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Introduction by the Organisers

The workshopProgress in Surface Theory , organised by Uwe Abresch (Bochum),
Josef Dorfmeister (München), and Masaaki Umehara (Osaka) was held May 2nd–
May 8th, 2010. In recent years, studying surfaces in more general ambient spaces
than space forms, as become an extremely active direction of research in surface
theory, even though a complete understanding of all important surface classes in
space forms for instance is still an issue. As a result, the gap between surface
theory and submanifold geometry in general has closed considerably, despite the
fact that studying typical questions about surfaces relies heavily on methods from
a number of different fields. Crucial are in particular methods from the theory
of elliptic differential equations and geometric measure theory, complex analytic
methods, and integrable systems techniques. Moreover, it should be noted that
surfaces/submanifolds with certain types of mild singularities have become much
more mainstream.



1226 Oberwolfach Report 21/2010

The major goal of our workshop has been to continue bringing together the best
experts in all these substantially different fields and to see the first results from
our previous effort in 2007.

This workshop has been attended by 57 participants from ten different countries,
the largest contingents coming from Germany, Japan, Spain, France, England and
the US. We had participants of all ages, from the very young to the very senior
people; we had specialists for all major directions in Surface Theory that are
currently under active research, and we had some experts in neighboring fields.

As a result, our workshop provided a fairly complete picture of the recent de-
velopments in the field. This was of course particularly useful for our nine young
participants. Given the size of the workshop, not even half of the participants had
the opportunity to give a talk. In order to still facilitate everybody to present
his/her latest results, we offered space to exhibit posters, an offer that has been
particularly well received by our young participants and was well attended.

The official program consisted of 24 talks of 50 minutes each and 2 half hour
talks. In addition, on Wednesday evening there was a more informal presenta-
tion concerning computer visualizations in differential geometry, and on Thursday
evening there was an official poster session in order to stimulate discussions about
the content of the various posters between their authors and other participants
working on related topics. We had organized this poster session as a social gath-
ering for the entire workshop, which worked out very well, both, socially and
scientifically.

The free time in the afternoons and the evenings has been used extensively
and intensively by the participants for discussions. In fact, it seems that the full
schedule of this workshop has actually spawned a lot of new interaction among
participants from different schools. This was strongly enhanced by the fact that
most lectures were well prepared and well presented and provided a lot of useful
background.

Several participants, both young and senior ones, commented to us that they
had learned quite a bit from the talks and the discussions. Certainly, the great
setting and the superb atmosphere, for which Oberwolfach is reknown around
the world, making it a unique conference place, provided the environment that
generated many fruitful discussions. Moreover, the young mathematicians also
noted that the meeting had been an excellent opportunity to have direct contact
with a broad international group of established mathematicians.

We feel that the meeting was exciting and highly sucessful, in particular in view
of some startling new results and the extraordinary amount of scientific interaction
among the participants.

Here is a brief summary of the mathematical contents: there were two outstand-
ing new results that were presented for the first time to a larger community at our
workshop.

R. Miyaoka has classified the isoparametric hypersurfaces M12 ⊂ S13 with six
distinct principal curvatures of multiplicity 2. She proved that up to congruence
there is only the known homogeneous family induced by the adjoint action of the
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exceptional Lie group G2 on its Lie algebra. This result finishes off the classification
of isoparametric hypersurfaces in spheres with six distinct principal curvatures.
Isoparametric hypersurfaces had been introduced by E. Cartan around 1935, and
their classification is known as a hard problem. Miyaoka’s idea is to exploit the
interplay between the two linear isospectral families obtained from the second
fundamental forms of the focal manifolds. A non-trivial amount of cleverness is
required to do the bookkeeping right and avoid an explosion of the number of cases
to consider.

M. Kilian on the other hand used integrable system methods to study equivari-
ant cmc tori in S3. He classified equivariant cmc tori of cohomogeneity 1 in terms
of the spectral curves of flat tori with a double point on the real part. Using the
maximum principle (at infinity) in order to analyse when self-intersections can ap-
pear or disappear on a given deformation of cmc tori, he even managed to decide
which parts of the moduli space correspond to embedded or Alexandrov embedded
cmc tori. It turns out that the Clifford torus is the only equivariant embedded
minimal torus in S3, as conjectured by Lawson in 1971.

Moreover, the work of K. Große-Brauckmann and R. Kusner on coplanar cmc
k-unduloids in R3 was received very well. Taking the Lawson transformation of
the piece on one side of the symmetry plane and combining this map with the Hopf
projection S3 → CP

1 that collapses the k boundary components to points, they
assign to each coplanar k-unduloid a conformal developing map D2 → CP

1 with k
branch points of infinity order on the boundary ∂D2. It is a hard PDE result that
any such developing map can in fact be lifted (uniquely) w.r.t. the Hopf fibration

S
3 → CP

1 a to a map ϕ : D2 → S
3 that parametrizes a minimal surface which is

the Lawson transformation of half a coplanar k-unduloid in R3. At this point it
becomes feasible to investigate the moduli space of the relevant developing maps
writing Hill’s equation and suitable holomorphic quadratic differentials. In short,
the theory of projective structures provides an explicit model for the moduli space
of coplanar cmc k-unduloids in R3.

In the overall picture we observed three major lines of research. For one, quite
a lot of work has been done on geometric variational problems. A. Ros presented
a classification of embedded least area surfaces (mod 2) in flat 3-tori. B. Daniel
studied the isoperimetric problem in Solv(3). Alexandrov’s reflection principle
implies that any isoperimetric domain Ωv is actually a bi-graph w.r.t. two orthog-
onal foliations by totally-geodesic hyperbolic planes. This in fact shows that Ωv

is isotopic to a ball. However, for cmc surfaces in Solv(3) we do not know a holo-
morphic quadratic differential and thus we have no way of computing cmc spheres
explicitely. The key difficulty is to prove that a (possibly immersed) cmc sphere
ΣH in Solv(3) with mean curvature H of index 1 is actually embedded and unique
up to congruence. Somewhat related is M. Ritoré’s work on stable area stationary
surfaces in the Heisenberg group Nil(3) equipped with the standard Carnot met-
ric. In this target space, all the relevant surfaces are known explicitely; here the
difficulty is to cope with the subelliptic nature of the second variation formula.
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U. Pinkall and E. Kuwert discussed geometric variational problems with an
Euler-Lagrange equation of order 4. U. Pinkall described the singularities that
appear in the rulings on closed elastic strips that are glued with one or more half
twists. As usual he modelled the elastric strips by their center curve together
with an additional transversal line field, and so he was dealing with complicated
ODE systems and their first integrals. E. Kuwert on the other hand considered the
infimum βn

p of Willmore functional W(Σp) on smooth immersed surfaces Σp # Rn

of genus p. It is by now standard that 4π < · · · ≤ βn
p ≤ · · · ≤ β4

p ≤ β3
p < 8π for

any p ≥ 1. Kuwert proved using an appropriate monotonicity formula of L. Simon
that limp→∞ βn

p = 8π for any n ≥ 3.
F. Pacard on the other hand started out with the problem of minimizing the

first Dirchlet eigenvalue λ1(Ω) over all domains Ω with precribed volume v > 0 in
some Riemannian manifoldMn. It is standard to study the regularity properties of
the boundary of such extremal domains using blow-up techniques. In fact blow-up
leads to noncompact flat manifolds M̃n with boundary that comes with a positive
harmonic function u that has zero Dirichlet boundary data and constant non-
zero Neumann boundary data. The surprising result is that there are more such
exceptional flat surfaces M̃n than half spaces and the complements of balls in Rn.

There were two more analysis oriented lectures, the talk by M. Koiso about
bifurcation and stability criteria for cmc surfaces and the survey by L. Hauswirth
on the theory of minimal surfaces in H2 ×R. It seems remarkable that in H2 ×R

there are both, complete minimal surfaces of parabolic and of hyperbolic type.
The parabolic objects typically come from Jenkins-Serrin constructions and are
pretty rigid at infinity, whereas the hyperbolic objects are quite flexible at infinity.

The second major theme has been Weierstrass representations and integrable
systems methods. F. Pedit explained how to describe cmc k-noids with asymptotic
Delaunay ends, which are not necessarily coplanar, in terms of connections d + ξ
on the loop group of Sl2(C). The key problem with this approach so far is that
in case k > 3 — because of the existence of accessory parameters — it has not
been possible to decide whether d+ ξ is indeed unitarizable when given a concrete
choice for all the parameters in the construction. Moreover, S. Kobayashi worked
out the integrable systems approach for cmc surfaces in the hyperbolic space H3.
The key problem that he had to handle is the fact that the (harmonic) Gauss map
of such a surface is naturally a map into the unit tangent bundle of H3 which can
be identified as the 4-symmetric space Sl2(C)/SU(1). Handling the loop group
approach in this case requires a modifie technique.

I. Khemar on the other hand started out from the m-th integrable elliptic sys-
tem associated to a given k-symmetric space and investigated which geometric
objects are described by such a system. Depending on the relative magnitudes of
k and m, he distinguished a primitive case where the integrable system decribes J-
holomorphic curves, a minimal determined case where the system describes maps
that are horizontally holomorphic and vertically harmonic, and a maximal deter-
mined case where the system describes so-called stringy harmonic maps.
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Finally I. Taimanov talked about transformations of surfaces and their appli-
cations to spectral theory. He pointed out that the classical Laplace, Darboux,
Moutard, and Bianchi-Bäcklund transformations of non-linear differential equa-
tions had historically been developed in the context of surface theory. With this
in mind, he could extend the Moutard transformation to a transformation of the
Novikov-Veselov equation, which is a 2-dimensional generalization of the KdV
equation. Applying this technique, he was able to construct explicite solutions to
the Novikov-Veselov equation with fast decaying Cauchy data at t = 0 that blow
up in finite time T ∗.

The classical transformations in surface theory and their impact on integrable
systems theory have also been discussed in the lectures of F. Burstall on Ω-surfaces
and K. Leschke on Darboux transforms and simple factor dressing.

The third topic common to several talks has been surfaces with singularities.
In his talk on the duality of wave front sets and its applications, K. Yamada
investigated hypersurfacesNn in some Riemannian manifoldMn+1 that effectively
come as projections of immersed Legendre submanifolds N̂n in the unit tangent
bundle UMn+1 → Mn+1. This allows Nn itself to have a certain class of mild
singularities like swallowtails. This is the framework that has been employed by
S. Fujimori when studying maximal surfaces with singularities in the Minkowski
space R2,1.

In his lecture on the geometric Cauchy problem, P. Mira studied isolated sin-
gular points on H = 1 surfaces in H3, intrinsically flat surfaces in H3 or S3, and
surfaces with constant positive curvature in R3. Note that the adherence points of
the unit normal field define a Jordan curve in the unit sphere in the tangent space
of the target space at the singular point. It is this Jordan curve that provides the
Cauchy data necessary for reconstructing the surface near the singular point in a
way that resembles the solution of the Björling problem. Based on these results,
A. Martinéz has classified the complete flat surfaces in H3 with one end and one
or two isolated singularities.

The remainig talks have been special topics that cannot be naturally subsumed
into one of the previous threads. For instance, F. Martin has given a nice survey
on the Calabi-Yau problem, which made it very clear how wild complete minimal
surfaces can get when admitting non-proper surfaces. In her talk Ch. Breiner
explained how to use Colding-Minicozzi theory in order to study complete cmc
surfaces with finite topology and one end. She proved that such a minimal surface
is either flat or C0-asymptotic to a helicoid.

On the other end of the spectrum, M. Guest gave a talk about tt∗-geometry
explaining how the integrable systems methods developed in the theory of cmc
surfaces relate to the observations of Cecotti and Vafa about holomorphic data in
quantum field theory like quantum cohomolgy rings or Landau-Ginzberg poten-
tials, which predict the existence of harmonic maps with surprisingly good global
properties.

In his talk about Noether’s theorem, conserved quantities, minimal and cmc
surfaces, P. Romon explained how to obtain the flux and the torque of a cmc
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surface in R
3 from Noether’s theorem. He then approached the question whether

the existence of the generalized Hopf differential for cmc surfaces in homogeneous
3-manifoldsM3

κ,τ may also be a consequence of Noether’s theorem. After all, each

point in such an M3
κ,τ has a 1-dimensional isotropy group. Unfortunately, there is

no conclusive answer yet.

This particular workshop included an evening session on visualization. H. Karcher
and R. Palais presented the Virtual Math Museum (http://vmm.math.uci.edu/3D-
XplorMath/), a fairly mature piece of software that can draw and animate quite
a number of beautiful examples from curve theory, surface theory, integrable sys-
tems, and many other mathematical subjects. A key feature of the Virtual Math
Museum is that it comes with well-writen elementary documentation on the con-
cepts of visulization and on the mathematical background of the various galleries.
Unfortunately, the Virtual Math Museum contains only few cmc surfaces. This is
largely due to the subtleties of the numerics for generating fairly general classes
of cmc surfaces.
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Abstracts

Minimal Surfaces with One End

Christine Breiner

(joint work with Jacob Bernstein)

The conformal type and asymptotic geometry of complete, embedded, minimal
surfaces with finite topology (in R3) and two or more ends is well understood. In
this talk we address recent results concerning such surfaces when they have one
end. Work by Colding-Minicozzi on the structure of compact, embedded minimal
surfaces with connected boundary paved the way for Meeks and Rosenberg’s proof
of the uniqueness of the helicoid as well as an understanding of the conformal type
of these surfaces in the complete case. In particular, we outline the proof of the
following theorem, which is proven in [2].

Theorem 1. Let Σ ∈ R3 be a complete, embedded minimal surface with finite
topology and one end. Then Σ is conformally a once punctured, compact Riemann
surface. Moreover, if the surface is not flat, then it is C0 asymptotic to some
helicoid.

The proof of this result draws heavily on the fundamental work of Colding and
Minicozzi on the geometric structure of embedded minimal surfaces in R3 [3, 4, 5,
6, 7]. Assuming only mild conditions on the boundaries, they give a description
of the geometric structure of essentially all embedded minimal surfaces with finite
genus. From this structure, they deduce a number of important consequences.
We highlight, in particular, two results of Colding-Minicozzi. The first concerns
embedded minimal disks with large curvature at their center, which are thus known
to be not graphical on a sufficiently large scale.

Theorem 2. Let 0 ∈ Σ ⊂ BR ⊂ R3 be an embedded minimal disk with ∂Σ ⊂ ∂BR.
Then there exist C,Ω > 1 such that:
if |A|2(0) > CR−2 then the component of BR/Ω ∩ Σ containing 0 is the union of
two multi-valued graphs that spiral together.

“Multi-valued graph” should be thought of as looking roughly like one half of
the helicoid. Another important result is the “one sided curvature estimate”. One
can think of it as a local version of the strong half-space theorem. Precisely, it is
as follows:

Theorem 3. There exists ǫ > 0 such that if Σ ⊂ B2R ∩ {x3 > 0} ⊂ R3 is an
embedded minimal disk with ∂Σ ⊂ ∂B2R, then every component Σ′ of Σ∩BR that
intersects BǫR has

sup
Σ′

|A|2 ≤ R−2.

Colding and Minicozzi’s work is also an essential ingredient in understanding
minimal surfaces with infinite total curvature, i.e., complete surfaces with one end.
Prior to their work, the study of these surfaces required very strong assumptions on
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the conformal structure and behavior of the Gauss map at the end. For example,
Hauswirth, Perez and Romon [9] consider E ⊂ R3, a complete embedded minimal
annulus with one compact boundary component and one end with infinite total
curvature. They assume, in addition, that E is conformal to a punctured disk,
the Weierstrass data (g, dh) has the property that dg/g and dh extend across
the puncture, and the flux over the boundary of E has zero vertical component.
They then deduce more precise information about the asymptotic geometry of E.
Indeed, their result immediately gives the asymptotic behavior of the Σ of interest
in Theorem 1, once the conditions on the Weierstrass data are shown.

By using Colding and Minicozzi’s work, in particular the compactness result of
[6], Meeks and Rosenberg were able to remove such strong assumptions for disks.
Indeed, in [10], they resolve the question of the uniqueness of the helicoid.

Theorem 4. Let Σ be a complete, embedded minimal disk in R3. Then Σ is the
plane or the helicoid.

Let us now recall the argument of [1], where we provide an alternative proof
to the uniqueness of the helicoid. There it is shown that any complete, non-
flat, properly embedded minimal disk can be decomposed into two regions: one a
region of strict spiraling, i.e. the union of two strictly spiraling multi-valued graphs
over the x3 = 0 plane (after a rotation of R3), and the other a neighborhood of
the region where the graphs are joined and where the normal has small vertical
component. By strictly spiraling, we mean that each sheet of the graph meets any
(appropriately centered) cylinder with axis parallel to the x3-axis in a curve along
which x3 strictly increases (or decreases). This follows from existence results for
multi-valued minimal graphs in embedded disks found in [4] and an approximation
result for such minimal graphs from [8]. The strict spiraling is then used to see
that ∇Σx3 6= 0 everywhere on the surface; thus, the Gauss map is not vertical
and the holomorphic map z = x3 + ix∗3 is a holomorphic coordinate. By looking
at the log of the stereographic projection of the Gauss map, the strict spiraling is
used to show that z is actually a proper map and thus, conformally, the surface
is the plane. Finally, this gives strong rigidity for the Weierstrass data, implying
the surface is a helicoid.

For Σ as in Theorem 1, as there is finite genus and only one end, the topology
of Σ lies in a ball in R3, and so, by the maximum principle, all components
of the intersection of Σ with a ball disjoint from the genus are disks. Hence,
outside of a large ball, one may use the local results of [3, 4, 5, 6] about embedded
minimal disks. For Σ non-simply connected , the presence of non-zero genus
complicates matters. Nevertheless, the global structure will follow from the far
reaching description of embedded minimal surfaces given by Colding and Minicozzi
in [7]. In particular, as Σ has one end, globally it looks like a helicoid. We first
prove a sharper description of the global structure; indeed, one may generalize the
decomposition of [1] as:

Theorem 5. There exist ǫ0 > 0 and a decomposition of Σ into disjoint subsets
RA, RS, and RG such that:
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(1) RG is compact, connected, has connected boundary and Σ\RG has genus
0;

(2) after a rotation of R3, RS can be written as the union of two (oppositely
oriented) strictly spiraling multi-valued graphs Σ1 and Σ2;

(3) in RA, |∇Σx3| ≥ ǫ0.

Remark 1. We say Σi (i = 1, 2) is a multi-valued graph if Σi is the graph, Γui ,
of a single function ui with uiθ 6= 0.

To prove this decomposition, we first find the region of strict spiraling, RS .
The strict spiraling controls the asymptotic behavior of level sets of x3 which, as
x3 is harmonic on Σ, gives information about x3 in all of Σ.

By Stokes’ Theorem, x∗3 (the harmonic conjugate of x3) exists on Γ and thus
there is a well defined holomorphic map z : Γ → C given by z = x3 + ix∗3.
Using Theorem 5 and a Rado type theorem, we deduce that z is a holomorphic
coordinate on Γ. We claim that z is actually a proper map and so Γ is conformally
a punctured disk. This can be shown by studying the Gauss map. On Γ, the
stereographic projection of the Gauss map, g, is a holomorphic map that avoids
the origin. Moreover, the minimality of Σ and the strict spiraling in RS imply
that the winding number of g around the inner boundary of Γ is zero. Hence, by
monodromy there exists a holomorphic map f : Γ → C with g = ef . Then the
strict spiraling in RS imposes strong control on f which is sufficient to show that
z is proper. Further, once we establish Γ is conformally a punctured disk, the
properties of the level sets of f imply that it extends meromorphically over the
puncture with a simple pole. This gives Theorem 1.
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Ω-surfaces

Francis Burstall

(joint work with Udo Hertrich-Jeromin, Wayne Rossman)

Ω-surfaces are an incarnation of isothermic surfaces in Lie sphere geometry and,
as such, inherit a rich integrable structure [1, 2, 3, 5, 12]. In particular, they possess
a spectral deformation (they are precisely the Lie applicable surfaces); Ribaucour
transforms [9, §90] and an integrable discretisation. In this note, I shall sketch the
definitions and discuss some interesting examples.

Isothermic surfaces in quadrics. Let Q be a real, smooth quadric. Thus Q =
P(L) ⊂ P(Rp+1,q+1) is the projective light-cone of a vector space with indefinite
inner product. The quadric Q is a (p+ q)-manifold with a conformal structure of
signature (p, q) which may be viewed as the conformal compactification of Rp,q.
The orthogonal group O(p+1, q+1) acts of Q by conformal diffeomorphisms and,
in this way, is a finite cover of the conformal diffeomorphism group of Q.

Now let f : Σ → Q be an immersion. According to Darboux [6], f is isothermic
if it admits conformal coordinates which diagonalise the second fundamental form.
More invariantly, this is equivalent to the existence of a holomorphic1 quadratic
differential q which commutes with the second fundamental form. It follows that
f has flat normal bundle.

An alternative and manifestly conformally invariant formulation of this condi-
tion is due to Burstall and Pinkall [3] (see also [11, para. 5.3.19]). For this, view f
as a null line-subbundle of the trivial Rp+1,q+1-bundle over Σ. Then f is isother-
mic if and only if there is a non-zero closed 1-form η with values in o(p+1, q+1)
such that

ηf = 0, ηf⊥ ⊂ Ω1(f).

The two approaches are related by

q(X,Y )σ = ηXdY σ,

for any σ ∈ Γf , but the latter formulation continues to make sense when the metric
induced by f degenerates or even when f fails to immerse.

We readily see that the pencil of connections d + tη, t ∈ R, are all flat and this
gives an efficient route into the integrable systems theory of isothermic surfaces.

Mobius and Lie sphere geometry of S3. As is well known, when (p, q) =
(n, 0), Q is conformally diffeomorphic to the n-sphere [11, para. 1.1.1]. Indeed, fix
t1 ∈ R

n+1,1 with (t1, t1) = −1 to get a conformal diffeomorphism x 7→ 〈x + t1〉
between the unit sphere in t⊥1 and Q.

When (p, q) = (3, 1), Q can be (non-canonically) identified with the space of
oriented 2-spheres in S3 together with the zero-radius spheres (the points of S3).
For this, we choose a point-sphere complex Q0 ⊂ Q to represent the points of S3.
Thus this should be a hyperplane section of Q of signature (3, 0), or, equivalently,

1When the induced metric has indefinite signature, one must adjust one’s notion of
holomorphic!
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Q0 = P(L ∩ t⊥0 ) for a fixed unit timelike t0 ∈ R
4,2. Now any q ∈ Q \ Q0 can

be uniquely written as the span of x + t0 with x unit spacelike in t⊥0 and the
corresponding 2-sphere is Q0∩x⊥. The same sphere with the opposite orientation
is represented by 〈−x+ t0〉.

In this picture, q, q′ ∈ Q are orthogonal if and only if the corresponding spheres
have oriented contact. It follows that the lines in Q correspond to oriented contact
elements of Q0 so that the space Z of lines in Q is diffeomorphic to the bundle of
oriented hyperplanes in T ∗Q0—a 5-dimensional contact manifold.

We can now do surface theory in this setting: a surface f : Σ → Q0 has a
contact lift which is a Legendre map E : Σ → Z and, conversely, any Legendre
map E gives rise to a map f = E ∩ Q0 : Σ → Q0 of which it is the contact lift
wherever f immerses.

A section s of the contact lift E is now a family of 2-spheres with s(p) tangent
to f at p ∈ Σ. In classical language s is a 2-sphere congruence enveloped by f .

With all this understood, we can, following Demoulin [7, 8], make the following
definition:

Definition 1. f : Σ → Q0 is an Ω-surface if it is enveloped by an isothermic
sphere congruence s : Σ → Q.

In fact, in this situation, Demoulin proves that we have to do with two isother-
mic sphere congruences:

Theorem 1 ([7]). An Ω-surface f is enveloped by two isothermic sphere congru-
ences s, ŝ which are harmonically separated by the curvature spheres of f .

Examples. Demoulin identifies three large classes of Ω-surfaces:

(1) Isothermic surfaces f : Σ → Q0 = S3 are Ω: take s = f and then ŝ is the
central sphere congruence of f .

(2) L-isothermic surfaces f : Σ → R
3, that is, surfaces which admit curvature

line coordinates that are conformal with respect to the third fundamental
form, are Ω: take for s the congruence of tangent planes.

(3) Guichard surfaces, which can be characterised as the orthogonal surfaces
to curved flats in the space of circles, are Ω.

The first two of these classes are characterised by the demand that the sphere
congruence s lie in some hyperplane section of Q: in the first case, the hyperplane
section is Q0 and, in the second, that defined by a lightlike vector. It is therefore
interesting to consider the case where both s and ŝ lie in hyperplane sections.

For this, suppose that the hyperplane sections are defined by q, q̂ ∈ R4,2 so that
(s, q) = (ŝ, q̂) = 0. If we take q timelike, we can take the corresponding hyperplane
section to beQ0 and then the condition on the central sphere congruence ŝ amounts
to the demand that f have constant mean curvature in a 3-dimensional space-form.

Again, take q ∈ Q so that s has contact with a fixed 2-sphere which we may
view as the sphere at infinity of hyperbolic 3-space H3. Now, Q0 can be chosen so
that f : Σ → H3 is a linear Weingarten surface of Bryant type [10], that is, the



1240 Oberwolfach Report 21/2010

mean and Gauss curvatures H and K of f satisfy:

αK + 2(α− 1)(1−H) = 0,

for a constant α depending on q̂. Thus:

Theorem 2. A surface f : Σ → H3 is linear Weingarten of Bryant type if and
only if it is Ω with one isothermic sphere congruence in oriented contact with a
fixed sphere while the other lies in a hyperplane section disjoint from that fixed
sphere.

The geometry of the situation varies with α: in all cases, by construction, s is
the tangent horosphere to f while:

α > 1: ŝ cuts the infinity sphere at constant angle. In particular, when α = 2,
ŝ is the congruence of totally geodesic spheres tangent to f .

α = 1: Here q̂ is also lightlike and represents the infinity sphere with the
opposite orientation so that ŝ is the other tangent horosphere. This is the
case K = 0 [4].

α < 1: Here ŝ does not intersect the infinity sphere and cuts the normal
geodesic to f for the second time at distance ln(1 − α). In particular,
when α = 0, ŝ = f is a congruence of zero-radius spheres and H ≡ 1.
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Constant mean curvature spheres in the Lie group Sol3

Benôıt Daniel

(joint work with Pablo Mira)

Hopf’s theorem states round spheres are the unique (immersed) constant mean
curvature (CMC) spheres in Euclidean 3-space R3. The proof relies on the exis-
tence of a holomorphic quadratic differential, the so-called Hopf differential. This
theorem can be generalized immediately to hyperbolic 3-space H3 and the round
sphere S3

Recently, Hopf’s theorem was extended by Abresch and Rosenberg [1, 2] to
all simply connected homogeneous Riemannian 3-manifolds with a 4-dimensional
isometry group, i.e., H2 × R, S2 × R, the Heisenberg group Nil3, the universal
cover of PSL2(R) and Berger spheres: any immersed CMC sphere in any of these
manifolds is a rotational CMC sphere. To do this, they proved the existence of
a holomorphic quadratic differential, which is a linear combination of the usual
Hopf differential and of a term coming from a certain ambient Killing field. Once
here, the proof is similar to Hopf’s: such a differential must vanish on a sphere,
and this implies that the sphere is rotational.

Our purpose is to investigate the Hopf problem in the Lie group Sol3 endowed
with a left-invariant Riemannian metric, which is the only Thurston geometry
where this problem remains open.

Several difficulties arise. The first is that Sol3 has an isometry group only
of dimension 3, and has no rotations. Hence, there are no known explicit CMC
spheres, since, contrarily to the case of the abovementioned 3-manifolds, we cannot
reduce the problem of finding CMC spheres to solving an ordinary differential
equation. Moreover, even the existence of a CMC H sphere for a specific value
H ∈ R of the mean curvature needs to be settled. Another difficulty is that the
Abresch-Rosenberg differential does not exist in Sol3.

On the other hand, in Sol3 there exist two foliations by totally geodesic surfaces.
Any of these surfaces is the invariant set of an orientation-reversing isometry of
Sol3, which permits Alexandrov reflection. This is enough to prove that a compact
embedded CMC surface in Sol3 is topologically a sphere.

The main results we prove are the following.

Theorem 1 ([4]). For every H > 1/
√
3 there exists a unique (immersed) CMC

H sphere in Sol3 up to ambient translations. Moreover this sphere is embedded.

Theorem 2 ([4]). Let H > 0 such that there exists some (immersed) CMC H
sphere ΣH in Sol3 satisfying one of the following properties, where actually (a) ⇒
(b) ⇒ (c) ⇒ (d):

(a) it is a solution to the isoperimetric problem in Sol3,
(b) it is a weakly stable surface,
(c) it has index one,
(d) its Gauss map is a (global) diffeomorphism into S2.
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Then ΣH is embedded and it is the unique (immersed) CMC H sphere in Sol3 up
to ambient translations.

Let us remark than we can deduce from Alexandrov reflection and results of
Pittet [6] that the infimum of the set of H > 0 such that there exists a CMC H
sphere satisfying (a) is 0. One deduces Theorem 1 from Theorem 2 by proving

that for every H > 1/
√
3 there exists a CMC H sphere satisfying (c).

To prove uniqueness of CMC H spheres, the main idea will be to ensure the
existence of a quadratic differential that satisfies the Cauchy-Riemann inequality
(a property weaker than holomorphicity introduced by Alencar, do Carmo and
Tribuzy [3]) for all CMC H immersions. It seems very difficult and maybe impos-
sible to obtain such a differential explicitly. We are able to prove the existence of
this differential provided there exists a CMC H sphere whose Gauss map G is a
(global) diffeomorphism (our differential will be defined using this G).

The next step is to study the existence of CMC spheres whose Gauss maps are
diffeomorphisms. We first prove that the Gauss map of an isoperimetric sphere,
and more generally of an index one CMC sphere, is a diffeomorphism. For this
purpose we use a nodal domain argument. We also prove that a CMC sphere
whose Gauss map is a diffeomorphism is embedded.

Then we deform an isoperimetric sphere with large mean curvature by the
implicit function theorem. More generally we prove than we can deform index
one CMC spheres, and that the property of having index one is preserved by this
deformation. In this way we prove that there exists an index one CMC H sphere
for every H > 1/

√
3. To do this we need a bound on the second fundamental

form and a bound on the diameter of the spheres. This diameter estimate is the
consequence of a theorem by Rosenberg [7] and relies on a stability argument;

however this estimate only holds for H > 1/
√
3. This will complete the proof.

To conclude, let us mention that very recently Meeks [5] proved height estimates
for CMC H spheres that are valid for all values of the mean curvature H (to do
this he used the fact that the infimum of the mean curvatures of isoperimetric
spheres is 0). Together with the previous arguments, this shows that Theorem 1

can be improved by replacing H > 1/
√
3 by H > 0. Hence this completes the

study of the Hopf problem in Sol3. A natural related problem remains open in
Sol3: is is true that all CMC spheres are isoperimetric?
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Maximal surfaces with singularities in the Lorentz-Minkowski 3-space

Shoichi Fujimori

Let L3 be the Lorentz-Minkowski 3-space with the metric 〈 , 〉 = dx21 + dx22 − dx23.
A spacelike immersion X : M → L3 is said to be maximal if X has vanishing
mean curvature. Although a complete maximal immersion in L3 is necessarily a
spacelike plane [1], complete maximal surfaces with certain kinds of singularities
have given rise to an interesting theory (see for instance [2, 3, 10]). Like minimal
surfaces in R3, maximal surfaces admit the following Weierstrass-type representa-
tion: Let M be a Riemann surface and (g, ϕ) a pair of a meromorphic function
and a holomorphic 1-form on M so that (|g|−1 + |g|)2|ϕ|2 gives a positive definite
metric on M . Then

X = Re

∫ (
i

2

(
1

g
− g

)
,
1

2

(
1

g
+ g

)
, 1

)
ϕ :M → L

3

defines a maximal surface with singularities [8]. g is called the Gauss map and the
pair (g, ϕ) are called the Weierstrass data of X . The induced metric is given by
ds2 = (|g|−1 − |g|)2|ϕ|2/4 and the singular set is given by {p ∈M ; |g(p)| = 1}. If
the nonsingular set {p ∈M ; |g(p)| 6= 1} is dense in M , X is called a maxface [10].

In a joint work with Kentaro Saji, Masaaki Umehara and Kotaro Yamada [6],
we have the following classification result for singularities of maxfaces:

Theorem 1 ([6]). Generic singularities of maxfaces are cuspidal edges, swallow-
tails and cuspidal cross caps.

A maxface X : M → L3 is said to be complete if there exist a compact set C
and a symmetric (0,2)-tensor T on M such that T vanishes on M −C and ds2+T
is a complete Riemannian metric [10].

Proposition 1 ([10]). Let X : M → L3 be a complete maxface with the Weier-
strass data (g, ϕ). Then there exist a compact Riemann surface M and finite
number of points p1, . . . , pn ∈M so that M is biholomorphic to M −{p1, . . . , pn}.
Moreover, the Weierstrass data g and ϕ extend meromorphically to M .

By definition, the genus ofX is the genus ofM . The removed points p1, . . . , pn ∈
M correspond to the ends of X .

Theorem 2 (Osserman-type inequality [10]). Let X : M − {p1, . . . , pn} → L3 be
a complete maxface with meromorphic Gauss map g. Then

(1) 2 deg g ≥ −χ(M) + 2n,

where χ(M) denotes the Euler characteristic of M . Moreover, the equality holds
if and only if X is an embedding around any end of M .
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In [7] by Kim and Yang, it was shown that, although the only complete mini-
mal surfaces in R3 with two embedded ends are catenoids (Schoen [9]), there does
exists a complete maxface of genus 1 with two embedded ends in L3. We shall
call this example the Kim-Yang troidal maxface. Until now, the only known ex-
amples of complete maxfaces with embedded ends were the spacelike plane, the
Lorentzian catenoid and the Kim-Yang toroidal maxface. Also, until now the only
known complete positive-genus maxfaces were the Lorentzian Chen-Gackstatter
surface and the Kim-Yang toroidal maxface. In a joint work with Wayne Ross-
man, Masaaki Umehara, Kotaro Yamada and Seong-Deog Yang [5], we construct
complete maxfaces with two ends and arbitrary genus, which are embedded if the
genus is equal to 1.

Theorem 3 ([5]). There exists a family of complete maxfaces Xk for k = 1, 2, 3, . . .
with two ends, and of genus k if k is odd and genus k/2 if k is even. Moreover,
X1 and X2 have embedded ends. Furthermore, the number of swallowtails and the
number of cuspidal cross caps are both equal to 4(k+1) if k is odd and 2(k+1) if
k is even. In particular, X1 and X2 are both of genus one, but are not congruent.

We note that X1 is the Kim-Yang toroidal maxface, but the Xk are new exam-
ples for all k ≥ 2.

Until now, all known examples of complete maxfaces are orientable. In a joint
work with Francisco J. López [4], we investigate the geometry and topology of
complete nonorientable maxfaces.

Let M ′ be a nonorientable Riemann surface, that is to say, a nonorientable
surface endowed with an atlas whose transition maps are holomorphic or antiholo-
morphic. Let π : M → M ′ be the orientable conformal double cover of M ′. A
conformal map X ′ :M ′ → L

3 is said to be a nonorientable maxface if the compo-
sition X = X ′ ◦ π :M −→ L3 is a maxface. In addition, X ′ is said to be complete
if X is complete.

Let X ′ : M ′ → L3 be a nonorientable maxface, and let I : M → M denote
the antiholomorphic order two deck transformation associated to the orientable
double cover π :M →M ′. Since X ◦ I = X , we see that

(2) g ◦ I =
1

ḡ
and I∗(ϕ) = ϕ̄.

As a consequence, I leaves invariant the singular set {p ∈ M ; |g(p)| = 1}.
Conversely, if (g, ϕ) are the Weierstrass data of an orientable maxface X : M →
L3 and I is an antiholomorphic involution without fixed points in M satisfying
(2), then the unique map X ′ : M ′ = M/〈I〉 → L3 satisfying X = X ′ ◦ π is a
nonorientable maxface. We call (M, I, g, ϕ) as the Weierstrass data of X ′ :M ′ →
L
3. Assume that X ′ :M ′ =M/〈I〉 → L

3 is complete. Then I extends conformally
to the compactification M of M and M = M − {q1, . . . , qm, I(q1), . . . , I(qm)},
where q1, . . . , qm ∈ M . Consequently, M ′ = M

′ − {π(q1), . . . , π(qm)}, where

M
′
= M/〈I〉 is a compact nonorientable conformal surface of genus 2− χ(M

′
) =

2− (1/2)χ(M). By definition, the genus of X ′ is the genus of M ′.
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Let X ′ : M ′ → L
3 be a complete nonorientable maxface with Weierstrass data

(M, I, g, ϕ), and label as π :M →M ′ as the orientable double cover ofM ′. Denote
by A : C ∪ {∞} → C ∪ {∞} the complex conjugation A(z) = 1/z̄, and consider
the projection p0 : C ∪ {∞} → (C ∪ {∞})/〈A〉. Then the unique conformal map
ĝ :M ′ → (C ∪ {∞})/〈A〉 satisfying ĝ ◦ π = p0 ◦ g is called the Gauss map of X ′.

By Proposition 1, if X ′ is complete then ĝ extends conformally to the compat-

ification M
′
of M ′. Moreover, ĝ has the same degree as g :M → C∪ {∞}. Hence

the inequality (1) becomes

(3) deg ĝ ≥ −χ(M ′
) + 2m,

where m is the number of ends of M ′.
In [4], we first give the following topological congruence formulae for nonori-

entable maxfaces:

Theorem 4 ([4]). Let X ′ : M ′ → L
3 be a conformal complete nonorientable

maxface with Gauss map ĝ, then

(i) deg ĝ is even and greater than or equal to 4.

(ii) If in addition X ′ has embedded ends, then χ(M
′
) is even.

We next produce the first known examples of complete nonorientable maxfaces.
To be more precise, we describe the moduli space of complete maxfaces with the
topology of a Möbius strip and Gauss map of degree four, and construct two com-
plete one-ended Klein bottles, named KB1 and KB2, with Gauss map of degree
four as well. Both KB1 and KB2 contain the x1- and x2-axes, and therefore their
symmetry group contains four elements. Finally, we have the following character-
ization theorem:

Theorem 5 ([4]). KB1 and KB2 are the unique complete maxfaces with the
topology of a one-ended Klein bottle, Gauss map of degree four and have at least
four symmetries.
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tt*-geometry

Martin A. Guest

tt*-geometry (a generalization of special geometry) provides a new source of
potentially interesting examples in differential geometry. This theory arose in the
study of quantum field theories in physics, in the 1990’s, in the work of Cecotti
and Vafa. The connection with harmonic maps was noticed by Dubrovin.

The main observation of Cecotti and Vafa (see [1]) can be summarized as follows:
physics predicts the existence of certain solutions of the harmonic map equation
with surprisingly good “global” properties. These solutions correspond to natural
holomorphic data, such as quantum cohomology rings or Landau-Ginzburg po-
tentials. In retrospect, this is an example of the DPW (Generalized Weierstrass)
representation. However, in the DPW representation, global properties are hard to
predict, and this makes the examples of Cecotti and Vafa particularly interesting
for differential geometers.

Roughly speaking, a tt*-structure on a complex manifold U of dimension r is a
pluriharmonic map f : U → GLN(R)/ON , for some N .

Example 1. U = special Kähler manifold. Here one obtains a holomorphic map
U → Sp2rR/Ur. It can be shown that this corresponds to a holomorphic map
F : U → C with the property that the imaginary part of the matrix (∂2F/∂zi∂zj)
is positive definite. From the viewpoint of tt*-geometry, the positive definiteness
condition is the only nontrivial aspect of this example. It can be interpreted as
saying that a certain (Iwasawa) matrix factorization can be done.

Example 2. U = the base space of a variation of polarized Hodge struc-
tures. Here again there is a nontrivial positive definiteness condition, part of the
Riemann-Hodge bilinear relations. One obtains a pluriharmonic map of “twistor
type”, i.e. the result of composing a superhorizontal holomorphic map with a
twistor fibration.

The above pluriharmonic maps are rather elementary in comparison to the
example that we shall concentrate on in this talk, namely the case of quantum
cohomology (or more generally “Frobenius manifolds with real structure”).

The quantum cohomology of a manifold M gives immediately a “normalized
DPW potential” η = 1

λ

∑
ηidzi, where ηi is the matrix of quantum multiplication

by the i-th basis vector of H∗(M ;C). (Here ηi depends on the zj, the quantum
parameters, which are usually called qj .) From a choice of real form of the appro-
priate loop group, after performing an Iwasawa factorization in the usual way, one
obtains a pluriharmonic map into GLN (R)/ON , where N = dimCH

∗(M ;C).
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We shall discuss the loop groups involved here in some detail. The positive
definiteness condition (which is conjectured to hold, at least for certain kinds
of manifolds M) is that this Iwasawa factorization can indeed be done. It is
nontrivial because the group GLN (R) is noncompact; the condition amounts to
saying that the “extended solution” remains within a single Iwasawa cell. In the
theory of harmonic maps, very few examples of this behaviour are known (other
than the well known cases of Examples 1 and 2 above, where the harmonic maps
are “isotropic”, in particular of finite uniton number).

The first example is the quantum cohomology of CP 1. The harmonic map
equations can be identified with the Gauss-Codazzi equation for (the metrics of)
spacelike CMC surfaces in R2,1, which in turn can be identified with the elliptic
sinh-Gordon equation ∆w = sinhw. The quantum cohomology of CP 1 provides
a solution to these equations, and thus corresponds to a surface (a surface whose
properties have yet to be fully investigated, incidentally). The solution in this case
is radially invariant, a consequence of the grading property of quantum multiplica-
tion. Thus we have a solution of the radially invariant sinh Gordon equation, and
it is well known that this is a case of the third Painlevé equation, an o.d.e. whose
solutions have been exhaustively studied. Cecotti and Vafa pointed out that the
quantum cohomology of CP 1 gives a very special solution, namely the “boundary
case” of a 1-parameter family of solutions discovered by McCoy, Tracy, and Wu,
all of which are smooth on the interval (0,∞). (In contrast “most” solutions have
infinitely many singularities in this interval.) This is a manifestation of the posi-
tive definiteness property referred to earlier. A surface-theoretic treatment of this
example was given in [2].

We shall mention some other examples where the conjecture can be verified
(joint work with Chang-Shou Lin). However, in view of the disproportionate effort
required so far, the problem remains a challenge to differential geometers.
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Minimal surfaces in H2
× R

Laurent Hauswirth

Examples of minimal surfaces in product spaces M2×R (M2 a riemannian surface)
are given by surfaces invariant by one parameter groups of isometries (see the paper
of Sa Earp and E. Toubiana [7] and [8]). This way constitute first examples of a
theory.

In H2 × R (H2 the hyperbolic plane), there is a family of vertical catenoid,
rotationally invariant around a vertical geodesic. A one parameter family of heli-
coid are given by a screw motion invariant surface foliated by horizontal geodesic.
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This examples has hyperbolic conformal type. To construct parabolic examples,
we need to use different techniques.

In R3, graphs X = (x, y, h(x, y)) are an important class of examples. They
satisfy the quasilinear equation

(1 + h2y)hxx − 2hxhyhxy + (1 + h2x)hyy = 0.

In H2 × R, the equation is modified by the metric of the model used for the
hyperbolic plane H2 = (D, σ2(u)|du|2). We have the minimal surface equation:

divσ

(
∇σh√

1 + |∇σh|2σ

)
= 0 = (1 + σ−2h2y)hxx − 2σ−2hxhy + (1 + σ−2h2x)hyy.

To solve the Dirichlet problem on a domain P ⊂ H2 of this equation, the
geometry of P has to satisfy Jenkin-Serrin’s conditions. We describe below how
to understand this conditions when the domain P is ideal in H2.

Let Γ be an ideal polygon of H2 which bound P a polygonal domain. All the ver-
tices of Γ are at infinity of H2 and Γ has an even number of sides A1, B1, A2, B2,...
, Ak, Bk, ordered by traversing Γ clockwise. At each vertices ai, we consider a
horocycle Hi with Hi ∩ Hj = ∅, which bound a horodisk Fi. Each Ai(resp Bi)

meets exactly two horocycles. Denote by Ãi (resp B̃i), the compact arc of Ai(resp
Bi) which is the part of Ai outside the two horodisks. We define by |Ai| the dis-

tance between the two horodisks i.e. the length of |Ãi|. Define B̃i and |Bi| in the
same way.

Now we can consider a(Γ) =
∑k

i=1 |Ai| and b(Γ) =
∑k

i=1 |Bi|. We observe that
a(Γ) − b(Γ) does not depend on the choice of the horocycle Hi at ai. Horocycle
with same points at infinity are equidistant. Keeping in mind this data, we can
state the following theorem analogous to a result of Jenkin and Serrin in R3 and
prove in H2 × R:

Theorem 1. (Collin, Rosenberg [1], Nelli, Rosenberg [5]) There is a solution to
the minimal surface equation in the polygonal domain P , equal to +∞ on Ai and
−∞ on Bj if and only if the following condition are satisfied

1- a(Γ) = b(Γ),
2- For each inscribed polygon P in Γ, P 6= Γ, and for some choice of horocycles

at the vertices one has

2a(P ) < |P | and 2b(P ) < |P |.
One can use now the Gauss-Bonnet theorem to prove that graphs on ideal

polygonal domain are of finite total curvature when the number of edges are finite.
We say that this graphs are of Scherk type. Of course, this existence theorem is a
generalization of a more general Dirichlet problem with finite data at the boundary.
In this case we ask to the domain P to be convex along the side where the boundary
data is finite in view to admit solutions.

To study the theory of finite total curvature surfaces, it is useful to parametrize
the surface in conformal parameter. We consider X = (F, h) : Σ → H × R a
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confomal immersion where F : Σ → H
2 is the vertical projection on H

2 = H
2×(0),

and h : Σ −→ R the horizontal projection on R. Then F is a harmonic map and h
is a real harmonic function. The harmonic map equation in the complex coordinate
u = u1 + iu2 of D is

Fzz̄ + 2(log σ ◦ F )uFzFz̄ = 0

where 2(log σ ◦ F )u = 2F̄ (1 − |F |2)−1. In the theory of harmonic maps the holo-
morphic quadratic Hopf differential associated to F is

Q(F ) = (σ ◦ F )2FzF̄z(dz)
2 := ϕ(z)(dz)2

The function ϕ depends on z, whereas Q(F ) does not. Since we consider conformal
immersions, we have (hz)

2(dz)2 = −Q(F ). Then the zeroes of Q are double and
we can define η as the holomorphic one form η = ±2i

√
Q. The sign is chosen so

that:

h = Re

∫
η

Then we define the function ω on Σ by n3 = tanhω (n3 is the third coordinate
of the normal). By identification we have

ω =
1

2
ln

|Fz |
|Fz̄ |

The induced metric is ds2 = 4 cosh2 ω|Q|. We remark that the zeroes of Q corre-
spond to the poles of ω so that the immersion is well defined. Moreover the zeroes
of Q are points of Σ, where the tangent plane is horizontal.

It is a well known fact that harmonic mappings satisfy the Böchner formula:

△0ω = 2 sinh(2ω)|Q|
where △0 denote the laplacian in the euclidean metric |dz|2. This equation is
the sinh-Gordon equation. To construct minimal surfaces it suffices to obtain the
harmonic map F .

T.Y. Wan derive from Q, an harmonic map F . First he solve the sinh-Gordon
equation and obtain a solution ω. This equation is the Gauss equation of aH = 1/2
surface in the Minkovski space M2,1. By Gauss-Codazzi equation he obtain F as
the Gauss map of a constant mean curvature surface H = 1/2 in M2,1. Then
there is an important dictionnary between the study of harmonic maps in H2

and minimal surfaces in H
2 × R. In particular P. Collin and H. Rosenberg use

such Jenkin-Serrin’s type theorem with Dirichlet finite data and isometries to
construct an entire minimal graph on H2 which has a conformal type C. Then
after considering the horizontal part of the immersion they obtain an example
discarting a conjecture of R. Schoen:

Theorem 2. (Collin, Rosenberg [1]) There exists harmonic diffeomorphism from
C to H2.
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We can study the theory of finite total curvature immersion in the following
theorem:

Theorem 3. (Hauswirth, Rosenberg [4]) Let X be a complete minimal immersion
of Σ in H× R with finite total curvature. Then

a) Σ is conformally M − {p1...., pn}, a Riemann surface punctured in a finite
number of points.

b) Q is holomorphic on M and extends meromorphically to each puncture. If
we parameterize each puncture pi by the exterior of a disk of radius R0, and if
Q(z) = z2mi(dz)2 at pi then mi ≥ −1.

c) The third coordinate of the unit normal vector n3 → 0 uniformly at each
puncture.

d)The total curvature is a multiple of 2π:
∫
KdA = 2π

(
2− 2g − 2k −

n∑

i=1

mi

)
.

e) Every finite total curvature end is asymptotic to a Scherk’s type graph on a
polygonal domain with finite number of edges when m ≥ 1. The end is asympto-
tique to a vertical flat plane when m = 0

Very recently J. Pyo [6] has construct n-noids with finite total curvature. Each
ends are asymptotic to vertical flat ends. He solve a Jenkin-Serrin’s type problem
on a domain of H2. He consider an hyperbolic quad with two opposite vertices in
H2 and two vertices at the infinity of H2. Then he obtain a graph bounded by two
vertical geodesic line. He use a theorem of existence of conjugate minimal surface

Theorem 4. (Hauswirth, Sa Earp, Toubiana [3], Daniel [2]) Let Ω ⊂ C be a
simply connected open set and consider two conformal minimal immersions X,X∗ :
Ω → H

2 × R which are isometric each other. Assume Q = Q∗. Then X and X∗

differ from an isometry of H2 × R. In summary {ω,Q} define uniquely (up to an
isometry) the minimal surface. If Q∗ = e2iθQ then X and X∗ are θ-associate.

and a Krust’s type theorem:

Theorem 5. (Hauswirth, Sa Earp, Toubiana [3]) If we consider a minimal graph
X(Ω) on a convex domain F (Ω) in H2, then the associate surface Xθ(Ω) is a graph
on a domain Ω′of H2.

Finally J. Pyo using this results, produce a minimal embedded annulus asymp-
totic to two vertical flat ends. This annulus has parabolic conformal type and
finite total curvature. He generalize his construction to construct n-noids.

In conclusion we can observe that the theory of minimal surfaces in H2×R will
split into two different properties following their conformal type:

-A hyperbolic theory with examples construct by one parameter invariant isome-
tries (but not always). This theory will admit a huge number of examples and the
rigidity at infinity will be depends on the closure of the surface in the closure
of H2 × R. The asymptotic behavior will depends in Fatou’s type theorem on
harmonic maps.
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-A parabolic theory, where objects will satisfy some rigidity properties at infin-
ity. The behavior will be very close to the theory of properly embedded minimal
surfaces in R3.
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Evening Demo of the Visualization Program 3D-XplorMath

Hermann Karcher

(joint work with R.S.Palais, U.Pinkall)

In the demo we emphasized deformation sequences that explain mathematical
properties of the objects shown. Three-dimensional objects are shown in anaglyph
(red/green) stereo.
Polyhedra: Deformation of the octahedron to the icosahedron inside a cube.
Deformation of a Platonic solid to its snub-polyhedron.
Planar Curves: For curves with a mechanical generation the moving plane with
its momentary center of rotation is shown while the curve is drawn. The segment
from the center of rotation to the current curve point is orthogonal to the curve
tangent.
Spherical Curves: Spherical ellipses and spherical rolling curves allow the “same”
constructions (including tangents and evolutes) as their simpler planar versions.
Holomorphic Functions: These are visualized by showing a domain grid and
its image grid. Derivatives are shown as linear approximations which move with
the cursor point. Elliptic functions on rhombic tori are shown on the Riemann
sphere. The image shows the torus in two ways: (a) The parameter quadrilaterals
are scaled down fundamental domains and (b) the cross ratio of the four branch
points on the sphere is a coordinate on the moduli space of tori.
Surfaces: Inverse images of closed spherical curves under the Hopf projection are
flat tori in S3. They can be parametrized so that parameter quadrilaterals are
scaled fundamental domains. Their stereographic projections into R3 are shown.
A conformal 180◦ rotation around a Hopf fibre is an anti-involution of the torus
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with a connected fixed point set, a property that is characteristic for rhombic tori.
The family of minimal surfaces that for the first time showed “minimal surfaces
connected by a handle” was shown.
Fractals: A family of continuous curves with increasing Hausdorff dimensions
joining a segment to the Hilbert square filling curve was shown. To the Feigenbaum
Tree we added a demo that illustrates, for each parameter value, the invariant
measure of the iteration map.
Space Curves: For torus knots and for closed curves of constant curvature (with
non-constant torsion) we showed: Osculating circles and evolute, the principal
curvature vector function in the normal plane (planes identified by parallel trans-
lation along the curve). To turn this into a Frenet integration demo we first
integated a given angular velocity vector function ~ω(t) to a rotational motion
(~x ′(t) = ~ω(t) × ~x(t)). Next, ~ω(t) is given in the moving frame. Finally, the ro-
tational motion is obtained by the Frenet equation from the principal curvature
vector function and the first vector of the moving frame is integrated to the curve
(which is thus determined by the given principal curvature vector function).
Rotating Solid Body: The Euler equations determine a spherical curve (in fact,
a spherical ellipse), the so called Euler Polhode. If one takes the Polhode as the
given angular velocity vector function ~ω(t) in the moving frame then the integrated
rotational motion is the motion of a solid body (in its center of mass system). In
the laboratory system the angular velocity ~ω(t) is a curve in a plane orthogonal to
the constant angular momentum vector, this curve is called Herpolhode, its plane
is called the invariant plane.
Point Clouds: R.S. Palais explains the use of point clouds in applications, for ex-
ample laser scans of objects determine point clouds which approximate the surface
of the object. Such point clouds are used in 3D-XplorMath to visualize implicit
surfaces. They can also serve to emphasize (and explain) contours.
jReality: U. Pinkall illustrates how mathematical objects can be fed into jReality
to show them in some scene. The scene may include gravity. The observer can
move around in the scene and can manipulate the objects. In this case the objects
were fed from 3D-XplorMath into jReality.
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Integrable elliptic systems in homogeneous geometries

Idrisse Khemar

1. Introduction

In this talk, we study all the elliptic integrable systems, in the sense of C.L.
Terng [12]. That is to say the family of all the m-th elliptic integrable systems
associated to a k-symmetric space N = G/G0. Here m ∈ N and k ∈ N∗ are inte-
gers. For example, it is known that the first elliptic integrable system associated
to a symmetric space (resp. to a Lie group) is the equation for harmonic maps
into this symmetric space (resp. this Lie group). Indeed it is well known that this
harmonic maps equation can be written as a zero curvature equation:

dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C

∗,

where αλ = λ−1α′
1+α0+λα

′′
1 is a 1-form on a Riemann surface L taking values in

the Lie algebra g. This 1-form αλ is obtained as follows. Let f : L → N = G/G0

be a map from the Riemann surface L into the symmetric space G/G0. Then
let F : L → G be a lift of f , and consider α = F−1.dF its Maurer-Cartan form.
Then decompose α according to the symmetric decomposition g = g0 ⊕ g1 of g :
α = α0 + α1. Finally, we define

αλ := λ−1α′
1 + α0 + λα′′

1 , ∀λ ∈ C
∗.

Then the zero curvature equation for this αλ, for all λ ∈ C∗, is equivalent to
the harmonic maps equation for f : L → N = G/G0, and is by definition the
first elliptic integrable system associated to the symmetric space G/G0. Thus
the methods of integrable system theory apply to give generalised Weierstrass
representations, algebro-geometric solutions, spectral deformations and so on. In
particular, we can apply the DPW method [4] to obtain a generalised Weierstrass
representation. More precisely, we have a Maurer-Cartan equation in some loop
Lie algebra

Λgτ = {ξ : S1 → g|ξ(−λ) = τ(ξ(λ))},
then we can integrate it in the corresponding loop group and finally apply some
factorizations theorems in loop groups to obtain a generalised Weierstrass repre-
sentation: this is the DPW method. Moreover, these methods of integrable system
theory hold for all the systems written in the forms of a zero curvature equation
for some

αλ = λ−mα̂−m + · · ·+ α̂0 + · · ·+ λmα̂m.

Namely, these method apply to construct the solutions of all the m-th elliptic
integrable systems. So it is natural to ask what is the geometric interpretation
of these systems. Do they correspond to some generalisations of harmonic maps?
This is the problem that we solve in the work [9] presented in this talk: to describe
the geometry behind this family of integrable systems whose we know how to
construct (at least locally) all the solutions.
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2. The m-th elliptic integrable system associated to a k-symmetric
space.

Let g be a real Lie algebra and τ : g → g be an automorphism of order k,
τk = Id. Then we have the following eigenspace decomposition:

gC =
⊕

j∈Z/kZ

gCj , [gCj , g
C

l ] ⊂ gCj+l

where gCj is the e2ijπ/k-eigenspace of τ .

Definition 1 (C.-L. Terng). Let L be a Riemann surface. The m-th (g, τ)-system
on L is the equation for (u0, . . . , um), (1, 0)-type 1-form on L with values in∏m

j=0 g
C
−j:

(1) αλ =

m∑

j=0

λ−juj + λj ūj =

m∑

j=−m

λj α̂j

satisfies the zero curvature equation:

(2) dαλ +
1

2
[αλ ∧ αλ] = 0, ∀λ ∈ C

∗.

Let us set mk = [(k + 1)/2]. Then the general problem splits into three cases:
the primitive case (1 ≤ m < mk), the determined case (mk ≤ m ≤ k − 1) and the
underdetermined case (m > k − 1). The lowest determined (m = mk) is called
minimal determined and the highest one (m = k−1) is called maximal determined.

3. Geometric interpretation.

• The primitive system has an interpretation in terms of J-holomorphic curves,
f : L→ G/G0, with respect to a canonical almost complex structure J , in the odd
case (i.e. the order k of the target space G/G0 is odd). Moreover it has an inter-
pretation in terms of F -holomorphic maps with respect to a canonical F -structure
(i.e F 3 + F = 0) in the even case (i.e. the order k is even).

• In the minimal determined case, we have an interpretation in terms of horizon-
tally holomorphic and vertically harmonic maps f : L→ G/G0.

• In the maximal determined case, we prove that we have an interpretation in
terms of stringy harmonic maps. In a good geometric context these maps are
exactly the solutions of the Euler Lagrange equation of a sigma model with a
Wess-Zumino term.
A map f : L→ (N, J,∇) from a Riemann surface into an almost complex manifold
(N, J) endowed with a linear connection ∇ is stringy harmonic if

−τg(f) + (J · T )g(f) = 0.

Here τg(f) is the tension field of f w.r.t. ∇, g is an Hermitian metric on L, T is
the torsion of ∇ and J · T = −JT (J ·, J ·).
We also define, in the same way, stringy harmonic maps into a f -manifold (N,F ).
In this geometric interpretation, we use linear metric connections with totally
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skew-symmetric torsion, preserving some geometric structures. For example, in
the odd case (the order k of symmetries of the target is odd), the underlying
geometry is the one of almost hermitian G1-manifolds (in the sense of the Gray-
Hervella classification of almost hermitian manifolds).
In the even case, we construct a new class of metric f -manifols (which generalizes
the class of almost contact metric manifolds obtained in [5]). We also obtained a
supersymmetric interpretation of stringy harmonicity: F -stringy harmonicity can
be viewed as a supersymmetric extention of the J-stringy harmonicity [6, 10].

• Finally, we show that any underdetermined system is equivalent to a deter-
mined system associated to new k̃-symmetric space of the form Gp/Gτ̃ , where
τ̃ : Gp → Gp is an automorphism obtained by composing the initial automorphism
τ with some permutation in the product Gp.

• Moreover we also prove that we have a geometric interpretation in terms of
twistors.

Let us quote some related subjects and works:
− Linear metric connections with totally skew-symmetric torsion recently became
a subject of interest in theoretical and mathematical physics.
− The target space of supersymmetric sigma models with Wess-Zumino term car-
ries a geometry of a metric connection with skew-symmetric torsion [11].
− Works of T. Friedrich, S. Ivanov, I. Agricola. [1, 2, 5, 3]
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Flows of equivariant constant mean curvature tori in the 3-sphere

Martin Kilian

(joint work with Martin Ulrich Schmidt, Nicholas Schmitt)

A compact minimal surface in the 3-sphere S3 is rigid, and cannot be deformed
smoothly without breaking the minimality or the topology, but is it possible to
smoothly deform it through cmc surfaces while preserving its topology? We affirm
this in the case of cmc tori, and prove that any (generic) cmc torus in S3 can be
deformed smoothly through cmc tori. To obtain an insight into the structure of
the moduli space we explore equivariant cmc tori in S3. These are the tori whose
harmonic Gauss map [9] is R-equivariant [2, 10]. An equivariant cmc torus is thus
either flat or some member of an associated family of a Delaunay surface [3], and
it turns out that the moduli of equivariant cmc tori in S3 is an infinite connected
graph whose edges are parameterized by the mean curvature.

Harmonic maps come in families [12, 8, 11] and the holomorphic dependence on
this additional (spectral) parameter make it possible to obtain some deep global
results. Amongst such harmonic maps there is a dense subset consisting of har-
monic maps of finite type [1, 5, 7]. To such a harmonic map of finite type there
corresponds an associated algebraic curve, called the spectral curve. The crucial
fact that makes it possible to adapt the Whitham deformation technique [4] is
that all cmc tori in S3 are of finite type [5, 7]. The spectral curve of a cmc torus
is a double cover of the Riemann sphere with 2g + 2 many branch points. The
non-negative integer g is called the spectral genus of the curve. Every spectral
curve of a cmc torus has two branch points which lie at specific points on the
Riemann sphere. These two branch points remain fixed during the deformation,
while the other 2g branch points may move around. The closing conditions involve
a choice of two double points on the real part of the spectral curve: we call these
the sym points. The mean curvature is the cotangent of the angle between the two
sym points. Now consider the Clifford torus, which has the simplest possible spec-
tral curve since its spectral genus is g = 0. During the deformation of the Clifford
torus only the sym points move on S

1, and it turns out that the angle between the
sym points is strictly monotonic. Thus the Clifford torus lies in a smooth R-family
of flat embedded cmc tori parameterized by the mean curvature.

In the deformation family of the Clifford torus there is a Z-family of embedded
flat tori which allow a bifurcation into cohomogeneity one rotational embedded
cmc tori. Such a bifurcation is possible when in addition to the two sym points
there is a further double point on the real part of the spectral curve. By opening
up this additional double point and moving the resulting two branch points off
the real part, the spectral curve becomes a double cover of the Riemann sphere
branched now at four points: It has spectral genus g = 1 and is the spectral curve
of a Delaunay surface. The corresponding cmc torus is a truncation of a Delaunay
surface in S3. We show that at the end of the flow the new branch points pair-wise
coalesce with the two fixed branch points. Hence in the limit the coalescing pairs
of branch points disappear, and the limit curve is an unbranched double cover of
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Figure 1. The simplest types of equivariant non-rectangular cmc tori.

Figure 2. Profile curves of the five lobed non-rectangular
cmc torus family as the torus flows through its axis. The turning
number of the inner profile curve jumps from 2 to 4. Figure 1
shows a 5-lobed torus in the family of which these are cross-
sections.

the sphere: the spectral curve of a bouquet of spheres. In the rotational case our
deformation corresponds to pinching the neck of a Delaunay surface, starting at
a flat torus and continuing through to a bouquet of spheres. Thus the connected
component of the Clifford torus is an infinite comb: The spine (g = 0) consists
of embedded flat cmc tori parameterized by the mean curvature, and each tooth
(g = 1) of embedded Delaunay tori ends in a bouquet of spheres. By considering
covers of the Clifford torus the moduli of rotational tori is a Z2–family of combs.
It turns out that each bouquet of spheres occurs exactly twice in this moduli, so
that we may glue the two families together there. Hence the moduli of rotational
cmc tori in S

3 is an infinite graph, whose edges are parameterized by the mean
curvature.

A similar picture emerges in the non-rotational case. In each isogeny class
there is a sequence of g = 0 tori that can be deformed into g = 1 tori. In
the non-rotational case a g = 1 deformation family stays away from bouquets of
spheres, and we prove that every g = 1 deformation family begins and ends at
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a g = 0 torus. The above results combined give that every deformation family
of cohomogeneity one cmc tori ends at a cohomogeneity two cmc torus. The
classification of cohomogeneity one cmc tori is thus reduced to that of spectral
curves of flat tori with a double point on the real part; this initial data is classified
and interpreted geometrically. We classify the equivariant minimal tori, as well
as the embedded and Alexandrov embedded equivariant cmc tori, and give an
independent proof that the Clifford torus is the only minimal embedded equivariant
torus in the 3-sphere [6]. We also show that the spectral curve of an equivariant
cmc torus has no double points off the real part. This implies that there can not be
a Bianchi-Bäcklund transform of an equivariant cmc torus into a cmc torus. Our
results carry over to analogous statements about constrained equivariant Willmore
tori in R3 of spectral genus g ≤ 1.
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Constant mean curvature surfaces in H3 by integrable system methods

Shimpei Kobayashi

(joint work with Josef F. Dorfmeister, Jun-ichi Inoguchi)

Constant mean curvature surfaces in R3 have been studied intensively last forty
years. The harmonicity of Gauß maps, which are the unit normals to surfaces, is
an important ingredient for theory. In fact, for the minimal (resp. non minimal
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constant mean curvature) surfaces case, the Gauß maps are conformal harmonic
(resp. non-conformal harmonic) maps into the unit sphere S2, which is obviously
a symmetric space. Moreover, for harmonic maps from surfaces into a symmetric
space, it is known that the integrable system methods can be applied efficiently,
and thus we have the generalized Weierstraß representation for non minimal con-
stant mean curvature surfaces [2].

On the one hand, for surfaces in H3, several natural Gauß maps can be defined,
see the following diagram. In this talk, we use the Gauß maps as the maps from
surfaces into the unit tangent sphere bundle of H3, UH

3. Such maps are defined by
the pair of an immersion and its unit normal. Then a surface in H3 has constant
mean curvature if and only if the Gauß map is harmonic [3]. It is known that
UH3 is not a symmetric space, but a 4-symmetric space. Then for harmonic
maps into a 4-symmetric space, the integrable system methods cannot be applied
efficiently, and thus we do not have the generalized Weierstraß representation in
general. On the contrary, the primitive maps, which is the special kind of harmonic
map, see Definition 1, into 4-symmetric space can have the generalized Weierstraß
representation.

In this talk, using the Lawson correspondence between surfaces in space forms,
we discuss how the generalized Weierstraß representation for constant mean cur-
vature surfaces in H3 with |H | 6= 1 can be established. We also discuss analytic
extensions of constant mean curvature surfaces in H3 with mean curvature |H | < 1
crossing the ideal boundary of H3. This talk is based on the paper [1].

We first consider the Lawson correspondence.

Proposition 1 (Lawson correspondence). Let f : D → M3(c) be a simply con-

nected surface of constant mean curvature H. Take a pair (c̃, H̃) of real numbers

such that H2+c = H̃2+c̃. Then there exists a conformal immersion f̃ : D →M3(c̃)

with constant mean curvature H̃ whose induced metric is the original metric of
(D, f).

Remark 1. In particular, there exist the correspondences between

• Constant mean curvature surfaces with H in R3.
• Constant mean curvature surfaces with ±

√
H2 + 1 in H3(−1).

and

• Constant mean curvature surfaces with |H | < 1 in H3(−1).
• Minimal surfaces in H3(c̃), −1 ≦ c̃ = −1 +H2 < 0.

Let M be a Riemann surface and f : M → H3 a conformal constant mean
curvature surface. Moreover, let n be the unit normal to f . Then F = (f, n) is
the map into UH3, which is called the Gauß map. UH3 can be represented as
SL2C/U(1), which is a 4-symmetric space. Since 〈df, n〉 = 0, F satisfies Legendre
property.

Theorem 1 (T. Ishihara, [3]). A conformal immersion f :M → H3 has constant
mean curvature if and only if its Gauß map is harmonic with respect to the Killing
metric of SL2C.
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Definition 1. A map F into k(> 2)-symmetric space G/K is called primitive if
dF ( ∂

∂z ) ⊂ g1, where g = LieG =
∑

k∈Zk
gk is the eigen space decomposition of g.

Remark 2. The primitive map is a harmonic map.

Then minimal surfaces in H3(c) can be characterized as follows:

Theorem 2. A conformal immersion f : M → H3(c), −1 ≦ c < 0 is minimal if
and only if its Gauß map is primitive map with respect to to the Killing metric of
SL2C.

From Proposition 1, Theorem 1 and Theorem 2, the Gauß maps for constant
mean curvature surfaces in H3 with |H | 6= 1 can be interpreted as

(1) Harmonic maps into S2 for |H | > 1.
(2) Primitive maps into UH

3 for |H | < 1.

Using these interpretations, we obtain the generalized Weierstraß representation.
The detailed discussion is given in [1].

It is known that constant mean curvature surfaces in H3 with |H | < 1 cannot be
compact. The generalized Weierstraß representation naturally gives the analytic
extension of constant mean curvature surfaces in H3 with |H | < 1 acrossing the
ideal boundary ∂H3 of H3, which is induced by the crossing the small cells for the
Iwasawa decomposition of the loop group, see Figure 1 and [1].
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Figure 1. A portion of a surface of revolution with H =
tanh(0.3) and and a portion of a minimal surface of revolution
(right). Surfaces are shown in the Poincaré ball model and the
outside of the Poincaré ball model.
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Stability and bifurcation for surfaces with constant mean curvature

and their generalizations

Miyuki Koiso

1. Introduction

In the study of a variational problem, it is natural to ask whether each critical
point is stable (that is, the second variation of the considered energy functional is
nonnegative) or not. It is important also to determine the geometric properties of
stable solutions. For example, how about the curvatures of the solutions? Do they
have the same symmetry as the original variational problem? It is also important
to study the structure of the set of solutions. In this talk, as one of the steps
to investigate these problems, we study stability and bifurcation for solutions of
variational problems for (hyper)surfaces with constraint.
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First let us give a simple but interesting example. Let C be the union of two
coaxial circles C1, C2 of the same radius in R3. Consider critical points of area
with volume constraint among surfaces bounded by C. For certain volumes V ,
Delaunay surfaces (CMC surfaces of revolution) with volume V bounded by C
are stable, while, for large V , Delaunay surfaces with volume V bounded by C
are unstable. This suggests the possibility of the existence of a bifurcation of
solutions from a one-parameter family of Delaunay surfaces, and the existence of
stable solutions with less symmetry. This is interesting in contrast to the fact that
only spherical caps and disks are stable disk-type CMC surfaces bounded by a
circle (Aĺıas-Lopez-Palmer, 1999).

In this talk we consider mainly CMC surfaces whose boundary values are pre-
scribed. We give sufficient conditions on a one-parameter family of solutions so
that there exists a bifurcation of solutions. Moreover, we give a criterion for solu-
tions in this bifurcation branch to be stable.

These results are applied to various variational problems.

2. Main results and idea of proofs

Let X : Σ = Σ2 → R3 be a C3+α (0 < α < 1) immersion with constant
mean curvature. Denote by ν : Σ → S2 ⊂ R3 the Gauss map of X . For a
volume-preserving variation Xt of X , the second variation of the area is

∂2A = −
∫

Σ

ϕL[ϕ] dΣ =: I(ϕ), ϕ :=

〈
∂Xt

∂t

∣∣∣∣
t=0

, ν

〉
,

where L[ϕ] = 2 ∂H = ∆ϕ+ ‖dν‖2ϕ. Hence, X is stable if and only if I(ϕ) ≥ 0 for
all ϕ ∈ C3+α

0 (Σ) which satisfy
∫
Σ
ϕ dΣ = 0.

Now consider the eigenvalue problem:

(∗) L[ϕ] = −λϕ, ϕ|∂Σ = 0, ϕ ∈ H1
0 (Σ)− {0}.

Denote by λn the n’th eigenvalues of (∗). Set E := {e ∈ C2+α
0 (Σ) | L[e] = 0}.

Theorem 1 (Existence and uniqueness of CMC deformation. Koiso [4]). Let
X : Σ → R3 be a CMC immersion. Assume either the following (i) or (ii) holds.

(i) E = {0}. (ii) dimE = 1 and

∫

Σ

e dΣ 6= 0 for all e ∈ E − {0}.
Then, in a small neighborhood of X, there exists a unique (up to diffeomorphisms
of Σ) one-parameter family {Xt} (Xt : Σ → R3, X0 = X) of CMC immersions
with the same boundary values as X.

Therefore, there is no bifurcation in this case, and bifurcation may occur only
in the case where λk = 0 for some k ≥ 2.

On the other hand, we have a criterion for the stability of CMC surfaces. For
one-parameter family {Xt} of immersions, denote by H(t) and V (t), the mean
curvature and the volume of Xt, respectively.

Theorem 2 (Criterion for Stability. Koiso [4]). Let X be a CMC immersion.
(I) If λ1 ≥ 0, then X is stable.
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(II) Assume λ1 < 0 ≤ λ2. If there is a deformation Xt of X such that H ′(0) =
constant 6= 0, then the following (i) and (ii) hold.

(i) If H ′(0)V ′(0) ≥ 0, then X is stable.
(ii) If H ′(0)V ′(0) < 0, then X is unstable.

If there is no such deformation, then X is unstable.
(III) If λ2 < 0, then X is unstable.

Therefore, in order to study the stability of CMC surfaces in a bifurcation
branch, we need to study only the case where λ2 = 0.

Theorem 3 (Stability of bifurcation branch). Assume we have one-parameter
family Xt = X + ϕtν, (t ∈ I = (−ǫ, ǫ) ⊂ R), of CMC C3+α immersions with
X = X0, which satisfy the following (i)-(iii).

(i) V ′(0) > 0 and H ′(0) > 0.

(ii) λ2(X0) = 0, and
d

dt
λ2(Xt)|t=t0 > 0. (resp.

d

dt
λ2(Xt)|t=t0 < 0.)

(iii) E = {ae ; a ∈ R}.
Then there exists an open interval Î (0 ∈ Î ⊂ R) and C1 functions ψ : Î →
C3+α

0 (Σ), V̂ : Î → R, such that ψ(0) = 0, and X(s) := X + (se + sψ(s))ν is a

CMC immersion with volume V̂ (s). In a small neighborhood X, CMC immersions

with the same boundary values as X consists of {Xt ; t ∈ I} and {X(s) ; s ∈ Î}. If
V̂ (s) > V (0) (s 6= 0) (resp. V̂ (s) < V (0) (s 6= 0)), X(s) are stable. If V̂ (s) < V (0)

(s 6= 0) (resp. V̂ (s) > V (0) (s 6= 0)), they are unstable.

In order to prove Theorem 3, we need the following lemma.

Lemma 1. Assume we have one-parameter family Xt = X + ϕtν, (t ∈ I =
(−ǫ, ǫ) ⊂ R), of CMC C3+α immersions with X = X0, which satisfy the following
(i)-(iii).

(i) H(Xt) = t. (ii) λk(X0) = 0,
d

dt
λk(Xt)|t=t0 > 0. (iii) E = {ae; a ∈ R}.

Then there exist an open interval Î (0 ∈ Î ⊂ R) and C1 functions ϕ : Î → C3+α
0 (Σ)

and Ĥ : Î → R, such that Ĥ(0) = t0, ϕ(0) = 0, and Y (σ) := X+(σe+σϕ(σ))ν is a

CMC immersion with mean curvature Ĥ(σ). Moreover, in a small neighborhood of
X, CMC immersions with the same boundary values as X consists of {Xt ; t ∈ I}
and {Y (σ) ; σ ∈ Î}. Moreover, the zero eigenvalue of X corresponds to small

eigenvalues λ(t) := λ(Xt) of Xt and λ(Y (σ)) of Y (σ). λ(Y (σ)) and −σĤ ′(σ)λ′(t0)

have the same zeroes and, where Ĥ ′(σ) 6= 0, the same sign.

The first half of Lemma 1 is proved by applying a general result on bifurcation
by Crandall-Rabinowitz [2]. This idea was originally used by Patnaik [5]. He
obtained a similar result to the first half of Lemma 1, where he used the volume
instead of the mean curvature. On the other hand, the second half of Lemma 1 is
proved by applying a general result on bifurcation by Crandall-Rabinowitz [3].

Theorem 3 is proved by using Theorem 2, Lemma 1, and a corresponding result
of Lemma 1 with volume instead of mean curvature.
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Remark 1. The variation vector field of X(s) (at s = 0) in Theorem 3 is e, and∫

Σ

e dΣ = 0. This implies that, X(s) does not have the same symmetry as Xt.

3. Applications and generalizations

The method developed in the previous section is applied to various examples:
(I) The example which was mentioned in the first section: a bifurcation at a

certain part of a nodoid with λ2 = 0 occurs, where the rotationally symmetry
breaks.

(II) A free boundary problem for CMC hypersurfaces between two parallel
hyperplanes in Rn+1 (cf. Pedrosa-Ritore [6]). We have a bifurcation from a
one-parameter family of cylinders to produce a half period of an unduloid-type
solutions. Symmetry with respect to a hyperplane breaks. The stability of the
unduloid depends on the dimension.

(III) We can apply our method to more general variational problems: Free or
fixed boundary problem for surfaces with constant anisotropic mean curvature,
which are critical points of an anisotropic surface energy with volume constraint
(cf. Arroyo-Koiso-Palmer[1]).
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Moduli spaces of complex projective structures and CMC surfaces

Rob Kusner

(dedicated to my father, David Kusner, 1932-2010)

Complete embedded constant mean curvatures (CMC) surfaces in R3 are highly
transcendental objects [8, 3, 12, 10, 13] whose moduli spaces are understood in
only a few special cases [1, 14, 9, 2, 6]. This talk (reporting on joint work [5]
with Karsten Grosse-Brauckmann, Nick Korevaar and John Sullivan) discusses a
surprising connection between CMC surfaces and complex projective structures,
allowing us to make the former just a bit more explicit.
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The well-known (see [4]) correspondence between projective structures and holo-
morphic quadratic differentials q(z) dz2 via the holomorphic Hill equation

(⋆) uzz + q(z)u = 0,

guides our work: if u1(z), u2(z) is a basis of solutions to (⋆), then their ratio u1

u2

is the developing map for a projective structure whose Schwarzian is q(z), where
z is a local coordinate belonging to some background projective structure. This
makes the moduli space of projective structures over a fixed Riemann surface into
a complex affine space modeled on the vector space of quadratic differentials.

In case of coplanar k-unduloids, CMC surfaces of genus 0 with k ends [7], the
underlying Riemann surface isC with global coordinate z (unique up to z → az+b)
belonging to its standard projective structure, and q(z) is a polynomial of degree
k − 2 normalized to be monic with root-sum zero. For example, the unduloids
all have q(z) = 1 and an exponential developing map, while all triunduloids have
q(z) = z and developing map given by a ratio of Airy functions. For k ≥ 4, it
is not practical to solve the Hill equation (⋆) explicitly, so instead we perform a
careful asymptotic analysis.

Each of the k ends corresponds to an asymptotic half-space in the flat metric
given by |q(z)| |dz|2 ∼ |dw|2. We use the flat half-space coordinate w to rewrite
(⋆) as an O( 1

w2 ) perturbation of the constant coefficient equation. This allows
us to analyze growing and decaying solutions on each half-space and show that
the ratio of two independent global solutions to (⋆) is the developing map of a
k-point projective structure: an equivalence class of the k-point spherical metrics
previously used [7] to classify coplanar k-unduloids, except now two k-point metrics
are equivalent if they differ by a fractional linear map (rather than an isometry)
of S2.

Since the quotient space of fractional linear maps by isometries is a 3-ball, the
moduli space of all k-point metrics – or equivalently, of all coplanar k-unduloids –
is homeomorphic to the product of this ball with the space of k-point projective
structures, and thus to R2k−3 = B3 ×Ck−3, where the second factor comes from
realizing k-point structures by (affine) space of normalized polynomials of degree
k − 2. We already knew [6, 7] the topology of these moduli spaces for the cases
k = 3, 4, but we had suspected that for k ≥ 5 these spaces were not even simply
connected, and thus it came as quite a surprise that they were contractible!

An interesting question we continue to explore is how this description for CMC
moduli space compares with others, such as that coming from spherical metrics
or, more speculatively, from the holomorphic potentials methods stemming from
[3]. And although not discussed in this talk, one hopes these ideas may also be
applied to give a more explicit description of minimal surfaces [11] in S3 which are
cousins of CMC surfaces in R3.
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The large genus limit of the infimum of the Willmore energy

Ernst Kuwert

(joint work with Yuxiang Li, Reiner Schätzle)

The Willmore energy of an immersed surface Σ →֒ Rn with mean curvature vector
~H and induced area measure µ is given by

W(Σ) =
1

4

∫

Σ

| ~H |2 dµ.

Let C(n, p) be the class of oriented, closed (i.e. compact without boundary),
smoothly immersed surfaces Σ with genus (Σ) = p, and put

(1) βn
p = inf{W(Σ)|f ∈ C(n, p)}.

It is well-known that W(Σ) ≥ 4π for any closed immersed surface, with equal-
ity only for round spheres [10]. In [8] L. Simon proved the existence of smooth
minimizers in C(n, p) under the Douglas-type condition

(2) βn
p < 4π +min

{ r∑

i=1

(βn
pi

− 4π) : 1 ≤ pi < p,

r∑

i=1

pi = p
}
=: β̃n

p .

In particular he obtained the existence for p = 1. The inequality (2) was proved
later in [1], so βn

p is attained for all n, p and βn
p > 4π for p ≥ 1. By conformal

invariance the area of a minimal surface in S3 equals the Willmore energy of the
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surface in R
3 obtained by stereographic projection [9], which leads to an upper

bound for βn
p . Namely, Pinkall [2] and independently Kusner [3, 4] observed that

the minimal surfaces ξp,1 in S3 described by Lawson in [6] have area less than 8π.
In summary we know that

(3) 4π < βn
p < 8π for p ≥ 1.

An important consequence of the upper bound is that minimizers are automatically
embedded, due to an inequality of Li and Yau [7]. It was conjectured that the
βn
p might be monotonically increasing in p, see [2, p. 446], and that the projected
ξp,1 could in fact be minimizers for their genus [4, p. 318 and p. 344]. For large
p these surfaces look like two spheres connected by minimal handles, see [10, p.
293] for p = 5, in particular their Willmore energy converges to 8π as p → ∞ [3].
Here we prove the following.

Theorem. Let βn
p be the infimum of the Willmore energy among oriented, closed

surfaces of genus p immersed into R
n. Then

(4) lim
p→∞

βn
p = 8π.

We would like to thank Tom Ilmanen for asking the question addressed in this
paper when one of us gave a talk in Zürich.
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Darboux transforms and simple factor dressing

Katrin Leschke

(joint work with Francis E. Burstall, Josef Dorfmeister, Áurea Quintino)

Introduction. By the Ruh–Vilms Theorem [15] a constant mean curvature sur-
face f : M → R3 of a Riemann surface M into 3–space is characterized by the
harmonicity of its Gauss map N : M → S2. This fact allows to use integrable
system methods for constant mean curvature surfaces: one can introduce the spec-
tral parameter and thus obtains the associated C∗–family dλ of flat connections.
This family is unitary on the unit circle where it describes the associated family
of harmonic maps Nλ of N , and thus, with the Sym–Bobenko formula [1], the as-

sociated family of constant mean curvature surface fλ : M̃ → R
3 on the universal

cover M̃ of M . Moreover, the dressing operation [17, 16] on harmonic maps gives
rise to new constant mean curvature surfaces.

On the other hand, in the case when M = T 2 is a torus, the holonomy re-
presentation of dλ is abelian, and thus gives rise to the spectral curve of the
harmonic torus N : T 2 → S2, see [9]. More generally, a spectral curve for a
conformal torus f : T 2 → S4 has been defined recently and points on the spectral
curve have the geometric interpreation [2] as (generalized) Darboux transforms of
f . In this presentation, we explain an extension of results of [8, 3, 10]: a generic
Darboux transform is indeed given by simple factor dressing, and vice versa.

Other surface classes are also linked to harmonicity, e.g., Hamiltonian stationary
Lagrangians f : M → C2, or Willmore surfaces f : M → S4, and thus allow an
associated family of flat connections; however to construct new surfaces, a Sym–
Bobenko formula is still needed. Our result extends to these cases and gives a
generalized notion of simple factor dressing [14, 11, 12, 13].

Dressing. We will interpret the Euclidean 3-space as the imaginary quaternions,
and identify C2 = (H, I) where the complex structure I is given by right multi-
plication by i. In particular, a smooth map N :M → S2 ⊂ ImH gives by

Jϕ = Nϕ for ϕ ∈ H ,

a complex structure J ∈ End(H) on the trivial H bundle, that is a quaternionic
linear endomorphism with J2 = −1. In terms of the Hopf field, that is the (1, 0)–
part

A =
1

4
(∗dJ + J(dJ))

of the connection form 1
2J(dJ), the harmonicity of N reads as the condition that

d ∗A = 0. This allows to introduce the spectral parameter λ ∈ C∗, and we obtain
the well–known fact that N is harmonic if and only if the family of connections

dλ = d+ (λ− 1)A(1,0) + (λ−1 − 1)A(0,1)

on C
2 are flat for all λ ∈ C∗ where A(1,0) and A(0,1) denote the (1, 0) and (0, 1)–

parts of the Hopf field A with respect to the complex structure I. New harmonic
maps can be constructed by gauging the family of flat connections:
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Theorem 1 (Dressing, [17, 16, 4]). Let N : M → S2 be harmonic and rλ : M̃ →
GL(2,C) be smooth on the universal cover M̃ of M (satsifying a reality condition
and normalisation) with

(1) λ→ rλ is meromorphic on CP
1 and holomorphic at 0,∞ and

(2) λ→ d̂λ = rλ · dλ is holomorphic on C∗.

Then d̂λ is the associated family of flat connections of a harmonic map N̂ : M̃ →
S2, a so–called dressing of N .

In particular, for fixed µ ∈ C∗ and dµ–parallel line bundle Mµ over M̃ , the map

rλ = πµ
1− µ̄−1

1− µ

λ− µ

λ− µ̄−1
+ π⊥

µ

(where πµ, π
⊥
µ are the projections onto Mµ and M⊥

µ respectively) satisfies the con-
dition above and gives a simple factor dressing of N .

By the Sym–Bobenko formula this theorem gives (simple factor) dressing of
constant mean curvature surfaces. To obtain a simple factor dressing on a torus
M = T 2 rather than on the universal cover, one has to find a dµ–parallel bundle
Mµ over T 2. This amounts to finding eigenvectors of the holonomy of dµ, and
thus gives the link to the spectral curve of a harmonic torus.

Darboux transformation. In [2] a Darboux transformation on conformal tori
in the 4–sphere is defined. This transformation extends the classical Darboux

transformation [7]: two conformal immersions f, f̂ : M → R3 from a Riemann
surface M into 3–space are called a classical Darboux pair if there exists a sphere

congruence enveloping both f and f̂ . To construct classical Darboux transforms
in the case when f :M → R3 has constant mean curvature H = 1, one solves the
Riccati equation [5]

(1) dT̂ = −df + T̂ (dgρ)T̂ , ρ ∈ R ,

where g = f +N is the parallel constant mean curvature surface. Then f̂ = f + T̂

is a classical Darboux transform of f . Moreover f̂ has constant mean curvature if
and only if

(2) (T̂ −N)2 = ρ−1 − 1 .

To generalize this transformation choose for fixed µ ∈ C∗, µ 6= 1, a parallel section

ϕ (on the univeral cover) of dµ. Putting ρ = 2−µ−µ−1

4 , ν = i(µ−1−µ)
4 ∈ C and

T = −Nϕρϕ−1 + ϕνϕ−1, one obtains a solution of the Riccati type equation

dT = −dgρ̂+ TdfT

with (T ρ̂−1 + N)2 = ρ̂−1 − 1 where ρ̂ = ϕρϕ−1 : M̃ → H∗ is now a smooth

function. In fact, f̂ = f +T−1 is [6], up to translation, a constant mean curvature

surface in R3 for µ ∈ C∗, µ 6= 1. We call f̂ a µ–Darboux transform of f . Note that
for ρ ∈ R the above two equations are equivalent to (1) and (2) with T̂ = T−1, so
that we obtain [6] the classical Darboux transforms with constant mean curvature
exactly as the special case when µ ∈ R∗ ∪S1. Note that for ρ, ν 6∈ R, the Darboux
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transform depends again on the choice of the line bundle Mµ = ϕC over M̃ .
Indeed:

Theorem 2. A µ–Darboux transform of the Gauss map N of a constant mean
curvature surface f :M → R3 is a simple factor dressing of −N , and vice versa.

Note that though our Riccati equations are expressed in terms of the constant
mean curvature surface (and its parallel surface) both equations can be reformu-
lated in terms of the harmonic map N , and we obtain a Darboux transformation
on harmonic maps N : M → S2. From [13] we thus obtain an analogue result
for Hamiltonian stationary Lagrangian surfaces. Moreover, this Darboux trans-
formation can be extended to a transformation on the conformal Gauss map of a
Willmore surface [5, 12], and one obtains an analogue for Willmore surfaces [11].
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stant mean curvature surfaces, Internat. J. Math. 16, no 2 (2005), 101-110.

[11] K. Leschke, Darboux transforms of Willmore surfaces, in preparation.
[12] K. Leschke, Harmonic map methods for Willmore surfaces, arXiv:1003.3371 (2010).
[13] K. Leschke, P. Romon, Darboux transforms and spectral curves of Hamiltonian stationary

Lagrangian tori, Calc. Var. PDE, Vol. 38, issue 1, (2010), page 45-74.
[14] A. Quintino, Constrained Willmore Surfaces, PhD thesis (2008), University of Bath.
[15] E. Ruh,J. Vilms, The tension field of the Gauss map., Trans. Am. Math. Soc., Vol. 149

(1970), 69-573.
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Calabi-Yau domains in Riemannian three manifolds

Francisco Mart́ın

(joint work with William H. Meeks III)

The Calabi-Yau problem for minimal surfaces has generated a remarkable amount
of mathematical literature in recent years, possibly because of the diversity of in-
teresting techniques developed for its study. The problem dates back to the sixties,
when E. Calabi conjectured that there were no complete bounded minimal sur-
faces in R3. In 1996, Nadirashvili [14] provided the first counterexample to the
conjecture.

The problem was revisited several times by S.-T. Yau [15, 16] and he proposed
new questions related with this conjecture. Among all them, the most interesting
one is the embedded Calabi-Yau problem, that is, the existence (or non-existence)
of complete embedded minimal surfaces in a bounded domain D of R3.

We would like to point out the dichotomy between the immersed case and the
embedded one. On one hand, we have a lot of existence theorems for immersed
minimal surfaces in bounded domains of R3, even under the assumption of in-
teresting geometric and topological properties for the surface and the domain D
[1, 2, 3, 10, 11, 12].

On the other hand, if we impose to the surface the hypothesis of embeddedness
we only have non-existence results:

Theorem 1 (Colding, Minicozzi, [5]). A complete embedded minimal surface with
finite topology in R3 must be proper in R3.

Theorem 2 (Meeks, Perez, Ros, [13]). If M is a complete embedded minimal
surface in R

3 with finite genus and a countable number of ends, then M is
proper in R3.

These theorems mean that if we were looking for an example of a complete
embedded minimal surface in a bounded domain of R3, then we should seek it
among surfaces with infinite genus or with an uncountable number of ends. If in
addition the surface is non-orientable, then we have an important obstruction as
shows this theorem:

Theorem 3 (Ferrer, Mart́ın, Meeks, [6]). If M is a nonorientable surface and has
an infinite number of nonorientable ends, then M cannot properly embed in any
smooth bounded domain of R3.

Taking into account all the above information, it makes sense to conjecture the
following:

Conjecture 1 (Mart́ın-Meeks-Nadirashvili; Meeks-Perez-Ros). Let M be an open
surface.

(1) There exists a complete proper minimal embedding of M in some smooth
bounded domain D ⊂ R3 iff the number of nonorientable ends is

finite and every end of M has infinite genus.
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(2) There exists a complete proper minimal embedding of M in every smooth
bounded domain D ⊂ R3 iff M is orientable with every end having infinite
genus.

If the domain is non-smooth then we have:

Conjecture 2 (Ferrer, Mart́ın, Meeks). Let D∞ be the bounded domain in R3

described in the figure, which is smooth except at one point. A necessary and
sufficient condition for an open surface M to admit a complete, proper minimal
embedding in D∞ is that every end of M has infinite genus.

Figure 1. The domain D∞

Recently, Ferrer, Mart́ın and Meeks [6] have given a first approach to the proof
of the embedded Calabi-Yau problem by demonstrating that for every smooth
bounded domain D ⊂ R3 and for every open surface M , there exists a complete
proper minimal immersion f : M → D; furthermore, in [6], they proved that such
an immersion f : M → D can be constructed so that for any two distinct ends E1,
E2 of M , the limit sets L(E1), L(E2) in ∂D are disjoint compact sets.

In contrast to the above existence results, in [8] we prove the existence of non-
smooth bounded domains D in R3, and more generally, domains D inside any
Riemannian three-manifold, for which some open surface M can not be properly
immersed into D as a complete surface with bounded mean curvature. In this
case, we will say that D is a Calabi-Yau domain for M . The result described
in the next theorem generalizes the main theorem of Mart́ın, Meeks and Nadi-
rashvili in [9] which demonstrates the existence of nonsmooth bounded domains
in R3 which do not admit any complete, properly immersed minimal surfaces with
compact boundary (possibly empty) and at least one annular end.

Theorem 4. LetW be a smooth compact Riemannian three-manifold with nonempty
boundary and let W = Int(W ). There exists a properly embedded one-manifold
∆ ⊂ W whose path components are smooth simple closed curves, such that D =
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W −∆ is a Calabi-Yau domain for any surface with compact boundary (possibly
empty) and at least one annular end. In particular, D does not admit any complete,
noncompact, properly immersed surfaces of finite topology, compact boundary and
constant mean curvature.
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Complete Flat Surfaces with Isolated Singularities in H3

Antonio Mart́ınez

(joint work with Armando V. Corro, Francisco Milán)

The theory of flat surfaces in H3 has undergone an important development in the
last few years. The starting point of this renewed interest has been the discovery
in [4] that flat surfaces in H3 admit a Weierstrass representation formula in terms
of meromorphic data, like the classical one for minimal surfaces in R3. This has
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generated a great interest in such class of surfaces, even though the only complete
examples are the horospheres and hyperbolic cylinders (see [11]).

The last mentioned lack of complete examples has motivated an important ad-
vance in the problem of studying the singularities in these surfaces. Questions such
as their generic behaviour or the existence of complete examples with singularities
have been solved thanks to the works [8], [7] and [10].

Contrarily to the minimal case, flat surfaces in H3 can have isolated singularities
around which the surface might be regularly embedded. Geometrically, isolated
singularities correspond to points where the Gauss map has not well defined limit.
Locally, this kind of singularities have been classified in [5], where is proved that the
class of flat surfaces that have p ∈ H3 as an embedded isolated singularity admits a
one-to-one correspondence with the class of analytic regular convex Jordan curves
in the 2−sphere. But there are many interesting problems in this theory that
remain unsolved. For example, we can quote the existence of compact or complete
examples with a finite number of isolated singularities. In this sense and up to
now, the only known example of complete flat surface with isolated singularities is
the revolution one (also call the half hourglass) which is a graph over a horosphere
with only one point removed.

We start with some information about how flat surfaces inH3 can be represented
by holomorphic data and use it in order to study the global behaviour of complete
embedded flat surfaces with a finite number of isolated singularities. To be precise,
we prove

Proposition 1. Let ψ : Σ −→ H3 be a complete flat immersion with ψ(F) as
set of isolated singularities. Then there is a compact Riemannian surface Σ, n
disjoint discs D1, · · · ,Dn ⊂ Σ and finitely many points q1, · · · , qm ∈ Σ \ D, where
D = D1 ∪ · · · ∪ Dn such that Σ \ F endowed with the conformal structure induced
by the second fundamental form has the conformal type of Σ \ {{q1, · · · , qm} ∪D}

The points q1, · · · , qm are called the ends of ψ.

Theorem 1. If ψ : Σ −→ H3 is a complete flat embedding with ψ(F) as set of
isolated singularities, then ψ is globally convex.

Corollary 1. Every complete flat embedding ψ : Σ −→ H
3 with a finite number

of isolated singularities and only one end is a graph over a finitely punctured
horosphere.

We shall spend a important part of the talk to the construction of examples
of complete embedded surfaces with only one end an either one or two isolated
singularities (see Figigure 1 and Figure 2). In the case of two isolated singulari-
ties, which we called canonical examples, the construction relies on the conformal
representation of flat surfaces in H3 and the existence of conformal equivalences
between a one punctured annulus and a horizontal slit domain in C.

Finally, we give the following characterizations results:

Theorem 2. The revolution examples are the unique complete flat embeddings in
H

3 with only one isolated singularity and one end.
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Figure 1. Complete flat surface with only one isolated singularity

Figure 2. Complete flat surface with two isolated singularities.

Theorem 3. Each complete flat embedding in H3 with only two isolated singular-
ities and one end must be congruent to one of the canonical examples.
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The geometric Cauchy problem in surface theory

Pablo Mira

(joint work with Jose A. Gálvez)

Let (M̄3, 〈, 〉) denote a Riemannian 3-manifold, and A denote a class of surfaces
immersed in M̄3 having an underlying second order PDE (for instance, CMC
surfaces in the ambient manifold M̄3). Let β(s) denote a regular curve in M̄3, and
V (s) be a vector field along β(s) in M̄3 which is orthogonal to the curve. That is,
V (s) ∈ Tβ(s)M̄

3 and 〈β′, V 〉 = 0 for every s.
In these conditions, the geometric Cauchy problem for the class A asks for the

existence and uniqueness of a surface Σ belonging to the class A such that β(s) is
a regular curve on Σ and the unit normal of Σ at β(s) is given by V (s).

It is clear that this is a geometric formulation of the usual Cauchy problem for
second order PDEs. Thus, in many cases the problem will have a unique solution,
just as an application of the Cauchy-Kowalevsky theorem. Here, we are interested
in the construction of such a solution by some formula, and in the geometric global
applications to surface theory of this resolution.

This geometric Cauchy problem is a general formulation of the classical Björling
problem for minimal surfaces in R3, posed by E.G. Björling in 1844 and solved by
H.A. Schwarz in 1890. In the specific setting of minimal surfaces in R3, the infor-
mation provided by solving such a Björling type problem is, in general and with
some exceptions, not specially relevant to the theory. Indeed, minimal surfaces in
R3 are very explicit, and can be globally studied using stronger techniques. How-
ever, when one moves to some less explicit theories, the solution to the geometric
Cauchy problem provides relevant non-trivial information about them, as we will
explain.
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In what follows, I will present some results obtained in collaboration with J.A.
Gálvez regarding the solution to the geometric Cauchy problem in several surface
theories. These theories are: H = 1 surfaces in H3, flat surfaces in H3, flat surfaces
in S3 (jointly also with J.A. Aledo) and surfaces of constant positive curvature in
R3 (jointly also with L. Hauswirth).

1. The geometric Cauchy problem in H3 and S3

1.1. The Cauchy problem for H = 1 surfaces in H3. The class of H = 1
surfaces (H is the mean curvature) in H3 has many interesting properties. One
of them is that the hyperbolic Gauss map is a conformal map into the Riemann
sphere. Another one is that they admit aWeierstrass-type representation, obtained
by R.L Bryant [2]. Yet another one is that its metric is governed by the Liouville
equation ∆u+ eu = 0.

In the work [5] we solved the geometric Cauchy problem for H = 1 surfaces
in H3. Specifically, we obtained a formula describing the unique solution to that
problem, in terms of the solution to the Cauchy problem for Liouville’s equation.
We also investigated the solution to this analytic problem, and found several global
consequences. For instance, we gave a rough classification of complete H = 1
cylinders in H3 having finite dual total curvature, in terms of initial data given by
vector trigonometric polynomials. Another one was the reconstruction in explicit
coordinates of any H = 1 surface in H

3 from the knowledge of one of its planar
geodesics. Also, in [6] we used these results for the Liouville equation in order to
solve a Neumann problem in the half-plane for that equation.

1.2. The Cauchy problem for flat surfaces in H3. Flat surfaces in H3 share
many similarities with H = 1 surfaces. Indeed, with respect to their extrinsic
conformal structure (i.e. the conformal structure induced by the second funda-
mental form, which is definite), the positive and negative hyperbolic Gauss maps
are conformal into the Riemann sphere, and so the surface has a quite explicit
Weierstrass-type representation (see [7]).

In [4], we gave an explicit formula solving the geometric Cauchy problem for
flat surfaces in H3, and we used that formula for studying singularities of these
surfaces. It must be said that any complete flat surface in H3 is a horosphere or
a hyperbolic cylinder; thus, it is natural to allow the presence of singularities for
theses surfaces, and to investigate how the nature of singularities determines the
global geometry of the flat surface.

In this line, we gave a classification of all flat surfaces in H3 that are regularly
embedded around an isolated singularity. The way to do this was to solve an
adequate singular Cauchy problem, and to analyze in terms of the initial data to
such problem when the surface is regular or embedded around the singularity.

1.3. The Cauchy problem for flat surfaces in S3. The geometry of flat sur-
faces in S3 is governed by the homogeneous wave equation ωuv = 0, which is
hyperbolic. As a consequence, both existence and uniqueness of the solution to
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the geometric Cauchy problem for flat surfaces in S
3 fail when we meet an asymp-

totic direction on the surface.
In [1], we solved jointly with J.A. Aledo the geometric Cauchy problem for

flat surfaces in S3. Specifically, we proved existence and uniqueness in the non-
characteristic case, and we gave a necessary and sufficient condition for the initial
data of the problem in order to ensure existence and uniqueness in a restricted
sense, in the characteristic case.

As an application of this resolution, we classified the space of flat surfaces in S3

with the topology of a Möbius strip. It must be pointed out that these surfaces
cannot be complete or real analytic, and that one always hits a characteristic
direction when traveling around a non-null homotopic curve on it.

2. Surfaces of constant positive curvature in R3

In [3], we studied jointly with L. Hauswirth the class of surfaces of constant
curvature K > 0 (K = 1 w.l.o.g.) in R3 with isolated singularities. In the local
case, we proved that such an isolated singularity is extendable in an adequate sense
if and only if the mean curvature of the surface is bounded around the singularity.
For the case of non-extendable singularities, we proved:

Theorem. Let α : S1 → S2 denote a closed, real analytic, locally convex curve
with admissible cusps in S2. Then it can be realized as the limit unit normal of a
unique K-surface in R3 having a non-extendable isolated singularity of finite area
at the origin.

Conversely, any non-extendable isolated singularity of finite area of a K-surface
in R3 is constructed like this. Moreover:

i) From an intrinsic point of view, all these singularities are conical.
ii) The curve α is a regular convex Jordan curve in S2 if and only if the surface

is embedded around the singularity.

As a consequence, there exists a correspondence between the space of embedded
isolated singularities of K-surfaces in R3 and the class of regular, real analytic
convex Jordan curves in S2.

From a global point of view, we define a peaked sphere in R3 to be a closed
convex K-surface in R3 that is everywhere regular except for a finite number of
points. These points will then be embedded isolated singularities. A peaked sphere
with 0 singularities is a round sphere. There are no peaked spheres with exactly
1 singularity, and a peaked sphere with exactly 2 singularities is rotational. For
the case of n > 2 singularities, we can combine results by Alexandrov, Pogorelov,
Troyanov and Luo-Tian to obtain:

Theorem. For n > 2, the space of peaked spheres in R3 with n > 2 singularities is,
up to ambient isometries, a 3n− 6-dimensional family. This family is described in
terms of the conical angles at the singularities, and the intrisic conformal structure.

By our local analysis, we know that the extrinsic conformal structure of a
peaked sphere is that of a circular domain. This provides several applications to
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the Neumann problem for harmonic diffeomorphisms into S2, or to a free boundary
problem for CMC surfaces in R3 with boundary on a finite collection of spheres.
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Homogeneity of isoparametric hypersurfaces with six principal

curvatures

Reiko Miyaoka

An isoparametric hypersurfaceM in Sn+1 is a hypersurface with constant prin-
cipal curvatures. When M has g = 6 principal curvatures λ1 > · · · > λ6, the
multiplicity m is common and takes values 1 or 2 [1]. We give a solution to the
long-standing classification problem : [13] Isoparametric hypersurfaces in S13 with
(g,m) = (6, 2) are homogeneous and are given by the adjoint G2 orbits in its Lie
algebra. The geometry of G2 orbits is given in [12]. The strategy of the proof
is the same as the new geometric proof [11] of Dorfmeister-Neher’s theorem for
m = 1 [7], but the case m = 2 is overwhelmingly difficult. At every stage of the
proof, a non-generic matter occurs, which we cannot avoid since what we have to
prove is the homogeneity starting without any homogeneity. The classification is
by no means a matter of calculation, but is done through some new ideas and a
deep investigation of the geometry behind.

Here, the so-called Condition A plays a crucial role. This means that the shape
operators of a focal submanifold have the kernel independent of normal directions.

Proposition 1. [10], [13] When g = 6, an isoparametric hypersurface is homoge-
neous if and only if Condition A is satisfied.

In fact, thanks to the small multiplicity when g = 6, Condition A is sufficient
to calculate all the structure coefficients explicitly using the Gauss equation and
a symmetry of M . Then these turn out to coincide with those of the G2 orbits,
and applying the rigidity theorem of hypersurfaces, we obtain the theorem.

Note that in the case g = 4, Condition A does not necessarily imply the homo-
geneity [4],[6],[14].



1280 Oberwolfach Report 21/2010

To show Condition A is the most difficult part of the proof. Singular matters
have to be excluded via, for instance, the analyticity, the geometric properties, as
well as the Fourier expansion of an S1 parameter family of shape operators.

Now we give a brief summary of the argument. Decompose TpM = D1 ⊕
· · · ⊕D6 into curvature distributions Dj of λj with dimDj = m. The focal map
fi : M → Mi makes each leaf Li(p) of Di shrink to a focal point p̄, and the
image Mi is a regular submanifold of dimension 5m, called the focal submanifold.
We mainly work on M+ = M6, and put f = f6. Then TM+ = ⊕5

i=1f∗Di and
T⊥M+ = Rη⊕f∗D6 follows, where η = f∗ξ for a unit normal vector ξ ofM . Now,
let m = 2. We denote an orthonormal basis of Di by ei, eī, i = 1, . . . , 6. We use
i for i, ī. The leaf L6(p) is identified with the (unit) normal sphere at p̄ ∈ M+,
and we have an orthonormal basis η, ζ = e6 and ζ̄ = e6̄ of T⊥M+. We denote the
shape operator of M+ by Bn for n ∈ T⊥M+.

Lemma 1. Bn is isospectral, i.e., has eigenvalues ±S23,±1/S23, 0 with multiplic-
ity 2, where the eigendirections depend on n.

Thus L(t) = cos tBη+sin tBζ is isospectral, and with respect to the orthonormal
basis (e1, e1̄, . . . , e5, e5̄) ∈ D1 ⊕ · · · ⊕D5, we can express

Bη =




S23I
1

S23I
0

− 1
S23I

−S23I



, Bζ =




0 B12 B13 B14 B15

0 B23 B24 B25

0 B34 B35

0 B45

0



,

where each block is a 2 by 2 matrix, and Bζ is symmetric. Obviously, Condition
A holds if and only if kerBζ = D3, i.e., Bi3 = 0 = B3j . Here, Bij is given by

(1) Bij =
1

sin θ6(λi − λ6)



Λj
i6 Λj̄

i6

Λj
ī6

Λj̄
ī6


 = tBji, Λγ

αβ = 〈∇eαeβ, eγ〉.

Using a symmetry ofM , we can see that Condition A implies Λγ
36 = 0 = Λγ

14 = Λγ
25.

Lemma 2. Put E = spant{kerL(t)} ⊂ TM+, and d = dimE. Suppose Condition
A fails. Then each L(t) maps E into E⊥, and 3 ≤ d ≤ 6 follows.

The lemma is proved by showing

E = span{e3,∇e6e3,∇2
e6e3, . . . }, E⊥ = span{∇e3e6,∇e6∇e3e6,∇2

e6∇e3e6 . . . }
where e6 = ζ, and 3 stands for 3 and 3̄. Therefore, the behavior of e3(t), e3̄(t)
along the geodesic c in the direction ζ = e6 is important. A vector filed v(t) along
c is called even when v(t+ π) = v(t), and odd when v(t+ π) = −v(t).

Lemma 3. We can choose e3(t), e3̄(t) as even vectors. In this case, all ∇k
e6e3(t)

are even, and all ∇k
e6∇e3e6(t) are odd (possibly vanish somewhere).
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The latter follows from L(t+ π) = −L(t) and Lemma 2. Using the fact that a
subspace of TM+ cannot have a continuous moving frame including odd number
of odd vectors, we obtain the following proposition, after some further argument.

Proposition 2. Only d = 6 is possible, and we have an orthonormal basis of
E ⊕ E⊥ explicitly in terms of ei, eī, 1 ≤ i ≤ 5.

We can express L(t) =

(
0 R(t)

tR(t) S(t)

)
w.r.t. this basis, while L(t) = U(t)L(0)tU(t)

holds for U(t) ∈ O(10) by the isospectrality. Then by a careful investigation of the
coefficient matrices of the Fourier expansion of L(t), U(t) =diag

(
U1(t) U2(t)

)
∈

O(6)×O(4) follows. Note that this never follows from the above shape of L(t).

Lemma 4. T (t) = tR(t)R(t) and S(t) are isospectral 4× 4 matrices.

Thus 10 × 10 isospectral matrices L(t) is reduced into two 4 × 4 isospectral
matrices, which is easier to handle, still we need Mathematica, and evenness and
oddness argument to obtain:

Proposition 3. S(t) = 0.

At this stage, applying a similar argument to another focal submanifold M−,
we would obtainM = S6×S6, a contradiction. Therefore Condition A is satisfied,
and the homogeneity follows from Proposition 1.

Classification of isoparametric hypersurfaces in Sn up to now

g 1 2 3 4∗(3 exceptions) 6

M Sn−1 Sk × Sn−k−1 CF homogeneous or
of OT-FKM type

SO(4)-orbits
or G2-orbits

For g ≤ 3, É. Cartan showed they are all homogeneous [2]. Here, CF is the Cartan
hypersurface, namely, a tube over the standard P 2F in Sn for F = R,C,H, C.
For g = 4∗ , Ozeki-Takeuchi [14], and then Ferus-Karcher-Münzner [8] constructed
infinitely many non-homogeneous examples using the representation of the Clifford
algebras. Cecil-Chi-Jensen [3], and independently, Immervoll [9] showed that when
g = 4, except for (m1,m2) = (3, 4), (4, 5), (7, 8), (6, 9), they are either homogeneous
or of OT-FKM type. Recently, Q.S. Chi [5] shows that Condition A holds at a
point in the case (m1,m2) = (3, 4) and they are also of OT-FKM type.
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On Lagrangian submanifolds in complex hyperquadrics obtained from

isoparametric hypersurfaces

Yoshihiro Ohnita

(joint work with Ma, Hui, Tsinghua University, Beijing, P. R. China)

A smooth immersion ϕ of a smooth manifold L into a 2n-dimensional symplectic
manifold (M,ω) is called a Lagrangian immersion if dimL = n and ϕ∗ω = 0. A
submanifold satisfying only the second condition is called an isotropic submani-
fold. It is an interesting and important problem in differential geometry to study
Lagrangian submanifolds in specific Kähler manifolds and to discuss their rela-
tionship with other geometries.

The notion of Hamiltonian minimality and Hamitonian stability of Lagrangian
submanifolds in Kähler manifolds was introduced and investigated first by Y. G. Oh
(1990). It is the study of Lagrangian submanifolds from the viewpoint of minimal
submanifold theory in Riemannian geometry and geometric variational problems.
A Lagrangian immersion ϕ : L → M of a compact smooth manifold L into a
Kähler manifold M is called Hamiltonian minimal if it has extremal volume under
every Hamiltonian deformation of ϕ. A Hamiltonian minimal Lagrangian immer-
sion ϕ is called Hamiltonian stable (shortly, H-stable) if the second variation of the
volume is nonnegative under every Hamiltonian deformation of ϕ. Moreover we
call it strictly Hamiltonian stable if ϕ satisfies the following two conditions :

(1) ϕ is H-stable.
(2) The null-space of the second variations is exactly the span of the normal

projections of holomorphic Killing vector fields of the ambient (simply
connected) Kähler manifold M (“Hamiltonian rigid ”).

In [5] we discussed Lagrangian submanifolds in complex hyperquadrics

Qn(C) ∼= G̃r2(R
n+2) ∼= SO(n+ 2)/SO(2)× SO(n),

which are obtained as Gauss images of isoparametric hypersurfaces in spheres.
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Let Nn ⊂ Sn+1(1) ⊂ Rn+2 be an oriented hypersurface immersed in the unit
standard sphere. Denote by x its position vector of points p of Nn and by n the
unit normal vector field of Nn in Sn+1(1). Its “Gauss map”is defined as

G : Nn ∋ p 7−→ x(p) ∧ n(p) ∼= [x(p) +
√
−1n(p)] ∈ G̃r2(R

n+2) ∼= Qn(C).

Then we know that G : Nn −→ Qn(C) is always a Lagrangian immersion. More-
over we can observe that a small deformation of Nn corresponds to a small Hamil-
tonian deformation of G.

Suppose that Nn ⊂ Sn+1(1) is a compact oriented embedded hypersurface
with constant principal curvatures, i. e. “isoparametric hypersurface”. By the
Münzner’s famous result [7], the number g of distinct principal curvatures must be
g = 1, 2, 3, 4, 6 and their multiplicities m1 = m3 = · · · ≤ m2 = m4 = · · · . By the
mean curvature form formula of B. Palmer, we see that its Gauss map G : Nn −→
Qn(C) is a minimal Lagrangian immersion. Moreover we can observe that the
“Gauss image”of G : Nn −→ Qn(C) is a compact embedded minimal Lagrangian
submanifold Ln = G(Nn)(∼= Nn/Zg) ⊂ Qn(C) and it is a compact monotone
and cyclic embedded Lagrangian submanifold with minimal Maslov number ΣL =
2n/g = m1 +m2.

We can show that Nn is homogeneous if and only if Ln is homogeneous ([5]).
Due to Hsiang-Lawson [4] and Takagi-Takahashi [14], we know that all homoge-
neous isoparametric hypersurfaces Nn ⊂ Sn+1(1) can be obtained as principal
orbits of compact Riemannian symmetric pairs (U,K) of rank 2.

g Type (U,K) dimN m1,m2 K/K0

1 S1
× (S1

× SO(n+ 2), SO(n+ 1)) n n Sn

BDII (n ≥ 1)

2 BDII (SO(p+ 2)× SO(n+ 2− p), n p, n− p Sp
× Sn−p

×BDII SO(p+ 1)× SO(n+ 1− p))
(1 ≤ p ≤ n− 1)

3 AI2 (SU(3), SO(3)) 3 1, 1 SO(3)
Z2+Z2

3 a2 (SU(3)× SU(3), SU(3)) 6 2, 2 SU(3)

T2

3 AII2 (SU(6), Sp(3)) 12 4, 4 Sp(3)

Sp(1)3

3 EIV (E6, F4) 24 8, 8 F4

Spin(8)

4 b2 (SO(5) × SO(5), SO(5)) 8 2, 2 SO(5)

T2

4 AIII2 (SU(m+ 2), S(U(2) × U(m))) 4m− 2 2, S(U(2)×U(m))
S(U(1)×U(1)×U(m−2))

(m ≥ 2) 2m− 3

4 BDI2 (SO(m+ 2), SO(2) × SO(m)) 2m− 2 1, SO(2)×SO(m)
Z2×SO(m−2)

(m ≥ 3) m− 2

4 CII2 (Sp(m+ 2), Sp(2)× Sp(m)) 8m− 2 4, Sp(2)×Sp(m)

Sp(1)2×Sp(m−2)

(m ≥ 2) 4m− 5

4 DIII2 (SO(10), U(5)) 18 4, 5 U(5)

SU(2)×SU(2)×T1

4 EIII (E6, U(1) · Spin(10)) 30 6, 9 U(1)·Spin(10)

S1·SU(4)

6 g2 (G2 ×G2, G2) 12 2, 2 G2

T2

6 G (G2, SO(4)) 6 1, 1 SO(4)
Z2+Z2
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By using these results in isoparametric hypersurface theory, we can classify all
compact homogeneous Lagrangian submanifolds in complex hyperquadrics ([5]).

Let Nn be a compact isoparametric hypersurface embedded in Sn+1(1). Palmer
[13] showed that its Gauss map G : Nn −→ Qn(C) is Hamiltonian stable if and
only if Nn = Sn ⊂ Sn+1(1) (g = 1).

Question. Hamiltonian stability of its Gauss image G(Nn) ⊂ Qn(C) ?

g = 1 : strictly Hamiltonian stable, more strongly, stable minimal and homo-
logically volume minimizing. In fact, it is a calibrated submanifold of Qn(C).
g = 2 : Nn = Sm1 × Sm2 Clifford hypersurface (n = m1 +m2, 1 ≤ m1 ≤ m2)

and G(Nn) = Qm1+1,m2+1(R) = (Sm1 × Sm2)/Z2 ⊂ Qn(C). (1) If m2 −m1 ≥ 3,
then G(Nn) ⊂ Qn(C) is NOT H-stable. (2) If m2 −m1 = 2, then it is H-stable
but not strictly H-stable (not Hamiltonian rigid). If m2 −m1 = 0 or 1, then it is
strictly H-stable.
g = 3 : L = G(Nn) ⊂ Qn(C) is strictly H-stable ([5]).
We have already reported partial results in cases of g = 4, 6 and homogeneous

Nn in [10], [11]. Recently we have obtained the final result on Hamiltonian stability
of the Gauss images of all homogeneous isoparametric hypersurfaces as follows :

Theorem ([6]). Suppose that (U,K) is not of type EIII. Then (1) L = G(N) is
not H-stable if and only if m2 −m1 ≥ 3, (2) L = G(N) is H-stable but not strictly
H-stable (not Hamiltonian rigid) if and only if m2 − m1 = 2, (3) L = G(N) is
strictly H-stable if and only if m2 −m1 < 2. Moreover if (U,K) is of type EIII,
then m2 −m1 = 9− 6 = 3 but L = G(N) is strictly H-stable.

It is a further problem to investigate the Hamiltonian stability and other proper-
ties of the Gauss images of compact non-homogeneous isoparametric hypersurfaces
(OT-FKM type).
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Positive harmonic functions with 0 Dirichlet and constant Neumann

data

Frank Pacard

(joint work with L. Hauswirth and F. Hélein)

Given (M, g), am-dimensional Riemannian manifold, and Ω, a smooth bounded
domain in M , we denote by λ1(Ω) the first eigenvalue of the Laplace-Beltrami
operator under 0 Dirichlet boundary condition. Critical points of the functional
Ω 7−→ λ1(Ω) under the volume constraint Vol(Ω) = α (where α ∈ (0,Vol(M)) is
fixed) are called extremal domains. Smooth extremal domains are characterized
by the property that the eigenfunctions associated to the first eigenvalue of the
Laplace-Beltrami operator have constant Neumann boundary data [1]. In other
words, a smooth domain is extremal if and only if there exists a positive function
u1 and a constant λ1 such that

∆gu1 + λ1 u1 = 0 ,

in Ω with u1 = 0 and ∇nu1 = constant on ∂Ω, where n denotes the inward unit
normal vector to ∂Ω. The theory of extremal domains is very reminiscent of the
theory of constant mean curvature surfaces or hypersurfaces. To give some credit
to this assertion, let us recall that, in the early 1970’s, J. Serrin has proved that the
only compact, smooth, extremal domains in Euclidean space are round balls [4],
paralleling the well known result of Alexandrov asserting that round spheres are
the only (embedded) compact constant mean curvature hypersurfaces in Euclidean
space. More recently, F. Pacard and P. Sicbaldi have proved the existence of
extremal domains close to small geodesic balls centered at critical points of the
scalar curvature function [3], paralleling an earlier result of R. Ye which provides
constant mean curvature topological spheres (with high mean curvature) close
to small geodesic spheres centered at nondegenerate critical points of the scalar
curvature function [5]. We propose the following :



1286 Oberwolfach Report 21/2010

Definition 1. A smooth domain Ω ⊂ R
m is said to be an exceptional domain

if it supports positive harmonic functions having 0 Dirichlet boundary data and
constant (nonzero) Neumann boundary data. Any such harmonic function is called
a roof function.

Exceptional domains arise as limits under scaling of sequences of extremal do-
mains in the same way minimal surfaces arise as limits under scaling of sequences
of constant mean curvature surfaces. More generally, we propose the :

Definition 2. A m-dimensional flat Riemannian manifold M is said to be excep-
tional if it supports positive harmonic functions having 0 Dirichlet boundary data
and constant (nonzero) Neumann boundary data. Any such harmonic function is
called a roof function.

We report here some recent results on the study of exceptional flat surfaces.
Detailed statements and proofs can be found in [2].

1. Examples of exceptional domain in R2

The following are obviousl examples of exceptional domains in Rm : The half
space {x = (x1, . . . , xm) ∈ Rm : x1 > 0} is an exceptional domain in Rm with
roof function u(x) = x1. The complement of a ball of radius 1 in Rm is an
exceptional domain with roof function u defined by u(x) := log |x|, when m = 2
and u(x) := 1−|x|2−m, whenm ≥ 3. The product Ω×Rk is an exceptional domain
in Rm provided Ω ⊂ Rm−k is an exceptional domain in Rm−k. Finally, bserve that
the property of being an exceptional domain is preserved under the action of the
group of similarities of Rm.

In dimensionm = 2, there exists (up to a similarity) at least another exceptional
domain. To describe this domain, it is be convenient to identify R2 with the
complex plane C. We claim that the domain

(1) Ω :=
{
w ∈ C : | Im w| < π

2 + cosh(Re w)
}
,

is an exceptional domain. To prove the claim, first observe that F (z) := z+sinh z is
a conformal diffeomorphism from the infinite strip S :=

{
z ∈ C : Im z ∈ (−π

2 ,
π
2 )
}

into Ω, next, one checks that the real valued function u defined on Ω by the
identity u(F (z)) = Re cosh z is harmonic and positive in Ω, vanishes and a direct
computation shows that it has constant Neumann boundary data on ∂Ω.

We suspect that this example generalises to any dimension m ≥ 3, namely that
there exists exceptional domains in Rm which are invariant under the action of
rotations about a given axis, for all m ≥ 3. In dimension m = 2, it is tempting to
conjecture that (up to similarity) the only exceptional domains are the half spaces,
the complement of a ball and the above example.

2. A representation formula for exceptional flat surfaces

Let M be a simply connected exceptional flat surface with smooth (nonempty)
boundary ∂M . We assume that F : (M, g) −→ (C, gC) (where gC is the canon-
ical Euclidean metric on C) is an holomorphic, orientation preserving isometric
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immersion which induces a smooth immersion of ∂M . In particular ‖dF‖g = 1 in
M ∪ ∂M . We define the holomorphic (1, 0)-form

Φ := dF = ∂zF dz ,

Observe that Φ does not vanish and admits a smooth extension to M ∪ ∂M .
We let u : M −→ R+ be a roof function on M which is normalized so that

‖∇u‖g = 1 on ∂M . We consider the harmonic conjugate function v : M −→ R

(which is uniquely defined up to some additive constant) which is the solution of
∂z(u − i v) = 0. And we set

U := u+ i v .

Observe that U is a holomorphic function from M into C. The property that u
takes positive values in M and vanishes on ∂M can be translated into the fact
that U maps M to

C
+ := {w ∈ C : Re w > 0} ,

and ∂M to iR. Since Φ 6= 0 on M̃ there exists a unique holomorphic function h
on M̃ such that

dU = ∂zU dz = hΦ .

We deduce from the fact that u vanishes on ∂M̃ and has constant Neumann data
normalized to be equal to −1 that ‖∂zU‖g = 1 on ∂M̃ . In particular ‖Φ‖g =

‖dF‖g = 1 = ‖dU‖g on ∂M̃ . Clearly, this is equivalent to the fact that |h| = 1
on ∂M . Therefore, we end up with the following data : (i) An oriented simply

connected complex surface M̃ with smooth boundary ∂M . (ii) A holomorphic

function U , defined on M̃ , which takes values in C
+ and which maps ∂M into iR.

(iii) A holomorphic function h, defined on M̃ , such that |h| = 1 on ∂M and for

which the 1-form Φ defined by Φ := 1
h dU does not vanish on M̃ .

Conversely, given a set of such data, we can define the map F : M −→ C by
integrating dF = Φ. Thanks to (iii), this map is an immersion and its image is an
immersed exceptional flat surface with roof function given by u = Re U .

For example, given an integer n ∈ N \ {0} and choosing the Riemann surface to
be D = {z ∈ C : |z| < 1}, we define on D the holomorphic functions

h(z) = zn−1 and U(z) :=
1 + zn

1− zn
.

Then, the 1-form Φ is given by

Φ(z) :=
2n

(1 − zn)2
dz .

Observe that both U and Φ have singularities at the n-th roots of unity. The
function F is then obtained by integrating Φ and the roof function u is then
defined by u = ReU .

When n = 1, we can take

F (z) =
1 + z

1− z
.

In this case, we simply have F (D) = C+ and we recover the fact that the half
plane is an exceptional domain.
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When n = 2, we can take

F (z) =
2z

1− z2
+ log

(
z + 1

z − 1

)
.

and the exceptional flat surface we find can be isometrically embedded in C. In
fact, F (D) corresponds (up to some similarity) to the domain Ω which has been
defined in (1).

Finally, when n ≥ 3 the exceptional flat surface we find cannot be isometrically
embedded in C anymore.

In [2] we obtain a general representation formula for exceptional flat surfaces
whose immersion in C which have finitely many regular ends and are locally finite
coverings of C (we refer to [2] for precise definitions). In particular we show that
the representation of these exceptional flat surfaces is of the form of the above
examples.

Finally, we prove the following Bernstein type result for 2-dimensional excep-
tional domains :

Proposition 1. [2] Assume that Ω is a 2-dimensional exceptional domain which
is conformal to C+ and let u be a roof function on Ω. We further assume that
∂xu > 0 in Ω, then Ω is a half plane.

As a Corollary, we can prove that there is no exceptional domain contained in
a wedge

Ω ⊂ {z ∈ C : Re z ≥ κ | Im z|} ,
for some κ > 0 [2].
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Description of constant mean curvature k-noids with Delaunay ends

Franz Pedit

(joint work with Josef Dorfmeister and Nicholas Schmitt)

The study of the global properties of constant mean curvature (CMC) surfaces
in R3 began in the mid 20th century with two results of a rather different flavor.
Using the fact that on a compact surface of genus zero there are no nontrivial
holomorphic differentials, Hopf showed that any compact genus zero immersed
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CMC surface had to be a round sphere (and thus embedded). On the other
hand, from the maximums principle for the Laplacian Alexandrov deduced that
any compact embedded CMC surface (of arbitrary genus) is reflection symmetric
with respect to planes dissecting it, and thus had to be a round sphere. By now
there is a rather complete description of all (necessarily immersed) CMC tori in
terms of integrable systems [9], [1]. Using nonlinear elliptic analysis, we also have
existence of (necessarily immersed) compact CMC surfaces of any genus [6], but
one is far from understanding the full moduli space. For the study of complete
non-compact surfaces the behavior of ends is crucial. It has been shown [7] that a
properly embedded CMC annulus is smoothly asymptotic to a Delaunay unduloid
(and thus of the conformal type of a punctured disk).

This suggests that a natural class of surfaces to consider are complete immersed
CMC surfaces of genus g with k ends asymptotic to Delaunay surfaces (unduloids
and immersed nodoids). We call this space Mg,k and the aim is to give a descrip-
tion of this space. Hopf’s result states that M0,0 consists of the round spheres
and from the balancing formula for the ends we know that Mg,1 is empty. For the
subset M∗

g,k of embedded surfaces Alexandrov’s result says that M∗
g,0 is empty

for g ≥ 1. There is a complete description [3] of M∗
0,3 in terms of triangles on the

2-sphere (and, more generally, in terms of k-gons [4] for the coplanar surfaces in
M∗

0,k). As in the compact case, there are constructions of examples in M∗
g,k by

gluing methods [8], [5].
This note is concerned with the space M0,k when k ≥ 2. We will use the

description of CMC surfaces in terms of loop group valued holomorphic connections
(their Weierstrass data) and characterize those connections for M0,k. For a subset
B ⊂ C we denote by Sl2(B) the (loop) group of real analytic maps g : B → Sl2(C).
If B is symmetric with respect to λ 7→ 1/λ̄, we let SU2(B) be the subgroup for
which g is special unitary along the unit circle S1 ⊂ C. Let f : M → R3 be a
surface in M0,k then M = S2 \ {p1, . . . , pk} and it is known [2] that there is a
holomorphic Sl2(O

×)-connection

d+ ξ , ξ = λ−1ξ−1 + ξ0 + λξ1 + . . .

with holomorphic 1-forms ξi ∈ H0(K) onM which can be unitarized by an Sl2(O)-
gauge to an SU2(C

×)-connection. Here O× ⊂ C is a small punctured disk around
the origin. The SU2(C

×)-connection ∇λ describes the associated family of CMC
immersions to f and the original surface is obtained at λ = 1. As an example, the
Delaunay surfaces in M0,2 are described by M = S2 \ {0,∞} and

ξD =

(
0 aλ+ bλ−1

aλ−1 + bλ 0

)
dz

z
.

Here a+ b = 1/2 and the neck size radius ν satisfies 4ab = ν(1− ν). The cylinder
has ν = 1/2, the embedded unduloids have 0 < ν < 1/2 and the immersed nodoids
have ν < 0 (where the mean curvature is assumed to be 1). In this example the
holomorphic connection d+ ξD extends meromorphically with simple poles to S2.
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Figure 1. Delaunay unduloid and nodoid.

Even though the CMC equation is nonlinear, we expect superposition in the lin-
earized picture of holomorphic Weierstrass data, that is, the connections describing
the surfaces in M0,k should be sums of their asymptotic Delaunays ξDi

.

Theorem. Let M = S2 \ {p1, . . . , pk} and let f : M → R3 be a CMC surface
in M0,k with asymptotic Delaunay ends ξD1

, . . . , ξDk
. Then f is described by a

unitarizable Fuchsian connection d+ ξ where

ξ =

k∑

i=1

Ai(λ)

z − pi
dz +

k−2∑

j=1

Bj(λ)

z − qj
dz .

The residues Ai of the geometric poles pi have the same eigenvalues than the as-
ymptotic Delaunay ends Di which are determined by their asymptotic necksizes.
The residues Bj at the (movable) apparent poles have eigenvalues ±1/2 (apparent
means, that the pole can locally be gauged away by an Sl2(O)-gauge). The con-
nection contains 2k − 6 accessory parameters over the ring C(O) of holomorphic
functions near the origin.

When passing from the connection to the CMC surface there is a choice of initial
condition (responsible for the dressing action) which in our setting is an element
of Sl2(O). It can be shown that any such dressing on the above connections is
rational, that is, a finite product of simple factor dressings. On the CMC surface
this has the effect of adding Bubbletons. This leaves us with the following picture:

(1) M0,2 consists of the Delaunay surfaces with finitely many Bubbletons.
This extends the description of M∗

0,2 in [7].
(2) M0,3 consist of the 3-noids with finitely many Bubbletons added. There

are no accessory parameters and the unitarizability of the Fuchsian connec-
tions is characterized by the spherical triangle inequalities on the asymp-
totic neck sizes. This gives a complete description of the space M0,3

extending the description of M∗
0,3 in [3].

(3) For k ≥ 4 the unitarizability condition of the Fuchsian connections is
known only in special cases (e.g., platonic symmetric k-noids [10]).

The basic idea of the proof is very much in the spirit of the Riemann-Hilbert
problem for loop group valued monodromies. We start with a holomorphic con-
nection d + ξ on M describing the CMC surface f . The assumption of Delaunay



Progress in Surface Theory 1291

Figure 2. CMC 4-noids.

ends implies that the monodromy of this connection around the pole pi has the
same eigenvalues than the asymptotic Delaunay connection d+ ξDi

. This implies
that there is a local Sl2(O)-gauge g on a punctured disk around pi of d + ξ to
a connection d + Di

z−pi
dz + O(z − pi). We factorize this gauge into g = g+wg−,

with the Sl2(O)-valued map g+ extending holomorphically into the puncture pi,
the map g− extending holomorphically to the complement of the disk around pi
and w a rational map (in z) of specific form into Sl2(O). This provides us with a
new connection d + ξ which has simple poles at the pi and a pole of order k − 2
at ∞ accumulated from the rational maps w. Finally we separate the order k − 2
pole at ∞ to the simple poles at qj . By construction the residues Ai at the simple
poles pi have the same eigenvalues than Di. Since ∞ is not an end of the CMC
surface f the poles at qj are apparent with residue eigenvalues ±1/2.
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Elastic strips – Does nature do cut and paste?

Ulrich Pinkall

(joint work with David Chubelaschvili)

Let γ : [0, L] → R3 be an arclength parametrized curve with Frenet frame T,N,B.
Assume that there is a smooth function λ : [0, L] → R such that the curvature and
torsion of γ satisfy

(1) τ = λκ.

Then f : [0, L]× [−ǫ, ǫ] → R
3 defined by

(2) f(s, t) = γ(s) + t(B(s) + λT (s))

parametrizes a developable strip of width 2ǫ. Here λ = tanα if α denotes the
angle between the curve and the normal to the rulings of the ruled surface f . The
bending energy

(3) E =

∫
H2dA

can be expressed as

(4) E =

∫ L

0

κ2(1 + λ2)2
log(1 + ǫλ′)− log(1− ǫλ′)

λ′
ds.

Starostin and van der Heijden computed in 2007 the Euler-Lagrange equations
using computer algebra and carried out a numerical study of energy-minimizing
Moebius bands. In the limit ǫ → 0 they discovered that the curvature κ jumps
from +1 to -1 at the inflection point and the torsion τ is continuous with value 1.
Thus the angle between curve and rulings jumps from 45◦ to −45◦ and it seems
that energy minimizing Moebius bands are only C1. In the limit ǫ→ 0 the energy
becomes

(5) E =

∫ L

0

κ2(1 + λ2)2ds.

The Euler-Lagrange equations for E were computed in 2005 by Hagan and subse-
quently corrected by Rominger and Chubelaschwili. Since E has to be minimized
among strips with fixed length they contain a Langrange multiplier µ:

0 = (κ′(1 + λ2)2 + 2κ(1 + λ2)λλ′)′ +
κ

2
(κ2(1 + λ2)2 − µ)

+ λκ(κ2(1 + λ2)2λ+ (
κ′

κ
(1 + λ2)2λ))′ + (1 + λ2)2λ)′′)(6)

0 = (κ2(1 + λ2)2λ+ (
κ′

κ
(1 + λ2)2λ)′ + ((1 + λ2)2λ)′′)′

+ κλ(κ′(1 + λ2)2 + 2κ(1 + λ2)λλ′).

A more elegant formulation relies on conservation laws:
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Theorem 1. For a curve γ with Frenet frame T,N,B define

b =
1

2
(κ2(1 + λ2)2 + µ)T + (κ′(1 + λ2)2 + 2κ(1 + λ2)λλ′)N

− (κ2(1 + λ2)2λ+ (
κ′

κ
(1 + λ2)2λ)′ + ((1 + λ2)2λ)′′)B(7)

a = 2 κλ (1 + λ2)T+
1

κ
(2 κλ (1 + λ2))′ N

+ κ (1 + λ2) (1− λ2)B− b× γ.

Then the strip defined by γ is elastic if and only if the force vector b is constant.
Moreover, for any elastic strip the torque vector a is constant.

The force b and the torque a have to be applied to the end point of the strip to
keep it in equilibrium. An elastic strip is called force-free if the force vector b

vanishes. For force-free elastic strips the bending energy is critical even if the end
point of γ is allowed to move, only the frame at the end point is held fixed. Since
we do not impose any condition on end point of γ we essentially have a variational
problem for the tangent image T as a parametrized spherical curve. For a force-
free elastic strip the Lagrange multiplier µ is positive and we can normalize it to
1 by scaling the strip. We are looking then for critical points of the energy

(8) Ẽ = 1/2

∫ L

0

(κ2(1 + λ2)2 + 1)ds.

For a force-free elastic strip κ does not vanish and the tangent image T is therefore
a regular curve in S2 with curvature λ:

T′ = +κN

N′ = −κT + κλB(9)

T′ = −κλN
The strip γ can be reconstructed using an arclength parameter s̃ of T as

(10) γ(s̃) =

∫ s̃

0

1

κ
T ds̃.

We can then formulate a variational problem for the tangent image:

Theorem 2. Let T: [0, L̃] → S2 be an arclength parametrized curve with curvature

λ. Then among all strips γ : [0, L̃] → R3 with tangent image T the one given by

γ(s̃) =

∫ s̃

0

(1 + λ2)T ds̃

has minimal Sadowski functional

Ẽ =

∫ L̃

0

(1 + λ2) ds̃.
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γ has curvature

(11) κ = 1/(1 + λ)2.

Corollary 1. The tangent images of force-free elastic strips are elastic curves in
S2, in fact critical points of

(12)

∫ L̃

0

(1 + λ2) ds̃.

Conversely, for any such spherical curve T the space curve

(13) γ =

∫
(1 + λ2)T ds̃

defines a force-free elastic strip.

All possible adapted frames (lifted to S3) define the frame cylinder

(14) F : [0, L]× S1 → S3

of a space curve γ. F is the preimage of the tangent image T under the Hopf map
S3 → S2.

Corollary 2. The frame cylinder of a force-free elastic strip is Willmore in S3.

Concerning the surprising non-smoothness of some energy minimizers we have
the following result:

Theorem 3. At any point γ(s) of an elastic strip the following are equivalent:

(1) The rulings make an angle of 45◦ with γ.
(2) The curvature of the tangent image satisfies λ(s) = 1.
(3) A gluing construction is possible where the curvature κ is discontinuous

but nevertheless we still have an elastic strip in the sense of balanced force
b and torque a.
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Stable area-stationary surfaces in the sub-Riemannian Heisenberg

group H1

Manuel Ritoré

(joint work with Ana Hurtado and César Rosales)

The sub-Riemannian Heisenberg group H1 with its Carnot-Carathéodory distance
is a Hausdorff-Gromov limit of Riemannian Nil3 manifolds. Sequences of Riemann-
ian minimal surfaces may converge to critical points of the sub-Riemannian area
in H1, thus providing a motivation to consider this variational problem, see [2].

Area-stationary surfaces of class C2 in H1 are well understood. It is known [4],
[17], that, outside the singular set of points where the tangent plane is horizontal,
such surfaces are ruled by characteristic horizontal segments. Using the description
of the singular set given by Cheng, Hwang, Malchiodi and Yang [4], and a general
first variation formula of the area which allows to move the singular set [16], Ritoré
and Rosales [17] proved that a C2 surface Σ immersed in H1 is area-stationary if
and only if its mean curvature is zero and the characteristic segments in Σ meet
orthogonally the singular curves (when they exist). A similar result was indepen-
dently obtained for area-minimizing t-graphs (Euclidean graphs over t = 0) by
Cheng, Hwang, and Yang [5]. The classification of C2 complete, connected, ori-
entable, area-stationary surfaces with non-empty singular set was achieved in [17]:
the only examples are, up to congruence, non-vertical Euclidean planes, the hy-
perbolic paraboloid t = xy, and the classical left-handed minimal helicoids in R3.
Though some results for complete area-stationary surfaces with empty singular
set have been obtained, [16, Thm. 5.4], [3], [17, Prop. 6.16], a detailed description
seems far from being established. This provides a motivation to classify the second
order minima of the area in H1.

As in the Euclidean case, we define a stable area-stationary surface in H1 as a C2

area-stationary surface with non-negative second derivative of the area under com-
pactly supported variations. These surfaces have been considered in connection
with some Bernstein type problems in H1. A classification of C2 entire solutions
of the minimal surface equation for t-graphs in H

1 was given in [4]. This classi-
fication was used in [17] to show that the only complete area-stationary t-graphs
are Euclidean non-vertical planes or those congruent to the hyperbolic parabo-
loid t = xy. All these surfaces are area-minimizing by a calibration argument
[17]. In [1] and [7] the Bernstein problem for intrinsic graphs (Riemannian graphs
over vertical planes [11]) in H1 was considered. Examples of C2 complete area-
stationary intrinsic graphs different from vertical Euclidean planes, which are not
area-minimizing, were found in [7]. So a natural question is to study complete
area-minimizing intrinsic graphs. Barone, Serra Cassano and Vittone gave in [1]
a classification of complete C2 area-stationary intrinsic graphs. Then they com-
puted the second variation formula of the area to conclude that the only stable
ones are the Euclidean vertical planes, which are area-minimizing by a calibration
argument. In [9], it was proven that C2 complete stable area-stationary Euclidean
graphs with empty singular set must be vertical planes.
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The following natural step was to consider complete stable surfaces in H
1. In

this talk we shall give an overview of the proof of the recent result
Theorem ([12, Thm. 6.1]). The only complete, connected, orientable, stable area-
stationary surfaces in H1 of class C2 are the Euclidean planes and the surfaces
congruent to the hyperbolic paraboloid t = xy.

This result provides a classification of complete C2 orientable area-minimizing
surfaces in H1. In a related paper [8], Danielli, Garofalo, Nhieu and Pauls have
proven that the only complete, embedded, connected, stable area-stationary sur-
faces of class C2 without singular points are vertical planes.

The main tool in the proof of this result is a general second variation formula of
the sub-Riemannian area that allows to move the singular set. Previous formulae
for variations supported in the regular set appeared in several contexts: in [4] for C3

surfaces in a 3-dimensional pseudo-hermitian manifold; in [1], for intrinsic graphs
of class C2; in [6], for C2 variations by Euclidean straight lines of a C2 surface.

Once we have the second variation formula we proceed into two steps. First
we prove that a C2 complete, connected, oriented, stable area-stationary surface
Σ with empty singular set must be a vertical plane [12, Thm. 4.7]. The second
derivative of the area for a compactly supported normal variation uN is given
by the index form Q(u) = −

∫
Σ uL(u), where L is a hypoelliptic operator on Σ.

Then we choose the function u = |Nh|, where N is the Riemannian unit normal
to Σ for the usual left invariant Riemannian metric g on H

1, Nh is the horizontal
projection of N . We see that this function u satisfies L(u) ≥ 0, and the inequality
is strict in pieces of Σ which are not contained inside Euclidean vertical planes.
Multiplying by a suitable cutoff function ϕ we get a compacty supported function
so that Q(ϕ |Nh|) < 0 still holds. Observe that the function |Nh| is associated to
the variation of Σ by parallel surfaces with respect to the Carnot-Carathéodory
distance. Hence, our choice of test function is somewhat similar to the one in the
Euclidean case, where the equivalent test function is obtained from u ≡ 1, [10]. It
must be remarked that ϕ |Nh| was already used as a test function in [1], [7] and [9].

In the second step of the proof we consider a surface Σ with non-empty singular
set. From the classification in [17], we conclude that Σ must be either a non-vertical
plane, or congruent to the hyperbolic paraboloid, or to a left-handed helicoid.
Non-vertical planes and the hyperboic paraboloid are area-minimizing t-graphs by
a calibration argument [17]. To prove the instability of the left-handed helicoids
we use our general second variation formula. We must remark that variations with
compact support in the regular set of the left-handed helicoids have non-negative
second derivative of area.

Examples of area-minimizing surfaces in H1 with low Euclidean regularity have
been obtained in [5], [14], [15] and [13]. Hence our result is optimal in the class of
C2 area-stationary surfaces.
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Noether theorem, conserved quantities, minimal and CMC surfaces

Pascal Romon

The flux (a.k.a. force) has been frequently used in minimal and constant mean
curvature (CMC) surface theory for a long time, where it plays a key role in
classification of ends, moduli space theory, gluing and as an all-purpose tool (see
[6, 8, 10] for more specific examples). It is actually one of two known “conserved
quantities”, i.e. cohomology classes that can be defined on any minimal (or CMC)
surface, the second being the torque. In R3 they are classically given for a minimal
immersion f by

Flux([γ]) =

∫

γ

⋆df, Torque([γ]) =

∫

γ

f × (⋆df)
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where ⋆ denotes the Hodge star operator. Their existence is a consequence of
Noether theorem, which links infinitesimal symmetries to cohomology classes, ap-
plied here to ambient space isometries, e.g. translations and rotations in R3 respec-
tively. We will explain here briefly how to formulate this theorem in any ambient
three dimensional space, with homogeneous spaces in mind, but also how and why
its use goes beyond simple isometries. This raises the question of understanding
the nature of the Hopf or the Abresch–Rosenberg differentials. An interpretation
will be given in the (simpler) case of the harmonic map PDE.

We will henceforth use the language of exterior differential geometry. Our goal
is the study of a functional F defined by the integral of a lagrangian form Λ,
which involves (some) first order derivatives. We define the manifold C of contact
elements as the grassmannian of 2-planes over M , or equivalently the unit sphere
bundle π : UM → M . It is endowed with a contact form θ0 defined thus: Let e0
be an element of C, i.e. a unit vector, and v ∈ TC, then θ0(v) = 〈e0, dπ(v)〉 where
〈·, ·〉 denotes the metric on TM . We may as well work on the frame bundle FM
as a bundle over UM . A point in FM will be denoted by the frame (e0, e1, e2),
and (θ0, θ1, θ2) will be the associated (unit) coframe. Then the θ0 on C lifts to
the θ0 on FM , so that we will abuse notations and denote them identically. For
any immersion f : Σ →M denote by N the legendrian lift to C w.r.t. the contact
structure θ0. Then N is a legendrian lift if and only if N is a normal vector to the
tangent bundle.

For the area functional define the following lagrangian Λ = θ1 ∧ θ2. For the
CMC-H surface equation, we need to add a Lagrange multiplier, and define the
volume constraint by means of a volume vector field Ξ (i.e. such that div Ξ = 1):

Λ = θ1 ∧ θ2 + 2HΞy(θ0 ∧ θ1 ∧ θ2).
Then the Euler–Lagrange operator is the 2-form Ψ such that dΛ = θ0 ∧Ψ, and

Ψ = −ω2
0 ∧ θ1 − ω0

1 ∧ θ2 + 2Hθ1 ∧ θ2,
where the ωi

j are the structure 1-forms on the frame bundle. Check that Ψ vanishes
on legendrian lifts if and only if the mean curvature is H .

Let v be a vector field on C. It is called a variational symmetry if (i) v leaves
the contact structure invariant: Lvθ

0 ≡ 0 and (ii) v preserves the lagrangian:
LvΛ ≡ 0 (1). Preserving the lagrangian implies preserving the set of solutions to
the Euler–Lagrange PDE, i.e. CMC-H surfaces. Then the Noether form is

ϕ = vyΛ

and
dϕ = LvΛ− vydΛ = LvΛ− θ0(v)Ψ + θ0 ∧ (vyΨ) ≡ 0

meaning that ϕ is closed whenever evaluated on a CMC-H surface. Noether
theorem is actually much stronger. First, it can be stated with higher order
derivatives (including infinite order). Second, under suitable hypotheses, it states

1All congruences are modulo the differential ideal generated by θ0,dθ0,Ψ. These quantities
will vanish when evaluated along a solution of the PDE.
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a bijection between variational symmetries and closed one-forms, which is the last
point of this talk. In the case at hand the Noether 1-form is

ϕ = 〈v, ⋆df − 2HΞ× df〉 .
Obviously riemannian isometries of M can be lifted to C and they preserve the

area. They will also preserve the volume part of the lagrangian, up to a divergence
term (in which case they are called divergence symmetries). Translations (or their
equivalent in homogeneous spaces) yield the flux form, while rotation(s) yield the
torque. Explicit cases and computations will be given in [4].

The converse statement in Noether theorem raises an interesting question when
considering the Hopf differential, or its generalization [1] by Abresch–Rosenberg
to the E(κ, τ) homogeneous spaces. Indeed the Hopf differential is defined on a
CMC-H surface in R3 as the (2, 0)-part Q of the second fundamental form. In
local conformal coordinates we may write Q = qdz2. Its major properties are that
Q vanishes exactly at umbilic points and that Q is holomorphic (a consequence of
the Codazzi equation when H is constant). Away from umbilic points (and up to
sign), we can may take the square root ϕ =

√
Q =

√
qdz. Holomorphicity of Q is

equivalent to closedness of ϕ. Since ϕ is complex-valued we consider two conjugate
1-forms. Then there must exist two variational symmetries corresponding to the
real and imaginary parts of ϕ. The same holds for the Abresch–Rosenberg form.
Yet these symmetries cannot be simple ambient space isometries, since they depend
on higher order derivatives. That requires a higher order contact (or more precisely
multi-contact) setting. The question is then: to which higher order variational
symmetry do these 1-forms correspond to ? An answer to this question would pave
the way for a generalization of the Hopf–Abresch–Rosenberg approach, which in
particular allows to classify spheres .

Let us finish with a much simpler example where the solution is known, though
I haven’t seen it written in these words: the harmonic map equation from a surface
(we shall take R2 with a metric) to a riemannian manifold Mm. The setup will
then be the manifold of 1-jets of maps f : R2 →M (see [3] for details).

Consider the following complex-valued quadratic form

Q = (f∗ds2)(2,0) = 〈fz, fz〉dz2

sometimes also called the Hopf differential. Q is holomorphic whenever f is har-
monic, and vanishes at points where f is conformal. Away from those points, Q
admits a square root ϕ, whose real and imaginary parts ϕR, ϕI are closed 1-forms,
which correspond to variational symmetries vR, vI .

The holomorphicity of Q has certainly been known for a long time, and so
must be its link with Noether theorem. Indeed a conformal change of variable
on the source surface preserves harmonicity so we can apply Noether theorem to
conformal Killing fields. The corresponding conservation laws state simply the
holomorphicity of Q (or some holomorphic function of Q). See [2, 9] for a first
explicit (modern) mention of Noether theorem (at least in its ambient isometries
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version) and also [5] for a proof of ∂̄Q = 0 using the stress-energy tensor, which is
a reformulation of Noether theorem.

However, to understand exactly which two fields corresponds to Q itself, one
needs to take appropriate coordinates, using the fact that Q is holomorphic. In-
deed, away from conformal points, write Q = dw2, and by letting v act only on the
source, we obtain vR = −∂/∂y and vI = ∂/∂x where w = x+ iy. In other words,
the holomorphicity of Q says exactly that constant motion along the eigenlines of
the stress-energy tensor are variational symmetries.
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Area minimizing surfaces in flat 3-manifolds

Antonio Ros

A properly embedded surface S in a complete Riemannian 3-manifold M is area-
minimizing mod 2 if any compact region in S has least area among homologous
(homology with Z2 coefficients) compact surfaces (orientable or nonorientable)
with the same boundary. IfM is closed, each nonzero homology class inH2(M,Z2)
admits a compact area minimizing surface which is a smooth minimal surface
without singularities, see [6].
Another important and related kind of minimal surfaces are the stable ones. These
surfaces have nonnegative variation formula for every compactly supported infin-
itesimal deformation. Do Carmo and Peng [3], Fischer-Colbrie and Schoen [4]
and Pogorelov [7] proved that complete two-sided stable minimal surfaces in R3

are planes. Ros [8] showed that the one-sided case cannot occur. If M is a flat 3-
manifold, then complete stable two-sided surfaces are always flat but the behaviour
of one-sided stable surfaces is quite different. For instance, certain nonorientable
quotients of the classic Schwarz P and D periodic minimal surfaces are stable in
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Nickname G H2(M,Z2) Area minimizing conjecture

Torus P1 Z2 ⊕ Z2 ⊕ Z2

Di P21 Z2 ⊕ Z2 ⊕ Z2

Tri P31 Z2 rPD

Tetra P41 Z2 ⊕ Z2 tP tD CLP

Hexa P61 Z2 H

Didi P212121 Z2 ⊕ Z2

Table 1. Compact orientable flat 3-manifoldsM = R3/G. Space
groups G and homology groups in the second and third column,
respectively. The last column indicates conjectured nonplanar
area minimizing surfaces (mod 2) in these spaces.

their ambient 3-tori, see Ross [10], and Ros [8] showed that nonflat stable compact
minimal surfaces in 3-tori are Klein bottles with a handle.
The following is a basic and natural problem in classical minimal surface theory:

Classify properly embedded area minimizing surfaces (mod 2) in
complete flat 3-manifolds.

Nonflat area minimizing surfaces in flat 3-manifolds are necessarily one-sided. In
[8], Ros obtained the following result for the simplest quotients of R3.

Theorem 1. The Helicoid and the doubly periodic Scherk minimal surfaces of
total curvature −2π are the only properly embedded nonflat area minimizing sur-
faces (mod 2) in quotients of R3 by one or two linearly independent translations,
respectively.

In these notes we will discuss some recent progresses about the above problem
when the ambient space is compact and orientable. The first one is the following.

Theorem 2. [9] Area minimizing surfaces (mod 2) in flat 3-tori are planar 2-tori.

Note that from the result of Ross [10] there exist nonflat stable minimal surfaces
in some 3-tori which are strict local minima of the area in their homology classes.
One of the key steps in the proof that global minima are necessarily planar uses
that if the moduli space of 3-tori which admit nonflat area minimizing surfaces
were noncompact, then Theorem 1 allows us to control the limit surfaces of this
moduli space. Now we introduce compact orientable flat 3-manifolds and some of
the most significant classical periodic minimal surfaces.
Compact orientable flat 3-manifolds M = R

3/G are listed in Table 1 following
the Cosm notation, [2], in the first column, and the International Crystallographic
notation for the space group G, [1]:
In the 3-torus, the group G = P1 is generated by three independent translations.
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The Di Cosm is the quotient of T 2×R, T 2 being a flat 2-tori, by the screw motion
of order two (x, y, z) 7→ (−x,−y, z + a), a > 0.

The same holds for the Tri, Tetra and Hexa Cosms. These spaces are the quotient
of T 2 × R by a screw motion of vertical axis and order 3, 4 and 6, respectively.
Note that in this case T 2 is either a square or an hexagonal 2-torus.

The Didi Cosm is the quotient of a general orthorhombic 3-torus R3/P1, where
P1 is generated by (a, 0, 0), (0, b, 0) and (0, 0, c), a, b, c > 0, by the group Z2 ⊕ Z2

given by

(x, y, z), (−x+a/2,−y, z+c/2), (−x, y+b/2,−z+c/2), (x+a/2,−y+b/2,−z).

It has pairwise disjoint 2-fold screw axes parallel to the three coordinate axes.

Periodic minimal surfaces appearing in the last column of Table 1 where con-
structed by Schwarz [5] and are the natural candidates to nonflat area minimizing
surfaces in compact orientable flat 3-manifolds. They are described in the following
paragraphs.

1. Catenoid-like surfaces. These are the periodic minimal surfaces tP , H and rPD
which give nonorientable minimal surfaces of total curvature −4π in the Tetra,
Hexa and Tri Cosms, respectively. The tetragonal P surface, tP , is a deformation
of the classical cubic Schwarz P minimal surface. It is generated by a Catenoidal
piece spanned by two horizontal squares related by a vertical translation. If we
change the squares by equilateral triangles we get the H surface in the Hexa Cosm
and if we rotate one of these triangles by 60 degrees around the common axis one
obtains the rPD minimal surfaces, a rhombohedral family of surfaces in the Tri
Cosm, which for suitable values of the hight parameter produce the cubic P and D
Schwarz minimal surfaces. All the above surfaces are homologous (mod 2) to the
horizontal 2-torus in the corresponding Cosm and, if the height of the manifold is
small enough, then the area of the Catenoid-like surface is smaller than the one
of the horizontal 2-torus. We conjecture that, depending of the height parameter,
either the horizontal planar surface or the Catenoid-like surface minimize the area
in their homology classes.

2. Discoidal surfaces. In the Tetra Cosm, the two remaining nonzero homology
classes do not admit embedded planar representatives and so the area minimiz-
ing surfaces in this case are nonflat. We conjecture that these area minimizing
surfaces are CLP (Crossed layers of planes) and tD (tetragonal Diamond), which
area nonorientable minimal surfaces of total curvature −2π constructed as follows:
In a tetragonal box (with vertical 4-fold axis) consider the embedded hexagonal
contours given by six edges of the box (two in the top and bottom faces and two
opposite vertical edges). There are two possibilities according to whether the con-
tour is centrally symmetric or it admits a horizontal mirror plane. The discoidal
minimal surfaces obtained by solving the Plateau Problem for these contours gen-
erate the tD and CLP surfaces, respectively. We also have shown that
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Theorem 3. [9] Area minimizing surfaces (mod 2) in the Di and Didi Cosms are
planar.

An important ingredient in the proof of this theorem is the fact that there is a
two sheeted covering from a 3-torus onto Di and that Didi admits three 2 : 1
coverings by the Di Cosm. For the other compact flat 3-manifolds the problem
remains open.
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Transformations of surfaces and their applications to spectral theory

Iskander A. Taimanov

(joint work with Sergey P. Tsarev)

Many transformations which maps solutions of certain nonlinear equations into
solutions of equations of the same type were developed in the 19th century in the
framework of surface theory. These are so-called Laplace, Moutard, and Bianchi–
Backlund transformations. Although the latter transformation originates in sur-
face theory two other transformations were introduced just for constructing ex-
plicit solutions of equations of certain types and in particular cases the Laplace
transformation and the one-dimensional reduction of the Moutard transformation
(so-called the Darboux transformation) can be found already in articles by Euler
who applied them to analytical problems.

In particular, in late 1760s Euler showed that a general solution to the equation

uxy =
k(1− k)

(x− y)2
u

the form

u(x, y) = (x− y)k
∂2k−2

∂xk−1∂yk−1

(
f(x) + g(y)

x− y

)
.

For k = 1 this formula reduces to the d’Alembert formula.
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In his original article Moutard mentioned that by using his transformation one
can rederive the Euler formula. Only later many applications of the Moutard
transformation to surface theory were found by Bianchi, Demoulin, Guichard and
others.

Moutard dealed with the equation

fxy + U(x, y)f = 0

where U is a real-valued scalar potential. In surface theory this equation was
named by him and it is known that every vector-valued solution F (x, y) (with
values in R

3) to the Moutard equation gives rise to the Gauss map

n =
F

|F |
of a negatively-curved surface in R3 with asymptotic coordinates x and y.

Let us expose the Moutard transformation in the form when x and y are complex
conjugate parameters: x = z, y = z̄. We may do that because the transformation
is given by formal analytical expressions in terms of these parameters. For such
a choice of parameters the Moutard equation takes the form of a two-dimensional
Schrödinger equation

(1) (∂∂̄ + U)ϕ = 0.

Given a solution ω to this equation, the Moutard transformation is defined by the
following formulas:

U −→ Ũ = U + 2∂∂̄ logω,

ϕ→ θ =
i

ω

∫
(ϕ∂ω − ω∂ϕ)dz − (ϕ∂̄ω − ω∂̄ϕ)dz̄

and it maps every solution ϕ of (1) to a solution θ of another equation of the same
type:

(∂∂̄ + Ũ)θ = 0.

We remark that θ is defined modulo multiples of 1
ω due to the integration constant.

The one-dimensional reduction of this transformation was later derived by Dar-
boux and now it is called the Darboux transformation. It corresponds to the
case when U depends on one variable x: U = U(x), and ω takes the form
ω = f(x) exp(const · y). Therewith it gives a transformation of one-dimensional

Schrödinger operators H = − d2

dx2 + U and of all their formal eigenfunctions, i.e.
solutions ψ to H = Eψ,E ∈ C, preserving E. This transformation was rediscov-
ered may times and was widely used in the spectral theory (Dirac, Schrödinger,
Crum and others). In particular, it was applied for constructing N -soliton po-

tentials, their degenerations of the form N(N+1)
x2 and N -soliton solutions to the

Korteweg–de Vries (KdV) equation.
In [1] we applied the Moutard transformation to the spectral theory of two-

dimensional Schrödinger operators. In fact,
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• we constructed smooth two-dimensional potentials U which are sufficiently
fast decaying for H = ∂∂̄+U to have good scattering theory and for which
H has a kernel in L2(R

2).

These are the first examples of such potentials and it is known that in the
one-dimensional situation such examples do not exist. In fact, our examples
are rational functions which decay as r8 whenever the kernel at least contains
a two-dimensional subspace consisting of functions which decay as r−3 where

r =
√
x2 + y2.

The KdV equation has a two-dimensional generalization, the Novikov–Veselov
(NV) equation:

Ut = ∂3U + ∂̄3U + 3∂(UV ) + 3∂̄(V̄ U) = 0,

∂̄V = ∂U

which is a compatibility condition for the system

(∂∂̄ + U)ψ = 0,

∂tψ = (∂3 + ∂̄3 + 3V ∂ + 3V̄ ∂̄)ψ.

One can show that the Moutard transformation can be extended to the transfor-
mation which respects this evolution and therefore constructs from solutions of
the NV equation new solutions to it.

In [1] by using the extended Moutard transformation

• we constructed solutions to the NV equation with fast decaying (∼ r−3)
Cauchy data at t = 0 which blows up at some critical time T∗ > 0.

Our solutions are given by explicit rational functions and thus we expose the
scenario of blowing up.

In both constructions we use a double iteration of the Moutard transformation
which is defined by a pair of holomorphic functions ω1 and ω2. The first iteration
is defined by ω1 and the second iteration is defined by the image of ω2 under
the first transformation. We do that to obtain smooth solutions because just one
iteration always either gives singular potentials due to the term ∂∂̄ logω.
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Duality of wave fronts and applications

Masaaki Umehara and Kotaro Yamada

(joint work with Kentaro Saji)

A differentiable map f : Mn → Nn+1 of a differentiable n-manifold Mn into a
Riemannian (n+1)-manifold Nn+1 is called a wave front or a front if for each p ∈
Mn, there exists a unit normal vector field ν : Up → T1N

n as a smooth immersion
of a neighborhood Up ⊂ Mn of p into the unit tangent bundle T1N

n+1 of Nn+1.
This condition is equivalent to that f is obtained as the projection of a Legendrian
immersion L : Mn → P (T ∗Nn+1), where P (T ∗Nn+1) is the projectified cotangent
bundle with the canonical contact structure.

For a wave front f : Mn → Nn+1, one can define the limiting tangent bundle
Ef over Mn whose fiber at p ∈ Mn is the orthogonal complement in Tf(p)N

n+1

of the unit normal vector νp at p. Furthermore, we have a bundle homomorphism
ϕf := df : TMn → Ef . A point p ∈Mn is a singular point of f if (ϕf )p : TpM

n →
(Ef )p is not bijective.

As an abstract setting of the situation above, the notion of coherent tangent
bundle is introduced in [5, 6]. In fat, a coherent tangent bundle is a 5-tuple
(Mn, E , ϕ, 〈 , 〉 , D) of a differentiable n-manifold Mn, a vector bundle E of rank
n over Mn, a bundle homomorphism ϕ : Mn → E , a metric 〈 , 〉 and a metric
connection D of E which satisfy the compatibility condition

DXϕ(Y )−DY ϕ(X)− ϕ([X,Y ]) = 0

for any vector fields X and Y on Mn.
In particular, let f : Mn → Nn+1(c) be a front defined on an orientable manifold

Mn into an (n + 1)-dimensional space form Nn+1(c) of constant curvature c,
and assume that f is co-orientable, that is, there exists a globally defined unit
normal vector field ν. Then, in addition to ϕf = df , one can take another bundle
homomorphism ψf := dν : TMn → Ef which gives a structure of coherent tangent
bundle because of the Codazzi equation. Thus there exist two structure of coherent
tangent bundles for each orientable and co-orientable wave front in a space form,
which is considered as the duality of wave fronts. A singular point of ν, that is a
point at which ϕf = dν degenerates, is called an inflection point of f . Abstract
setting representing this duality, a notion of front bundles, is introduced in [8].

From now on, we restrict our attention to the case of n = 2. It is known that
generic singularities of 2-dimensional wave fronts are cuspidal edges (A2-singular
points) and swallowtails (A3-singular points). The criteria in [3] for cuspidal edges
and swallowtails allow us to define the notions of A2 and A3-singular points for
coherent tangent bundles. Moreover, the notion of singular curvature (denoted by
κs) as a function of the set of cuspidal edges (A2-singular points) are defined for
2-dimensional coherent tangent bundles as well as for 2-dimensional wave fronts
[5, 6].

Let f : M2 → N3 be a co-orientable wave front defined on a compact oriented
2-manifold M2 into an oriented Riemannian 3-manifold N3. For simplicity, we
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assume that the set Σf ⊂ M2 of singular points of f consists of cuspidal edges
and swallowtails. Then the following two Gauss-Bonnet type formulas hold [5, 6]:

2πχ(M2) =

∫

M2

K dA+ 2

∫

Σf

κs ds,(1)

χ(Ef ) = χ(M+)− χ(M−) + 2(S+ − S−),(2)

where χ(Ef ) is the Euler characteristic of the limiting tangent bundle Ef , K is
the Gaussian curvature of f , dA is the area element, ds is the line element of
the singular set (singular curve), and S+ (resp. S−) is the number of positive
(resp. negative) swallowtails, for details, see [5, 6]. The formula (2) is stated in [4]
(without proof) and two formulas are proved in [2]. (In [6], the singular curvature
appeared implicitly as the measure κs ds).

The formulas (1) and (2) also hold for orientable and co-orientable coherent
tangent bundles on 2-manifolds [6]. An advantage of this abstract setting is the
following: Consider a front f : M2 → N3(c) in a space form N3(c) (or more
generally, a front bundle). Then we have two coherent tangent bundles, one is
derived from ϕf = df and the other comes from ψf = dν. Hence we have two
pairs of Gauss-Bonnet type formulas. Combining these four, one can obtain several
topological properties of wave fronts and their Gauss maps.

For example, let f : M2 → R3 be a wave front of an oriented 2-manifold. Assume
that the singular points of the Gauss map consists of folds and cusps. Then we
have the Bleecker-Wilson formula ([1, 8]): 2χ({p ∈ M2 ; K(p) < 0}) = Sν

+ − Sν
−,

where K is the Gaussian curvature, and Sν
+ (resp. Sν

−) denotes the number of
positive (resp. negative) cusps. For details, see [8].

Further applications are given in [8, 7].
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Spectral Curves for Constant Mean Curvature Tori in R
3

Emma Carberry

(joint work with Katrin Leschke, Franz Pedit)

Spectral curve constructions describing harmonic maps of genus one surfaces stem
from the classical S1 family of associated surfaces; extending the circle parameter
to µ ∈ C∗ yields a family of flat connections ∇µ. The (simultaneous) eigenlines
of the holonomy of ∇µ around any non-trivial γp ∈ π1(T

2, p) define the eigenline
spectral curve Σe, and for each p we obtain a line bundle on Σ, yielding a linear
flow in the Jacobian of Σe. This algebro–geometric description of harmonic maps
has proved useful both in answering moduli-space questions and in producing
bounds for geometrically interesting quantities such as energy. For conformal
immersions f : T 2 → S4 ∼= HP 1 one can alternatively define the multiplier spectral
curve. This consists of holonomies realised by H–holomorphic sections of V/L,
where V = T 2 × H2 and L is the pull-back under f of the tautological H-line
bundle on HP 1. It is natural to ask what the relationship is between these two
curves, and what geometric information they each encode? Holomorphic sections
of V/L determine Darboux transforms, which are a generalisation of the classical
Darboux transform, obtained by relaxing the usual condition that there be a sphere
congruence mutually tangent to both surfaces to allow “half–touching”. Those
holomorphic sections which are additionally parallel with respect to a ∇µ are
called µ–Darboux transforms. We find that the µ–Darboux transforms of any
constant mean curvature surface again have constant mean curvature and that
they are classical Darboux transforms only for certain values of µ.

We find that the eigenline and multiplier curves are not isomorphic, but have the
same normalisation. The multiplier curve is always singular whereas the eigenline
curve is generically smooth. Geometrically, the space of closed µ–Darboux trans-
forms of f is given by the quotient of Σe \ {µ−1(0,∞)} by an antiholomorphic
involution together with finitely many complex projective lines. Analogously, the
space of Darboux transforms of f is given by the quotient of the multiplier spec-
tral curve by an antiholomorphic involution together with most countably many
complex and quaternionic projective spaces. Furthermore, if f : T 2 → R3 be a
constant mean curvature immersion then there are natural maps

CP3

π

��
T 2 × Σe

ÊH

//

Ê

::
u

u
u

u
u

u
u

u
u

HP 1

such that

(i) For each x ∈ Σ◦
e, f̂

x = πÊ(·, x) is a µ–Darboux transform of f .
(ii) We recover f as the limit of µ–Darboux transforms for µ→ 0,∞.

(iii) For p ∈ T 2 the eigenline curve is algebraically mapped into CP3 by Ê(p, ·).
Thus we obtain a smooth T 2–family of algebraic curves Σe → CP3.
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Isometric immersions of the Hyperbolic plane into the Hyperbolic

space

Atsufumi Honda

We shall deal with isometric immersions of the hyperbolic plane H
2 into H

3.
The theorem of Portnoy [1] says that an isometric immersion of H

2 into H
3

is developable. Here, a surface in H
3 is developable if extrinsic flat, namely the

extrinsic curvature (= the product of principal curvatures = Gauss curvature +1)
of the surface vanishes identically, and ruled, that is, the surface is the trace of
1-parameter family of geodesics.

A representation by null curves. Now, we focus on the property that a ruled
surface is the trace of 1-parameter family of geodesics. That is, a ruled surface
corresponds to a curve in the space of oriented geodesics. It is well known that
the space of oriented geodesics L(H3) has natural 2-dimensional indefinite Kähler
structure (L(H3), G, J), and (L(H3), J) is biholomorphic to P1 × P1 \ ∆̄, where
∆̄ is reflected diagonal.

Theorem I. A developable surface gives a null curve in L(H3). Conversely, a
null curve

α = (µ1, µ2) ∈ P
1 × P

1 \ ∆̂ ∼= L(H3)

with
µ̇1 ˙̄µ2

(1 + µ1µ̄2)2
≤ 0 gives a developable surface in H

3.

Here, a curve α in (L(H3), G) is null, if G(α̇, α̇) = 0.Theorem I says that we
have the representation formula of isometric immersion of H2 into H

3, in terms
of null curve.

Ideal cones. As for the inequality in the Theorem I, we get that the equality
holds if and only if one side end of the developable surface is asymptotic to a
point, that is ideal cone. We shall investigate the properties of the ideal cones.

For a complete developable surface, let t be the arc length parameter of the
geodesic line included in the set of non-umbilic points. Then the non-zero principal
curvature λ is proportional to e±t or 1/ cosh t on the geodesic line. So, we call the
developable surface exponential type when the surface has the non-zero principal
curvature λ is proportional to e±t on the set of non-umbilic points.

Theorem II. The deveopable surface of exponential type is assymptotic to a point
in the ideal boundary, in the direction where the non-zero principal curvature di-
verge. That is, it is cone whose vertex is on the ideal boundary. Conversely, a
ruled surface which is 1-parameter family of geodesics whose one side end is same
point is deveopable surface of exponential type.
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The value distribution of the Gauss map of improper affine spheres

Yu Kawakami

(joint work with Daisuke Nakajo)

The study of improper affine spheres in the affine three-space R3 has made sig-
nificant advances. Recently, Mart́ınez [3] introduced the notion of improper affine
map, that is, a class of (locally strongly convex) improper affine spheres with some
admissible singularities. Afterward, Nakajo [4], Umehara and Yamada [5] showed
that an improper affine map in R3 is a front. So we call this class improper
affine front in this report. Moreover, Mart́ınez [3] gave a representation formula
for improper affine fronts in terms of two holomorphic functions and defined the
Lagrangian Gauss map for this class. We give the best possible upper bounds for
the number of exceptional values of the Lagrangian Gauss map of complete (in
the sense of [2, 3]) and weakly complete (in the sense of [5]) improper affine fronts
in R3.

Theorem 1 ([1]). Let ψ : Σ = Σγ\{p1, . . . , pk} → R3 be a complete improper

affine front defined on a closed Riemann surface Σγ of genus γ with k points
removed, and ν : Σ → C∪{∞} be the Lagrangian Gauss map of ψ. Suppose that ν
is nonconstant, and d is the degree of ν considered as a map on Σγ . If we denote
by Dν the number of exceptional values of ν, then we have

Dν ≤ 2 +
2

R
,

1

R
=
γ − 1 + k/2

d
<

1

2
.

In particular, ν can omit at most two values. The number “two” is sharp.

Theorem 2 ([1]). Let ψ : Σ → R3 be a weakly complete improper affine front
and ν : Σ → C ∪ {∞} be the Lagrangian Gauss map of ψ. Suppose that ν is
nonconstant. If we denote by Dν the number of exceptional values of ν, then we
have

Dν ≤ 3 .

In particular, ν can omit at most three values. The number “three” is sharp.

As an application of Theorem 2, we obtain a brief proof of the well-known result
that any affine complete improper affine sphere must be an elliptic paraboloid.
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A generalization of Unduloid and Nodoid

Katsuei Kenmotsu

Theorem(Delaunay). For a surface of revolution M in the Euclidean three space
with constant mean curvature h, M is periodic if and only if h 6= 0.

We extend this to the case of non-constant mean curvature H(s) in [1], [2] for
two-dimension and in [3], [4] for higher dimension. We proved

Theorem. M is periodic with period L if and only if H(s) is periodic with
period L, and moreover it satisfies the conditions (1) and (2) below :

2

∫ L

0

H(s)ds = 2πm, where m is an integer,(1)

∫ L

0

cos(2

∫ u

0

H(u)du)ds =

∫ L

0

sin(2

∫ u

0

H(u)du)ds = 0.(2)

The next question is: how to get a periodic function satisfying the conditions (1)
and (2) above ? The answer is: for the curvature k(s) of any planar smooth closed
curve Γ, k(s)/2 satisfies the conditions (1) and (2).

When Γ is a circle, we have the usual unduloid and nodoid:

Figure 1. unduloid Figure 2. nodoid

When Γ is an ellipse, we have a generalized unduloid and nodoid:

Figure 3. elliptic unduloid Figure 4. elliptic nodoid
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Singularity of the asymptotic completion of developable Möbius strips

Kosuke Naokawa

Generic singular points of developable (zero Gaussian curvature and ruled) surfaces
in Euclidean three-space R3 consist of cuspidal edges, swallowtails and cuspidal
cross caps, and the most generic ones are cuspidal edges (cf.[2, Proposition 2.16]).
We gave sharp lower bounds of the number of singular points other than cuspidal
edges on the asymptotic completion of developable Möbius strips. Let

F (s, u) = γ(s) + uξ(s) (|u| < ǫ)

be an immersed developable Möbius strip in R3, where ǫ > 0, γ(s) is a generating
curve and ξ(s) is a ruling vector field of F . Then, F is called a rectifying Möbius
strip if the generating curve γ is a closed geodesic. Moreover, the smooth map

F̃ (s, u) = γ(s) + uξ(s) (u ∈ R)

is called the asymptotic completion of the immersed strip F . We obtain the fol-
lowing assertions:

Proposition 1. The asymptotic completion of a developable Möbius strip has at
least one singular points other than cuspidal edges.

Moreover, there exists a developable Möbius strip with only one non-cuspidal-edge
singular point on the asymptotic completion.

Theorem 1. The asymptotic completion of a rectifying Möbius strip has at least
three singular points other than cuspidal edges.

To prove these assertions, we use the criterion for cuspidal edges given in [1]. We
also found an example having exactly three non-cuspidal-edge singular points.
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A new approach to the existence of harmonic maps

Toshiaki Omori

Theorem 1. Let (M, g), (N, h) be closed Riemannian manifolds and {uε}ε>0 be
a sequence of smooth critical points uε : (M, g) → (N, h) of

Eε(u) =

∫

M

eε|∇u|2 − 1

ε
dµg

with uniformly bounded energy. If the sectional curvature of (N, h) is nonpositive,
then a subsequence {uε′}ε′→0 converges to a harmonic map u : (M, g) → (N, h):

uε′ → u (ε′ → 0) in C∞(M,N).
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Critical points of Eε were first proposed by Professor J. Eells and are called
exponentially harmonic maps. The rapid growth of the functional Eε gives an
expectation that its minima have high regularity. In fact, Duc [1] and Naito [3]
proved that any homotopy class H ∈ [M,N ] admits a smooth critical point of Eε.
The above theorem, together with this observation, yields the following corollary.

Corollary 1 ([2]). Let (M, g) and (N, h) be closed Riemannian manifolds. If the
sectional curvature of (N, h) is nonpositive, then any homotopy class H ∈ [M,N ]
admits a harmonic map u : (M, g) → (N, h).

If one tries to remove the curvature assumption, a blow-up phenomenon may
occur. In case dimM = 2, Sacks-Uhlenbeck [4] considered a blow-up phenomenon
for a sequence (as α → 1) of critical points of the functional

Eα(u) =

∫

M

(1 + |∇u|2)αdµg (α > 1),

so-called α-harmonic maps. In [4], it was verified that there only exist finitely
many points, outside which the sequence uniformly converges to a harmonic map.

The corresponding result to [4] for the functional Eε is as follows.

Theorem 2. Let (M, g) be a Riemann closed surface and (N, h) be a general
closed Riemannian manifold, and {uε}ε>0 be as in Theorem 1. Then there exist
a finite singular set {p1, . . . , pk} ⊆ M , outside of which a subsequence {uε′}ε′→0

uniformly converges to a harmonic map u : (M, g) → (N, h):

uε′ → u (ε′ → 0) in C∞
loc(M \ {p1, . . . , pk}, N).
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