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Introduction by the Organisers

The workshop “Flows on homogeneous spaces and arithmetic”, organised by Man-
fred Einsiedler (ETH Zürich), Dmitry Kleinbock (Brandeis), Elon Lindenstrauss
(Hebrew University) and Hee Oh (Brown) was held July 4–10, 2010 and was at-
tended by 52 participants from around the world. The participants ranged from
senior leaders in the field to young post-doctoral fellows and PhD students; their
range of expertise covered areas from ergodic theory and dynamical systems to
automorphic forms, Diophantine approximation and additive combinatorics.

Flows on homogeneous spaces are a class of concrete dynamical systems inti-
mately connected to number theory. Many problems can be approached both via
dynamics and via number theoretic and spectral techniques. Recently the inter-
connection between the dynamics and the arithmetic has flourished, as in many
case these two approaches are complementary. The idea of the workshop was to
bring together experts in these fields to discuss and collaborate on problems re-
lated to homogeneous dynamics, equidistribution, counting integer and rational
points, diophantine approximations, and automorphic forms.
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The theory of flows on homogeneous spaces received a major impetuous in the
late 1980’s when Margulis used these dynamical techniques to settle a longstanding
conjecture by Oppenheim. Ratner’s well known theorems on rigidity of unipotent
flows have found numerous arithmetic applications, often unexpected, e.g. in the
study of the number and distribution of integer points in symmetric varieties,
values and representations of integer and irrational quadratic forms and even to
nonvanishing of certain L-functions. A technique developed by Margulis and others
to study nondivergence properties of unipotent flows found further applications in
metric Diophantine approximation.

Unlike unipotent flows which are well studied, multidimensional diagonal ac-
tions are still quite mysterious, though in recent years a substantial progress has
been made in their understanding. The talks by Shapira, Tomanov, Wang and
Katok dealt with various new phenomena arising from studying such actions, in-
cluding new examples of irregular orbit closures, while Zamojski talked about
applying diagonal actions to a certain counting problem.

One of the central recent events in the area has been a breakthrough work of
Benoist and Quint on classification of invariant and stationary measures for actions
of Zariski dense subgroups of Lie groups, not necessarily generated by unipotent
elements. Quint gave a series of two talks on this subject, and in addition Eskin
spoke about a new development in classification of invariant measures for some
actions on the moduli space of Riemann surfaces utilizing some ideas due to Benoist
and Quint.

Another area which has attracted a lot of attention during the workshop was
equidistribution of horocycles and their geodesic translates on homogeneous spaces
of infinite volume. Talks of Oh, Shah, Marklof, Roblin, Schapira, Paulin discussed
such results, and in many cases – applications to counting problems. The theme
of counting and equidistribution can be also approached by methods coming from
the theory of automorphic forms, or by studying the spectral gap of certain groups.
This has been highlighted in talks by Fuchs, Kontorovich, Kowalski, Ghosh, Gorod-
nik, while Breuillard and Varju discussed families of expanders arising from certain
groups. Green’s talk on his joint work with Tao centered on a connection between
problems in additive combinatorics and equidistribution of nilflows. Another ap-
proach to counting problems, based on integral inequalities on the space of lattices,
was surveyed by Margulis.

The workshop went very well; in order to leave enough time for fruitful dis-
cussions, the number of talks (50 minutes long) was limited to five per day, and
to 23 altogether. On Thursday evening we had a session for short communica-
tions (5 minute long talks and five minute intervals for discussion), which allowed
many young participants to introduce themselves and the circle of problems they
have been working on. The traditional Wednesday afternoon hike has successfully
contributed to cheerful and productive atmosphere of the workshop!
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Abstracts

Product theorems and expander graphs

Emmanuel Breuillard

(joint work with Ben Green, Bob Guralnick and Terence Tao)

Let G be a group and A a finite subset of G. Let AA = {a1a2|a1, a2 ∈ A} be the
‘product set’ of A. Similarly we define Ak = A · ... ·A the k-fold product set of A.
Let |A| be the cardinality of A. Obviously |A| ≤ |AA| ≤ |A|2. We are interested
in the following question, sometimes called the non-commutative Freiman problem
(see [12] and Tao’s blog):

Question: What can be said about A if |AA| is small compared to |A|2, that
is if |AA| ≤ K|A|, where K is a fixed parameter ?

Here are some examples (=exercises) that show what can happen in some cases:

(1) |AA| = |A| if and only if A = aH is a normalizing coset of a finite subgroup
H of G.

(2) |AA| < 3
2 |A| if and only if A ⊂ aH is contained in a normalizing coset of

a finite subgroup H of G of size |H | < 3
2 |A|.

(3) IfA = {0, ..., n} ⊂ Z, A+A = {0, ..., 2n} and thus |A+A| = 2|A|−1 < 2|A|.
(4) If A is the ball of radius n in the Cayley graph of a nilpotent group G

generated by some finite set S, then |AA| ≤ K|A|, where K depends only
on G,S but not on n.

Note that the 3
2 in item (ii) above is sharp (take A = {0, 1} ⊂ Z). It is a rather

remarkable feature that from such a weak assumption on the size of AA one can
prove the existence of an underlying algebraic structure (i.e. the group H).

When G is non-commutative, it is somewhat easier to study sets A for which
the triple product is small, i.e. |AAA| ≤ K|A|. In fact, arguments inspired by
Ruzsa (see [12]) show that |AAA| ≤ K|A| imply that |An| ≤ K2n−2|A|. However
a set A may have |AA| < 3|A| while |AAA| ≥ (|A| − 1)2 (take A = H ∪ {x} where
H is a finite subgroup and x such that H ∩ xHx−1 = {1}).

These examples give a flavour of what we expect to happen in a general ambient
group G. When G is a simple algebraic group, together with Ben Green and
Terence Tao, we prove the following ‘product theorem’:

Theorem 1 ([2]). Let G be an almost simple algebraic group over an algebraically
closed field k and d = dimG. Let A ⊂ G(k) be a finite set. Then

(1) either A ⊂ H(k), where H is a proper algebraic subgroup of G with at
most c(d) connected components.

(2) or |AAA| ≥ min{|〈A〉|, |A|1+ǫ}, where ǫ = ǫ(d) > 0 and 〈A〉 the subgroup
generated by A.

Remarks: (a) In the case when k = Fp, and A is assumed to generate G(Fq) for
q some power of a prime p, then this theorem was proved independently by Pyber
and Szabo in [11]. This case is in fact the hardest case.
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(b) The above theorem is only an improvement of a theorem of Hrushovski [8],
which under the same hypotheses asserted the somewhat weaker conclusion that
|AAA| ≥ min{|〈A〉|, |A|f(|A|)} for some function f : [0,+∞) → [0,+∞) tending to
+∞ in +∞. Our theorem can be viewed as a quantitative version of Hrushovski’s,
where we show that f(x) can be taken to grow at least like xǫ for some ǫ > 0.
This improvement is crucial for the applications to expanders below.
(c) The result extends prior work of Helfgott [6] and [7] and Helfgott and Gill [4],
which where concerned respectively with the special cases of SL2(Fp) and SL3(Fp)
and of SLn(Fp) for sets A of small size. Although some features of our proof (such
as considering maximal tori) are common with some of Helfgott’s prior work, our
methods are largely different and are closer in spirit to the work of Larsen-Pink
[10] on finite subgroups of algebraic groups as used by Hrushovski in [8].

In a breakthrough paper [1] Bourgain and Gamburd used the above product
theorem in the case of SL2(Fp) (i.e. Helfgott’s theorem) to give many new examples
of Cayley graphs of SL2(Fp) that are ǫ-expanders, i.e. have a uniform lower bound
ǫ > 0 on the first eigenvalue of their discrete laplacian. They also proved that
random Cayley graphs of SL2(Fp) form a family of expanders. Together with R.
Guralnick, we managed to generalize this last result to the higher rank case and
all finite fields:

Theorem 2 ([3]). Suppose that G is a finite simple group of Lie type of fixed
rank and that a, b ∈ G are selected uniformly at random. Then with probability
1− o|G|→∞(1), {a, b} generates G and its Cayley graph is an ǫ-expander for some
ǫ > 0 depending only on the rank of G.

Fairly recently Kassabov-Lubotzky-Nikolov [9] showed that the family of all
finite simple groups can be turned into a family of expanders. This means in each
finite simple group, one can find a generating set with at most k elements (they
showed k ≤ 1000) whose associated Cayley graph is an ǫ-expander with ǫ > 10−10.
Theorem 2 above proves that one can in fact find pairs of generators that produce
an expanding family for all finite simple groups of Lie type of given rank, and that
a random pair will do. It does not say anything however when the rank grows to
infinity.

The proof follows the original Bourgain-Gamburd strategy (see [5] for a nice
exposition), making key use of the product theorem (i.e. Theorem 1 above). A
new difficulty arises in the higher case, where the subgroups structure is richer.
This difficulty is overcome by proving the following result about free subgroups
of simple algebraic groups and its finite version. A free subgroup of an algebraic
group is said to be strongly dense if all of its subgroups are either trivial, cyclic,
or themselves Zariski-dense.

Theorem 3 ([3]). Suppose that G(k) is a semisimple algebraic group over an
algebraically closed field k, and suppose that k has transcendence degree at least
2 dim(G) over the field k0 of definition of G. Then there exists a non-abelian free
subgroup Γ of G(k) on two generators which is strongly dense.
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Corollary 1. Fix a positive integer r. Let G(q) be a finite simple group of Lie
type of rank r over the finite field Fq (including twisted groups and Ree and Suzuki
groups). Let F2 be the free group on generators x, y. Let w1 and w2 be non-
commuting words in F2. Then the probability that w1(a, b) and w2(a, b) generate
G(q) tends to 1 as q → ∞.
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On Invariant measures for the SL(2,R) action on moduli space

Alex Eskin

(joint work with Maryam Mirzakhani)

Let H(m1 . . . ,mn) be a stratum of Abelian differentials, i.e. the space of pairs
(M,ω) where M is a Riemann surface and ω is a holomorphic 1-form on M whose
zeroes have multiplicities m1 . . .mn. The form ω defines a canonical flat metric
on M with conical singularities at the zeros of ω. Thus we refer to points of
H(m1 . . . ,mn) as flat surfaces or translation surfaces.

The space H(m1 . . . ,mn) admits an action of the group SL(2,R) which gener-
alizes the action of SL(2,R) on the space GL(2,R)/SL(2,Z) of flat tori. In this
note, we announce some ergodic-theoretic rigidity properties of this action.

Let Σ ⊂ M denote the set of zeroes of ω. Let {γ1, . . . , γk} denote a symplectic
Z-basis for the relative homology group H1(M,Σ,Z). We can define a map Φ :
H(m1 . . .mn) → Ck by

Φ(M,ω) =

(∫

γ1

ω, . . . ,

∫

γk

w

)
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The map Φ (which depends on a choice of the basis {γ1, . . . , γk}) is a local co-
ordinate system on (M,ω). Alternatively, we may think of the cohomology class
[ω] ∈ H1(M,Σ,C) as a local coordinate on the stratum H(m1 . . .mn). We will
call these coordinates period coordinates.

We can consider the measure λ on H(m1 . . .mn) which is given by the pullback
of the Lebesque measure on H1(M,Σ,C) ≈ Ck. The measure λ is independent of
the choice of basis {γ1, . . . , γk}, and is easily seen to be SL(2,R)-invariant. We
call λ the Lebesque measure on H(m1, . . . ,mn).

The area of a translation surface is given by

a(M,ω) =
i

2

∫

M

ω ∧ ω̄.

A “unit hyperboloid” H1(m1 . . . ,mn) is defined as a subset of translation sur-
faces in H(m1, . . . ,mn) of area one. The SL-invariant Lebesque measure λ1

on H1(m1, . . . ,mn) is defined by disintegration of the Lebesque measure λ on
H1(m1 . . . ,mn), namely

dλ = dλ1 da

A fundamental result of Masur [Mas1] and Veech [Ve1] is that λ1(H1(m1, . . . ,mn)) <
∞. In this paper, we normalize λ1 so that λ1(H1(m1, . . . ,mn)) = 1 (and so λ1 is
a probability measure).

For a subset M1 ⊂ H1(m1 . . . ,mn) we write

RM1 = {(M, tω) | (M,ω) ∈ M1, t ∈ R} ⊂ H(m1 . . . ,mn).

Definition 1. An ergodic SL(2,R)-invariant probability measure ν1 on
H1(m1, . . . ,mn) is called affine if the following hold:

(i) The support M1 of ν1 is an suborbitfold of H1(m1, . . . ,mn). Locally M =
RM1 is given by a complex linear subspace in the period coordinates.

(ii) Let ν be the measure supported on M so that dν = dν1da. Then ν is
an affine linear measure in the period coordinates on M, i.e. it is (up to
normalization) the restriction of the Lebesque measure λ to the subspace
M.

Definition 2. We say that any suborbitfold M1 for which there exists a measure
ν1 such that the pair (M1, ν1) satisfies (i) and (ii) an affine invariant submanifold.

We also consider the entire stratum H(m1, . . . ,mn) to be an (improper) affine
invariant submanifold.

The classification of the affine invariant submanifolds is complete in genus 2 by
the work of McMullen [Mc1] [Mc2] [Mc3] [Mc4] [Mc5] and Calta [Ca]. In genus 3
or greater it is an important open problem.

The main theorem is the following:

Theorem 1. Let ν be any ergodic SL(2,R)-invariant probability measure on
H1(m1, . . . ,mn). Then ν is affine.

For the case of strata in genus 2, Theorem 1 is proved using a different method
by Curt McMullen [Mc6].
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1. Some notes on the proof

The main theorem inspired by the results of several authors on unipotent flows
on homogeneous spaces, and in particular by Ratner’s seminal work. In particular,
the analogue of Theorem 1 in homogeneous dynamics is due to Ratner [Ra4], [Ra5],
[Ra6], [Ra7]. These results are based in part on the “polynomial divergence” of
the unipotent flow on homogeneous spaces.

However, in our setting, the dynamics of the unipotent flow (i.e. the action
of N) on H1(m1, . . . ,mn) is poorly understood, and plays no role in our proofs.
The main strategy is to replace the “polynomial divergence” of unipotents by the
“exponential drift” idea in the recent breakthrough paper by Benoist and Quint
[BQ]. Also, in our setting, since we have assumed invariance under A, we can (and
do) use entropy arguments throughout the proof, and not just at the end.
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Positive Density in Apollonian Circle Packings

Elena Fuchs

In the first picture in Figure 1 there are three mutually tangent circles packed
in a large circle on the outside, with four curvilinear triangles inbetween. By
an old theorem (circa 200 BC) of Apollonius of Perga, there are precisely two
circles tangent to all of the circles in a triple of mutually tangent circles. One can
therefore inscribe a unique circle into each curvilinear triangle as in the second
picture in Figure 1. Since this new picture has many new curvilinear triangles, we
can continue packing circles in this way – this process continues indefinitely, and
we thus get an infinite packing of circles known as the Apollonian circle packing
(ACP).
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          Generation 1                     Generation 2    Generation 3

Figure 1. Apollonian Circle Packings

A remarkable feature of these packings is that, given a packing in which the
initial four mutually tangent circles have integer curvature (reciprocal of the ra-
dius), all of the circles in the packing will have integer curvature as well – we refer
to such packings as integer ACP’s. There are various problems associated to the
diophantine properties of integer ACP’s which are addressed in [GLMWY] by the
five authors Graham, Lagarias, Mallows, Wilks, and Yan. They make considerable
progress in treating the problem, and ask several fundamental questions many of
which are now solved and discussed further in [S1], [F2], [FS], [KO], and [S2].

In most of these papers, ACP’s are studied using a convenient representation of
the curvatures appearing in an ACP as maximum-norms of vectors in an orbit of a
specific subgroup A of the orthogonal group O(3, 1). This group-orbit description
of ACP’s was derived by Hirst in [H] from the following theorem:

Theorem 1. (Descartes, 1643): Let a, b, c, and d denote the curvatures of four
mutually tangent circles, where a circle has negative curvature iff it is internally
tangent to the other three. Then

(1) Q(a, b, c, d) := 2(a2 + b2 + c2 + d2)− (a+ b+ c+ d)2 = 0.

For a proof of this, see [Cx]. The Apollonian group A is then a subgroup of
OQ(Z), generated by the involutions

(2) S1 =









−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1









S2 =









1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1









S3 =




1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1


 S4 =




1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1


 ,

The curvatures appearing in any given ACP are then simply the coordinates of the
vectors in an orbit Av, and so most number-theoretic problems regarding ACP’s
are reduced to counting points in such orbits. Two crucial properties of A are that

1) A is an infinite index subgroup of OQ(Z), and so there are infinitely many
integer ACP’s. As a subgroup of isometries of hyperbolic 3-space, A acts
with an infinite volume fundamental domain on H3.

2) A is Zariski dense in OQ(C).
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The first of these properties makes counting points in the orbit of A very difficult
using classical methods such as the theory of automorphic forms. The second
property, however, indicates a certain richness in the group’s orbits – in particular,
it allows for the use of the affine linear sieve as developed in [BGS] to tackle related
counting problems. In order to carry out this sieve, it is necessary to understand
the structure of the orbits of A modulo square free integers d > 1 – namely, we
require an analog of the Chinese Remainder Theorem for this orbit in affine space.
The analysis of orbits modulo integers d (not necessarily square free) is carried
out in [F2], and relies heavily on the second property above. It is summarized in
the following theorem.

Theorem 2. (F, ‘09): Let O be an orbit of A acting on a root quadruple1 of a
packing, and let Od be the reduction of this orbit modulo an integer d > 1. Let
C = {v 6= 0 |Q(v) = 0} denote the cone of solutions to (1) without the origin, and
let Cd be C over Z/dZ:

Cd = {v ∈ Z/dZ |v 6≡ 0 (d), Q(v) ≡ 0 (d)}

Write d = d1d2 with (d2, 6) = 1 and d1 = 2n3m where n,m ≥ 0. Write d1 = v1v2
where v1 = gcd(24, d1). Then

(i) The natural projection Od −→ Od1 ×Od2 is surjective.
(ii) Let π : Cd1 → Cv1 be the natural projection. Then Od1 = π−1(Ov1).
(iii) The natural projection Od2 −→ ∏

pr ||d2
Opr is surjective and Opr = Cpr .

This is precisely the analog of the Chinese Remainder Theorem needed to sieve
over the orbit of A. It also implies that the only local obstruction for any orbit of
A is modulo 24 – knowing a given orbit modulo 24 is enough to derive the orbit
modulo any integer from the structure of the cone C above. A conjecture which
was first formulated by Graham et.al. in [GLMWY] and made more precise in
[FS] is the following local to global principle for ACP’s:

Conjecture 1. (Graham-Lagarias-Mallows-Wilks-Yan ‘04, F-Sanden ‘10): Let P
be an integral ACP and let P24 be the set of residue classes mod 24 of curvatures
in P . Then there exists XP ∈ Z such that any integer x > XP whose residue mod
24 lies in P24 is in fact a curvature of a circle in P .

This conjecture seems very difficult to prove at this time – it is comparable in
difficulty to Hilbert’s 11th problem, yet experimental data suggests it is believable.
The following histograms illustrate the distribution of the frequencies with which
each integer in the given range satisfying the specified congruence condition occurs
as a curvature in the packing with root quadruple (−1, 2, 2, 3). Note that there
are no exceptions to the local to global principle in this range whenever 0 is not a
frequency represented in the histogram (i.e. each integer occurs at least once).

1A root quadruple of a packing P is essentially the 4-tuple of the curvatures of the largest
four circles in P . It is well defined and its properties are discussed in [GLMWY].
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A more feasible task is to show that the integers appearing as curvatures in any
integer ACP make up a positive fraction of all integers. This is done in [BF] and
is summarized in the following theorem.

Theorem 3. (Bourgain, F ‘10): Let κ(P,X) denote the number of distinct cur-
vatures less than X of circles in an integer Apollonian packing P . Then for X
large we have

κ(P,X) ≫ X

where the implied constant depends on the packing P .

This is shown by counting curvatures in different “subpackings” of an ACP.
Namely, we fix a circle C0 of curvature a0 and investigate which integers occur
as curvatures of circles tangent to C. This gives the preliminary lower bound
κ(P,X) ≫ X/

√
logX which was first proven by Sarnak in [S1]. The essential

observation which leads to this lower bound is that the set of integers appear-
ing as curvatures of circles tangent to C0 contain the integers represented by an
inhomogeneous binary quadratic form

fa0(x, y)− a0

of discriminant −4a20. To prove Theorem 3, we repeat this method for a subset
of the circles which we find are tangent to C0 in this way. For every circle C of
curvature a tangent to C0, we can produce a shifted binary quadratic form

fa(x, y)− a

where fa has discriminant −4a2 and consider the integers represented by fa. We
consider a in a suitably reduced subset of [(logX)2, (logX)3] and count the integers
represented by fa−a for a in this subset. It is important to note that the integers
represented by fa and fa′ for a 6= a′ are a subset of integers which can be written as
a sum of two squares since both forms have discriminant of the form −δ2. In fact,
fa and fa′ represent practically the same integers (see [F3] for a more detailed
discussion). It is rather the shift of each form fa by a that makes the integers
found in this way vary significantly. Our final step is to give an upper bound on
the number of integers in the intersection

{m represented by fa − a} ∩ {m′ represented by fa′ − a′}
In obtaining this upper bound, we count integers with multiplicity using a version
of the circle method from [N], which is a sacrifice we can afford to make for our
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purposes. This method is easily generalizable to many discrete linear algebraic
groups acting on H3 with an integral orbit. If the group’s orbit contains certain
nice suborbits as in the Apollonian case, one may restrict to counting in these
suborbits as explained above and thus yield a comparable lower bound on the
number of integers less than X in the full orbit of the group (counted without
multiplicity).
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Density, Duality, Spectra

Anish Ghosh

(joint work with Alexander Gorodnik and Amos Nevo)

We describe joint work with Alexander Gorodnik and Amos Nevo ([1], [2]). We
consider the very general problem of Diophantine approximation on homogeneous
varieties of semisimple groups and obtain bounds which are optimal in a variety of
cases. The motivation for our work comes from results and conjectures of M. Wald-
schmidt ([5], [6]) about the effective density of rational points on abelian varieties.
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Our main tools are the ergodic theory of group actions, bounds on the automor-
phic spectrum of the ambient group, and a method we have christened “duality”
which provides a tight connection between Diophantine approximation and the
behaviour of certain orbits on adelic quotients of semisimple groups. We refer the
reader to [1] for precise statements, which are necessarily technical. Further, in [2]
we study metric Diophantine approximation on homogeneous varieties, proving in
particular a version of the Khintchine-Groshev1 theorem. Another noteworthy and
in our opinion surprising aspect of our work is that it provides a precise relation-
ship between automorphic bounds and Diophantine approximation. In particular,
we are able to obtain lower bounds for the automorphic spectrum of semisim-
ple groups which are sharp in a number of cases (e.g. SLn), using Diophantine
approximation!

The short nature of this report necessitates brevity. With this in mind, we have
chosen to focus on a special case of one of our results and a couple of examples
with the intention of conveying the theme of our work. As mentioned above, we
invite the reader to peruse our preprint for more general statements and proofs.

1. Example 1

Let K be a totally real number field, V its set of places O its ring of integers,
and S a proper subset of the set of infinite places ofK. The Hilbert modular group
SL2(O) is a dense subgroup of

∏
v∈S SL(2,Kv) and we would like to quantify this

density. To do so, we introduce the following height on the rational points of
SL(2,K) (in fact the same definition works for any affine variety, in particular
Example 2 below):

H(g) :=
∏

v∈V

max(1, |gi|v)

and the following distance on SL2(Kv):

‖x− y‖v := max
i

|xi − yi|v.

Assuming the Ramanujan-Petersson conjectures [4], we prove that for almost ev-
ery xv ∈ SL2(Kv) with v ∈ S, δ > 0, and ǫv ∈ (0, ǫ0(x, δ)), there exists z ∈ SL2(O)
such that

‖xv − z‖v ≤ ǫv for v ∈ S and H(z) ≤
∏

v∈S

ǫ
− 3

2−δ
v .

Moreover, the exponent 3
2 is the best possible in the sense that we can (using

elementary covering arguments) deduce a lower bound with the same exponent.
Using the best currently known estimates towards the Ramanujan-Petersson con-
jecture (see [3]), we get unconditional solutions to the above inequalities with

H(z) ≤ ǫ−
27
14−δ.

1In fact, we prove weak versions of the Duffin-Schaeffer conjecture, i.e. no monotonicity
condition on the approximating function is assumed.
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For every xv ∈ SL2(Kv) with v ∈ S such that ‖xv‖v ≤ r, δ > 0, and ǫv ∈
(0, ǫv(r, δ)), there exists z ∈ SL2(O) such that

‖x− z‖v ≤ ǫ for v ∈ S and H(z) ≤
∏

v∈S

ǫ
− 27

7 −δ
s .

We now state a special case of our results for group varieties. Let K be a number
field, V the set of places of K and A the ring of adeles of K. Let G be a connected
almost simple algebraic K-group. We fix a maximal compact subgroup Uv of
G(Kv) which is good for almost all places v. The group G(K) is a lattice in G(A).
We denote by L2

00(G(A)/G(K)) the subspace of L2(G(A)/G(K)) orthogonal to all
automorphic characters. The translation action of the group Gv on G(A)/G(K)
defines the unitary representation πv of Gv on L2

00(G(A)/G(K)). We define the
spherical integrability exponent of πv w.r.t. Uv as follows

qv(G) := inf{q > 0 : ∀ Uv− invariant w ∈ L2

00(G(A)/G(K)), 〈πv(g)w,w〉 ∈ Lq(G(Kv))}.

This definition extends naturally to a subset S of V :

qS(G) := sup
v∈S

qv(G).

Given a subset S of V , we define also the exponent aS(G) by

aS(G) := sup inf
O⊃Y

lim sup
h→∞

log
AS(O, h)

log h
.

Here the supremum is taken over bounded Y ⊂ ∏
v∈S G(Kv) and

AS(O, h) := |{z ∈ G(K) : H(z) ≤ h, z ∈ O}|.
Given S ⊂ V , a finite subset S′ of S, x ∈ ∏

v∈S G(Kv) and (ǫv)v∈S′ we define

ωS(x, (ǫv)v∈S′) := min{H(z) : z ∈ G(O(V \S)∪S′), |xv − z|v ≤ ǫv, v ∈ S′}.
The function ωS quantifies the approximation property on the group variety with
respect to S. Thus, the problem of Diophantine approximation on such varieties
can be recast as the problem of obtaining bounds for ωS .

Theorem 1. [1] Let G be a connected simply connected almost simple algebraic
K-group and S a finite subset of V such that G is isotropic over V \S. Then there
exists a subset Y of full measure in

∏
v∈S G(Kv) such that for every δ > 0, finite

S′ ⊂ S, x ∈ Y , and (ǫv)v∈S′ ∈ (0, ǫ0(x, v, δ)) we have

ωS(x, (ǫv)v∈S′) ≤
∏

v∈S′

(
ǫ
− dimG

aS(G)
−δ

v

)qV \S/2

.

2. Example 2

We end with an example in the setting of homogeneous varieties of groups.
Let Sd denote the d dimensional unit sphere in Rd+1. Then for almost every
x ∈ S2(R), δ > 0, and ǫ ∈ (0, ǫ0(x, δ)), there exists z ∈ S2(Z[1/p]) such that

‖x− z‖∞ ≤ ǫ and H(z) ≤ ǫ−2−δ.
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Moreover this exponent is again the best possible. To cast these estimates in terms
of group actions, we consider the group G ⋍ D×/Z×, where D denotes Hamilton’s
quaternion algebra and Z the centre of D. This group naturally acts on the variety
of pure quaternions of norm one, which can be identified with S2.
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Property tau, counting lattice points, and applications

Alexander Gorodnik

(joint work with Amos Nevo)

Let F denote a number field equipped with the set VF of the absolute values of
F extended the standard normalised absolute values of the rational numbers and
Fv, v ∈ VF , denote the corresponding local fields.

We introduce local and global heights. For Archimedean v ∈ VF , and for
x = (x1, . . . , xd) ∈ F d

v , we set

Hv(x) =
(
|x1|2v + · · ·+ |xd|2v

)1/2
,

and for non-Archimedean v,

Hv(x) = max{|x1|v, . . . , |xd|v}.
For x = (x1, . . . , xd) ∈ F d, we set

H(x) =
∏

v∈VF

Hv(x).

Let S be a finite subset of VF containing all Archimedean absolute values, and

OS = {x ∈ F : |x|v ≤ 1 for v /∈ S}
is the ring of S-integers in F . We consider a system X of polynomial equations
with coefficients in OS . Given an ideal a of OS , we denote by X

(a) the system of
polynomial equations over the factor-ring OS/a obtained by reducing X modulo a.
There is a natural reduction map

πa : X(OS) → X
(a)(OS/a).



1720 Oberwolfach Report 29/2010

The question whether a solution in X
(a)(OS/a) can be lifted to an integral solution

in X(OS) is of fundamental importance in number theory. It is closely related to
the strong approximation property for algebraic varieties (see [PR]). For instance,
if G is a connected F -simple simply connected algebraic group which is isotropic
over S, then it satisfies the strong approximation property (see [PR]) and, in
particular, the map πa is surjective in this case. For more general homogeneous
varieties, the map πa does not have to be surjective, but the image πa(X(OS)) can
be described using the Brauer–Manin obstructions (see [Hr, CTX, BD]).

Theorem 1. Let X be an affine variety defined over F and equipped with a tran-
sitive F -action of a connected F -simple algebraic group. Then there exists a finite
subset of VF , containing all Archimedean absolute values, such that for every fi-
nite set S ⊃ S0 there exist cS , σS > 0 such that for every ideal a of OS and every
x̄ ∈ πa(X(OS)), there exists x ∈ X(OS) such that

πa(x) = x̄ and H(x) ≤ cS |OS/a|σS .

Given an affine variety X defined over a number field F , we set

NT (X(OS)) = |{x ∈ X(OS) : H(x) ≤ T }|
where OS is a ring of S-integers in F . We will be interested in producing an upper
estimate on NT (Y(OS)) for proper affine subvarieties Y of X. Although one might
naively expect that for irreducible X,

NT (Y(OS)) ≪X,deg(Y) NT (X(OS))
1−σY

with σY > 0, where we write deg(Y) for the degree of the projective closure of Y ,
this estimate is false in general as can be demonstrated by the variety x3

1 + x3
2 +

x3
3 + x3

4 = 0, where most of rational point lie on lines. Nonetheless, in the case of
group varieties we have the following:

Theorem 2. Let G be a connected F -simple simply connected algebraic group
defined over a number field F . Let S ⊂ VF be a finite subset containing all
Archimedean absolute values such that G is isotropic over S. Then there exists
σ = σ(G, S, dim(X)) ∈ (0, 1) such that for every absolutely irreducible proper affine
subvariety Y of G defined over F , we have

NT (Y(OS)) ≪G,deg(Y) NT (G(OS))
1−σ

as T → ∞.

Let G be a connected Q-simple simply connected algebraic group defined over
Q and G → GLn a representation of G which is also defined over Q. Fix v ∈ Zn.
We assume that X = Gv is Zariski close, and L = StabG(v) is connected and has
no nontrivial characters. Then the coordinate ring C[X] is a unique factorisation
domain. Let f be a regular function on X defined over Q such that it has a
decomposition into irreducible factors f = f1 · · · ft where all fi’s are distinct and
defined over Q. Let O = Γv be the orbit of Γ = G(Z). We assume that f takes
integral values on O and is weakly primitive (that is, gcd(f(x) : x ∈ O) = 1). The
saturation number r0(O, f) of the pair (O, f) is the least r such that the set of
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x ∈ O for which f(x) has at most r prime factors is Zariski dense in X, which is
the Zariski closure of O by the Borel density theorem. It is natural to ask whether
the saturation number r0(O, f) is finite and establish quantitative estimates on
the set {x ∈ O : f(x) has at most r prime factors}.

We fix a norm on Rn and set O(T ) = {w ∈ O : ‖w‖ ≤ T }. It was shown in
[NS] that for X ≃ G, the saturation number is finite and there exists explicit r ≥ 1
such that

(1) |{x ∈ O(T ) : f(x) has at most r prime factors}| ≫f,O
|O(T )|

(logT )t(f)

as T → ∞. As remarked in [BGS, NS], the assumption that X ≃ G is not crucial
if only finiteness of the saturation number is concerned, and r0(O, f) is finite for
general orbits. However, the sharp lower estimate (1) seems to be more delicate,
and so far it has only been established for 2-dimensional quadratic surfaces [LS]
and for group varieties [NS]. Our goal here is to prove (1) for general symmetric
varieties.

Theorem 3. Let O and f be as above and assume in addition that L = StabG(v)
is symmetric (that is, L is the set of fixed points of an involution of G). Then there
exists r ≥ 1 such that

|{x ∈ O(T ) : f(x) has at most r prime factors}| ≫f,O
|O(T )|

(logT )t(f)

as T → ∞.
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Distribution of flows on nilmanifolds and applications to additive
combinatorics

Ben Green

The talk was divided into two parts, aimed at giving brief answers to the fol-
lowing two questions:

Q1. Why are flows on nilmanifolds relevant to the subject of additive com-
binatorics, which is concerned with questions about arithmetic progressions and
suchlike?

Q2. What specific dynamical facts about flows on nilmanifolds are required in
order to study Q1 effectively?

Let us begin with Q1. For the sake of illustration, let us suppose that we have
some set A ⊆ [N ] with |A| = αN and that we wish to enumerate the number of
four-term arithmetic progressions x, x+ d, x+ 2d, x+ 3d in A. In this regard it is
natural to introduce the quartilinear operator

T (f1, f2, f3, f4) := Ex,d∈[N ]f1(x)f2(x+ d)f3(x + 2d)f4(x+ 3d),

the thought perhaps being that we might split 1A = α+f and write T (1A, 1A, 1A, 1A)
as a “main term” α4 plus fifteen other terms, each involving at least one copy of
the function f , which has average value 0 and is presumably, in a typical situation,
highly oscillatory and likely to give rise to substantial cancellation.

For this reason it is important to have a way of bounding T (f1, f2, f3, f4) above.
A relatively simple way of doing this is to invoke the Generalised von Neumann
inequality, which states that

|T (f1, f2, f3, f4)| ≤ ‖fi‖U3

for each i = 1, 2, 3, 4, provided that |fi(x)| ≤ 1 for i = 1, 2, 3, 4. Here, ‖f‖U3 is an
important object in additive combinatorics called the Gowers U3-norm, and it is
defined by

‖f‖8U3 := Ex,h1,h2,h3f(x)f(x + h1)f(x+ h2)f(x+ h3)×

×f(x+ h1 + h2)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3),

a kind of average of f over three-dimensional parallelepipeds. It is true, but
not completely obvious, that this does indeed define a norm. The generalised
von Neumann theorem is merely a matter of three (judicious) applications of the
Cauchy-Schwarz inequality, and as such is not hard to prove. It has the effect of
raising a new, key, question:

Question. Suppose that |f(x)| ≤ 1 for all x. Is there a useful criterion which
allows us to assert that ‖f‖U3 is “small”, say less than δ?

In studying this question it is instructive to first consider the extreme version
of it:

Question. When is ‖f‖U3 = 1?
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It is a pleasant exercise to show that this is so if and only if f(x) = e2πiφ(x),
where φ(x) = αx2 +βx+ γ is a quadratic phase function. This observation imme-
diately reveals that there is quadratic structure underlying four term arithmetic
progressions, a fact not obvious at first sight.

It turns out that slightly more exotic types of structure are present too. Indeed
it can be checked that the “fake quadratic” f(x) = e2πiαx[βx] has Gowers U3 norm
at least 0.1; here, [t] denotes the integer part of t. Perhaps surprisingly, this is the
only type of structure that can be responsible for having large Gowers norm.

Theorem 1 (Gowers, Green-Tao). [1] Suppose that f : [N ] → C is a function
with |f(x)| ≤ 1 for all x, and that ‖f‖U3 ≥ δ. Then there is a fake quadratic

φ(x) = α1x[β1x] + · · ·+ αk[βkx],

k = Oδ(1), such that

|Ex∈[N ]f(x)e
2πiφ(x)| ≫δ 1.

A very important realisation, coming from dynamics, is that fake quadratics
can be interpreted as functions on nilmanifolds. To give a relevant example, let

G =
(

1 R R
0 1 R
0 0 1

)
be the Heisenberg group, and let Γ =

(
1 Z Z
0 1 Z
0 0 1

)
be the natural lattice.

The homogeneous space G/Γ is a nilmanifold. The key observation is that one can
write

αn[βn] = F (g(n)Γ),

where g : Z → G is the “polynomial map” defined by

g(n) :=
(

1 αn 0
0 1 βn
0 0 1

)

and F : G/Γ → C is the piecewise Lipschitz function defined by

F (
(

1 x z
0 1 y
0 0 1

)
Γ) = e(−z)

whenever 0 < x, y, z < 1.
In words, “nilsequences” such as F (g(n)Γ) are roughly the same thing as fake

quadratics. Indeed there is an alternative formulation of Theorem 1, as follows.

Theorem 2 (Green-Tao). [1] Suppose that f : [N ] → C is a function with |f(x)| ≤
1 for all x, and that ‖f‖U3 ≥ δ. Then there is a nilsequence F (g(n)Γ) of complexity
Oδ(1) such that

|Ex∈[N ]f(x)F (g(x)Γ)| ≫δ 1.

We will not discuss the notion of “complexity” here, but roughly speaking it
is a measure of how complicated the Lie group G (which might be more general
than the Heisenberg group) is, and how smooth F is.

This theorem provides a bridge between additive combinatorics and dynamical
systems on nilmanifolds. It has recently been generalised to higher Gowers norms
(defined in the obvious way) by the author, Tao and Ziegler; here, higher-step
nilpotent groups are required.
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The theorem motivates the study of sequences (g(n)Γ)n∈[N ] ⊆ G/Γ, and in
particular their distribution properties. In joint work with Tao we prove the
following two results, stated here in a very rough form:

Theorem 3 (Green-Tao). [2] We have the following statements.

(1) (g(n)Γ)n∈[N ] is close to equidistributed if and only if its abelianization, the
projection to G/[G,G]Γ, is equidistributed in that torus.

(2) Possibly after passing to a large subprogression P ⊆ [N ], (g(n)Γ)n∈P is
close to equidistributed on some closed subnilmanifold H/HΓ of G/Γ.

This theorem (when properly formulated of course) represents a quantitative
version of results of Leon Green and Sasha Leibman in dynamical systems.

Using this result and some techniques from analytic number theory, we establish
the following.

Theorem 4 (Green-Tao). [3] The Möbius function is asymptotically orthogonal
to all nilsequences, in the sense that

En≤Nµ(n)F (g(n)Γ) → 0

as N → ∞.

Using this, we establish some conjectures of Hardy and Littlewood concerning
the frequency of various linear patterns in the prime numbers.

None of this work would have been possible without insights coming from dy-
namics and, in particular, the work of Furstenberg, Weiss, Host, Kra, Leibman
and Ziegler.
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[3] B. J. Green and T. C. Tao, The Möbius function is asymptotically orthogonal to nilsequences,
to appear in Annals of Math.

Progress on Affine Sieves

Alex V. Kontorovich

Recently Bougain, Gamburd and Sarnak [BGS06, BGS08] introduced the Affine
Linear Sieve, which concerns the application of various sieve methods to the setting
of (possibly thin) orbits of groups of morphisms of affine n-space. Applications
include the following

Theorem 1 ([Kon09, KO09]). Let Q be the indefinite ternary quadratic form
Q(x) = x2+y2−z2, let G = SOR(Q) be the real special orthogonal group preserving
Q, and let C be the cone defined by Q = 0. Take some primitive Pythagorean triple
v0 ∈ C(Z), say v0 = (3, 4, 5), and let Γ < G(Z) be a discrete, finitely-generated,
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non-elementary subgroup whose critical exponent δ is sufficiently close to 1. Let
O := v0 · Γ be the orbit of v0 under Γ. Then

(1) There is an infinitude of (x, y, z) ∈ O such that the hypotenuse z is the
product of at most 14 primes.

(2) There is an infinitude of (x, y, z) ∈ O such that the area 1
2xy is the product

of at most 25 primes.
(3) There is an infinitude of (x, y, z) ∈ O such that the value xyz is the product

of at most 29 primes.

A standard conjecture on the cancellation of the Möbius function predicts that
the number 14 above can be replaced by 1, that is, the set of hypotenuses should
contain an infinitude of primes. That said, Selberg identified the so-called “par-
ity barrier,” that sieves alone cannot distinguish between sets having an even
or odd number of prime factors. Hence the best one can hope for using only
sieve techniques is to replace 14 by 2. In his resolution of the ternary Goldbach
problem, Vinogradov introduced methods using bilinear forms estimates, thereby
overcoming the parity barrier. In joint work with Jean Bourgain [BK10], we have
introduced bilinear forms into the Affine Sieve to produce primes in thin orbits.

Theorem 2 ([BK10]). Let O be as above. Then there exists an infinitude of
(x, y, z) ∈ O such that

√
y + z is prime.

Note that the quantity
√
y + z above is integral, as follows from the ancient

parametrization that, for a primitive (x, y, z) ∈ O, there exists a primitive (u, v) ∈
Z2 of opposite parity such that

x = u2 − v2, y = 2uv, z = u2 + v2.

More is true.

Theorem 3 ([BK10]). Let O be as above, and let S denote the set of all n =√
y + z for (x, y, z) ∈ O. Then S almost satisfies a local-global principle, with a

power savings in the exceptional set, by which we mean the following. For N > 1,
let E(N) denote the set of exceptions up to N , that is, E(N) contains the set of
all n ∈ [−N,N ] such that n is admissible (meaning n ∈ S (mod q) for all q ≥ 1)
but nevertheless, n is not in S. Then for some η > 0,

|E(N)| ≪ N1−η,

as N → ∞.

A key input in the above is a counting statement for sectors in infinite volume
with power savings error terms and uniformity over cosets of congruence subgroups.
This is carried out in joint work with Jean Bourgain and Peter Sarnak in [BKS10].
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Equidistribution and the large sieve

Emmanuel Kowalski

Although sieve methods have traditionally been used to study prime numbers and
other sets of integers defined by multiplicative conditions, they can be used in
principle in much greater generality. In the book [8], for instance, general forms
of “sifted” sets are considered:

S = {x ∈ X | for all ℓ ∈ L, ρℓ(F (x)) /∈ Ωℓ}
where

• X is a set of “global” objects of interest; the emphasis is in obtaining
quantitative estimates, and therefore it is assumed that X carries a finite
measure µ, so that µ(S) becomes the quantity of most interest;

• L is a finite set of parameters used to describe “local” conditions satisfied
by the global objects when sifted;

• F is a map from X to a set Y , typically infinite, which represents the data
for which we have local information;

• for each ℓ, ρℓ is a surjective map from Y to a finite set Yℓ, representing
the local information;

• Ωℓ ⊂ Yℓ is any set that defines what local information are excluded from
the sifted objects.

This generalizes the simplest examples, such as

S2 = {n ≤ N | for all primes p ≤ z, n (mod p) /∈ {0,−2} ⊂ Z/pZ},
which, when z is

√
N , is precisely the set of twin primes >

√
N . Here X is the set

of integers up to N , µ the counting measure, Y = Z and the local information is
given by reduction modulo primes.

A more interesting example, considered in joint works with F. Jouve and D.
Zywina [7], is the following:

• (X,µ) is a probability space;
• Y = G(Z) is the arithmetic group of integral points of a split semisimple,
simply-connected, Chevalley group G/Z, for instance SL(n,Z);

• F = γk = ξ1 · · · ξk is the random variable on X which is the k-th step
of a random walk on Y with steps (ξi) which are independent and, for
instance, uniformly distributed on a fixed finite symmetric generating set
T of Y (note that here F is not injective);
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• the local information are given by reduction modulo primes ρl : Y → Yl =
G(Fl).

In that case, fixing a faithful representation

π : G → GL(N),

one can construct suitable choices of Ωl, related to the conjugacy classes of the
Weyl group W of G, lead to an inclusion of the type

{x ∈ X | det(T − π(γk)) has Galois group not W} ⊂
⋃

c

Sc

where c runs over those conjugacy classes and Sc is a sifted set depending on c.
Thus a good upper bound for the measure of these Sc will lead to an upper bound
on the probability that the splitting field of π(γk) has Galois group different from
W (it follows from simple facts about the structure theory of G that W is the
“biggest” possible Galois group here).

These examples are typical of large-sieve questions because, for each c, the sets
Ωc,l defining the sieve have the property that

lim sup
l→+∞

|Ωl|
|Yl|

> 0,

whereas for twin primes Ωp/p → 0.
The heuristic underlying estimates for µ(S) for general sifted sets is that, for a

single condition, the local information ρl(F (x)) is “close” to being equidistributed
on Yl, with respect to some natural probability measure νl, so that we expect that

µ({x ∈ X | ρl(F (x)) /∈ Ωl}) ≈ µ(X)(1− νl(Ωl)),

and furthermore that distinct conditions imposed for l 6= l′ are “independent”, so
that one should compare µ(S) with

µ(X)
∏

l

(1− νl(Ωl)).

In the example above, and in many others related, e.g., to the “affine linear
sieve” of Bourgain-Gamburd-Sarnak [2], these facts are obtained from a form of
“strong approximation” theorems for subgroups of arithmetic groups over number
fields, the independence being crucially linked to the simple-connectedness of the
group.

The most crucial ingredient in implementing the general large sieve inequality [8,
Ch. 7] in these contexts of groups with exponential growth or hyperbolic nature
is the condition that the family of Cayley graphs of Yl, or indeed of

G(Z/qZ) =
∏

l|q
Yl, q squarefree,

(with respect to the generating set T ) forms an expander family. This provides
many interesting and sometimes surprising applications of expanders.

Proving the expansion property is often difficult; there are however a number
of tools available, which promise many applications in the future:
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• If G has real rank at least 2, this follows from the stronger condition that
Y has Property (T); indeed, the first explicit examples of expanders were
constructed by Margulis using this link;

• If Y = G(Z), Yl = G(Fl) in general, this follows from Clozel’s proof of Con-
jecture (τ), generalizing Selberg’s proof of the spectral gap for congruence
subgroups of SL(2,Z);

• If Y is taken to be a Zariski-dense finitely-generated subgroup of G(Z), not
necessarily of finite index, this is related to the remarkable new works of
Helfgott [4], Bourgain-Gamburd-Sarnak [2], Pyber-Szabò [9], Breuillard-
Green-Tao [3] and Bourgain-Varjù [1] (among others).

The use of random walks in these problems is technically very convenient, but
other natural choices for the set Y are possible:

(1) One may wish to take Y to be the set of elements of norm ≤ x for some large
x, with respect to some archimedean norm or height arising from an embedding in
GL(n,R), for instance; what typically arise then are lattice-point counting prob-
lems of hyperbolic nature where it is crucial to obtain a large range of uniformity
with respect to the subgroup involved;

(2) One may wish to take Y to be a ball of radius x with respect to a combina-
torial distance defined using a generating set T as before; in that case, although
the expansion property remains crucial, asymptotic equidistribution of the image
modulo l is hard to prove if Y is not free; however, by restricting to a free subgroup,
it is possible to obtain good results, as in [2].
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Homogeneous dynamics and quadratic forms

Gregory Margulis

Let Q be a real nondegenerate indefinite quadratic form in n variables. We say that
Q is rational if it is a multiple of a form with rational coefficients and irrational
otherwise. Let us set

m(Q) = inf{| Q(x) |: x ∈ Zn, x 6= 0}.
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According to the classical Meyer theorem, if Q is rational and n ≥ 5 then m(Q) =
0. In 1929, A. Oppenheim conjectured that if n ≥ 5 then m(Q) = 0 also for
irrational Q. Later it was realized that m(Q) should be equal to 0 under a
weaker condition n ≥ 3 (for irrational forms (Q). I proved the Oppenheim con-
jecture in 1986 by studying orbits of the orthogonal group SO(2, 1) on the space
SL(3,R)/SL(3,Z) of unimodular lattices in R3 (see [5]; preliminary oral announce-
ments had been made already in 1984).
The proof was inspired by a remarkable observation due to M. S. Raghunathan that
the Oppenheim conjecture is related to the theory of unipotent flows. Actually,
M.S.Raghunathan noticed that the Oppenheim conjecture would follow from a
conjecture about closures of orbits of unipotent subgroups. The Raghunathan
conjecture states that if H is a connected Lie group, Γ a lattice in G, and U ⊂ G a
connected unipotent subgroup (or, more generally, a connected subgroup generated
by unipotent elements), then for any x ∈ G/Γ there exists a closed connected
subgroup L = L(x) containing U such that the closure of the orbit Ux coincides
with Lx. The main dynamical result in [5] can be considered as the proof of
the Raghunathan conjecture in a special case. The technique introduced in [5]
and developed later in joint papers of S.G.Dani and myself and in papers by
N.Shah gives the proof of Raghunathan’s conjecture in many other special cases.
It also suggests an approach for proving the Raghunathan conjecture in general.
This approach is based on the technique which involves finding orbits of larger
subgroups inside closed sets invariant under unipotent subgroups by studying the
minimal invariant sets, and the limits of orbits of sequences of points tending to a
minimal invariant set.

The Raghunathan conjecture was eventually proved in 1990 in complete gener-
ality by M.Ratner (see [9]). Her proof is based on measure rigidity for unipotent
flows which she established in 1989 and published in a series of three papers, the
last one of which is [8]. The measure rigidity for unipotent flows proves a con-
jecture by S.G.Dani and gives the classification of finite U -ergodic U -invariant
measure on G/Γ for unipotent subgroups U of G (more precisely, any such mea-
sure is Haar measure on a closed orbit of a subgroup containing U). Using this
classification and some other technique, a number of results on the asymptotic
behavior of Na,b(T ) were obtained in [1], [2] and [3] where

Na,b(T ) = #{x ∈ Zn : a < Q(x) < b, x ∈ TΩ}
and Ω is a star-like bounded domain in Rn, n ≥ 3, and Q is irrational. Similar
results for inhomogeneous forms were obtained in [6] and [7]. It should be men-
tioned that the approach in [7] is very different from the approach in [6], though
it also used the measure rigidity for unipotent flows.

The methods developed in [1], [2], [3], [5], [6], and [7] are not “effective” because
they use such notions as minimal set and ergodic measure. Another and completely
different approach is used in [4]. This approach is “effective” but it works only
for n ≥ 5. It is based on estimates for certain theta series, and it combines
methods introduced by F.Götze for related problems and methods for obtaining
some integrability estimates and introduced in [2]. One of the results in [4] is a
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polynomial type estimate for the size of the smallest nontrivial integral solution
of the inequality | Q(x) |< ε (for the case n ≥ 5).
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Horospheres, Farey fractions and Frobenius numbers

Jens Marklof

Frobenius numbers. Let Ẑd = {a = (a1, . . . , ad) ∈ Zd : gcd(a1, . . . , ad) = 1}
be the set of primitive lattice points, and Ẑd

≥2 the subset with coefficients aj ≥ 2.

Given a ∈ Ẑd
≥2, the Frobenius number F (a) is defined as the largest integer that

does not have a representation of the form m · a with m ∈ Zd
≥0. In the case

of two variables (d = 2) Sylvester showed that F (a) = a1a2 − a1 − a2. No such
explicit formulas are known in higher dimensions [10]. In his studies of “arithmetic
turbulence”, Arnold [2] conjectured that F (a) should fluctuate wildly as a function
of a. The following theorem establishes the existence of a limit distribution for
these fluctuations. As we shall see, the key in the proof of this statement uses a
novel interpretation of the Frobenius number in terms of the dynamics of a certain
flow Φt on the space of lattices Γ\G, with G := SL(d,R), Γ := SL(d,Z).

Theorem 1 ([7]). Let d ≥ 3. There exists a continuous non-increasing function
Ψd : R≥0 → R≥0 with Ψd(0) = 1, such that for any bounded set D ⊂ Rd

≥0 with
boundary of Lebesgue measure zero, and any R ≥ 0,

(1) lim
T→∞

1

T d
#

{
a ∈ Ẑd

≥2 ∩ TD :
F (a)

(a1 · · · ad)1/(d−1)
> R

}
=

vol(D)

ζ(d)
Ψd(R).

Variants of Theorem 1 were previously known only in dimension d = 3 in the
work of Bourgain and Sinai [4], and Shur, Sinai and Ustinov [13]. For d = 3
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Ustinov [14] derived an explicit formula for the limit density,
(2)

−Ψ′
3(t) =





0 (0 ≤ t ≤
√
3)

12
π

(
t√
3
−
√
4− t2

)
(
√
3 ≤ t ≤ 2)

12
π2

(
t
√
3 arccos

(
t+3

√
t2−4

4
√
t2−3

)
+ 3

2

√
t2 − 4 log

(
t2−4
t2−3

))
(2 ≤ t).

For arbitrary d ≥ 3, the limit distribution Ψd(R) is given by the distribution of

the covering radius of the simplex ∆ =
{
x ∈ Rd−1

≥0 : x · e ≤ 1
}
, e := (1, 1, . . . , 1),

with respect to a random lattice in Rd−1 [7]. Here, the covering radius (sometimes
also called inhomogeneous minimum) of a set K ⊂ Rd−1 with respect to a lattice
L ⊂ Rd−1 is defined as the infimum of all ρ > 0 with the property that L +
ρK = Rd−1. To state this result precisely, let Zd−1A be a lattice in Rd−1 with
A ∈ G0 := SL(d − 1,R). The space of lattices (of unit covolume) is Γ0\G0 with
Γ0 := SL(d − 1,Z). We denote by µ0 the unique G0-right invariant probability
measure on Γ0\G0.

Theorem 2 ([7]). Let ρ(A) be the covering radius of the simplex ∆ with respect
to the lattice Zd−1A. Then Ψd(R) = µ0

({
A ∈ Γ0\G0 : ρ(A) > R

})
.

The connection between Frobenius numbers and lattice free simplices is well
understood [6], [12]. In particular, Theorem 2 connects nicely to the sharp lower
bound of [1] (see also [11]): F (a) + e · a ≥ ρ∗(a1 · · · ad)1/(d−1), with ρ∗ :=
infA∈Γ0\G0

ρ(A). It is proved in [1] that ρ∗ > ((d − 1)!)1/(d−1) > 0, and so in
particular Ψd(R) = 1 for 0 ≤ R < ρ∗.

Horospheres. Let G := SL(d,R) and Γ := SL(d,Z), and define
(3)

n+(x) =

(
1d−1

t0
x 1

)
, n−(x) =

(
1d−1

tx

0 1

)
, Φt =

(
e−t1d−1

t0

0 e(d−1)t

)
.

The right action Γ\G → Γ\G, ΓM 7→ ΓMΦt, defines a flow on the space of
lattices Γ\G. The horospherical subgroups generated by n+(x) and n−(x) param-
etrize the stable and unstable directions of the flow Φt as t → ∞. Let us now
identify a function Wδ on Γ\G that, when evaluated along a specific orbit of the
flow Φt, produces the Frobenius number. Brauer and Shockley [5] proved that
F (a) = maxr mod ad

Nr(a)− ad, where Nr is the smallest positive integer that has
a representation in r mod ad. A short calculation shows that

(4) Nr(a) =

{
ad (r ≡ 0 mod ad)

min{m′ · a′ : m′ ∈ Zd−1
≥0 , m′ · a′ ≡ r mod ad} (r 6≡ 0 mod ad)

with a′ = (a1, . . . , ad−1). This formula is the starting point in [7] of the construc-

tion of the function Wδ : Rd−1
≥0 ×G → R, (α,M) 7→ Wδ(α,M), given by

(5) Wδ(α,M) = sup
ξ∈Td

min+

{
(m+ ξ)M · (α, 0) : m ∈ Zd, (m+ ξ)M ∈ Rδ

}
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where Rδ = Rd−1
≥0 × (−δ, δ). Note that for every γ ∈ Γ, we have Wδ(α, γM) =

Wδ(α,M), and thus Wδ can be viewed as a function on Rd−1
≥0 ×Γ\G. The relation

with the Frobenius number is as follows:

Theorem 3. Let a = (a1, . . . , ad) ∈ Ẑd
≥2 with a1, . . . , ad−1 ≤ ad ≤ e(d−1)t,

and 0 < δ ≤ 1
2 . Then F (a) = etWδ

(
a′, n−(â)Φt

)
− e · a, where â := a′

ad
=(

a1

ad
, . . . , ad−1

ad

)
.

By exploiting standard probabilistic arguments [7], Theorem 1 now follows from
Theorem 3 and the below equidistribution theorem for Farey fractions on a certain
embedded submanifold of the space of lattices Γ\G.

Farey fractions. Denote by µ = µG the Haar measure on G = SL(d,R),
normalized so that it represents the unique right G-invariant probability measure
on the homogeneous space Γ\G, where Γ = SL(d,Z). We will use the notation µ0

for the right G0-invariant probability measure on Γ0\G0, with G0 = SL(d − 1,R)

and Γ0 = SL(d − 1,Z) Consider the subgroups H =

{(
A tb

0 1

)
: A ∈ G0, b ∈

Rd−1

}
and ΓH = Γ ∩ H . We normalize the Haar measure µH of H so that it

becomes a probability measure on ΓH\H ; explicitly: dµH(M) = dµ0(A) db.
Let us denote the Farey sequence of level Q by

(6) FQ =

{
p

q
∈ [0, 1)d−1 : (p, q) ∈ Ẑd, 0 < q ≤ Q

}
.

Note that |FQ| ∼ Qd

d ζ(d) as Q → ∞.

Theorem 4 ([7]). Let f : Td−1 × Γ\G → R be bounded continuous. Then, for
Q = e(d−1)t,

(7) lim
t→∞

1

|FQ|
∑

r∈FQ

f
(
r, n−(r)Φ

t
)

= d(d− 1)

∫ ∞

0

∫

Td−1×ΓH\H
f̃(x,MΦ−s) dx dµH(M) e−d(d−1)sds

with f̃(x,M) := f(x, tM−1).

This statement can be established as a consequence of the mixing property of
the flow Φt on Γ\G, see [7] for details. It is interesting to note that, if one replaces
Γ = SL(d,Z) with a lattice Γ not commensurable with SL(d,Z), the Farey sequence
becomes uniformly distributed in all of Γ\G with respect to Haar measure [8].

Open problems. In the case d = 2 the proof of Theorem 4 is very simple. In
fact one can prove a stronger statement on the equidistribution of rationals with
denominator = q. For every bounded continuous f : T × SL(2,Z)\H (H is the
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upper half plane, and SL(2,R) acts by fractional linear transformations)

(8) lim
q→∞

1

ϕ(q)

q−1∑

p=1
gcd(p,q)=1

f

(
p

q
,
p

q
+ i

σ

q2

)
=

∫ 1

0

∫ 1

0

f(ξ, x+ iσ−1) dξ dx,

where ϕ(q) is Euler’s totient function. To prove this notice that p
q +i σq2 is mapped

by a suitable element from SL(2,Z) to the point − p
q + i 1σ , where p denotes the

inverse of p mod q. Eq. (8) then follows from Fourier expanding f and applying
standard bounds on Kloosterman sums. In analogy with the Corollary of Theorem
2 in [8], I conjecture that for every α /∈ Q and f as above,

(9) lim
q→∞

1

ϕ(q)

q−1∑

p=1
gcd(p,q)=1

f

(
p

q
, α

p

q
+ i

σ

q2

)
=

3

π

∫ 1

0

∫

SL(2,Z)\H
f(ξ, x+ iy) dξ

dx dy

y2
.

(Here π/3 is the area of the modular surface SL(2,Z)\H.) It is not hard to see
that for bounded continuous f , eq. (9) implies

(10) lim
N→∞

1

N

N∑

n=1

f

(
n

N
,α

n

N
+ i

σ

N2

)
=

3

π

∫ 1

0

∫

SL(2,Z)\H
f(ξ, x+ iy) dξ

dx dy

y2
.

If (10) could be shown also for unbounded continuous functions with |f(ξ, x+iy)| ≤
Cy1/2 for all y ≥ 1 (presumably under some additional diophantine condition on
α), then (10) would imply that the pair correlation function of the fractional parts
of n2α/N converges to that of independent random variables (see [9] for details
of the analogous argument for the fractional parts of n2α). This in turn would
prove a special instance of the Berry-Tabor conjecture in quantum chaos for the
eigenvalues of the “boxed oscillator” [3, 15]!
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Figure 1. An Apollonian circle packing labeled by curvatures.
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Distribution of circles in Apollonian circle packings and beyond

Hee Oh

Given a set of four mutually tangent circles in the plane C with distinct points
of tangency, one can construct four new circles, each of which is tangent to three
of the given ones. Continuing to repeatedly fill the interstices between mutually
tangent circles with further tangent circles, we obtain an infinite circle packing,
called an Apollonian circle packing, after the great geometer Apollonius of Perga
(262-190 BC).

Let P be an Apollonian circle packing. For P bounded and T > 0, denote by
NT (P) the number of circles in P whose curvature (=the reciprocal of its radius)
is at most T . Note that NT (P) = ∞ for a general unbounded packing. However
in the special case of unbounded packing P which lies between two parallel lines,
the altered definition of NT (P) to count circles in a fixed period is a well-defined
finite number for any T > 0.
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Theorem 1 (Kontorovich-O.). [1] Let P be either bounded or between two parallel
lines. There exists cP > 0 such that as T → ∞,

NT (P) ∼ cP · Tα

where α is the Hausdorff dimension of the residual set of P.

The residual set of P is defined to be the complement in C of the all open disks
enclosed by circles in P . McMullen computed that α is approximately 1.30568(8).

Two natural questions arising from the above result are the following:

Question 1. (1) For an arbitrary Apollonian circle packing, can we describe
the asymptotic distribution of circles in P. That is, is there a Borel mea-
sure ωP on C such that for all nice bounded Borel subset E ⊂ C,

NT (P , E) := #{C ∈ P : C ∩ E 6= ∅,Curv(C) < T } ∼ ωP(E) · Tα

as T → ∞.
(2) How about other circle packings (=countable union of circles in C) beyond

Apollonian circle packings?

Example 2. Here is one simple way of constructing circle packings: consider the
Möbius transformation action of PSL2(C) on the extended complex plane Ĉ:

(
a b
c d

)
z =

az + b

cz + d

where a, b, c, d ∈ C with ad − bc = 1 and z ∈ Ĉ. A Möbius transformation maps
a circle to a circle; here Euclidean lines are thought of circles passing through the
point at infinity. Therefore, for a discrete subgroup Γ < PSL2(C) and a circle C
in the plane, the Γ-orbit P := Γ(C) of C is a circle packing in our sense.

Let P be an infinite circle packing invariant under a non-elementary discrete
subgroup Γ < PSL2(C) with finite many Γ-orbits, i.e.,

P = ∪m
i=1Γ(Ci).

Assume that P is locally finite in the sense that

NT (P , E) := #{C ∈ P : C ∩ E 6= ∅,Curv(C) < T }
is finite for any bounded subset E ⊂ C and T > 1.

Recalling that the limit set Λ(Γ) is defined to be the set of all accumulation

points of Γ(z), z ∈ Ĉ, we expect that smaller and smaller circles in P are more
and more concentrated toward the limit set of Γ. Hence the measure ωP , if exists,
must be supported in the limit set of Γ.

Our approach to investigating the asymptotic of NT (P , E) is via the study of
the 3-dimensional hyperbolic geometry and we construct ωP with the help of the
Patterson-Sullivan theory for Kleinian groups.

The group G := PSL2(C) identifies with the group of all orientation preserving
isometries of H3. Considering the upper-half space model H3 = {(z, r) : z ∈
C, r > 0} the geometric boundary ∂∞(H3) is naturally identified with Ĉ. For
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j = (0, 1) ∈ H3, let νj denote the Patterson-Sullivan measure on Λ(Γ) viewed from
j.

Definition 3. Define a Borel measure ωΓ on C by

dωΓ = (|z|2 + 1)δΓdνj

where 0 < δΓ ≤ 2 is the critical exponent of Γ.

Definition 4 (The Γ-skinning size of P). Define 0 ≤ skΓ(P) ≤ ∞ by the following:

skΓ(P) :=
m∑

i=1

∫

s∈StabΓ(C
†
i
)\C†

i

eδΓβs+(j,π(s))dνj(s
+)

where π : T1(H3) → H3 is the canonical projection, C†
i ⊂ T1(H3) is the set of unit

normal vectors to the convex hull Ĉi of Ci, and u+ ∈ Ĉ (resp. u− ∈ Ĉ) denotes the
forward (resp. backward) end point of the geodesic determined by u ∈ T1(H3).

Theorem 2 (O.- Shah). [2] Let Γ be geometrically finite.
Suppose one of the following conditions hold:

(1) Γ is a lattice;
(2) Γ is convex co-compact;
(3) all circles in P are mutually disjoint;
(4) ∪i∈IC

◦
i ⊂ Ω(Γ), where C◦

i denotes the open disk enclosed by Ci and Ω(Γ) =

Ĉ− Λ(Γ) is the domain of discontinuity for Γ.

For any bounded Borel subset E of C with ωΓ(∂(E)) = 0, we have, as T → ∞,

NT (P , E) ∼ skΓ(P)

δΓ · |mBMS
Γ | · ωΓ(E) · T δΓ

where 0 < skΓ(P) < ∞ and 0 < |mBMS
Γ | < ∞ is the total mass of the Bowen-

Margulis-Sullivan measure associated to νj.

For Γ geometrically finite, Sullivan showed that |mBMS
Γ | < ∞. The above

conditions (1)-(4) are made so as to ensure that 0 < skΓ(P) < ∞. Indeed, the
above theorem holds in a much more general setting where we only need to assume
that Γ admits a finite Bowen-Margulis-Sullivan measure and that the Γ-skinning
size of P is finite.

Remark 5. (1) Note that δΓ is positive, as Γ is non-elementary, and equal to
the Hausdorff dimension of the limit set Λ(Γ), as Γ is geometrically finite.

(2) We have ωΓ(finite subset) = 0
(3) If Γ is Zariski dense in PSL2(C) considered as a real algebraic group, then

ωΓ(any real algebraic curve) = 0.
(4) On the contracting horosphere H−

∞(j) ⊂ T1(H3) consisting of upward unit
normal vectors on C + j = {(z, 1) : z ∈ C}, the normal vector based at
z+ j is mapped to z via the map u 7→ u−. Under this correspondence, ωΓ

coincides with the conditional of the Bowen-Margulis-Sullivan measure on
the contracting horosphere H−

∞(j).
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Equidistribution, Counting and Arithmetic Applications

Jouni Parkkonen and Frédéric Paulin

Let M be a finite volume hyperbolic manifold of dimension n at least 2. Let
T 1M → M be the unit tangent bundle of M , where T 1M is endowed with its
usual Riemannian metric, whose induced measure is the Liouville measure volT 1M .
Let (gt)t∈R be the geodesic flow of M . Let C0 be a finite volume immersed totally
geodesic submanifold of M of dimension k with 0 < k < n, and let ν1C0 be its
unit normal bundle, so that gtν1C0 is, for every t ≥ 0, an immersed submanifold
of T 1M .

Theorem 1. The induced Riemannian measure of gtν1C0 equidistributes to the
Liouville measure as t → +∞:

volgtν1C0
/‖ volgtν1C0

‖ ∗
⇀ volT 1M /‖ volT 1M ‖ .

This theorem can be deduced from [EM, Theo. 1.2]. Our (short and direct)
proof also uses, as in Margulis’ equidistribution result for horospheres, the mixing
property of the geodesic flow of M .

Let H∞ be a small enough Margulis neighbourhood of an end of M , that is a
connected component of the set of points of M at which the injectivity radius of
M is at most ǫ0, for some ǫ0 > 0 small enough. We use the above equidistribution
theorem, and the fact that the submanifold gtν1C0 is locally close to an unstable
leaf in T 1M of the geodesic flow of M , to prove the following counting result.

Theorem 2. The number of common perpendicular locally geodesic arcs between
∂H∞ and C0 with length at most t is equivalent, as t tends to +∞, to

Vol(Sn−k−1)Vol(H∞)Vol(C0)

Vol(Sn−1)Vol(M)
e(n−1)t .

We refer to [PP1] for the proofs of the above theorems, as well as for references
to other works and many geometric complements, and we now give a sample of
their arithmetic applications, extracted from [PP1] except for the last corollary.

Counting quadratic irrationals. Let K be a number field and let OK be its
ring of integers. Endow the set of quadratic irrationals over K with the action by
homographies of PSL2(OK), and note that it is not transitive. We denote by ασ

the Galois conjugate over K of a quadratic irrational α over K. There are many
works (see for instance [Bug]) on the approximation of real or complex numbers
by algebraic numbers, and approximating them by elements in orbits of algebraic
numbers under natural group actions for appropriate complexities seems to be
interesting.
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Starting with K = Q, our first result is a counting result in orbits of real
quadratic irrationals overQ for a natural complexity (see [PP1] for a more algebraic
expression in terms of discriminants).

Corollary 1. Let α0 ∈ R be a quadratic irrational over Q, and let G be a finite
index subgroup of PSL2(Z). Then as s tends to +∞,

Card{α ∈ G · {α0, α
σ
0} mod Z :

1

|α− ασ | ≤ s} ∼ 24 qG argcosh | tr γ0|
2

π2 [PSL2(Z) : G] n0
s ,

where qG is the smallest positive integer q such that z 7→ z + q belongs to G,
γ0 ∈ G− {1} fixes α0 and n0 is the index of γ0

Z in the stabilizer of {α0, α
σ
0} in G

(and note that qG, γ0, n0 do exist).

For instance, if α0 is the Golden ratio φ = 1+
√
5

2 (which is reciprocal in Sarnak’s

terminology) and G = PSL2(Z), we get Card{α ∈ G · φ mod Z : 1
|α−ασ| ≤

s} ∼ 24 logφ
π2 s. With H2

R the upper halfplane model of the real hyperbolic plane,

the proof applies Theorem 2 to M the orbifold G\H2
R, to C0 the image in M of

the geodesic line in H2
R with endpoints α0 and ασ

0 , and to H∞ the image in M
of the set of points in H2

R with Euclidean height at least 1. The trick is that
if a and b are close enough distinct real numbers, then the hyperbolic length of
the perpendicular arc between the horizontal line at Euclidean height 1 and the
geodesic line with endpoints a and b is exactly − log |b − a|.

Assume K is imaginary quadratic, with discriminant DK . We proved a general
statement analogous to the previous corollary, but we only give here a particular
case for φ.

Corollary 2. Let a be a non zero ideal in OK and Γ0(a) =
{
±

(
a b
c d

)
∈

PSL2(OK) : c ∈ a

}
. Assume for simplicity that DK 6= −4 and φσ /∈ Γ0(a) · φ.

Then as s tends to +∞, the cardinality of {α ∈ Γ0(a)·{φ, φσ}mod OK : 1
|α−ασ| ≤

s} is equivalent to

8π2 ka log φ

|DK | ζK(2) N(a)
∏

p prime, p|a
(
1 + 1

N(p)

) s2 ,

with ka the smallest k ∈ N−{0} such that the 2k-th term of the standard Fibonacci
sequence belongs to a (and note that ka does always exist, contrarily to the odd
case).

Counting representations of integers by binary forms. Recall that a
binary quadratic form Q(x, y) = ax2 + bxy + cy2 is primitive integral if a, b, c ∈ Z

are relatively prime, and indefinite non product if its discriminant D = b2− 4ac is
positive and not a square. Using the well known correspondence between pairs of
Galois conjugated quadratic irrationals over Q and the set of such Q’s up to sign,
we prove the following counting result for the number of values of a fixed such Q on
couples of relatively prime integers satisfying some congruence relations. Let (t, u)
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be the minimal solution to the Pell-Fermat equation t2 −Du2 = 4 and ǫ = t+u
√
D

2
the corresponding fundamental unit.

Corollary 3. Let Q be as above, and let n be an integer at least 3. Then the
number of couples (x, y) ∈ Z2, relatively prime, with x ≡ 1 mod n and y ≡ 0
mod n, such that |Q(x, y)| ≤ s, modulo the linear action of SL2(Z), is equivalent,
as s tends to +∞, to

24 log ǫ

π2n2
√
D

∏

p prime, p|n

(
1− 1

p2
)−1

s .

The final result, for a quadratic imaginary number field K, is proved in [PP2],
along with extensions to representations satisfying congruence properties.

Corollary 4. Let f : (u, v) 7→ a |u|2 + 2Re(b u v) + c |v|2 be a binary Hermitian
form, indefinite (that is ∆ = |b|2−ac > 0) and integral over K (that is a, c ∈ Z, b ∈
OK). Let SUf (OK) = {g ∈ SL2(OK) : f ◦ g = g} be the group of automorphs of
f . Then the number of orbits under SUf (OK) of couples (u, v) of relatively prime
elements of OK such that |f(u, v)| ≤ s is equivalent, as s tends to +∞, to

π Covol(SUf (OK))

2 |DK | ζK(2) ∆
s2 .

With H3
R the upper halfspace model of the real hyperbolic 3-space, the proof

applies Theorem 2 to M the orbifold PSL2(OK)\H3
R, to C0 the image in M of

the unique hyperbolic plane P (f) in H3
R preserved by PSUf (OK), and to H∞ the

image in M of the set of points in H3
R with Euclidean height at least 1. The trick

is that, for every γ ∈ PSL2(OK), the hyperbolic plane P (f ◦ γ) is an Euclidean

hemisphere whose diameter is
√
∆

f◦γ(1,0) , hence whose perpendicular arc to the hori-

zontal plane at Euclidean height 1 has (signed) hyperbolic length log f◦γ(1,0)√
∆

, and

that SL2(OK) acts transitively on the couples of relatively prime elements of OK .
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Stationary measures and invariant subsets of homogeneous spaces

Jean-Franco̧is Quint

(joint work with Yves Benoist)

Let G be a Lie group, Λ be a lattice in G and Γ be a closed subgroup of G. We
are interested in the description of the Γ-orbit closures in the homogeneous space
X = G/Λ. More precisely, we want to find assumptions on Γ which ensure that
these orbit closures enjoy rigidity properties.

Let Y be a closed subset of X . Then Y is said to be homogeneous if there
exists a closed subgroup S of G and some x in X with Y = Sx and such that Y
carries a S-invariant probability measure. In other terms, the stabilizer of x in S
is a lattice in S. In the same way, a Borel probability measure ν on X is said to
be homogeneous if there exists a closed subgroup S of G and an element x of X
such that ν is S-invariant and ν(Sx) = 1.

Finally, a one-parameter subgroup (ut)t∈R of G is said to be Ad-unipotent if,
for any t in R, Adut is a unipotent automorphism of the Lie algebra of G. One
has the following strong theorem:

Theorem 1 (Ratner, 1991). Assume Γ is spanned by one-parameter Ad-unipotent
subgroups of G. Then, any Γ-orbit closure in X is homogeneous. In the same way,
every ergodic Γ-invariant Borel probability measure on X is homogeneous.

This theorem is still conjectured to hold in case the Zariski closure of Γ (in some
meaning that should be made precise) satisfies the same assumption. We shall
deal with the case where this Zariski closure is semisimple. If H is a semisimple
subgroup of G which contains Γ, we shall say that Γ is Zariski dense in H if its
image under the adjoint representation is Zariski dense in the adjoint group of H .
We then have the following

Theorem 2 (Benoist-Quint, 2010). Assume there exists a semisimple subgroup
H of G such that Γ is Zariski dense in H. Then, any Γ-orbit closure in X is
homogeneous.

In Ratner’s theorem the classification of orbit closures follows from the one of
invariant measures: indeed, the main difficulty consists in dealing with the case
where Γ is Ad-unipotent. Then, in particular, Γ is nilpotent, thus amenable, and
one can prove that every closed invariant subset carries a Γ-invariant probability
measure. In our case, Γ is not amenable and the classification of invariant measures
does not give any results on the one of orbit closures. We shall therefore use a
weaker notion of invariance.

Let µ be a Borel probability measure on G. Then define µ ∗ ν to be the Borel
probability measure

∫
G g∗νdµ(g). The probability measure ν is said to be µ-

stationary if µ∗ ν = ν. It is said to be ergodic if it is extremal among µ-stationary
measures.

Theorem 3 (Benoist-Quint, 2010). Let µ be a compactly supported Borel proba-
bility measure on G. Assume there exists a semisimple subgroup H of G such that
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the subgroup spanned by the support of µ is Zariski dense in H. Then, any ergodic
µ-stationary Borel probability measure on X is homogeneous (and invariant).

The proof of this theorem relies, on one hand, on arguments from abstract
ergodic theory and martingale convergence properties (using in particular an idea
which is originally due to A. Bufetov) and, on the other hand, on limit laws for
the measures µ∗n, n ∈ N, established by H. Furstenberg, H. Kesten, Y. Guivarc’h,
E. Le Page, A. Raugi, E. Breuillard,...

In Ratner’s theorem, to get the topological classification from the metric one,
one needs to use Result by S.G. Dani and G. Margulis on the non-divergence of
orbits of one-parameter Ad-unipotent flows. In our case, the analoguous non-
divergence results are also used in the metric classification (under a quantitative
version). More precisely, we get the following theorem, which extends previous
work by A. Eskin and G. Margulis (and which was conjectured to hold by these
authors):

Theorem 4 (Benoist-Quint, 2010). Let µ be a compactly Borel probability mea-
sure on G which admits exponential moments (that is, there exists δ > 0 with∫
G{

∥∥Adgδ
∥∥}dµ(g) < ∞). Assume there exists a semisimple subgroup H of G such

that the subgroup spanned by the support of µ is Zariski dense in H. Then, for
any x in X and ε > 0, there exists a compact subset K of X such that, for any n
in N, one has µ∗n ∗ δx(K) ≥ 1− ε.

In other terms, the Markov chain with state spaceX and transition probabilities
µ ∗ δx, x ∈ X , is recurrent.

To prove this result, we adapt the strategy by Eskin and Margulis and use some
ideas from the representation theory of semisimple groups.
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Equidistribution of half-horocycles on infinite volume hyperbolic
surface

Barbara Schapira

The study of ergodic properties of geodesic and horocycle flows acting on the
unit tangent bundle of negatively curved manifolds is now a very classical subject
: existence of invariant (finite or σ-finite) measures, entropy, unique ergodicity,
equidistribution properies, generic vectors, ... This subject was intensively studied
during the last century, in the case of geodesic and horocyclic flows on compact
or finite volume surfaces of constant negative curvature.

I am particularly interested in situations where the classical powerful methods
issued from harmonic analysis or lattices of Lie groups do not work : non compact
manifolds, infinite volume, infinitely generated groups, infinite measure of maximal
entropy, variable curvature (and even nonpositive curvature),
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Let us describe first the classical and well known situation.

Hyperbolic surfaces of finite volume. If S is a hyperbolic surface, its unit
tangent bundle identifies with PSL(2,R)/Γ, where Γ is a discrete subgroup of
PSL(2,R). The geodesic flow (gt)t∈R acts on the left as the one parameter group

{
(

et 0
0 e−t

)
, t ∈ R}, whereas the (unstable) horocycle flow (hs)s∈R corresponds

to the unipotent group {
(

1 0
s 1

)
, s ∈ R}.

The geodesic flow is the typical geometrical example of a hyperbolic flow, with
positive entropy, exponential mixing, dense orbits, dense periodic orbits, infinitely
many invariant measures, ...

When S is compact, the horocyclic flow is minimal (Hedlund), ergodic with
respect to the Liouville measure, and even uniquely ergodic (Furstenberg). In
particular, all orbits (hsu)0≤s≤S are equidistributed towards the Liouville measure
when S → +∞. On finite volume surfaces appear periodic horocyclic orbits due
to the presence of cusps (thin ends). But except the Dirac measures supported on
periodic orbits, the Liouville measure is the unique ergodic probability measure on
T 1S. And all nonperiodic orbits are equidistributed towards the Liouville measure.
However, due to the presence of periodic orbits, this result becomes highly non
trivial, and needs to understand the time spent by horocycles inside the cusps of
the surface (Dani, and Dani-Smillie).

Geometrically finite negatively curved surfaces. In the particular case of
hyperbolic surfaces, the notion of geometrical finiteness coincides with the fact
that the fundamental group Γ = π1(S) is finitely generated.

If the surface has infinite volume, it has funnels, that is big ends of infinite
volume, topologically homeomorphic to cylinders, separated from the compact
part of the surface by a closed geodesic. Of course, the surface can still have cusps,
that is thin ends of finite volume (also topologically homeomorphioc to cylinder).
A geodesic orbit can enter a cusp and come back, and can do it even infinitely
many times, during unbounded times, ... By contrast, if it enters a funnel, it never
comes back.

The study must therefore restricted to the nonwandering set Ω of the geodesic
flow. On this set, (gt)t∈R has the same qualitative properties as on a finite volume
surface.

However, Ω is not invariant by the horocyclic flow, so that we need to consider
also the nonwandering set E of the horocyclic flow, which consists of all horocyclic
orbits intersecting Ω. Of course, Ω ⊂ E ⊂ T 1S, and all inclusions are strict.

As consequences, the measure of maximal entropy of the geodesic flow, sup-
ported on Ω, does not coincide anymore with the Liouville measure; the Liouville
measure, supported on T 1S, is no more ergodic under any of the two flows; there
is no measure invariant and ergodic under both flows.

However, most results true on finite volume surfaces can be extended in this
context. For example, all horocyclic orbits of E are periodic or dense in E . The
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horocyclic flow has a unique invariant ergodic measure on E except the Dirac
measures supported on periodic orbits. This result was proved by Burger [Bu] in
the case of geometrically finite surfaces without cusps, and with a critical exponent
strictly larger than 1/2, by using harmonic analysis, and later by Roblin [Ro] in
a more general context (CAT (−1)-spaces of any dimension). It is important to
note that this measure is infinite.

In [Scha1], I proved that in a certain sense, horocycles of E do not spend to
much time inside the cusps of the surface. (The article was written in the context
of manifolds of any dimension and variable negative curvature).

As a consequence, in [Scha2], I obtained the equidistribution of nonperiodic
horocyclic orbits of E towards the unique nonperiodic invariant ergodic measure
on E , which is infinite.

This result was obtained through other intermediate equidistribution results.

Half-horocycles. Usually, in classical ergodic theory, if a dynamical system is
invertible, properties of the system and of its inverse are the same. For equidistri-
bution property, for example, the usual statement, on a finite volume surface, says
that for all nonperiodic vectors v ∈ T 1S, and all continuous functions f defined
on T 1S, the Birkhoff average of f along the orbit (hsv)0≤s≤S converges to the
integral of f w.r.t. the Liouville measure when S → +∞.

It turns out that in the statement of my equidistribution result mentioned above,
as well as in an analogous result previously obtained by M. Burger, I consider
symmetric orbits (hsv)−S≤s≤S and their behaviour when S → +∞.

In [Scha3], I clarify the cases where one needs to consider symmetric orbits.
Once again, it is mainly due to the presence of funnels. In such situations, it
can happen that a half-orbit will enter a funnel and never come back, whereas
the other half orbit is recurrent and even dense in E . But I prove that this is
the only obstruction which makes a half-horocycle dense and the other not, on
geometrically finite manifolds.

And I also prove that non-density is the only obstruction to equidistribution.
In other words, as soon as a half-horocycle (hsv)s≥0 is dense in the nonwandering
set E of the horocyclic flow, it is equidistributed towards the unique (hs)-invariant
ergodic measure of full support in E .

Geometrically infinite surfaces. We can ask whether it is reasonable or not to
hope for density and equidistribution of (half-)horocycles on geometrically infinite
surfaces. From the topological point of view, the picture is almost complete (see
[H], [Da])

In a joint work [Sa-Scha] with Omri Sarig, we studied the question of equidis-
tribution of orbits in the simplest case of geometrically infinite surfaces, the case
of abelian covers of compact hyperbolic surfaces. In this situation, the invariant
ergodic measures under the horocyclic flow were described and classified (Babillot-
Ledrappier [BL], Sarig [Sa]), using the notion of asymptotic cycle of a vector.
Roughly speaking, if you see a Zd-cover of a compact surface from very far, you
see no details on the local geometry, but only Zd, and the asymptotic cycle of a
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vector v describes the asymptotic average displacement of (gtv)t≤0 in Zd. Babillot-
Ledrappier and Sarig showed that (hs)-invariant ergodic measures are classified by
asymptotic cycles, and we also classify generic vectors using this notion of asymp-
totic cycle.
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Integral points on one-sheeted hyperboloids and limits of translates of
divergent geodesics

Nimish Shah

(joint work with Hee Oh)

Let Q(x1, x2, x3) be a real quadratic form of signature (2, 1). For d > 0, the
variety V := {X ∈ R3 : Q(X) = d} is a one sheeted hyperboloid. Denote by G
the identity component of the special orthogonal group SOQ(R). Let Γ < G be a
lattice, that is, a discrete subgroup of finite co-volume, and v0 ∈ V be such that
the orbit v0Γ is discrete.

For a norm ‖ · ‖ on R3, we consider the following counting function: for T > 1,

NT (v0Γ, ‖ · ‖) := #{w ∈ v0Γ : ‖w‖ < T }.

Denote by H ≃ SO(1, 1)◦ the one-dimensional stabilizer subgroup of v0 in G
and set BT := {w ∈ v0G : ‖w‖ < T } for T > 1. Extending the 1993 result of
Duke, Rudnick and Sarnak [1], where one assumes that H ∩ Γ is a lattice in H ,
we show the following:
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Theorem 1. Suppose that H ∩ Γ is finite. Then as T → ∞,

NT (v0Γ, ‖ · ‖) ∼
∫ log T

− log T 1ds

volG(Γ\G)
volH\G(BT )

where d volG = ds× d volH\G locally. Furthermore, for some c > 0

NT (v0 G, ‖ · ‖) = c · T · logT (1 +O((log T )−2/7(log logT )2/7).

Integral binary quadratic forms of a fixed discriminant For a binary qua-
dratic form q(x, y) = ax2 + bxy + cy2, its discriminant disc(q) is defined to be
b2 − 4ac. For d ∈ Z, denote by Bd(Z) the space of integral binary quadratic
forms q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z with discriminant d. It is easy to
see that Bd(Z) 6= ∅ if and only if d congruent to 0 or 1 modulo 4. For d 6= 0, a
classical result of Gauss says that Bd(Z) consists of finitely many SL2(Z)-orbits.
If d is not a square, then the stabilizer of every q ∈ Bd(Z) in SL2(Z) is infinite.
On the other hand, when d is a square, Bd(Z) contains a quadratic form q (e.g.,

q(x, y) = x2 +
√
d xy) whose stabilizer in SL2(Z) is finite.

Therefore by Theorem 1

Theorem 2. For any non-zero square d ∈ Z and for any norm ‖ · ‖ on R3, there
exists c > 0 such that

#{q ∈ Bd(Z) : disc(q) = d, ‖q‖ < T } = c · T logT (1+O((log T )−2/7(log logT )2/7),

where ‖ax2 + bxy + cy2‖ = ‖(a, b, c)‖.

The proof of Theorem 1 is based on the methods developed by Duke, Rudnick
and Sarnak [1] and Eskin and McMullen [2] and the following result.
Orthogonal translates of a divergent geodesic Let G = SL2(R) and Γ be a
(non-uniform) lattice in G. Let µ be the G-invariant probability measure on Γ\G.
For s ∈ R, define

(1) h(s) =

(
cosh(s/2) sinh(s/2)
sinh(s/2) cosh(s/2)

)
and a(s) =

(
es/2 0
0 e−s/2

)
.

Let H = {h(s) : s ∈ R}. Understanding the limit of the translates Γ\ΓHa(T )
when Γ\ΓH is divergent in both directions is the new main ingredient of our proof
of Theorem 1.

Theorem 3. Let x0 ∈ Γ\G and suppose that x0h(s) diverges as s → +∞, that
is, x0h(s) leaves every compact subset for all sufficiently large s ≫ 1. For a
given compact subset K ⊂ Γ\G, there exists c = c(K) > 0 such that for any
f ∈ C∞(Γ\G) with support in K, we have, as |T | → ∞,

1

|T |

∫ ∞

0

f(x0h(s)a(T ))ds =

∫

Γ\G
f dµ+O(|T |−1 log |T |)

where the implied constant depends only on K and a Sobolev norm of f .



1746 Oberwolfach Report 29/2010

Corollary 1. Suppose that x0H is closed and non-compact. For any f ∈ Cc(Γ\G),

lim
T→±∞

1

2|T |

∫ ∞

−∞
f(x0h(s)a(T )) ds =

∫

Γ\G
f dµ.
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Dynamics and continued fractions

Uri Shapira

(joint work with Manfred Einsiedler and Lior Fishman and with Menny Aka)

We report several results regarding the continued fraction expansion (c.f.e) of the
numbers composing a sequence of the form {nα}, as n ranges over the natural
numbers, or over the powers of some fixed prime. More precisely, we prove that
for any real number α, if we let

c(α) = lim sup an(α),

where an(α) denotes the n’th coefficient in the c.f.e of α, then the sequence
c(nα), n ∈ N, is unbounded. This is joint work with Manfred Einsiedler and
Lior Fishman [EFS]. We also describe in some detail the proof of the following
result obtained recently in a joint work with Menny Aka. Let α be a quadratic
irrational and let p be a prime. Then the period of the c.f.e of pnα exhibits sta-
tistics which converge to the one given by the Gauss measure. More precisely, if
we denote for any finite word of natural numbers b = (b1, . . . , bℓ),

D(α, b) = lim inf
number of times b appears in the word a1(α) . . . aN (α)

N
.

Then limD(pnα, b) exists and is equal to the Gauss measure of the set {x ∈ [0, 1] :
a1(x) . . . aℓ(x) = b}.

The proofs of the above results are dynamical. For the first result we rely on a
rigidity result of Elon Lindenstrauss regarding the unique ergodicity of the action
of the adelic points of the diagonal group on SL2(A)/ SL2(Q). The second result
uses a mixing argument on an S-arithmetic version of the above space. All the
arguments are based on the tight connection between c.f.e and the geodesic flow
on the unit tangent bundle of the modular surface, which is a factor of the above
mentioned adelic and S-arithmetic spaces.
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Margulis’ conjecture for the locally divergent orbits on real Hilbert
modular space forms

George Tomanov

Let G = SL(2,R)× · · · × SL(2,R)︸ ︷︷ ︸
r

, r ≥ 2, and Γ be an irreducible non-uniform

lattice in G. According to Selberg arithmeticity theorem Γ coincides (up to con-
jugation and commensurability) with the diagonal imbedding of SL(2,O) in G,
where O is the ring of integers of K. Denote by Di the group of diagonal matrices
in the i-th copy of SL(2,R) and for every non-empty I ⊂ {1, · · · , r} denote by DI

the (direct) product of all Di, i ∈ I. We write D instead of D{1,··· ,r}. The quotient
space G/Γ is called real Hilbert modular space form. We denote by π : G → G/Γ
the natural projection. The torus DI is acting on G/Γ by left translations.

We are interested in the structure of the closures of the orbits DIπ(g) when
#I ≥ 2. The assumption #I ≥ 2 is very essential. Actually, the cases #I = 1
and #I ≥ 2 represent different phenomena in many aspects. For instance, it is an
unpublished result of Furstenberg and Benjamin Weiss that for any α ∈ [1, 3] there
is a point x ∈ SL(2,R)/Γ such that the closure Dx has Hausdorff dimension α.
This is in sharp contrast to the theorem of Marina Ratner (proved for arbitrary
Lie groups) which says that the closure of an orbit of subgroup generated by
unipotent elements is homogeneous, i.e., it coincides with an orbit of a closed
subgroup. A conjecture in this regard has been formulated by Gregory Margulis
saying that if the action of an R-split torus on a homogeneous space does not factor
(in a natural way) to the action of a 1-dimensional split torus then its closure is
homogeneous. (We refer to [M, Conjecture 1] for the precise formulation of the
conjecture.) For action of a split torus T on SL(n,R)/Γ, n ≥ 3, T -orbits with
non-homogeneous closures have been constructed by François Maucourant [Ma]
if n ≥ 6 and dimT = n − 2 and by Uri Shapira [Sh] if n = 3 and T is the full
diagonal group.

In the present paper we explicitly describe the closures of the locally divergent
DI -orbits on G/Γ. An orbitDIπ(g) is called locally divergent if Diπ(g) is divergent
(equivalently, closed) for all i ∈ I.

We prove the following:

Theorem 1. With the above notation, let #I = 2 and DIπ(g) be a locally diver-
gent orbit. The following propositions hold:

(a) if g ∈ NG(DI)GK then DIπ(g) = Tπ(g), where T is a torus containing
DI;

(b) if g /∈ NG(DI)GK then DIπ(g) = DIπ(g) ∪
s∪

i=1
Tiπ(hi), where 2 ≤ s ≤ 4,

Ti are tori containing DI and Tiπ(hi) are pairwise different closed orbits.
In particular, the closure of DIπ(g) is not homogeneous which contradicts
Margulis’ conjecture.
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In the course of the proof of the theorem the pairwise different closed orbits
Tiπ(hi), 2 ≤ s ≤ 4, are explicitly described in terms of g and there are examples
when s = 4.

For action of maximal tori the above theorem implies:

Corollary 1. Let r = 2. Then a locally divergent orbit Dπ(g) is either closed or

Dπ(g) = Dπ(g) ∪ s∪
i=1

Dπ(hi), where 2 ≤ s ≤ 4 and Dπ(hi) are pairwise different

closed orbits. In particular, when r = 2 there are not dense locally divergent orbits.

The situation differs drastically when #I > 2.

Theorem 2. Let #I > 2 and DIπ(g) be a locally divergent orbit. Then the
following dichotomy holds:

(a) g ∈ NG(DI)GK and DIπ(g) = Tπ(g), where T is a torus containing DI ;
(b) g /∈ NG(DI)GK and DIπ(g) is a dense orbit.

In the classical case of maximal tori Theorem 2 immediately implies:

Corollary 2. Let r > 2. Then every locally divergent orbit D-orbit is either close
or dense.

Theorems 1 and 2 apply to the study of the values of rational binary quadratic
forms at integral points. Namely, for every archimedean place vi of K we denote
by fi(X,Y ) ∈ K[X,Y ] a K-split non-degenerate quadratic form, i.e., fi(X,Y ) =
li,1(X,Y ) · li,2(X,Y ) where li,1 and li,2 ∈ K[X,Y ] are linearly independent over

K linear forms. Let A =
r∏

i=1

Ki and A∗ =
r∏

i=1

K∗
i . We may (and will) regard

f := (fi)i∈1,r as a polynomial in A[X,Y ] so that if (α, β) ∈ O2, f(α, β) is an

element in A with i-th coordinate equal fi(α, β)). It is trivial to see that if all
fi, 1 ≤ i ≤ r, are proportional over K then f(O2) is discrete in A. In this case
f is called K-rational. Theorem 1.8 from [T] implies the inverse: if f(O2) is
discrete in A then f is K-rational, that is, there exists a φ ∈ K[X,Y ] such that
fi = αiφ, 1 ≤ i ≤ r, where αi ∈ K. Theorems 1 and 2 allow to reinforce this result
as follows.

Theorem 3. With the above notation and assumptions, suppose that f(O2) is not
discrete in A, equivalently, that f is not K-rational. Then

(a) if r = 2, f(O2)∩A∗ = (f(O2)∪ 4∪
j=1

φ(j)(O2))∩A∗ where φ(j) are K-rational

quadratic forms in K[X,Y ]. In particular, f(O2) ∩ A∗ is a countable set;
(b) if r > 2, f(O2) is dense in A.

In the context of tori actions on G/Γ where G is an arbitrary real semisimple
algebraic group the following conjecture seems plausible1:

1I am grateful to Elon Lindenstrauss for the useful discussion with him during the conference
on the conjecture.
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Conjecture 2. Let G be a real R-split semisimple algebraic group of rank > 1, Γ
an irreducible lattice in G, D a maximal R-split torus of G and x ∈ G/Γ. Then
either

(1) Dx = G/Γ, or

(2) Dx \Dx ⊂ N∪
i=1

Hixi where Hi are closed proper subgroups of G containing

D and Hixi are closed orbits.
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Expansion in Arithmetic Groups

Péter P. Varjú

(joint work with Jean Bourgain and with Alireza Salehi Golsefidy)

Let G be a graph, and for a set of vertices X ⊂ V (G), denote by ∂X the set of
edges that connect a vertex in X to one in V (G) \X . Define

c(G) = min
X⊂V (G), |X|≤|V (G)|/2

|∂X |
|X | ,

where |X | denotes the cardinality of the set X . A family of graphs is called a fam-
ily of expanders, if c(G) is bounded away from zero for graphs G that belong to the
family. Expanders have a wide range of applications in computer science (see e.g.
Hoory, Linial and Widgerson [8] for a recent survey on expanders) and recently
they found remarkable applications in pure mathematics as well (see Bourgain,
Gamburd and Sarnak [5] and Long, Lubotzky and Reid [9]). For further motiva-
tion, we refer to these papers.

Let G be a group and let S ⊂ G be a symmetric (i.e. closed for taking inverses)
set of generators. The Cayley graph G(G,S) of G with respect to the generating
set S is defined to be the graph whose vertex set is G, and in which two vertices
x, y ∈ G are connected exactly if y ∈ Sx. Let q be a positive integer, and denote
by πq : Z → Z/qZ the residue map. πq induces maps in a natural way in various
contexts, we always denote these maps by πq. Consider a fixed symmetric S ⊂
SLd(Z) and assume that it generates a group G which is Zariski-dense in SLd.
We study the problem whether for a fixed set S and for q running through the
integers, the family of Cayley graphs G(SLd(Z/qZ), πq(S)) is an expander family
or not. More precisely we, we report on the following two results:
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Theorem 1 (Bourgain, V [6, Theorem 1]). Let S ⊂ SLd(Z) be finite and sym-
metric. Assume that S generates a subgroup G < SLd(Z) which is Zariski dense
in SLd.

Then G(πq(G), πq(S)) form a family of expanders, when S is fixed and q runs
through the integers. Moreover, there is an integer q0 such that πq(G) = SLd(Z/qZ)
if q is coprime to q0.

Theorem 2 (Salehi Golsefidy, V [11, Theorem 1]). Let Γ ⊆ GLd (Z[1/q0]) be the
group generated by a symmetric set S ⊂ SLd(Q). Then G(πq(Γ), πq(S)) form a
family of expanders when q ranges over square-free integers coprime to q0 if and
only if the connected component of the Zariski-closure of Γ is perfect.

Both proofs follows the same lines as any of the papers [2]–[5], [12] which contain
similar results in less generality. In the course of the proof one needs to show
that for certain sets A ⊂ SLd(Z/qZ) related to the generating set S we have
|A.A.A| > |A|1+ε for some ε > 0. Here A.A.A denotes the set of products of any
three elements of A. This ingredient is the main part of the proofs and the only
essential difference between results of this type. For Theorem 1 we use the square-
free case (already proven combining [7], [10] with [12]) together with the result in
the paper [1]. For Theorem 2 we first prove that we only need to consider sets A
which are sufficiently well-distributed among the cosets of large index subgroups,
and then we show the required inequality for sets A satisfying this condition.
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Topological self-joinings of full Cartan actions by toral automorphisms

Zhiren Wang

(joint work with Elon Lindenstrauss)

As a higher-dimensional extension to Furstenberg’s famous theorem on ×2,
×3-invariant sets, the following was proved by Berend:

Theorem 1. (Berend, 1983) For an abelian group G of SLd(Z) = Aut(Td), if the
following assumptions hold:

(1). G contains a totally irreducible toral automorphism;
(2). For any common eigenvector v ∈ Cd of G, there exists g ∈ G such that

|g.v| > |v|;
(3). rank(G) ≥ 2.

then ∀x ∈ Td, the orbit G.x is dense in Td unless x is a rational point.

Here a toral automorphism g ∈ SLd(Z) is said to be irreducible if there is no
non-trivial g-invariant subtorus in Td, it is totally irreducible if gn is irreducible
for all n 6= 0.

In particular, Berend’s theorem covers the special case of full Cartan actions,
which is defined by the following condition:

Condition 1. G is an abelian subgroup of SLd(Z) with rank(G) ≥ 2, such that:
(1). G contains a totally irreducible toral automorphism;
(2). G is maximal in rank: there is no intermediate abelian subgroup G1 in

SLd(Z) containing G such that rank(G) < rank(G1)

Condition 1 is of particular number-theoretical interest because the action of
such a group G on Td is, up to passing to a finite index subgroup, conjugate to
the multiplicative action of UK , the group of units of a non-CM number field K of
degree d, on some arithmetic compact quotient of K ⊗Q R. Notice this implicitly
requires rank(G) ≤ d− 1.

We try to understand what happens if the action is no longer irreducible. More
precisely, consider the diagonal action of a group G satisfying Condition 1 on
Td ×Td. We ask how orbit closures look like in this case. It is not hard to see the
following three types of subsets of Td × Td can be orbit closures:

(I). A finite G-invariant set consisting of rational points, on which G acts tran-
sitively.

(II). A finite union of d-dimensional parallel subtori Tk, each of which is of the
form {(x1, x2) ∈ Td × Td|A1x1 + A2x2 = zk}. Where A1, A2 are toral endomor-
phisms from Md(Z) that commute with G and don’t depend on k; and the G-action
permutes the Tk’s in a transitive way.

(III). Td × Td itself.

It is natural to guess that these exhaust all the possibilities. Such a guess is
true if rank(G) ≥ 3, but turns out to be false when rank(G) = 2.
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Theorem 2. (L.-W., 2010) Suppose G satisfies Condition 1 and let it act diago-
nally on Td × Td.

(1). If rank(G) = 2 then there exists a point x ∈ Td × Td and three d-
dimensional subtori T1, T2, T3 which are not parallel to each other, such that
G.x = (G.x)

⊔
(⊔3

i=1Ti).
(2). If rank(G) ≥ 3, then ∀x ∈ Td × Td, G.x is homogeneous, i.e. it belongs to

one of the three classes (I), (II) and (III) described above.

The rank two case is proved in a constructive way, while the proof of case (2)
relies on the following variation of Berend’s original theorem:

Theorem 3. Suppose G satisfies Condition 1 and has rank at least 3. Let v ∈ Cd

be a common eigenvector of G. Then ∀x ∈ Td, ∀ǫ > 0, the set
{
g.x

∣∣ |g.v|
|v| ∈

(1− ǫ, 1 + ǫ)
}
is dense in Td unless:

(i). x = x0 + rv for some rational point x0 ∈ Td and r ∈ R if v is real;
(ii). x = x0 + rRev + sImv for some rational point x0 ∈ Td and r, s ∈ R if v is

imaginary.

This can be interpreted as the action of the subset
{
g
∣∣ |g.v|

|v| ∈ (1− ǫ, 1+ ǫ)
}
⊂ G

is approximately a group action, whose rank is roughly rank(G) − 1. Therefore
heuristically, the subaction in question has rank at least 2 and satisfies assumption
(1) in Theorem 1 if rank(G) ≥ 3. However remark that the hyperbolicity assump-
tion (3) in Theorem 1 fails in this setting, which gives rise to the exceptional cases
in Theorem 3.
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Counting Rational Matrices of a Fixed Irreducible Characteristic
Polynomial

Thomas Zamojski

As part of the study of rational points on algebraic varieties, we establish an
asymptotic formula for the number of rational matrices of bounded height and of
a fixed characteristic polynomial. This solves a new case of Manin’s Conjecture
(see [1] or see the survey article [9] for the conjecture).

Counting Estimate

Let P (λ) = λn + an−1λ
n−1 + ... + a0 be a monic polynomial with rational

coefficients and irreducible over the rationals Q. For simplicity, we also assume
the polynomial splits over the reals, although this is not necessary. Let V be
the affine variety of n × n matrices of characteristic polynomial P (λ), which is
a variety defined over Q. To a rational point v ∈ VQ whose coordinates are
over a common denominator and in lowest form, we define the height of v as
the maximum in absolute value of the numerators and the denominator. We will
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denote this number by Ht(v). It has the property that the number of rational
points of height bounded by R is finite, and we denote this number by NR.

Theorem 1 (counting estimate). There exists a constant C such that

lim
R→∞

NR

Rn(n−1)/2+1
= C.

Homogeneity

The variety V is homogeneous: the affine algebraic group G = PGLn acts
transitively on V by conjugation of matrices. By the existence rational canonical
form for matrices, the rational points VQ is a single orbit of GQ = PGLn(Q). The
group GQ is a lattice in the adelic group GA via its diagonal embedding. Therefore
the counting problem is one of counting the points on the orbit of a lattice.

Choosing a base point v0 ∈ VQ, we let H be the stabiliser of v0 in G. The
group H is a Q-anisotropic maximal torus, which implies that HQ is cocompact
in HA. Let µG be a Haar measure on GQ\GA, µH be a Haar measure on HQ\HA

and vol be a GA-invariant measure on VA, satisfying the compatibility condition
dµG = dµH dvol. Also, the height function extends to VA, and we denote BR the
height-ball of radius R, that is the set of elements in VA of height bounded by
R. Two functions f(R) and g(R) are said to be asymptotically the same, written
f ∼ g, if their ratio goes to 1 as R → ∞. We prove that

Theorem 2.

NR ∼ µH(HQ\HA)

µG(GQ\GA)
vol(BR).

Equidistribution

Any element g ∈ GA acts on XA = GQ\GA by translation, and thus induces an
action on measures on XA. The measure µH can be viewed as a measure on XA

since the orbit GQ.HA in XA is HA-equivariantly homeomorphic to HQ\HA. In
that sense, we can state the following distribution theorem.

Theorem 3 (adelic mean ergodicity). With notation as above, as R → ∞,

1

vol(BR)

∫

BR

µH · g dvol(g) → µG ,

where convergence is meant in the weak-*-topology.

On the Proofs

Theorem 3 implies Theorem 2 via a classical application of unfolding [3, 6].
Theorem 2 implies Theorem 1 amounts to the computation of an asymptotic for-
mula for vol(BR). Recent work of Chambert-Loir and Tschinkel establishes such
a formula [2]. This aspect will be ignored here. Instead, we refer the reader to
their paper and [10].

For the proof of Theorem 3, inspired by the work of Eskin, Mozes and Shah,
we would like to apply Ratner’s measure rigidity theorem. However, there is an
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important distinction in the adelic setting that makes this impossible. In general,
as HAg leaves compact sets, the tori g−1HAg do not stretch enough to give in the
limit invariance under unipotent elements. This is because generically, HAg tends
to infinity in the places, but remains bounded for any given place. Therefore, a
limit will be invariant under a real torus, but no unipotent elements a priori.

Consider now a limit µ of the averages of Theorem 3 as R → ∞. It follows from
[5] that µ is a probability measure given by a (continuous) linear combination of
measures ν invariant under a maximal real split torus TR, together with a suitable
positive entropy condition. From the measure rigidity theorem of Einsiedler, Katok
and Lindenstrauss [4], each such measure ν is of the form

∑
νL, where the sum is

over a countable class of subgroups L of GR containing TR,and νL is supported on a
subvariety consisting of translated L×G

Ẑ
-orbits. If L = GR, we retrieve the Haar

measure µG. Therefore, to prove Theorem 3 we have to prove that on average,
the support of µHg spends little time in a neighbourhood of the support of the
intermediary measures µL, L 6= GR. The lack of linearisation in the adelic setting
is circumvented by using directions coming from the translations by g transverse
to the HA-orbits, together with non-divergence.

Related Literature

As mentioned before, our solution is inspired by [7], but with two major dif-
ferences coming from the adeles: no invariance under unipotent elements a priori,
and no linearisation technique. However, the method of proof remains dynamical.

To our knowledge, the first application of measure rigidity to the problem of
counting rational points on varieties is in the work of Gorodnik and Oh [8]. Va-
rieties considered are equivariant compactifications of the variety H\G, where G
is a semi-simple algebraic group, and the stabiliser H is a semisimple maximal
subgroup of G. In this case, the two difficulties of the previous paragraph do not
appear. Nonetheless, their solution was influential to our work.

Finally, in the special case that the size n of the square matrices is a prime
number, Theorem 3 follows from the work of Einsiedler, Lindenstrauss, Michel and
Venkatesh on Duke’s Theorem for cubic fields [5]. However, their method does not
address the issue of the possible presence of intermediary measures, which is not
needed when n is prime.

References

[1] V. V. Batyrev and Yu. I. Manin Sur le nombre des points rationnels de hauteur borné des
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