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Introduction by the Organisers

The confluence of algebraic geometry and homological algebra known as the theory
of motives has experienced an amazing resurgence of activity in the last twenty
years. More recently, the growth of motivic homotopy theory has expanded the
area to allow for a systematic treatment of a wide variety of “motivic” phenom-
ena, embedding K-theory, motivic cohomology, quadratic forms into a single larger
field. At the same time, the theory allows for the transfer of constructions and
techniques from classical homotopy theory to problems in algebraic geometry.

Here in more detail are the topics which were discussed.

Motives, varieties and algebra. We had three talks on applications of mo-
tives to the study of varieties over non-algebraically closed fields. Using a version
of the Rost motive, Semenov described a surprising restriction on the Rost invari-
ant for homogeneous spaces for E6, Gille extended the property of Rost nilpotence
to geometrically rational surfaces over fields of characteristic zero, Zainoulline gave
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a uniform bound for the torsion part of codimension 2 algebraic cycles on certain
projective homogeneous varieties. In addition, Krashen explained how the patch-
ing techniques of Harbater and Hartmann were applied (in a joint work with these
two) to gives a new local-global principles for galois cohomology.

Categories of motives. Déglise described his work with Cisinski construct-
ing a category of motives (with Q-coefficients) over a general base satisfying the
Grothendieck six operations formalism. Barbieri-Viale showed how Nori’s con-
struction of a category of motives gives a finer construction of a category of n-
motives, i.e., motives of varieties of dimension ≤ n, with n = 0 being the category
of Artin motives, n = 1 Deligne’s category of 1-motives. Park described his con-
struction (with Krishna) of a triangulated category of motives over k[t]/tn+1, based
on modifications of the Bloch-Esnault additive Chow groups. Wildeshaus showed
how he applied the technique of weight structures on a triangulated category, de-
veloped by Bondarko, to study motives of Shimura varieties.

Tannaka groups and fundamental groups. Esnault described her proof (with
Mehta) of Gieseker’s conjecture, that the vanishing of the étale fundamental group
of a smooth projective variety X over an algebraically closed field of positive char-
acteristic implies that there are no non-trivial OX -coherent DX -modules on X .
Terasoma described his construction (with K. Kimura) of a mixed cycle-theoretic
and representation-theoretic differential graded algebra, whose co-modules may be
viewed as “mixed elliptic motives”. Furusho described his work giving simplfied
relations defining the Grothendieck-Teichmüller group, and showing that all ele-
ments of the Grothendieck-Teichmüller group satisfy the “double-shuffle relations”.

Arithmetic. Geisser discussed Parshin’s conjecture, that the rational higher K-
theory of a smooth and proper variety over a finite field is torsion, and related
this conjecture to finite generation properties of motivic cohomology and motivic
Borel-Moore homology, as well as the statement that rational motivic homology
and cohomology are dual vector spaces. Flach reported on progress (including
joint work with Morin) in Lichtenbaum’s program of describing the vanishing or-
der and leading term of zeta functions of arithmetic schemes in terms of Weil-étale
cohomology. In particular, Flach and Morin have defined a Weil-étale topos for
a regular proper scheme over SpecZ which gives the correct answer for the zeta
value at 0. Holmstrom reported on his work (with J. Scholbach) on lifting the
Deligne regulator to a map in the motivic stable homotopy category, and using
this to define Arakelov motivic cohomology via a cone construction.

Motivic homotopy theory. Ostvar discussed his computations (with Ormsby)
giving information on the coefficient rings for MGL, kgl and the motivic sphere
spectrum, using versions of the Adams spectral sequence and the Adams-Novikov
spectral sequence. Pelaez presented his recent work on the functoriality of the
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slice filtration, which as an application gives a good definition of an integral cate-
gory of motives over a base-scheme S for S a scheme over a field of characteristic
zero. Yagunov showed us his computation of the first non-trivial differential in the
motivic cohomology to K-theory spectral sequence, after localization at a given
prime. His main result is that this differential is expressible in terms of the motivic
Steenrod operations. Asok reported on a joint work with Morel and Haesemeyer,
in which they compute the maps in the motivic stable homotopy category from
Spec k to a smooth proper scheme X as the group of oriented 0-cycles on X (as
defined by Barge-Morel and extended by Fasel). Hornbostel gave us a description
of a motivic version of a result of Lurie in the stable homotopy category, namely,
that the suspension spectrum of CP∞ classifies “preorientations of the derived
multiplicative group”. This motivic version gives an as application an intrinsic
description of algebraic K-theory, namely, that it represents orientations of the
derived motivic multiplicative group.
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Abstracts

Beilinson motives and the six functors formalism

Frédéric Déglise

(joint work with Denis-Charles Cisinski)

Notations

We denote by S the category of excellent noetherian scheme of finite dimension.
Without precision, schemes are considered to be objects of this category.

Monoidal categories (resp. functors) are always assumed to be symmetric.

1. Introduction

Let T ri⊗ be the 2-category of triangulated monoidal categories, with weakly
monoidal triangulated natural transformations as 2-morphisms.

Definition 1. A triangulated category satisfying the six functor formalism con-
sists of the following data:

(1) For any scheme S, we consider a triangulated closed monoidal category
T (S), with unit object IS .

(2) For any morphism f : T → S, a pair of adjoint functors

f∗ : T (T )→ T (S) : f∗

such that f∗ is monoidal and S 7→ T (S), f 7→ f∗ is a contravariant 2-
functor from S to T ri⊗.

(3) For any separated morphism of finite type f : T → S, a pair of adjoint
functors

f! : T (T )→ T (S) : f
!

such that S 7→ T (S), f 7→ f! is a 2-functor from the category of schemes
with morphisms separated of finite type to T ri⊗.

These data are assumed to satisty the following properties:

(4) For any separated morphism of finite type, there exists a natural trans-
formation f! → f∗ compatible with composition which is an isomorphism
when f is proper.

Let S be a scheme and p : P1
S → S (resp. s : S → P1

S) be the canonical projection
(resp. infinite section) of the projective line over S. Define the Tate twist as:

IS(1) = s∗p!(IS)[−2].

For any integer n ≥ 0, we let IS(n) be the n-th tensor power of IS(1) and for any
object M of T (S), we put M(n) =M ⊗ IS(n).

(5) For any smooth quasi-projective morphism f of constant relative dimen-
sion n, there exists a natural isomorphism f ! → f∗(n)[2n] compatible with
composition.
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(6) For any cartesian square

Y ′
f ′

//

g′

��
∆

X ′

g
��

Y
f

// X,

in which f is separated of finite type, there exists natural isomorphisms:

g∗f! −→ f ′
! g

′∗,

g′∗f
′! −→ f !g∗.

(7) For any separated morphism of finite type f : Y → X in S , there exist
natural isomorphisms

(f!K)⊗X L −→ f!(K ⊗X f∗L) ,

HomX(f!(L),K) −→ f∗ HomY (L, f
!(K)) ,

f !HomX(L,M) −→ HomY (f
∗(L), f !(M)) .

The first example of such a formalism was given in [SGA4]. More recently, the
six funtors formalism has been constructed by J. Ayoub in [Ayo07] for the stable
homotopy category of schemes SH(S) defined by F. Morel and V. Voevodsky.1

In the next section, we propose a definition of a rational triangulated category
which satisfies the six functors formalism and which we propose as a category of
triangulated mixed motives. The justification for this claim is that our category
extends the definition of Voevodsky known over (perfect) fields. We refer the
interested reader to [CD09] for more details on our construction.

2. Beilinson motives

1. Recall that for any scheme S, there exists a ring spectrum KS in SH(S) such
that:

• For any morphism of schemes f : T → S,

(1) f∗(KS) = KT .

• When S is regular, for any integer n,

(2) Hom(Σ∞X+[n],KS) = Kn(S)

where the right hand side denotes Quillen algebraic K-theory.

Let us denote by SH(S,Q) the rationalisation of the stable homotopy category.2

We denote by KQ
S the object defined by the above spectrum in SH(S,Q). The

idea of the following definition comes from topology:

Definition 2. Consider the notations above.

1In the stable homotopy category though, one should be aware that in property (5), one has
to replace the twist by a tensor product with a Thom space.

2The category with same objects but the Hom groups are tensored with Q.
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(1) We say an object E of SH(S,Q) is K-acyclic if E⊗KQ
S = 0.

(2) We say a morphism f : E → F in SH(S,Q) is a K-equivalence if a cone
of f is K-acyclic.

(3) We say an object M of SH(S,Q) is a Beilinson motive if for all K-acyclic
spectrum E, Hom(E,M) = 0.

We let DMB(S) be the full subcategory of SH(S,Q) made by the Beilinson mo-
tives.

According to the theory of Bousfield localization, the category DMB(S) can
be described as the localization of the category SH(S,Q) with respect to K-
equivalences. Moreover, we get an adjunction of triangulated categories:

LB : SH(S,Q)⇆ DMB(S) : OB

where OB is the natural forgetful functors. As the K-equivalences are stable by
base change (using (1)) and tensor product, we get using the main result of [Ayo07]
the following theorem:

Theorem 3 ([CD09, §13.2]). The triangulated category DMB satisfies the six
functors formalism.

Note moreover that LB is monoidal and commutes with operations such as f∗

and f!.

2. Let S be any regular scheme. We will consider on Kn(S) ⊗ Q the γ-filtration
together with its graded pieces which give a canonical decomposition:

(3) Kn(S)⊗Q =
⊕

i∈N

Griγ
(
Kn(S)⊗Q

)
.

We will use the following theorem of J. Riou:

Theorem 4 ([Rio06]). Let S be a scheme. There exists a canonical decomposition
in SH(S,Q) of the form:

(4) KS =
⊕

i∈Z

K
(i)
S

stable by base change and such that, whenever S is regular, for any integer n ∈ Z,
the induced decomposition on the cohomology represented by KS coincide with (3)
through the identification (2).

According to Riou, we define the Beilinson spectrum over any scheme S as

HB,S = K
(0)
S . Note that Bott periodicity for K-theory implies that (4) can be

rewritten as:

(5) KS =
⊕

i∈Z

HB,S(i)[2i]

where HB,S(i) is the i-th Tate twist in SH(S,Q).
The following result is a key point of our construction:
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Proposition 1 ([CD09, 13.1.5, 13.1.6]). The spectrum HB,S admits a ring struc-
ture in SH(S,Q) such that its multiplication map

µ : HB,S ∧HB,S → HB,S

is an isomorphism.

3. Recall that the category SH(S,Q) is the homotopy category of a monoidal
model category Sp(S,Q). One deduces from the previous theorem that HB,S there
exists a (commutative) monoid H̄B,S in Sp(S,Q) which coincides in SH(S,Q)
with HB,S .

3 This allows to define the triangulated category HB,S −mod of HB,S-
modules.4 By construction, we get a canonical adjunction:

LHB
: SH(S,Q)⇆ HB,S −mod : OHB

.

such that LHB
(E) = E ∧HB,S . As a corollary of the previous result, we get the

following theorem:

Theorem 5 ([CD09, 13.2.9]). Consider the notations above. There exists a canon-
ical functor ϕ : DMB(S)→ HB,S −mod which fits into the commutative diagram:

SH(S,Q)

LB
))SSSSSS

LHB
// HB,S −mod .

DMB(S)
ϕ

44jjjjjjj

Moreover, ϕ is an equivalence of triangulated monoidal categories.

Corollary 1. For any regualr scheme S and any couple of integers (n, p) ∈ Z2,
one has:

HomDMB (S)(IS , IS(p)[n]) = K
(p)
2p−n(S).

For a non necessarily regular scheme S, we will define Beilinson motivic coho-
mology of S as the left hand side in the above identification.

Example 1. Let X be a smooth S-scheme. Define the (homological) motive of
X/S as M(X) = LB(Σ

∞X+).
If in addition, X/S is projective of constant dimension d, then one showsM(X)

is strongly dualisable with strong dual M(X)(−d)[−2d].
Assuming that S is regular, one can define the category Mrat(S) of Chow

motives as usual. Applying the previous corollary, one gets a fully faithful functor:

Mrat(S)op → DMB(S), h(X) 7→M(X).

Corollary 2. Let S be any scheme, E be an object of SH(S,Q) and u : S0 → HB,S

be the unit of ring spectrum HB,S. Then the following conditions are equivalent:

(i) E is a Beilinson motive.
(ii) E admits a structure of an HB,S-module in SH(S,Q).
(iii) The morphism u ∧ IdE : E→ HB,S ∧E is an isomorphism.

3One says also that HB ,S is a strict ring spectrum.
4One constructs according to Schwede and Shipley a model category on the category of

modules over H̄B ,S ; HB ,S −mod is its homotopy category.
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Moreover, when these conditions are satisfied, the structure of an HB,S-module on
E is unique.5

3. Proper descent and Voevodsky motives

4. Consider again a scheme S.
Let us recall that Voevodsky has introduced the h-topology on the category

S
ft
S of finite type S-schemes: its coverings are made of the universal topological

epimorphism f :W → X .6 We let Shh(S,Q) be the category of sheaves of Q-vector

spaces on S
ft
S for the h-topology.

Voevodsky then defines the category of (rational) h-motives DMeff
h (S,Q) as

the A1-localization of the derived category of the abelian category Shh(S,Q). Any
S-scheme X of finite type defines an object of Shh(S,Q) denoted by Qh(X). We

then define the Tate twist QhS(1) in DMeff
h (S,Q) as the cokernel of the split

monomorphism Qh(S)→ Qh(P1
S) defined by the inclusion of the infinite S-point.

In fact, one can show that DMh(S,Q) is the homotopy category of a suitable
Quillen model category on the category of complexes on Shh(S,Q). Moreover, this
model category is monoidal: it defines a (derived) closed monoidal structure on
DMh(S,Q). Moreover, we can define the so called P1-stabilisation of this category:
this is the universal homotopy category DMh(S,Q) of a monoidal model category
given with a left derived monoidal functor

Σ∞ : DMeff
h (S,Q) −→ DMh(S,Q)

such that Σ∞QhS(1) is ⊗-invertible.
One can recognize in this construction the steps needed to define the stable

homotopy category SH(S): in the former, one simply starts from complexes of

Q-sheaves for the h-topology on S
ft
S instead of simplicial sheaves of sets for the

Nisnevich topology on smooth S-schemes. The analogy between the tow construc-
tions allow to define a canonical triangulated monoidal functor:

ah : SH(S)→ DMh(S,Q)

which factors through the rational stable homotopy category. One of the main
theorem of [CD09] is the following:

Theorem 6. There exists a unique functor ψ : DMB(S) → DMh(S,Q) which
makes the following diagram (essentially) commutative:

SH(S,Q)

LB
))SSSSSS

ah // DMh(S,Q).

DMB(S)
ψ

55jjjjjjj

Moreover, ψ is fully faithful and monoidal.

5And can be lifted in the monoidal category of symmetric spectra.
6That is the topology of X is the final topology relative to f , and this property remains true

after any base change. The basic examples of such coverings: faithfully flat morphisms, proper
surjective morphisms.
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In fact, ψ sends the Beilinson motive MS(X) of a smooth S-scheme X to the
object QhS(X) and the essential image of ψ is made by the localizing subcategory
of the triangulated category DMh(S) generated by the objects QhS(X)(i) for a
smooth S-scheme X and an integer i ∈ Z.

5. Consider a spectrum E over a scheme S. Given a scheme X/S of finite type,
with structural morphism f , we define the cohomology of X with coefficients in E
as:

En,p(X) = HomSH(X,Q)

(
Σ∞X+, f

∗(E)(p)[n]
)
, (n, p) ∈ Z2.

This definition can be extended to simplicial objects of S
ft
S and defines in fact a

contravariant functor.
One says that E satisfies h-descent if for any smooth S-scheme X and any h-cover
π : V• → X the induced morphism:

π∗ : En,p(X)→ En,p(V•)

is an isomorphism. One can reformulate the previous theorem by the equivalence
of the following conditions for a rational spectrum E:

(i) E is a Beilinson motive.
(iv) E satisfies h-descent.

Note in particular that Beilinson motivic cohomology satisfies h-descent – thus
proper and faithfully flat descent.

References

[SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale
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Chow motives and the Rost invariant

Nikita Semenov

The following results are my joint investigations with Skip Garibaldi and Viktor
Petrov.

Let G be a linear algebraic group of inner type over a field k, X a projective
homogeneous G-variety defined over k, and p a prime number. Denote by Ch∗(X)
the Chow ring of X with Fp-coefficients and set X = X×k ks, where ks stands for
a separable closure of k.

Let D be a subset of the vertices of the Dynkin diagram of G containing the
Tits index of Gk(X), and b ∈ Chl(X) a cycle defined over k. We give an inductive
definition. Assume that b does not lie in any shell strictly contained in D, and
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let K be a generic field extension of k with respect to the property that the Tits
index of GK is D. We say that b lies in the shell corresponding to D, if there is a
cycle a ∈ Chl(X) defined over K such that deg(ab) = 1.

Generalizing results of Karpenko [Ka09] and Vishik [Vi98] one can show the
following theorem.

Theorem 1. In the above notation let b ∈ Chl(X) be the generic point of an
indecomposable direct summand M of the Chow motive of X with Fp-coefficients.

Let α ∈ Cht(X) be a cycle defined over k. Assume that b′ = b · α lies in the same
shell as b.

Then the Tate twist M(t) is isomorphic to an indecomposable direct summand
of the motive of X with generic point b′.

Using this theorem one can provide new motivic decompositions of projec-
tive homogeneous varieties, new restrictions on the J-invariant of linear algebraic
groups, and give the following example, which is due to Garibaldi.

Let G be a simply connected group of inner type E6 of rank two and with a
non-trivial Tits algebra. Let

rG : H1(k,G)→ H3(k,Z/6)

be the Rost invariant of G. Then 2rG has trivial kernel.
In particular, if z ∈ H1(k,G) and the modulo 3 part of rG(z) equals zero, then

rG(z) = 0. This property does not depend on the field k; cf. [Se95, Example 9.5].
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On the Algebraic Fundamental Group

Hélène Esnault

Let X be a smooth projective variety defined over an algebraically closed field,
let x→ X(k) be a rational point. If k = C, the Riemann-Hilbert correspondence
is an equivalence of categories between local systems of C-vector spaces and OX -
coherent DX -modules. As the categories are C-linear, rigid, abelian, this yields
an isomomorphism of C-proalgebraic groups Aut⊗(−, ωx), where ωx is the neu-
tralization which assigns to a local system V , resp. a OX -coherent DX -module E,
its fiber Vx, resp. Ex at x. This is an isomorphism of type Betti ↔ de Rham.
The topological fundamental group πtop

1 (X, x) is finitely generated. By definition,

the Betti version is
(
πtop
1 (X, x)

)alg
= lim
←−

H , where H is the Zariski closure of

the monodromy group of a complex linear representation πtop
1 (X, x)→ GL(n,C),

thus is residually finite. So one concludes that if πet
1 (X, x) = {1}, there are no
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nontrivial OX -coherent DX -modules.

If k has characteristic p > 0, the Katz’ equivalence ([3, Theorem 1.3]) is an equiva-
lence between OX -coherent DX -modules and stratified bundles. As the categories
are k-linear, rigid, abelian, this yields an isomomorphism of k-proalgebraic groups
Aut⊗(−, ωx), where ωx is the neutralization which assigns to a OX -coherent DX -
module E, resp. a stratified bundle

(
(E,E1, . . . , En, . . .), (σ0, σ1, . . . , σn, . . .)

)
its

fiber Ex at x. This is an analog to de Rham ↔ Betti over the complex num-
bers. The study of the categories, the use of Langer’s moduli and of Hrushovsky’s
theorem allow to give a positive answer to Gieseker conjecture in [3, p.8]

Theorem 1. ([2, Theorem 1,1]) If πet
1 (X ⊗k k̄, x) = {1}, then there are non

nontrivial OX-coherent DX-modules.

More generally we show that if XS → S is a good model of X/k, where S is a
smooth affine variety over Fp, then stable torsion bundles E on Xs, where s→ S
is a closed point, that is bundles which satisfy (FNXs

)∗E ∼= E, where FXs
is the

Frobenius of Xs = XS ⊗X s, are dense in the Verschiebung divisible sublocus of
Langer’s moduli MS ([2, Theorem 3.14]).

Based on this and on the Mordell-Weil theorem, Raynaud conjectures that if k is
a field of finite type over Fp, and X is smooth projective over k, then stratified
bundles with underlying stable Ei are torsion over k̄. In fact, Raynaud’s conjecture
can be thought of as an equal characteristic p > 0 version of Grothendieck’s p-
curvature conjecture, in the same spirit as André’s formulation [1, Section II] of
an equal characteristic 0 version of it.
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Motivic invariants of the rational numbers

Paul Arne Østvær

(joint work with Kyle Ormsby)

This is a report on joint work in progress with Kyle Ormsby. Our main object is
to access the algebraic cobordism groups and the motivic stable stems of the field
of rational numbers. Let Sm+nα be the smash product of the mth simplicial circle
with the nth Tate circle. We shall index motivic homology theories accordingly
by writing MGLm+nα and πm+nα1 for the algebraic cobordism groups and the
motivic stable stems, respectively. For n ≥ 0 and all perfect fields there exists
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an isomorphism MGL−nα
∼= KM

n due to Morel [2]. Here KM
∗ denotes the Milnor

K-theory (indexed by Z). The rational part of the algebraic cobordism groups
MGLm+nα is known over number fields by work of Naumann-Spitzweck-Østvær
[3]. The motivic stable stem πm+nα1 is known for m ≤ 0 by work of Morel [2] (it
vanishes ifm < 0 and identifies with the Milnor-Witt ring ifm = 0). Our approach
for the rationals combines the computational machinery of algebraic topology and
local-to-global principles deduced from the thesis work of Ormsby [4].

From now on all motivic spectra will implicitly be completed at the prime 2.
The Adams spectral sequence for the motivic Brown-Peterson spectrum MBP
takes the form

Ext∗A∗
(MZ/2∗,MZ/2∗MBP )⇒MBP∗.

In this spectral sequence, MZ/2 denotes the mod 2 motivic Eilenberg-MacLane
spectrum and A∗ = MZ/2∗MZ/2 is the dual mod 2 motivic Steenrod algebra.
Likewise, we note that the Adams spectral sequence for the motivic connective
K-theory spectrum kgl takes the form

Ext∗A∗
(MZ/2∗,MZ/2∗kgl)⇒ kgl∗.

Both of these spectral sequences are trigraded and strongly convergent over local
and global number fields by work of Hu-Kriz-Ormsby [1]. The Adams spectral
sequence for kgl computes algebraic K-groups and provides valuable insight into
the somewhat more complicated computations for MGL. To begin with we show
there are isomorphisms of A∗-comodules

MZ/2∗kgl ∼= A∗�E(1)MZ/2∗

and

MZ/2∗MBP ∼= A∗�E(∞)MZ/2∗

for the quotient Hopf algebroids

E(1) = A∗//(ξ1, ξ2, . . .) + (τ2, τ3, . . .)

and

E(∞) = A∗//(ξ1, ξ2, . . .).

Via the change-of-rings isomorphism for Ext-groups these isomorphisms greatly
facilitate computations. For the local fields R and Qp where p is a prime number
and the rational numbers Q the Adams spectral sequence for kgl yields complete
computations of the 2-completed connective K-groups.

Similar local-to-global type of computations can be carried out for MBP , and
consequently for MGL at the prime 2. We employ the structure of MBP∗ for the
purpose of computing the Adams-Novikov spectral sequence

Ext∗MBP∗MBP (MBP∗,MBP∗)⇒ π∗1

converging to the motivic stable stems. In topology the so-called α-family gives
rise to infinitely many non-trivial elements in the stable stems. In the motivic
setup we recover these and a whole host of new elements. The details of our work
will appear in [5].
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Nori n-motives

Luca Barbieri-Viale

In this talk I introduced n-motives by showing that Nori’s construction of mixed
motives can be applied to varieties of dimension ≤ n. I then have linked Nori 0-
motives to Artin motives and Nori 1-motives to Deligne 1-motives (with torsion).
It will be nice to compare Nori 2-motives with Ayoub 2-motives in [2].

Nori’s construction of the category of effective homological (resp. cohomolog-
ical) mixed motives EHM (resp. ECM) is drafted in [7], [8], [6] and generalized
in [1]. For details on EHM and ECM just mainly refer to [7] (which is published
and consistent with Nori’s notation in [8]). Recall that there exists a functor

DMeff
gm → Db(EHM) from Voevodsky triangulated category of effective geometrical

motives [9] to the bounded derived category of EHM.
The main mentioned tasks of the talk that are already contained in [4] can be

summarized as follows. Fix a field k and an embedding k ⊆ C. Let D(Schk)≤n
be the full subdiagram of Nori’s diagram DSchk whose objects are triples (X,Y, i)
where X ∈ Schk of dimension ≤ n, Y ⊆ X is closed and i is an integer. Then just
apply Nori’s construction in [6] to H∗ : D(Schk)≤n → R-mod the representation
given by (X,Y, i)  Hi(X,Y ;R) the singular homology R- module of the pair.
Define EHMn := C(H∗) for R=Z. For all non negative integers n these EHMn are
abelian categories along with canonical faithful exact functors EHMn → EHMn+1

such that the 2-colimit yields

Colim
n≥0

EHMn = EHM

There is a tensor pairing

⊗n,n′ : EHMn × EHMn′ −→ EHMn+n′

for all n, n′ ≥ 0. Similarly, we have ECMn and the same assertions hold. Actually,
we have a duality antiequivalence

( )∗ : EHMn
≃
−→ ECMn

of abelian categories. We also get a functor

M≤n : (Schk)≤n → Db(EHMn)

where (Schk)≤n is the category of k-schemes of dimension≤ n.
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Further, the functor LAlb constructed in [5] yields a map of diagrams DLAlb
from Nori’s diagram D(Schk) to 1-motives with cotorsion tM1. Dually, RPic yields
a map of diagrams DRPic from the opposite diagram D(Schk)

op to 1-motives with
torsion tM1. Applying the Betti realisation TZ(

DRPic) we get a representation
which is nothing but the singular cohomology representationH∗ when restricted to
the subdiagrams D(Schk)≤n for n = 0, 1. Thus, by universality, we get canonical
(exact, faithful) functors

Cn : ECMn →
tMn

for n = 0, 1. These functors are compatible with realizations. For n = 0 the
functor C0 is clearly an equivalence with quasi-inverse the functor

T0 : tM0 → ECM0

where T0(F) = F(ℓ) = F(k̄) as the discrete sheaf F yields a Gal(k̄/k)-module
F(ℓ) for a suitable finite Galois extension ℓ of k (see also [8]). For n = 1 we need
the thickness of ECM1 in ECM to get the (exact, faithful) functor

T1 : tM1 → ECM1

lifting TZ (= the Betti or Hodge realisation of 1-motives). Over k = C the functor
T1 is then providing a quasi-inverse to C1 so that

ECM1 = MHS1

is equivalent to mixed Hodge structures of level ≤ 1.
In general, the canonical exact functors EHMn → EHM induce triangulated

functorsDb(EHMn)→ Db(EHM). I don’t know if the latter functor is fully faithful.
If the case M≤n extends to a canonical functor

Rn : d≤nDMeff
gm → Db(EHMn)

from Voevodsky triangulated category of geometrical n-motives d≤nDMeff
gm (= the

thick subcategory of DMeff
gm generated by motives of smooth varieties of dimension

≤ n, see [9, §3.4]). See also [3] for an approach to d≤nDMeff
gm via n-motivic sheaves.
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Chow motives and Rost nilpotence

Stefan Gille

In my talk I reported on Rost nilpotence and my recent work [5], where I proved
this property for geometrically rational surfaces over fields of characteristic zero.

Let k be a field with algebraic closure k̄ and R a commutative ring (with 1).
Let Chow(k,R) be the category of effective Chow motives with coefficients in R.
Let further CHi(X) be the Chow group of dimension i-cycles modulo rational
equivalence of the k-scheme X and A0(X) the torsion part of CH0(X).

In Voevodsky’s [8] proof of the Milnor conjecture the following exact triangle
(in Voevodsky’s derived category of effective motives over k) plays a crucial role:

M(Xa)(2n−1 − 1)[2n − 2] // Ma // M(Xa) .

Here M(Xa) is the simplizial motive of the splitting quadric Qa of the symbol

a = {a1, . . . , an} ∈ KMn (k)/2, and Ma is a direct summand of Qa.
This exact triangle is a corollary of Rost’s [7] decomposition theorem for the

Chow motive of the projective quadric Qa, where the (so called) Rost motive Ma

shows up. Rost’s construction of the direct summand Ma uses the following prop-
erty of quadrics (discovered by himself): If ρ is an endomorphism of a quadric Q in
Chow(k,R), such that ρE is an idempotent for some field extension E/k then there
exists an idempotent ρ̃ of Q in Chow(k,R), such that ρE = ρ̃E . This property is
a consequence of Rost nilpotence:

On says that Rost nilpotence is true for X in Chow(k,R) if the kernel of the
restriction map

resE/k : EndChow(k,R)(X) −→ EndChow(E,R)(E ×k X) , α 7−→ αE

consists of nilpotent elements for all field extensions E/k.

This has been proven for projective quadrics by Rost [7] and more generally for
projective homogeneous varieties in [2]. Note that if X is a projective homogeneous
variety with X(k) 6= ∅ then A0(X) = 0.

Remarks.

1.) Rost nilpotence plays not only a role in the proof of the Milnor conjec-
ture, but is also essential for the recent progress in the algebraic theory of
quadratic forms, see the Bourbaki report of Kahn [6].

2.) Rost nilpotence is closely related to torsion questions in Chow theory. For
instance, it is easy to show that Rost nilpotence is true for any motive in
Chow(k,R) if R is a field of characteristic 0.

To state the main result recall that a k-surface S is called geometrically rational
if Sk̄ is rational. By a result of Coombes [4] there is then always a Galois extension
L/k, such that SL is rational. Any extension field L of k with SL rational will be
called a splitting field of S. Note that there exists geometrically rational surfaces S
with S(k) 6= ∅ but A0(S) 6= 0.
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Theorem. Let k be a field of characteristic 0 and S a geometrically rational
surface. Then Rost nilpotence is true for S in Chow(k,R) if R = Z or R = Z/Zm
for some integer m ≥ 2.

By means of elementary algebra using the fact that EndChow(k̄,Z/Zm)(Sk̄) is

finite for all integers m ≥ 2 one reduces1 to R = Z which is proven in [5]. In this
case the idea of proof is as follows.

Let α ∈ EndChow(k,R)(S). By a special case of a lemma of Rost [7] the corre-
spondence α is nilpotent if αk(S) ∗(A0(Sk(S))) = 0.

Assume that αE = 0 for some field extension E/k. Then also αL = 0 for any
splitting field L/k of S. To show that αk(S) ∗(A0(Sk(S))) = 0 for this endomor-

phism α one uses the Bloch [1] map ΦSk(S)
: A0(Sk(S)) −→ H1(G,H1(C•

(SL(S)))),

where L/k is a Galois splitting field of S with group G = Gal(L/k) and C
•
is the

cycle complex

KM2 (k(S))
dS2

//
⊕

x∈S(1)

k(x)× dS1
//
⊕

x∈S(0)

Z ,

where S(i) denotes the set of x ∈ S with dim {x} = i.
Since S(k(S)) 6= ∅ the homomorphism ΦSk(S)

is injective by a theorem of Colliot-

Thélène [3] and so Rost nilpotence is true for geometrically rational surfaces over
fields2 of characteristic 0 by the following fact.

Lemma. ([5, Thm. 4.8]) Let k be a perfect field, and S a geometrically rational
k-surface. Let further L/k be a (finite) Galois splitting field of S with group
G = Gal(L/k). Then the following diagram

A0(S)
ΦS

//

α∗

��

H1(G,H1(C•
(SL)))

H1(G,αL ∗)

��

A0(S)
ΦS

// H1(G,H1(C•
(SL))) .

commutes for any α ∈ Endk(S) = CH2(S ×k S).

It is likely that this lemma is true for any field (and so also Rost nilpotence for
geometrically rational surfaces over fields of positive characteristic), but the proof
in [5] uses resolution of singularities in dimension 2.
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Relative DGA, associated DG category and mixed elliptic motif

Tomohide Terasoma

(joint work with Kenichiro-Kimura)

Bloch and Kriz defined a category of mixed Tate motives over a field k as the
category of comodules over a Hopf algebra H0(B(A, ǫ)). Here A is the Bloch
higher cycle DGA and B(A, ǫ) is the bar complex of A. Moreover, they con-
struct a comodule Pn over H0(B(A, ǫ)) associated to polylogarithm. The motif
corresponding to the comodule Pn is called the polylog motif. In this lecture, we
consider elliptic analog of this construction, which is called mixed elliptic motives.

We want to construct the category of mixed elliptic motives as that of comod-
ules over a Hopf algebra. Let E be an elliptic curve over k without complex
mutiplication. The category of pure elliptic motives of E is a smallest subcategory
of motif containg h1(E) and Q(1), and closed under taking direct sums, tensor
products, direct summands, and duals. Roughly spleaking, mixed elliptic motif is
the smallest full subcategory of mixed motif containg the category of pure elliptic
motives and closed under extensions. Since the category of pure elliptic motives is
equivalent to that of representations of GL2, usual bar construction is insufficient
to make a correct Hopf algebra. We use a method of relative bar construction.
Originally, the relative bar construction is defined by R.Hain to construct a rel-
ative completion of the fundamental group π1(X) of a differentiable manifold X
reltaive to a monodromy representation ρ : π1(X) → S, where S is a reductive
group. We give a slightly different formalism of reltaive bar construction using
the notion of reltaive DGA, which is suitable for making a DG category. Using
this framework, it is enough to construct a relative DGA AEM over Γ(GL2,O)
associated to the elliptic curve E.

The relative DGA AEM is defined as follows. Let V be a two dimensional
vector space and Symm(V ) be the symmtric tensor representation of GL(V ). The
relative DGA AEM is defined by

AEM = ⊕m,m′,p,p′Sym
m(V )(p)

⊗Hom•(Symm(h1(E))(p), Symm′

(h1(E))(p′))

⊗ (Symm′

(V )(p′))∗
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where

Hom•(Symm(h1(E))(p), Symm′

(h1(E))(p′))

=SymmSymm′

Zm+p′−p
− (Em × Em

′

,m−m′ + 2(p′ − p)− i),

Z•
−(∗, •) is the (−)-part of Bloch cycle complex, and Symm is the symmetrizing

projector. To introduce a product structure and an antipodal, we use a quasi-
isomorphism

BGL2(AEM , ǫ)→ BvGL2
(AEM , ǫ)

where BvGL2
(AEM , ǫ) is called the “virtual bar complex”.
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Weil-étale cohomology of regular arithmetic schemes

Matthias Flach

This talk was concerned with Zeta functions ζ(X, s) of arithmetic schemes X
and the description of their vanishing order and leading Taylor coefficient at any
integer s = n in terms of Weil-étale cohomology groups, developing an idea of
Lichtenbaum. We first discussed the simplest case s = 0 and the rather complete
results one has in this case for X (separated and of finite type) over a finite
field by work of Lichtenbaum and Geisser. We then discussed Lichtenbaum’s
work, as completed by the speaker, for s = 0 and X the spectrum of the ring
of integers of a number field. We then reported on joint work with Baptiste
Morin giving a definition of a Weil-étale topos for an arbitrary regular scheme X ,
proper over Spec(Z) which yields Weil-étale cohomology groups with R-coefficients
having the expected relation to the Zeta-function at s = 0, provided one knows the
meromorphic continuation and functional equation of the Hasse-Weil L-functions
attached to X ⊗ Q. This is the case, for example, if X is a regular model of
E × · · · × E where E is an elliptic curve over a totally real field F by recent
work of Harris, Taylor, Shin et al. Finally, we reported on work in progress which
reformulates the Tamagawa number conjecture of Bloch and Kato for the Dedekind
Zeta function of a number field at any integer n in terms of Weil-étale cohomology.
This kind of reformulation should be possible for any X and any integer n but we
are lacking a good definition of the Weil-etale topos in characteristic zero. In the
case where X is the spectrum of the integer ring in a number field we get around
this problem by defining Weil-étale cohomology as the hypercohomology of certain
explicitly constructed complexes of sheaves RZ(n) in the étale topos.
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Preorientations of the derived motivic multiplicative group

Jens Hornbostel

Recently, Jacob Lurie [Lu1] gave a description of the spectrum tmf (= “topological
modular forms”) as the solution of a moduli problem in derived algebraic geometry.
The latter here is constructed with commutative ring spectra as the affine derived
schemes, and the moduli problem is to classify derived oriented elliptic curves with
all terms defined appropriately. Lurie’s point of view is that the best language to
state and prove the theorem is the one of infinity categories rather than the one
of model categories, and we have no reason to doubt he is right.

The above description of tmf (corresponding to height 2 and the second chro-
matic layer) has an analog in height 1 which is much easier to state and to prove,
and is also due to Lurie [Lu1, section 3]. Namely, real topological K-theory KO
classifies oriented derived multiplicative groups. The key step for proving this is
to show that the suspension spectrum of CP∞ classifies preorientations of the de-
rived multiplicative group. Here the derived multiplicative group is by definition
Gm := Σ∞Z+, the name being justified by classical algebraic geometry over a
base field k, where the multiplicative group is Spec(k[Z]). As usual, the object
RmapAbMon(SpΣ)(Σ

∞Z+,−)) it represents via the derived version of the Yoneda
embedding will still be called the multiplicative group. We are able provide a proof
of this result in the language of model categories and symmetric spectra SpΣ, and
present some of its ingredients in our talk. The result reads as follows in general,
the special case N = CP∞ being the one discussed above:

Theorem 1. (Lurie) For any abelian monoid A in symmetric spectra SpΣ (based
on simplicial sets) and any abelian group N in simplicial sets, we have a natural
isomorphism of abelian groups

HomHo(AbMon(SpΣ))(Σ
∞N+, A)

≃ HomHo(AbMon(§Sets))(N,RmapAbMon(SpΣ)(Σ
∞Z+, A))

= HomHo(AbMon(§Sets))(N,Gm(A)).

Here Ho(−) denotes the homotopy category, Rmap means the derived mapping
space and the weak equivalences between abelian monoids are always the underly-
ing ones, forgetting the abelian monoid structure. We explain the model structures
involved in this theorem, which are due to Hovey-Shipley-Smith, Harper and others
(see in particular [HSS], [Sh], [Ha]). Among the ingredients of the proof we then
discuss are a model category refinement of the recognition principle, a theorem
of Schwede-Shipley [SS] comparing chain complexes with HZ-modules and a new
non-positive model structure for E-modules in SpΣ where E is the Barratt-Eccles
operad. Using a theorem of Snaith [Sn], Lurie’s definition of an orientation and
the above theorem then imply his above theorem about KO.

We then discuss the motivic generalization of this theorem, that is to motivic
symmetric spectra SpΣ,T (M) on the site M = (Sm/k)Nis with k an arbitrary
base field. For this, we must establish various motivic model structures on cate-
gories built from motivic symmetric spectra with respect to both circles S1 and
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P1 and suitable model structures, the first results here being due to Hovey and
Jardine. Once we have established all necessary model structures and some of
their properties, the main theorem then can be stated as follows.

Theorem 2. LetM = (Sm/k)Nis and T = S1 or T = P1. Then for any abelian
monoid A in motivic symmetric T -spectra SpΣ,T (M) and any abelian group N
in the category ∆opPrShv(M) of simplicial presheaves on M, we have a natural
isomorphism of abelian groups

HomHo(AbMon(SpΣ,T (M)))(Σ
∞
T N+, A)

≃ HomHo(AbMon(∆opPrShv(M)))(N,RmapAbMon(SpΣ,T (M))(Σ
∞
T Z+, A))

Appliying this theorem to T = P1 pointed at ∞ and to N = P∞ which is
not a variety but still a simplicial presheaf, and using the recently established
motivic version of Snaith’s theorem [GS], [SO], it will imply that algebraic K-
theory represents motivic orientations of the derived motivic multiplicative group,
provided one works with the correct motivic generalizations of the concept of
derived algebraic groups and of orientations. We mention some non-trivial motivic
ingredients of the proof, notably Morel’s [Mo] stable A1-connectivity theorem
which is the reason why we work over a field rather than a more general base
scheme.

One of the many motivations is that the generalizations of the language of
derived algebraic geometry from classical to motivic spectra should ultimately
lead to a definition of a motivic version of tmf , generalizing the above Theorem 1
of Lurie about height 2 to the motivic set-up as well.
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The motivic Galois group, the Grothendieck-Teichmüller group and
the double shuffle group

Hidekazu Furusho

Let DM(Q)Q be the triangulated category of mixed motives overQ constructed
by Hanamura, Levine and Voevodsky. Tate motives Q(n) (n ∈ Z) are Tate objects
of the category. LetDMT (Q)Q be the triangulated sub-category ofDM(Q)Q gen-
erated by Tate motives Q(n) (n ∈ Z). By the work of Levine a neutral tannakian
Q-categoryMT (Q) =MT (Q)Q ofmixed Tate motives over Q can be extracted by
taking a heart with respect to a t-structure of DMT (Q)Q. Deligne and Goncharov
[1] defined the full subcategory MT (Z) =MT (Z)Q of unramified mixed Tate mo-
tives, whose objects are mixed Tate motives M (an object of MT (Q)) such that
for each subquotient E ofM which is an extension of Q(n) by Q(n+1) for n ∈ Z,
the extension class of E in Ext1MT (Q)(Q(n),Q(n+1)) = Ext1MT (Q)(Q(0),Q(1)) =

Q×⊗Q is equal to Z×⊗Q = {0}. The categoryMT (Z) forms a neutral tannakian
Q-category with the fiber functor ωcan : MT (Z) → V ectQ (V ectQ: the category
of Q-vector spaces) sending each motive M to ⊕nHom(Q(n), GrW−2nM).

Definition 1. Themotivic Galois group of unramified mixed Tate motivesMT (Z)

is defined to be the pro-algebraic group GalM(Z) := Aut⊗(MT (Z) : ωcan).

The action of GalM(Z) on ωcan(Q(1)) = Q defines a surjection GalM(Z)→ Gm

and its kernel GalM(Z)1 is the unipotent radical of GalM(Z). In [1] §4 they

constructed the motivic fundamental group πM
1 (X :

−→
01) with X = P1\{0, 1,∞},

which is an ind-object of MT (Z). This is an affine group MT (Z)-scheme. It

induces the morphism GalM(Z)→ AutF2 where F2 = ωcan(π
M
1 (X :

−→
01)) is the free

pro-unipotent algebraic group of rank 2. Denote its restriction into the unipotent
part by

(1) Ψ : GalM(Z)1 → AutF2.

This map is expected to be injective.
Let us fix notations: Let k be a field of characteristic 0, k̄ its algebraic closure

and UF2 = k〈〈X0, X1〉〉 a non-commutative formal power series ring with two
variables X0 and X1. Its element ϕ = ϕ(X0, X1) is called group-like if it satisfies
∆(ϕ) = ϕ ⊗ ϕ with ∆(X0) = X0 ⊗ 1 + 1 ⊗ X0 and ∆(X1) = X1 ⊗ 1 + 1 ⊗ X1

and its constant term is equal to 1. For a monic monomial W , cW (ϕ) means the
coefficient of W in ϕ. For any k-algebra homomorphism ι : UF2 → S the image
ι(ϕ) ∈ S is denoted by ϕ(ι(X0), ι(X1)).

Definition 2 ([2]). The Grothendieck-Teichmüller group GRT1 is defined to be
the pro-unipotent algebraic variety whose set of k-valued points consists of group-
like series ϕ ∈ UF2 with cX0(ϕ) = cX1(ϕ) = cX0X1(ϕ) = 0 satisfying Drinfel’d’s
two hexagon equations in UF2:

(2) ϕ(t13, t12)ϕ(t13, t23)
−1ϕ(t12, t23) = 1,

(3) ϕ(t23, t13)
−1ϕ(t12, t13)ϕ(t12, t23)

−1 = 1
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and his pentagon equation in Ua4:

(4) ϕ(t12, t23 + t24)ϕ(t13 + t23, t34) = ϕ(t23, t34)ϕ(t12 + t13, t24 + t34)ϕ(t12, t23).

Here Ua4 means the universal enveloping algebra of the completed pure braid Lie
algebra a4 over k with 4 strings, generated by tij (1 6 i, j 6 4) with defining
relations tii = 0, tij = tji, [tij , tik + tjk] = 0 (i,j,k: all distinct) and [tij , tkl] = 0
(i,j,k,l: all distinct).

By the multiplication below, GRT1 really forms a group

(5) ϕ2 ◦ ϕ1 := ϕ1(ϕ2X0ϕ
−1
2 , X1) · ϕ2 = ϕ2 · ϕ1(X0, ϕ

−1
2 X1ϕ2).

The group was introduced by Drinfel’d [2] in his study of quasitriangular quasi-
Hopf quantized universal enveloping algebras, certain types of quantum groups.
Let F2 be the free pro-unipotent algebraic group with two generators eX0 and

eX1 and AutF2 be the pro-algebraic group which represents k 7→ AutF2(k). By

the map sending X0 7→ X0 and X1 7→ ϕX1ϕ
−1, the group GRT1 is regarded as

a subgroup of AutF2. By geometric interpretations of the equations (2)∼ (4), it
is shown that ImΨ is contained in GRT1. Actually it is expected that they are
isomorphic. Our first result here is on defining equations of GRT1.

Theorem 3 ([4]).Let ϕ = ϕ(X0, X1) be a group-like element of UF2 with cX0(ϕ) =
cX1(ϕ) = cX0X1(ϕ) = 0. Suppose that ϕ satisfies the pentagon equation (4). Then
it also satisfies two hexagon equations (2) and (3).

This theorem claims that the pentagon equation (4) is essentially a single defin-
ing equation of the Grothendieck-Teichmüller group.

Again let us fix notations: Let πY : k〈〈X0, X1〉〉 → k〈〈Y1, Y2, . . . 〉〉 be the k-
linear map between non-commutative formal power series rings that sends all the
words ending in X0 to zero and the word Xnm−1

0 X1 · · ·X
n1−1
0 X1 (n1, . . . , nm ∈ N)

to (−1)mYnm
· · ·Yn1 . Define the coproduct ∆∗ on k〈〈Y1, Y2, . . . 〉〉 by ∆∗Yn =∑n

i=0 Yi ⊗ Yn−i with Y0 := 1. For ϕ =
∑

W :word cW (ϕ)W ∈ k〈〈X0, X1〉〉, put

ϕ∗ = exp
(∑∞

n=1
(−1)n

n cXn−1
0 X1

(ϕ)Y n1

)
· πY (ϕ). For a group-like series ϕ ∈ UF2

the generalised double shuffle relation means the equality

(6) ∆∗(ϕ∗) = ϕ∗⊗̂ϕ∗.

Definition 4 ([5]). The double shuffle groupDMR0 is the pro-unipotent algebraic
variety whose set of k-valued points consists of the group-like series ϕ ∈ UF2 with
cX0(ϕ) = cX1(ϕ) = cX0X1(ϕ) = 0 which satisfy (6).

The generalized double shuffle relation (6) arises from the generalized (regu-
larised) double shuffle relations among multiple zeta values, which are expected
to be the strongest relation among them. In [5] it is proved that DMR0 is closed
by the multiplication (5) as GRT1. By the same way to the GRT1-case, the group
DMR0 is regarded as a subgroup of AutF2. It is also shown that ImΨ is con-
tained in DMR0. Actually it is expected that they are isomorphic. And DMR0 is
also expected to be isomorphic to GRT1. Our second result here is a relationship
between them.
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Theorem 5 ([3]). GRT1 ⊂ DMR0.

We note that this realizes the project of Deligne-Terasoma where they indi-
cated a different approach. Their arguments concerned multiplicative convolutions
whereas our methods are based on a bar construction calculus (cf. [3]).

References

[1] Deligne, P. and Goncharov, A.; Groupes fondamentaux motiviques de Tate mixte, Ann. Sci.
Ecole Norm. Sup. (4) 38 (2005), no. 1, 1-56.

[2] Drinfel’d, V. G.; On quasitriangular quasi-Hopf algebras and a group closely connected with

Gal(Q/Q), Leningrad Math. J. 2 (1991), no. 4, 829–860.
[3] Furusho, H.; Double shuffle relation for associators, preprint arXiv:0808.0319v2.
[4] , Pentagon and hexagon equations, Annals of Mathematics, Vol. 171 (2010), No. 1,

545-556.
[5] Racinet, G.; Doubles melanges des polylogarithmes multiples aux racines de l’unite, Publ.

Math. Inst. Hautes Etudes Sci. No. 95 (2002), 185–231.

On rational K-theory in characteristic p

Thomas Geisser

Parshin’s conjecture states that for X smooth and proper over a finite field, the
group Ki(X) is torsion for i > 0. This conjecture is motivated by the idea that
higher algebraic K-groups are related to extensions in a conjectural category of
mixed motives, whereas over a finite field, such a category would be semi-simple.

In [2], we showed that if Tate’s conjecture holds and rational and numerial
equivalence agree up to torsion, then Parshin’s conjecture holds.

In this talk, we gave an overview over the articles [3], [6] and [5], which deal with
consequences and approaches to Parshin’s conjecture for rational motivic theories
for schemes over a finite field.

1. Motivic theories

Recall from [1] that we have four motivic theories: Motivic cohomology, motivic
cohomology with compact support, motivic homology and Borel-Moore motivic
homology. All four theories are homotopy invariant and satisfy a projective bundle
formula. The theories are related by the following diagram

Hi
c(X,Q(n))

proper
−−−−→ Hi(X,Q(n))

smooth

y smooth

y

Hj(X,Q(m))
proper
−−−−→ Hc

j (X,Q(m))

The horizontal maps are isomorphisms for proper X , and the vertical maps are
isomorphisms if X is smooth of pure dimension d, and m+ n = d and j + i = 2d.
The groups diagonally opposite should be in some form of duality; we will see that
with rational coefficients, this is equivalent to deep conjectures.

Since Ki(X)Q = ⊕nH2n−i(X,Q(n)), Parshin’s conjecture is equivalent to the
following conjecture for all n and m, respectively.
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Conjecture Pn: For all smooth and projective schemes X over the finite field Fq,
and all i 6= 2n, the group Hi(X,Z(n)) is torsion.

Conjecture Pn is known for n = 0, 1 and is trivial for n < 0.

Conjecture Pm: For all smooth and projective schemes X over the finite field
Fq, and all i 6= 2m, the group Hc

i (X,Z(m)) is torsion.

This conjecture is not known for any m. By the projective bundle formula one
gets Pn ⇒ Pn−1 and Pm ⇒ Pm−1.

2. Applications to Suslin homology

Suslin homology HS
i (X,A) of X with coefficients in the abelian group A is the

homology of CX∗ ⊗A. Here C
X
∗ is the complex which in degree −i is the free abelian

group generated by closed irreducible subschemes of X ×∆i which are finite and
surjective over ∆i, and differentials given by alternating maps of pull-backs along
face maps.

Proposition 2. Under resolution of singularities, the following statements are
equivalent:

(1) Conjecture P0

(2) The groups HS
i (X,Q) are finite dimensional and vanish unless 0 ≤ i ≤

dimX. If X is smooth, then they vanish unless i = 0.
(3) The groups HS

i (X,Z) are finitely generated for all X of finite type over a
finite field.

(4) For all X smooth over a finite field, there are short exact sequences

0→ HS
i+1(X̄,Z)G → HS

i (X,Z)→ HS
i (X̄,Z)

G → 0.

Here G is the free abelian group generated by the Frobenius endomorphism,
and X̄ = X ×Fq

F̄q.

The proof of finite generation uses recent work of Jannsen, Kerz and Saito
on the so called Kato-conjecture. In [4], we proved the analog of the above for
smooth and proper X and higher Chow groups, and later realized that using Suslin
homology, the properness becomes unnecessary.

3. Niveau spectral sequences

Parshin’s conjecture can be analyzed with niveau spectral sequences for Borel-
Moore homology and motivic cohomology with compact support. Due to space
constraints we only consider the second case [6], the other case is in [3].

In order to avoid derived inverse limits, we work with the dual of motivic coho-
mology with compact support

Hi
c(X,Q(n))∗ := Hom(Hi

c(X,Z(n)),Q).



1410 Oberwolfach Report 23/2010

For a point x ∈ X we define Hi
c(k(x),Q(n))∗ := colimU∩{x}6=∅H

i
c(U ∩{x},Q(n))∗.

Then the usual yoga with exact couples gives a homological spectral sequence

(1) E1
s,t =

⊕

x∈X(s)

Hs+t
c (k(x),Q(n))∗ ⇒ Hs+t

c (X,Q(n))∗.

Using this spectral sequence, one sees that Conjecture Pn holds if and only if
Hi
c(X,Q(n)) vanishes for i < 2n and all schemes X over Fq, if and only if

Hi
c(k,Q(n))∗ vanishes for i < 2n and all finitely generated fields k/Fq.
The spectral sequence (1) is concentrated below and on the line t = n, and on

the line t = n, the terms E1
s,n vanish for s < n. We define H̃j

c (X,Q(n))∗ = E2
j−n,n

to be the homology of the line E1
∗,n

(2)
⊕

x∈X(n)

H2n
c (k(x),Q(n))∗ ← · · · ←

⊕

x∈X(d)

Hn+d
c (k(x),Q(n))∗

where the term indexed by X(i) is in degree n+ i. We obtain canonical maps

(3) H̃i
c(X,Q(n))∗

α∗

→ Hi
c(X,Q(n))∗

The map α∗ is an isomorphism for all X if and only if the groups Hi
c(k,Q(n))∗

vanish for i 6= n+trdeg k, if and only if Conjecture Pn holds, and for smooth and
projective X we have

H̃i
c(X,Q(n))∗ ∼=

{
CHn(X)∗ i = 2n;

0 else.

To unify the homological and cohomological approaches, we consider Beilinson’s

Conjecture D(n): For all smooth and proper schemes X over the finite field Fq,
the intersection pairing gives a functorial isomorphism

CHn(X)Q ∼= Hom(CHn(X),Q).

A more general statement is the following:

Conjecture BP (n): For all smooth and projective schemes X over the finite field
Fq, the cup product pairing

Hi(X,Q(n))×H2d−i(X,Q(d− n))→ Q

is perfect.

The latter is a combination of Parshin’s and Beilinson’s conjecture, and relates
the groups on the opposite sides of the diagram in the beginning:

Proposition 3. For fixed n, the following statements are equivalent:

(1) Conjecture BP (n).
(2) Conjectures D(n), Pn and Pn.
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(3) There are perfect pairings of finite dimensional vector spaces

Hc
i (X,Q(n))×Hi

c(X,Q(n))→ Q

for all X, respectively all smooth projective X.
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Weight and boundary

Jörg Wildeshaus

The purpose of this talk was to give an introduction to the notion of weight struc-
ture on a triangulated category, and to illustrate its usefulness for motives. An
extended version of the present notes can be found in the first section of [W3].

The following definition is due to Bondarko.

Definition 1. Let C be a triangulated category. A weight structure on C is a pair
w = (Cw≤0, Cw≥0) of full sub-categories of C, such that, putting

Cw≤n := Cw≤0[n] , Cw≥n := Cw≥0[n] ∀ n ∈ Z ,

the following conditions are satisfied.

(1) The categories Cw≤0 and Cw≥0 are Karoubi-closed: for any object M of
Cw≤0 or Cw≥0, any direct summand ofM formed in C is an object of Cw≤0

or Cw≥0, respectively.
(2) (Semi-invariance with respect to shifts.) We have the inclusions

Cw≤0 ⊂ Cw≤1 , Cw≥0 ⊃ Cw≥1

of full sub-categories of C.
(3) (Orthogonality.) For any pair of objects M ∈ Cw≤0 and N ∈ Cw≥1, we

have
HomC(M,N) = 0 .

(4) (Weight filtration.) For any object M ∈ C, there exists an exact triangle

A −→M −→ B −→ A[1]

in C, such that A ∈ Cw≤0 and B ∈ Cw≥1.
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Our convention concerning the sign of the weight is actually opposite to the
one from [Bo2, Def. 1.1.1], i.e., we exchanged the roles of Cw≤0 and Cw≥0. Note
that in condition (4), “the” weight filtration is not assumed to be unique. Weight
structures are relevant to motives thanks to the following result.

Theorem 2 (Bondarko). Let F be a commutative flat Z-algebra, and assume k
to admit resolution of singularities. Then there is a canonical weight structure on
the category DM eff

gm (k)
F
, the F -linear version of Voevodsky’s category of effec-

tive geometrical motives. It is uniquely characterized by the requirement that its
heart equal (the opposite of) CHM eff (k)F , the F -linear version of Grothendieck’s
category of effective Chow motives.

A concise presentation of the ingredients of the proof is given in [W2, Thm. 1.13].
The following result is formally implied by Theorem 1, and the fondamental prop-
erties of the categoryDM eff

gm (k)
F
, notably localization [V, Prop. 4.1.5]. For details

of the proof, we refer to [W2, Cor. 1.14] ([Bo1, Thm. 6.2.1 (1) and (2)] it k is of
characteristic zero).

Corollary 3. Let X/k be a variety. Assume k to admit resolution of singularities.

(a) The motive with compact support M c
gm(X) lies in DM eff

gm (k)
F,w≥0

.

(b) If X is smooth, then the motive M(X) lies in DM eff
gm (k)

F,w≤0
.

Fix a smooth variety X over k. Recall that by construction [W1, Def. 2.1,
Prop. 2.2], the boundary motive ∂Mgm(X) of X lies in an exact triangle

∂Mgm(X) −→M(X) −→M c
gm(X) −→ ∂Mgm(X)[1]

in DM eff
gm (k)

F
. The following was the main new result presented in the talk. Its

proof uses only the formal properties of weight structures, and the information on
weights from Corollary 3.

Corollary 4. There is a natural bijection between

(1) the isomorphism classes of weight filtrations of ∂Mgm(X),

(2) the isomorphism classes of effective Chow motives M0 ∈ CHM eff (k)F , to-
gether with a factorization

M(X)
π0−→M0

i0−→M c
gm(X)

of the canonical morphism M(X)→M c
gm(X), such that both i0 and π0[1] can be

completed to give weight filtrations of M c
gm(X) and of M(X)[1], respectively.

Note that the motive M(X̃) of any smooth compactification X̃ of X yields
data of type (2), hence an isomorphism class of weight filtrations of ∂Mgm(X). As
we pointed out, there should be weight filtrations of ∂Mgm(X) other than those
obtained this way, for example those associated to the (hypothetical) intersection
motive of a singular compactification of X . Indeed, the bijection of Corollary 2
should potentially serve to construct such motives.
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On the functoriality of the slice filtration

Pablo Pelaez

Let g : X → Y be a map of finite type between Noetherian separated schemes of
finite Krull dimension, and SHX the Morel-Voevodsky stable homotopy category
of T -spectra [1], where T is the pointed simplicial presheaf represented by S1∧Gm.

Given an integer q ∈ Z, we consider the following family of T -spectra

Cqeff = {Fn(S
r ∧Gsm ∧ U+) | n, r, s ≥ 0; s− n ≥ q;U ∈ SmX}

where SmX is the smooth Nisnevich site over X and Fn is the left adjoint to the
n-evaluation functor between the category of T -spectra and the unstable category
of pointed simplicial presheaves on SmX

evn : Spt(MX)→MX

Voevodsky [5] defines the slice filtration as the following family of triangulated
subcategories of SHX

· · · ⊆ Σq+1
T SHeffX ⊆ ΣqTSH

eff
X ⊆ Σq−1

T SHeffX ⊆ · · ·

where ΣqTSH
eff
X is the smallest full triangulated subcategory of SHX which con-

tains Cqeff and is closed under arbitrary coproducts.

It follows from the work of Neeman [2], [3] that the inclusion

iq : Σ
q
TSH

eff
X → SHX

has a right adjoint rq : SHX → ΣqTSH
eff
X , and the following functors

fq : SHX → SHX

sq : SHX → SHX
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are exact, where fq is defined as the composition iq ◦ rq, sq fits in the following
distinguished triangle for every E ∈ SHX

fq+1E
ρEq

// fqE
πE
q

// sqE // Σ1,0
T fq+1E

and HomSHX
(F, sqE) = 0 for every F ∈ Σq+1

T SHeffX . We will refer to fqE as the
(q − 1)-connective cover of E, and to sqE as the q-slice of E.

Our main goal is to discuss the behavior of the pullback functor

Lg∗ : SHY → SHX

with respect to the slice filtration in SHX and SHY . It is easy to see that

Lg∗(ΣqTSH
eff
Y ) ⊆ ΣqTSH

eff
X

and thus for any integer q ∈ Z, we have a pair of natural transformations

αq : Lg
∗ ◦ fq → fq ◦ Lg

∗

βq : Lg
∗ ◦ sq → sq ◦ Lg

∗

such that for every E ∈ SHY the following diagram

Lg∗(fq+1E)

αq+1(E)

��

Lg∗(ρEq )
// Lg∗(fqE)

αq(E)

��

Lg∗(πE
q )

// Lg∗(sqE)

βq(E)

��

// Lg∗(Σ1,0
TY
fq+1E)

Σ1,0
TX

(αq+1(E))

��

fq+1(Lg
∗E)

ρLg∗E
q

// fq(Lg
∗E)

πLg∗E
q

// sq(Lg
∗E) // Σ1,0

TX
fq+1(Lg

∗E)

is commutative and its rows are distinguished triangles in SHX .

Lemma 1. Let E ∈ SHY and q ∈ Z. If the following condition holds:

(1) fq+1(Lg
∗(sqE)) = 0

then the natural maps:

αq+1(fqE) : Lg∗(fq+1fqE) // fq+1(Lg
∗(fqE))

αq(fqE) : Lg∗(fqfqE) // fq(Lg
∗(fqE))

βq(fqE) : Lg∗(sqfqE) // sq(Lg
∗(fqE))

are all isomorphisms in SHX .

Proof. For the details we refer the reader to [4]. �

Proposition 4. If the condition (1) in lemma 1 holds for every spectrum in SHY
and for every integer ℓ ∈ Z, then βq : Lg

∗ ◦sq → sq ◦Lg∗ is a natural isomorphism
for every q ∈ Z.

Proof. For the details we refer the reader to [4]. �

In the rest of this note we assume that Y = Spec(k) where k is a field with
resolution of singularities. Our main result is the following
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Theorem 1. Let E be a spectrum in SHk and q ∈ Z an arbitrary integer. Then

fq+1(Lg
∗(sqE)) = 0

and as a consequence we have that βq : Lg
∗◦sq → sq◦Lg∗ is a natural isomorphism

for every q ∈ Z.

Proof. For the details we refer the reader to [4]. �
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Mixed motives over k[t]/(tm+1)

Jinhyun Park

(joint work with Amalendu Krishna)

For a preadditive dg-category C, Bondal and Kapranov [2] gave a formalism that
associates a triangulated category Tr(C) to C as follows:

C  C⊕  PreTr(C) Tr(C).

Here, C⊕ is the category obtained from C by formally throwing in finite coproducts
of objects of C, while PreTr(C) is the dg-category of so-called twisted complexes,
(Ai, pij) where Ai ∈ C⊕ and pij : Ai → Aj is a morphism of degree i − j + 1,
with certain morphisms that form complexes with the differential given by some
operator D. The category Tr(C) is obtained by taking the cohomology H0 with
respect to the differential D.

The basic central result in the paper [5] is to prove that this formalism can be
extended to what we call partial dg-categories, motivated by Hanamura’s work on
motives in [3]. Roughly speaking, a partial dg-category is a dg-category-like col-
lection of objects with morphisms, while the main difference is that (1) each pair
of objects A,B has the complex hom(A,B) together with a class S(A,B) of quasi-
isomorphic subcomplexes of hom(A,B), called the distinguished subcomplexes of
hom(A,B), subject to certain compatibility conditions, and (2) the compositions
of morphisms are not necessarily defined, but defined on the level of some distin-
guished subcomplexes.

We prove that under the above assumptions, we can still execute the formalism
of Bondal and Kapranov, and the obtained collection PreTr(C) is also a partial
dg-category with respect to the differentials D such that, after applying the coho-
mology functor H0, we obtain an honest triangulated category Tr(C).
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As the first example, one can take CH as follows: let k be a fixed field. The ob-
jects of CH are the pairs (X, r) where X is a smooth projective variety over k, and
r ∈ Z. The morphisms between (X, r), (Y, s) are given by hom((X, r), (Y, s)) :=
zdimX−r+s(X × Y,−•), the higher Chow complex of X × Y ([1]). The distin-

guished subcomplexes are given by zdimX−r+s
W (X × Y,−•), where W are some

finite collections of algebraic sets subject to certain conditions. That this CH is a
partial dg-category follows from the moving lemma for higher Chow groups. Here,
Tr(CH)♯, where ♯ is the pseudo-abelian hull, then becomes the integral version of
Hanamura’s triangulated category DMH(k) of mixed motives over k. Its rational
version was considered in [3].

The second result of this paper is about an extension of the category of mixed
motives of Hanamura. Let C be defined by the same objects as CH , but for the mor-
phisms, we take homC((X, r), (Y, s)) = zdimX−r+s(X×Y,−•)⊕TzdimX−r+s(X×
Y,−•), both the higher Chow complex and the additive higher Chow complex ([4])
of X × Y . Since we now have the moving lemma for additive higher Chow groups
by [4], we deduce that C is a partial dg-category. Hence, we define the triangu-
lated category of mixed motives DM(k;m) with the modulus m augmention to be
Tr(C)♯. They capture some of what one may call mixed motives over k[t]/(tm+1).

This category DM(k;m) can be regarded as a kind of “square-zero” extension
of the category DMH(k) of Hanamura.

References

[1] S. Bloch, Algebraic cycles and higher K-theory, Adv. Math 61 (1986), 267–304.
[2] A. Bondal, M. Kapranov, Enhanced triangulated categories, Math. USSR-Sb. 70 (1991),

93–107.
[3] M. Hanamura, Mixed motives and Algebraic cycles II, Invent. Math. 158 (2004), 105–179.
[4] A. Krishna, J. Park, Moving lemma for additive higher Chow groups, Preprint (available on

JP’s website). A version of it combined with other works is available as arXiv:0909.3155v1
[5] A. Krishna, J. Park Mixed motives over k[t]/(tm+1), Preprint arxiv:1001.5112v1

Torsion in Chow groups of codimension 2 cycles for homogeneous
varieties.

Kirill Zainoulline

This is a report on the joint project with R.S. Garibaldi. Let CHi(X) denote the
Chow group of codimension i algebraic cycles on a smooth projective variety X
modulo the rational equivalence relation. In the present talk we provide a uniform
bound for the torsion part of codimension 2 algebraic cycles on certain projective
homogeneous varieties. Our main result is the following:

Theorem 1. Let X be a variety of Borel subgroups of a strongly inner simple linear
algebraic group G over a field k. Then the torsion part of the second quotient of
the Grothendieck γ-filtration on X is a cyclic group of order equal to the Rost
number N of G. In particular, the torsion part of CH2(X) is a cyclic group of
order dividing N . The number N depends only on the type of G and is equal to
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Type: N
An, Cn 1
Bn, Dn, G2 2
F4, E6 6
E7 12
E8 60

We recall that G is strongly inner if the simply connected cover of G is iso-
morphic to Gs twisted by a cocycle in H1

ét(k,Gs), where Gs denotes the simply
connected split group of the same Killing-Cartan type as G.

Note that the theorem places no restriction on the field k; it extends easily to
the semisimple case and to the case when X is any generically split projective
homogeneous G-variety.

All previous computations of torsion in CH2 of projective homogeneous varieties
have been dealing with quadrics [3], Severi-Brauer varieties and their products [2],
groups of types Bn and Dn [1] and certain varieties of small dimensions [5]. Our
theorem provides a lot of new examples, e.g. varieties of groups of exceptional
types.

The proof of the theorem is constructive in the sense that we provide an ex-
plicit generator θ of that cyclic group. It turns out that for prime orders θ also
generates the torsion part of the respective generalized Rost motives which ap-
pear in the proof of the Bloch-Kato conjecture, hence, providing a link between
the combinatorics of the root system of Gs, cohomological invariants of Gs (via
the Rost invariant) and Voevodsky’s generalized Rost motives. Torsion parts of
these motives were computed by Merkurjev-Suslin in [4] using completely differ-
ent techniques. Note that θ also measures the difference between the third terms
of topological and gamma filtrations on K0. In particular, for varieties of Borel
subgroups θ generates the respective quotient.
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Arakelov motivic cohomology and zeta values

Andreas Holmstrom

(joint work with Jakob Scholbach)

The aim of the talk was to present a construction of a new cohomology theory for
arithmetic schemes, which we call Arakelov motivic cohomology. The motivation
for constructing this cohomology theory comes from three sources.

Firstly, our main motivation is the recent insight obtained independently and in
different forms by Soulé and Scholbach, that a new type of cohomology is needed
as a crucial input in the study of special values of zeta functions and L-functions
(see [Sou09] and [Sch10]). Some version of this cohomology theory should also
play a role in the Weil-etale framework described by Flach in this volume.

Secondly, it is natural to ask if the relation between Chow groups and mo-
tivic cohomology has a counterpart in the arithmetic setting, i.e. if the arithmetic
Chow groups defined by Gillet-Soulé [GS90] and Burgos [Bur97] have an exten-
sion/generalization analogous to motivic cohomology.

Thirdly, an idea which I believe goes back to Beilinson is that the Beilinson
regulator from motivic cohomology to Deligne cohomology should be interpreted
as a kind of boundary map in a localization sequence for the inclusion of an arith-
metic scheme into its Arakelov compactification. In such a long exact sequence,
motivic cohomology and Deligne cohomology would be two of three components,
and Arakelov motivic cohomology would be the third.

Working with a number field as base scheme, the last two points have been real-
ized to a large extent by the work of Burgos and Feliu [BF09] on higher arithmetic
Chow groups. The main advantage of our new construction is that it also works
for schemes and motives over arithmetic base schemes such as Spec Z. This is
crucial for all applications to special values. We expect to prove comparison the-
orems over a number field between Arakelov cohomology groups and the higher
arithmetic Chow groups of Burgos and Feliu. A consequence of such a comparison
should be the transfer of certain properties, including proper push-forwards, to
higher arithmetic Chow groups. This is interesting because it is needed for the
formulation of higher arithmetic Riemann-Roch theorems, something which we
also hope to address in the future.

The main technical problem in our construction, as well as in constructions of
higher arithmetic Chow groups, is to find a lift of the Beilinson regulator to some
category in which one can consider its cone (or homotopy fiber). This is a difficult
problem. Goncharov [Gon05] constructed such a lift to a map between certain
complexes, but was not able to prove that the induced map on cohomology groups
actually agrees with the Beilinson regulator (however, this was proved later by
Burgos and Feliu). The thesis of Feliu [Fel07] contains a different solution to the
problem, but the lift obtained is not an actual map but rather a zig-zag of maps
between complexes, and this zig-zag can not be constructed over an arithmetic
base scheme. The key idea in our construction is that one can work with motivic
spectra instead of complexes. Thanks to the recent foundational work of Ayoub,
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Cisinski, Déglise and Riou ([Ayo07a], [Ayo07b], [CD07], [CD09], [Rio09]), the
problem of lifting the regulator becomes much easier in this setting, and this is
what we exploit to construct the Arakelov motivic cohomology groups.

We briefly summarize the main points of the construction. First we must con-
struct a ring spectrum which represents (real) Deligne cohomology for smooth
varieties over SpecQ. This can be done using a slight modification of the method
used by Cisinski and Déglise for mixed Weil cohomologies [CD07], provided one
uses a good choice of Deligne complexes. After proving that the resulting Deligne
spectrum is orientable, one can apply a general theorem of Cisinski and Déglise
[CD09, Cor. 13.2.15], which produces a map of ring spectra from Riou’s Beilinson
spectrum to the Deligne spectrum. (The Beilinson spectrum is constructed by
Riou via Adams operations on the algebraic K-theory spectrum, and is weakly
equivalent to Voevodsky’s Eilenberg-MacLane spectrum with rational coefficients,
see [Rio09] and [CD09, 13.1.2].) This map will induce the Beilinson regulator on
the level of cohomology groups. The rough idea now is to precompose this regula-
tor map with the canonical map from the integral coefficient Eilenberg-MacLane
spectrum, and define the Arakelov motivic cohomology spectrum as the homotopy
fiber of this composition. Writing η : Spec Q → Spec Z for the generic point of
SpecZ this produces a cofiber sequence

Ĥ→ HM → η∗HD

in the model category underlying SH(Spec Z). Here Ĥ is the Arakelov motivic
cohomology spectrum, HM is the Eilenberg-MacLane spectrum (with integral co-
efficients), and HD is the Deligne spectrum.

This definition of Arakelov motivic cohomology appears to be the right one for
the special value conjectures formulated by Scholbach and by Soulé. However, for
the Weil-etale topology framework of Flach, we will need a modified definition,
probably using etale motivic cohomology, and Deligne cohomology with integral
coefficients instead of real coefficients. This is something we hope to come back to
in a future paper.

Many good functoriality properties of Arakelovmotivic cohomology follow rather
formally from Ayoub’s six functors formalism. In joint work with Peter Arndt,
we use the recent results of Hornbostel [Hor10] on model structures on algebras
over operads to equip the Arakelov motivic cohomology groups with a product
structure.

For more details on the construction and on the applications to zeta values, we
refer to the preprint [HS10] and other forthcoming papers.

References

[Ayo07a] Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles
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Field Patching and Local-Global Principles for Galois Cohomology

Daniel Krashen

(joint work with D. Harbater and J. Hartmann)

In this joint work with D. Harbater and J. Hartmann we use the technique of field
patching to obtain local-global principles for the Galois cohomology of fields of
the form F = K(X) where K is a complete discretely valued field and X/K is a
curve. These principles take the form of injective maps

Hn(F,Z/m(n− 1)) →֒
∐

u

Hn(Fu,Z/m(n− 1))⊕
∐

p

Hn(Fp,Z/m(n− 1))

where n ≥ 2 and char(F ) ∤ m.

The fields Fp and Fu are as follows: Choose X̂ a regular model of X where

the closed fiber X has nodal singularities. The p’s are certain closed points of X
and Fp is the fraction field of ÔX̂,p, the complete ring at p. The u’s are the

components of the complement of the p’s in X, and Fu is the fraction field of the
completion of the ring OX̂,u at its Jacobsen radical.
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On Some Differentials in the Motivic Cohomology Spectral Sequence

Serge Yagunov

This talk gives an overview of work in progress mostly presented in author’s
preprint [Ya]. Let k be a field of characteristic 0. Let us fix some prime p > 2 and
denote by Z(p) the localization of the ring of integers Z outside the prime ideal
(p). Consider the Motivic Cohomology Spectral Sequence (MCSS) (see [FS]) with
coefficients in Z(p):

Ei,j2 = Hi−j(X,Z(p)(−j))⇒ K−i−j(X,Z(p)).

(Everywhere in this report H denotes the Motivic cohomology.) Differentials in
this spectral sequence act as: dn : E

i,j
n → Ei+n,j−n+1

n .
As it was shown by Levine [Le], MCSS with rational coefficients collapses at its

E2-term. On the other hand, the case of integer coefficients is tangled, due to the
interplay of its localizations at different prime numbers. Hence, the p-local case
makes a good model to study the nature of the MCSS differentials.
Theorem.

dn =

{
0 for p− 1 ∤ n− 1

α(B ◦ P 1 ◦ red) for n = p.

Here α ∈ (Z/p)× is a constant, the operations red, B, and P 1 are coefficient
reduction, Bockstein homomorphism (see below), and first Z/p-Steenrod power op-
eration [Vo2], correspondingly.

Remark 1. The condition char k = 0 is inherited from Voevodsky’s computation
of the Motivic Steenrod algebra. For uniformity we restrict ourselves to the case
of odd primes. However, we expect similar statement to be fulfilled for the case
p = 2.

The proof strategy:
• Using Adams operations, we show that dn = 0 for p− 1 ∤ n− 1. At this stage

we also obtain the equality pdp = 0.
• To prove that the first potentially non-trivial differential dp can be identi-

fied with a bi-stable cohomological operation of degree (2p− 1, p− 1) on motivic
cohomology.
• To show that operations α(B ◦ P 1 ◦ red) exhaust the set of all operations of

finite order in the motivic Steenrod algebra with coefficients in Z(p).
• To find an example of a smooth algebraic variety such that dp 6= 0 that shows

α 6= 0.

Remark 2. Since dp 6= 0, the second potentially non-trivial differential d2p−1 ev-
idently can not be interpreted as a cohomological operation but rather as a sec-
ondary operation.

Let us now discuss the proof in some more details. In the first step of the proof
we follow the strategy used by Victor Buchstaber to compute differentials in the
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Atiyah–Hirzebruch spectral sequence [Bu]. As it was shown by Marc Levine [Le],
for k 6= p the Adams operations ψk on K∗(X) have representation on the Motivic
Cohomology spectral sequence. Moreover, their action on the E2-term is given
by the relation: ψk(γ) = k−qγ for γ ∈ H∗(X,Z(q)). Therefore, all topological
arguments proposed in [Bu] work in this case as well. Since Adams operations
commute with differentials, we have:

dnψk = ψkdn : H
∗(X,Z(q))→ H∗+2n−1(X,Z(q + n− 1)).

Therefore, k1−n−q(kn−1−1)dn = 0. Since k is an arbitrary integer mutually prime
to p (and therefore, invertible in Z(p)), the differential dn annihilates as multiplied
by the

g.c.d.
k>1

(p,k)=1

{kn−1 − 1}
def
= KM(n− 1).

These numbers are sometimes called Kervaire–Milnor [KM] constants, probably
after Adams who calculated them in [Ad] and showed, in particular, that for p > 2

νp(KM(n)) =

{
1 + νp(n) for n ≡ 0(mod p− 1)

0 else,

where νp denotes the greatest dividing p-exponent i.e., for every positive integer l

one has: l = 2ν2(l)3ν3(l)5ν5(l) . . .
Let us pass to the computation of the Motivic Steenrod algebra with Z(p)-

coefficients. Denote the set of bistable cohomological operations of degree (i, j),
sending motivic cohomology with coefficients in a group S to one with coefficients
in some group T by OP i,j(S, T ). In particular, Ai,j(S) = OP i,j(S, S) is the Mo-
tivic Steenrod algebra. In the table below one can find groups of operations with
different coefficients and their generators. The first row was taken from Voevod-
sky’s computation of the Motivic Steenrod algebra with finite coefficients [Vo].

i= 2p-2 2p-1 2p

Ai,p−1(Z/p) Z/p Z/p⊕ Z/p Z/p
P 1 P 1 ◦ β,β ◦ P 1 β ◦ P 1 ◦ β

OP i,p−1(Z/p,Z(p)) 0 Z/p Z/p
B ◦ P 1 B ◦ P 1 ◦ β

OP i,p−1(Z(p),Z/p) Z/p Z/p 0
P 1 ◦ red β ◦ P 1 ◦ red

Ai,p−1(Z(p))tors 0 Z/p 0
B ◦ P 1 ◦ red

(All these groups in degrees (i, p − 1) are shown to be 0 as i lies outside the
considered interval.) Here red is the coefficient reduction operation from Z(p) to
Z/p, β (resp. B) denotes Bockstein operation, corresponding to the coefficient
short exact sequence

0→ Z/p
×p
→ Z/p2 → Z/p→ 0 ( resp. 0→ Z(p)

×p
→ Z(p) → Z/p→ 0).
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We consecutively compute all groups of cohomological operations mentioned in
the table. As a result we obtain an expression for the torsion part inA2p−1,p−1(Z(p))
and for its generator.

Finally, let me show an example required by the last part of the proof. (The
author thanks Alexander Merkurjev for his help with the variety construction.)
Let D be a central simple algebra over k of prime degree p. Denote by G the
variety SL1,D. G is a twisted form of SLp, therefore, its dimension is p2 − 1.

Consider the MCSS, corresponding to the variety G with coefficients in Z(p).

We show that in this case the differential dp : E
1,−2
2 → Ep+1,−p−1

2 is non-trivial.
The proof is based on the comparison of the MCSS with the Brown-Gersten-

Quillen spectral sequence, starting from K-cohomology and converging to the K-
groups of G. We show that non-triviality of the differential in question follows
from the statement CHp+1(G) 6= 0 that is also demonstrated in [Ya].
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Rational points vs. 0-cycles of degree 1 in stable A1-homotopy

Aravind Asok

(joint work with Christian Häsemeyer, Fabien Morel)

Suppose k is a field, and X is a smooth variety over k. Let H(k) denote the
A1-homotopy category of smooth schemes over k [MV99]; abusing notation, we
write X for the isomorphism class of a smooth scheme in H(k). Let SH(k) denote
the stable A1-homotopy category of smooth schemes over k, i.e., the category of
P1-spectra over k [Mor05]. The suspension spectrum Σ∞

P1 Spec k+, denoted S0 for
notational convenience, is called the motivic sphere spectrum.

If U is another smooth variety, write [U,X ]A1 for the set homH(k)(U,X) and

write [U,X ]st for the abelian group homSH(k)(Σ
∞
P1U+,Σ

∞
P1X+). Define πA1

0 (X) to
be the Nisnevich sheaf on Smk associated with the presheaf U 7→ [U,X ]A1 and
πs0(X) to be the Nisnevich sheaf on Smk associated with the presheaf U 7→ [U,X ]st.
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Each of these sheaves determines “by restriction” a functor on the category of
finitely generated separable extensions L/k.

Stable homotopy theory and rational points. If πA1

0 (X)(k) is non-empty, we
say that X has a rational point up to unstable A1-homotopy. It is known that if
X has a rational point up to unstable A1-homotopy, then X has a rational point
[MV99]. Thus, existence of a rational point is an unstable A1-homotopy invariant.

Similarly, say that X has a rational point up to stable A1-homotopy if the
canonical map πs0(X) → πs0(S

0) is a split epimorphism; a choice of a splitting
will be called a rational point up to stable A1-homotopy. Any rational point up
to unstable A1-homotopy determines a rational point up to stable A1-homotopy
by taking iterated P1-suspensions. If X is smooth and proper, there is a group
homomorphism from πs0(X)(k) to the group of 0-cycles of degree 1; a priori it is
not clear that this map is either surjective or injective.

Theorem 1. Assume k is a field having characteristic 0. If X is a smooth proper
k-variety, then X has a 0-cycle of degree 1 if and only if X has a rational point
up to stable A1-homotopy.

Sheaves of connected components. We deduce the above result from a de-
scription of the sheaf πs0(X) for any smooth proper variety. The description is
motivated by foundational work of Morel describing the sheaf πs0(S

0) in terms
of the Grothendieck-Witt ring [Mor04]. There is a “Hurewicz” functor from the
stable A1-homotopy category to Voevodsky’s derived category of motives. The
analog of the stable π0 computed in Voevodsky’s derived category of motives is
the 0-th Suslin homology sheaf. For a smooth proper variety X , the sections of
this sheaf over fields coincide with the Chow group of 0-cycles on XL (cf. [Dég08,
§3.4]).

We use the theory of oriented Chow groups, or Chow-Witt groups, as invented
by J. Barge and F. Morel [BM00], and developed in detail by J. Fasel [Fas08, Fas07].
For any n-dimensional smooth proper k-scheme X , one can define the oriented

Chow group C̃H0(X) by means of a certain “oriented Chow cohomology group”

C̃H
n
(X,ωX) (see [Fas08, Definition 10.2.17] for details). This latter group is

defined by means of an explicit Gersten resolution, and has functorial pushforwards
for proper morphisms.

Theorem 2. If X is a smooth proper k-variety over a field k having characteristic
0, then there is an isomorphism (natural with respect to X) between the functor

L 7→ πs0(X)(L) and the functor L 7→ C̃H0(XL).

Sketch of proof of Theorem 2. One first reduces to the case where X is projective,
and deals with an associated “abelianized” problem using a version of A1-homology
that has been stabilized with respect to Gm. When X is projective, the idea of
the proof is to use Spanier-Whitehead duality: the Spanier-Whitehead dual of a
smooth scheme X is the Thom space of the negative tangent bundle (see, e.g.,
[Hu05, Theorem A.1] or [Rio05, Théorème 2.2]).



Motives and Homotopy Theory of Schemes 1425

When X has trivial tangent bundle, one can prove the result by proving a P1-
bundle formula for the oriented Chow group of 0-cycles—this involves some facts
about contractions of the sheaf KMW

n as discussed at the end of [Mor06, §2.3].
In the general case, one has to show that the twist arising from non-triviality of
the negative tangent bundle only appears through the canonical bundle ωX of X .
Locally the tangent bundle is trivial, and a careful patching argument (using the
fact that any element of GLn is A1-homotopic to its determinant) can be used
to finish the proof; this involves an “unstable” construction of the map inducing
duality as given by Voevodsky in [Voe03]. �

Sketch of proof of Theorem 1. The “only if” direction is straightforward. For the

“if” direction, it suffices to show that the “forgetful” morphism C̃H0(XL) →
CH0(XL)—functorial in L and X—is always a surjection. For any field F , the
canonical map GW (F )→ Z given by the rank homomorphism is always surjective.
Each of these groups is computed by means of a Gersten resolution. One then just
uses the fact that X has Nisnevich cohomological dimension n. �

Remark 3. In fact, we prove a more precise result. The sheaf πs0(X) is a strictly A1-
invariant sheaf of groups by [Mor05, Theorem 6.2.7] and therefore “unramified” in
an appropriate sense; one can then describe the sections of the sheaf πs0(X) over a
smooth scheme U in terms of sections over k(U) together with information coming
from discrete valuations associated with codimension 1 points of U .
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[Dég08] F. Déglise. Modules homotopiques. 2008. Preprint, available at http://www.math.univ-
paris13.fr/∼deglise/preprint.html

[Fas07] J. Fasel. The Chow-Witt ring. Doc. Math., 12:275–312, 2007.
[Fas08] J. Fasel. Groupes de Chow-Witt. Mém. Soc. Math. Fr. (N.S.), (113):viii+197, 2008.
[Hu05] P. Hu. On the Picard group of the stable A1-homotopy category. Topology, 44(3):609–640,

2005.
[Mor04] F. Morel. On the motivic π0 of the sphere spectrum. In Axiomatic, enriched and motivic

homotopy theory, volume 131 of NATO Sci. Ser. II Math. Phys. Chem., pages 219–260.
Kluwer Acad. Publ., Dordrecht, 2004.

[Mor05] F. Morel. The stable A1-connectivity theorems. K-Theory, 35(1-2):1–68, 2005.
[Mor06] F. Morel. A1-algebraic topology over a field. 2006. Preprint, available at

http://www.mathematik.uni-muenchen.de/∼morel/preprint.html

[MV99] F. Morel and V. Voevodsky. A1-homotopy theory of schemes. Inst. Hautes Études Sci.
Publ. Math., (90):45–143 (2001), 1999.
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