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Abstract. Since its invention by Newton, the calculus of variations has
formed one of the central techniques for studying problems in geometry,
physics, and partial differential equations. This trend continues even to-
day. On the one hand, slow but steady progress is made on long-standing
questions concerning minimal surfaces, curvature flows, and related geometric
objects. Basic questions also remain in such areas as mathematical physics
and general relativity. On the other hand, new types of question emerge,
driven by applications from economics and engineering to materials science,
whose solution will depend on developing ideas and techniques in this classical
branch of analysis. The July 2010 Oberwolfach workshop on the Calculus of
Variations showcased a blend of continued progress in traditional areas with

surprising developments which emerged from the exploration of new lines of
research.
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Introduction by the Organisers

This workshop attracted 49 participants, including 13 recent PhDs and 3 women.
Its main themes could be divided into four large groups (i) geometry (ii) partial
differential equations; (iii) physics and materials; (iv) optimal transportation and
its applications. Doctoral students and postdoctoral fellows accounted for nearly
a third of the 21 presentations which took place 19-23 July 2010.

The first general area encompassed the role of calculus of variations in differ-
ential geometry, including minimal surface theory and general relativity. Some
of the most exciting developments here concern rigidity questions in Riemannian
geometry described by Simon Brendle and Andre Neves. Brendle’s lecture was
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devoted to the construction of a counterexample to a conjecture of Min-Oo. For a
manifold which is asymptotically Euclidean and has non-negative scalar curvature,
the positive mass theorem asserts that the ADM mass be non-negative, vanishing
only in the case of Euclidean space. Min-Oo established a similar result in the
asymptotically hyperbolic setting — namely, that no compact perturbation exists
whose only effect is to increase the positive scalar curvature locally. He conjec-
tured the same would be true in the positive curvature setting of the hemisphere,
a conjecture disproved by Brendle’s example with Marques and Neves. Neves, on
the other hand, devoted his talk to positive results, including sharp bounds on
the area of a minimizing surface in a compact oriented 3-manifold whose scalar
curvature exceeds that of the sphere; the case of equality is attained by products
of spheres.

Curvature-driven flows were addressed in talks by Peter Topping, John Head
and BrianWhite. Peter Topping explained conditions for there to be a unique Ricci
flow which instantaneously completes an incomplete surface. The talks of Head
and White concerned flows of embedded submanifolds by mean curvature. Here a
program by Huisken and Sinestari has succeeded in classifying singularities of the
flow; as in the Ricci flow case, such singularities can be bypassed using surgery.
John Head described doctoral work showing that in the limit, the flow obtained by
postponing the surgeries for as long as possible coincides with the one arising from
the viscosity solution of the level-set formulation of mean-curvature flow. On the
other hand, Brian White explained how he and Tom Ilmanen have exploited the
classification of singularities for mean-curvature flow to resolve a classical problem
in geometric measure theory. Under a mild topological assumption, they were
able to show that the density of an area-minimizing hypersurface exceeds the
square root of two at each singularity. Among dimension independent bounds,
this result is sharp. Emanuel Spadaro described his doctoral work with Camillo
DeLellis, which focused on simplifying Almgren’s thousand page proof of regularity
results for minimal varieties of codimension two and higher. Finally, Mu-Tao Wang
described his definition with S.T. Yau of the quasi-local mass (or total energy)
bounded by a closed spacelike surface in general relativity. Their approach, which
involves extremizing over isometric embeddings of the geometry into a Lorentzian
spacetime, is reminiscent of Gromov’s definition of the Hausdorff distance between
two abstract metric spaces.

Turning to variational problems in physics and materials science, we may men-
tion the review of Felix Otto, devoted to establishing ansatz-free upper bounds on
nonlinear rates of coarsening in dynamical settings, and on branching formations
in static patterns. Here interpolation inequalities between function spaces sensi-
tive to competing energies in the physical system play crucially. Robert Seiringer
described classical and quantum mechanical models for electrons moving through
a dielectric medium, and explained how screening effects must be taken into ac-
count when analyzing the ground state energy of the system, to preclude the
possibility of binding. Nicola Fusco discussed the variational problems governing
the equilibrium configurations of an epitaxially strained crystalline film.
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Exciting developments were also reported in the theory of partial differential
equations which arise as Euler-Lagrange equations for variational problems. One
of the highlights was Neil Trudinger’s description of affine maximal hypersurfaces.
This geometric problem dates back to Chern and Calabi, and involves proving
regularity for 4th order analogs of the elliptic Monge-Ampère equation. For two-
dimensional surfaces, the problem was solved some fifteen years ago by Trudinger
and Wang. In recent work, they have succeeded in extending their result to all
dimensions. Giuseppe Mingione described new techniques for showing bound-
ary regularity of solutions to minimization problems below the level at which the
Euler-Lagrange equation becomes effective; the key technical problem is that co-
efficients in this equation depend on the solution, hence need not be smooth, a
priori. Alessio Figalli described regularity results with Luis Caffarelli for an obsta-
cle problem from mathematical finance involving the fractional Laplacian, while
Daniel Faraco described the lack of uniqueness for solutions of the incompressible
porous medium equation, following similar results in fluid mechanics dating back
to Shnirelman. Yet another highlight was new PhD Charles Smart’s lecture on
optimal Lipschitz extensions. Here he described the differentiability proved with
Lawrence C Evans for the viscosity solution of the infinity-Laplace equation, and
his simplification with Armstrong of Jensen’s argument for its uniqueness. He
concluded by describing preliminary results concerning the vector-valued analog
of this problem, which is to construct a mapping whose Lipschitz constant is the
minimum possible (relative to its boundary conditions) on every subdomain of a
given domain.

Turning to questions in optimal transportation, Brendan Pass described doc-
toral research on the multiple marginal problem of optimally correlating m ≥ 3
distributions in several dimensions with respect to a given cost function. He de-
scribed existence, uniqueness, and rectifiability results, some of which were new
even for two marginals. Most striking among these is difference between the di-
mension of the maximizer and the minimizer when m ≥ 3, and the fact that the
solution is a spacelike manifold with respect to 2m−1 pseudo-metrics. Young-Heon
Kim described progress with Figalli and McCann concerning regularity of optimal
maps on a Riemannian manifold in the two marginal case. They have overcome
the subtleties associated with the cut-locus on products of round spheres, which
provide a reasonably robust model for the singularities displayed by more general
superdifferentiable costs. Alexander Plakhov described problems of minimizing
aerodynamic resistance, in which optimal transportation plays a role. His delicate
constructions establish the surprising ability to lower the resistance to zero in cer-
tain (unstable) directions. To do so requires recapturing lost momentum through
multiple scattering. Finally, Guillaume Carlier described an economic model for
optimal transportation with congestion.

Apart from the lectures classified above, there were several which defy cate-
gorization, such as Paul Lee’s results on bracket conditions which guarantee the
continuity of sub-Riemannian actions in a control-theoretic context, and Bob Jer-
rard’s talk on Lorentzian analogues of variational questions modeling the limiting



1830 Oberwolfach Report 31/2010

geometry of singularities arising from phase-field models in a singular limit. In
addition to formal lectures, many lively discussions between new and seasoned re-
searchers took place throughout the week, affirming the vitality of this flourishing
subject. We hope the collection of extended abstracts supplied by the speakers
below helps to convey a sense of the excitement and possibilities shared by the
participants and researchers working at the scientific frontier in the calculus of
variations.
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Abstracts

Branching, coarsening, and interpolationestimates

Felix Otto

In many mesoscopic model of phase transitions, the order parameter has a finite
number of preferred values and thus displays domains, i. e. regions where it is
nearly constant, and which are of a characteristic width w, separated by compar-
atively sharp transition layers. We now give three examples, of different physical
background, where in equilibrium configurations the average width w of these do-
mains decreases substantially towards an edge of the sample — a decrease that is
mediated by branching of the domains:

1) Type-I superconductors under an external magnetic field. Here the order
parameter is a scalar, namely the density of superconducting electrons,
and branching has been analyzed by Landau.

2) Strongly uniaxial ferromagnets, where the order parameter is the magneti-
zation, a vector field. This phenomenon has been first analyzed by Hubert
and Privorotskii.

3) Shape memory alloys, where Martensitic twins branch towards (not a sam-
ple surface but) an interface with the Austenite phase. Here the order
parameter is the lattice distortion (w. r. t. the high-symmetry Austenite
phase) and thus a tensor. This phenomenon has first been (rigorously)
analyzed by Kohn & Müller.

The challenge for mathematical analysis in these variational models consists in
proving that the minimizers display branching. This is translated into a question
on the scaling of the minimal energy. The task is then to establish lower bounds
that scale with the system volume (and have optimal scaling in the nondimensional
parameters). This is sometimes called “Ansatz-free lower bounds” in contrast to
the upper bounds that come from a specific, physically motivated Ansatz.

We now turn to time-dependent mesoscopic models for phase transitions, like
the Cahn-Hilliard equation that describes the demixing of an initially spatially
homogeneous two-component mixture after a sudden reduction of temperature
(“quench”). After an initial stage, the scalar order parameter (i. e. the relative
concentration) forms domains. The average width w(t) of these domains increases
over time — a phenomenon called coarsening. The analogy is obvious: In branch-
ing, the domain width w increases with the distance z to the sample edge; in
coarsening, w increases with the time t. Matched asymptotic analysis allows to
relate the late stages of coarsening to a curvature-driven geometric motion of the
(ideally sharp) interface. This geometric motion typically has a scale invariance
that heuristically predicts the exponent α in w ∼ tα. These heuristics lead to the
numerically and experimentally confirmed coarsening laws in several examples:

1) w ∼ t1/3 for a shallow quench (where the geometric motion is Mullins-
Sekerka);
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2) w ∼ t1/4 for a deep quench (surface diffusion);
3) w ∼ t if the coarsening is mediated by an underlying flow that is limited

by viscous dissipation (Siggia’s growth);
4) and w ∼ t1/2 for grain growth (flow by mean curvature).

Kohn and Otto developed an approach that yields upper bounds on w that are
optimal in t-scaling (and hold for all system sizes). It applies to examples 1)-3), but
not to 4). The approach relies on the gradient flow structure of these evolutions
(which separates the driving energetics from the limiting dissipation mechanism).
It converts an estimate on how fast the energy decreases as a function of distance
to the well-mixed state into an estimate on how fast it decreases as a function of
time. This requires a good understanding of the distance on configuration space;
as in classical differential geometry it is the distance “in the large” induced by
the infinitesimal distance (i. e. the metric tensor) defined through the dissipation
mechanism. In example 1), the geometry comes from an ambient Euclidean one.
In 2) and 3) the induced distance can be estimated from below by a Wasserstein
metric (with linear cost function in 2) and logarithmic cost function in 3)). In 4),
the induced distance is trivial — leading to a failure of this approach.

Both the Ansatz-free lower bounds in branching and the estimates on the slope
of the energy landscape lead to interpolation estimates. Examples 1) and 3) in
branching, and example 1) in coarsening can be tackled by the same Gagliardo-
Nirenberg estimate

(1) ‖u‖L4/3
. ‖u‖1/2

Ḣ1
1

‖u‖1/2
Ḣ−1

2

.

Because of the L1-type norm on the r. h. s. , (1) was only recently established
by Cohen & Dahmen & Daubechies & DeVore by wavelet methods. Note that
(1) is scale invariant in any dimension — and, crucially for our application, it
scales with the system volume (we think of periodic boundary conditions) as can

be seen from rewriting it as
∫
|u|4/3dx .

(∫
|∇u|dx

)2/3 (∫ |j|2dx
)1/3

for flux j
with ∇· j = u. The relevance of (1) is clearest in case of example 1) in coarsening,
where the late stages are described by the Mullins-Sekerka interfacial motion. The
latter is the gradient flow of the perimeter (this brings in

∫
|∇u|) with respect to

the H−1-inner product (this brings in ‖u‖Ḣ−1
2

as induced distance), restricted to

characteristic functions u ∈ {−1, 1} (this is leveraged by ‖u‖L4/3
).

The interpolation estimates needed for superconductors (i. e. the branching
example 2)) are more subtle because a) the superconducting and the normal phases
are not symmetric, since only the normal phase carries the magnetic flux imposed
by the external field (Meißner’s effect) b) next to the strength Φ of the external
field, the model contains an additional dimensionless parameter ν ≪ 1. It turns
out that there are two scaling regimes for Φ ≪ 1. For ν6/7 ≪ Φ
1, the relevant interpolation estimate reads: For all u(x) ≥ 0

(2) ‖(u− 2)+‖w−L4/3
. ‖u‖1/2

Ḣ1
1

W (u, 1)1/2,
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where W (u, 1) denotes the Wasserstein distance (with quadratic cost functional)
between u and the uniform density. Compared with (1), the H−1-norm has been
replaced by the Wasserstein distance, which reflects the fact that the flux j is
only supported in the normal phase and acts as a velocity. The exponent 4/3 is a
coincidence of dimension d = 2 (the physical dimension for the cross-section). It
is not clear whether the weak space w − L4/3 can be sharpened to L4/3.

In the regime Φ ≪ ν6/7, the relevant interpolation estimate (again for dimension
d = 2) is the following:

‖u‖w−L9/7
. ‖u‖4/9

Ḣ1
1

(
sup
ν

inf
v(x)≥0

(
ν2/3W 2(u, v) + ν−1/3‖v‖2

Ḣ
−1/2
2

)3/5
)5/9

.

In comparison with (2), the Wasserstein distance W (u, 1) has been replaced by

the 1-homogeneous expression supν infv(x)≥0

(
ν2/3W 2(u, v) + ν−1/3‖v‖2

Ḣ
−1/2
2

)3/5

which interpolates between the Wasserstein distance and the H−1/2-norm. This
reflects the fact that in this regime, the magnetic flux v(x) is not uniform at the
sample edge, so that the field energy outside of the sample has to be accounted for
by ν−1‖v‖2

Ḣ
−1/2
2

. This interpolation estimate highlights the nature of the problem:

A given magnetic flux quantum has to be transported by an optimal strategy that
consists of flux tubes in the sample which branch towards the sample edge and
thus spread the flux somewhat, and the flux spreading freely outside of the sample.

This is an account of joint work with R. V. Kohn, R. Choksi, S. Conti, B.
Niethammer, S. Serfaty, Y. Brenier, T. Viehmann, and C. Seis [1].
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Counterexample to Min-Oo’s conjecture

Simon Brendle

Consider a compact Riemannian manifold M of dimension n whose boundary ∂M
is totally geodesic and is isometric to the standard sphere Sn−1. A natural con-
jecture of Min-Oo asserts that if the scalar curvature of M is at least n(n − 1),
thenM is isometric to the hemisphere Sn+ equipped with its standard metric. This
conjecture is inspired by the positive mass theorem in general relativity, and has
been verified in many special cases (see e.g. [1], [3], [5], [6]). I will present joint
work with F.C. Marques and A. Neves which shows that Min-Oo’s conjecture fails
in dimension n ≥ 3. The details will appear in [4].
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Absence of Binding in Pekar’s Polaron Model

Robert Seiringer

The binding of polarons, or its absence, is an old and subtle topic. In this talk
we consider the Pekar model for polarons. For ψ ∈ L2(R3N ) with ‖ψ‖2 = 1, it is
given by

Eα,UN (ψ) =

N∑

i=1

∫

R3N

|∇iψ|2 +
∑

i<j

∫

R3N

|ψ|2
|xi − xj |

− α

2

∫

R6

ρψ(x)ρψ(y)

|x− y|

where

ρψ(x) =

N∑

i=1

∫

R3(N−1)

|ψ(x1, . . . , xi−1, x, xi+1, . . . , xN )|2

denotes the particle density, U > 0 is the electronic Coulomb repulsion and α > 0
is the polaron coupling constant.

We give a proof of two things. First, the transition from many-body collapse to
the existence of a thermodynamic limit for N polarons occurs precisely at U = α.
I.e., for U > α,

EN (α,U) = inf
ψ

Eα,UN (ψ) ≥ −CN

for some N -independent constant C. For U < α, it is easy to see that such a
bound fails, and EN ∼ −N3 instead.

Second, if U is large enough, there is no multi-polaron binding of any kind.

More precisely, there exists a constant C̃ > 0 such that U ≥ C̃α implies that

EN (α,U) = NE1(α)

for all N ≥ 2. Considering the known fact that there is binding for some U > α,
these conclusions are not obvious and their proof has been an open problem for
some time.
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Boundary regularity in variational problems

Giuseppe R. Mingione

0.1. Problems. We will describe a few results obtained together with Jan Kris-
tensen (Oxford) in [7]. The matter concerns the boundary regularity of solutions
u ∈W 1,p(Ω;RN ) to Dirichlet variational problems of the type

(1) min
v∈W 1,p(Ω)

∫

Ω

F (x, v,Dv) dx , v ≡ u0 on ∂Ω

Here Ω ⊂ Rn is a bounded domain, N > 1 and n ≥ 3 and the boundary datum
u0 are assumed to be suitably smooth: Ω is a C1,α domain and u0 ∈ C1,α(Ω,RN )
for some α ∈ (0, 1]. The restriction n ≥ 3 comes from the fact that in the
two dimensional case n = 2 specific techniques apply, allowing to prove every-
where boundary regularity of minima under reasonable assumptions. For this we
refer to [1] and related bibliography. The interior regularity available for min-
ima prescribes that solutions to 1 are partially regular i.e. they are of class
C1,α/2 outside a negligible closed subset and singularities appear [10, 11]. It is
then natural to try to extend the almost everywhere regularity up to the bound-
ary. The only results available prior to [7] were due to Jost & Meier [5], who
proved the everywhere boundary Hölder continuity of minima in the special case
F (x, v,Dv) = a(x, v)|Dv|2, a result later generalized in [2] by considering the
degenerate version F (x, v,Dv) = a(x, v)|Dv|p. Such results strongly rely on the
special structure of the functionals considered i.e. the dependence on Dv via |Dv|,
which is known to allow for everywhere regularity since the work of Uhlenbeck
[12]. In the general case 1 even the existence of one regular boundary point was
an open problem, while on the other hand singularities are known to appear at
the boundary no matter the smoothness of u0 and ∂Ω [4]. In [7] we give the first
boundary regularity results valid for classes of general functionals as in 1, proving
that almost every boundary point, with respect to the natural surface measure,
is regular. Here a boundary point x0 ∈ ∂Ω is called regular iff there exists a ball

B(x0, R) such that Du is Hölder continuous in the closure Ω ∩B(x0, R). One of
the main difficulties is that under the assumptions we shall consider the functional
in 1 does not possess the Euler-Lagrange system, therefore the available boundary
theory regularity theory for solutions to general elliptic systems [3] does’s help.
Moreover, the available interior singular sets estimates for minima of variational
integrals [6] are not sufficient when carried up to the boundary.
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0.2. Results. The main idea of the proof is to observe that the low regularity of
(x, y) 7→ F (x, y, ·) is a potential source of singularities [8]. Therefore we consider
integrands F (x, y, ·) enjoining different regularity conditions with respect to the
coefficients (x, u); in particular, higher regularity will be imposed to y 7→ F (·, y, ·)
to avoid that the dependence x 7→ F (x, u(x), ·) looks too rough when u(x) is
considered as a coefficient. The precise assumptions are therefore
(2)



ν|z|p ≤ F (x, y, z) ≤ L(1 + |z|2) p
2

ν(1 + |z|2) p−2
2 |λ|2 ≤ 〈Fzz(x, y, z)λ, λ〉 ≤ L(1 + |z|2) p−2

2 |λ|2

|F (x1, y1, z)− F (x2, y2, z)| ≤ L [ωα(|x1 − x2|) + ωβ(|y1 − y2|)] (1 + |z|2) p
2

|Fz(x1, y1, z)− Fz(x2, y2, z)| ≤ Lωα(|x1 − x2|+ |y1 − y2|)(1 + |z|2) p−1
2 ,

to be satisfied for all x, x1, x2 ∈ Ω, y, y1, y2 ∈ RN and z, λ ∈ RnN , where
p ≥ 2, 0 < ν ≤ L, where ωα(s) := min{sα, 1} and ωβ(s) := min{sβ, 1}. ωα(s) :=
min{sα, 1} and ωβ(s) := min{sβ, 1}. The first two lines in 2 describe the ellipticity
and growth properties of the functional in question, while the following two serve
to specify the regularity assumed with respect to coefficients (x, y). We will start
with a low dimensional case, namely when p ≤ n+2, that is, when a remote effect
of certain Caccioppoli estimates combined with Sobolev embedding theorem, it is
possible to provide an additional integral control on the oscillations of u. A sample
result in this case is the following:

Theorem 1. Under the assumptions 2 with n ≤ p + 2, α > 1/2 and β >

max {1− 2/n, 2/3} , let u ∈ u0+W
1,p
0 (Ω,RN ) be a solution to the Dirichlet problem

1. Then Hn−1-almost every boundary point is regular for u.

When considering the case n > p + 2 we compensate the lack of additional
regularity with some structure properties. The model case has splitting structure:

(3)

∫

Ω

c(x)f(Dv) + h(x, v,Dv) dx

with 0 ≤ h(x, v,Dv) ≤ L(1 + |Dv|γ) with γ < p. When considering the general
case we then add an additional reduced growth condition of the type

(4) |Fz(x, y1, z)− Fz(x, y2, z)| ≤ Lωβ(|y1 − y2|)(1 + |z|2) γ−1
2 , y1, y2 ∈ R

N

Theorem 2. Under the assumptions 2 and 4 with γ < p, take the parameter
2/3 ≤ s ≤ p/(p− 1) and assume that α > 1/2, β > s and γ ≤ ps + 2ps/(n− 2).

Let u ∈ u0 +W 1,p
0 (Ω,RN ) be a solution to the Dirichlet problem 1. Then Hn−1-

almost every boundary point is regular for u.

The parameter s “tunes” the structure properties of the functional: the larger
we allow γ to be i.e. the more growth we assume on Dv, the more regularity we
assume on the respective coefficient. Moreover, when taking model examples as in
4, we are able to relax the Hölder continuity of c(x) in fractional differentiability,
allowing for rough coefficients. We refer anyway to [7] for more results.
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0.3. Techniques. The techniques employed in [7] make use of several regularity
methods and ingredients to achieve certain up-to-the-boundary fractional differ-
entiability properties of Du. This implies in turn singular sets estimates [6]. The
general strategy might be resumed as follows:

• Step 1: Morrey regularity up to the boundary on reduced subsets of small
Hausdorff codimension

• Step 2: Sharp form of certain Caccioppoli type inequalities to include also
rough coefficients

• Step 3: variational nonlinear Calderón-Zygmund theory to establish suit-
able up-to-the-boundary higher integrability of Du of reduced subsets of
small codimension

• Step 4: Du belongs to a suitable fractional Sobolev space; this goes via
• Step 4.1: Nonlinear atomic decomposition of Besov spaces replacing atoms
based on harmonic functions by atoms made based on solutions to nonlin-
ear systems, and using related low regularity properties of the “kernel”

• Step 4.2: Use of higher integrability of the gradient to improve the decom-
position

• Step 4.3: Iteration of Step 4.2 to reach maximal exponents and bounds

For further results about singular sets and boundary singularities we refer to the
recent survey papers [8, 9].

The results presented here are part of the ERC research project “Vectorial prob-
lems” 207573.
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Optimal transport with congestion, weak flows and degenerate elliptic
equations

Guilaume Carlier

This talk is based on a recent joint work with Lorenzo Brasco and Filippo Santam-
brogio [2]. Following [3], we consider a continuous model of congested transport,
where the unknown is some probability measure Q on a set of curves in a given
domain domain Ω (a city, say) which captures the overall transport pattern in the
city. We are also given two probabilty measures µ0 and µ1 that capture respec-
tively the distribution of residents and services in the city, so that Q should satisfy
the obvious mass conservation conditions

(1) e0#Q = µ0, e1#Q = µ1

where et denotes the evaluation map at time t ∈ [0, 1]. The measure Q (concen-
trated on the set C of absolutely curves from [0, 1] to Ω) induces an intensity of
traffic iQ ∈ M(Ω), defined by

∫
ϕdiQ :=

∫

C([0,1],Ω)

(∫ 1

0

ϕ(γ(t))|γ̇(t)|dt
)
dQ(γ)

for all ϕ ∈ C(Ω,R). The congestion effect is then captured through a metric:

ξQ(x) := g(iQ(x)), for iQ ≪ Ld (+∞ otherwise).

where g is a given increasing function g : R+ → R+. Denoting by Q(µ0, µ1) the
set of probability measures on C that satify the mass conservation constraint (1),
roughly speaking, an equilibrium is a Q ∈ Q(µ0, µ1) that is supported on geodesics
for the conformal Riemannian metric ξQ. This generalizes a well-known concept
of equilibrium due to Wardrop in the discrete network setting [5]. We then relate
equilibria to the variational problem

(2) inf
Q∈Q(µ0,µ1)

∫

Ω

H(iQ(x))dx

where H ′ = g, H(0) = 0. Under mild assumptions this proves existence of equi-
libria and gives a variational characterization.

We then look for a more explicit construction of equilibria by a flow formulation.
For Q ∈ Q(µ0, µ1), let us define the vector-measure σQ by : ∀X ∈ C(Ω,Rd):

∫

Ω

X(x)dσQ(x) =

∫

C([0,1],Ω)

(∫ 1

0

X(γ(t)) · γ̇(t)dt
)
dQ(γ)

which is a kind of vectorial traffic intensity. It is easy to check that :

div(σQ) = µ0 − µ1, σQ · n = 0, and |σQ| ≤ iQ.
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Since H is increasing, it proves that the value of the scalar problem (2) is larger
than that of the minimal flow problem (setting : H(σ) = H(|σ|)):

(3) inf
div(σ)=µ0−µ1

∫

Ω

H(σ(x))dx.

Conversely, if σ is a minimizer of (3) and Q ∈ Q(µ0, µ1) is such that iQ = |σ| then
Q solves the scalar problem (2) (i.e. is an equilibrium). If σ is Lipschitz (and µ0

and µ1 have Lipschitz densities bounded away from zero) such a measure Q is easy
to construct by Moser’s deformation argument:

Q := δX(t,.) ⊗ µ0

where X denotes the flow of the vector field (t, x) 7→ σ(x)/((1− t)µ0(x)+ tµ1(x)).
Without regularity, it is still possible to relate the two problems thanks to the
superposition principle of Ambrosio and Crippa [1].

The solution of (3) is σ = ∇H∗(∇u) where H∗ is the Legendre transform of H
and u solves the PDE:

(4)

{
div∇H∗(∇u) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω.

Let us recall that H ′ = g where g is the congestion function, it is therefore natural
to have g(0) > 0: the metric is positive even if there is no traffic, so that the radial
function H is not differentiable at 0 which implies ∇H∗ = 0 on a ball which makes
(4) very degenerate. A reasonable model of congestion is g(t) = 1+ tp−1 for t ≥ 0,
with p > 1, in which case

σ =
(
|∇u| − 1

)q−1

+

∇u
|∇u| , q =

p

p− 1

where u solves the very degenerate PDE:

(5) div
((

|∇u| − 1
)q−1

+

∇u
|∇u|

)
= µ0 − µ1, in Ω,

with Neumann boundary condition
(
|∇u| − 1

)q−1

+

∇u
|∇u| · ν = 0, on ∂Ω.

For q ≥ 2, we prove that u is globally Lipschitz and σ has some Sobolev regularity
which enables us to define a flow à la DiPerna-Lions. Finally, we discuss a dual
formulation that consists in finding a metric minimizing a functional that depends
on the corresponding geodesic distance, we also present some numerical simulations
based on this formulation.

References

[1] L. Ambrosio, and G. Crippa, Existence, uniqueness, stability and differentiability properties
of the flow associated to weakly differentiable vector fields, in Transport Equations and
Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana
(2008)



1842 Oberwolfach Report 31/2010

[2] L. Brasco, G. Carlier, and F. Santambrogio, Congested traffic dynamics, weak flows and very
degenerate elliptic equations, to appear in Journal de Mathématiques Pures et Appliquées
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A variational problem from quasilocal mass

Mu-Tao Wang

This talk is based on joint work with S.-T. Yau [1], [2], [3] and P. Cheng and S.-T.
Yau [4]. Quasilocal mass is a notion in general relativity that is associated with a
closed spacelike 2-surface Σ in spacetime. We recently discovered a new prescrip-
tion for quasilocal mass that satisfy essential requirements for a valid definition.
The new definition is closely tied to the rigidity problem of isometric embeddings of
surfaces and a variational problem naturally arises from minimizing the quasilocal
energy.

For a closed spacelike 2-surface Σ in spacetime M , we consider a “quasilocal
observer” (X,T0) where X : Σ → R3,1 is an isometric embedding of (Σ, σ) with
the induced metric from M and T0 ∈ R

3,1 is a constant future timelike vector. To
each (X,T0), we attached a quasilocal energy E(X,T0) which corresponds to the
energy seen by the quasilocal observer (X,T0). The quasilocal mass of Σ is then
obtained by minimizing E(X,T0) among all “admissible” observers:

min
(X,T0)

E(X,T0).

E(X,T0) is defined to be difference between the physical surface Hamiltonian in
M and the reference surface Hamiltonian in R3,1. On the physical side, we assume
the mean curvature vector H of Σ in M is spacelike. Thus, we can find a future
timelike normal vector field that is orthogonal to H . These directions together
define a connection one-form αH of the normal bundle of Σ. The physical data
only depends on (σ, |H |, αH).

On the reference side in R3,1, first we take τ = −〈X,T0〉 be the quasilocal
observer’s time function. The projection of X(Σ) onto the orthogonal complement

of T0 in R3,1 is an embedded surface Σ̂ in R3. We restrict ourself to convex
quasilocal observers, i.e. (X,T0) such that Σ̂ is a convex surface in R3. The

reference surface Hamiltonian is then − 1
8π

∫
Σ̂
Ĥ , or a constant multiple of the

total mean curvature of Σ̂. Finally, we define

E(X,T0) =
1

8π

∫

Σ̂

Ĥ − 1

8π

∫

Σ

[|H |
√
1 + |∇τ |2 cosh θ + θ∆τ − αH(∇τ)],

where sinh θ = −∆τ

|H|
√

1+|∇τ |2
, and ∇ and ∆ are the gradient and Laplace operator

with respect to σ.
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In fact,
∫
Σ̂
Ĥ can be written exactly as the second integral by replacing H by

H0, the mean curvature vector of X(Σ) in R3,1.
Given physical data (σ, |H |, divΣαH) for Σ in M , the Euler Lagrange equation

for quasilocal mass seeks for isometric embeddings (X,T0) that satisfy

−∆θ + divΣ(
∇τ√

1 + |∇τ |2
cosh θ|H |)− (Ĥσ̂ab − σ̂acσ̂bdĥcd)

∇b∇aτ√
1 + |∇τ |2

= divΣαH

(1)

and

〈dX, dX〉 = σ,

with τ = −〈X,T0〉. The equation should be read in the following way. Take a
function τ on Σ, consider σ̂ = σ+(dτ)2 on Σ. Isometrically embed (Σ, σ̂) into R3.

Pick up ĥab and Ĥ from this isometric embedding and we look for τ that satisfies
(1), a fourth-order elliptic equation.

We proved that m(Σ) has positivity and rigidity properties and approaches the
correct limits for large spheres. In the talk, I discuss how to solve the Euler-
Lagrangian equation (1) and show that the solution is locally energy-minimizing
at spatial infinity of an asymptotically flat spacetime.
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The multi-marginal optimal transportation problem

Brendan Pass

Optimal transportation is an active and exciting area of research; for background
and an extensive list of references, see the books by Villani [3, 4]. However, most
of the progress made in this field to date has been restricted to problems with two
marginals; problems with three or more marginals have thus far received relatively
little attention. This abstract briefly summarizes recent progress made by the
author on these multi-marginal problems; a more detailed exposition can be found
in [1] and [2].

The multi-marginal transportation problem asks how to couple several dis-
tributions of mass with maximal efficiency, as measured by a prescribed sur-
plus function. More precisely, for i = 1, 2, ...,m, let Mi be a compact smooth
manifold of dimension ni, endowed with a Borel probability measure µi and let
s : M1 ×M2 × ... ×Mm → R be a C2 smooth function, which we will call the
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surplus function. The optimal transportation problem then has two formulations.
In the Monge formulation, the goal is to maximize

(M) S(G2, G3, ..., Gm) :=

∫

M1

s(x1, G2(x1), G3(x1), ..., Gm(x1))dµ1

among all (m− 1)-tuples of measurable maps (G2, G3, ..., Gm), where Gi : M1 →
Mi pushes µ1 forward to µi for all i = 2, 3, ...,m.

In the Kantorovich, or relaxed, formulation of the problem one maximizes

(K) S(µ) :=

∫

M1×M2×...×Mm

s(x1, x2, x3, ..., xm)dµ

among all positive Borel measures µ onM1×M2× ...×Mm such that the canonical
projection

πi :M1 ×M2 × ...×Mm →Mi

pushes µ forward to µi for all i. Heuristically, in the Monge formulation, mass at
almost every point x1 ∈M1 must be coupled with mass at unique points xi ∈Mi

for i = 2, 3, ...,m, whereas in the Kantorovich formulation a coupling may split a
piece of mass at x1 among two or more destination points in Mi for i = 2, 3, ...,m.

It is straightforward to show that a solution µ to the Kantorovich problem
exists. When m = 2 and n1 = n2, it is possible, under weak conditions on s and
µ1, to show that the solution is concentrated on the graph of a function over x1.
This function then solves the Monge problem and in this case it is not hard to
show that the solutions to both the Monge and Kantorovich problems are unique.

Gangbo and Świȩch, Heinich, and Carlier have extended these results to the multi-
marginal setting for certain special surplus functions; a complete list of references
may be found in [1].

In [1], I develop a geometric framework to study the multi-marginal optimal
transportation problem. I define a convex family G of semi-Riemannian metrics
on M1 ×M2 × ...×Mm, derived from the mixed, second order partial derivatives
of s. For any semi-metric g in this family, I then prove that near a point ~x :=
(x1, x2, ..., xm) ∈ M1 ×M2 × ... ×Mm, the support of the optimal measure µ is
contained in a Lipschitz submanifold of M1 ×M2 × ...×Mm, whose dimension is
the number of non-timelike directions in the signature of g at ~x. This generalizes
a similar result in the two marginal setting, due to McCann, Warren and myself,
which asserts that when m = 2 and n1 = n2 := n, µ is supported on an n-
dimensional Lipschitz submanifold, under a weak local condition on s. In that case,
the familyG contains only one semi-metric, whose signature is (n, n); this is exactly
the semi-metric used by Kim and McCann to study the regularity of solutions to
the Monge problem. When m ≥ 3, the dimension of the support of µ depends on
an entire family of semi-metrics whose signatures may vary; generically, each g will
have between nmax and N −nmax non-timelike directions, where nmax := maxi ni
and N :=

∑m
i=1 ni.

In certain cases, all the elements of G have many non-timelike directions, and
we demonstrate by example that in such cases the support of the solution may
actually concentrate on a high dimensional submanifold. In particular, it will not
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be concentrated on the graph of a function over the first marginal; moreover, I
show that in some of these cases the solution is non-unique. This stands in stark
contrast to the two marginal case; in addition, it suggests that stronger conditions
must be assumed in order to prove the existence and uniqueness of solutions to
the Monge problem as well as uniqueness of solutions to the Kantorovich problem.

These questions are resolved in [2]. The conditions I impose on s are much
stronger than conditions required to prove analogous results for two marginal
problems, as one would expect given the preceding discussion. Nonetheless, they
apply to the surplus functions considered by Gangbo and Świȩch and Heinich as
well as several other interesting examples, which are outlined in [2].

The author was supported in part by an NSERC postgraduate scholarship. This work was
completed in partial fulfillment of the requirements for a doctoral degree in mathematics at the
University of Toronto.
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Regularity for the parabolic obstacle problem with fractional
Laplacian

Alessio Figalli

In recent years, there has been an increasing interest in studying constrained
variational problems with a fractional diffusion. One of the motivations comes from
mathematical finance: jump-diffusion processes where incorporated by Merton
[4] into the theory of option evaluation to introduce discontinuous paths in the
dynamics of the stock’s prices, in contrast with the classical lognormal diffusion
model of Black and Scholes [1]. These models allow to take into account large
price changes, and they have become increasingly popular for modeling market
fluctuations, both for risk management and option pricing purposes.

Let us recall that an American option gives its holder the right to buy a stock
at a given price prior (but not later) than a given time T > 0. If v(τ, x) represents
the rational price of an American option with a payoff ψ at time T > 0, then v
will solve (in the viscosity sense) the following obstacle problem:

{
min{Lv, v − ψ} = 0,
v(T ) = ψ.
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Here Lv is a (backward) parabolic integro-differential operator of the form

Lv = −vτ − rv +

n∑

i=1

(r − di)xivxi −
1

2

n∑

i,j=1

xixjσijvxixj

−
∫ [

v
(
τ, x1e

y1 , . . . , xne
yn
)
− v(τ, x)−

n∑

i=1

(eyi − 1)xivxi(τ, x)
]
µ(dy),

where r > 0, di ∈ R, σ = (σij) is a non-negative definite matrix, and µ is a jump
measure. When the matrix σ is uniformly elliptic, after the change of variable
xi 7→ log(xi) the equation becomes uniformly parabolic (backward in time) and
the diffusion part dominates. In particular, if no jump part is present (i.e., µ ≡ 0),
then the regularity theory is pretty well-understood.

In [2] we assume that there is no diffusion (i.e., σ ≡ 0), so all the regularity
should come from the jump part. We also assume that the jump part behaves,
at least at the leading order, as a fractional power of the Laplacian, so that the
equation takes the form

Lv = −vτ − rv − b · ∇u+ (−∆)sv +Kv, s ∈ (0, 1),

where b = (d1 − r, . . . , dn − r), and Kv is a non-local operator of lower order with
respect to (−∆)sv. As explained in [2, Section 5], when s > 1/2 the regularity
theory for the above equation is essentially the same as the one for the model
equation

(1)

{
min{−vτ + (−∆)sv, v − ψ} = 0 on [0, T ]× Rn,
v(T ) = ψ on Rn.

In [2] we decide to focus on (1), since this allows to avoid technicalities which may
obscure the main ideas behind the regularity theory that we develop.

Our main result is the following [2, Theorem 2.1]:
Given s ∈ (0, 1) and ψ ∈ C2(Rn), with

‖∇ψ‖L∞(Rn) + ‖D2ψ‖L∞(Rn) + ‖(−∆)sψ‖C1−s
x (Rn) < +∞,

let u be the unique continuous viscosity solution of (1). Then u is globally Lipschitz
in space-time on [0, T ]× R

n, and satisfies
{
uτ ∈ logLiptC

1−s
x ([0, T )× Rn), (−∆)su ∈ logLiptC

1−s
x ([0, T )× Rn) if s ≤ 1/3;

uτ ∈ C
1−s
2s −0+,1−s
t,x ([0, T )× Rn), (−∆)su ∈ C

1−s
2s ,1−s
t,x ([0, T )× Rn) if s > 1/3.

Let us make some comments. First of all we recall that, for the stationary version
of the obstacle problem, solutions belong to C1+s

x (Rn) (or equivalently, (−∆)su ∈
C1−s
x (Rn)), and such a regularity result is optimal [5, 3]. Hence, at least concerning

the spatial regularity, our result is optimal, too. Actually, this may look a bit
surprising. Indeed, as shown in [2, Remark 3.7], for any β ∈ (0, 1) one can find
a traveling wave solution to the equation min{−vτ + (−∆)1/2v, v − ψ} = 0 which
is C1+β both in space and time, but not C1+γ for any γ > β. Hence, in order to
prove that solutions to (1) are C1+s in space, one has to exploit the crucial fact
that v coincides with the obstacle at time T .
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Once the C1−s
x -regularity of (−∆)su is established, the fact that s = 1/3 plays

a special role is not surprising: indeed, the operator −∂τ + (−∆)s is invariant
under the scaling (τ, x) 7→ (λ2sτ, λx). Hence, a spatial regularity C1−s naturally

corresponds to a time regularity C
1−s
2s , provided 1−s

2s < 1, that is s > 1/3.
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Rigidity results for manifolds with positive scalar curvature metrics

Andre Neves

A classical question in Differential Geometry is the search for theorems which,
under some curvature condition, imply certain inequality and the equality being
attained implies rigidity of the original metric. To that effect, Min-Oo conjectured
that metrics with R(g) ≥ n(n− 1) which agree with the round metric on a neigh-
borhood of the equator in the northern hemisphere must be round. Very recently,
in a joint work with Brendle and Marques [3], we disproved this conjecture and so
there is a clear interest in knowing which type of rigidity statements hold. I will
talk about two theorems in these direction.

Theorem 1 (with Bray, Brendle, and Eichmair [1]). Let (M, g) be a three manifold
with scalar curvature R(g) ≥ 6. Then

inf{area(Σ) |Σ is embedded projective plane} ≤ 2π

and equality implies (M, g) = (RP3, gstd).

The idea to prove the inequality is to use a Hersch-type trick. The idea to prove
the rigidity is to use Ricci flow.

Theorem 2 (with Bray and Brendle [2]). Let (M, g) be a three manifold with
scalar curvature R(g) ≥ 6. Then

inf{area(Σ) |Σ embedded sphere non-trivial in homology} ≤ 4π/3

and equality implies (M, g) = (S2 × S1, gstd + dθ2).

The inequality follows at once from combining Gauss equation with the second
variation formula. The rigidity statement comes from using a c.m.c. foliation
argument.
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On the affine Plateau problem

Neil S. Trudinger

The affine Plateau problem is the affine invariant analogue of the classical Plateau
problem for minimal surfaces. Roughly put, it involves finding a locally convex
hypersurface which maximizes affine area among a class of of locally convex hyper-
surfaces with prescribed boundary and Gauss map image. In this talk we report
on a recent preprint [4], with Xu-jia Wang, where we establish, under appropriate
conditions, the smooth solvability in all dimensions, thereby extending our earlier
results in [2] for the two dimensional case.

The affine area of a smooth (C2) locally convex hypersurface M in Rn+1 is
given by

A(M) =

∫

M

K1/(n+2),

where K, (≥ 0), denotes the Gauss curvature of M. The affine area functional A
is invariant under uni-modular affine transformations in R

n+1. When M = Mu is
the graph of a locally convex function u ∈ C2(Ω), over a domain Ω ∈ Rn, we have

A(M) = A[u] =

∫

Ω

(detD2u)1/(n+2).

Let M0 be a bounded, connected hypersurface in Rn+1 with C2 smooth bound-
ary Γ and assume that M0 ∪ Γ is C2 smooth and locally uniformly convex up to
the boundary. Denote by S[M0] the set of locally convex C2 smooth hypersur-
faces with boundary Γ, which can be smoothly deformed from M0 in the family
of locally convex hypersurfaces whose Gauss map images lie in that of M0.

Theorem 1. There exists a locally uniformly convex C∞ smooth hypersurface M
maximizing A over S[M0] if and only if the Gauss map image of M0 does not
cover a hemisphere.

For the graph case, we let Ω be a bounded C2 domain in Rn and ϕ a uniformly
convex function in C2(Ω̄) and denote by S[ϕ,Ω] the set of convex functions u in
C2(Ω) ∩ C0,1(Ω̄), satisfying u = ϕ on ∂Ω and whose normal images Nu(Ω) lie in
Nϕ(Ω̄).

Theorem 2. There exists a unique locally uniformly convex function u ∈ C∞(Ω)
maximizing A over the set S[ϕ,Ω].
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The proof of Theorem 1 depends on a reduction to the graph case of Theorem 2.
The proof of Theorem 2 is accomplished by first solving a relaxed variational prob-
lem and then showing that strictly convex maximizers are smooth. These stages
are already accomplished in [2] with techniques that carry over automatically for
more general functionals, namely Monge-Ampère integrals of the form,

F [u] = F [u,Ω] =

∫

Ω

{F (detD2u)− fu},

where F ∈ C3(0,∞), F ′ > 0, F (∞) = ∞, f ∈ L∞(Ω) and u ∈ C2(Ω) is locally
convex. The Euler-Lagrange equation for F is the fourth order nonlinear PDE,

L[u] := U ijDijF
′(detD2u) = f,

which is well defined in a classical sense if u ∈ C4(Ω) is locally uniformly convex,
that is D2u > 0, and elliptic if F ′′ 6= 0. Here the coefficient matrix [U ij ] is the
cofactor matrix of the Hessian D2u. Furthermore if we also assume that F (t) is a
concave function of t1/n, then solutions of the PDE will be local maximizers of F .
Conversely, smooth, locally uniformly convex local maximizers will be solutions.
When F (t) = t1/(n+2), we obtain the prescribed affine mean curvature equation,
which becomes the affine maximal surface equation when f = 0 . When F (t) =
log t, we obtain Abreu’s equation, which arises in complex geometry [1].

The variational problem in Theorem 2 is relaxed as follows. First we extend
the functional F to general convex functions u by extending D2u to vanish on
the null set where u is not twice differentiable; (this is feasible if F (t) = o(t) for
large t). Next we let ϕ be a convex function defined in a neighbourhood of Ω and
extend the set S by defining S[ϕ,Ω] to be the set of convex functions u in C0,1(Ω),
satisfying u = ϕ on ∂Ω and Nu(Ω) ⊂ Nϕ(Ω). It follows that F(u) is well defined

in [−∞,∞), for u ∈ S, with F(u) > −∞ if F (0) > −∞.

Theorem 3. Suppose |∂Ω| = 0 and F [u] > −∞ for some u ∈ S̄[ϕ,Ω]. Then
under the above conditions on F , there exists a unique maximizer of F over the
set S̄[ϕ,Ω]

For regularity, we have the following result from [2].

Theorem 4. For F (t) = tθ, 0 < θ ≤ 1/n, a strictly convex maximizer of S̄[ϕ,Ω]
lies in W 4,p for all p <∞ and is a locally uniformly convex strong solution of the
Euler-Lagrange equation.

Higher regularity follows from linear theory. In particular if f ∈ C∞(Ω), then
strictly convex maximizers are also in C∞(Ω). More general functions F for which
F (0) > −∞ are permitted in Theorem 4 for arbitrary dimension n ≥ 2. However
the corresponding result for F (t) = log t was obtained recently by Zhou [5] for two
dimensions, along with a corresponding extension of Theorem 2.

The essential issue in proving Theorem 2 is thus that of strict convexity of max-
imizers. This is much more complicated than the analogous results for generalized
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solutions of Monge-Ampère equations [3] and the new arguments in [4] lead as well
to a simplified proof of the two dimensional case in [2]. A critical new idea is a
secondary penalization in the regularity proof which enables the dual functional
to be employed in the strict convexity arguments.

Finally we remark that the behaviour of the gradient of solutions, (or the Gauss
mapping in the hypersurface case), at the boundary still remains an open problem.
We could partly formulate this problem by asking what conditions on ϕ and Ω in
Theorem 2 ensure that Du = Dϕ on ∂Ω in an appropriate sense.

This work is supported by the Australian Research Council.
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Sharp lower density bounds for area-minimizing cones

Brian White

(joint work with Tom Ilmanen)

In this lecture, I will describe some sharp lower bounds on densities of area-
minimizing hypercones or, equivalently, on volumes of certain closed minimal hy-
persurfaces in round spheres. The results are joint work with Tom Ilmanen.

I begin by indicating why such density bounds are of interest. Recall that if
M is an m-dimensional minimal variety in a Riemannian manifold and if x is an
interior point of M , then the density of M at x is

(1) Θ(M,x) := lim
r→0

area (M ∩B(x, r))

ωmrm
,

where ωm is the m-dimensional volume of the unit ball in Rm. The limit exists by
the monotonicity formula. The density is 1 at any multiplicity 1 regular point, and
it is strictly greater than 1 at any singular point (by Allard’s regularity theorem).
IfM is a cone with vertex x, then the ratio in (1) is independent of r; in that case,
we write Θ(M) = Θ(M,x).

In this lecture, I will focus on the case of area-minimizing hypersurfaces (either
integral currents or flat chains mod 2). Consider the following question:

Q1. What is the infimum of Θ(M,x) among all pairs (M,x) where
M is an area minimizing hypersurface (in some Riemannian man-
ifold) and x is an interior singular point of M?
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Here “interior point of M” means “point in the support of M but not in the
support of ∂M”.

Note that if x is an interior singular point of M and if C is a tangent cone
to M at x, then C is an area minimizing hypercone in Euclidean space with a
singularity at its vertex, and Θ(C) = Θ(M,x). Furthermore, standard dimension
reducing arguments show that either C has an isolated singularity at its vertex, or
else there is another area minimizing hypercone C′ of lower dimension such that
C′ has an isolated singularity at vertex and such that Θ(C′) ≤ Θ(C). Thus the
question Q1 is equivalent to:

Q2. What is the infimum of Θ(C) among all area-minimizing
hypercones C such that C has an isolated singularity at the origin?

Ilmanen and I were able to give a sharp answer to question Q2 provided one
restricts the cones C to those that are topologically nontrivial. In particular, we
proved:

Theorem 1. Suppose that C ⊂ Rn is an area-minimizing hypercone with an
isolated singularity at the origin. Suppose also that C is topologically nontrivial
in the following sense: at least one of the two components of Rn \ C is non-

contractible. Then the density of C at the origin is greater than
√
2.

If one wants a constant independent of the dimension of the dimension n, then√
2 is the best possible because the Simons’ cone

Cm,m := {(x, y) ∈ R
m × R

m = R
2m : |x| = |y|}

is both topologically nontrivial and area-minimizing for m ≥ 4, and by a straight-
forward calculation its density Θ(Cm,m) tends to

√
2 as m tends to ∞.

In the lecture, I will describe the proof of Theorem 1.
Let C be a cone as in Theorem 1. Since one of the components of R

n \ C
is non-contractible, one of its homotopy groups, say the kth homotopy group, is
nontrivial. One can get a better lower bound for Θ(C) if one allows a constant
that depends on k. In particular, Ilmanen and I proved that

Θ(C,O) > dk =

(
k

2πe

)k/2
σk

where dk is the Gaussian density of a shrinking k-dimensional sphere and σk is the
area of the unit k-dimensional sphere. (Gaussian density, which was discovered
by Huisken, plays the role in mean curvature flow that density does is minimal
surface theory. See [6].)

As before, this result is sharp in the sense that for any ǫ > 0, there is an n and
a cone C ⊂ Rn such that C satisfies the hypotheses of the theorem and such that

Θ(C) < dk + ǫ.

0.1. Open Problems. There are many interesting open problems about lower
bounds for density. For example:
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(1) (conjectured by Bruce Solomon.) For m ≥ 1, prove that the Simon’s cone
Cm,m is the (2m+1)-dimensional minimal (or area-minimizing) hypercone
of least possible density. For m = 1, one has to exclude cones with soap-
film-like triple junctions, since the density of 3 half planes meeting along
a common edge is 3/2, which is less than Θ(C1,1). However, in higher
dimensions this exclusion is not necessary since Θ(Cm,m) < 3/2 for m > 1.

(2) (Conjectured by Bruce Solomon.) Prove that the cone Cm,m+1 is the (2m+
2)-dimensional minimal (or area-minimizing) hypercone of least possible
density.

(3) Prove that Cm,n has realizes the least possible density among all (m+n+
1)-dimensional minimal (or area-minimizing) hypercones C such that at
least one of the components of the complement has nontrivial mth homo-
topy group.

(4) Prove lower density bounds for minimal or for area-minimizing cones of
codimension > 1.

Here Cm,k denotes the Simon’s type cone {(x, y) ∈ R
m+1×R

k+1 : m|x| = k|y|},
which is the cone over Sm × Sk (with appropriate radii.)
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Optimal Control and Weak KAM Theory

Paul Lee

In this abstract, we outline the recent results in [1] concerning continuity of some
optimal control costs and its application to the weak KAM theory. For simplicity,
many of the results in this abstract are stated with assumptions stronger than
those in [1].
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LetM be a compact smooth manifold without boundary and let H : T ∗M → R

be a smooth function on the cotangent bundle T ∗M of the manifold M , called a
Hamiltonian. Let us consider the following Hamilton-Jacobi equation

(1) H(x, dfx) = h.

Suppose that we have a family of classical solutions f(x, P ) to (1)

H(x, ∂xf(x, P )) = h(P )

which satisfies the condition det(∂x∂P f) 6= 0. Under these assumptions, we can
define a change of variables (x, p) 7→ (X,P ) by

p = ∂xf(x, P ), X = ∂P f(x, P ).

This change of variables transforms the Hamiltonian system

(2) ẋ = ∂pH, ṗ = −∂xH
to a much simpler system

Ẋ = ∂Ph, Ṗ = 0.

In particular, the entries of P = (P1, ..., Pn) are constants of motion and the
Hamiltonian system (2) can be integrated according to Liouville-Arnold Theorem
(see [2]). In other words, (2) is completely integrable.

All the above assumes that we have a family of classical solutions to the
Hamilton-Jacobi equation (1). One natural question is the following: “what can
we say about (1) if the corresponding Hamiltonian system is not completely inte-
grable?” One answer is given by the following weak KAM theorem:

Theorem 1. (Weak KAM Theorem [4, 3]) Assume that the Hamiltonian H sat-
isfies the following assumptions:

• The matrix (∂pi∂pjH) is positive definite,
• H(x, p) > C|p|+K.

Then there exists a unique constant h such that the Hamilton-Jacobi equation (1)
has a viscosity solution.

In [1], we consider Hamiltonians arising from some optimal control problems.
More precisely, let X0, X1, ..., Xk be vector fields defined on the manifoldM . Con-
sider the following affine control system:

(3) ẋ(t) = F (x(t), u(t)),

where F (x, u) := X0(x) +
∑k

i=1 uiXi(x) and u : [0, T ] → Rk is any L2 integrable
function.

Let L : M × Rk → R be a smooth function called Lagrangian. The optimal
control problem is the following minimization problem:

(4) cT (x, y) := inf

∫ T

0

L(x(t), u(t))dt,

where the infimum above is taken over the set of all pairs (x(·), u(·)) satisfying (3).
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Finally, we define the Hamiltonian H corresponding to the above optimal con-
trol problem by

(5) H(x, p) := sup
u∈Rk

(p(F (x, u))− L(x, u)) .

The following is a version of the weak KAM theorem corresponding to the
Hamiltonian defined in (5).

Theorem 2. [1] Assume that the function (t, x, y) 7→ ct(x, y) is continuous. Then
there exists a unique constant h such that the Hamilton-Jacobi equation (1) with
Hamiltonian given by (5) has a viscosity solution.

Thanks to Theorem 2, it remains to consider when the cost function cT is
continuous. Before stating the result, we need the following definition. The family
of vector fields {X1, ..., Xk} is said to be m-generating if the vector fields Xi and
their iterated Lie brackets up to m − 1 order spanned each tangent space TM .
More precisely, the following holds for each point x in the manifold M

TxM = span{[Xi1 , [Xi2 , ..., [Xil−1
, Xil ]]](x)|1 ≤ ij ≤ k, 1 ≤ l ≤ m− 1}.

Theorem 3. [1] Assume that the Lagrangian L satisfies the following conditions

C1|u|2 +K1 ≤ L(x, u) ≤ C2|u|2 +K2,
∂L

∂x
≤ C3|u|2

for some constants C1, C2, C3 > 0 and the Hessian of L in the u variable is positive
definite. If the family of vector fields {X1, ..., Xk} is 3-generating, then the cost
function (t, x, y) 7→ ct(x, y) defined in (4) is continuous.

In [1], we also showed that Theorem 3 is sharp. More precisely, we considered
the following control system on R2:

(6) (ẋ1, ẋ2) = (0, x21) + u1(1, 0) + u2(0, x
3
1) = (u1, x

2
1 + u2x

3
1).

Note that the family of vector fields {(1, 0), (0, x31)} is 4-generating but not
3-generating.

Theorem 4. [1] The cost function c1 defined by (4), the control system (6), and
the Lagrangian L(x, u) = 1

2

(
u21 + u22

)
is not continuous at ((0, 0), (0, 0)).

The author was supported by the NSERC postdoctoral fellowship.
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Billiards, optimization of resistance and invisibility

Alexander Plakhov

We consider problems of minimal and maximal resistance in billiards and related
problems in optics.

1. We start with discussing the classical problem of minimal resistance, first
stated by Newton for convex and axially symmetric bodies, and its generalizations
studied in 1990’s and 2000’s. Actually, Newton never mentioned the convexity
assumption; without it, the solution turns out to be different and the minimum
of resistance becomes smaller 2 ÷ 4 times [7]. On the other hand, the problem
for convex but generally non-symmetric bodies was stated in 1993 by Buttazzo
and Kawolh [3] and gave rise to several interesting works. The solution in this
extended class of bodies exists and does not coincide with Newton’s optimal body,
but until now not much is known about this solution.

We state the question: do there exist bodies of zero resistance? Surprisingly,
the answer is positive; such a body is shown in Fig. 1.

Figure 1. A body of zero resistance and its vertical central cross section.

A spacecraft of this shape could travel infinitely long time in the cloud with-
out slowing down its motion, provided that the particles-spacecraft collisions are
elastic.

By doubling this body, we get a body (with mirror surface) invisible in one
direction; see Fig. 2.

When looking at it from a sufficiently large distance in vertical direction, we
will not see it. Each particle (photon) makes exactly 4 reflections from its surface.
For a more detailed study of invisible and zero resistance bodies, see [1].

An elegant construction proposed by allows one to get an invisible body with
only 3 reflections. We also explain a nice construction of a body invisible in
two mutually perpendicular directions proposed by Vera Roshchina, and prove
that invisibility/zero resistance in all directions is impossible. Thus, the following
theorem is proved.
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Figure 2. A body invisible in one direction obtained by gluing
together two bodies of zero resistance.

Theorem 1. (a) For any two mutually perpendicular directions v1 and v2, there
exists a body that is invisible/has zero resistance in these directions.

(b) There do not exist bodies invisible/having zero resistance in all directions
v ∈ S2.

It is unknown if there exist bodies invisible in 3 or more directions. We believe
that there do not exist bodies invisible/having zero resistance in a positive mea-
sure set of directions, but cannot prove it.

2. In the second part of the talk we discuss retroreflectors: bodies that have
maximal resistance in all directions. Each particle (or ray of light) incident on
such a body will change its direction to the opposite. A well-known example of
retroreflector based on light refraction is the Eaton lens: a transparent ball with
radially symmetric refraction index going to infinity at the center of the ball [4].
Here we concentrate on billiard retroreflectors. Actually, it is unknown if they
exist or not; however it is possible to construct an asymptotical retroreflector: a
family of bodies Bε, ε > 0 whose reflection properties converge, in a sense, to
the property of retroreflection as ε → 0. We provide a collection of 3 asymptoti-
cal retroreflectors in 2 dimensions. Their reflecting properties are determined by
hollows on their boundary. The corresponding asymptotically retroreflecting hol-
lows are (i) Mushroom, (ii) Tube and (iii) Notched Angle. The Mushroom and the
body with mushroom-shaped hollows are shown in figures 3 and 4. The asymptotic
retroreflectivity of these bodies has been proved, respectively, in [8, 2, 6].
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b b

F1 F2

Figure 3. Mushroom is a union of a semi-ellipse with foci F1 and
F2 and the rectangle whose upper side coincides with F1F2. The
focal distance equals ε, the large semiaxis of the ellipse equals 1,
and the height of the rectangle equals ε3.

Figure 4. A retroreflector with mushroom-shaped hollows.
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Instantaneously complete Ricci flows

Peter Topping

The Ricci flow [3] takes a Riemannian metric g on a manifold M and deforms it
under the nonlinear PDE

∂g

∂t
= −2Ric(g).

In the talk, we described the theory of Hamilton and Chow which tells us
exactly what happens to a compact Riemannian surface under this flow, including
existence, uniqueness, maximal existence time and asymptotics. We then asked
what happens in the noncompact case.

In that direction, we first surveyed a number of results of others which tell us
what happens asymptotically when we start with various special surfaces. We then
discussed the notion of instantaneously complete Ricci flow [4] and proposed it as
the right class of solutions when we start with a surface which may be incomplete
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or of unbounded curvature. The following generalises a number of results in the
literature.

Theorem 1 (Main theorem, special case, joint with Giesen [2].). Let
(
M2, g0

)
be a

smooth Riemannian surface which need not be complete, and could have unbounded
curvature. Depending on the conformal type, we define T ∈ (0,∞] by

T :=





1
8πV olg0M if (M, g0) ∼= S2,
1
4πV olg0M if (M, g0) ∼= C or(M, g0) ∼= RP 2,

∞ otherwise.

Then there exists a smooth Ricci flow
(
g(t)

)
t∈[0,T )

such that

(1) g(0) = g0;
(2) g(t) is instantaneously complete (i.e. complete for t ∈ (0, T ));
(3) g(t) is maximally stretched (i.e. any other Ricci flow g̃(t) with g̃(0) ≤ g0

satisfies g̃(t) ≤ g(t)),

and this flow is unique in the sense that if
(
g̃(t)

)
t∈[0,T̃ )

is any other Ricci flow on

M satisfying 1,2 and 3, then T̃ ≤ T and g̃(t) = g(t) for all t ∈ [0, T̃ ).
If T <∞, then we have

V olg(t)M =

{
8π(T − t) if(M, g0) ∼= S2,
4π(T − t) otherwise,

}
−→ 0 as tր T,

and in particular, T is the maximal existence time. Alternatively, if M supports a
complete hyperbolic metric H conformally equivalent to g0 (in which case T = ∞)
then we have convergence of the rescaled solution

1

2t
g(t) −→ H smoothly locally as t→ ∞.

If additionally there exists a constant M > 0 such that g0 ≤MH then the conver-
gence is global: for all t > 0 we have

∥∥ 1
2tg(t)−H

∥∥
C0(M,H)

≤ C
t .
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Regularity of optimal transport maps on multiple products of spheres

Young-Heon Kim

(joint work with Alessio Figalli and Robert J. McCann)

This abstract reports regularity of optimal transportation maps on Riemannian
manifolds, in the case of multiple products of round spheres. In the following
presentation, our assumptions are not necessarily the most optimal/general ones
(see [4] for details).

Let M be a compact n-dimensional Riemannian manifold equipped with two
probability (bounded measurable) densities ρ, ρ̄ > 0, and with transportation cost

c(x, x̄) = dist2(x, x̄)/2 for (x, x̄) ∈M×M . By the results of many people including
Monge, Kantorovich, Brenier and McCann, there exists unique (Borel measurable)
optimal map T :M →M that minimizes the total transportation cost

∫

M

c(x, T (x))ρ(x)dvolM

among all maps transporting the density ρ to ρ̄, i.e.
∫
M
f(T (x))ρ(x)dvolM =∫

M f(x̄)ρ̄(x̄)dvolM for all continuous f : M → R. Moreover, this optimal map
has a very nice characterization as T (x) = expx∇u(x) a.e., where the function u,
called the c-potential, is given in a pair (u, ū) as

u(x) = sup
x̄∈M

−c(x, x̄)− ū(x̄), ū(x̄) = sup
x∈M

−c(x, x̄)− u(x),(1)

and u is Lipschitz continuous and semi-convex.
For the Euclidean case, such potential u satisfies classical Monge-Ampère equa-

tion det(D2u(x)+I) = ρ(x)
ρ̄(∇u(x)+x) in a weak sense, relating optimal transportation

problem to fully nonlinear partial differential equations. Moreover, there is a con-
nection to geometric variational problems as shown in [10]. Namely, if T is smooth,
then its graph gives a maximal space-like Lagrangian submanifold (thus with zero
mean curvature) in the product space M ×M \ cut locus, equipped with a sym-
plectic form ω and a pseudo-Riemannian metric hρ,ρ̄c , which are given at (x, x̄) as
ω = −∂xi∂x̄jc dxi ∧ dx̄j and

hρ,ρ̄c = −
(

ρ(x)ρ̄(x̄)

|det(DxDx̄c(x, x̄))|

) 1
n

∂xi∂x̄jc (dxi ⊗ dx̄j + dx̄j ⊗ dxi)/2.

Though hρ,ρ̄c has n positive and n negative eigenvalues, it induces a Riemannian
metric on the graph of T for smooth T , making the graph of T space-like and thus
defining its volume. Also, the volume-maximality is obtained through calibra-
tion with the n-form ρ(x)dvol(x) + ρ̄(x̄)dvol(x̄). (In fact, this pseudo-Riemannian
formulation holds for more general costs and domains. See [8, 10].)

As the above suggests, it is natural in both PDE and geometry, to consider
regularity of the optimal map T . More precisely, we ask whether T ∈ C∞/C0

for log ρ, log ρ̄ ∈ C∞/L∞. In [4], we answer this question affirmatively when
M = Sn1

r1 × · · · × Snk
rk

is the multiple product of round spheres of arbitrary di-
mension and size. To the author’s knowledge, this is the first regularity result of
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optimal maps transporting densities supported on non-flat manifolds that allow
zero sectional curvature. For flat manifolds (including domains in Rn) the result
is known due to the work of Delanoë, Caffarelli, Urbas, and Cordero-Erausquin.
For positively curved manifolds such regularity is recently known for the sphere
and its small perturbations and quotients, due to Loeper, Kim, McCann, De-
lanoë, Ge, Figalli, Rifford and Villani [13, 8, 9, 14, 1, 5, 16, 6], among others. A
key notion for regularity on non-flat manifolds is the MTW condition formulated
by Ma, Trudinger and Wang [15], which is shown to be a necessary condition
for regularity by Loeper [12]. As found in [8], this condition can be understood
as follows: Let Rc denote the Riemann curvature tensor of the pseudo-metric
hc := −∂xi∂x̄jc (dxi⊗ dx̄j + dx̄j ⊗ dxi)/2 on the product space M ×M \ cut locus.
The MTW condition (denoted by MTW⊥ ≥ 0) requires on c that

MTW (p, p̄) := Rc ((p⊕ 0) ∧ (0⊕ p̄), (p⊕ 0) ∧ (0⊕ p̄)) ≥ 0

for all p ∈ TxM , p̄ ∈ Tx̄M with hc(p⊕0, 0⊕ p̄) = 0. UseMTW⊥ > 0 to denote the
same condition but with strict inequality. It is known by Loeper [12] that along
the diagonal {x = x̄}, MTW coincides with the sectional curvature of the original
metric on M , thus to have regularity of optimal maps the manifolds need to be
non-negatively curved; but, the converse does not hold [7].

Before our work [4], all the previous regularity results given on non-flat man-
ifolds use the strict condition MTW⊥ > 0 where there are strong C2/C1,α esti-
mates for c-potentials developed by Ma, Trudinger and Wang / Loeper [15, 12],
respectively. Such strong estimates are not available for M = Sn1

r1 × · · · × Snk
rk

where MTW tensor degenerates (due to flat directions), and we use instead a
recently developed local analysis in [3] where the condition MTW ≥ 0 (without
hc(p⊕ 0, 0⊕ p̄) = 0), which holds for products of spheres [9], enables one to trans-
form c-potentials to convex functions in certain coordinate charts. In [3], assuming
MTW ≥ 0 for c, continuity and injectivity of optimal maps are shown in domains
in Rn, which applied to the result of Liu, Trudinger and Wang [11] shows also
higher regularity. However, to apply the local analysis to global domains such as
manifolds, where dist has singularity, one has to show that the optimal map has
to stay away from the singularity of the cost function. This is unavoidable also for
the cases ofMTW⊥ > 0, especially to get higher regularity results [2, 13, 1, 14, 9];
however, in these cases the stay away from singularity property can be proved rel-
atively easily, using the simple structure of the cut locus plus the strong condition
MTW⊥ > 0. The main result in [4] shows the stay away from singularity property
for the multiple products of spheres. More precisely,

Theorem 1 (Stay-away from cut-locus). Let M = Sn1
r1 × · · · × Snk

rk
be the

product of round spheres, and let c = dist2/2. Assume a c-potential function u
satisfies for some λ > 0,

λ vol(Ω) ≤ vol(∂cu(Ω)) ≤ 1

λ
vol(Ω) for any Borel set Ω ⊂M,

where the c-subdifferential ∂cu is defined as a set-valued map ∂cu(x) = {x̄ ∈
M | u(x)+ ū(x̄) = −c(x, x̄)}. Here, ū is the dual c-potential of u as in (1). Then,
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there exists a constant C(λ) > 0 such that

dist
(
∂cu(x),Cut(x)

)
≥ C(λ), ∀x ∈M,

where Cut(x) denotes the cut-locus of x.

The multiple product of spheres is a model case for more general manifolds
on which the cost c satisfies the necessary conditions (c.f. [6]) for regularity of
optimal transport maps. The method we develop in [4] demonstrates one approach
to handling complex singularities of the cost.
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Optimal Lipschitz extensions

Charles K. Smart

1. Introduction

Suppose U ⊆ Rn is a bounded and open set and g : ∂U → Rm is Lipschitz. A
classical theorem of Kirszbraun states that g has a Lipschitz extension u : Ū → Rm

that satisfies

Lip(u, Ū) = Lip(g, ∂U).

In general, there are infinitely many such extensions. Our goal is to identify and
study optimal Lipschitz extensions.

2. The scalar case

2.1. Existence and uniqueness. When m = 1, the correction notion of optimal
Lipschitz extension was identified by Aronsson [2, 3]. A locally Lipschitz function
u ∈ C(U) is absolutely minimizing Lipschitz if it satisfies

(1) Lip(u, V ) = Lip(u, ∂V ) for all V ⊂⊂ U.

Jensen [7] proved the existence and uniqueness of AML extensions. He also showed
that u ∈ C(U) is AML if and only if it is a viscosity solution of

−∆∞u = −uxiuxjuxixj = 0 in U.

Several new proofs of uniqueness have appeared since Jensen’s original proof.
A fundamentally new proof using random-turn games was discovered by Peres,
Schram, Sheffield, and Wilson [8]. Armstrong and S. [1] extracted the “analytic
heart” of [8] to give short, easy proof.

2.2. Regularity. Lipschitz estimates for AML functions are immediate from the
definition. Aronsson showed that the function

u(x, y) := x4/3 − y4/3,

is AML on all of R2. This shows that the best possible regularity for AML functions
is C1,1/3.

Savin [9] proved that AML functions on R2 are C1. Evans and Savin [5] proved
that if U ⊆ R2, u ∈ C(U) is AML, and V ⊂⊂ U , then

‖u‖C1,α(V ) ≤ C‖v‖L∞(U),

where α,C > 0 depend only on U and V .
We prove the following result [6].

Theorem 1 (Evans-S.). If U ⊆ Rn and u ∈ C(U) is AML, then u is everywhere
differentiable.

The main innovation is the following estimate, which we prove using Bernstein’s
trick.
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Lemma 2. If uε ∈ C∞(Rn) satisfies

−∆∞u
ε − ε∆uε = 0 and |uε − xn| ≤ λ < 1 in B(0, 4),

then

|Duε| ≤ C and |Duε|2 − uεxn
≤ Cλ1/4 in B(0, 1),

where C > 0 depends only on n.

Everywhere differentiability follows easily from this estimate and the “blow-up
plane” result of Crandall and Evans [4].

3. The vector case

Comparatively little is known in the casem > 1. We do know that the condition
(1) does not characterize a unique extension. Suppose n = m = 2 and u, v :
B̄(0, 1) → B̄(0, 1) are given by

u(z) := z2 and v(z) := z2/|z|.
One can check that both u and v satisfy (1). Moreover, one can check that

Lu < L v in B(0, 1),

where

Lw(x) := inf
r>0

Lip(w,B(x, r)),

is the local Lipschitz constant. Thus any “reasonable” notion of optimal should
prefer u to v.

Sheffield and S. [10] propose a new notion of optimal extension. Suppose U ⊆
Rn and u, v : Ū → Rm are Lipschitz. If u = v on ∂U and

sup{L v : Lu < L v} > sup{Lu : L v > Lu},
then we say that u is tighter than v. We say that u is tight if there is no v tighter
than u.

We discuss two results that partially characterize the smooth tight functions.

Theorem 3 (Sheffield-S.). Suppose U ⊆ Rn, u ∈ C3(U,Rm)∩C(Ū ), and there ex-
ists a unit vector field a ∈ C2(U,Rn) such that a(x) spans the principal eigenspace
of Du(x)tDu(x) for every x ∈ U . Then u is tight if and only if

−(ua)a = 0 in U,

where wa :=
∑
i wxia

i.

Theorem 4 (Sheffield-S.). Suppose U ⊆ R2 and u ∈ C∞(Ū) is analytic in a
neighborhood of Ū . Then u is tight if and only if either u′′ ≡ 0 or

ℜ u
′u′′′

(u′′)2
≤ 2 wherever it is defined.

We also discuss two possible approaches to proving the existence of tight ex-
tensions.
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Higher integrability and approximation of minimal currents

Emanuele Nunzio Spadaro

(joint work with Camillo De Lellis)

One of the main results in geometric measure theory is the interior partial reg-
ularity for area-minimizing integral currents, arising as generalized solutions of
the classical least area problem given a fixed boundary. It is well known that the
regularity strongly depends on the dimension of the ambient space. Indeed, if for
hypersurfaces the first singularities appear in dimension 8, in higher codimension
there are already examples of singular two dimensional currents. It was shown by
Federer, following previous ideas of Wirtinger, that any complex variety is in fact
a locally minimizing current, so that a branched complex curve as, for instance,

(1) V = {(z, w) : z2 = w3} ⊆ C
2 ≃ R

4,

is an example of a singular minimal current.
The most general results known for the case of higher codimension has been

proven by Almgren [1] and Chang [3], and can be summarized in the following two
theorems (note that both the results are optimal thanks to the examples provided
by Federer).

Theorem 1 (Almgren). Any m-dimensional area-minimizing current T in Rm+n

(or, more generally, in any (m + n)-dimensional Riemannian manifold) is an
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analytic embedded manifold in its interior except possibly for a closed set of singular
points Σ of Hausdorff dimension at most m− 2.

Theorem 2 (Chang). For 2-dimensional area-minimizing currents, the set of
interior singular points Σ consists of isolated points.

It is clear already from the example in (1) that one of the main (and a posteriori
the only) obstructions to the regularity in higher codimension is the presence of
branching points, which prevent the application of the classical regularity approach
through the approximation via harmonic functions. In particular, it is evident
how in any neighborhood of the origin the minimal current V cannot be described
as the graph of a function. For this reason the results in [1] (and those in [3]
which build on it) need the developments of some new concepts and ideas which
have been only partially exploited up to now (Almgren’s big regularity paper has
been written in the early ‘80s but has been published only recently in a volume
of nearly one thousand pages). The principal contributions of Almgren’s work
can be summarized in the following three points which correspond roughly to the
subdivision in chapters of [1]:

(1) the theory of multiple valued functions minimizing the Dirichlet energy,
called Dir-minimizing Q-valued functions;

(2) the approximation of minimal currents through the graphs of multiple
valued functions;

(3) the construction of the center manifold.

In a previous work in collaboration with C. De Lellis [4] we shortened and de-
veloped some of the features of the theory of Q-valued functions, also suggesting a
new, intrinsic “metric” approach to the theory. Here I present some new contribu-
tions obtained in collaboration with C. De Lellis [5] to the understanding and the
investigation of the second main step in Almgren’s result, namely the approxima-
tion of minimal currents. We show how this approximation is closely related to an
analytical a priori estimate which can be phrased in terms of higher integrability
of the excess density (the terminology will be explained below), which in turn
depends on a higher integrability property for the gradient of Dir-minimizing Q-
valued functions. This work adds a new step in the program of making Almgren’s
partial regularity result manageable.

Almgren’s approximation theorem

In order to illustrate the results, we introduce the following notation. We con-
sider integer rectifiable m-dimensional currents T in some open cylinders:

Cr(y) = Br(y)× R
n ⊂ R

m × R
n,

and denote by π : Rm × Rn → Rm the orthogonal projection. We will always
assume that the current T is without boundary and, roughly speaking, is a Q
covering of the horizontal plane:

(2) π#T = Q JBr(y)K and ∂T = 0,
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where Q is a fixed positive integer. For a current as in (2), we define the basic
regularity quantity for the sequel, the cylindrical excess :

(3) Ex(T, Cr(y)) :=
‖T ‖(Cr(y))
ωmrm

−Q,

where ωm is the measure of the m-dimensional unit ball. Finally, we recall from
[4] the notation AQ(R

n) for the space of unordered Q-tuples of points in Rn (the
reader unfamiliar with this theory can think to the case Q = 1, where AQ(R

n)
simply reduces to R

n, and interpret the rest of the notation in the usual way
– as we will comment below, Almgren’s approximation theorem has some new
significant feature also in this special case).

The following is Almgren’s approximation theorem and is proved in the third
chapter of the big regularity paper [1].

Theorem 3 (Almgren). There exist constants C, δ, ε0 > 0 with the following prop-
erty. Assume T is an area-minimizing, integer rectifiable m-dimensional current
T in C4 satisfying (2). If E = Ex(T, C4) < ε0, then there exist a Q-valued function
f ∈ Lip(B1,AQ(R

n)) and a closed set K ⊂ B1 such that

Lip(f) ≤ CEδ,(4a)

graph(f |K) = T (K × R
n) and |B1 \K| ≤ CE1+δ,(4b)

∣∣∣∣M
(
T C1

)
−Qωm −

∫

B1

|Df |2
2

∣∣∣∣ ≤ C E1+δ.(4c)

Theorem 3 has been proved by De Giorgi in the case n = Q = 1. In its gener-
ality, the main aspects of this result are two: the use of multiple valued functions
(necessary when n > 1, as for the case of branched complex varieties outlined
above) and the gain of a small power Eδ in the three estimates (4). Regarding
this last point, we recall that, for general codimension, the usual Lipschitz ap-
proximation theorems cover the case Q = 1 and stationary currents, and give an
estimate with δ = 0.

The proof of Theorem 3 can be deduce as a consequence of a general approxima-
tion scheme for integer rectifiable currents and a key estimate proved by Almgren.
To state them, we introduce the following further notation:

eT (A) := M(T A× R
n)−Q |A| for every Borel A ⊆ B4s(x),

and MT for the maximal function of the excess,

MT (x) := sup
s>0

Ex(T, Cs(x)).

Proposition 4. Let T be an integer rectifiable m-dimensional current in C4s(x)
satisfying (2). Set E = Ex(T, C4s(x)) and K :=

{
MT < E2α

}
∩ B3s(x), where

α ∈ (0, 1
2m ). Then, there exists f ∈ Lip(B3s(x),AQ(R

n)) such that:

graph(f |K) = T (K × R
n), Lip(f) ≤ CEα,

|B3s(x) \K| ≤ C E−2α
eT

(
{MT > η/2m} ∩B4s(x)

)
.
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Proposition 5 (Almgren’s strong estimate). There are constants σ,C > 0 with
the following property. Let T be an area-minimizing, integer rectifiable m-dimen-
sional current T in C4 satisfying (2). If E = Ex(T, C4) < ε0, then

eT (A) ≤ C E
(
Eσ + |A|σ

)
for every Borel A ⊂ B4/3.

Proposition 4 is proved using the metric theory of normal currents developed by
Ambrosio and Kirchheim [2] and of Q-valued functions proposed in [4], extending
to the this context the “gradient truncation” method with the maximal function.
In particular, we exploit a modification of the key BV estimate for the slice of
normal currents due to Jerrard and Soner.

The proof of Proposition 5, which in [1] is obtained as a consequence of several
complicated covering algorithms, can be instead deduce in a simpler way from a
new estimate which can be phrased in terms of higher integrability of the excess
density.

Higher integrability

Given a current T as in (2), we consider the following quantity which we call
excess density,

dT (x) := lim sup
s→0

Ex(Cs(x)).

The new a priori estimate concerns the higher integrability of dT under the
usual hypothesis on the smallness of the excess. Note that, in principle, the excess
density dT is a L1 function. Our analysis shows that there exists p > 1 such that,
in the regions where dT is small, its Lp norm is controlled by its L1 norm, that is
the excess.

Theorem 6. There exist constants p > 1 and C, ε0 > 0 with the following prop-
erty. Let T be an area-minimizing, integer rectifiable m-dimensional current T in
C4 satisfying (2). If E = Ex(T, C4) < ε0, then

(5)

∫

{dT≤1}∩B2

d
p
T ≤ C Ep.

Theorem 6 is the main contribution of paper which allows us to give a shorter
and conceptually clearer proof of Theorem 3. Moreover, we think that Theorem 6
may have an independent interest, which could be useful in other situations. In-
deed, although in the case Q = 1 we know a posteriori that T is a C1,α submanifold
in C2, however, for Q ≥ 2 this conclusion does not hold and Theorem 6 gives an a
priori regularity information. Furthermore, we notice that (5) cannot be improved
(except for optimizing the constants p, C and ε0). For example, for Q = 2 and
p = 2, the conclusion of Theorem 6 is false no matter how ε0 and C are chosen.

Theorem 6, which in principle does not involve any approximation, is in fact
closely linked to the problem of approximating area-minimizing currents. Indeed,
its proof depends on two ingredients: the derivation of the harmonic approximation
of minimizing currents, in the spirit of the original work of De Giorgi generalized
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to the case of multiple valued functions; and a higher integrability property of the
gradient of Dir-minimizing Q-valued functions.

Proposition 7 (Harmonic approximation). For every η > 0, there exists ε1 > 0
with the following property. Let T be a rectifiable, area-minimizing m-dimensional
current in C4s(x) satisfying (2). If E = Ex(T, C4s(x)) ≤ ε1 and f is the approxi-
mation in Proposition 4, then

∫

B2s(x)\K

|Df |2 ≤ η E sm,

and there exists a Dir-minimizing w ∈W 1,2(B2s(x),AQ(R
n)) such that

∫

B2s(x)

(
|Df | − |Dw|

)2 ≤ η E sm.

Proposition 8. Let Ω′ ⊂⊂ Ω ⊂⊂ Rm be open domains. Then, there exist p > 2
and C > 0 such that

‖Du‖Lp(Ω′) ≤ C ‖Du‖L2(Ω) for every Dir-minimizing u ∈ W 1,2(Ω,AQ(R
n)).

Notice that curiously, though Almgren’s monograph contains statements about
the energy of Dir-minimizing functions in various regions, Proposition 8 is stated
nowhere and there is no hint to higher integrability.

Proposition 7 and Proposition 8 together imply the following estimate, which
leads to Theorem 6 via an elementary higher integrability paradigm.

Proposition 9. For every κ > 0, there exists ε2 > 0 with the following property.
Let T be an area-minimizing, integer rectifiable m-dimensional current in C4s(x)
satisfying (2). If E = Ex(T, C4s(x)) ≤ ε2, then

eT (A) ≤ κEsm for every Borel A ⊂ Bs(x) with |A| ≤ ε2 s
m.
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Equilibrium configurations of epitaxially strained crystalline films

Nicola Fusco

(joint work with I. Fonseca, G. Leoni, and M. Morini)

We present some recent results on the equilibrium configurations of a variational
model for the epitaxial growth of a thin film on a thick substrate introduced by
Bonnetier–Chambolle in [1]. In the model only two dimensional morphologies
are considered corresponding to three-dimensional configurations. The reference
configuration of the film is

Ωh =
{
z = (x, y) ∈ R

2 : 0 < x < b, 0 < y < h(x)
}
,

where h : [0, b] → [0,∞) and its graph Γh represents the free profile of the film.
Denoting by u : Ωh → R2 the planar displacement of the film with respect to the
reference configuration, the strain is given by

E(u) =
1

2
(∇u+∇Tu)

and the energy associated to a smooth configuration (h, u) is

G(h, u) =

∫

Ωh

[
µ
∣∣E(u)|2 + λ

2
(divu)2

]
dz + σfH1(Γh) + (σs − σf )H1(Γh ∩ {y = 0})

where µ and λ represent the Lamé coefficients of the film, σf is the surface tension
on the profile, σs the surface tension on the ‘exposed’ part of the substrate, and H1

denotes the one-dimensional Hausdorff measure. Here we assume that σs > σf ,
corresponding to the so-called ‘wetting regime’. One seeks to minimize G among
all configurations (h, u) such that h(0) = h(b), u(x, 0) = e0(x, 0), for 0 < x < b,
e0 > 0, u(b, y) = u(0, y) + e0(b, 0) for 0 < y < b, satisfying the volume constraint
|Ωh| = d > 0.
However, smooth minimizing sequences may converge to irregular configurations,
where the profile h is just a lower semicontinuous function of bounded variation.
In particular, the extended graph of h may contain vertical segments and cuts.
Let us denote by X the class of all reachable configurations (h, u), i.e., the class
of all configurations such that h : R → [0,∞) is a b-periodic lower semicontinuous
function of finite total variation in (0, b) and u ∈ H1

loc(Ωh;R
2) satisfies the Dirichlet

boundary condition u(x, 0) = e0(x, 0) and the periodicity assumption u(b, y) =
u(0, y)+ e0(b, 0). It has been proved in [1] (see also [2] for a variant of the model)
that the relaxed energy associated to any pair (h, u) ∈ X is given by

F (h, u) =

∫

Ωh

[
µ
∣∣E(u)|2 + λ

2
(divu)2

]
dz + σfH1(Γh) + 2σfH1(Σh) ,

where

Γh = {(x, y) : 0 ≤ x < b, h−(x) ≤ y ≤ h+(x)},
Σh = {(x, y) : 0 ≤ x < b, h(x) ≤ y < h−(x)}

Here, h−(x) = min{h(x−), h(x+)}, h+(x) = max{h(x−), h(x+)}, and h(x±) de-
note the right and left limit at x. Notice that in the representation formula for F
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the vertical cracks (contained in Σh) are counted twice since they arise as limit of
regular profiles. With this formula at hand one has (see [1]) the following existence
result.

Theorem 1. The minimum problem

(1) min
{
F (g, v) : (g, v) ∈ X, |Ωg| = d}

has always a solution for any d > 0.

We say that an admissible configuration (h, u) ∈ X is a local minimizer for F
if there exists δ > 0 such that

F (h, u) < F (g, v)

for all pairs (g, v) ∈ X , with |Ωg| = |Ωh|, such that 0 < dH(Γh ∪Σh,Γg ∪Σg) < δ.
Here, for any two subsets A,B in R2, dH(A,B) = inf{ε > 0 : B ⊂ Nε(A) andA ⊂
Nε(B)}, where Nε(A) denotes the ε-neighborhood of A. The use of dH in measur-
ing how far g is from h is due to the presence of the vertical cracks which are not
seen by other kinds of possible distances such as the L1 or the L∞ one. However,
if h is continuous, requiring that dH(Γh ∪ Σh,Γg ∪ Σg) is small is equivalent to
requiring that sup{|h(x)− g(x)| : 0 ≤ x ≤ b} is small.
In order to state the regularity result proved in [2] we need another definition.
We say that (x, h−(x)), x ∈ [0, b), is an inward cusp point if g−(x) = g(x) and
g′(x+) = −g′(x−) = +∞. The set of all cusp points in [0, b) will be denoted by
Σh,c.

Theorem 2. Let (h, u) ∈ X be a local minimizer for F . Then

(i) cusp points and vertical cracks are at most finite in [0, b), i.e.,

card
(
{x ∈ [0, b) : (x, y) ∈ Σh ∪ Σh,c for some y ≥ 0}

)
< +∞ ;

(ii) the curve Γh is of class C1 away from Σh ∪ Σh,c;
(iii) Γh ∩ {h > 0} is of class C1,α away from Σh ∪Σh,c for all α ∈ (0, 1/2);
(iv) let A := {x ∈ R : h(x) > 0 and h is continuous at x}. Then A is an open

set of full measure in {h > 0} and h is analytic in A.

Notice that statement (ii) of Theorem 2 implies in particular the so-called zero
contact angle condition (that is h′ = 0) at the interface between film and substrate.
We remark also that the regularity results in [2] refer to a slightly different model
than the one considered here and to a slightly stronger notion of local minimality.
However they apply also to the model under discussion.
We now come to the qualitative properties of solutions. The results presented here
will appear in the forthcoming paper [3]. A first issue that will be discussed in the
paper is to find sufficient conditions, based on a suitable notion of second variation
for F , for an admissible configuration to be a local minimizer. To this aim, given
a pair (h, u) ∈ X , with h ∈ C2([0, b]), we say that (h, u) is a critical point for F if
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it satisfies the following set of Euler-Lagrange equations:

(2)





µ∆u+ (λ+ µ)∇(divu) = 0 in Ωh,

N(u)[ν] = 0 on Γh ∩ {y > 0},
N(u)(0, y)[ν] = −N(u)(b, y)[ν] for 0 < y < h(0) = h(b),

k + µ
∣∣E(u)|2 + λ

2 (divu)
2 = const on Γh ∩ {y > 0} ,

where N(u) = µ
(
∇u+∇Tu

)
+λIdivu, ν is the exterior normal to Ωh and k is the

curvature of Γh (here and in the following we assume σf = 1). From the definition
of F one has immediately that any sufficiently smooth local minimizer satisfies (2),
hence is a critical point. Notice also that the flat configuration (h, u0) of volume
d, where

h ≡ d

b
, u0(x, y) = e0

(
x,

−λ
2µ+ λ

y
)
,

is always a critical point, i.e., satisfies (2). The first result proved in [3] deals
with the local minimality of the flat configuration. In order to state it we need to
introduce the Grinfeld function K defined (see [4]) for y ≥ 0 as

(3) K(y) = max
n∈N

1

n
J(ny) , where J(y) :=

y + (3− 4νp) sinh y cosh y

4(1− νp)2 + y2 + (3− 4νp) sinh
2 y

,

νp being the Poisson modulus of the elastic material, i.e., νp =
λ

2(λ+µ) .

Theorem 3. Let dloc : (0,+∞) → (0,+∞] be defined as dloc(b) := +∞, if 0 <

b ≤ π
4

2µ+λ
e20µ(µ+λ)

, and as the solution to

(4) K
(2πdloc(b)

b2

)
=
π

4

2µ+ λ

e20µ(µ+ λ)

1

b
,

otherwise. Then the flat configuration (d/b, u0) is a local minimizer for F if 0 <
d < dloc(b).
The threshold dloc is critical: indeed, for d > dloc(b) there exists (g, v) ∈ X, with
|Ωg| = d, and dH(Γd/b,Γg ∪ Σg) arbitrarily small such that F (g, v) < F (d/b, u0).

A crucial point in the proof of Theorem 3 is a local minimality criterion, based
on the positive definiteness of a suitable notion of second variation of F . To
define it, let us consider a critical point (h, u) ∈ X , with h ∈ C∞([0, b]), h > 0.

Given a variation ψ ∈ H1(0, b), ψ(0) = ψ(b), with
∫ b
0 ψ dx = 0, for |t| small we

set ht = h + tψ and ut the corresponding minimizer of the elastic energy in Ωht

under the usual Dirichlet and periodicity assumptions. Thus (ht, ut) ∈ X and
|Ωh| = |Ωht |. The second variation of F at (h, u) along the direction ψ is then
defined as

(5)
d2

dt2
F (ht, ut)|t=0 .

We say that the second variation at (h, u) is positive definite if (5) is positive for
all ψ 6= 0.
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Theorem 4. Let (h, u) ∈ X be a critical point for F , with h ∈ C∞([0, b]) and
h > 0, and assume that the second variation of F at (h, u) is positive definite.
Then (h, u) is a local minimizer.

To the best of our knowledge, this result is the first example of a local minimality
criterion based on the second variation in the framework of free boundary problems
and we believe that many of the ideas introduced in [3] can be used in a large
number of similar variational problems.
To conclude, we state a result dealing with the global minimality properties of the
flat configuration. This theorem, as well as other qualitative properties of non-flat
minimizers, is also contained in the forthcoming paper [3].

Theorem 5. The following two statements hold.

(i) For every b > 0, there exists 0 < dglob(b) ≤ dloc(b) (see Theorem 3)
such that the flat configuration (d/b, u0) is a global minimizer if and only
0 < d ≤ dglob(b). Moreover, if 0 < d < dglob(b), then (d/b, u0) is the
unique global minimizer.

(ii) There exists 0 < bcrit ≤ π
4

2µ+λ
e20µ(µ+λ)

such that dglob(b) = +∞ if and only

if 0 < b ≤ bcrit, i.e., the flat configuration (d/b, u0) is the unique global
minimizer for all d > 0 if and only if 0 < b ≤ bcrit.
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Lack of uniqueness for weak solutions of the incompressible porous
media equation

Daniel Faraco

The aim of the talk is to investigate the question of existence and uniqueness for
weak solutions to equations describing the motion of an active scalar transported
by an incompressible flow. The method is based on the approach by DeLellis and
Szkelyhidi [6] to construct wild solutions to the Euler system, understanding it as
a differential inclusion. The main result concerns the incompressible porous media
equation.

The incompressible 2-D porous media equation (IPM) is described by

ρt +∇ · (vρ) = 0
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where the scalar ρ(x, t) is the density of the fluid. The incompressible velocity
field

∇ · v = 0

is related with the density by the well-known Darcy’s law [1]

µ

κ
v = −∇p− (0, gρ)

where µ represents the viscosity of the fluid, κ is the permeability of the medium,
p is the pressure of the fluid and g is acceleration due to gravity. Without lost of
generality we will consider µ/κ = g = 1.

For initial data in the Sobolev class Hs(T2) (s > 2) there is local-existence and
uniqueness of solutions in a classical sense and global existence is an open problem
[4]. It is known the existence of weak solutions, where the motion takes place in
the interface between fluids with different constant densities, modeling the contour
dynamics Muskat problem [3]. The existence of weak solutions for general initial
data is not known. In this context we emphasize that the solutions we construct
satisfy

lim sup
t→0+

‖ρ‖Hs(t) = +∞

for any s > 0.
From Darcy’s law and the incompressibility of the fluid we can write the velocity

as a singular integral operators with respect to the density as follows

v(x, t) = PV

∫

R2

Ω(x− y) ρ(y, t)dy − 1

2
(0, ρ(x)) , x ∈ R

2,

where the kernel is of Calderon-Zygmund type.
The integral operator is defined in the Fourier side by

v̂(ξ) = (
ξ1ξ2
|ξ|2 ,−

(ξ1)
2

|ξ|2 )ρ̂(ξ).

This system is analogous to the 2-D surface Quasi-geostrophic equation (SQG)
[4], in the sense that is an active scalar that evolves by a nonlocal incompressible
velocity given by singular integral operators. It follows that, for Besov spaces, if
the weak solution ρ is in L3([0, T ] × Bs,∞3 ) with s > 1

3 then the L2 norm of ρ
is conserved [20]. This result frames IPM in the theory of Onsager’s conjecture
for weak solutions of 3-D Euler equations [2],[15]. However there is an extra
cancelation, for SQG, due to the symmetry of the velocity given by

v̂(ξ) = i(− ξ2
|ξ| ,

ξ1
|ξ| )ρ̂(ξ)

that provides global existence for weak solution with initial data in L2(T2) [16].
Furthermore, one can find a substantial difference between both systems for weak
solutions of constant ρ in complementary domains, denoted in the literature as
patches [13]. For IPM the Muskat problem presents instabilities of Kelvin-Helm-
holtz’s type [3] and there is no instabilities for SQG ([17],[8]).
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We remark that in contrast with IPM, the question of uniqueness of weak
solutions for SQG remains open. The method breaks because there is no obvious
way to put SQG in the compensated compactness framework, that is as a linear
local PDE and a pointwise constraint. However for IPM we have

Theorem 1. For every T > 0 there exists infinitely many non trivial weak solu-
tions (ρ, v) ∈ L∞(T2 × [0, T ]) to the 2D IPM system such that ρ(x, 0) = 0.

As we said the method of the proof follows the lines of [6]. However there are
some differences which might be of interest in related problems. We conclude the
report with some remarks.

• It is needed to work with the genuine Λ hull.
• The natural variable q = ρv yields a set K with the unpleasant property
K ∈ ∂Kλ. There is two ways to solve this. The first is to notice that for the
issue of weak solutions it is enough that the original variables (ρ, v) attain
the correct boundary values. The second (pointed out by Székelyhidi) is
that for solutions with |ρ| = 1 there is a way to symmetrize the equation
which bypass this difficulty.

• We do not need to compute KΛ for a suitable K but instead we work with
degenerate T 4 configurations. In some sense, this translates the difficulty
from Λ convexity to standard convexity.
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[3] D. Córdoba, and F. Gancedo, Contour dynamics of incompressible 3-D fluids in a porous

medium with different densities, Comm. Math. Phys. 273 (2007), no. 2, 445–471.
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The Surgery and Level-Set Approaches to Mean Curvature Flow

John Head

Given a smooth hypersurface immersion F0 : Mn → R
n+1, the evolution of Mn

0 =
F0(Mn) by mean curvature flow is the one-parameter family of smooth immersions
F : Mn × [0, T ) → Rn+1 satisfying

∂F

∂t
(p, t) =

−→
H (p, t) = −H(p, t)ν(p, t), p ∈ Mn, t ≥ 0,(1)

F (·, 0) = F0,(2)

where
−→
H (p, t), H(p, t) and ν(p, t) denote the mean curvature vector, mean cur-

vature and outer unit normal respectively at the point F (p, t) on the surface
Mn

t = F (·, t)(Mn).

It is a well-known theorem due to Huisken that in dimensions two and higher
any convex initial data will contract smoothly to a point in finite time and in
an asymptotically round fashion. In the more general two-convex setting (with
n ≥ 3), in which the sum of any two of the principal curvatures is non-negative,
Huisken and Sinestrari [4] make precise the intuitive picture that unless the sur-
face is uniformly convex, any high-curvature region must contain a neck - that is,
a piece of the surface which can be represented (up to a homothety) as a graph
over a cylinder with small Ck-norm for a suitable k. They furthermore define a
surgery algorithm according to which the smooth flow is stopped shortly before
the singular time, and each neck is excised and replaced with spherical caps.

Huisken and Sinestrari introduce a set of parameters H0 < H1 < H2 < H3

which determine when and where surgery is performed. In particular, when the
curvature exceeds a certain value H0 = H0(Mn

0 ) the geometry of the surface is
controlled by a priori curvature estimates. The smooth flow is then stopped when
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the curvature reaches a maximum value H3, and surgery is performed away from
the point of maximum curvature at a smaller scale H1 = ξH3 (ξ = ξ(Mn

0 ) < 1)
such that the maximum of the curvature after surgery drops by a fixed factor toH2.

The starting point for the work in [3] is the observation made by Huisken and
Sinestrari that H3 is not unique - it can in fact be chosen arbitrarily large. For
fixed H0 and ξ, we therefore consider an increasing sequence of surgery parameters
H3,i, corresponding to a whole sequence of mean curvature flows with surgeries
along which the surgery times approach the singular time and necks removed dur-
ing surgery become smaller and smaller. In this lecture we present results from [3]
for mean curvature flow with surgeries which establish that

Theorem The Lp(Mn)-norm of H is bounded on any finite time interval for
all p < n− 1.

This result has an interesting geometric interpretation and can be used to im-
prove the bound from [4] on the required number of surgeries. The dependence of
the estimates on the surgery parameters is made explicit.

There is a well-developed theory of weak solutions available in the literature
(see for example [1, 2]) which provides an alternative approach to extending mean
curvature flow beyond the singular time. While the solution of mean curvature
flow with surgeries is smooth and only solves the initial value problem (1)-(2) up
to small errors resulting from surgery, the appropriately defined weak solution is
canonical and of course possesses weaker regularity properties. Both concepts can,
however, be discussed within the level-set framework of weak solutions. We control
the position of the surgery solution relative to the weak solution using techniques
introduced by Brakke, and it then follows from the above theorem that

Corollary The sequence of mean curvature flows with surgeries described above
will converge in the limit as H3,i −→ ∞ to the unique weak solution of the level-set
flow.

We discuss several types of convergence and show that the rate of convergence
is again controlled explicitly in terms of the surgery parameters. The novelty of
this result is that it can be used to establish regularity properties for the weak
solution. We note that a version of the corollary above was recently obtained by
Lauer in [5].
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Lorentzian analogues of some classical variational problems

Robert L. Jerrard

A classical line of research in the calculus of variations seeks to establish relation-
ships between variational elliptic equations of the form

(1) −∆u+
1

ε2
f(u) = 0

for suitable nonlinearities f , and variational geometric problems involving the
mean curvature. Some (mostly) well-known examples include the following:

1. Suppose that u is a scalar function on a domain Ω ⊂ Rn, n ≥ 2, and f is
the derivative of a symmetric double-well potential, eg f(s) = 2(s2−1)s =
F ′(s) for F (s) = 1

2 (s
2 − 1)2.

Then (1) is related to the problem of minimal hypersurfaces in Ω. This
relationship manifests itself in several ways. For example, under suitable
conditions, solutions of (1) have an interface that is approximately a min-
imal surface, or exhibit energy concentration around a minimal surface.
Moreover, given a minimal surface, one can find solutions of (1) that are
“nearby” in a precise sense.

1’. More generally, suppose that u is as above, and that f is the derivative
of a double-well potential with two wells of (in general) unequal depth,
eg f(s) = (s2 − 1)(2s − εκ). Then f(s) = F ′(s) for a function F (s)
with a global minimum at s = −1 and a local minimum at s = 1, with
F (1)− F (−1) = O(εκ).

Then (1) is related to hypersurfaces of constant mean curvature κ. The
relationships between the PDE and the geometric problem parallel those
described above in the case κ = 0

2. Suppose that Ω ⊂ Rn for some n ≥ 3, that u takes values in R2, and
that f = ∇F for some potential F : R2 → [0,∞) that vanishes exactly on
the unit circle. The model example is f(s) = 2(|s|2 − 1)s = ∇F (s), for
F (s) = 1

2 (|s|2 − 1)2.
In this case (1) is related to the problem of codimension 2 minimal

surfaces in Ω. For example, solutions with suitably bounded energy exhibit
energy concentration around codimension 2 minimal surfaces.

2’. Related problems include the situation where u and f are as above, and
(1) is coupled to an equation for a magnetic field. In this case again the
PDE is associated to the problem of codimension 2 minimal surfaces, in
ways that closely parallel the case 2 described above in which the magnetic
field is absent.
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3. Generalizations of case 2’ include more general gauge theories, such as
various forms of the elliptic Yang-Mills-Higgs system. These are expected
to be related to minimal surface problems of various codimensions, de-
pending on the model under consideration, although not many results in
this direction are established.

Lorentzian analogues of the above problems are obtained by replacing the
Laplace operator −∆ by the wave operator � := ∂2t − ∆, or more generally by
the Laplace-Beltrami operator �g on a Lorentzian manifold (M, g). The basic
example of the wave operator of course corresponds to the case when the mani-
fold is just a Minkowski spacetime. Focusing for simplicity on the Minkowskian
case, one might then ask whether there are ways in which suitable semilinear wave
equations are related to geometric problems involving surfaces of vanishing or pre-
scribed Minkowskian mean curvature. Parallel to the elliptic problems discussed
above, we will focus on the case where k = 1 or 2 and n > k.

The slight existing literature on 0 < ε ≪ 1 asymptotics of scaled semilinear
wave equations deals mainly with the quite different situation in which energy
concentrates around points rather than submanifolds. This can occur for n = k = 2
with f(u) = (|u|2 − 1)u, see [3, 6, 2], or for n ≥ 2 when f is a nonlinearity of
focussing type, see [7]. A recent result [1] on scattering of flat kinks in certain
nonlinear wave equations addresses related issues.

We first state a result that provides a hyperbolic analogue of those discussed in
1 and 1’ above. Consider the nonlinear wave equation

(2) −�u+
1

ε2
(u2 − 1)(2u− εκ) = 0, u : R × R

N → R.

Theorem 1. Assume that 1 ≤ N ≤ 4, and let Γ ⊂ (−T, T ) × RN be a smooth
timelike hypersurface of constant Minkowskian mean curvature κ.

Then given T0 < T , there exists a neighborhood N of Γ in (−T0, T0) × RN in
which there exists a smooth solution d : N → R of the problem

(3) d = 0 on Γ, −d2t + |∇d|2 = 1 near Γ.

(In other words, d is the signed Minkowski distance to Γ.) Moreover, there exists
a solution u of (2) such that for any T0 < T ,

(4) ‖u− tanh(
d

ε
)‖L2(N ) ≤ C

√
ε.

In addition,
∫

N

1

2
d̄2

[
(u2t + |∇u|2) + 1

ε2
(u2 − 1)2

]
dt dx ≤ Cε(5)

for d̄(t, x) :=

{
d(t, x) if (t, x) ∈ N
1 otherwise.

Finally,

(6) ‖κ1Tε(u)− T (Γ)‖W−1,1((−T0,T0)×RN ) ≤ Cε.
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for a normalization constant κ1, where

T ε
αβ(u) := ηαβ

(
ε

2
ηγδuxγuxδ +

1

2ε
(u2 − 1)2

)
− εuxαuxβ

with (ηαβ) = (ηαβ) := diag(−1, 1, . . . , 1); and T (Γ) is the measure-valued tensor
defined by

Tαβ(Γ)(A) :=
∫

A

Pαβ(t, x) dλΓ.

Here λΓ denotes the Minkowski area density of Γ, and where P (t, x) = (Pαβ(t, x))
is the tensor corresponding to Minkowski orthogonal projection onto T(t,x)Γ, for
λΓ a.e. (t, x) ∈ Γ.

In all the above conclusions, C = C(T0,Γ) is independent of ε.

The theorem as stated combines results from [4] and [5]. The former paper
studies the case κ = 0 under the restriction that the surface Γ be homeomorphic
to (−T, T ) × TN . The latter paper considers general κ ∈ R (and in fact proves
similar results when κ is a smooth function of (t, x)) and does not impose any
restrictions on the topology of Γ. To minimize technicalities, however, [5] considers
hypersurfaces Γ that are stationary at time t = 0, and also does not carry out in
detail the rather minor adaptations to the case κ 6= 0 of the lengthy arguments in
[4] in which conclusions such as (6) are extracted from more basic estimates.

The restriction 1 ≤ N ≤ 4 in Theorem 1 is needed only to assure that equation
(2) is well-posed in the energy space. Corresponding results are valid in arbitrary
dimensions, if one is willing to modify the nonlinearity as necessary to guarantee
global well-posedness, and correspondingly modify certain auxiliary quantities.

The case 2 is also addressed in [4], which proves results describing energy con-
centration around codimension 2 timelike submanifolds of zero Minkowskian mean
curvature in solutions, for well-prepared initial data, of the equation

−�u+
1

ε2
(|u|2 − 1)u = 0, u : R × R

N → R
2, N = 3 or 4.

These results also hold for equations in arbitrary dimensions n ≥ 3 with quali-
titatively similar nonlinearities satisfying appropriate growth conditions. And in
joint work with M. Czubak, we are currently developing analogous results for the
Abelian Higgs model as well as certain nonabelian gauge theories. These results
will provide Lorentzian analogues of the elliptic phenomena discussed in 2’ and 3
above, respectively.

In every case, the argument starts with a change of variables that amounts to
rewriting the equation in variables that follow a given minimal surface or surface
of prescribed curvature, as the case may be. One then needs to show stability of
well-chosen initial data for the transformed dynamics. In every case, the fact that
the change of variables is built around a submanifold with the “correct” geometry
endows the transformed equation with good structural properties that render this
stability analysis possible.
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