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The workshop has brought together researchers working on diverse prob-
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Introduction by the Organisers

The workshop Geometry, Quantum Fields, and Strings: Categorial Aspects, organ-
ised by Peter Bouwknegt (Australian National University, Canberra), Dan Freed
(University of Texas, Austin), and Christoph Schweigert (University of Hamburg)
was held June 6th–June 12th, 2010. The meeting was attended by 52 participants
from all continents.

18 talks of one hour each were contributed to the workshop. Moreover, young
researchers were offered the possibility to present short contributions. On Monday
and Wednesday evening a total of 11 short talks were delivered. We would like to
stress the high quality and level of interest of these contributions. The two sessions
have received much attention and have led to much additional scientific discussion
about the work of younger participants. For this reason, these contributions are
covered in these proceedings as well.

Another special event was a panel discussion on Tuesday evening on the topic
“Whither the interaction of Geometry-QFT-String?”. Chaired by Dan Freed and
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under the lively participation of the audience, Kevin Costello, Michael Douglas,
Greg Moore and Tony Pantev exchanged their point of view on recent and present
interactions between mathematics and physics in the area of quantum field theory.
There was a broad agreement that the field is in rapid progress and presents
many exciting challenges that necessitate the interaction of researchers of different
background. Homotopical techniques and generalized cohomology theories can
be expected to play an increasingly important role in the study of quantum field
theories and string theories.

The much of the work presented during this workshop could be described as
“mathematics inspired by string theory and quantum field theory”. Most of the
contributions to the workshop were related to the following three main topics that
are strongly interrelated:

(1) (Higher) categorial descriptions for quantum field theories, in particular
for topological quantum field theories and extended versions of quantum
field theories.

(2) Structures related to moduli spaces.
(3) Higher categorial structures of string backgrounds.

We summarize the contributions to this workshop according to these three sub-
fields.

A construction of topological field theories based on Fukaya categories has been
explained by Chris Woodward. A three-category of chiral conformal field theories
has been discussed in an operator algebraic approach by Arthur Bartels; Alexei
Davydov explained how aspects of the classification of rational chiral conformal
field theories can be captured in the definition of a Witt group of modular cate-
gories. In Michael Douglas’ talk, the space of quantum field theories, in particular
two-dimensional conformal field theories, has been addressed from a completely
different point of view; in the form of defects, higher categorial structures have
been central to this approach as well.

Generalizations of Knizhnik-Zamolodichikov equations for conformal blocks have
been presented in the talk of Valerio Toledano Laredo. Constantin Teleman dis-
cussed some aspects of (extended) topological field theories in two dimensions
related to Gromov-Witten invariants. Kevin Costello explained his notion of fac-
torization algebra, an adaptation of vertex algebras to a smooth setting, and its
applications to the Witten genus. Inspired by older work on anomalies in quantum
field theories in a Hamiltonian framwork, Jouko Mickelsson proposed in particular
applications of gerbal representations to quantum field theory.

In the young researchers’ session, the contributions of Orit Davidovich on ex-
tended topological field theories from state sum models and by Konrad Waldorf
on gauge anomalies in two-dimensional bosonic sigma models complemented this
circle of topics.

Dennis Gaitsgory’s and Craig Westerland’s talk discussed different aspects of
moduli spaces of bundles. Structured moduli spaces of curves were discussed in
Ezra Getzler’s contribution in a symplectic setting and Nathalie Wahl presented
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a graphical calculus to the Hochschild homology of structured algebras motivated
by string topology.

The third topic about string backgrounds included in particular a careful dis-
cussion of orientifold backgrounds by Greg Moore in terms of differentially refined
and twisted cohomology theories. Such theories are also important in the dis-
cussion of T-dualities: a perspective on T-duality using a Lagrangian formalism
for sigma-models was given in Kentaor Hori’s talk; Mathai Varghese discussed
T-duality in the presence of background fluxes and explained the need to in-
clude non-commutative geometry and non-trivial associators in the picture. In the
young researchers’ session, this was complemented by contributions by Alexander
Kahle (touching also aspects of differential refinements of cohomology theories)
and Rishni Ratnam about non-commutative torus bundles.

Twisted K-theory and its relation to the Verlinde algebra was one topic of Igor
Kriz’ talk. Yan Soibelman presented an algebraic approach to motivic Donaldson-
Thomas invariants based on Calabi-Yau categories. Ludmil Katzarkov finally dis-
cussed non-abelian mixed Hodge structures.

The contributions of Igor Bakovic on 2-stacks, of Dan Berwick-Evans on super-
symmetric sigma-models, of Braxton Collier on categorial Lie algebras, of Thomas
Nikolaus on algebraic methods for higher categories and Hisham Sati on the geom-
etry of membranes in the young researchers’ session added important complements
to these topics.
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Abstracts

Functoriality for Lagrangian correspondences in Floer theory

Chris T. Woodward

(joint work with Katrin Wehrheim)

We study composition of Lagrangian correspondences in monotone and exact La-
grangian Floer theory. Following Donaldson and Fukaya, one associates to a
compact monotone (or noncompact exact) symplectic manifold (M,ω) a cate-
gory Don(M) whose objects are certain compact, oriented, relatively spin, mono-
tone (or exact) Lagrangian submanifolds of (M,ω) (which we call admissible)
and whose morphisms are Floer cohomology classes. We use a variation of the
usual definition, which we denote Don#(M). Given two symplectic manifolds M0

and M1 of the same monotonicity type, an admissible Lagrangian correspondence
L01 ⊂M

−
0 ×M1 gives rise to a functor

Φ(L01) : Don#(M0)→ Don#(M1).

Given a triple M0, M1, M2 of symplectic manifolds and admissible Lagrangian
correspondences L01 ⊂M

−
0 ×M1 and L12 ⊂M

−
1 ×M2, the algebraic composition

Φ(L01) ◦Φ(L12) : Don#(M0)→ Don#(M2) is always defined. On the other hand,
one may consider the geometric composition L01 ◦L12 that was introduced by We-
instein. Under suitable transversality hypotheses, the restriction of the projection
π02 : M−

0 ×M1 ×M
−
1 ×M2 →M−

0 ×M2 to

L01 ×M1
L12 :=

(
L01 × L12

)
∩
(
M−

0 ×∆M1
×M2

)

is an immersion, whose singular Lagrangian image we denote by

L01 ◦ L12 ⊂M
−
0 ×M2.

Our main result is that if L01×M1
L12 is a transverse (hence smooth) intersection

and embeds by π02 into M−
0 ×M2 then

(0.1) Φ(L01) ◦ Φ(L12) ∼= Φ(L01 ◦ L12).

In other words, “categorification commutes with composition”. If M1 is not spin,
there is also a shift of relative spin structures on the right-hand side. The starting
point for this functoriality is an elementary construction of a symplectic category
consisting of symplectic manifolds and certain sequences of Lagrangian correspon-
dences.

There is a slightly stronger version of this result, expressed in the language of
2-categories as follows. Let Floer# denote the Weinstein-Floer 2-category whose
objects are symplectic manifolds, 1-morphisms are sequences of Lagrangian cor-
respondences, and 2-morphisms are Floer cohomology classes; we denote com-
position of 1-morphisms in this category by #. The maps above extend to a
categorification 2-functor from Floer# to the 2-category of categories Cat. A re-
finement of the main result says that the concatenation L01#L12 is 2-isomorphic
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to the geometric composition L01 ◦L12 as 1-morphisms in Floer#; the main result
follows by combining this result with the 2-functor axiom for 1-morphisms.

The stable topology of moduli spaces of principal bundles

Craig Westerland

(joint work with Jordan Ellenberg, Akshay Venkatesh)

We investigate the stable topology of Hurwitz spaces of branched covers of Rie-
mann surfaces, with applications to questions in arithmetic geometry.

Let G be a finite group, c < G a conjugacy class, and n > 0 an integer. We will
write HurcG,n for the moduli space of branched covers Σ→ C with n (unordered)
branch points, Galois group G, and monodromy around branch points in c. Our
first result is a rational homological stability theorem for these spaces:

Theorem 1. Let G be a finite group and c ⊂ G a conjugacy class
which generates G, with the property that for any subgroup H ≤
G, c∩H is either empty or a conjugacy class of H . Then there exist
integers A,B,D such that bp(HurcG,n) = bp(HurcG,n+D) whenever
n ≥ Ap+B.

It is also possible to compute these stable homologies. The setting of Hurwitz
spaces generalizes to the study of the moduli space Mg,n(X) of triples (S, z, f),
where S is a compact Riemann surface of genus g with one boundary component, z
is a configuration of n points in S, and f : S → X is a continuous function. This is
a “weak” moduli space in the sense that X may be an arbitrary topological space,
and we allow all continuous functions (not just holomorphic). In some settings the
continuous and algebraic notions do coincide up to homotopy equivalence, most
notably for Hurwitz spaces, which can be considered as a moduli of functions to
the stack [∗/G]. Consequently, HurcG,n is equivalent to the space M0,n(BG).

Define A(X) to be the pushout of the diagram

D2 × LX S1 × LX
⊇

oo
ev

//X

where LX denotes the free loop space of X , LX = Map(S1, X), and ev(t, f) =
f(t). We prove the following:

Theorem 2. There are maps

Mg,n(X)→ Mapn((S, ∂), (A(X), X))hDiff+(S,∂)

which give an integral homology isomorphism in the limit n→∞.

In the case of Hurwitz spaces, the rational homology of this function space
is surprisingly easy to compute: it breaks into a union of components, each of
which has the rational homology of a circle. Together with Theorem 1 and the
Grothendieck-Lefschetz fixed point theorem, we obtain a proof of an asymptotic
version of the Cohen-Lenstra heuristics for imaginary quadratic function fields. In
particular, we show:
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Theorem 3. If A is a finite abelian ℓ-group (ℓ 6= 2), and q is
sufficiently large (depending upon A), the density of imaginary
quadratic extensions K of Fq(t) for which the ℓ-part of the class
group of K is isomorphic to A is given by

(∏

i>1

(1−
1

ℓi
)

)
1

|Aut(A)|

References
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Spaces of quantum field theories

Michael R. Douglas

The concept of a ”space of quantum field theories” (QFTs) or ”theory space” was
set out in the 1970’s in work of Wilson, Friedan and others. This structure should
play an important role in organizing and classifying QFTs, and in the study of
the string landscape, allowing us to say when two theories are connected by finite
variations of the couplings or by RG flows, when a sequence of QFTs converges to
another QFT, and bounding the amount of information needed to uniquely specify
a QFT, enabling us to estimate their number. As yet we do not have any definition
of theory space which can be used to make such arguments.

We begin with an overview of physics definitions of QFT, examples, and some
of the phenomena which must be taken into account in defining theory space.
There is an important analogy to the problem of defining and studying spaces
of manifolds carrying a Riemannian metric, whose foundations were laid in the
1970’s by Gromov, Cheeger and other mathematicians.

We then report on work announced in [1]. There, we state two general conjec-
tures about the space of two-dimensional conformal field theories (CFTs). One
is technical, that a CFT is uniquely determined by the spectrum of all operators
and operator product coefficients below a critical dimension Delta which grows
linearly with the central charge c. The other is that every CFT can be realized by
RG flow from a linear sigma model.

We also define a distance function on the space of CFTs, which gives a distance
between any pair of theories, whether or not they are connected by varying moduli.

References

[1] M. R. Douglas, Spaces of Quantum Field Theories, arXiv:1005.2779.



1494 Oberwolfach Report 25/2010

Nonabelian Mixed Hodge structures and applications

Ludmil Katzarkov

In this talk, we have considered a new approach to a classical question in al-
gebraic geometry: the rationality of algebraic varieties, e.g. of a generic four-
dimensional cubic. We introduce new birational invariants: the spectrum of the
birational type of a smooth projective projective variety and its gaps. We compute
this in the case of the two-dimensional and three-dimensional cubics.

We show that if X is rational, then the gap equals one. We conjecture that for
the 4-dimensional cubic the gap is strictly bigger than one.

Conformal nets and local field theory

Arthur Bartels

(joint work with Christopher L. Douglas, André Henriques)

Atiyah defined topological quantum field theories as symmetric monoidal func-
tors

Z : Bornn−1 → Vect,

where Bornn−1 is the category whose objects are n− 1-dimensional manifolds and
whose morphisms are n-dimensional bordisms and Vect is the category of Vec-
torspaces over a fixed field, often the complex numbers. The category Bornn−1

can be delooped to an n-category Born0 whose objects are 0-dimensional man-
ifolds, 1-morphisms are 1-dimensional manifolds with boundary and in general
k-morphisms are k-dimensional manifolds with corners. (The precise formalism of
higher categories is highly non-trivial, but was ignored in my talk.) A local field
theory is the a symmetric monoidal functor

Z : Born0 → C,

where C is a symmetric monoidal n-category. According to the cobordism hypoth-
esis established by Lurie and Hopkins such functors are determined by their value
on the one-point manifold pt. Moreover, for each fully dualizable object C of C,
there is Z such that Z(pt) = C. (More precisely, Born0 has to be replaced by the
n-category of framed manifolds.) Thus to construct a local field theory it suffices
to construct a symmetric monoidal n-category together with a fully dualizable
object.

For n = 2 a good example is the 2-category of von Neumann algebras. Its
objects are von Neumann algebras, morphisms between von Neumann algebras M
and N are M -N -bimodules and 2-morphisms are bounded M -N -linear operators.
The composition of morphism uses the Connes fusion product and the identity
1-morphism on a von Neumann algebra M is the standard form L2(M).

Conformal nets grew out of algebraic quantum field theory. They can be de-
scribed as functors that associate to any interval a von Neumann algebra and to
each embedding of intervals an embedding of von Neumann algebras. In addition
a number of axioms (additivity, Haag duality, split property, Vaccum sector) are
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required to hold. There is a good notion of dimension for such nets, the µ-index.
(This notion is closely related to the Jones index for subfactors of von Neumann
algebras.)

The main result of my talk was that the 2-category of von Neumann algebras
can be delooped to a 3-category CN whose objects are conformal nets of finite
µ-index, and all these nets are fully dualizable in CN.

References
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The RR Charge of an Orientifold

Gregory W. Moore

(joint work with Jacques Dister, Daniel S. Freed)

This talk reviewed one aspect of an ongoing project with J. Distler and D. Freed
aimed at establishing some firm mathematical foundations for the theory of ori-
entifolds. A telegraphic summary of the point of view we advocate may be found
in [2].

The focus of this talk was on the definition and partial computation of the
RR charge of an orientifold fixed plane. There are three motivations for this
work. First, much of the evidence for the alleged “landscape of four-dimensional
string vacua with fixed moduli and N=1 supersymmetry,” makes important use
of orientifold constructions. This important claim should be put on a more solid
mathematical footing, especially since the crucial tadpole constraints determining
consistency of the models have not been checked at the K-theoretic level. (Thus
far the state of the art has only allowed checking the “image” of these constraints
under the Chern character). A second motivation is that the tension between the
strong-weak coupling dualities of string theory and the K-theoretic classification
of RR charge is sharpest in the orientifold examples. A third motivation is that
this topic provides an interesting venue for applications of modern topology to
theoretical physics.

The question “What is the RR charge of an orientifold?” is a complicated one.
Most of the talk was devoted to explaining what is meant by an “orientifold” and
what is meant by “RR charge.”

Perturbative string theory is a theory of maps ϕ : Σ→ X where Σ is a smooth
Riemannian worldsheet and the spacetime is a smooth orbifold (in the mathemat-
ical sense of the word, as used, e.g. in [1]). To define an orientifold string theory
we provide the extra datum of a double cover Xw → X where w ∈ H1(X ;Z2). By
definition, a perturbative string theory orientifold is a theory of maps from an
unoriented worldsheet Σ to X subject to the constraint that ϕ∗(w) = w1(Σ). For
spacetimes of the form X = Y//Γ where Γ is a discrete group the orientifold data
is equivalent to a disjoint decomposition Γ = Γ0 ∐ Γ1 where Γ0 is an index two
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subgroup. Components of a fixed-point locus in Y of an element g ∈ Γ1 is known
as an “orientifold plane.”

When thinking about the RR field it turns out to be very important to un-
derstand the proper mathematical nature of the so-called “B-field” - the abelian
2-form gauge potential for which strings are an electrical source. The B-field in
an oriented bosonic string theory is a geometrical object whose gauge equivalence
class is a class in differential cohomology Ȟ3(X). For bosonic string orientifolds
the B-field is valued in the twisted differential cohomology Ȟ3+w(X). Surpris-
ingly, for type II superstrings, one must choose a slightly different generalized
cohomology theory B̌3+w(X) which fits in an exact sequence

(0.1) 0→ Ȟ3+w(X)→ B̌3+w(X)→ H0(X ;Z)×H1(X ;Z2)→ 0.

After modding out by Bott periodicity the relevant generalized cohomology theory
can be identified with a Postnikov truncation of connective KO theory: ko〈0 . . . 4〉.
The need to place the B-field in this theory can be seen both from spacetime and
worldsheet viewpoints, and the agreement between them is highly nontrivial. This
talk focussed on the spacetime viewpoint. When X = ℘//Z2 is the quotient of
a point ℘ there is a Z8 group of “universal B-fields” after modding out by Bott
periodicity.

Let us now turn to RR charge. Type II string theory has abelian gauge fields
known as RR fields. Several physical arguments show that the sources of these
fields – RR currents – have gauge equivalence class in the twisted differential
KR theory of Xw. The B-field is a geometrical twisting of the differential KR
theory (this is the spacetime argument for (0.1)). Since a general theory of twisted
equivariant differential generalized cohomology theory is not available we described
a specific model for the twisting and the twisted classes.

A crucial aspect of the RR field is that it is a self-dual theory. We described
the general theory of abelian self-dual theories quantized by a Poincaré-Pontryagin
selfdual generalized cohomology theory Eτ (where τ is a twisting), and explained
that the crucial ingredient for a theory on n-dimensional spacetimes is a choice of
quadratic functor from families of (n+2)-dimensional spaces over S equipped with
currents to the Anderson dual Ǐ0(S). The center of the corresponding quadratic
functor defined on families of (n+1)-dimensional spaces of the form X×S1 defines
the background charge µ ∈ Eτ (X). In the case of the RR field of type II string
theory we consider families Z of 12-manifolds and define a quadratic functor via

(0.2) q(ǰ) =

[∫

Z/S

κǰǰ

]

ǫ

Here ǰǰ is understood to be lifted to a twisted KO theory KOR(τ)(X) where
R(τ) is a KO twist which, under complexification, becomes the KR twist τ + τ̄
up to a shift by the twist of the Bott element. In order for the integration to be
well-defined we must provide an isomorphism of KO-twistings to the orientation
twisting τKO(X). Such an isomorphism is called a twisted spin structure and
constitutes an essential piece of the data needed to define a type II string theory
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orientifold. Once this data has been provided there is an invertible element κ
which makes the integrand of equation (0.2) a proper density for KO-theory. The
integrand is then valued in ǨO−12

Z2
(S) which can be mapped to the representation

ring R(Z2) ∼= Z[ǫ]/(ǫ2 − 1). The subscript ǫ in (0.2) indicates that we take the
component of the sign representation ǫ. Having defined q as in (0.2) it follows
from [4] that the background charge of an orientifold has been defined.

In the case that X = Y//Z2 is a global quotient one can localize the integrals
with the multiplicative set {(1 − ǫ)n} ⊂ R(Z2). The result shows that once the
prime 2 is inverted the background charge of an orientifold is localized (spatially)
on the orientifold planes, and moreover one can give an explicit formula for this K-
theoretic charge in terms of the topology of the orientifold plane and its embedding
into spacetime. A special case of this formula (for the type I theory, in which
Xw = X×℘//Z2, and the B-field is zero), was derived some time ago, using similar
methods, in [3]. Taking the Chern character one finds a well-known formula in the
physics literature:

(0.3)

√
Â(TX)ch(µ) = ±2k−5ι∗

√
L̃(TF )

L̃(ν)

where F is a component of the fixed point locus (an “orientifold plane”), k =

dimF , L̃(V ) =
∏ xi/4

tanh xi/4
is a modification of the Hirzebruch genus, and ν is the

normal bundle to ι : F →֒ Xw. The sign is tricky, but after a year of hard work,
we believe we have it completely under control. It depends on k and the B-field.

The existence of a twisted spin structure puts a nontrivial topological constraint
on orientifold models relating the topology of the B-field to that of spacetime. As
an example, on spacetimes admitting a lift of the involution on Xw to the Pin−

bundle (we call these spacetimes with pinvolution) the codimension r modulo 4 of
the orientifold planes is well-defined (when nonempty) and the 8 universal B-fields
are constrained by the codimension according to the table:

r = 0 KR0(Xw) KRβ2(Xw)

r = 1 KR1+β1(Xw) KR1+β3(Xw)

r = 2 KRβ1(Xw) KRβ3(Xw)

r = 3 KR1(Xw) KR1+β2(Xw)

Here the 8 universal B-fields are presented as elements of (Z ⊕ Z4)/〈(2, 1)〉 via
d+ βℓ with ℓ ∈ Z4.

Finally, some further consequences of this viewpoint, and some directions for
future research were outlined.
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Twisted K-theory, branes, Verlinde algebras and related topics

Igor Kriz

In this talk, I described an investigation which started by looking at

(0.1) K∗
G,τ (G),

the equivariant twisted K-theory of a compact Lie group G acting on G by con-
jugation. In the famous papers [2], Freed, Hopkins and Teleman computed this
group for non-degenerate twistings coming from a class in H4(BG,Z). In the
case when G is connected and its fundamental group is free abelian, (0.1) can be
identified canonically with the Verlinde algebra, which is, roughly speaking the
representation ring of the rational vertex algebra obtained as a quotient of the
affine vertex algebra associated with the Lie algebraa g by the maximal ideal, or
the chiral WZW model. (Note: by new characterizations of vertex algebras and
vertex tensor categories of their representations [3, 8], these structures can now be
viewed as algebraic objects, i.e. can be considered for example over any field of
characteristic 0 - in the case of vertex algebras, restriction to characteristic 0 is not
even needed.) This connection between (0.1) and vertex algebras can be extended
to the case of arbitrary G connected by the orbifold construction on vertex alge-
bras. However, for the case of G not necessarily connected, the vertex algebra side
is not canonically defined. For example, for G finite, there is no non-degeneracy
restriction on the twisting. When the twisting is 0, (0.1) is actually the represen-
tation ring of the Drinfeld double of G; it is known [1] to be the Verlinde algebra of
the orbifold vertex algebra of a holomorphic vertex algebra under a group action
where all irreducible representations of G occur in the action.

In general, (0.1) is conjectured to be the Verlinde algebra of a modular functor.
A modular functor in our sense is a holomorphic 1 + 1-dimensional field theory
valued in (finite-dimensional strongly dualizable) complex (super-) 2-vector spaces.
(Note: when the central charge is 0, we have a topological field theory, although
the modular functors corresponding to (0.1) tend to have non-integral rational
central charge.)

Now it is not completely surprising that (0.1) should come from a modular
functor: a modular functor can be always realized as a 1+1-dimensional topological
field theory valued in strict modules over the E∞ ring spectrum K. (A converse
is not obvious; in fact, the K-theory realization seems to lose information about
the central charge.) In any case, (0.1) can, rather than a group, be viewed as a
strict K-module. Some of the operations of a topological field theory are in fact
constructed in [2]. Concretely, the unit and product have completely topological
constructions, and this can be extended by the same method to an action of the
framed little 2-disk operad ([6]). In fact, it can be shown that these operations are
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compatible with the same operations in “string K-theory”, which were considered
in [10]. However, operations such as the augmentation or coproduct are more
mysterious, and may contain information coming from outside of homotopy theory:
certainly, these operations do not coincide with the corresponding operations in
string K-theory: string K-theory (like all string topology) has no augmentation
at all, and the coproduct is usually very nearly 0 ([10]).

The connection between (0.1) and string topology deserves a couple more com-
ments. It is based on the equivalence

(0.2) G×G EG ≃ LBG

where the left hand side is the Borel construction. On the right hand side, L
denotes free loop space; BG is not a manifold, but behaves, in certain ways, like
a manifold of dimension −dimG; this relationship is explained by inclusion of
certain manifolds in BG, and duality ([10]). Applying the Borel construction to
twisted K-theory results in a completion; these completions for G simple simply
connected were computed explicitly in [7].

More can be said on the subject of completion. For example, M.Khorami [5]
proved a beautiful theorem that

Kτ,∗X = K∗X̃ ⊗K∗CP∞ K∗

where X̃ is the principal CP∞-bundle associated with the twisting. This can be

pushed even further by considering, instead of X̃ , the S1-gerbe corresponding to
the twisting. In the case of (0.1), the twisting corresponds to a G-equivariant S1-
gerbe, to which there canonically corresponds a groupoid Γ. Using the methods
of [2], one can prove [6] (at least when G is connected and π1(G) is free abelian,
and the twisting is non-degenerate) that

(0.3) K∗(Γ) ∼= R(L̃τG)

where the right hand side denotes the representation ring of finite sums of lowest
weight irreducible representation of the central extension of LG corresponding to
the twisting. (Note: the correspondence of K-theory and representation twistings
contains the dual Coxeter number; the representation ring considered here contains
as a part of the information the action by bodily rotation of the loop.) Now
applying a completion theorem to (0.3), one obtains a completion theorem for
affine groups:

K∗BL̃τG ∼= R(L̃τG)∧I

where I is the augmentation ideal in R(S1 × G) (R(L̃τG) has no appropriate
augmentation).

Finally, a remark on the interpretation of (0.1) in terms of branes. The modular
functor of a rational vertex algebra always has an interpretation as the algebra
of Cardy brane charges. One mathematical rigorization of that statement was
attempted in [4]. However, in the case of the WZW model, the correct algebra
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of charges is not (0.1), but the non-equivariant twisted K-theory group K∗
τ (G).

G.Moore [11] clarified that these charges correspond to identification of branes
using renormalization flow on the boundary CFT within a space of quantum field
theories. The correspondence between modular functors and K-module valued
field theories suggests yet another interpretation: one has, as K-modules,

(0.4) K∗
τ (G) = K∗

τ,G(G) ∧K∗

G
(G) K

∗.

This can be interpreted as a two-sided bar construction

(0.5) B(K∗
τ,G(G),K∗

G(G),K∗)

in the category of K-modules. However, it turns out that (0.5) can be rigidified
to a 2-sided bar construction of 2-vector spaces, and in fact chiral conformal field
theories! This offers a mathematical formalism encoding the renormalization group
flow in the simplicial coordinate. The author is particularly interested in the
question whether there is an analogue of this construction for CFT backgrounds;
in [9], the author discovered indications that certain deformations of N = (2, 2)
CFT’s along marginal fields do not exponentiate in the framework of perturbative
CFT, contrary to what is believed in physics. It would interesting to see if this
phenomenon can be explained in terms of “simplicial” or “derived” background
deformations.
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Gauged Topological Quantum Field Theories in 2 dimensions

Constantin Teleman

In this lecture, I review the notion of ‘extended’ topological quantum field theory
in 2 dimensions, after Kontsevich, Costello, Hopkins-Lurie, and explain what it
means to gauge such a theory for the action of a compact Lie group. When the
underlying category is that of modules over a differential graded algebra, I present
a concrete model for the generating category of the gauged TQFT, in terms of a
‘curved Cartan model’.

TQFT’s, as originally define by Atiyah, Segal and Witten, assign algebraic data
to manifolds with structure (such as orientation) in adjacent dimensions. Thus,
an n-dimensional TQFT Z assigns vector spaces Z(M) to closed (n−1)-manifolds
M and vectors Z(N) ∈ Z(∂N) to compact n-manifolds N with boundary. The
assignment is ‘symmetric monoidal’, meaning it is multiplicative under disjoint
unions, and satifies a ‘sewgluinging condition’ when two n-manifolds are glued
along a connected component of their boundary. (This is sometimes rephrased
by saying that Z is a symmetric monidal functor from the n-dimensional bordism
category to that of vector spaces and linear maps.)

The idea behind extended TQFT’s is to continue this assignment downwards
in dimension, all the way to 0. Thus, an extended TQFT would be a functor
from the n-dimensional bordism category of manifolds (with some structure on
the tangent bundle) to some linear n-category; for n = 2, a target example could
be the 2-category of linear differential graded categories, for instance, that of
modules over a differential graded algebras. In this dimension, a characterization
of the categories (Frobenius categories) that can appear as Z of a point was given
(in slightly different versions) by Kontsevich, Costello, Hopkins-Lurie, who also
showed that the full TQFT is determined by the target category. (Lurie then
generalized this to arbitrary dimensions, calling this the ‘cobordism hypothesis’.)

An example of ‘structure’ on a manifold is principal G-bundle, for a compact
Lie group G. A TQFT defined on such manifolds is the mathematical definition of
the physicist’s ‘classically gauged’ TQFT (the principal bundle is a ‘background
gauge field’; in the topological case, it is not necessary to choose connections on
the bundles). Quantizing the theory means integrating over gauge fields.

Given a category C generating a 2-dimensional TQFT, a classically gauged
theory should arise whenever a Lie group G acts, in a suitable sense, on the
category C. For finite groups, the obvious definition of an action is adequate, but
there are compatibility constraints with the Frobenius structure. In this case, it
is also quite easy to quantize the gauged theory, by summing over isomorphism
classes of G-bundles. The quantized theory is in turn generated by a category,
which is just the G-fixed point category CG.

This talk will describe how the construction must be modified in the case when
G is a compact Lie group. In this case, the appropriate notion of a G-action is
one that comes with an infinitesimal trivialization, that is, one which has been
factored through G/Ĝ, where Ĝ ⊂ G is the formal subgroup. When C is the
category of (dg) modules over a (differential graded) algebra A, the fixed-point
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category CG/Ĝ is that of modules over some realization of the crossed product
algebra (G/Ĝ)×̃A. One version of this crossed product uses the algebra of (de
Rham) chains on G, under convolution. It turns out that a preferable version is a
Koszul dual model, in which the exterior algebra ∧ g is replaced by the symmetric
algebra Sym g∗. We get an algebra version of the Cartan model for equivariant
cohomology, G×̃ (Sym g∗ ⊗A). A key feature of this model is the appearance of a
curvature, that is, we obtain a curved algebra, where d2 6= 0, but is a commutator.

When G is connected A = C, the category of curved modules over this al-

gebra is equivalent to that of graded modules over (Sym g∗)G (or its completion
at zero), which also has a topological interpretation as H∗(BG). This is cate-
gory is not quite Frobenius, because g is not compact. An additional curvature
(LAndau-Ginzburg superpotential) is necessary to ‘compactify’ the gauged the-
ory and obtain a Frobenius category. The simplest compactifying potential is a
non-degenerate, invariant quadratic function on the Lie algebra. In the case when
A = C, this semi-simplifies the category of H∗(BG)-modules into that of vector
bundles over the dominant, integral, regular weights of g, and generates Witten’s
topological Yang-Mills theory.

Cohomology of the moduli space of bundles: from Atiyah-Bott to
Tamagawa number

Dennis Gaitsgory

(joint work with Jacob Lurie)

Let X be a curve over a ground field k and G a split semi-simple simply con-
nected group over k. Let BunG denote the moduli stack of G-bundles on X .

Assume first that the field k is a finite field Fq. Although the set BunG(Fq)
is infinite, it carries a natural atomic measure (each point comes with a weight
equal to the inverse of the cardinality of the group of its automorphisms). The
volume of BunG(Fq) with respect to this measure is a convergent series and the
Tamagawa number formula (proved in this case by Harder) asserts that the volume
of BunG(Fq) equals

(∗) q(g−1) dim(G) · Π
X∈|X|

Lx,

where g is the genus of X , and Lx is a local factor equal to

Π
i=1,...,l

1

1− q−ei
x

,

where i runs through the set of exponents of G, ei is the value of the corresponding
exponent, and qx is the cardinality of the residue field at a closed point x ∈ X .
Thus, the product Π

X∈|X|
Lx can be viewed as a special value of a certain L-function.

It is easy to see that the expression in (*) is the ratio between the atomic measure
on BunG(Fq) mentioned above and the canonical Tamagawa measure.
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Let a be the grade vector space (acted on by the Frobenius) equal to

⊕
i=1,...,l

Qℓ[−2ei](−ei).

We have H(BG,Qℓ) ≃ Sym(a), where BG the classifying space of G. Therefore,
the factor Lx equals Tr(Frobx, H(BG,Qℓ)

∨).

The goal of our project is to give a geometric proof of formula (*). The first step,
carried out by Behrend, is to give a cohomological interpretation to vol(BunG(Fq)).
Namely, we consider Hc(BunG,Qℓ), and one shows that although BunG is of infi-
nite type, the Grothendieck-Lefschetz trace formula is applicable, i.e., we have:

(∗∗) vol(BunG(Fq)) = Tr(Frob, Hc(BunG,Qℓ))

(in particular, the right-hand side makes sense as an absolutely convergent series
with vaues in R). Let ωBunG

denote the dualizing sheaf of BunG. We obtain that
formula (*) is equivalent to the equality

(∗ ∗ ∗) Tr(Frob, Hc(BunG, ωBunG
)) = Π

X∈|X|
Tr(Frobx, H(BG,Qℓ)

∨).

The idea of the geometric proof of (***) relies on the notion of factorization
algebra. Let Ran(X) denote the Ran space of X , as defined by Beilinson and
Drineld. This is the space of finite non-empty collections of points in X . Although
Ran(X) doesn’t have a structure of ind-scheme, one can still consider the stable
∞-category of ind-ℓ-adic sheaves on it, which we denote by D(Ran(X)). We also
have a functor of global cohomology

H(Ran(X),−) : D(Ran(X))→ D(Vect).

For a point x ∈ X , we have a natural direct image functor

ιx! : D(Vect)→ D(Ran(X));

it admits left and right adjoints denoted ι∗x and ι!x, respectively.

We have a natural map

add : Ran(X)× Ran(X)→ Ran(X),

given by the operation of union of subsets of X . By definition, a factorization
algebra on X is an object A ∈ D(Ran(X)) equipped with an isomorphism

add∗(A) ≃ A⊠A|(Ran(X)×Ran(X))disj ,

where
(Ran(X)× Ran(X))disj ⊂ Ran(X)× Ran(X)

is the open subset corresponding to pairs of disjoint collections of points of X .

Under certain explicit technical assumptions on an augmented factorization
algebra A, one can establish the following version of the Grothendieck-Lefschetz
formula:

The expression

Tr(Frob, H(Ran(X),A))
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makes sense (i.e., is given by an absolutely convergent series) and equals the (ab-
solutely convergent) product

Π
x∈|X|

Tr(Frobx, ι
∗
x(A)).

Thus, to prove (***) we would like to find a factorization algebra A with the
following two properties:

(I) ι∗x(A) ≃ H(BG,Qℓ)
∨.

(II) Hc(BunG, ωBunG
) ≃ H(Ran(X),A).

Note that both these properties are geometric in the sense that they make sense
over an arbitrary ground field k. It is easy to see that the algebra satisfying (I)
exists and is essentially unique. For this algebra, the cohomology H(Ran(X),A)
can be easily computed to be isomorphic to

Sym(a∗ ⊗H(X,Qℓ)),

which coincides with the Atiyah-Bott formula for Hc(BunG, ωBunG
) (i.e., the ho-

mology of BunG). Thus, what we want is essentially to reprove the Atiyah-Bott
formula in a way that would work over an arbitrary ground field.

Let GrG be the affine Grassmannian of G, and let GrG,Ran be its Ran version.
We have the natural maps

BunG
p
←− GrG,Ran

π
−→ Ran(X).

Our main geometric result is the following:

Theorem. The natural map

p!(ωGrG,Ran
)→ ωBunG

is an isomorphism.

One could reformulate this theorem by saying that the fibers of the map p are
contractible.

Thus, we obtain isomorphisms:

Hc(BunG, ωBunG
) ≃ Hc(BunG, p!(ωGrG,Ran

)) ≃

≃ Hc(GrG,Ran, ωGrG,Ran
) ≃ H(Ran(X), π!(ωGrG,Ran

)).

We conclude the argument by the proving the isomorphism of factorization
algebras

π!(ωGrG,Ran
) ≃ A,

which is a well-known result in topology.
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Hochschild homology of structured algebras and TCFT’s

Nathalie Wahl

(joint work with Craig Westerland)

Let A∞ be the linear monoidal category with objects the natural numbers and
with the property that symmetric monoidal functors φ : A∞ → Comp correspond
exactly to A∞-algebra structures on φ(1).

Given a monoidal functor i : A∞ → E , for E some linear category, we define
the Hochschild complex C as an operator on functors φ : E → Comp, with the
property that, for a symmetric monoidal functor φ, its Hochschild complex C(φ)
evaluated at 0 is the usual Hochschild complex of the A∞-algebra φ(1). Our
main theorem says that, if the iterated Hochschild complexes of the representable
functors E(e, ) admit an action of some category D

Cn(E(e, ))⊗D(n,m) −→ Cm(E(e, ))

naturally in e, then the Hochschil complex C(φ)(0) of any monoidal functor φ :
E → Comp is a homotopy D-module, that is we have maps

C(φ)(0)⊗n ⊗D(n,m) −→ C(φ)(0)⊗m

satisfying the coherences of an action up to homotopy. Moreover, this action is
natural with respect to maps E → E ′ and D → D′.

Applied to E = O, the open string cobordism category, this recovers a theo-
rem of Costello [1] and Kontsevich-Soibelmann [2] saying that the homology of
the moduli spaces of surfaces acts on the Hochschild homology of “A∞-Frobenius
algebras”. Applied to E = H0(O), we get an action of the homology of compact-
ified Sullivan diagrams on the Hochschild homology of strict Frobenius algebras,
recovering a result of Tradler-Zeinalian [3]. Our naturality statement says that,
if an A∞-Frobenius algebra happens to be strict, then the action of the moduli
space of Riemann surfaces on its Hochschild homology factors through an action
of compactified Sullivan diagram. Over the rationals, this can be used to explain
the triviality of many operations in string topology.
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3-dimensional Calabi-Yau categories and their Donaldson-Thomas
invariants

Yan Soibelman

(joint work with Maxim Kontsevich)

My talk was devoted to motivic Donaldson-Thomas invariants introduced in a
series of papers joint with Maxim Kontsevich (see [1, 2, 3]). Basic idea is the fol-
lowing. A 3CY category is a triangulated A∞-category C endowed with the Serre
pairing Hom(E,F ) ⊗ Hom(F,E) → C[−3] (we assume for simplicity that the
ground field is C). Then one can define a potential, which is (roughly speaking)
a function W (E,α), which is locally regular along the locus of objects E ∈ Ob(C)
and formal with respect to α ∈ Ext1(E,E). These properties of W require some
assumptions on the stack of objects of C, e.g. it is an ind-Artin stack. Using prop-
erly defined cohomology of the ind-Artin stack of objects with coefficients in the
sheaf of vanishing cycles of W , we introduced the so-called cohomological Hall al-
gebra (COHA), which is graded by the K-theoretical lattice. Graded components
of COHA can be thought of as elements of the tensor category EMHS of expo-
nential mixed Hodge structures. Hence they define elements of the commutative
ring, the K0-ring of the category EMHS. The generating series of the K0-classes
of components of COHA with values in an appropriate quantum torus is called
motivic DT-series of the category C.

After a choice of stability structure, motivic DT-series factorizes into a product
over all possible slopes of the central charge. Each slope factor is defined in terms
of the equivariant cohomology of the stack of semistable objects of this slope. This
allows us to introduce numerical DT-invariants, both ordinary and refined.

Motivic and numerical DT-invariants enjoy many nice properties, e.g. they
are integers. Conjecturally motivic DT-invariants give in the “classical limit”
generalized DT-inavariants of Joyce and Song. We proved a general wall-crossing
formula, which shows how the invariants jump as we cross a real codimension one
“wall of marginal stability” in the space of stability conditions. One application of
our results is a new “motivic” invariant of 3-dimensional manifolds, given in terms
of Chern-Simons theory with complex group. Our results can be thought of as a
mathematically rigorous treatment of the notions of BPS invariants and refined
BPS invariants in quantum phyiscs.
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A Filtration of Open/Closed Topological Field Theory

Ezra Getzler

A well-known theorem states that there is an equivalence between two-dimen-
sional topological field theories and commutative Frobenius algebras. This the-
orem, and its equivariant generalization (Turaev [14]), are implied by a result
contained in an appendix to a paper of Hatcher and Thurston [4]. Using Morse
theory, they prove that any pair of handle decompositions of a surface S is joined
by a sequence of moves of two types, respectively associated to embeddings in S
of a surface of genus 0 with four holes, and of a surface of genus 1 with one hole.

Moore and Seiberg [11] categorify this result: they give a presentation of mod-
ular functors, that is, two-dimensional field theories taking values in a symmetric
monoidal bicategory. They prove that on adjoining 2-cells associated to open em-
beddings in S of a surface of genus 0 with five holes, and of genus 1 with two holes,
to Hatcher and Thurston’s graph, one obtains a simply connected 2-dimensional
cell complex.

In this talk, we present a point of view on these results which allows us to obtain
higher categorifications of them, as well as generalizing them to the open/closed
setting (along with orientifolds).

The genus zero sector of open topological field theory is equivalent to the theory
of A∞-algebras. There are two well-known formalisms for these. One approach,
due to Segal [12], amounts to representing them as weak monoidal functors from
the category of totally ordered finite sets to a homotopy category, such that the
coherence morphisms

Φm,n : F (m + n)→ F (m)⊗ F (n)

are homotopy equivalences. A second approach, due to Stasheff [13], represents
them as algebras for an operad A∞ whose space A∞(n) of n-fold operations is a
polyhedron of dimension n− 2.

The filtration of these polyhedra by the dimension of their faces yields a filtra-
tion

F0A∞ ⊂ F1A∞ ⊂ . . .

of the operad A∞ such that the inclusion FkA∞ →֒ A∞ is k-connected; that is,
A∞ is obtained from FkA∞ by gluing cells of dimension greater than k. It is this
picture that we wish to generalize to topological field theory.

We start with the closed case. Let S be a compact oriented surface with marked
points z such that χ(S \ z) < 0 and each component of S contains at least one
point of z, letM(S, z) be the moduli space of hyperbolic metrics on S with cusps

at the marked point, and let M̂(S, z) be its Harvey compactification. This moduli
space is a real analytic manifold (or rather, orbifold) with corners, homotopy
equivalent to M(S, z), and hence a classifying stack for the mapping class group

Γ(S, z) = π0(Diff+(S, z)). If S is connected of genus g and |z| = n, write M̂g,n

for M̂(S, z). Define the closed signature α(S, z) ≥ 0 of the surface (S, z) by the
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formula

α(S, z) =

{
n− 3, g = 0,

2g − 2 + n, g > 0,

if S is connected, and as a sum over the components of S, in general.
A configuration of curves in (S, z) is a disjoint collection of closed embed-

ded curves in S \ z, defined up to isotopy, cutting it into components of negative
Euler characteristic. Configurations of curves form a partially ordered set C(S, z),
ordered by inclusion, whose maximal elements are the generalized pants decom-
positions, which decompose S \ z into pieces of Euler characteristic −1. Pairs
consisting of a configuration of curves together with a choice of generalized pants

decomposition refining it form a partially set C̃(S, z). There is a natural action of

the mapping class group on the partially ordered sets C(S, z) and C̃(S, z).

The orbifold M̂(S, z) has an atlas whose charts are indexed by elements c

of the partially ordered set C̃(S, z)/Γ(S, z): the coordinates of the chart are the
length and angle coordinates associated to the generalized pants decomposition,
while the curves in the configuration indicate those length coordinates which are
permitted to go to 0 in the chart. The corner in such a chart in which all of the

length coordinates vanish is a stratum of M̂(S, z), denoted by M̂(S, z, c). If S is

connected, M̂(S, z) has dimension 6g− 6 + 2n, and the dimensions of its strata lie
between 3g − 3 + n and 6g − 6 + 2n.

The moduli space P̂(S, z) is defined in a similar way to M̂(S, z), but with

n additional coordinates, the angle parameters at the marked points: P̂(S, z)
carries a free torus action which rotates these angles, whose quotient is the orbifold

M̂(S, z). In particular, dim P̂(S, z) = 6g − 6 + 3n, and its strata, which are torus

bundles over the strata of M̂(S, z), have dimension between 3g − 3 + 2n and

6g − 6 + 3n. The manifolds with corners P̂(S, z) assemble to form a modular
operad (Getzler and Kapranov [2], Kimura, Stasheff and Voronov [5]) in the U(1)-
equivariant category.

Definition. A two-dimensional field theory is an U(1)-equivariant algebra for P̂ .

The modular operad P̂ has a filtration

F0P̂ ⊂ F1P̂ ⊂ F2P̂ ⊂ . . .

Let P̂(S, z, c) be a stratum of P̂(S, z). Cutting along the curves of the configuration
c and contracting the new boundary components to marked points, we obtain a
possibly disconnected surface (S[c], z[c]); let α(S, z, c) equal α(S[c], z[c]). The

filtrand FkP̂(S, z) is a union of those strata P̂(S, z, c) such that α(S, z, c) ≤ k.

Equivalently, FkP̂(S, z) is the union of strata P̂(S, z, c) for which no fewer than

2g+n− 2−k components of S[c] have genus 0. For example, F0P̂(S, z) is a union
of tori each of which is labelled by a generalized pants decomposition of S \ z.

Theorem. The inclusion FkP̂ →֒ P̂ is k-connected.
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For k = 0, the theorem says that π0(F0P̂(S, z)) → π0(P̂(S, z)) is surjective, in
other words, every surface with marked points has a generalized pants decomposi-
tion. Of course, this property was already used in the construction of the Harvey
compactification.

For k > 0, the theorem implies that π0(FkP̂(S, z)) ∼= π0(P̂(S, z)), and thus

that FkP̂(S, z) is connected. For k = 1, this is precisely the result of Harer and
Thurston which we mentioned in the first paragraph.

Finally, the theorem says that for any choice of basepoint x ∈ FkP̂(S, z), the
morphism

πi(FkP̂(S, z), x)→ πi(P̂(S, z), x)

is an isomorphism for 0 < i < k, and surjective for i = k. In particular,

π1(F2P̂(S, z), x) is isomorphic to the mapping class group Γg,n = π1(P̂(S, z)):
this is the main result of Moore and Seiberg. More generally, it follows that two-
dimensional topological field theories in a symmetric monoidal k-category are the

same thing as U(1)-equivariant algebras for the modular suboperad FkP̂ : this is
a k-categorification of the original theorem of Moore and Seiberg.

The theorem is proved in the following steps (cf. Mondello [9]).

(1) It is a theorem of Harer [3] that if g > 0, the pair (M̂g,1, ∂M̂g,1) is a
relative cellular complex with no cells in dimension < 2g − 1.

(2) By induction on n, one sees that if g > 0, (M̂g,n, ∂M̂g,n) is a relative
cellular complex with no cells in dimension < 2g − 2 + n.

(3) On the other hand, M̂0,3 is a point, so the analogous induction shows that

(M̂0,n, ∂M̂0,n) is a relative cellular complex with no cells in dimension
< n− 3.

There is a generalization of this result to the open/closed setting, or, as we
prefer to think of it, in the real category: this is Atiyah’s term for the category
of spaces (X, σ) with involution. The homotopy type is now replaced by the real
homotopy type, made up of the homotopy types of the space X and its fixed-point
set Xσ.

Thus, we now consider surfaces S with an orientation-reversing involution σ
which preserves the set of marked points z: the world-sheet of open/closed topo-
logical field theory is identified with the quotient of S by the action of σ, and the
fixed-point set σ is identified with its boundary. Points of z invariant under the
involution correspond to points on the boundary of the world sheet, while the free
orbits correspond to points in its interior. It is important to allow the surface S
to be disconnected, in order to permit the inclusion of the purely closed sector in
the open/closed theory.

Denote the number of components of Sσ by h; let h0 be the number of these
components which contain no points of zσ, and let m be the number of points in
zσ. Define the open signature 0 ≤ β(S, z, σ) ≤ α(S, z) of the surface (S, z, σ) by
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the formula

β(S, z, σ) =





m− 3, g = 0, h = 1, m = n,

m+ 2h0 − 1, g = 0, h = 1, m < n,

1, g = 0, h = 0, and σ preserves S,

m+ 2h0 − 2, g = 1, h = 2,

m+ 2h0, otherwise,

if S is connected, and as a sum over the components of S in general. In terms of
the associated open/closed worldsheet, the exceptional cases correspond to a disk
with no marked points in the interior, a disk with at least one marked point in the
interior, a real projective plane RP

2, and a cylinder.

The involution σ on S induces an involution σ on the moduli spaces M̂(S, z) and

P̂(S, z); denote the resulting real spaces by M̂(S, z, σ) and P̂(S, z, σ). In this way,

we obtain the real, U(1)-equivariant, modular operad P̂ . (Here, U(1) has its usual
real structure, induced by complex conjugation.) Real U(1)-equivariant algebras
for this modular operad are open/closed unoriented topological field theories; a
modification of this yields a definition of open/closed oriented topological field
theories.

In the presence of the involution σ, the filtration FkP̂(S, z) has a refinement

Fk,0P̂(S, z, σ) ⊂ Fk,1P̂(S, z, σ) ⊂ · · · ⊂ Fk,kP̂(S, z, σ).

The filtrand Fk,ℓP̂(S, z, σ) is the union of those strata P̂(S, z, c) of P̂(S, z, σ) such
that α(S, z, c) < k, or α(S, z, c) = k and β(S, z, c′) ≤ ℓ for some c′ ≤ c. (The
small complication in the definition is due to the possibility that, unlike in the
case of the closed signature α, the open signature β can increase as one moves to
strata on the boundary of a given stratum.)

Theorem. The inclusion
(
Fk,ℓP̂

)
σ →֒ P̂σ is 1

2 (k + ℓ)-connected.

The proof follows a similar pattern to that in the closed case.
This analysis immediately yields the analogue for open/closed topological field

theories of the identification of closed topological field theories with commutative
Frobenius algebras. (See for example, Alexeevski and Natanzon [1], Lauda and
Pfeiffer [6], Moore and Segal [10]; Lewellen [7] did pioneering work on this subject
in a non-topological setting.) It also yields a generalization of the theorem of
Moore and Seiberg to the open/closed setting.

Acknowledgements. I wish to thank Kentaro Hori, Eduard Looijenga and Greg
Moore for numerous useful suggestions during the lengthy gestation of this project.
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Witt group of modular categories

Alexei Davydov

(joint work with Michael Müger, Dmitri Nikshych, Victor Ostrik)

Modular categories [7] are important for mathematical physics due to their appear-
ance as categories of representations of chiral algebras in a rational conformal field
theory. There are several mathematical constructions (or classes) of modular cat-
egories. The first (and the most simple) is the class of pointed modular categories
(a category is pointed if all its simple objects are invertible with respect to the
tensor product). They correspond to so-called lattice conformal field theories.The
second is the class of affine modular categories. These categories appear as positive
energy representations of loop groups and correspond to so-called WZW models.
Finally due to a theorem of M. Müger [4] monoidal (or Drinfeld) centre of any
spherical category is modular. Physical examples of monoidal centres come from
subtheories of holomorphic theories.

In this paper we propose a way of “taming the zoo” of modular categories by
introducing an equivalence relation on the set of modular categories, which makes
all monoidal centers equivalent to the trivial modular category (the category of
vector spaces). Due to another theorem of M. Müger [5] the set of equivalence
classes is an abelian group with respect to the Deligne product of modular cate-
gories. We call this group the Witt group of modular categories. The choice of the
name is motivated by the fact that classes of pointed categories form a subgroup
isomorphic to the Witt group of finite abelian groups with quadratic forms.
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Since the end of eighties there is a common believe among physicists that all
rational conformal field theories come from lattice and WZW models via coset
and orbifold (and perhaps chiral extension) constructions (see [3]). Analogous
statement for modular categories would imply that the Witt group of modular
categories is generated by affine classes (labelled by a Dynkin diagram and a nat-
ural number). We discuss relations between these classes coming from conformal
embeddings [1, 6] and coset presentations of the minimal series [2].
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The rational and trigonometric Casimir connections

Valerio Toledano Laredo

1. The (rational) Casimir connection

Let g be a complex, semisimple Lie algebra, h ⊂ g a Cartan subalgebra, Φ ⊂ h∗

the corresponding root system and W ⊂ GL(h) the Weyl group of g. Fix a non–
degenerate invariant bilinear form (·, ·) on g.

The Casimir connection ∇C of g is a flat, W–equivariant connection on h with
logarithmic singularities on the root hyperplanes and values in any g–module V
given by

∇C = d− ~
∑

α∈Φ+

dα

α
κα

where the sum ranges over the positive roots of g, κα =
(α, α)

2
(eαfα + fαeα) is

the truncated Casimir operator of the sl2–subalgebra of g corresponding to α and
~ ∈ C is a deformation parameter. This connection was discovered in [8, 11] and
independently by De Concini around 1995 (unpublished) and by Felder et al. [4].

Set hreg = h \
⋃

α Ker(α), and let BW = π1(hreg/W ) be the generalised braid
group of type W . The monodromy of ∇C yields a one–parameter family of repre-
sentations of BW on V .
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Let now U~g be the quantum group corresponding to g. The quantum Weyl
group operators of U~g defined by Lusztig, Kirillov–Reshetikhin and Soibelman
give rise to an action of the braid group BW on any integrable U~g–module V [7].
The following is an analogue for the Casimir connection of the Kohno–Drinfeld
theorem [2].

Theorem ([11, 12]). The quantum Weyl group action of BW on an integrable
U~g–module V is equivalent to the monodromy of the connection ∇C on the g–
module V/~V.

2. The trigonometric Casimir connection

We describe next an extension of the Casimir connection which gives mon-

odromy representations of the affine braid group B̂ corresponding to g on finite–
dimensional representations of the Yangian Y (g).

2.1. The connection. Let P ⊂ h∗ be the weight lattice and H = HomZ(P,C∗)
the complex algebraic torus with Lie algebra h and ring of regular functions given
by the group algebra CP . Set

Hreg = H \
⋃

α∈Φ

{eα − 1}

where eλ ∈ C[H ] is the function corresponding to λ ∈ P . The Weyl group W acts
freely on Hreg and the fundamental group π1(Hreg/W ) is the affine braid group

B̂.
The Yangian Y (g) is a deformation of the enveloping algebra U(g[t]) over the

ring C[~]. Let ν : h→ h∗ be the isomorphism determined by the inner product (·, ·)
and set ti = ν(λ∨i ) where λ∨1 , . . . , λ

∨
n are the fundamental coweights of g relative

to Φ+. We shall think of the ti as linear coordinates on h and their differentials
dti as translation–invariant one–forms on H . Let Ti,r, r ∈ N, i = 1, . . . , n, be the
Cartan loop generators of Y (g) in Drinfeld’s new realisation [3].

Theorem ([13]). The Y (g)–valued connection on Hreg given by

∇̂κ = d− ~
∑

α∈Φ+

dα

eα − 1
κα +

n∑

i=1

dti
(

2Ti,1 −
~

2
T 2
i,0

)

is flat and W–equivariant.

We call ∇̂ the trigonometric Casimir connection of g. Its monodromy yields an

action of the affine braid group B̂ on any finite–dimensional Y (g)–module.

2.2. Monodromy. Let now Lg = g[s, s−1] be the loop algebra of g and U~Lg the
corresponding quantised enveloping algebra. It is known that the Yangian Y (g)
and the quantum loop algebra U~Lg have the same finite–dimensional representa-
tion theory (see [14] and [5]).

By analogy with Theorem 1 we make the following
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Conjecture ([13]). The monodromy of the trigonometric Casimir connection is

equivalent to the quantum Weyl group action of the affine braid group B̂ on finite–
dimensional U~(Lg)–modules.

We are currently working on this conjecture in collaboration with S. Gautam
[6].

2.3. Relation to Quantum cohomology. If g is simply–laced, finite–dimensional
Y (g)–modules may be realised geometrically via Nakajima’s quiver varietiesM(v, w)
[9]. Specifically, for any w ∈ Nn, the direct sum of the equivariant cohomologies

⊕

v∈Nn

H∗
Gw×C×(M(v, w))

carries an action of the Yangian Y (g).
The corresponding quantum equivariant cohomology carries a flat connection

known as the quantum differential equation.

Theorem ([1]). The equivariant quantum differential equation on
⊕

v

QH∗
Gw×C×(M(v, w))

coincides with the trigonometric Casimir connection.

Theorem 2.3 is consistent with the results of Nekrasov–Shatashvili according to
which the spetrum of the operators of quantum multiplication is described by the
Bethe ansatz equations for the Yangian Y (g) [10].
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D-branes, T-duality, and Index Theory, Part II

Kentaro Hori

Finding T-duality transformation of D-branes is an important problem. D-branes
were discovered as the T-dual images of the Neumann boundary condition in the
first place! Solutions of different levels of preciseness and generality had been
obtained in the past. I (the speaker) demonstrated in 1999 [1] that T-duality is
a differential geometric version of Fourier-Mukai transform, and used it to derive
the T-duality transformation of D-brane charges, i.e., the T-duality isomorphism
of K-theory. This is for the case where the spacetime is a direct product of a torus
and another manifold and the H-field is zero. The K-theory level T-duality was
extended by Bouwknegt et al in 2003 [2] to the case of non-trivial torus fibration
and with non-zero H-field, which was followed by several important works. More
recently, T-duality at the level of differential K-theory (in the general set-up as in
[2]) was obtained by Kahle and Valentino [3], as was presented in the Gong Show
of Tuesday night. Concerning the level of preciseness, this may be close to that
achieved in [1].

One thing I would like to emphasize is that a proposal is complete only after
it is derived to be equal to what T-duality does. In the 1999 paper [1], I used
D-brane probes to demonstrate that T-duality is indeed the differential geometric
version of Fourier-Mukai transform. Recently, I found a simpler derivation of
the same transformation, based on an elementary worldsheet analysis [4]. The
new derivation has several advantages, and I expect that it will lead to further
development. The talk was an outline of this work.

I started the talk with the path-integral derivation of T-duality, which extends
Buscher’s work in 1987-88 [5] to worksheets with boundary. (This was first outlined
in my paper in 2000 [6], to the best of my knowledge.) Next, I reviewed how
superconnections can be used to specify D-branes, by explicitly writing down the
boundary interactions. Applying the path-integral dualization to such boundary
interactions, we obtain the T-duality transform of superconnections. This indeed
takes the form of differential geometric version of Fourier-Mukai transform.
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C
∗-algebras in tensor categories

Varghese Mathai

(joint work with P. Bouwknegt, K. Hannabuss)

1. Concrete nonassociative C∗-algebras

Here we briefly outline the theory of nonassociative C∗-algebras, viewed as
C∗-algebras in tensor categories in [2], which appeared when trying to construct
T-duals of compactified spacetimes with background H-flux in [1]. We refer the
reader to these papers for details.

Let G = Rn and consider the space of all bounded operators B(L2(G)) on the
Hilbert space L2(G). We will argue that T ∈ B(L2(G)) determines a unique tem-
pered distribution kT on G

2. That is, there is a canonical embedding, B(L2(G)) →֒
S ′(G2), which will be used, for instance to give the algebra B(L2(G)) a nonasso-
ciative product, that has the advantage of being rather explicit.

Recall that there is a scale of Hilbert spaces Hs(G), s ∈ R, called Sobolev
spaces, which are defined as follows: the Fourier transform on Schwartz functions
S(G) on G is a topological isomorphism, ̂: S(G)→ S(G), where we identify G with
its Pontryagin dual group. It extends uniquely to an isometry on square integrable
functions on G,̂ : L2(G)→ L2(G).

Moreover, by duality, the Fourier transform extends to be a topological iso-
morphism on tempered distributions on G,̂ : S ′(G) → S ′(G). Then for s ∈ R,
Hs(G) is defined to be the Hilbert space of all tempered distributions Q such

that (1 + |ξ|2)s/2Q̂(ξ) is in L2(G), with inner product given by 〈Q1, Q2〉s =

〈(1 + |ξ|2)s/2Q̂1(ξ), (1 + |ξ|2)s/2Q̂2(ξ)〉0, where 〈 , 〉0 denotes the inner product
on L2(G).

The following are some basic properties of the scale of Sobolev spaces, which are
established in any basic reference on distribution theory. For s < t, Ht(G) ⊂ Hs(G)
and moreover the inclusion map Ht(G) →֒ Hs(G) is continuous. Also one has
S(G) =

⋂
s∈R

Hs(G) and S ′(G) =
⋃

s∈R
Hs(G). It follows that the inclusions

ιs : S(G) →֒ Hs(G) and κs : Hs(G) →֒ S ′(G) are continuous for any s ∈ R. Recall
also the Schwartz kernel theorem says that a continuous linear operator T : S(G)→
S ′(G) determines a unique tempered distribution kT on G

2, and conversely.

Lemma. There is a canonical embedding,

(1.1) B(L2(G)) →֒ S ′(G2) ,

whose image is contained in the subspace of composable tempered distributions.

Proof. Suppose that T ∈ B(L2(G)). Then in the notation above, the composition

(1.2) κ0 ◦ T ◦ ι0 : S(G)→ S ′(G) ,

is a continuous linear operator. By the Schwartz kernel theorem, it determines a
unique tempered distribution kT ∈ S

′(G2). Suppose now that S ∈ B(L2(G)).
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Then ST ∈ B(L2(G)) and

(1.3) kST (x, y) =

∫

z∈G

kS(x, z)kT (z, y) dz ,

where

∫

z∈G

dz denotes the distributional pairing. �

We can now define a new product on B(L2(G)) making it into a nonassociative
C∗-algebra.

Definition. Let φ ∈ C(G × G × G) be an antisymmetric tricharacter on G. For
S, T ∈ B(L2(G)), define the tempered distribution kS⋆T ∈ S

′(G2) by the formula,

(1.4) kS⋆T (x, y) =

∫

z∈G

kS(x, z)kT (z, y)φ(x, y, z) dz .

Then for all ξ, ψ ∈ L2(G), the linear operator S ⋆ T given by the prescription,

(1.5) 〈ξ, S ⋆ Tψ〉0 =

∫

x,y∈G

kS⋆T (x, y)ξ̄(x)ψ(y) dxdy ,

defines a bounded linear operator in B(L2(G)), which follows from the observation
that S ⋆ T is an adjointable operator.

Definition. We denote by Bφ(L2(G)) the space B(L2(G)) endowed with the nonas-
sociative product ⋆. This definition extends that of the twisted compact operators
Kφ(L2(G)), so in particular ⋆ defines a nonassociative product on B(L2(G)) which
agrees with the nonassociative product on the twisted compact operators.

There is an involution kS∗(x, y) = kS(y, x) for all S ∈ Bφ(L2(G)), and norm
on Bφ(L2(G)) is the usual operator norm. The following are obvious from the
definition: ∀ λ ∈ C, ∀ S1, S2 ∈ Bφ(L2(G)),

(1.6)
(S1 + S2)∗ = S∗

1 + S∗
2 ,

(λS1)∗ = λ̄S∗
1 ,

S∗∗
1 = S1 .

The following lemma can be proved as in Section 5 in [1]

Lemma. ∀ S1, S2 ∈ Bφ(L2(G)),

(1.7) (S1 ⋆ S2)∗ = S∗
2 ⋆ S

∗
1 .

What appears to missing for the deformed bounded operators Bφ(L2(G)) is the
so called C∗-identity,

(1.8) ||S∗
1 ⋆ S1|| = ||S

∗
1S1|| = ||S1||

2.

However, we will continue to call Bφ(L2(G)) a nonassociative C∗-algebra and this
prompts the following concrete definition of a general class of nonassociative C∗-
algebras.
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Definition. A nonassociative C∗-subalgebra A of Bφ(L2(G)), is defined to be a
⋆-subalgebra of Bφ(L2(G)) that is closed under taking adjoints and also closed in
the operator norm topology.

In particular,A satisfies the earlier identities. Besides the examples of Bφ(L2(G))
and Kφ(L2(G)), another is the nonassociative torus, described in the next section.

2. Nonassociative tori

The following proposition can be proved.

Theorem ([2]). The group G acts on the twisted algebra of bounded operators
Bφ(L2(G)) by natural ∗-automorphisms

(2.1) θx[k](z, w) = φ(x, z, w)k(zx, wx),

and θxθy = ad(σ(x, y))θxy where ad(σ(x, y))[k](z, w) = φ(x, y, z)k(z, w)φ(x, y, w)−1

comes from the multiplier σ(x, y)(v) = φ(x, y, v).

Let Γ be a lattice in G. Then by the theorem above, it acts on Bφ(L2(G)) and
also the ideal Kφ(L2(G)). Then we define as in [1],

Definition. The crossed product Kφ(L2(G))⋊Γ is defined to be the nonassociative
torus Aφ.

The application to T-duality is encapsulated in the following:-

Theorem (rank n case, [1]). Let

Tn i
−−−−→ E

p

y

M

be a principal torus bundle over M , [H ] ∈ H3(E,Z). Now suppose that the re-
striction, i∗([H ]) 6= 0 ∈ H3(Tn,Z).

Then the Rn action on E lifts to a twisted Rn action on CT (E,H), viewed
as a C∗-algebra in the tensor category with associator equal to i∗(H), and the
T-dual of (E,H) is defined to be the twisted crossed product CT (E,H) ⋊twist R

n

which is a nonassociative algebra, or what we call a C∗-algebra in the same tensor
category. It is in general a continuous field of hybrids of noncommutative tori &
nonassociative tori.
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From gauge anomalies to gerbes and gerbal representations:
Categorified representation theory

Jouko Mickelsson

In this talk I will explain relations between on one hand the recent discussion on
3-cocycles and categorical aspects of representation theory, [2], and on the other
hand gauge anomalies, gauge group extensions and 3-cocycles in quantum field
theory, [1].

The set up for categorical representation theory consists of an abelian category
C, a group G, and a map F which associates to each g ∈ G a functor Fg in the
category C such that for any pair g, h ∈ G there is an isomorphism

ig,h : Fg ◦ Fh → Fgh.

For a triple g, h, k ∈ G we have a pair of isomorphisms ig,hk ◦ ih,k and igh,k ◦ ig,h
from Fg ◦ Fh ◦ Fk to Fghk :

They are not necessarily equal; one can have a central extension (with values
in an abelian group)

ig,hk ◦ ih,k = α(g, h, k)igh,k ◦ ig,h

with α(g, h, k) ∈ C× a 3-cocycle.
The smooth loop group LG (G compact,simple) has a central extension defined

by a (local) 2-cocycle. According to Frenkel and Zhu, increase the cohomoligal
degree by one unit by going to the double loop group L(LG). They do this al-
gebraically, utilizing the idea of A. Pressley and G. Segal by embedding the loop
group LG (actually, its Lie algebra) to an appropriate universal group U(∞) (or
its Lie algebra). The point of this talk is to show how this is done in the smooth
setting, globally, and connecting to the old discussion of QFT anomalies in the
1980’s.

Following [3], let B be an associative algebra and G a group. Assume that we
have a group homomorphism s : G→ Out(B) where Out(B) is the group of outer
automorphims of B, that is, Out(B) = Aut(B)/In(B), all automorphims modulo
the normal subgroup of inner automorphisms.

If one chooses any lift s̃ : G→ Aut(B) then we can write

s̃(g)s̃(g′) = σ(g, g′) · s̃(gg′)

for some σ(g, g′) ∈ In(B). From the definition follows immediately the cocycle
property

σ(g, g′)σ(gg′, g′′) = [s̃(g)σ(g′, g′′)s̃(g)−1]σ(g, g′g′′)

Prolongation by central extension
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Let next H be any central extension of In(B) by an abelian group a. That is,
we have an exact sequence of groups,

1→ a→ H → In(B)→ 1.

Let σ̂ be a lift of the map σ : G × G → In(B) to a map σ̂ : G × G → H (by a
choice of section In(B)→ H). We have then

σ̂(g, g′)σ̂(gg′, g′′) = [s̃(g)σ̂(g′, g′′)s̃(g)−1]σ̂(g, g′g′′) · α(g, g′, g′′) for all g, g′, g′′ ∈ G

where α : G×G×G→ a.
Here the action of the outer automorphism s(g) on σ̂(∗) is defined by

s(g)σ̂(∗)s(g)−1 = the lift of s(g)σ(∗)s(g)−1 ∈ In(B) to an element in H. One
can show that α is a 3-cocycle

α(g2, g3, g4)α(g1g2, g3, g4)−1α(g1, g2g3, g4)

×α(g1, g2, g3g4)−1α(g1, g2, g3) = 1.

Remark If we work in the category of topological groups (or Lie groups) the
lifts above are in general discontinuous; normally, we can require continuity (or
smoothness) only in an open neighborhood of the unit element.

The above situation appears in gauge theory. The algebra B is realized as the
C∗ algebra of fermionic anticommutation relations for fermions on a circle and in
the simplest case the outer automorphism as the group of functions on an interval
with values in a compact Lie group, the inner automorphisms as the loop group
LG (elements of which are implemented up to projective factor as operators in the
fermionic Fock space). The central extension comes automatically when lifting the
1-particle operators to operators in the Fock space. The group 3-cocycle can be
computed but is complicated. Instead, the corresponding Lie algebra 3-cocycle is
simple and equal to

1

4πi
trX [Y, Z],

where X,Y, Z are elements of the Lie algebra of G and the trace is computed in
an appropriate representation of G.

This construction can be generalized to gauge theory in higher dimensions. The
loop group LG is then replaced by a group Map(M,G) of G-valued functions on
a compact space G and the central extension by an abelian extension induced by
renormalization effects in quantum field theory, [4]. For further details see [5].

Back to the double loop group L(LG)

Next we can replace the group G by G = L(LG). Assuming G connected, simply
connected, the group G is connected and we can again go through the same steps
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as in the case of G earlier, except that now for LG the representation has to be
understood in the sense of groupoid central extension or in other words, as Hilbert
cocycle. The groupoid here is actually the natural transformation groupoid coming
from the gauge action of LG on gauge connections A on a 3-torus. The cocycle is
then a function of the parameter A.

As before, one can compute the 3-cocycle for the double loop group. The cor-
responding Lie algebra 3-cocycle is obtained by transgression from the Lie algebra
2-cocycle for LG, [4, 5]. Explicit expressions are given as

c2 = const.

∫

T 3

trA[dX, dY ]

with X,Y : T 3 → g, transgressing to

c3 = const.

∫

T 2

trX [dY, dZ]

with now X,Y, Z : T 2 → g.
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Some remarks on holomorphic Chern-Simons theory and the Witten
genus

Kevin Costello

Let X be a complex manifold. A beautiful result of Fedosov [6] and Bressler-Nest-
Tsygan [1] explains how one can see the Todd class of X by thinking about the
Hochschild homology of the algebra of differential operators on X .

This talk described an analogous result where the Witten class appears in place
of the Todd class. This result is explained in detail in [2] and [3].

In this result, the algebra of differential operators on X is replaced by the
chiral (or factorization) algebra of chiral differential operators on X . Instead of
considering Hochschild homology, we consider chiral homology along an elliptic
curve. Then, the Witten class of X evaluated at that elliptic curve appears in the
same way that the Todd class appears in the results of Fedosov and Bressler-Nest-
Tsygan.

This result is proved using the approach to quantum field theory developed
in [5], applied to a quantum field theory of maps from an elliptic curve to X .
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These quantum field theory calculations are then translated into the language of
factorization algebras using the results of [4].
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State Sums in G-equivariant 2-dimensional Extended Topological
Field Theories

Orit Davidovich

Our goal is to compute state sums in a 2-dimensional extended topological field
theory,

F : Bord2 −→ C

where both Bord2 and C are symmetric monoidal (∞, 2)-categories. Given a closed
surface Σ endowed with a polygonal subdivision (e.g. a triangulation), one can
derive a state sum formula, which computes F(Σ), by combining the F -invariants
of elements of the subdivision. This requires incorporating polygonal subdivisions
into Bord2, considered as a 2-fold complete Segal space in [1]. To that end, we
describe a series of blow-ups of elements of the subdivision of Σ. From the resulting
blown-up surface we extract an element of (Bord2)2,1 which captures both the
topological type of Σ and its subdivision. Its F -invariant can be computed once
we know what value F assigns to the saddle. This procedure can be generalized
to surfaces with extra structure such as an orientation or a principal G-bundle, or
to surfaces with boundary. We test it in the case of G-equivarient theories,

F : Bordori,G
2 −→ Alg

where Alg denotes the 2-category of algebras, bi-modules and inter-twiners, and

manifolds in Bordori,G
2 are equipped with orientation and principal G-budles (G is

assumed finite). By the cobordism hypothesis of [1], F is determined by a choice
of a G× SO(2)-invariant, fully-dualizable object of Alg. Such an object gives rise
to a biangular G-algebra (see [2] for terminology). Our state sum calculation in
this case reproduces Turaev’s formula in [2].
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Lie n-algebras, supersymmetry and division algebras

John Huerta

There is a relationship between normed division algebras and certain supersym-
metric theories of physics which lies at the heart of the following pattern:

• The only normed division algebras are R, C, H and O. They have dimen-
sions k = 1, 2, 4 and 8.
• The classical superstring makes sense only in spacetimes of dimension
k + 2 = 3, 4, 6 and 10.
• The classical super-2-brane makes sense only in spacetimes of dimension
k + 3 = 4, 5, 7 and 11.

I will sketch how to use the normed division algebras to prove the spinor identities
necessary for the existence of the classical superstring and 2-brane theories. Then
I will describe how exactly the same mathematics implies the existence of certain
higher structures, namely:

• In the superstring dimensions k + 2 = 3, 4, 6 and 10, we can use the
normed division algebras to construct a Lie 2-superalgebra superstring

which extends the Poincaré Lie superalgebra in these dimensions.
• In the super-2-brane dimensions k + 3 = 4, 5, 7 and 11, we can use the

normed division algebras to construct a Lie 3-superalgebra 2-brane which
extends the Poincaré Lie superalgebra in these dimensions.
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Algebraic models for higher categories

Thomas Nikolaus

I present the theory of algebraic Kan complexes and, more generally, of algebraic
fibrant objects in a general model category.

First I give a short review of simplicial sets, including the aspect of Kan com-
plexes as a model for weak ∞-groupoids. Kan complexes have several problems:
the lack of fixed composition- and coherence-cells and the fact that limits and
colimits in the category of Kan complexes do not necessarily exist. As a solution
to these problems I propose the notion of an algebraic Kan complex. The main
results about the category AlgKan of algebraic Kan complexs are:

(1) AlgKan is complete and cocomplete.
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(2) AlgKan is monadic over simplicial sets.
(3) AlgKan admits a combinatorial model structure Quillen equivalent to sim-

plicial sets and a further equivalence

Π∞ : Top→ AlgKan.

(4) All objects in AlgKan are fibrant.

Generalizing this construction, I introduce for any model category C (satisfying
some technical conditions) the category AlgC of algebraic fibrant objects which
also admits a model structure and is Quillen equivalent to C. Among applications
of this general procedure are algebraic quasi-categories as an algebraic model for
(∞, 1)-categories and algebraic simplicial presheaves as an algebraic model for
∞-stacks.
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Global Gauge Anomalies in two-dimensional Bosonic Sigma Models

Konrad Waldorf

In my talk I gave a quick overview about the article [1] written in collaboration
with Krzysztof Gawȩdzki and Rafa l Suszek. The first objective of the paper is to
define a general framework for gauged sigma models. The target space of such a
sigma model is a differentiable stack obtained as a quotient of a smooth manifold
M by an action of a Lie group H . The fields are triples (Σ, P, φ) consisting of
a (closed, oriented) surface Σ, a principal H-bundle p : P → Σ and a smooth,
H-equivariant map φ : P → M . The B-field is an H-equivariant gerbe G over M
with a pseudo-connection. The Feynman amplitudes of the model are defined by
the formula

A(Σ, P, φ) := HolΣ(p∗(φ∗G ⊗ IA)).

Here, A is a connection on P , IA is a topologically trivial gerbe over P with con-
nection defined by A, p∗ is the pushforward of gerbes provided by the equivariant
structure on G, and HolΣ denotes the surface holonomy of the pushed gerbe around
Σ. Anomalies aries when the amplitudes A depend on gauge transformations of
connection A, i.e. they are not gauge invariant.

The second objective of the paper is to use our formalism in order to detect
anomalies and ,,discrete torsion“ in gauged Wess-Zumino-Witten models. The
latter arises from different choices of equivariant structures on the same gerbe.
In my talk I discussed the case of SU(2)× SU(2) at level (k, 2) with the adjoint
action of diag(SU(2))/diag(SU(2)), considered by Hori [2]. There, we can explain
a sign ambiguity of the partition function found by Hori by detecting two different
SO(3)-equivariant structures on the relevant gerbe.
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T -Duality and Differential K-theory

Alexander Kahle

In this talk I state the main theorem in [4], refining topological T -Duality (in
the sense of [1, 2]) to an isomorphism in twisted differential K-theory. The basic

datum is a T -duality pair (P, P̂ , σ) consisting of a principal torus bundle with

connection (P,∇) → X , a dual torus bundle with connection (P̂ , ∇̂)→ X , and a

trivialisation σ : 0→ P · P̂ in H4(X ;Z), where H•(−;Z) is the geometric groupoid
associated to the differential cohomology of a space (described, e.g. in [3] pg. 9).

From this datum canonical twists τ ∈ H3(P ;Z), τ̂ ∈ H3(P̂ ;Z) of the differential

K-theory of P and P̂ respectively are constructed. One may then construct a
canonical homomorphism of twisted differential K-theory groups T : Ǩτ+•(P )→

Ǩ τ̂+•−dimP/X(P̂ ), which may be seen as a Fourier-Mukai transform in the setting
of differential K-theory. The theorem presented in this talk states that when
restricted to suitably defined invariant subgroups, this homomorphism is in fact
an isomorphism.
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The 0|2-Sigma Model Computes Euler Characteristic

Daniel Berwick-Evans

I will begin by surveying the emerging picture in the Stolz-Teichner program
that connects supersymmetric field theories and generalized cohomology theories.
Roughly, we expect that “good” supersymmetric field theories over a manifold
will give cocycles for a generalized cohomology theory on that manifold. Under
this correspondence, pushforwards can be understood as quantizations and cer-
tain physically interesting examples (e.g. nonlinear sigma models) turn out to be
interesting classes in cohomology. The known examples are provided in the table
below, where the super dimension of the theory is denoted by d|δ and conjectures
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are marked by question marks. All theories listed have a special choice of geometry
on the worldsheet.

d|δ cohomology theory Class the Σ−Model Represents
0|1 HP ∗

dR, H
∗
dR 0 if dim(M) > 0, χ else

1|1 K∗, KO∗ Â
2|1 TMF ∗? Wit?
0|2 HP ∗? χ
1|2 ? χ, σ?

Results in dimension 0|1 are due to [1], and the state of the art in 1|1 and 2|1 is
summarized in [2]. I will present my recent results in dimension 0|2. In particular,
I will describe how the Euler characteristic arises from quantizing the 0|2-sigma
model and some interesting counterexamples furnished by 0|2-dimensional field
theories.
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Classification of noncommutative torus bundles

Rishni Ratnam

In 2005 Bouwknegt, Hannabuss and Mathai [1] proposed that the curvature classes
of noncommutative torus bundles arising as T-duals of commutative torus bundles
should be classified by a group arising as the target of an “integration over the
fibres” map in a dimensionally reduced Gysin sequence. Their paper however
was restricted to the image of integer cohomology in de Rham cohomology, and
therefore omitted torsion.

Somewhat earlier, Packer, Raeburn and Williams [2], using the theory of group
actions on continuous trace algebras, had written a version of the Gysin sequence
that includes torsion, but was restricted to the case where the H-flux on the com-
mutative bundle had at most “one leg” in the fibres.

Using the groupoid cohomology of Tu [3] we construct an integer cohomology
version of the Gysin sequence that agrees with both of these results and extends to
the case where the H-flux on the commutative bundle has at most “two legs” in the
fibres. This sequence therefore provides a group that classifies noncommutative
torus bundles that are T-dual to commutative ones.
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Twisted String/Fivebrane structures and geometry of M-branes

Hisham Sati

The goal of my talk is to identify (higher) geometric and topological structures
associated to M-branes. I mainly outline ideas from [2].

One way to study M-theory is through topology. Our strategy is to view anom-
alies in physics as corresponding to obstructions to having some (higher) structure
as a bundle over spacetime and/or for having an orientation with respect to some
generalized cohomology theory. When applied to the quantization condition of the
C-field in M-theory this leads to degree four twisted String structure [3].

From a generalized cohomology point of view, a String structure provides an
orientation for TMF. My expectation that a twisted String structure corresponds
to an orientation in twisted TMF is confirmed in [1]. The C-field provides the
twist. I also argue from various angles, including the equation of motion and S-
duality, that it is also essentially what is being twisted. This suggests that the
M-branes carry such twisted structure and hence have charges in twisted TMF [2].
Making this precise is the subject of current investigation.
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Stacks and étale 2-spaces

Igor Baković

(joint work with Branislav Jurčo)

For any topological space X , there is a well known pair of adjoint functors between
a category Bun(X) of bundles overX , and a category SetO(X)op of presheaves over
X , which restricts to an adjoint equivalence between a category Sh(X) of sheaves
over X , and a category Et(X) of étale spaces over X . The right adjoint is a
cross-section functor which assigns to every étale space over X a sheaf of its cross-
sections, and the left adjoint is a stalk functor which assigns to every presheaf
over X its étale space of germs. Stalks of stacks were less familiar so far, since
they appeared as filtered bicolimits over (an opposite of) a categoryOx(X) of open
neighborhoods of a fixed point x in X . Stalks defined in a such way were categories
with too many objects and it was not possible to introduce a sensible topology
on them. We introduce a new notion of a stalk of a stack, using the smallest
equivalence relation generated by a restriction relation on objects, which allows to
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introduce topology on both objects and morphisms. This construction corresponds
to a filtered pseudocolimit over a category Ox(X), and its universal property is
defined up to an isomorphism of categories, unlike the case of filtered bicolimits,
whose universal property is defined up to an equivalence of categories. In this way,
we extend above pair of adjoint functors to a pair of biadjoint 2-functors between
a 2-category Fib(X) of fibered categories over X , and a 2-category 2Bun(X) of
2-bundles over X , which restricts to an adjoint biequivalence between a 2-category
St(X) of stacks over X , and a 2-category 2Et(X) of étale 2-spaces over X .
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What can we learn from infinite-dimensional Lie groups about Lie
2-groups (and vice versa)?

Christoph Wockel

In this talk we emphasize the perspective that locally convex Lie groups are
groups endowed with locally smooth group operations. Under some mild require-
ments, these locally smooth group operations determine the Lie group structure
completely [1, Th. II.2.1].

Most definitions of smooth 2-groups or Lie 2-groups are either too restrictive
or rather complicated. Taking the above perspective over to 2-groups (categorical
groups) leads to a quite general (but yet easy to understand) notion of Lie 2-
groups. In particular, the String 2-group can be understood in those terms [2, Ex.
IV.10.]. On the other hand, 2-groups can solve non-integrality problems occurring
in the prequantization of infinite-dimensional Lie groups. In particular, étale Lie
2-groups serve as natural integrating objects for Banach-Lie algebras (cf. [2, Th.
VI.5.]) in cases that Banach-Lie algebras fail (cf. [1, Ex. VI.1.16]):

Theorem. If g is a Banach-Lie algebra, then there exists an étale Lie 2-group
such that its Lie algebra is isomorphic to g.
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Infinitesimal Symmetries of Dixmier-Douady Gerbes

Braxton Collier

Given a Dixmier-Douady gerbe C over a manifold M , we construct a generalized
Atiyah sequence

(0.1) 0 // BRM
// LC // χ(M) // 0.

The term LC has the structure of what we call a Lie algebra category, and we
interpret it as the category of lifts of vector fields on M to vector fields on C. The
left hand term is the category of principal R-bundles over M . If in addition C has a
connective structure, we can define the more structured notion of a connective lift.
We explain how the strongly homotopy Lie algebra associated to the exact Courant
algebroid constructed from a gerbe with connective structure can be interpreted
very naturally in our framework.
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