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Introduction by the Organisers

Phase transitions are singular phenomena involving a collective behavior of
many degrees of freedom. A wide range of mathematical models have been in-
troduced: Their purpose stretches from capturing the essence of phase transi-
tions (statistical mechanics) to quantitative prediction in engineering (continuum
thermodynamics). Hydrodynamic limits with their mean-field models and large
deviation principles form a bridge between these micro and mesoscopic descrip-
tions. The presence of quenched disorder next to thermal fluctuations adds new
phenomena — and complexity.

Not surprisingly, the mathematical methods are as diverse as the models: From
combinatorics and probability theory to the calculus of variations and partial dif-
ferential equations. Models of phase transitions typically cannot be dealt with
by soft methods but require new tools. This workshop broadly brought together
these mathematical communities of stochastics and analysis — along with a few
physicists and engineers to discuss these problems.
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Phase transitions in statistical mechanical setting have been discussed for lattice
gradient models with non-convex potentials and for the six-vertex model with
tilted boundary conditions. The phenomenon of Bose-Einstein condensation was
addressed in the context of infinite cycles in spatial random permutations and
on the level of large deviations for empirical measures for Brownian bridges and
random integer partitions.

Phase transition from a theoretical engineering perspective have been mostly
discussed in the context of shape memory alloys on the level of experimental ob-
servations and mesoscopic modeling. One talk related the magnitude of hysteresis
not to the energy barrier for the formation of Martensite nuclei but to the size
of preexisting nuclei; another talk investigated the influence of quenched disorder
on this phase transition; a third talk proposed an artificial 2-d atomistic model
tractable by numerical experiments.

Another important topic were mean field models and stochastic dynamics in
the regime of phase segregation including corresponding large deviation principles
for high-dimensional or spatially extended systems with many modes: nonlinear
stability of fronts in non-local mean-field models, equilibrium pattern in mean-
field models for diblock-copolymers, analysis of metastable behavior based on a
computation of capacities for finer asymptotics beyond Wentzel-Freidlin theory,
large deviation functionals for many-particle systems and spectral gap bounds for
the stochastic Ising model, and logarithmic Sobolev inequalities for lattice models
with continuous spin with applications to hydrodynamic limits.

Another topics was the analysis of the time-asymptotic behavior (coarsening,
gelation) of coagulation models: For certain “collision” kernels, the analysis is
fairly explicit, very elegant (and universal in the sense that it connects seemingly
unrelated fields); for more generic kernels, subtle matched asymptotic expansions
are required and new methods like a multi-scale maximal regularity theory for
the linearized operator have to be developed. Related in spirit though not in
techniques was a talk on Ostwald ripening for liquid droplets.
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Abstracts

Free energy of interacting Bosons

Stefan Adams

(joint work with Andrea Collevecchio, Wolfgang König)

We consider N bosons in a box in Rd with volume N/ρ under the influence of a
mutually repellent pair potential. The particle density ρ ∈ (0,∞) is kept fixed.
Our main result is the identification of the limiting free energy, f(β, ρ), at positive
temperature 1/β, in terms of an explicit variational formula, for any fixed ρ if β
is sufficiently small, and for any fixed β if ρ is sufficiently small.

The thermodynamic equilibrium is described by the symmetrised trace of e−βHN ,
whereHN denotes the corresponding Hamilton operator. The well-known Feynman-
Kac formula reformulates this trace in terms of N interacting Brownian bridges.
Due to the symmetrisation, the bridges are organised in an ensemble of cycles of
various lengths. The novelty of our approach is a description in terms of a marked
Poisson point process whose marks are the cycles. This allows for an asymptotic
analysis of the system via a large-deviations analysis of the stationary empirical
field. The resulting variational formula ranges over random shift-invariant marked
point fields and optimizes the sum of the interaction and the relative entropy with
respect to the reference process.

1. The model

The main object is the following symmetrised sum of Brownian bridge expec-
tations,

(1)

Z(bc)

N (β,Λ) =
1

N !

∑

σ∈SymN

∫

Λ

dx1 · · ·
∫

Λ

dxN

×
N
⊗

i=1

µ(bc,β)

xi,xσ(i)

[

exp
{

−
∑

1≤i<j≤N

∫ β

0

v(|B(i)

s −B(j)

s |) ds
}]

.

Here µ(bc,β)
x,y is the canonical Brownian bridge measure with boundary condition

bc ∈ {∅, per,Dir}, time horizon β > 0 and initial point x ∈ Λ and terminal point
y ∈ Λ, and the sum is on permutations σ ∈ SymN of 1, . . . , N . The interaction
potential v : R → [0,∞] is measurable, decays sufficiently fast at infinity and is
possibly infinite close to the origin. Our precise assumptions on v are in [1].

The boundary condition bc = ∅ refers to the standard Brownian bridge, whereas
for bc = Dir, the expectation is on those Brownian bridge paths which stay in Λ
over the time horizon [0, β]. In the case of periodic boundary condition, bc = per,
we consider Brownian bridges on the torus. The quantity Z(bc)

N (β,Λ) is related to
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the N -body Hamilton operator

H(bc)

N,Λ = −
N
∑

i=1

∆(bc)

i +
∑

1≤i<j≤N

v(|xi − xj |), bc ∈ {Dir, per}

where ∆(bc)

i stands for the Laplacian with bc boundary condition, i.e., it is equal to
the trace of the projection of the operator exp {−βH(bc)

N,Λ} to the set of symmetric

functions (Rd)N → R. The limiting free energy is defined as

f (bc)(β, ρ) = − 1

β
lim

N→∞

1

|ΛLN |
logZ(bc)

N (β,ΛLN ),

where |ΛLN | = N/ρ, for any β, ρ ∈ (0,∞), any d ≥ 1 and any bc ∈ {∅, per,Dir}.
The existence of the thermodynamic limit under suitable assumptions on the in-
teraction potential v can be shown by standard methods, see, e.g., Ruelle 1969.

Since any permutation decomposes into cycles, and using the Markov property,
the family of the N bridges in (1) decomposes into cycles of various lengths.
We conceive these initial-terminal sites as the points of a standard Poisson point
process on R

d and the cycles as marks attached to these points. In Theorem 1
below we rewrite the partition function in terms of an expectation over a reference
process, the marked Poisson point process ωP. We only deal with empty boundary
conditions here (the other cases are in [1]). The space of marks is then defined as
E =

⋃

k∈N
Ck,Λ, where, for k ∈ N, we denote by Ck the set of continuous functions

f : [0, kβ] → Rd satisfying f(0) = f(kβ), equipped with the topology of uniform
convergence. We sometimes call the marks cycles. By ℓ : E → N we denote the
canonical map defined by ℓ(f) = k if f ∈ Ck,Λ. We call ℓ(f) the length of f ∈ E.
We consider spatial configurations that consist of a locally finite set ξ ⊂ Rd of
particles, and to each particle x ∈ ξ we attach a mark fx ∈ E satisfying fx(0) = x.
Hence, a configuration is described by the counting measure ω =

∑

x∈ξ δ(x,fx).
Reference process. Consider on C = C1 the canonical Brownian bridge measure
µ(β)
x,y which is a regular Borel measure on C with total mass equal to the Gaussian

density (4πβ)−d/2e−
1
4β |x−y|2 . We write P(β)

x,y for the normalized Brownian bridge

measure on C. Let ωP =
∑

x∈ξP
δ(x,Bx), be a Poisson point process on R

d×E with

intensity measure equal to ν whose projection onto Rd×Ck is equal to νk(dx, df) =
1
kLeb(dx) ⊗ µ(kβ)

x,x (df). Alternatively, we can conceive ωP as a marked Poisson

point process on Rd, based on some Poisson point process ξP on Rd, and a family
(Bx)x∈ξP of i.i.d. marks, given ξP. The intensity of ξP is q =

∑

k∈N
qk with

qk = 1
(4πβ)d/2k1+d/2 . Let Q denote the distribution of ωP and denote by E the

corresponding expectation.
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2. Results

We write 〈P, F 〉 for the expectation of a function F with respect to a probability
measure P . Define the Hamiltonian HΛ : Ω → [0,∞] by

HΛ(ω) =
∑

x,y∈ξ∩Λ

Tx,y(ω), where ω =
∑

x∈ξ

δ(x,fx) ∈ Ω,

where we abbreviate

Tx,y(ω) =
1

2

ℓ(fx)−1
∑

i=0

ℓ(fy)−1
∑

j=0

1{(x,i) 6=(y,j)}

∫ β

0

v(|fx(iβ + s)− fy(jβ + s)|) ds.

The function HΛ(ω) summarises the interaction between different marks of the
point process and between different legs of the same mark; here we call the restric-
tion of a mark fx to the interval [iβ, (i+ 1)β)] with i ∈ {0, . . . , ℓ(fx)− 1} a leg of
the mark. Denote by N (ℓ)

Λ (ω) =
∑

x∈ξ∩Λ ℓ(fx) the total length of the marks of the

particles in Λ ⊂ R
d.

Theorem 1: Fix β ∈ (0,∞). Let v : [0,∞) → (−∞,∞] be measurable and
bounded from below and let Λ ⊂ Rd be measurable with finite volume. Then, for
any N ∈ N, and bc ∈ {∅, per,Dir},
(2) Z(bc)

N (β,Λ) = e|Λ|q(bc)

E
(bc)
[

e−HΛ(ωP)1{N (ℓ)

Λ (ωP) = N}
]

.

By Pθ we denote the set of all shift-invariant probability measures on Ω. The
distribution Q of the above marked Poisson point reference process ωP belongs to
Pθ. Define Φβ(ω) =

∑

x∈ξ∩U

∑

y∈ξ Tx,y(ω), where U = [−1/2, 1/2]d denotes the
centred unit box.

For any β, ρ ∈ (0,∞), define

χ(≤)(β, ρ) = inf
{

Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N (ℓ)

U 〉 ≤ ρ
}

,

χ(=)(β, ρ) = inf
{

Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N (ℓ)

U 〉 = ρ
}

.

These formulas range over shift-invariant marked processes P . They have three
components: the entropic distance Iβ(P ) between P and the reference process Q,
the interaction term 〈P,Φβ〉 and the condition 〈P,N (ℓ)

U 〉 = ρ, respectively ≤ ρ.

Theorem 2: Let LN = (Nρ )
1/d, such that ΛLN has volume N/ρ. Denote

Dv =
{

(β, ρ) ∈ (0,∞)2 : (4πβ)−d/2 ≥ ρeβρα(v)
}

.

Then, for any β, ρ ∈ (0,∞), and for bc ∈ {∅,Dir, per},

lim sup
N→∞

1

|ΛLN |
logZ(bc)

N (β,ΛLN ) ≤ ζ(1 + d
2 )

(4πβ)d/2
− χ(≤)(β, ρ),

lim inf
N→∞

1

|ΛLN |
logZ(bc)

N (β,ΛLN ) ≥ ζ(1 + d
2 )

(4πβ)d/2
−
{

χ(≤)(β, ρ) if (β, ρ) ∈ Dv,

χ(=)(β, ρ) if (β, ρ) /∈ Dv,

where ζ(m) =
∑∞

k=1 k
−m denotes the Riemann zeta function.
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3. Discussion

One of the most prominent open problem in mathematical physics is the under-
standing of Bose-Einstein condensation (BEC), a phase transition in a mutually
repellent many-particle system at positive, fixed particle density, if a sufficiently
low temperature is reached. That is, a macroscopic part of the system condenses
to a state which is highly correlated and coherent. The first experimental realiza-
tion of BEC was only in 1995, and it has been awarded with a Nobel prize. In
spite of an enormous research activity, this phase transition has withstood a math-
ematical proof yet. Only partial successes have been achieved, like the description
of the free energy of the ideal, i.e., non-interacting, system (already contained in
Bose’s and Einstein’s seminal paper in 1925) or the analysis of mean-field models
or the analysis of dilute systems at vanishing temperature. However, the original
problem for fixed positive particle density and temperature is still waiting for a
promising attack. Not even a tractable formula for the limiting free energy was
known yet that could serve as a basis for a proof of BEC.

It is conjectured by Feynman 1953 that BEC is signalled by the decisive ap-
pearance of a macroscopic amount of ‘infinite’ cycles, i.e., cycles whose lengths
diverge with the number of particles. This phenomenon is also signalled by a loss
of probability mass in the distribution of the ‘finite’ cycles. See [4] for proofs of
this coincidence in the ideal Bose gas and some mean-field models.

Our methods are mainly probabilistic. The greatest adavantage of this approach
is that it is amenable to a large-deviations analysis. The central object here is the
stationary empirical field of the marked point process, which contains all relevant
information and satisfies a large-deviations principle in the thermodynamic limit
(see [2, 3]). Due to a lack of continuity in the functionals that describe the in-
teraction and the mark lengths, the upper and lower bounds derived in this way,
may differ in general. (At sufficiently high temperature, we overcome this problem
by additional efforts and establish a formula for the limit.) This effect is not a
technical drawback of the method, but lies at the heart of BEC.

In the proof of our lower bound of the free energy, we drop the interactions
involving any cycle longer than a parameter R that is eventually sent to infinity,
and in our proof of the upper bound we even drop these cycles in the probability
space. As a result, our two formulas register only ‘finitely long’ cycles. Their total
macroscopic contribution is represented by the term 〈P,N (ℓ)

U 〉, and the one of the
‘infinitely long’ cycles by the term ρ − 〈P,N (ℓ)

U 〉. In this way, the long cycles are
only indirectly present in our analysis: in terms of a ‘loss of mass’, the difference
between the particle density ρ and the total mass of short cycles. Physically
speaking, this difference is the total mass of a condensate of the particles.

The values of the two formulas χ(≤)(β, ρ) and χ(=)(β, ρ) differ if ‘infinitely long’
cycles do have some decisive contribution in the sense that the optimal point
process(es) P in χ(≤)(β, ρ) satisfies 〈P,N (ℓ)

U 〉 < ρ. We conjecture that the question
whether or not the optimal P in χ(≤)(β, ρ) has a loss of probability mass of infinitely
long cycles is intimately related with the question whether or not χ(≤)(β, ρ) =
χ(=)(β, ρ) and that this question is in turn decisively connected with the question
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whether or not BEC appears. This is in accordance with Sütő’s work [4]. The
conjecture is that, for given β and in d ≥ 3, if ρ is sufficiently small, then it
is satisfied, and for sufficiently large ρ it is not satisfied. The latter phase is
conjectured to be the BEC phase. Future work will be devoted to an analysis of
this question.
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Gradient models with non-convex interactions

Marek Biskup

(joint work with R. Kotecký, H. Spohn)

A gradient field is a collection of real valued random variables indexed by vertices
of an integer lattice φ := {φx : x ∈ Zd}. These variables are distributed according
to the measure given by the formal expression

1

Z
exp
{

−
∑

〈x,y〉

V (φy − φx)
}

∏

x

dφx,

where the sum goes over the nearest-neighbor pairs of vertices and V : R → R is
the potential. We assume that the potential is even, continuous and bounded from
below with a quadratic growth at infinity. In order for this expression to make
sense, one either fixes the field to a prescribed boundary condition at the vertices
outside a finite set, or considers the problem directly in infinite volume, where
the above formula serves as a prescription for the conditional probability in finite
volume given the configuration outside.

The model has a number of computable instances. First, in d = 1, the variables
φx+1 − φx are independent and so the problem can be analyzed by means of large
deviation theory. Also, in all d ≥ 1, the case of purely quadratic V is amenable to
explicit computation because the measure is Gaussian. It turns out that a similar,
albeit less explicit, description is available whenever V is strictly convex.

In my presentation I will outline an approach to a specific model with non-
convex V , that was developed in joint works with R. Kotecký and H. Spohn. We
assume that V admits the representation

e−V (η) =

∫

(0,∞)

ρ(dκ) e−
1
2κη

2
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where ρ is a measure that is compactly supported in (0,∞). It turns out that
already the first non-trivial case,

ρ := pδκ1 + (1− p)δκ2

exhibits departures from the picture established in the convex case. In particular,
in d = 2 and for κ1 ≫ κ2 > 0 there exists a value p ∈ (0, 1) for which there are two
infinite-volume measures of the above kind (for the same V ) whose typical samples
are leveled (i.e., have zero tilt) but exhibit different characteristic fluctuations [1].
Nonetheless, the large-scale fluctuation structure away from the (zero) mean is in
all cases described by the Gaussian Free Field [2]. The model exhibits also other
interesting features (e.g., lack of strict convexity of the surface tension) that are
unheard of in the class of convex potentials [3].

References
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Metastability in stochastic Allen-Cahn equations

Anton Bovier

(joint work with Florent Barret, Sylvie Méléard)

Metastability is in essence the dynamical equivalent of a first order phase tran-
sition in statistical mechanics. In equilibrium statistical mechanics, a first order
phase transition is said to occur if a systems is very sensitive to the change of a
parameter (resp. boundary conditions), in the sense that some extensive variables
(e.g. density or magnetization) show a discontinuity as functions of some intensive
variables (e.g. pressure or magnetic field). Dynamically, for a finite system, this
fact manifests itself in that as the parameter is varied across the phase transition
line, the system will remain a considerable (and mostly random) amount of time in
the “wrong phase” before suddenly changing into the true equilibrium phase (i.e.
the sensitive variable will change its value as a function of time with a random
delay).

Metastability is a very widespread phenomenon that arises and a large variety
of systems, both natural and artificial. In many instances, it has important effects
that are crucial for the proper functioning of the system and there has been great
interest in understanding metastability in quantitative terms over as least the last
100 years. Most metastable systems of practical relevance are many-body systems
whose dynamics is very hard to analyze both analytically and numerically. This is
particularly true with respect to metastability in view of the very long time scales
that are involved.
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One of the first mathematical models for metastability was proposed in 1940 by
Hendrik Anthony Kramers [8]. It consists of the simple, one-dimensional diffusion
equation

(1) dXt = b(Xt)dt+
√
2ǫdBt,

where b(x) = −V ′(x), with V (x) a double well potential, i.e. a function with two
local minima that tends to infinity at ±∞, and Bt is Brownian motion.

Kramers’ equation has become the paradigm of metastability. Kramers had
been able to solve all interesting questions in the context of this model. In par-
ticular, he derived the so called Kramers-formula for the average transition time
from one minimum to the other,

(2) Eaτb =
2π

√

V ′′(a)V ′′(z∗)
exp

(

ε−1 (V (z∗)− V (a))
)

(1 + o(1)) ,

from a minimum a via the maximum at z∗ to the minimum at b. Kramers also
envisaged multi-dimensional versions of his equation, that he could not, however,
solve rigorously. The multi-dimensional generalization of this formula is attributed
to Eyring and called Eyring-Kramers formula (see also [12]). It reads

(3) Eaτb =
2π
√

det (∇2F (z∗)
√

|λ0(z∗) det (∇2F (a))
exp

(

ε−1 (V (z∗)− V (a))
)

(1 + o(1)) ,

Note that Eyring’s so-called reaction rate theory [4] is based on quantum mechan-
ical considerations and quite different from the classical theory of Kramers.

Their analysis started in earnest with the large deviation theory devised by
Freidlin and Wentzell [7] in about 1970. They obtained a rigorous derivation of
the exponential term in the multi-dimensional term (including situations where
the drift is not a gradient). Rigorous proofs of the full Eyring-Kramers formula
in the gradient case were given in [2, 3]. From the point of view of statistical
mechanics models, infinite-dimensional version of the diffusion equation (1) arise
naturally. The simples form is the stochastic Allen-Cahn equation,

(4) dX(x, t) =
γ

4π2
∆X(x, t)dt−∇f(X(x, t))dt +

√
2εdB(x, t)

whereB is space-time noise and f(x) is a double-well potential, e.g. f(x) = x4

4 −x2

2 .
This equation seems to have been first studied by Faris and Jona-Lasinio [5].
Freidlin [6] derived large deviation estimates for this equation. Martinelli et al. [10]
derived the exponentiallity of the law of the transition time. Assuming the validity
of the Eyring-Kramers formula in in the infinite-dimensional setting, Maier and
Stein [9] obtained explicit expressions for the prefactor in the case of one spatial
dimension. A discussion in general dimensions can be found in [11].

In a recent paper [1], we prove the validity of the Eyring-Kramers formula for
the Allen-Cahn equation on the interval [0, 1] for couplings γ > 1.
Theorem. Let γ ∈ (1,∞). Then there exist K < ∞, independent of N , such that
for all N and ε > 0,

N−1
EI−τB+ = cNe

1
4ε (1 +R(N, ε)) ,
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where |R(ε,N)| ≤ K
√

ε| ln ε|3.
In particular,

lim
ε↓0

lim
N↑∞

N−1e−
1
4εEI−τB+ = lim

N↑∞
cN ≡ V (γ)

where

V (γ) = V (µ) =

+∞
∏

k=1

[µk2 − 1

µk2 + 2

]

< ∞.

The case of general coupling strength is only slightly more complicated and is
being treated in a paper in preparation by F. Barret. The proof proceeds very
much along the lines of [2].

References
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Space-Time Large Deviations

Nicolas Dirr

(joint work with A. De Masi, G. Manzi, E. Presutti, D. Tsagkarogiannis, S.
Adams, M. Peletier, J. Zimmer)

It is well known that statistical mechanics and the theory of large deviations
are closely related. For example, the free energy Fβ(m), as a function of the
magnetisation m in a mean field Ising model, describes the exponential rate of
probability of the empirical magnetisation being close to a value m. Here we look
at stochastic processes, i.e. at empirical measures on both space and time.

1. Pattern formation for action functionals

We consider an Ising-Model with Kac-Potential and Glauber Dynamics, i.e. we
define a process on the state space σ̄ : Λ ⊂ Z → {−1, 1} by specifying the rate
at which the random variables (spins) σ(X), X ∈ Z change their sign (i.e. flip):
Given a compactly supported interaction kernel J ≥ 0, we define at a point X ∈ Z

a local mean field by the J-weighted average over a γ−1- neighbourhood , where
γ > 0 is a small parameter, i.e.

heff (X) =
∑

Y
γdJ(γ|X − Y |)σ(Y ).

The dynamics (Glauber, i.e. non-conserved) is such that the flip rate depends
on σ(X) and heff (X) in such a way that aligning with neighbours is preferred
(ferromagnetic) and that the dynamics is reversible (for finite γ) with respect to
the Gibbs measure associated with the Hamiltonian

H(σ̄) := −1

2

∑

X
σ(X)

∑

Y
γdJ(γ|X − Y |)σ(Y ).

A coarse graining (averaging over boxes) introduces a new random variable

mγ(X, t, ω) := (γα)
d

∑

|Y−X|∞< 1
2 γ

−α

σ(Y, t, ω).

Under a space rescaling to a so-called mesoscopic scale, x = γX, one can show
(see [3]) that mγ converges in probability to a deterministic function m which
solves a nonlocal evolution equation, ∂tm = −m+ tanh(βJ ∗m), where ∗ denotes
convolution. The mesoscopic free energy of the ”static” system decreases along
trajectories.

We are interested in deviations from this deterministic limit on a so-called diffu-
sive scale, where space is rescaled with ε = ε(γ) and time with ε2. More precisely,
we consider a spatially non-constant stationary solution m̄ of our deterministic evo-
lution equation at time t = 0, and ask for the probability that we see a stationary
solution translated by ε−1R at time ε−2T. (These solutions, so called instantons,
correspond to interfaces on the diffusive scale.) As they are stationary solutions of
the limit equation, this probability vanishes, but the exponential rate can be de-
scribed by a so-called action functional. The most likely way in which an unlikely
event happens (or, in other words, with conditional probability 1, conditioned on
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the event of seeing at time ε−2T the stationary solution shifted by ε−1R) is ob-
tained by minimising this action functional. It turns out that for high velocities
V = R/T on the diffusive scale it is favourable to 2n additional interfaces that
travel with uniform velocity V/(2n + 1) instead of shifting the initial ”interface”
with uniform velocity V. The cost converges as ε → 0 to

wn(R, T ) := n2F(m̄) + (2n+ 1)

{

1

µ

(

V

2n+ 1

)2

T

}

where F (m̄) is the free energy of an ”interface” and µ a constant called ”mobility.”
Note that the functional has a static part containing a free energy and a dynamic
part penalising the velocity. Results in this spirit have been obtained for a simpli-
fied action functional in [2], for an action functional connected to the Allen-Cahn
equation by [6], [7], [8] and for the exact spin system described above by Dirr,
Manzi and Tsagkarogiannis (in preparation).

2. Large Deviations and Gradient Flows in Wasserstein distance

With N independent Brownian motions Xi, i = 1, . . . , N, on [0, 1], we can
associate a random probability measure, the empirical measure

µN (t, ω, dx) :=

N
∑

i=1

N−1δXi(dx).

Then it is well known that µN (t) ⇀ ρ(t)dx, where ρ is deterministic and solves
the heat equation ∂tρ(t, x) = ∆ρ(t, x).
Gradient Flows: Jordan, Kinderlehrer and Otto, [4], showed that the heat equa-
tion is a gradient flow of the entropy functional E(ρ) =

∫

ρ log ρ dx with respect
to the 2- Wasserstein distance as dissipation distance on the infinite dimensional
manifold X = M1(R) of probability measures. In particular, the time-discrete
approximating sequence {ρn} defined by

ρn ∈ argminρ∈XKh(ρ ; ρn−1), Kh(ρ ; ρn−1) :=
1

2h
d(ρ, ρn−1)2 + E(ρ)− E(ρn−1).

converges to a solution of the heat equation as the time-step h → 0, when d is the
2-Wasserstein distance.

We aim to address the following questions in the context of limits of particle
systems:
Why is the choice of Wasserstein distance and entropy more “physical” for describ-
ing the heat equation as gradient flow than e.g the -L2-distance and the Dirichlet
energy? What is the physical meaning of Wasserstein distance in the context of
particle systems? And does the functional Kh(ρ ; ρn−1) have a meaning away from
the minimiser?
Connection to particle model The following observation hints already at a
strong relation of the 2-Wasserstein distance to particle systems: Kipnis and Olla,
[5], found the large deviations rate functional for the deviations of the empirical
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measure associated with many Brownian motions from the heat equation. This
functional can (formally) be written as

I(ρ) =

∫ T

0

gρ(t)(ρ̇+∇E, ρ̇+∇E)dt,

where g is the metric on the infinite dimensional manifold M1 that gives rise to
the Wasserstein distance, and ∇E is the gradient associated via the metric to the
exterior derivative dE.

A yet stronger justification and answer to the third question is given by the fact
that Kh(ρ ; ρn−1) appears in a Γ-expansion of a large deviations rate functional for
N Brownian motions, N → ∞ after a time step of length h, where first N → ∞
and then h → 0. The Γ-expansion is performed with respect to h. More precisely,
the rate functional after a time step h (conditional on starting from ρ0) is

Jh(ρ ; ρ0) := inf
q : π2q=ρ0,π2q=ρ

H(q | q0).

H(q|p) :=

∫

R×R

f(x, y) log f(x, y)dp((x, y)) if q ≪ p, f =
dq

dp

where the relative entropyH(q|p) (for measure on the Cartesian product) is infinite
if q is not absolutely continuous w.r.t. p.

Our main technical result is the Γ-expansion

Jh( · ; ρ0)−
1

4h
d( · , ρ0)2 −→ 1

2
E( · )− 1

2
E(ρ0).

w.r.t weak convergence of measures. Here again d is the 2-Wasserstein distance
and E(ρ) =

∫

ρ log(ρ).
So far, this result is restricted to measures with Lebesgue density uniformly

close to a constant and for systems on a compact space interval.
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Hysteresis of a many-particle system due to non-monotone

constitutive behavior

Wolfgang Dreyer

(joint work with Clemens Guhlke, Michael Herrmann)

Introduction. We study the behavior of systems that can be described as en-
sembles of interconnected storage particles. Our examples concern the storage
of lithium in many-particle electrodes of rechargeable lithium-ion batteries and
the storage of air in a system of interconnected rubber balloons. We are particu-
larly interested in those storage systems whose constituents exhibit non-monotone
material behavior leading to transitions between two coexisting phases and to hys-
teresis. In the current study we consider the case that the time to approach equi-
librium of a single storage particle is much smaller than the time for full charging
of the ensemble. In this regime, the evolution of the probability to find a particle
of the ensemble in a certain state may be described by a nonlocal conservation
law of Fokker-Planck type. The resulting equation contains two parameters which
control whether the ensemble transits the 2-phase region along a Maxwell line or
along a hysteresis path, or whether the ensemble shows the same non-monotone
behavior as its constituents.
The general model. We propose a general model of a storage system that con-
sists of an ensemble of many interconnected storage particles. The thermodynamic
state of a single storage particle is described by a single variable ξ ∈ [a, b]. Any
particle of the ensemble is equipped with a double well free energy function F (ξ),
so that two coexisting phases are possible. The prescribed mean number q(t) of
stored molecules in a particle is represented by the mean value of a given strict
monotone function G(ξ). The statistical behavior of the ensemble is represented
by a probability density w(t, ξ) ≥ 0, whose initial- and boundary value problem
reads

w(0, ξ) = w0(ξ), υ(t, a)w(t, a) = υ(t, b)w(t, b) = 0,

∂w(t, ξ)

∂t
+

∂υ(t, ξ)w(t, ξ)

∂ξ
= 0,

τυ(t, ξ) =
(

Λ(t)G′(ξ)− F ′(ξ)
)

− ν2
∂ log(w(t, ξ))

∂ξ
.

(1)

The problem is non-local and non-linear because the function Λ(t) must be calcu-
lated from the side condition

q(t) =

∫ b

a

G(ξ)w(t, ξ)dξ .(2)

Non-monotone constitutive behavior. Next we will consider two different
applications, that have the non-monotonicity of the crucial constitutive function
in common. The first example concerns the charging-discharging process of a
lithium-ion battery, where lithium atoms are reversibly stored on interstitial lattice
sites of iron phosphate particles forming one of the two electrodes of the battery.
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The chemical potential µ = F ′(y) of the LiyFePO4 crystal, where y ∈ {0, 1} is the
lithium mole fraction of a single FePO4 storage particle, has the non-monotone
shape given in Figure 1. The generic function G(λ) is the identity.

0 0.5 1
−0.1

0

0.1

y

µ

Figure 1. Chemical potential of a LiyFePO4 storage particle.

In the second examples we consider a system of interconnected rubber balloons
that may serve to store air. In this case the statistical variable ξ is the strain
λ = r/r0 of a single balloon, where r and r0 indicate the radii of the actual balloon
and the undeformed balloon, respectively. The non-monotonicity here concerns the
pressure difference across the membrane of a single balloon as a function of the
strain, which qualitatively exhibits the same shape as the chemical potential of
LiyFePO4. The generic function is related to the number N(λ) of air molecules
by G(λ) = N(λ)/N̄ , where N̄ is the number of air molecules in the undeformed
balloon.
Configurational entropy. The properties of solutions of the model are controlled
by the two constant positive parameter τ and ν2. The parameter τ represents the
relaxation time of the system and ν2 controls the influence of the configurational
entropy. It describes interaction of the storage particles by exchange of Li atoms
and air molecules, respectively. This interaction is important for low charging
rates, where it leads to two peculiar phenomena. 1. The storage particles are
not loaded at the same time, but according to the rule one after the other. 2.
The phase transition leading to two coexisting phases does not happen within a
single storage particle, rather it is a property of the many-particle ensemble. We
observe particles with small filling, forming one phase, and particles with large
filling, forming the second phase.
Selected simulations for the many-particle electrode. In this section we
study a many-particle electrode of a rechargeable lithium-ion battery. We prescribe
the history of loading-unloading processes by the filling degree q(t) and solve the
evolution equation for the probability density w(t, y).

We solve the equation for y ∈ [0, 1] and with boundary conditions υ(t, 0)w(t, 0) =
υ(t, 1)w(t, 1) = 0. Initially we start the simulation in the 1-phase region, where
the storage particles are Gaussian distributed around a small value, q0 = 0.1, for
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the initial filling degree, viz.

(3) w(0, y) = w0(y) =

√

µ′(q0)

2πν2
exp

(

−µ′(q0)

2ν2
(y − q0)

2

)

.

In [2] we have performed simulations for 45 different values of (τ, ν2) but with
the same loading-unloading path: At first we increase the filling degree q linearly
from q = 0.1 to q = 0.9 and afterwards we decrease it from q = 0.9 to q = 0.1.
The time t has been normalized by |q̇| = 1, so the parameter τ = τD/τL gives the
ratio between relaxation time τD of the storage system and loading time τL. In
particular, for fixed τD a small τ corresponds to a large loading time. The next
Figure shows a typical evolution for parameter τ and ν2 so that a two phase region
appears.
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Figure 2. Evolution of the probability density for a loading process.

The loading-unloading process runs at the rate q̇, where the total mole fraction
q(t) is linearly related to the total charge of the battery and the mean chemical
potential

〈µ〉(t) =
∫ 1

0

µ(y)W (t, y)dy(4)

is linearly related to the cell voltage. Figure 3 shows some examples.
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Figure 3. Hysteresis loops for various parameter and scenarios.

The location and the shape of the hysteresis is controlled by the two parameter
τ and ν2. The details of the hysteresis curves can be quite involved but we observe
three main cases:
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(1) Case A: The probability density consists of a single pulse only, because
there is not sufficient time to interchange molecules between the storage
particles according to the configurational entropy effect. The mean chem-
ical potential follows the chemical potential of a single particle.

(2) Case B: The configurational entropy is dominant and the storage system
follows the Maxwell line. A hysteresis does not develop here.

(3) Case C: The deterministic evolution of the system and interchange of
molecules due to the configurational entropy are of the same order. A
maximal possible hysteresis is developed, see left diagram of Figure 3.

The diagram on the right hand side of Figure 3 concerns a different loading-
unloading history that serves to demonstrate that it is possible to change between
the loading and unloading plateaus without leaving the two-phase region.
An experiment with rubber balloons. Finally a system of interconnected
rubber balloons serves to demonstrate the rule one after the other and to establish
the phase separation. The sequence of snapshots in Figure 4 are generated for the
analog loading-unloading path as above. Initially we observe only balloons with
small filling. After a critical filling degree is reached, the transition to a second
phase with large balloons sets in. In this period the balloons grow one after the
other and we have a system of two coexisting phases with small and large balloons.

Figure 4. Four different states of interconnected rubber balloons
during loading with air via the pressure vessel. From [2].

References

[1] W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moškon and M. Gaberšček, The thermody-
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Microstructure formation and hysteresis in shape memory alloys

Oliver Kastner

(joint work with Graeme Ackland)

Shape memory alloys (SMA) exhibit a number of features which are not easily
explained by equilibrium thermodynamics, including hysteresis in the phase trans-
formation and ”reverse” shape memory in the high symmetry phase. Processing
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can change these features: repeated cycling can ”train” the reverse shape memory
effect, while changing the amount of hysteresis and other functional properties. In
the talk we present a molecular dynamics simulation study on this behaviour.

To simulate free evolutions of domain structures, atomic test assemblies must
be sufficiently large and long computation times are required. Simulations of re-
alistic 3D models therefore are limited by the computational ressources available.
Therefore we employ a 2D Lennard-Jones model proven to represent a reliable
qualitative model system for martensite/austenite transformations [1, 3, 4, 5]. We
investigate the formation of microstructure and the evolution of defect structures
in simulations of cyclic transformation/reverse transformation processes with this
model. The simulations show that the transformation proceeds by non-diffusive
nucleation and growth processes and produces distinct microstructure, see figure.
Upon transformation, lattice defects are generated, which affect subsequent trans-
formations and vary the potential energy landscape of the sample. If the sample is
cycled through a series of forward/reverse transformations, the amount of defects
in each phase accumulate. Defects act as nucleation sources for the transition.
Moreover, the location of the defects can be preserved through the cycling, pro-
viding a memory of previous structures.
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Hysteresis and phase transformations

Richard D. James

(joint work with J. Ball, C. Chu, R. Delville, S. Müller, N. Schryvers, V.
Srivastava, J. Zhang)

Hysteresis refers to a phenomenon in phase transformations in which the trans-
formation temperature on cooling is strictly lower than the transformation tem-
perature on heating. It is considered to be part of the physical definition of a
first-order phase transformation and thus its presence is ubiquitous. A plot of a
typical property of the material vs. temperature exhibits a loop, called a hysteresis
loop. Hysteresis also occurs during stress-induced or electromagnetic-field-induced
transformation, exhibited as a loop in stress-strain space in the former case. While
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Figure 1. HRTEM images of NiAl (a,c) and simulated mi-
crostructures (b,d) in a binary 2D Lennard-Jones crystal. Colours
indicate 4 variants of martensite present in the model which may
nucleate on two perpendicular axes. In the MD, the model ma-
terial exhibits martensite plates which are formed by compatible
twin-variants. Plates which nucleate independently (➀ - ➃) show
incoherent, curved domain boundaries where growing into contact
and dislocations are generated. The domain structure yielded by
the 2D simulations is remarkably realistic-looking. Note no ef-
fort was spent to parameterise the model with respect to any real
material, thus the characteristic length scales deviate by approx-
imately one order of magnitude. HRTEM images courtesy D.
Schryvers [6].

there are longstanding mathematical models such as the Preisach model that are
designed to give hysteresis loops, they do not shed much light on the origins of
hysteresis, and therefore do not give insight into ways of affecting or controlling it
by modifying the material. In theoretical models hysteresis can often be related to
dissipated energy, with larger loops associated to more wasted energy. These days,
with the possibility of using transforming materials as energy conversion devices,
the desire to reduce hysteresis is becoming an important societal problem.
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Textbook descriptions of hysteresis typically relate its presence to either ther-
mal activation or the pinning of interfaces by defects. People lean toward the
latter for hard materials. Both of these areas have well-developed mathematical
descriptions (resp., transition state theory, pinning models), but the connection
with experiment is vague. For example, when people have tried to increase the
number of pinning sites by increasing the density of defects in a crystal, they have
seen a rounding of the loop but not much change in its size.

This lecture concerns a new idea for the origins of hysteresis that is primarily ge-
ometrical. It concerns the compatibility of the two phases. When transformations
occur there is usually a change of the crystal structure and a change of lattice
parameters. A crystal is usually described as a finite union of interpenetrating
Bravais lattices in 3D, of the form ∪j=1,...,n, ν∈Z3 (cj +

∑3
i=1 ν

iei). Using this de-
scription we can associate to each phase n+3 vectors, {caj ; eai } and {cmj ; emi }, the
superscripts a and m denoting the two phases austenite and martensite1. The two
sets of (linearly independent) vectors {eai ; emi } are related by an invertible linear
transformation, emi = Aeai , i = 1, 2, 3. The thesis of the talk is that the size of the
hysteresis loop in broad classes of crystalline materials that undergo diffusionless
phase transformations is strongly related to the the middle eigenvalue λ2 of ATA,
with the value λ2 = 1 giving the minimum hysteresis [5, 3, 8, 4] .

The parameters ea,mi and therefore A can be changed by changing the compo-
sition of the material: this is particularly easy in metals, but it is also possible in
oxides by suitable doping. (These are diffusionless transformations, so the compo-
sition of the material does not change upon transformation, but it can be altered
when the crystal is originally made, for example, by melting together varying pro-
portions of the individual elements that make up the alloy.) We present in the
talk numerous cases [3, 8] in which the composition was tuned to make λ2 = 1.
Measured plots of the size of the hysteresis loop vs. λ2 give a dramatic drop at
λ2 = 1, with an apparent singularity. With large numbers of alloys made by com-
binatorial synthesis methods [3, 7], the minimum hysteresis is smaller than the
experimental error of its measurement [7]. In careful bulk synthesis methods in
which composition is varied by 1/4% increments, the minimum hysteresis is in
the range 2 − 5◦C, otherwise independent of alloy in cases studied so far. It is
common for the size of the hysteresis loop to change by a factor of 10 as λ2 → 1.
The fact that people synthesized a great many alloys in the past and measured
the hysteresis, but did not notice the connection with λ2 = 1, is apparently owing
to the singular nature of the drop: one has to be extremely close to λ2 = 1 to see
the dramatic effect.

In the talk a theory from [8] is presented for this effect. The idea is that the
bulk and interfacial energy that is necessarily present near the interface between
phases when λ2 6= 1 gives rise to an energy barrier. This energy barrier is calcu-
lated within the context of a rather strong ansatz for the structure of a growing
nucleus of the new phase. Beginning in the high temperature austenite phase, this

1The number n can also depend on the phase.
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barrier decreases as the temperature is lowered. But its height at a given value of
temperature is dramatically dependent on λ2.

This elementary theory gives a plot of the size of the hysteresis vs. λ2 that
is similar to the one measured in experiment [8]. However, it is pointed out
in the lecture that this energy barrier apparently does not correspond to any
known mathematical concept in the calculus of variations. That is, while it seems
related to local minimizers, most closely to the concept of “hysteresis induced by
incompatibility” studied earlier [1, 2], there is apparently no known definition2 of
local minimizer that would give the observed behavior of the hysteresis vs. λ2.
It is possible that the explanation for this behavior lies outside the realm of the
calculus of variations and more in dynamics, or in models that explicitly account
for defects3. The author believes, however, in the possibility of a relatively simple
but general quantitative explanation based on some version of metastability in the
calculus of variations, in which defects are not explicitly introduced.

Even stronger restrictions on lattice parameters (implying λ2 = 1) called the
cofactor conditions are presented in the talk [5]. A material satisfying the cofactor
conditions has not yet been discovered. Also presented is a startling new alloy [6]
in the Heusler family that was discovered by the kind of tuning of λ2 described
above. It has nonferromagnetic martensite but strongly ferromagnetic austenite.
It raises a host of profound theoretical questions.
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A kinetic theory of shock clustering in scalar conservation laws

Govind Menon

We describe a kinetic theory for shock clustering in scalar conservation laws with
random initial data. Our main discovery is that for a natural class of random data
the shock clustering is described by a completely integrable Hamiltonian system.
Thus, the problem is in a precise sense exactly solvable. Our results have impli-
cations in other areas: mathematical physics (limits of shell models of turbulence,
and forced Burgers turbulence); probability theory (explicit computations of laws
of excursions); and statistics (limit laws in the vicinity of maxima).

Our work grew out of a study of Smoluchowski’s coagulation equation. This
is a mean-field model of domain coarsening, first introduced to model coagulation
in colloids. Quite remarkably, it also describes the clustering of shocks in Burgers
equation for a class of random initial data [3, 7, 12]. This is a particular case of
Burgers turbulence– the study of shock statistics in Burgers equation with random
initial data or forcing. Our goal was to understand if this link between a mean-field
model of coalescence and shock clustering was an isolated example, or part of a
more general theory. It is in fact, a consequence of the theory outlined below.

The problem. We consider the scalar conservation law

(1) ∂tu+ ∂xf(u) = 0, x ∈ R, t > 0,

with a C1 convex flux function f and random initial data u(x, 0) = u0(x). The
entropy solution to (1) is given by the Hopf-Lax formula. Thus, (1) induces the
evolution of the law of u0. The problem is to determine this evolution.

The main assumption we make is that u0 is a Markov process (in x) with only
downward jumps. This assumption is motivated by some remarkable exact so-
lutions in Burgers turbulence. Burgers considered white noise initial data in his
pioneering work on statistical hydrodynamics [4, 5, 6]. The same problem also
arose in statistics [9], and was solved in this context by Groeneboom [10]. He
showed that for every t > 0, the process u(x, t), x ∈ R is a stationary Markov
process with only downward jumps, and he computed the generator of this pro-
cess explicitly. There are two remarkable aspects to his solution: the first is the
‘structural’ fact that the Hopf-Lax formula respects the Markov property of u0.
The second is that the law of u(x, t) can be computed explicitly. We now explain
how both features hold in generality.
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Kinetic theory and Lax equations. This part is joint work with Ravi Srinivasan [13].
The following closure theorem holds: if u(x, 0) is a Markov processes with only
downward jumps, then so is the entropy solution u(x, t), t > 0.

Markov processes with some regularity (Feller processes) are characterized by
their generators. For example, if u(x, t) is a stationary, spectrally negative Feller
process in x, its generator A(t) acts on test functions ϕ ∈ C1

c (R) via

(2) Aϕ(y) = b(y, t)ϕ′(y) +

∫ y

−∞

(ϕ(z)− ϕ(y))n(y, dz, t).

These terms correspond to the drift and jumps (i.e. rarefactions and shocks) of u.
The closure theorem reduces the problem of evolution of shock statistics to

a study of the evolution of the generators. One of our main results is that the
evolution of A is given by the Lax equation

(3) ∂tA = [A,B] = AB − BA.

Here B is defined by its action on test functions as follows:

(4) Bϕ(y) = −f ′(y)b(y, t)ϕ′(y)−
∫ y

−∞

f(y)− f(z)

y − z
(ϕ(z)− ϕ(y))n(y, dz, t).

It requires considerable insight to realize that this approach is fruitful, and our
work was greatly inspired by Duchon and his co-workers [7, 8]. In particular, (3)
simplifies and generalizes their work. The Lax equation (3) expands (using (2)) to
yield kinetic equations of shock clustering for b and n. All known exact solutions
to Burgers turbulence satisfy (3).

Hamiltonian structure and geodesic flows of Markov operators. Lax pairs are syn-
onymous with completely integrable systems. We also noted other ‘integrable
properties’ in [13] (a Painlevé property, connections with random matrices, and
more). Much of our work since the discovery of (3) has been devoted to under-
standing this structure. The following picture has emerged, though many aspects
remain to be pinned down.

To show that (3) is a Hamiltonian system we must introduce a phase space,
a symplectic structure and a Hamiltonian. This is done by discretization and a
passage to the limit. We restrict u(x, t) to a Markov process on an n-dimensional
state space. In this case A is an n × n matrix (say A), and (3) yields a matrix

evolution equation Ȧ = [A,B] where Bij = FijAij is a natural discretization of
(4). This is a Hamiltonian system with the symplectic structure of Kostant and
Kirillov and a quadratic Hamiltonian H(A) =

∑

ij AijBij . In the limit n → ∞,

we find that (3) is a Hamiltonian flow on a Lie algebra of generators of Markov
processes. When f ′ > 0, (3) formally describes geodesic flows on a space of Markov
processes with metric determined by f .

The spectral curve and algebraic complete integrability. The fact that (3) is com-
pletely integrable appears to follow from the following simple observation. Let M
and N denote multiplication operators acting on the domain of A, defined by

(5) Mϕ(y) = yϕ(y), Nϕ(y) = f(y)ϕ(y).
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It is clear that M and N are diagonal operators. We now use the definitions (2),
(4) and (5) to find

(6) [A,N ]− [M,B] = 0.

This observation allows us to introduce a spectral parameter µ ∈ C in the Lax
equation. We use (3) and (6) to obtain

(7) ∂t (A− µM) = [A− µM,B + µN ], µ ∈ C.

If A, B were n × n matrices, it would follow that the spectral curve (Riemann
surface)

(8) Γ = {(λ, µ) ∈ C
2 |det(A− λid− µM) = 0},

is fixed by the evolution. This is the crucial observation that yields the existence
of additional integrals for Euler’s equations in so(n), n ≥ 4 in Manakov’s treat-
ment of Euler’s equations [11]. These integrals are simply the coefficients of the
characteristic polynomial above.

This observation shows that the discretizations of (3) describe completely in-
tegrable flows on the ‘Markov’ group {A ∈ gl(n)|∑n

j=1 Aij = 1, i = 1, . . . , n} in
precise analogy with Manakov’s work. More broadly, it reveals a close relation
with a large class of completely integrable systems (including KdV, the Toda lat-
tice, geodesic flows on so(n) and ellipsoids, and the integrable PDEs of random
matrix theory). The complete integrability of all these flows may be obtained in
a unified way via a general splitting theorem for Lie algebras [1]. This connection
also sets the stage for the application of powerful methods from algebraic geometry
to integrate (3) explicitly for every convex f [2].
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Droplet phases in non-local Ginzburg-Landau models with Coulomb

repulsion in two dimensions

Cyrill B. Muratov

Spatial patterns are often a result of the competition between thermodynamic
forces operating on different length scales. When short-range attractive inter-
actions are present in a system, phase separation phenomena can be observed,
resulting in aggregation of particles or formation of droplets of new phase, which
evolve into macroscopically large domains via coarsening or nucleation and growth
[1]. This process, however, can be frustrated in the presence of long-range repul-
sive forces. As the droplets grow, the contribution of the long-range interaction
may overcome the short-range forces, whereby suppressing further growth.

One important class of systems with competing interactions are systems in which
the long-range repulsive forces are of Coulomb type (for an overview, see [2, 3] and
references therein). The nature of the Coulombic forces may be very different from
system to system. For example, these forces may arise when particles undergoing
phase separation carry net electric charge [4, 5, 6, 7], or they may be a consequence
of entropic effects associated with chain conformations in polymer systems [8, 9,
10]. Coulomb interactions may also arise indirectly as a result of diffusion-mediated
processes [11, 12, 13]. All this makes systems with repulsive Coulombic interactions
a ubiquitous example of pattern forming systems.

Motivated by the above discussion, we consider the following energy functional on
A = {u ∈ H1(Ω) : 1

|Ω|

∫

Ω u dx = ū}:

E [u] =
∫

Ω

(

ε2

2
|∇u|2 +W (u) +

1

2
(u − ū)(−∆−1)(u− ū)

)

dx,

where Ω is a d-dimensional torus for simplicity. HereW is a symmetric double-well
potential with minima at {−1, 1}, and the parameter ε > 0 is the dimensionless
surface tension. We are particularly interested in the case ε ≪ 1, which gives
rise to interfacial patterns. From the basic balance of interfacial and long-range
forces it is clear that these interfacial patterns should have length scale R ∼ ε1/3

[8, 2, 3, 14]. In fact, if the size of the domain Ω is also assumed to have the same
scaling, then it is possible to formulate a reduced energy functional in terms of only
the interfacial positions, using the methods of Γ-convergence [15, 16, 17, 18, 19].
At the same time, when the size of Ω is O(1), i.e. it is of order or exceeding
the Debye screening length in the considered system, then in the limit ε → 0 the
energy minimizing patterns exhibit small-scale oscillations, presenting difficulties
for this approach.
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Our first result concerning the behavior of energy minimizers for energy E provides
a rigorous justification for the reduced sharp interface energy E obtained formally
in [2, 3], whose minimum value has the same asymptotic behavior as ε → 0 [20].
We show that when the space dimension d is not too high (in particular, in the
physically relevant dimensions d ≤ 3), it is appropriate to consider the following
energy functional

E[u] =

∫

Ω

(

ε

2
|∇u|+ 1

2
(u− ū)(−∆+ κ2)−1(u− ū)

)

dx,

defined for all u ∈ BV (Ω; {−1, 1}), where κ = 1/
√

W ′′(1) is the screening pa-
rameter. We then concentrate on the specific case d = 2 and show that near
the transition from trivial to non-trivial minimizers of E occurring at 1 + ū =
O(ε2/3| ln ε|1/3), the energy minimizers (i.e., sets where u = +1) consist ofO(| ln ε|)
nearly perfect disks of size r ≃ (3ε/| ln ε|)1/3 uniformly distributed across Ω.
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Self-similar solutions for coagulation equations

Barbara Niethammer

(joint work with J.J.L. Velázquez)

We consider Smoluchowski’s classical coagulation equations that describe the
evolution of the number density f(t, x) of clusters of mass x. Clusters of size x
and y can coalesce by binary collisions to clusters of size x + y at a rate given by
a rate kernel K(x, y). Thus the dynamics of f are given by

∂

∂t
f(t, x) =

1

2

∫ x

0

K(y, x− y)f(t, x− y)f(t, y) dy

− f(t, x)

∫ ∞

0

K(x, y)f(t, y) dy ,

(1)

supplemented with initial conditions at t = 0. The qualitative behaviour of solu-
tions to (1) depends crucially on the form of the rate kernel K(x, y) in which all
the physics of the underlying process are subsumed. Depending on the properties
of K, the total mass of clusters is preserved for all times or clusters of infinite size
are created in finite time, a phenomenon known as gelation.

We are here interested in the first case where mass is transported to larger and
larger clusters, but the total mass is preserved for all times. For simplicity we
restrict ourselves here to the two examples of rate kernels

(2) K1(x, y) = xγ + yγ and K2(x, y) = xγ/2yγ/2 , γ ∈ [0, 1),

that are called the sum- and multiplicative kernel respectively.
In this talk we describe some results and open problems in the topic of dynamic

scaling that concerns the existence of self-similar solutions and their domains of at-
traction. For the class of kernels described above this issue is only well-understood
for the constant kernel. In this case there exists an explicit exponentially decay-
ing self-similar solution and recently a new family of self-similar solutions with
algebraic decay has been discovered and their domains of attraction have been
characterized [6]. However, the proofs rely on the use of the Laplace transform
and thus the methods cannot be applied to the kernels in (2) if γ ∈ (0, 1). For such
kernels dynamic scaling is much less understood. The existence of mass-conserving
self-similar solutions for a class of homogeneous kernels that include K1 and K2

has been established in [2, 4]. Further estimates on their precise decay at infinity
and their behaviour for small clusters have been derived in [4, 5, 1, 3]. For the sum
kernel K1 these results are optimal in the sense that they agree with the behavior
predicted by formal asymptotic analysis, for the multiplicative kernel, however,
they are only supoptimal.
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In this talk we present some results on mass-conserving self-similar solutions
for the multiplicative kernel. More precisely we prove that a self-similar solutions
φ(x) behaves as φ(x) ∼ x−(1+γ) as x → 0. This improves the so far best results
for the multiplicative kernels that was obtained in [3]. It is furthermore expected
that limx→0 x

1+γφ(x) = c0(γ) with a specific constant c0(γ) but we are presently
not able to prove this. Furthermore, a formal analysis of the next order asymp-
totics show that solutions behave oscillatory and thus it is not surprising that the
continuity result is difficult to obtain. We outline a strategy for constructing self-
similar solutions with the expected behavior for small γ that relies on a shooting
type argument.
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[5] N. Fournier & P. Laurençot, 2005, Local properties of self-similar solutions to Smoluchowski’s
coagulation equations with sum kernel, Proc. Royal Soc. Edinb. 136 A, 485-508

[6] G. Menon and R. L. Pego, 2004, Approach to self-similarity in Smoluchowski’s coagulation
equations, Comm. Pure Appl. Math. 57 9, 1197-1232.

Stability of planar fronts for a non–local phase kinetics equation with

a conservation law in D ≤ 3

Enza Orlandi

(joint work with E. A. Carlen)

We consider, in a D−dimensional cylinder, a non–local equation that describes
the evolution of the local magnetization in a continuum limit of an Ising spin
system with Kawasaki dynamics and Kac potentials. We consider sub–critical
temperatures, for which there are two local homogeneous in space equilibria, and
show a local nonlinear stability result for the planar fronts connecting these two
different local equilibria. Further, we shall show that an initial perturbation of
a front that is sufficiently small in L2 norm, and sufficiently localized yields a
solution that relaxes to another front, selected by a conservation law, in the L1

norm at an algebraic rate that we explicitly estimate. We also obtain rates for the
relaxation in the L2 norm and the rate of decreasing of the excess free energy.
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We analyze the following nonlocal and nonlinear evolution equation:

∂

∂t
m(x, t) = ∇ ·

(

∇m(x, t) − β(1−m(x, t)2)(J ⋆∇m)(x, t)
)

x ∈ R× Λ,

m(0, x) = m0(x), m0(x) ∈ [−1, 1]
(1)

where Λ is a (D − 1)− dimensional torus of edge L > 1, β > 1, ⋆ denotes con-
volution, J is smooth, spherically symmetric probability density with compact
support. This equation first appeared in the literature in a paper [7] on the dy-
namics of Ising systems with a long–range interaction and so–called “Kawasaki”
or “exchange” dynamics. In this physical context, m(x, t) is the magnetization
density at x at time t, viewed on the length scale of the interaction, and β is the
inverse temperature. The derivation of (1) from the underlying stochastic dynam-
ics with x taking values in a torus T d is done in [5]. Equation (1) has been object
of several studies.

Basic to our work is that the equation (1) can be written in a gradient flow
form. To do this, we introduce the free energy functional F(m) where
(2)

F(m) =

∫

R×Λ

[f(m(x)) − f(mβ)]dx+
1

4

∫

R×Λ

∫

R×Λ

J(x− y)[m(x)−m(y)]2dxdy

and f(m) is

(3) f(m) = −1

2
m2 +

1

β

[(

1 +
m

2

)

ln

(

1 +
m

2

)

+

(

1− m

2

)

ln

(

1− m

2

)]

.

For β > 1, this potential function f is a symmetric double well potential on [−1, 1].
We denote the positive minimizer of f on [−1, 1] by mβ. It is easy to see that mβ

is the positive solution of the equation

mβ = tanh(βmβ).

The functional (2) is well defined although it might be infinity. The equation (1)
can be written as

(4)
∂

∂t
m = ∇ ·

(

σ(m)∇
(

δF
δm

))

where the mobility σ(m) is given by

(5) σ(m) = β(1−m2),

and the formal Frechet derivative of the free energy δF
δm is

(6)
δF
δm

=
1

β
arctanh(m)− J ⋆ m.

Then, formally one derives

(7)
d

dt
F(m(t)) = −

∫

R×Λ

∣

∣

∣

∣

∇
(

δF
δm

)∣

∣

∣

∣

2

σ(m(t))dx = −I(m(t))
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thus F is a Lyapunov function for (1). This suggests that the free energy should
want to tend locally to one of the two minimizing values, ±mβ, and that the inter-
face between a region of +mβ magnetization and a region of −mβ magnetization
should have a “profile” – in the direction orthogonal to the interface – that makes
the transition from one local equilibrium to the other in a way that minimizes the
free energy. Consider a planar interface with m positive for x1 ≥ 0 and m negative
for x1 ≤ 0. In [4] is was shown that there exists an unique function m̄0(x1) such
that

F1(m̄0) = inf

{

F1(m)

∣

∣

∣

∣

sgn(x1)m(x1) ≥ 0, lim
x1→±∞

sgn(x1)m(x1) > 0

}

,

where F1 is is the functional (2) in d = 1 with interaction J̄(x1) =
∫

Λ
J(x1, x

⊥)dx⊥.
A review of these and related results can be found in Chapter 8 of the book [8].
For any a in R, define

m̄a(x) = m̄a(x1, x
⊥
1 ) = m̄a(x1) = m̄0(x1 − a), x ∈ R× Λ

where we denoted by x⊥
1 ∈ Λ. These functions m̄a are stationary solutions of (1)

whose stability is to be investigated here. Clearly

F(m̄a) = F(m̄0),
δF
δm

(m̄a) =
1

β
arctanh(m̄a)− J ⋆ m̄a = 0.

The equation (1) not only has a Lyapunov function; it has a conservation law as
well: For times t in any interval on which m(t)− sgn(x1)mβ is integrable,

d

dt

∫

R×Λ

(

m(x, t)− m̄b(x)
)

dx = 0

for any b. Therefore, if one defines a in terms of the initial data m0 for (1) by

(8)

∫

R×Λ

(

m(x, 0)− m̄a(x)
)

dx = 0 ,

one has for the solution
∫

R×Λ

(

m(x, t)− m̄a(x)
)

dx = 0

for all t or at least all t such that m(s, x) − sgn(x1)mβ is integrable for all s ≤ t.
Now formally invoking the Lyapunov function and the conservation law, it is easy
to guess the result of solving (1) for initial data m0 that is a small perturbation
of the front m̄0: The decrease of the excess free energy should force the solution
m(t) to tend to the family of fronts, and the conservation law should select m̄a as
the front it should be converging to, so the result should be that

lim
t→∞

∫

R×Λ

|m(x, t)− m̄a(x)|dx = 0,

with a given in terms of the initial data m0 through (8). The main result obtained
is the following.
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Theorem 0.1. Let m(t) be the solution of equation (1) in the D− dimensional
cylinder, D ≤ 3, and with initial data m0(x) such that

∫

R×Λ

x2
1(m0(x)− m̄0(x))

2dx ≤ c0 ,

where c0 is any positive constant. Then for any δ > 0 there is a strictly positive
constant ǫ = ǫ(δ, c0, β, J, L) such that for all initial data m0 with −1 ≤ m0 ≤ 1,
and with

∫

R×Λ

(m0(x) − m̄0(x))
2dx ≤ ǫ ,

the excess free energy F(m(t))−F(m0) of the corresponding solution m(t) of (1)
satisfies

F(m(t))−F(m̄) ≤ c2(1 + c1t)
−(9/13−δ)

and
∫

R×Λ

|m(t, x)− m̄a(x)|dx ≤ c2(1 + c1t)
−(5/52−δ)

where c1 and c2 are finite constants depending only on δ, c0, J , β and L and a is
given by (8).

In D = 1 the same stability problem for the equation (1) was addressed in the
papers [1] and [2]. The strategy used in these papers was applied in [3], always in
D = 1 to a similar problem for Cahn-Hilliard equation.

The method applied in D = 1 has been adapted in this paper to show local non
linear stability of the planar fronts of (1) when dimension D > 1. To apply the
previous strategy in D > 1 one needs to control the transvers contribution of the
perturbation to the planar fronts. This is done by a clever splitting of a function
in R×Λ as the sum of two functions, one depending only on x1 ∈ R and the other
with mean zero in the direction orthogonal to x1. This allows to suitable split
the problem and to control the gradient of the function in the transvers direction
applying the Poincaré inequality. The method is robust enough and it should
allow to deal with nonlinear local stability problems for other equations as Cahn-
Hilliard type in D ≤ 3. Nonlinear local stability results for the planar fronts for
Cahn- Hilliard equation were obtained in D ≥ 3 by [6].

References

[1] E. A. Carlen, M. C. Carvalho, E. Orlandi,, Algebraic rate of decay for the excess free energy
and stability of fronts for a non–local phase kinetics equation with a conservation law I , J.
Stat. Phy. 95 (1999), 1069-1117.

[2] E. A. Carlen, M. C. Carvalho, E. Orlandi,, Algebraic rate of decay for the excess free energy
and stability of fronts for a non–local phase kinetics equation with a conservation law II ,
Comm. Par. Diff. Eq. 25 (2000), 847-886.

[3] E. A. Carlen, M. C. Carvalho, E. Orlandi,, A simple proof of stability of fronts for the
Cahn-Hilliard equation , Comm. Math. Phy 224 (2001), 323-340.

[4] A. De Masi, E. Orlandi, E. Presutti, L. Triolo,Uniqueness of the instanton profile and global
stability in non local evolution equations Rendiconti di Matematica. Serie Vll14, (1994),
693-723.



1464 Oberwolfach Report 24/2010

[5] G. Giacomin, J. Lebowitz, Phase segregation dynamics in particle systems with long range
interactions I: macroscopic limits J. Stat. Phys. 87, (1997), 37–61.

[6] T. Korvola, A. Kupiainen, J. Taskinen, Anomalous scaling for three-dimensional Cahn-
Hilliard fronts. Comm. Pure Appl. Math. 58 (2005), 1077-1115.

[7] J.L. Lebowitz, E. Orlandi, E. Presutti, A Particle model for spinodal decomposition, J. Stat.
Phys. 63 (1991), 933-974.

[8] E. Presutti, Scaling Limits In Statistical Mechanics and Microstructures in Continuuum
Mechanics Springer (2009)

Scaling limits in some mean-field domain-growth models

Robert L. Pego

(joint work with G. Menon, B. Niethammer, J. Carr)

We discuss long-time dynamic behavior in several rate-equation models of domain
growth that involve coagulation, or aggregation of domains. Two of the models are
motivated by the dynamics of domain walls in the 1-D Allen-Cahn equation. When
the potential-well depths are equal, the rate equation models a simple domain-
collapse dynamics: The smallest domain collapses instantaneously, joining with
its two neighbors to form one larger domain. Simulations show convergence to a
self-similar form that corresponds to a self-similar size distribution whose Laplace
transform is tanh(12Ei(q)) [1]. A remarkable solution procedure for this model was
found by Gallay and Mielke [2], and used to establish a number of strong results
involving rates of convergence to self-similar form.

With G. Menon and B. Niethammer [3], we have recently (i) extended well-
posedness theory to handle size distributions that are arbitrary measures with
support bounded away from 0; (ii) established necessary and sufficient conditions
on initial data for solutions to have a single proper scaling limit as t → ∞; and
(iii) provided a Lévy-Khintchine representation formula for so-called eternal solu-
tions, which exist for all possible times in this model. The criterion for a scaling
limit is that the first-moment distribution function is regularly varying (i.e., power
law up to a factor that is slowly varying at infinity). The proofs involve simple
scaling rigidity arguments as one finds in Feller’s book, combined with the delicate
exponential Tauberian theorem of de Haan. One curious point involves multiple
collisions: k clusters can coalesce with probability pk. When Σpkk log k = ∞, the
scaling symmetry of the model is broken, up to a slowly varying factor, which can
nevertheless be dealt with.

In ongoing work with Jack Carr (Heriot-Watt), we study domain walls that
move at a constant speed, leading alternately to uniformly shrinking and growing
domains. When a shrinking domain reaches zero size, its two growing neighbors
join. The size distribution of shrinking domains has trivial dynamics, but its initial
value provides the time history of the coagulation rate for growing domains. We
can classify initial data that lead to self-similar growth in the case that initially the
distribution of growing domains has a heavier tail that that of shrinking domains.
When the initial tail for shrinking domains dominates, the limiting profile can have
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a distribution that agrees with that for the ratio of a sum of IID random variables
to the largest term in the case when the underlying distribution is α-stable.

Finally, for Smoluchowski’s coagulation equation with the solvable kernel K =
x + y, we discuss results obtained with Govind Menon [4] regarding the scaling
attractor, which is the set of cluster points of rescaled mass distributions Ft(dx)
for solutions:
Definition. A probability measure F̂ (dx) on [0,∞] is a point in the scaling
attractor A if there exist a sequence of positive numbers bn → ∞ and a sequence
of solutions all defined for t ∈ (0,∞) such that the corresponding mass distribution
functions satisfy

F
(n)
tn (bndx) → F̂ (dx) weakly as n → ∞.

Points in the scaling attractor are the values at t = 0 of eternal solutions defined
for all t ∈ (−∞,∞) (possibly extended to include ‘dust’ and ‘gel’ that concentrate
probability at 0 and ∞). In turn, due to a result of Bertoin, eternal solutions are
parametrized in terms of a family of “g-measures” G. This family is defined by
the property that (1∧x−1)G(dx) is a finite measure on on [0,∞]. These measures
are rather well-known in probability theory as the Lévy measures corresponding to
(killed) subordinators. The rescaled measures Gt(dx) = xe−tFt(e

tdx) g-converge
to a limiting g-measure G∗(dx). And every g-measure corresponds to a unique
enternal solution in this way.

This induces a bicontinuous bijection between the scaling attractor and the
family of g-measures. Remarkably, the nonlinear dynamics on the scaling attractor
becomes purely dilational in terms of the representing g-measure: the time-t map
F̂0 7→ F̂t on the scaling attractor corresponds to the map

G∗(dx) 7→ e2tG∗(e
−tdx)

on g-measures. By consequence, the time dynamics is conjugate to continous-time
shift dynamics, and we can exhibit a number of signatures of chaotic dynamics
(sensitivity to the initial tails of the size distribution): a dense set of scaling-
periodic solutions; a single solution trajectory with scaling limits dense in the
scaling attractor; and an asymptotic shadowing result for solutions with similar
initial tails. Many of these results and their proofs are strongly analogous to
classical limit theorems concerning infinitely divisibility in probability theory.
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Nanoscale precursor textures of martensitic phase transitions

Antoni Planes

(joint work with T. Castán, P. Lloveras, M. Porta, A. Saxena)

Spatially inhomogeneous states often occur as precursors to a phase transition
in many ferroic materials such as ferroelastic, ferroelectric, magnetic and super-
conducting among others [1, 2]. These textures usually consist of a multi-phase
pattern of coexisting regions with properties varying over nanometer distances
[3, 4]. Usually, even when the strain is not a primary order parameter, it plays a
crucial role in determining the actual symmetry properties of nanoscale patterns.
From this point of view martensites (and in general ferroelastic materials) offer a
unique scenario where purely structural textures can be studied.

Martensites are crystal structures that originate through a displacive solid-solid
transformation. Commonly they take place from an open cubic phase to a nearly
close-packed structure with significant first-order character [5]. In the simplest
cases of non-modulated martensites, the order parameter consists of the relevant
components of the strain tensor describing the unit cell distortion. This distortion
is related to the existence of specific soft directions (usually related to the elastic
constant C′) that render the material elastically anisotropic [6]. In these systems,
cross-hatched strain modulations (the so-called tweed patterns) often appear well
above the actual transition temperature. These precursors can be detected as
contrast anomalies in TEM and consist of diffuse striations parallel to the traces
of specific planes of the high symmetry phase [7, 8]. No signature of tweed contrast
has however been observed in some martensitic materials such as those of the Ti-Ni
alloy family. Instead, in these alloys nanodomains of the incoming phase of almost
spherical shape occur as precursors to the martensitic phase [9, 10]. Moreover,
under some circumstances, the transition to the martensitic phase is inhibited and
instead the system shows glassy behavior characterized by the splitting of strain
vs. temperature curves after cooling with or without stress which reveals history
dependent effects [11]. It has been suggested [9] that this peculiar behaviour might
be related to a low value of elastic anisotropy. In Ti-Ni alloys this low anisotropy
results from an anomalously small value of the elastic shear constant C44.

The essential ingredients that enable a martensitic transition to be preceded
by tweed are: (i) the system must show high sensitivity (in the sense of response
functions) to local symmetry breaking perturbations arising from disorder in the
form of lattice defects, point defects, inhomogeneities, etc. resulting in long-lived
fluctuations of the low-symmetry phase. (ii) Long range interactions are needed to
produce a global response and (iii) anisotropy is crucial in order to select specific
directions for modulations. The aim now is to propose a model where the role of
the above factors can be analysed separately.

For the sake of simplicity we consider a 2-d square-rectangular transition. Let
e1, e2, and e3 denote symmetry adapted strains, respectively, for hydrostatic, de-
viatoric and shear distortions of the square lattice. The change of symmetry at
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the transition is described by e2 that will be the (primary) order parameter. Soft-
directions will be along {11}〈11̄〉 displacements associated with a small elastic
constant C′. The elastic anisotropy is then measured by the ratio A = C44/C

′.
A general Landau free energy density for this transition will include a non-linear
local term in the order parameter adequate for a first-order transition together
with the elastic energy associated with non-symmetry breaking strains and a gra-
dient term accounting for the energy cost of interfaces. This free energy must be
minimized imposing elastic compatibility through the Saint-Vénant condition for

the geometrically linear strain tensor ε , ~∇ × (~∇ × ε)T = 0 (see for instance ref.
[8]), which mathematically expresses the requirement of lattice integrity without
creating any topological defects. The following effective free energy density is then
found:

(1) f(e2, T ) =
1

2
C′(T )e42 −Be22 +De62 +K(~∇e2)

2 +

∫

d~r′e2(~r)U(|~r − ~r′|)e2(~r′).

In k-space the kernel of the non-local term is given by

(2) U(kx, ky) =
C44

2

(

k2x − k2y
)2

Rk4 + 8(kxky)2
,

where R = C44/(C11 + C12) is the ratio between the shear and the bulk moduli.
The strength of this long range term depends on C44 and therefore increases with
the elastic anisotropy. This term is minimized for kx = ±ky which explains the
directionality of long range correlations along the diagonals.

Disorder is introduced in the model taking into account that: (i) in any alloy,
composition is not strictly homogeneous, but instead, composition fluctuations
are known to occur, and (ii) in martensitic systems, the transition temperature is
strongly dependent on composition. Consequently, we assume that disorder arises
from composition fluctuations that give rise to a certain distribution of local tran-
sition temperatures. Formally, the harmonic coefficient C′ in (1) is assumed to
be of the form: C′ = a[T − Tc − η(~r)], where η denotes a spatially fluctuating
field and Tc the low stability limit of the high temperature phase in the clean
limit (i.e., in the absence of disorder). The field is taken to be spatially correlated
and gaussian distributed with zero mean in order to mimic smooth variations of
composition in space. This gives rise to a spatial distribution of transition temper-
atures, Tt(~r) = T0+η(~r) (where T0 = Tc+3B2/16aD is the equilibrium transition
temperature of the model in the clean limit). The standard deviation ζ of this
distribution conveniently quantifies the amount of disorder. Therefore, regions
with different degree of metastability separated by finite free energy barriers exist
in the system.

Numerical simulations (using a pure relaxational dynamics) show that in the
limit of high anisotropy and/or low disorder, when the system is cooled down
(cross-hatched) tweed textures appear at high temperature and on further cooling
the phase transition to a long range ordered twinned martensitic phase takes place.
In contrast, for low values of the elastic anisotropy and/or high disorder, instead
of tweed droplets of the low temperature phase occur at high temperature. In this
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case, the transition to the martensitic phase is suppressed and instead a ramified
droplet-like structure (phase-separated state) continuously grows as temperature
is decreased. Moreover, in this phase separated state the system exhibits glassy
behaviour at low-enough temperatures which can be characterized from the split-
ting of strain vs. temperature curves obtained upon heating, following a cooling
under zero stress (ZFC) in one case, and under non-zero stress (FC) in the other.
Indeed, this is a proof of history dependence. It is worth pointing out that the
observed glassy behaviour is of kinetic origin due to the existence of the local en-
ergy barriers arising from disorder and that no geometrical frustration plays a role
associated with such glassy states [12]. These results are in very good agreement
with experiments reported in Ti-Ni-based alloys [11, 13, 14].

Another interesting aspect to be studied is the effect of an external stress in
the phase separated state. The coupling with the external stress, σ, is introduced
by including a term (−σe2) in the free energy (1). Simulation results show that
regardless of the amount of disorder and value of the elastic anisotropy factor,
application of stress induces a single variant martensite. Depending on temper-
ature superelastic or pseudoelastic behaviour is found. In the latter case, upon
unloading, the strain is not recovered and instead the single variant state re-
mains stable. When heating up the reverse transition occurs and and the initial
undeformed shape is recovered. Therefore, even if the martensitic transition is
inhibited, shape-memory effect still occurs. This is also in good agreement with
experiments [15].

To conclude, we have shown that properties of precursor textures in ferroelas-
tic/martensitic systems are controlled by the competition between disorder and
elastic anisotropy that determines the strength of long range interactions. The
presence of disorder gives rise to a distribution of energy barriers that, above a
certain critical amount (that does depend on the elastic anisotropy), is able to
screen the long-range potential, breaking correlations, and thus suppressing the
transition to the martensitic twinned structure. In this case, in agreement with
experiments, the system displays glassy behaviour.
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Rigorous results for the 6-vertex model with domain-wall boundary

conditions

Senya Shlosman

(joint work with Pavel Bleher)

We consider the six-vertex model with domain wall boundary conditions in its
antiferroelectric regime. That means that the parameters a, b, c of the model satisfy

∆ ≡ a2+b2−c2

2ab < −1. We study the spatial curves separating the disordered zones
from the frozen and from the rigid (gaseous) zones. We show that in the limit
when ∆ → −∞ the two lines converge to the boundary of the limiting rectangle.

Coarsening in Energy-Driven Systems

Dejan Slepčev

(joint work with Eva Eggeling, Matt Elsey, Karl Glasner, Felix Otto, Tobias
Rump, Shlomo Ta’asan)

Many energy-driven systems exhibit coarsening behavior. Typically, starting
from a high-energy state a system quickly equilibrates locally, while remaining
globally far from the equilibrium. The pattern, that initially forms, slowly coarsens
over time — the characteristic length scales of its features grow, while the mor-
phology of the patterns changes little. For example initially uniform thin films of
di-block copolymers can break up into configuration of droplets. The droplets are
connected by an ultra-thin film, through which they interchange mass. In a pro-
cess similar to Ostwald ripening the large droplets grow at the expense of smaller
ones. The number of droplets is decreasing, while their typical size increases.

Coarsening also arises when a binary mixture is quenched to sufficiently low
temperature at which the mixture is thermodynamically unstable. The fluids
separate, at first locally. A fine labyrinthine pattern forms. Over time this pattern
coarsens.

Finally when a melted material (that at low temperatures forms crystal struc-
ture) is suddenly cooled below the solidification temperature, it quickly solidifies
locally by forming little crystals. However the crystaline orientation of the little
crystal grains differs and thus the boundaries between them form. The energy
which concentrated at these boundaries then drives the interfacial motion. The
grain boundaries move by their mean curvature. This leads to coarsening of the
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grain boundary network. The number of grains decreases, while their typical size
grows.

The following questions arise in all of the above systems:

(1) What is the rate at which the coarsening progresses? Can it be established
rigorously?

(2) What are the features of the patterns that form?
(3) Is the statistics of the patterns selfsimilar it time?

We address a part of the first question. Namely, the question of establishing
the rate of coarsening can be split into proving matching upper and lower bounds
on the rate. However, in many systems, only the upper bound is universal. More
precisely, while one can show that no initial configuration can coarsen faster than a
given rate, there are often many configurations that do not coarsen at all. Typically
these are unstable steady states or are in other ways dynamically inaccessible
from typical initial data, and are thus not seen in experiments. We concentrate
on providing upper bounds. A breakthrough on rigorously proving upper bounds
on coarsening was made by Kohn and Otto [3] who introduced the technique
for obtaining the bounds by proving appropriate estimates on the flatness of the
energy landscape, over large distances. Indeed this technique provides optimal (in
terms of scaling) upper bounds on the rate of coarsening in the thin-film equation
with linear mobility [4].

However when mobility is a power law (with power larger than one), the esti-
mates obtained via the Kohn-Otto approach are no longer optimal. The reason for
that is that the Kohn-Otto approach relies on the assumption that the steepness
of the energy along a solution path is comparable to the steepness of the energy
landscape. In other words, that the solution path between two states is compara-
ble in length to the geodesic connecting the states. For the thin-film equation, the
assumption holds when mobility is linear. However when mobility is superlinear
the geometry degenerates and there are arbitrarily short paths connecting any two
states (of equal mass). Similarly in systems of grain-boundary networks there are
arbitrarily short paths connecting any two configurations.

A closer inspection reveals that many of the ”near geodesic” (short) paths
go through states with high energy (which are thus dynamically inaccessible by
gradient flows starting from moderate energies). A natural question that arises
is whether considering the geometry restricted to sub-level sets of the energy is
enough to prove optimal upper bounds on the rate of coarsening. For grain bound-
ary networks this is sufficient, provided that one is willing to assume that the
energy density remains controlled locally, and not just globally. Alternatively
one can consider simplified models of grain boundary evolution, such as grain
boundary evolution of Voronoi diagrams, where, due to the nature of allowable
configurations, no additional assumptions are needed [1].

On the other hand for the evolution of thin liquid films with superlinear mobility
even assuming local bounds on energy density is not sufficient to obtain optimal
bounds on the rate of coarsening, since the solution paths remain much longer than
the geodesic paths. For this system only some asymptotic results on mass transfer
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between droplets and on motion of droplets are known [2]. To obtain rigorous
results one would need to obtain estimates on the steepness of the energy along
the solution paths themselves. This requires better understanding of the dynamics
(and not just the energy landscape), and remains largely an open problem.
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The mixing time of the Ising model with “+” boundary conditions

Fabio Toninelli

(joint work with P. Caputo, E. Lubetzky, F. Martinelli, F. Simenhaus, A. Sly)

We consider the mixing time of the single spin-flip Glauber dynamics for the
Ising model in dimension d = 2 and d = 3, at low temperature and zero magnetic
field, with “+” boundary conditions. The Hamiltonian of the system in a domain
Λ of Zd is

HΛ(σ) = −
∑

i,j∈Λ:|i−j|=1

σiσj −
∑

i∈Λ,j∈∂Λ:|i−j|=1

σi(1)

where σi, i ∈ Λ are spin variables which takes values ±1. The Gibbs measure is
given by

πΛ(σ) =
e−βHΛ(σ)

ZΛ(β)
(2)

where β is the inverse temperature.
The Glauber dynamics is a continuous-time Markov process which can be de-

scribed as follows: to each i ∈ Λ is associated an independent clock which rings
at random times, such that the differences between two successive rings is an ex-
ponential random variable of mean 1. When the clock at i rings at time t, we
update σi by sampling it from the measure πΛ, conditioned on the value of the
spins σj , j 6= i at time t.

We are interested in the speed of convergence of the process to the invariant
and reversible measure πΛ. Speed of convergence can be measured i.e. via the
inverse of the spectral gap of the generator, or via the “mixing time” Tmix, which
measures speed of convergence in variation distance.

We always take β to be larger than the inverse of the critical temperature of
the model, and for definiteness we let Λ be a d-dimensional cube of side L. A
long-standing conjecture [3, 1] is that the mixing time is of order L2 for every
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d ≥ 2. The heuristics behind such belief is based on the fact that an initial bubble
of the wrong phase (the minus phase) should shink via motion by mean curvature
in a time of order L2. Also, in [1] arguments were given which suggest that the
spectral gap behaves like const/L in dimension d = 2 and is of order 1 (or possibly
(logL)−c for some c > 0) in dimension d = 3.

The rigorous results available before our study were the following:

• if d = 2 and β ≫ βc, then Tmix ≤ exp(cǫL
1/2+ǫ) for every positive ǫ [7];

• if d = 2 and β = ∞, then L2/(logL)1+δ ≤ Tmix ≤ cL2 for suitable
constants c, δ [4];

• if d = 2 and β > βc, then the spectral gap is smaller than const/L;
• if d = 3 and β ≫ βc, then Tmix ≤ exp(cL(logL)c) for a suitable c [9];
• if d = 3 and β = ∞ then Tmix ≤ cL3 [4].

In [8, 6] we considerably improve the result in dimension d = 2, by showing
that Tmix ≤ exp(c(β)(logL)2) for every β > βc. In [2], we consider instead the
case of β ≥ C logL with C sufficiently large (a particular case is β = ∞). In this
case we can prove:

• for d = 2, one has Tmix ≥ c′L2, which matches the upper bound given in
[4];

• for d = 2, there exist constants c, c′ such that the gap is larger than c/L
and smaller than c′/L;

• for d = 3, one has Tmix ≤ cL2(logL)c for suitable c.

For the three-dimensional results, we heavily employ estimates on the zero-
temperature fluctuations of tilted Ising interfaces, which can be obtained through
estimates on height fluctuations of dimer coverings of the infinite honeycomb lat-
tice [5]. Our result Tmix ≤ cL2(logL)c in dimension 3 (and especially the proof
technique we use) is a first step towards the microscopic justification of mean
curvature motion (or suitable modification thereof, which keeps into account the
non-isotropy of the lattice) for Ising interfaces in three dimensions.
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Distribution of cycle lengths in spatial models of random permutations

Daniel Ueltschi

This is a brief survey of models of random permutations that involve a spatial
structure. Their common feature is a phase transition to a phase where infi-
nite, macroscopic cycles are present. In addition, the cycle structure exhibits
self-similarity, which results in Poisson-Dirichlet distributions.

1. GEM and Poisson-Dirichlet measures. Let us understand the self-
similarity structure in a simple situation, random permutations with uniform dis-
tribution. Each permutation π ∈ Sn has probability 1/n!. Let ℓ1(π), ℓ2(π) be the
lengths of the cycles of π, when ordered by the smaller index that belongs to the
cycle. It is not hard to see that Prob(ℓ1 = k) = 1

n for all k = 1, . . . , n. It follows
that, as n → ∞,

• ℓ1
n → uniform random variable on [0, 1];

• ( ℓ1n , ℓ2
n , . . . ) → GEM(1).

The Griffiths-Engen-McCloskey distribution GEM(θ) is the distribution for
(

X1, (1−X1)X2 , (1−X1)(1 −X2)X3 , . . .
)

,

where X1, X2, . . . are i.i.d. beta random variables with parameter θ; that is,
µ(Xi > s) = (1 − s)θ for 0 ≤ s ≤ 1. The Poisson-Dirichlet distribution PD(θ) is
the law obtained by rearranging the numbers above in decreasing order. See [10]
for more information.

Let ℓ(1)(π), ℓ(2)(π), . . . be the cycle lengths in nonincreasing order. Then
(

ℓ(1)

n , ℓ(2)

n , . . .
)

→ PD(1)

as n → ∞. These laws are due to the self-similarity of cycle lengths.

2. Random stirring model. Consider a cubic box with n sites in Zd. Random
transpositions occur with i.i.d. exponential random variables with rate 1 at each
edge. Let τ1, . . . , τk be the transpositions that occur before time t, and let

πt = τk ◦ · · · ◦ τ1
be the resulting permutation. At t = 0 we have τ0 = id; for small t, πt looks very
much like the identity, but with short cycles here and there. The cycle lengths
typically grow over time, with the possibility that “infinite” cycles occur. We leave
aside a proper definition of infinite cycles. We denote ν = νt the fraction of sites
that belong to infinite cycles.
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Conjecture. Let d ≥ 3. There exists tc such that

ν =

{

0 if t < tc,

> 0 if t > tc.

And when ν > 0, the cycle structure is asymptotically given by
(

ℓ(1)

νn , ℓ(2)

νn , . . .
)

→ PD(1).

This models was introduced by Harris [11]. One can consider arbitrary graphs,
and the version on trees was studied by Angel [2]. A beautiful result due to
Schramm [14] is a variant of the conjecture above on the complete graph [14]; see
Berestycki [3] for a nice and simpler (and partial) proof.

A similar model occurs as a representation for certain quantum spin systems.
The distribution involves an extra 2#cycles. See [16, 1], and the recent survey of
Ioffe [12]. The conjecture is that the cycle structure converges to the Poisson-
Dirichlet distribution with parameter θ = 2.

3. Quenched model of spatial random permutations. Choose positions
x1, . . . , xn in a box Λ ⊂ R

d according to a “suitable” point process, and define the
probability of π ∈ Sn to be 1

Z e−H(π) , where the “Hamiltonian” is given by

H(π) =

n
∑

i=1

ξ(xi − xπ(i)).

The most relevant choice for the jump function is ξ(x) = 1
4β ‖x‖2, where β is a

positive parameter (it represents the inverse temperature of the quantum Bose
gas). One considers the limit where the size of the box and the number of points
diverge, keeping the density ρ = n/|Λ| fixed. This model was essentially introduced
by Feynman [8]. Under restrictions on ξ, on d, and on the point process, one
expects that the fraction ν of points in infinite cycles undergoes a transition.

Conjecture. There exists ρc such that

ν =

{

0 if ρ < ρc,

> 0 if ρ > ρc.

And when ν > 0, the cycle structure is asymptotically given by
(

ℓ(1)

νn , ℓ(2)

νn , . . .
)

→ PD(1).

This conjecture is supported by numerical simulations [9]. Let me also mention
the unrelated but beautiful result of Biskup and Richthammer on the complete
characterization of Gibbs states in the one-dimensional system [7].

4. Annealed model of spatial random permutations. This model is closely
related to the quantum Bose gas, and it is also easier to study. The state space is
Λn × Sn, where Λ is a cubic box in Rd. The expectation of a random variable X
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is defined by

E(X) =
1

Z

∫

Λn

dx1 . . .dxn

∑

π∈Sn

X({xi}, π) e−H({xi},π) ,

where Z is the normalization, and the Hamiltonian is chosen of the form

H({xi}, π) =
n
∑

i=1

ζ(xi − xπ(i)) +
∑

ℓ≥1

αℓrℓ(π).

Here, αℓ are real parameters, and rℓ(π) denotes the number of j-cycles in π. In
the case of the Bose gas, we have ξ(x) = 1

4β‖x‖2 and

αℓ =
2ℓa

(4πβ)1/2

[

1
2

ℓ−1
∑

j=1

( ℓ

j(ℓ− j)

)3/2

− ζ(32 )
]

= − (6− γ1/2)a√
4πβ

(

1 +O(ℓ−1/5)
)

,

where γ1/2 ≈ 0.5396 is a generalized Euler constant, and a is the scattering length
of the interaction potential between quantum particles. The calculation is exact
but not rigorous and it can be found in [5]; its validity is not entirely clear.

We can give a rigorous characterization of the cycle structure under some as-
sumptions. First, we suppose that the Fourier transform of e−ξ(x) is nonnegative,
and we denote it by e−ε(k) . Let us introduce the critical density ρc by the formula

ρc =
∑

ℓ≥1

e−αℓ

∫

Rd

e−ℓε(k) dk.

The result is essentially as stated in the next theorem. Some technicalities are
left aside, and the interested reader is invited to consult Ref. [4] for the precise
formulation.

Theorem. Assume that αℓ converges to some α ∈ R as ℓ → ∞. The
fraction of points in infinite cycles is then given by ν = max(0, ρ−ρc

ρ ).

When ν > 0, the cycle structure satisfies
(

ℓ(1)

νn , ℓ(2)

νn , . . .
)

→ PD( e−α ).

This theorem was recently obtained with Betz [4]. It is based on results of Sütő
for the ideal Bose gas [15]. It also uses estimates for weighted random permutations
[13, 6]. In the case αℓ = 1/ℓγ with γ > 0, one can also prove that ℓ(1)/νn → 1 in
distribution, i.e. there is a single giant cycle above the critical density.

Acknowledgments: It is a pleasure to thank Nathanaël Berestycki, Volker Betz,
Nick Ercolani, Alan Hammond, James Martin, Bruno Nachtergaele, and Yvan
Velenik for many enlightening discussions. I am also grateful to the Mathematis-
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Transitions” for allowing me to spend a pleasant and fruitful week there.
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Kinetic coagulation models with particle fluxes.

Juan J. L. Velázquez

(joint work with M. Escobedo)

The classical coagulation equation reads:
(1)

∂tf (x, t) =
1

2

∫ x

0

K (x− y, y) f (x− y, t) f (y, t) dy−
∫ ∞

0

K (x, y) f (x, t) f (y, t) dy

where K (x, y) = K (y, x) . This equation describes the aggregation of uncorrelated
particles with sizes x, y with the rate K (x, y) .

It is well known that the solutions of (1) exhibit the phenomenon called gelation

for kernelsK (x, y) = (x · y)λ
2 , 1 < λ < 2. This means that solutions of (1) globally

defined in time do not preserve the mass
∫∞

0
xf (x, t) dx even if they formally do

so. The currently available theories of global solutions of (1) predict loss of mass
after a finite time, but they do not describe the rate of loss of mass or the precise
asymptotics of the solutions for large values of x.

We have developed a theory of classical solutions for (1) describing the solutions
of (1) during the gelation regime. The obtained solutions behave asymptotically
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for large values as:

f (x, t) ∼ a (t)x− 3+λ
2 , x → ∞ , a (t) > 0 , t ∈ [0, T ]

The construction of the solutions is made by means of three different steps. The

first step is a linearization argument around the solution x− 3+λ
2 . This function is a

stationary weak solution of (1) if a suitable concept of weak solutions is introduced.
From the physical point of view this solution describes the continuous transfer of
particles from x = 0 to x = ∞ with a constant flux at any point. The solutions
of the linearized problem can be computed explicitly using Laplace transforms
and the Wiener-Hopf method. This solution provides detailed information about
the asymptotics of the solutions of the corresponding linearized problem. As a
second step we study the linearization around an initial data f0 (x) that behaves

asymptotically as Ax− 3+λ
2 but it is globally bounded in x. This solution cannot be

computed explicitly, but it can be obtained by means of a continuation argument
that takes as starting point the explicit solution derived for the power law initial
data. As a third step the solution of the nonlinear initial value problem (1) with
initial data f (x, 0) = f0 (x) is obtained by means of a perturbative argument.

The solutions obtained in this manner have a flux of particles escaping towards
the origin whose precise value depends on the initial distribution f0 (x) . The de-
tailed constructions can be found in [3], [4], [5].

There are many analogies between the described construction of local solutions
for (1) and a similar construction obtained for the Uehling-Uhlenbeck system in [1],
[2]. One of the major differences, however, is the onset of some type of regularized
effects for the solutions of (1) that are due to the fact that for large values of
x the operators that result linearizing (1) around f0 behave, in suitably rescaled

variables, to the half-derivative operator D
1
2
x .
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On the singularities of a free boundary through Fourier expansion

Georg Sebastian Weiss

(joint work with J. Andersson, H. Shahgholian)

We are concerned with singular points of solutions to the unstable free boundary
problem

∆u = −χ{u>0} in B1.

The problem arises in applications such as solid combustion, composite mem-
branes, climatology and fluid dynamics (see the references in [2]).

From [1] it is known that solutions to the above problem may exhibit sin-
gularities —that is points at which the second derivatives of the solution are
unbounded— as well as degenerate points. This causes breakdown of by-now
classical techniques. Here we introduce new ideas based on Fourier expansion of
the nonlinearity χ{u>0}.

The method turns out to have enough momentum to accomplish a complete
description of the structure of the singular set in R3.

A surprising fact in R3 is that although

u(rx)

supB1
|u(rx)|

can converge at singularities to each of the harmonic polynomials

xy,
x2 + y2

2
− z2 and z2 − x2 + y2

2
,

it may not converge to any of the non-axially-symmetric harmonic polynomials
α
(

(1 + δ)x2 + (1− δ)y2 − 2z2
)

with δ 6= 1/2.

We also prove the existence of stable singularities in R3.

In contrast to the analysis of singularities for minimisers or stable solutions, where
there are many methods available, there are few results on unique tangent cones at
unstable singularities. Even the Lojasiewicz inequality approach (see for example
[3]) would be hard to realize in our problem due to the lack of a suitable local
Lyapunov functional; we do have a monotonicity formula playing the role of a
local Lyapunov functional, but as it turns out it has the wrong scaling to be used
at the unstable singularities of “supercharacteristic growth”.

The natural approach would be to study blow-up limits in order to analyze the
singularities. Unfortunately blow-up sequences of the type

u(rjx+ x0)

supBrj
(x0) |u|

do not provide enough information of the solution as the nonlinearity of the equa-
tion vanishes in the limit. To preserve some information of the nonlinearity we
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consider

(1)
u(rjx+ x0)

r2j
−Π(u, rj ,x

0),

where Π(u, rj ,x
0) is a suitable projection of u(rjx+ x0)/r2j in B1 onto the homo-

geneous harmonic second order polynomials.
It can be shown that if

lim
j→∞

u(rjx+ x0)

supBrj
(x0) |u|

= p(x),

then

lim
j→∞

(

u(rjx+ x0)

r2j
−Π(u, rj ,x

0)

)

= Zp,

where Zp is a solution of

∆Zp = −χ{p>0}.

Next we notice that, at each singular point x0,

lim
j→∞

Π(u, rj ,x
0)

supB1
|Π(u, rj ,x0)| = lim

j→∞

u(rjx+ x0)

supBrj
(x0) |u|

.

So in order to prove uniqueness of p it is sufficient to control how Π(u, r,x0)
changes when r varies. More precisely we would want to estimate

(2)
∣

∣

∣

Π(u, r,x0)

supB1
|Π(u, r,x0)| −

Π(u, r/2,x0)

supB1
|Π(u, r/2,x0)|

∣

∣

∣
.

Our method of proof is based on the observation that u(rx+ x0) ≈ τrpr + Zpr

in Br, where pr is a second order harmonic polynomial of norm 1. It follows
that Π(u, r/2,x0) ≈ Π(τrpr + Zpr , 1/2, 0) = Π(τrpr, 1/2, 0) + Π(Zpr , 1/2, 0) =
τrpr + Π(Zpr , 1/2, 0). Therefore it is essential to control Π(Zpr , ·) in order to
estimate (2). This control is achieved by means of an explicit calculation of the
Fourier coefficients of Zpr .

Preprint available at http://arxiv.org/abs/1005.3882
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A functional analytic approach to logarithmic Sobolev inequalities and

the hydrodynamic limit

Maria G. Westdickenberg

(joint work with Natalie Grunewald, Felix Otto, Cédric Villani)

The logarithmic Sobolev inequality (LSI) is a powerful tool for studying conver-
gence to equilibrium in spin systems. The Bakry-Emery criterion implies LSI in
the case of a convex Hamiltonian. What can be said in the nonconvex case? We
present two recently developed sufficient conditions for LSI. The first is a Bakry-
Emery-type criterion that requires only LSI (not convexity) for the single-site con-
ditional measures. The second is a two-scale condition: An LSI on the microscopic
scale (conditional measures) and an LSI on the macroscopic scale (marginal mea-
sure) are combined to prove a global LSI. Continuing in the spirit of the two-scale
approach, we also present a two-scale criterion for the hydrodynamic limit and
explain how it can be applied in the context of the Guo-Papanicolaou-Varadhan
example.

Reporters: Christian Seis and Jens Wohlgemuth
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Forschungszentrum Jülich GmbH
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Christian Seis

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
04103 Leipzig

Prof. Dr. Subodh Shenoy

School of Physics
University of Hyderabad
Hyderabad 500 046
INDIA

Prof. Dr. Senya B. Shlosman

Centre de Physique Theorique
CNRS
Luminy - Case 907
F-13288 Marseille Cedex 09

Prof. Dr. Dejan Slepcev

Department of Mathematical Sciences
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh , PA 15213-3890
USA

Dr. Ulisse Stefanelli

IMATI - CNR
Via Ferrata, 1
I-27100 Pavia



1484 Oberwolfach Report 24/2010

Dr. Fabio Toninelli

Laboratoire de Physique
Ecole Normale Superieure de Lyon
46, Allee d’Italie
F-69364 Lyon Cedex 07

Dr. Charis Tsikkou

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
04103 Leipzig

Dr. Daniel Ueltschi

Mathematics Institute
University of Warwick
Gibbet Hill Road
GB-Coventry CV4 7AL

Prof. Dr. Juan J. L. Velazquez

Instituto Ciencias Matematicas (ICMAT)
Universidad Complutense
Plaza de Ciencias 3
E-28040 Madrid

Hendrik Weber

Mathematics Institute
University of Warwick
Gibbet Hill Road
GB-Coventry CV4 7AL

Prof. Dr. Georg S. Weiss

Graduate School of
Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Maria G. Westdickenberg

School of Mathematics
Georgia Institute of Technology
686 Cherry Street
Atlanta , GA 30332-0160
USA

Jens Wohlgemuth

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
04103 Leipzig

Prof. Dr. Marc Wouts

Departement de Mathematiques
Institut Galilee
Universite Paris XIII
99 Av. J.-B. Clement
F-93430 Villetaneuse

Prof. Dr. Aaron Nung Kwan Yip

Department of Mathematics
Purdue University
West Lafayette , IN 47907-1395
USA


