ ∈ Autk(D). If D is commutative, and thus D ∼=
k(X) for some projective variety X , then we say that S is birational to X , or more
generally birationally commutative. If φ is induced from an automorphism of X ,
we say that S is geometric.
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Subject to the condition that S is geometric, [RS06] (and more generally [Sie09],
[Sie10]) classify birationally commutative projective surfaces: graded algebras bi-
rational to a commutative surface. They show:

Theorem 1. [RS06, Theorem 1.1] Let S be a connected graded noetherian domain
that is generated in degree 1, birational to a commutative surface, and geometric.
Then S is falls into one of two classes, and, up to finite dimension, may be written
explicitly in terms of geometric data. In particular, S is a subalgebra of a twisted
homogeneous coordinate ring that has the same graded quotient ring as S.

Rogalski and Stafford conjecture [RS06, p. 6] that the conclusions of Theorem 1
hold without the assumption that S is geometric. We show their conjecture is false,
and give a family of counterexamples.

To explain, we reframe Rogalski and Stafford’s conjecture. It turns out that
the hypotheses of Theorem 1 place restrictions on the GK-dimension of S. This
follows from a theorem of Rogalski, using work of Diller and Favre [DF01] and
Gizatullin [Giz80] on the dynamics of bimeromorphic maps of surfaces.

Theorem 2. [Rog07] Let Q = K[t, t−1;φ], where K is a finitely generated field
extension of k of transcendence degree 2. Then every connected graded Ore domain
S with graded quotient ring Q has the same GK-dimension d ∈ {3, 4, 5,∞}. All
these d do occur. If d = ∞, then S is not noetherian. If d < ∞, then d ∈ {3, 5}
if and only if S is geometric.

Thus we may reframe Rogalski and Stafford’s conjecture as

Conjecture 1. [Rogalski-Stafford] Suppose that S is a connected graded domain
of GK-dimension 4, generated in degree 1, that is birational to a commutative
surface. Then S is not noetherian.

In contrast, we show

Theorem 3. Let α, β ∈ k, and let

R := R(α, β) := k〈x1, x2, x3, x4〉/(f1, . . . , f6),

where

f1 = x1(αx1 − x3) + x3(x1 − αx3)

f2 = x1(αx2 − x4) + x3(x2 − αx4)

f3 = x2(αx1 − x3) + x4(x1 − αx3)

f4 = x2(αx2 − x4) + x4(x2 − αx4)

f5 = x1(βx1 − x2) + x4(x1 − βx2)

f6 = x1(βx3 − x4) + x4(x3 − βx4).

If α, β are algebraically independent over the prime subfield of k, then R is a
noetherian domain of GK-dimension 4 that is birational to P2.

In contrast, R(0, 0) is the non-noetherian algebra studied in [YZ06, Proposi-
tion 7.6].

We show also that the algebras R have other interesting properties.
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Theorem 4. Let α, β be algebraically independent over the prime subfield of k,
and let R be defined as in Theorem 3. Then the trivial module k has a resolution

0→ R[−4]→ R[−3]4 → R[−2]6 → R[−1]4 → R→ k → 0.

In consequence, R is Koszul of global dimension 4 and has Hilbert series 1/(1 −
t)4. However, R is not AS-Gorenstein and therefore not AS-regular. Further, the
Auslander-Buchsbaum equality fails for R: we have

depth k + p.dim k = 0 + 4 > depth R.

We note that if α and β are generic, then R(α, β) is not contained in any
twisted homogeneous coordinate ring, so Theorem 1 fails completely in this case.
We conjecture that the augmentation ideal R+ is the only nontrivial graded prime
ideal of R and that R has no nontrivial map to any twisted homogenous coordinate
ring.

To prove Theorems 3 and 4, we work geometrically, with sheaves on P1 × P1.
Let α, β be algebraically independent over the prime subfield. We have

(1) R ⊆ Qgr(R) ∼= k(u, v)[t, t−1;φ]

for some φ = φ(α, β) ∈ Autk(k(u, v)). The automorphism φ(0, 0) sends

u 7→ uv

v 7→ v

and induces a birational map of P1 × P1. For general α, β, we perturb φ(0, 0) by
a suitably defined element τ(α, β) ∈ PGL2(k)× PGL2(k).

One way to see the embedding (1) is to identify R1 with H0(P1×P1,O(1, 1)) · t.
That is, we identify

x1 = t x2 = ut x3 = vt x4 = uvt

inside k(u, v) · t. Our identifications allow us to construct a globally generated
quasicoherent sheaf R =

⊕
n≥0Rn on P

1 × P
1 so that R = H0(P1 × P

1,R).
However, working with the sheaves Rn is quite delicate; in particular, they do not
form an ample sequence in the sense of [Van96]. In fact, in the course of proving
Theorems 3 and 4, we establish new geometric results on regularity of ideal sheaves
on P1 × P1, which may be of independent interest.
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Cuspidal sln-modules and deformation of Brauer tree algebras

Volodymyr Mazorchuk

(joint work with Catharina Stroppel)

Assume we are given a finite dimensional complex semisimple Lie algebra g, the
category of finite dimensional modules is completely understood, semi-simple and
therefore not very interesting. A more interesting category generalizing this exam-
ple is the highest weight category Op where we fixed a Borel subalgebra b inside
a parabolic p and consider finitely generated modules which have a weight space
decomposition and where the parabolic acts locally finitely. This category is well-
studied and agrees with the choice p = g with the category of finite dimensional
modules and in the other extreme case with the Bernstein-Gelfand-Gelfand cate-
gory O. The classification of simple modules in this case is just given by highest
weights.

A more general very natural category is the category of (generalized) weight
modules. That means of modules which have finite dimensional (generalized)
weight spaces. The classification of irreducible weight modules is here harder.
Already from the results of S. Fernando ([Fe]) and V. Futorny ([Fu1, Fu2]) it was
known that simple weight modules with finite dimensional weight spaces fall into
two types:

• the so-called cuspidal modules, that is the ones which are not parabolically
induced modules or equivalently on which all root vectors of the Lie algebra
act bijectively ([Mat, Cor 1.4, Cor 1.5]); and
• the simple quotients of generalized Verma modules, parabolically induced
from cuspidal modules.

The second type forms the bulk of simple weight modules (and also of the literature
on weight modules); they are easy to classify, and their structure and Kazhdan-
Lusztig type combinatorics is now relatively well understood, see [MS1], [BFL],
[Maz2] and references therein. From [Fe] (see also [Mat, Prop. 1.6]) it is known
that cuspidal modules only exist for the Lie algebras sln (type A) and sp2n (type
C), and it is the classification of simple cuspidal modules for these two series of
Lie algebras, which was completed by Mathieu in [Mat].

The problem we want to consider is an explicit description of the category of
cuspidal (generalized) weight modules.

Now, the category of weight modules for sp2n is equivalent to C-mod, the cate-
gory of finite dimensional vector spaces ([BKLM]) and therefore well-understood.
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The following result is not surprising (but note that the proof gives a nice concrete
description of the simple modules)

Theorem 1. [MS2] Every nontrivial block of generalized weight modules for sp2n
is equivalent to the category of finite dimensional C[[t1, t2, . . . , tn]]-modules.

Hence the only interesting remaining case is the category of generalized weight
modules for sln. Our main results are then the following: let C, Ĉ be the category of
finitely generated, cuspidal, weight (respectively generalized weight) sln-modules
(for n ≥ 2 fixed).

Theorem 2. [MS2]

(1) Every non-integral or singular block of C is equivalent to the category of
finite dimensional C[[x]]-modules.

(2) Every non-integral or singular block of Ĉ is equivalent to the category of
finite dimensional C[[x1, x2, . . . , xn]]-modules.

(3) For n > 2 every integral regular block of C is equivalent to the category of
finite dimensional modules over a flat one-parameter deformation of An−1

which is non-trivial as infinitesimal deformation, where An−1 is the path
algebra of the following quiver with n− 1 vertices

•
a1

((
•

b1

hh

a2
((
•

b2

hh

a3
**
· · ·

b3

hh

an−2

((
•

bn−2

jj

modulo the relations ai+1ai = 0 = bibi+1 and biai = ai−1bi−1 (whenever
the expression makes sense) in the case n > 3 and a1b1a1 = 0 = b1a1b1
in the case n = 3. The path length induces a non-negative Z-grading on
An−1. Then the deformation in question is the unique (up to rescaling of
the deformation parameter) non-trivial graded one-parameter deformation
of An−1. This deformation is the completion of a Koszul algebra with
respect to the graded radical.

(4) For n > 2 every integral regular block of Ĉ is equivalent to the category of
finite dimensional modules over a flat n-parameter deformation of An−1.
The associative algebra of this deformation is isomorphic to the tensor
product of the deformation described in the previous claim (3) and the
algebra C[[x2, x3, . . . , xn]].
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Numerically finite hereditary categories with Serre duality

Adam-Christiaan van Roosmalen

Abelian categories occur both in algebraic geometry and in representation theory
of algebras. We present a classification (up to derived equivalence) of hereditary
abelian categories which satisfy Serre duality and are numerically finite. In this
way, we accomplish a step in the ongoing classification project of hereditary cate-
gories (cf. [2, 3]).

Important examples of numerically finite hereditary categories with Serre du-
ality are given by categories of finite dimensional representations of a finite quiver
without cycles, and categories of coherent sheaves on a smooth projective curve.

1. Definitions

We start with some definitions. Throughout, let k be an algebraically closed
field and let A be a k-linear abelian category. To avoid set-theoretical issues, we
will assume that A is essentially small.

• We say A is hereditary if ExtiA(−,−) = 0, for all i ≥ 2.

• We say A is Ext-finite if dimk Ext
i
A(X,Y ) <∞, for all X,Y ∈ ObA, and

for all i ≥ 0.
• An Ext-finite abelian category A is said to have Serre duality if there is
an autoequivalence S : DbA → DbA such that for all X,Y ∈ ObA there
is an isomorphism

HomDbA(X,Y ) ∼= HomDbA(Y, SX)∗

natural in X and Y , where (−)∗ is the vector space dual.
• A category is said to be indecomposable if it is not a direct product of two
nonzero categories.

Example 1. For any smooth projective variety V , the category CohV is abelian,
Ext-finite, and has Serre duality. If V is a curve, then CohV is also hereditary.

The category repQ of finite dimensional representations of a finite quiver Q is
a hereditary category with Serre duality.
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Numerical Grothendieck group. We will define an additional smallness prop-
erty. Let A be an abelian category with Serre duality and denote the Grothendieck
group of A by K0(A). The Euler form χ : ObA×ObA → Z is given by

χ(X,Y ) =
∑

i≥0
(−1)i dimk Ext

i(X,Y )

for X,Y ∈ K(A). The sum is finite due to Serre duality. The Euler form lifts to
a map K0(A) ⊗Z K0(A)→ Z also denoted by χ(−,−).

The radical of the Euler form is defined to be

radχ = {X ∈ K0(A) | χ(X,−) = 0}

= {X ∈ K0(A) | χ(−, X) = 0}

where the equality between the first and the second line is given by Serre duality.
The numerical Grothendieck group is defined as

NumA = K0(A)/ radχ.

We will say an abelian category with Serre duality is numerically finite if and only
if the the numerical Grothendieck group is a free abelian group of finite rank.

Example 2. For any smooth projective variety V , the abelian category CohV has
Serre duality and is numerically finite.

Example 3. The abelian category repQ where Q is a finite quiver without cycles
(but possibly with relations) has Serre duality and is numerically finite.

Example 4. Let Q be an A∞-quiver with zig-zag orientation, then repQ is a
hereditary category with Serre duality, but it is not numerically finite.

Perpendicular subcategories [1]. Let A be an abelian category and let X ∈
ObA be any object. We define the right perpendicular subcategory X⊥ of A as
the full subcategory given by the objects

ObX⊥ = {Y ∈ ObA | Exti(X,Y ) = 0, ∀i ≥ 0}.

If A is a hereditary category with Serre duality, then X⊥ is again an abelian
hereditary category with Serre duality. If X is furthermore an exceptional object
(i.e. Ext1(X,X) = 0), then rank(NumX⊥) = rank(NumA)− 1.

2. Results

We wish to classify the hereditary abelian categories with Serre duality which
are numerically finite. Our main tool is to reduce the rank of the numerical
Grothendieck group by considering subcategories orthogonal to exceptional ob-
jects.

Theorem 1. Let A be a nonzero indecomposable hereditary category with Serre
duality. If A does not have any exceptional objects, then A is derived equivalent
to either

(1) the category of finite dimensional representations of k[[x]], or
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(2) the category of coherent sheaves over a smooth projective curve of genus
at least 1.

Thus any nonzero indecomposable hereditary category with Serre duality cat-
egory which does not belong in the previous characterization has an exceptional
object. We may then consider a perpendicular category on such an object to ob-
tain a smaller and simplier category. If we restrict ourselves to numerically finite
categories, then this process ends after finitely many steps.

The next theorem is our main result.

Theorem 2. Let A be an indecomposable numerically finite hereditary category
with Serre duality, then A is derived equivalent to either

(1) the category of nilpotent representations of an Ãn quiver (n ≤ 0) with
cyclic orientation, or

(2) the category of finite dimensional representations of a finite quiver without
cycles, or

(3) the category of coherent modules over a hereditary OX -order over a smooth
projective curve X.
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Contraction of curves and mutation

Michael Wemyss

(joint work with O. Iyama)

The aim of the talk was to present some of the algebraic statements in [1] whilst
also presenting some of the (still conjectural) links with the geometrical statements
that motivated the work.

Non-commutative crepant resolutions were introduced by Van den Bergh [3] to
axiomize various noncommutative structures appearing in resolutions of singular-
ities, in particular the skew group ring C[x, y, z]#G.

Definition 1. Let R be a Gorenstein ring, then an NCCR of R is EndR(M) where
M is a reflexive R-module, EndR(M) ∈ CMR and gl.dimEndR(M) <∞.

When dimR = 3 a NCCR need not exist since for it to do so necessarily SpecR
must have a crepant resolution [3]. Thus instead if we aim for the maximal crepant
partial resolution of SpecR, we are motivated to define the following:
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Definition 2. Let R be a Gorenstein ring, then we call a reflexive R-module M a
modifying module if EndR(M) ∈ CMR and further we call M a maximal modifying
(MM) module if

addM = {X ∈ reflR : HomR(M ⊕X,M ⊕X) ∈ CMR}.

If M is a maximal modifying module, we call EndR(M) a maximal modification
algebra (MMA).

A maximal modification algebra may or may not have finite global dimension.
Note that if R has only isolated singularities and M is a reflexive R-module con-
taining R as a summand, thenM is a modifying module if and only if it is rigid (i.e.
Ext1R(M,M) = 0) whereas M is maximal modifying if and only if it is maximal
rigid. However when R is not isolated the two concepts differ; the Ext-vanishing
property turns out to be too strong.

MMAs recover the notion of NCCRs:

Theorem 3. Let R be a normal Gorenstein three-dimensional ring with dimR =
dimRm for all m ∈ MaxR. Assume that R has a NCCR, then the M ∈ reflR
giving NCCRs are precisely the MM modules.

They are also all derived equivalent:

Theorem 4. Let R be a normal Gorenstein three-dimensional ring with dimR =
dimRm for all m ∈ MaxR. Assume that R has a MMA, then all MMAs are derived
equivalent.

We then develop a theory of mutation as a method to produce modifying mod-
ules from a given one. As a special case of this if R is an arbitrary Gorenstein
normal 3-fold as above and Λ := EndR(M) = kQ/R is an arbitrary NCCR written
as a quiver with relations, then we are able to mutate at an arbitrary vertex of Λ
regardless of loops and 2-cycles.

For a modifying R-module M denote M∗ := HomR(M,R), then given N such
that 0 6= addN ⊂ addM we consider

(1) a right addN -approximation of M , i.e. N0
a
→ M with N0 ∈ addN such

that HomR(N,N0)→ HomR(N,M)→ 0 is exact.

(2) a right-addN∗-approximation ofM∗, namely N∗1
b
→M∗ with N∗1 ∈ addN∗

such that HomR(N
∗, N∗1 )→ HomR(N

∗,M∗)→ 0 is exact.

We denote the kernels by

0→ K0
c
→ N0

a
→M and 0→ K1

d
→ N∗1

b
→M∗

and define the right mutation of M at N to be µN (M) := N ⊕ K0 and the left
mutation of M at N to be νN (M) := N ⊕K∗1 .

We denote [N ] to be the two-sided ideal of Λ := EndR(M) consisting of mor-
phismsM →M which factor through a member of addN , and we set ΛN := Λ/[N ].
One of our main theorems is the following:
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Theorem 5. With notation as above if dimkΛN <∞, then
(1) EndR(M) and EndR(µN (M)) are derived equivalent.
(2) EndR(M) and EndR(νN (M)) are derived equivalent.

There are many other statements involving mutation including a study of the
dimkΛN = ∞ case and also conditions for when µN (M) = νN (M). See [1] for
more details. Note however that the homological algebra always splits into two de-
pending on whether dimΛN is finite or not. This, together with many geometrical
examples, suggests the following:

Conjecture 6. Let R be a complete normal Gorenstein 3-fold and suppose there

exists Y
f
→ X = SpecR, a projective birational morphism such that Rf∗OY = OX

and every fibre has dimension ≤ 1. Denote Λ := EndY (OY ⊕ (⊕i∈IVi)) where
OY ⊕ (⊕i∈IVi) is the tilting bundle constructed in [2]. Let ei be the idempotent
corresponding to Vi (which in turn corresponds to a curve Ei in Y ) and denote
Λi := Λ/Λ(1− ei)Λ. Then

Ei contracts to a point without contracting a divisor ⇐⇒ dimkΛi <∞.

A positive answer to the above conjecture would have both theoretical and
computational consequences in the running of the minimal model program in di-
mension three.
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Quiver Grassmannians and their Euler characteristics

Andrei Zelevinsky

The aim of this talk is to advertise a very interesting class of algebraic varieties
called quiver Grassmannians. They are defined as follows. Let Q be a quiver on
vertices {1, . . . , n}. A Q-representation is a familyM = (Mi, ϕa), where eachMi is
a finite dimensional C-vector space attached to a vertex i, and each ϕa :Mj →Mi

is a linear map attached to an arrow a : j → i. The dimension vector of M is
the integer vector dim M = (dimM1, . . . , dimMn). A subrepresentation of M is
an n-tuple of subspaces Ni ⊆ Mi such that ϕa(Nj) ⊆ Ni for any arrow a : j → i.
With all this terminology in place, for every integer vector e = (e1, . . . , en), the
quiver Grassmannian Gre(M) is defined as the variety of subrepresentations of M
with the dimension vector e. As a special case, for a one-vertex quiver we get an
ordinary Grassmannian.
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Any quiver Grassmannian Gre(M) is Zariski closed in the product of ordinary
Grassmannians

∏
iGrei(Mi), hence is a projective algebraic variety (not necessar-

ily irreducible or smooth). Not much is known about their properties. Motivated
by applications to the theory of cluster algebras we focus on the problem of com-
puting the Euler characteristic χ(Gre(M)).

For a given quiver representation M , we assemble all the integers χ(Gre(M))
into the generating polynomial FM ∈ Z[u1, . . . , un] (F -polynomial) given by

FM (u1, . . . , un) =
∑

e

χ(Gre(M))ue11 · · ·u
en
n .

It is not hard to show that FM⊕N = FMFN , hence the study of arbitrary F -
polynomials FM reduces to the case of M indecomposable.

Example 1. For a one-vertex quiver, i.e., for the ordinary Grassmannians, we
have FCm = (FC)

m = (1 + u)m, hence χ(Gre(C
m)) =

(
m
e

)
.

Example 2. Let Q be the Kronecker quiver with two vertices and two arrows
from 1 to 2. There are three kinds of indecomposable Q-representations: prepro-
jectives, preinjectives, and regular ones. More precisely, for every m ≥ 1, there is
a unique (up to an isomorphism) preprojective indecomposable Q-representation
Mpr(m) of the dimension vector (m− 1,m), a unique preinjective indecomposable
M inj(m) of the dimension vector (m,m − 1), and a family of regular indecom-
posables M reg

λ (m)(parameterized by λ ∈ P1) of the dimension vector (m,m). As
shown in [1], the Euler characteristics of the corresponding quiver Grassmannians
are given as follows:

χ(Gre(M
pr(m))) =

(
m− e1
e2 − e1

)(
e2 − 1

e1

)
,

χ(Gre(M
inj(m))) =

(
m− e2
e1 − e2

)(
e1 − 1

e2

)
,

χ(Gre(M
reg
λ (m))) =

(
m− e1
e2 − e1

)(
e2
e1

)
.

Example 3. Let Q be a Dynkin quiver, i.e., an orientation of a simply-laced
Dynkin diagram; thus, its every connected component is of one of the ADE types.
The indecomposable Q-representations are determined by their dimension vec-
tors. Identifying Z

n with the root lattice of the corresponding root system, these
dimension vectors get identified with the positive roots. Let M(α) denote the in-
decomposable representation with the dimension vector identified with a positive
root α. A unified (type-independent)“determinantal” formula for FM(α) was given
in [6]. To state it we need some preparation.

First, different orientations of a given Dynkin diagram are in a bijection with
the different Coxeter elements in the Weyl group W : following [6], to a Coxeter
element c = si1 · · · sin (the product of all simple reflections taken in some order)
we associate an orientation with an edge between iℓ and ik oriented from iℓ to ik
whenever k < ℓ.
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Now let G be the simply-connected semisimple complex algebraic group associ-
ated with our Dynkin diagram. Each weight γ belonging to the W -orbit of some
fundamental weight ωi gives rise to a regular function ∆γ,γ on G (a principal gen-
eralized minor) defined as follows: ∆γ,γ(x) is the diagonal matrix entry of x ∈ G
associated with the one-dimensional weight subspace of weight γ in the fundamen-
tal representation Vωi

. Recall also the one-parameter subgroups xi(u) = exp(uei)
and yi(u) = exp(ufi) in G associated with the Chevalley generators ei and fi of
the Lie algebra of G.

With this notation in place we have the following result essentially proved in
[6]:

FM(α)(u1, . . . , un) = ∆γ,γ(yi1(1) · · · yin(1)xin(uin) · · ·xi1 (ui1)) ,

where γ is uniquely determined from the equation c−1γ − γ = α.

If a quiver Q is acyclic (i.e., has no oriented cycles), the quiver Grassmannians
have the following properties:

• If M is a general representation of a given dimension vector then all its
quiver Grassmannians are smooth. In particular, this is true if M is rigid,
i.e., Ext1(M,M) = 0 (as explained in [3, Proposition 3.5], this follows
from the results in [5]).
• If M is indecomposable and rigid then χ(Gre(M)) ≥ 0 for all e.

The following example shows that the rigidity condition is essential for the
positivity of the Euler characteristic.

Example 4. Let Q be the generalized Kronecker quiver with two vertices and four
arrows from 1 to 2. As shown in [3, Example 3.6], if M is a general representation
of dimension vector (3, 4), and e = (1, 3) then Gre(M) is isomorphic to a smooth
projective curve of degree 4 in P2, hence χ(Gre(M)) = −4.

With applications to the theory of cluster algebras in mind, we will assume from
now on that every quiver Q under consideration has no loops or oriented 2-cycles.
If in addition a quiver Q is acyclic, the quiver Grassmannians most important
for these applications are those in rigid indecomposable Q-representations. In [3]
it was suggested how to extend this class of representations to the case of not
necessarily acyclic quivers. Here is a brief account of this approach.

First, we restrict our attention to Q-representations satisfying relations imposed
by a generic potential S on Q. Roughly speaking, S is a generic linear combination
(possibly infinite) of cyclic paths in Q, viewed as an element of the completed path

algebra ĈQ (see [2] for a detailed setup). By a (Q,S)-representation we mean a
Q-representation annihilated by sufficiently long paths in CQ and by all cyclic
derivatives of S.

Second, following [4, 2], we consider decorated (Q,S)-representations: such a
representation is a pairM = (M,V ), whereM is a (Q,S)-representation as above,
and V = (Vi) is a collection of finite-dimensional vector spaces attached to the
vertices (with no maps attached).
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Mutations of quivers with potentials and their representations at arbitrary ver-
tices were introduced and studied in [2]. As shown in [3], a natural class of (Q,S)-
representations generalizing rigid indecomposable representations of acyclic quiv-
ers consists of (Q,S)-representations obtained by mutations from negative simple
representations (those having some Vi equal to C, and the rest of the spaces Mj

and Vj equal to 0). One of the main constructions in [3] is that of an integer-valued
function E(M) on the set of (Q,S)-representations, which is invariant under mu-
tations and vanishes on negative simple representations. An open question is
whether the condition E(M) = 0 for an indecomposable (Q,S)-representationM
implies that M can be obtained by mutations from a negative simple represen-
tation. Regardless of the answer to this question, quiver Grassmannians in the
indecomposable (Q,S)-representations with E(M) = 0 deserve further study.
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Geometric Approaches to Growth of Algebras

Efim Zelmanov

Let A be an algebra over a field F . Suppose that A is generated by a finite dimen-
sional subspace V . Then A is a union of the ascending chain of finite dimensional
subspaces V (n) = span{v1, . . . , vk | vi ∈ V, k ≤ n}. By the growth function we
mean

g(n, V ) := dim V (n).

Let W be a finite dimensional subspace of A. Following M. Gromov we call

b(W ) = (VW +W )/W

the V -boundary of W . Let’s adopt the following terminology : dimW will be
conveniently called the volume of W or the area of W .

The Isoperimetric Problem. Among all subspaces of volume n find the one
with the minimal area of the surface b(W ).

Let I(n, V ) denote this minimal area. The function I(n, V ) is called the isoperi-
metric profile of A.
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Although the functions g(n, V ), I(n, V ) depend on a choice of V , their asymp-
totics do not. Let f, g be two functions on N with positive real values. We say
that f is asymptotically smaller than g if there exists a constant C ∈ N such that
f(n) ≤ Cg(Cn) for all n. The functions f, g are asymptotically equivalent if each
of them is asymptotically smaller than the other one.

If A =< V >=< V ′ > then g(n, V ) is asymptotically equivalent to g(n, V ′)
and I(n, V ) is asymptotically equivalent to I(n, V ′). Thus we will speak simply of
g(n) and I(n).

For groups the isoperimetric profile provides basically the same information as
the probablity of return function for random walks. It would be interesting to find
some analog of random walks for algebras (probably, involving products of random
matrices ?)

Also for groups (and cancellation semigroups) Coulhon and Saloff-Coste proved
an important inequality that relates g(n) and I(n): if g′ is the inverse function of
g, then we have

Theorem 1. I(n) is asymptotically greater than n/g′(n).

In many cases, for example, for polycyclic groups, I is asymptotically equivalent
to n/g′(n).

Gromov asked if the Coulhon Saloff-Coste inequality holds for domains.
M. D’Adderio constructed a counterexample: a finitely generated Noetherian do-
main of GKdim 3 and the isoperimetric profile n(1/2).

Definition (Elek, Gromov). We say that the algebra A is amenable if I(n) is
strictly asymptotically smaller than n.

G. Elek proved that an amenable domain satisfies Ore condition but a sub-
domain of an amenable domain is not necessarily amenable. From the results of
D’Adderio it follows though that an Ore subdomain is amenable. For an amenable
algebra A we consider the Folner function F (n) which is the minimal dimension
of a subspace W such that dim b(W )/dimW < 1/n. M. D’Adderio formulated a
gap conjecture for Folner functions that is related to Artin and Zhang conjectures
on gaps in low transcendence degrees. Surprisingly, in some important particular
case this gap conjecture can be interpreted as Shannon enthropy inequality.

As above, let A =< V >, V is finite dimensional and let M be a left module
over A. Let a be a positive number.

Definition. We say that M is an a-expander if the isoperimetric profile of M is
greater than an, I(n,M) > an.

In other words, for an arbitrary finite dimensional subspace W of M we have
dim (W +VW ) > (1+ a)dimW . In particular it means that the module M is not
amenable.

We are primarily interested in infinite families of a-expanders with a fixed.

Definition. An algebra A has property τ if

(1) the family of irreducible finite dimensional A-modules is an expander fam-
ily for some a > 0,
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(2) The intersections of kernels of these representations is (0).

The motivation for this notion comes from Wigderzon’s question about dimen-
sion expanders.

Let chF = 0,K = Z/pZ, SL′(n,K[t]) is the congruence group of matrices over
polynomials. A. Lubotzky and I showed that the group algebra F [SL′(n,K[t]),
n > 2, has property τ . In particular, it answers Wigderson’s question in charac-
teristic zero. Recently an answer for modular fields was obtained by J. Bourgaine.
As shown by G. Margulis expansion properties come from Kazhdan property T.

We can define property T for Lie algebras and even for arbitrary associative
bialgebras over reals. Practically all good algebras (affine Kac-Moody, root graded
algebras etc) have property T. But even in that case only those representations
have the expansion property, that are unitarizable. In particular we get :

Theorem 2. Let L be a compact finite dimensional simple Lie algebra. Then the
universal enveloping algebra U(L) has property τ .
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Growth of pointed Hopf algebras

James Zhang

(joint work with D. G. Wang and G. Zhuang)

A seminal result of Gromov states that a finitely generated groupG has polynomial
growth, or equivalently, the associated group algebra has finite Gelfand-Kirillov
dimension, if and only if G has a nilpotent subgroup of finite index [Gr]. Group
algebras form a special class of cocommutative Hopf algebras. A natural question
for us is to look for a necessary and sufficient condition for an affine (i.e., finitely
generated) Hopf algebraH to have finite GK-dimension (short for Gelfand-Kirillov
dimension). Let k be a base field, and assume that, for similicity, k is algebraically
closed of characteriztic zero. It is clear that an affine commutative Hopf algebra
over k has a finite GK-dimension which equals to its Krull dimension. If H is
cocommutative, by a classification result [Mo, Corollary 5.6.4 and Theorem 5.6.5],
it is isomorphic to a smash product U(g)#kG for some group G and some Lie
algebra g. Consequently, GKdimH = GKdimkG + dim g. This question is also
answered for several classes of noncommutative and noncocommutative Hopf al-
gebras, including quantum groups Uq(g) and Oq(G), see [BG2]. We take an initial
step to attack this question for general noncommutative and noncocommutative
Hopf algebras.

Quite a few classes of Hopf algebras of finite GK-dimension have been studied
by several authors, for example, Andruskiewitsch-Angiono [AA], Andruskiewitsch-
Schneider, [AS1, AS2], Brown [Br1, Br2], Brown-Goodearl [BG1, BG2], Brown-
Zhang [BZ], Goodearl-Zhang [GZ], Lu-Wu-Zhang [LWZ], Wu-Zhang [WuZ1,WuZ2]
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and Zhuang [Zhu], during the last few years. But the classification of such Hopf
algebras is far from complete. We provide three lower bounds of GK-dimension in
terms of certain invariants of skew primitive elements. These estimations should
be useful for studying pointed Hopf algebras of low GK-dimension. It seems that
the GK-dimension of H is closely related to some combinatorial data which we
will define soon.

Let H be a Hopf algebra over k. A nonzero element y ∈ H is called (1, g)-
primitive (or generally skew primitive) if ∆(y) = y ⊗ 1 + g ⊗ y and such a g is
called the weight of y and denoted by µ(y). Let G(H) denote the set of group-like
elements in H and let C0 = kG(H). It is clear that µ(y) ∈ G(H). Here is the first
lower bound theorem.

Theorem 1 (First lower bound theorem). Let {yi}wi=1 be a set of skew primitive
elements such that

(1) {yi}wi=1 are linear independent in H/C0.
(2) for all i ≤ j, yiµ(yj) = λijµ(yj)yi for some λij ∈ k×,
(3) for each i, λii is either 1 or not a root of unity.

Then GKdimH ≥ GKdimC0 + w.

In general λij in condition (b) may not exist. Let W denote the set of weights
µ(y) for all skew primitive elements y 6∈ C0 and letW√ be the subset consisting of

weights µ(y) for all y such that yn is also a skew primitive for some n > 1. (Note
that in this paper the term “skew primitive” means “(1, g)-primitive”). For any
subset Φ ⊂ G(H), the subgroup of G(H) generated by Φ is denoted by 〈Φ〉. Here
is the second lower bound theorem.

Theorem 2 (Second lower bound theorem). Suppose 〈W \W√ 〉 is abelian. Then

GKdimH ≥ GKdimC0 +#(W \W√ ).

There are examples such that W = W√ and GKdimH = GKdimC0, but

#(W√ ) is arbitrarily large. Therefore W√ has to be removed from W when

we estimate the GK-dimension of H . Let y be a skew primitive element. If

µ(y)−1yµ(y)− cy = τ(µ(y) − 1)

for some c ∈ k× and τ ∈ k, then c is called the commutator of y (with its weight)
and denoted by γ(y). Define Γ to be the set of γ(y) for all skew primitive elements
y 6∈ C0 such that γ(y) exists and let Γ√ be the subset of Γ consisting of those γ(y)

which are roots of unity but not 1. If γ(y) exists, the pair (µ(y), γ(y)) is denoted
by ω(y). Define Ω to be the set of ω(y) for all skew primitive elements y 6∈ C0 such
that ω(y) exists and let Ω√ be the subset of Ω consisting of those ω(y) in which

γ(y) is a root of unity but not 1. Theorem 2 can be improved a little: suppose
〈W \W√ 〉 is abelian. Then

GKdimH ≥ GKdimC0 +#(Ω \ Ω√ ).
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Let y be a skew primitive element with g = µ(y). Let Tg be the conjugation by
g, namely, Tg : a→ g−1ag. A scalar c is called a commutator of y of level n if

(Tg − cIdH)n(y) ∈ C0.

In this case we also write γ(y) = c. Let Z denote the space spanned by all skew
primitive elements and let Y√ denote the subspace of Z spanned by those y with

commutator of finite level and with γ(y) being a root of unity but not 1. Here is
the third lower bound theorem.

Theorem 3 (Third lower bound theorem). Suppose 〈W \W√ 〉 is abelian. Then

GKdimH ≥ GKdimC0 + dimZ/(C0 + Y√ ).

There are examples such that Z = Y√ + C0 and GKdimH = GKdimC0, but

dimY√ is arbitrarily large. Therefore it is sensible to consider the quotient space

Z/(C0+Y√ ) in the above theorem. This is analogous to removingW√ in Theorem
1.

The hypothesis that 〈W \W√ 〉 being abelian could be superfluous, but it is

not clear to us how to deal with the non-abelian case. When 〈W 〉 is non-abelian,
a better lower bound could be obtained by replacing #(W \W√ ) in Theorem 2

by GKdimk〈W 〉. If 〈W \W√ 〉 is nilpotent-by-finite (otherwise GKdimH = ∞),

results for Hopf algebras analogous to the group case (see Gromov’s theorem [KL,
Theorem 11.1] and to Bass’ theorem [KL, Theorem 11.14]) would be interesting.

These lower bounds should be improved. It is expected that better estimates
can be achieved once finer invariants of skew primitive elements are introduced.
There are further connections between the growth of Hopf algebras and the W
and other invariants defined by skew primitive elements.

Proposition 4. Suppose 〈W \W√ 〉 is abelian. If rank 〈Γ〉 > rank 〈W \W√ 〉 = 1,

then H has exponential growth.

Note that rank 〈Γ \Γ√ 〉 = rank 〈Γ〉 since elements in Γ√ has finite order. The

rank of 〈W 〉 and 〈Γ〉 should be related when GKdimH is finite. The condition of
H having finite GK-dimension should be related to some restrictive condition in
terms of W and Γ.
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