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Introduction by the Organisers

Most of the talks of the workshop largely included different aspects related to
the main themes of the conference. There were talks given by the well-known
specialists as well as by young participants (recent PhD or postdoctoral students).
The scientific atmosphere was very fruitful. Many interesting scientific discussions
between participants certainly generated new ideas for the further research. The
following report contains extended abstracts of the presented talks. By continuing
our tradition we included an updated list of open important problems related to
the workshop.
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Abstracts

Spectral Representations, Archimedean Solids, and finite Coxeter
Groups

Norbert Peyerimhoff

(joint work with Ioannis Ivrissimtzis)

We consider finite, connected and simple (i.e., no loops and multiple edges) com-
binatorial graphs G = (V,E), with a group Γ ⊂ Aut(G) acting transitively on
the set of vertices V . This induces the following equivalence relation on the
set of (undirected) edges E: {v1, w1} ∼Γ {v2, w2} iff there exists a γ ∈ Γ with
{v2, w2} = {γv1, γv2}. We are particularly interested in the case when we have
several equivalence classes [e1], . . . , [eN ] of edges. The multiplicity mj of an equiv-
alence class [ej ] is defined to be the number of edges in this equivalence class
meeting at an arbitrarily chosen vertex v0 ∈ V . We associate positive weights
x1, . . . , xN > 0 to the equivalence classes of edges and introduce the simplex of
weights

∆Γ := {X = (x1, . . . , xN ) ∈ (0,∞)N |
∑

mjxj = 1}.
Each pointX ∈ ∆Γ can be considered as a choice of transition probabilities for a Γ-
equivariant random walk, and we consider the corresponding symmetric operator
AX , acting on the space of functions f on the vertices and given by

AXf(v) =
∑

w∼v

x{v,w}f(w).

Note that AX can be interpreted as a doubly stochastic matrix and its second
highest eigenvalue λ2 < 1 can be related to the mixing rate of the corresponding
random walk.

Assume the operator AX has an eigenvalue λ(X) ∈ (−1, 1) of multiplicity k ≥
2. The idea of a spectral representation is to use this eigenspace to construct a
”geometric realisation” of the combinatorial graph G in Euclidean space Rk, by
using an orthonormal base φ1, . . . , φk of eigenfunctions of the eigenspace Eλ(X)

and defining the map

ΦX : V → Rk, ΦX(v) = (φ1(v), . . . , φk(v)).

Vertex transitivity forces the image of ΦX to lie on a round sphere Sk−1 and
that pairs of vertex-pairs, belonging to equivalent edges, are mapped to pairs of
Euclidean segments with the same Euclidean length. We call a spectral represen-
tation ΦX : V → Rk faithful if ΦX is injective, and equilateral if all images of edges
have the same Euclidean lenghts (not only images of equivalent edges). We have
the following general result:

Theorem 1. Let G = (V,E) be a finite, connected, simple graph. Let Γ ⊂ Aut(G)
be vertex transitive, U ⊂ ∆Γ be an open set and λ : U → (−1, 1) be a smooth
function such that λ(X) is an eigenvalue of AX with fixed multiplicity k ≥ 2 for
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all X ∈ U . If X0 ∈ U is a critical point of λ, then the spectral representation
ΦX : V → Sk−1 is equialateral.

Note that the above result holds for any eigenvalue and is not restricted to λ2.
Henceforth, we focus particularly on λ2. The following result is straightforward
and has a simple proof using the Rayleigh quotient:

Lemma 1. Let Γ ⊂ G be vertex transitive. Then λ2 : ∆Γ → (−1, 1) is a convex
function. If the graph G decomposes in multiple components by removing all edges
of an equivalence class [ej ], then λ2(X) → 1, as X approaches the face of ∆Γ

corresponding to xj = 0.

Lovász and Schrijver prove in [4] faithfulness of 3-dimensional spectral repre-
sentations of λ2 for 3-connected planar (not necessarily vertex transitive) planar
graphs. Their considerations are related to Colin de Verdiére’s graph invariant.

Next, we consider a special class of planar vertex transitive graphs: 1-skeletons
of Archimedean solids. We focus on the 1-skeleton of the largest Archimedean
solid, namely the truncated icosidodecahedron with vertex configuration (4, 6, 10),
which is bipartite and has 120 vertices. Our first result reads as follows (similar
results holds for the Archimedean solid with vertex configuration (4, 6, 8)):

Theorem 2. The G be the 1-skeleton of the truncated icosidodecahedron, Γ =
Aut(G). The simplex of weights is given by

∆Γ = {(x, y, z) | x, y, z > 0, x+ y + z = 1},
where x, y, z are the weights on the edge-equivalence classes separating 4- and 6-
gons, 4- and 10-gons, and 6- and 10-gons, respectively. Then λ2 : ∆Γ → (0, 1) is
analytic and strictly convex, dimEλ2(X) = 3 for all X ∈ ∆Γ, and

• λ2(X) → 1 as X → ∂∆Γ,
• X0 = 1

14+5ϕ (6 + 2ϕ, 5, 3 + 3ϕ) is the unique minimum of λ2, and

λ(X0) =
10 + 7ϕ

14 + 5ϕ
,

where ϕ = 1+
√
5

2 is the golden ratio. Moreover, Φx0 : V → S2 is faithful and
equilateral.

The proof of this result uses our previous results, the irreducible representations
of Γ = A5×Z2, and the fact that G is the Cayleygraph of the finite Coxeter group
H3.

Canonical Laplacians (with all weights being equal) for finite Coxeter graphs
have been considered in earlier papers by [1], [2], and [3]. These sources studied the
explicit value of λ2 and its multiplicity. We consider a finite, irreducible Coxeter
group

Γ = 〈s1, . . . , sk | (sisj)mij = e〉,
together with its geometric realisation Γ →֒ O(k) as finite reflection group with
simple roots n1, . . . , nk. Let Pj = (−1)j−1n1×· · ·×n̂j×· · ·×nk (n̂j means that this
term is dropped) be the directions of the extremal rays of its conic fundamental
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domain F ⊂ Rk, and let F0 = F ∩ Sk−1. We construct a diffeomorphism Ψ∆ :
F0 → ∆Γ (where ∆Γ is the simplex of weights of the Cayleygraph Cay(Γ, S =
{s1, . . . , sk})) and a map Ψλ : F0 → (0, 1), such that the following holds:

Proposition 1. Let (Γ, S) →֒ O(k) be a finite, irreducible Coxeter group, and
πj : Rk → R be the canonical projection on the j-th coordinate. Then, for P =
[α1P1 + · · ·+ αkPk] ∈ F0, the functions

φj(γ) = πj(γP )

form a system of linearly independent eigenfunctions of AX on Cay(Γ, S) to the
eigenvalue λ = Ψλ(P ), where X = Ψ∆(P ). Moreover,

ΦX(γ) = (φ1(γ), . . . , φk(γ)) = γP

is faithful and the Euclidean lenghts of the equivalence classes of edges are given
by ‖P − σj(P )‖ = 2αj det(n1, . . . , nk).

We also prove in the case Γ = H3 that Ψ−1
∆ ◦Ψλ = λ2, and conjecture that this

is true for all finite, irreducible Coxeter groups.
Coming back to the 1-skeleton of the Archmidean Solid (4, 6, 10), the diagram

below illustrates the convergence behavior of spectral representations of λ2, as we
approach the boundary ∂∆Γ. For weights in each of the three curves cj , exactly
two of the three equivalence classes of Euclidean edges have the same length (we
can parametrise these curves explicitly). The intersection point of the curves is the
global minimum X0 of λ2. If we choose a sequence of weights converging along one
of the curves into a vertex of ∂∆Γ, then the spectral representations converge to
an equilateral representation of a simpler Archimedean solid with only two equiv-
alence classes of edges. If we choose a sequence of weights converging towards the
interior of an edge of ∂∆Γ, the spectral representations converge to an equilateral
representation of an Archimdedean or Platonic solid with only one equivalence
class of edges. The solids are represented by their vertex configurations.

(5,5,5)

c1

c2 c3

(4, 6, 10)

(3, 3, 3, 3, 3) (3, 5, 3, 5)

(3, 4, 5, 4) (3, 10, 10)

(5, 6, 6)
Simplex ∆Γ of weights
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A brief survey of contact homology

Frédéric Bourgeois

Contact homology [1] is a powerful invariant for contact manifolds, with ap-
plications and ramifications in many directions. The aim of this talk is to give
an overview of this technique and to illustrate its applications with some selected
results.

Three versions of contact homology are described. All of these are obtained
as the homology of a chain complex generated by closed orbits of a Reeb vector
field for the contact structure, satisfying some index property (good orbits). The
differentials of these complexes count suitable types of J-holomorphic spheres in
the symplectization of the contact manifold.

First, the (full) contact homology is defined as the homology of a differential
graded algebra with a unit, freely generated by the orbits, and the relevant holo-
morphic curves have one positive puncture and an arbitrary number of negative
punctures. The resulting object is often too large for practical computations and
applications.

Second, the cylindrical contact homology is obtained by replacing the alge-
bra with the module generated by the orbits and by restricting to holomorphic
cylinders with one positive and one negative punctures. For this object to be
well-defined, the closed Reeb orbits need to satisfy some ad hoc conditions.

Third, the linearized contact homology is defined without the need of condi-
tions as above, but with an augmentation of the differential graded algebra. This
augmentation can be naturally obtained from a symplectic filling of the contact
manifold.

The first application of contact homology is to distinguish contact structures. In
this vein, one can prove the existence of infinitely many pairwise non diffeomorphic
contact structures with the same classical invariants on manifolds such as S4k+1, T 5

or T 2 × S2n−3.
Contact homology can also be used to study the Weinstein conjecture (stating

that any Reeb field on a closed contact manifold has at least a periodic orbit) or
more quantitative versions of this conjecture. Hofer, Wysocki and Zehnder showed
that on the standard contact 3-sphere, there are either 2 or infinitely many simple
closed Reeb orbits. In a joint result with Cieliebak and Ekholm, we showed that
linearized contact homology can detect this alternative.

In the case of a unit cotangent bundle, Cieliebak and Latschev [2] proved that
contact homology is isomorphic to the homology of the free loop space of the
base modulo parametrization shift and constant loops. This is to be compared
with an earlier result showing the isomorphism of symplectic homology of the



Geometric Group Theory, Hyperbolic Dynamics and Symplectic Geometry 1769

corresponding cotangent bundle with the homology of the loop space of the base.
The relation between contact and symplectic homology observed here is in fact
a general phenomenon. In a joint work with Oancea, we proved that linearized
contact homology is isomorphic to the (positive part of) S1-equivariant symplectic
homology and fits into a Gysin sequence with the ordinary symplectic homology.

References

[1] F. Bourgeois, A survey of contact homology, “New perspectives and challenges in symplectic
field theory”, 45–71, CRM Proc. Lecture Notes, 49, AMS (2009).
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Models of 3-manifolds and hyperbolicity

Brian H. Bowditch

Let Σ be a closed surface of genus g ≥ 2, and let Γ be the mapping class group
of Σ. Let T be the Teichmüller space of Σ — the space of marked hyperbolic
structures on Σ. This is homeomorphic to R6g−6. It admits a natural compacti-
fication to a ball, by adjoining the (6g − 7)-sphere of projective laminations, ∂T .
This is the “Thurston compactification”. Teichmüller space admits a number of
natural metrics, notably the Teichmüller metric (a complete Finsler metric) and
the Weil-Petersson metric (an incomplete geodesically convex negatively curved
riemannian metric). The mapping class group acts propertly discontinuously on
T , with quotient the moduli space — the space of unmarked hyperbolic structures.
One aim is to understand the large scale geometry of T in these various metrics.

Let C be the set of homotopy classes of curves in Σ. (This is the vertex set of
the curve complex.) Given α ∈ C and σ ∈ T , we write lσ(α) for the length of the
geodesic realisation of α in Σ in the hyperbolic metric σ. Given η > 0, let

thin(T , α) = {σ ∈ T | lσ(α) < η}
.

thin(T ) =
⋃

α∈C

thin(T , α)

and

thick(T ) = T \ thin(T ).

We remark that, if η is chosen smaller than the Margulis constant, then given
A ⊆ C,

⋂
α∈A thin(T , α) 6= ∅ if and only if the elements of A are disjoint in Σ. (In

this way, we can think of the curve complex as the nerve of the pieces of the thin
part of Σ.) We also note that the quotent of thick(T ) by the mapping class group
is a compact subset of moduli space. As a result, any two invariant riemannian
metrics on thick(T ) are bilipschitz equivalent. (It also follows that thick(T ) is
quasi-isometric to the mapping class group.) We can therefore refer to lipschitz
paths in thick(T ) without specifically identifying a metric. To understand the
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large scale geometry of T , one wants to understand the geometry of the thick part
and how the various pieces of the thin part fit together.

Let π : R −→ thick(T ) be a lipschitz path. We can associate to π a complete
riemannian manifold, P , homeomorphic to Σ × R, where the structure on the
“horizontal” fibre Σ × {t} corresponds to the structure π(t) on Σ. This is well
defined up to bilipschitz equivalence, so we can denote it by P (π). Given another
such path, π′, we write π ≈ π′ to mean that there is a bilipschitz reparameteri-
sation, s : R −→ R, such that the distance between π′(t) and π(s(t)) is bounded
for all t ∈ R. (In other words, the paths π and π′ “fellow travel”.) In this case,
P (π) and P (π′) are bilipschitz equivalent. It was shown independently by Mosher

and myself that the universal cover, P̃ (π), is Gromov hyperbolic if and only if
π ≈ π0 for some Teichmüller geodesic π0. The “flaring condition” of Bestvina
and Feighn gives a criterion for recognising when a manifold of the form P̃ (π) is
Gromov hypebolic in terms of the uniform divergence of “vertical fibres”.

An example of such a path, π, arises from a doubly degenerate hyperbolic 3-
manifold, M ∼= Σ ×R, of positive injectivity radius. It follows from the work of
Thurston and Bonahon that M is bilipschitz equivalent to a manifold of the form
P (π) for some proper bi-infinite path π. Moreover, π has well defined distinct limit

points, λ+ and λ− in ∂T , the “end invariants” of M . Note that P̃ (π) is Gromov
hyperbolic, and so π ≈ π0 where π0 is the Teichmüller geodesic with endpoints,
λ+ and λ−. It follows that M is bilipschitz equivalent to the “model” P (π0). If
M ′ is another such manifold with the same end invariants, then it follows that M
and M ′ are bilipschitz equivalent to each other. It in turn follows from the theory
of Ahlfors, Bers, Sullivan et al. that they must be isometric. This gives the ending
lamination conjecture for such manifolds, as proven by Minsky.

The general case of the ending lamination conjecture, allowing for arbitrar-
ily short curves, was proven by Brock, Canary and Minsky. In this case, short
geodesics give rise to Margulis tubes in M , so one cannot associate a path in Te-
ichmüller space in such a direct way. Minsky described a combinatorial model in
this case. It turns out that one can also characterise the essential properties of
such a model in terms of Gromov hyperbolicity, as follows. Suppose that P is a
complete reimannian manifold diffeomorphic to Σ×R, and satifying:

(1) All sectional curvatures of P lie between two constants.

(2) Any lipschitz map of a circle into P̃ extends to a lipschitz map of a disc, and
any lipschitz map of a 2-sphere extends to a lipschitz map of a ball.

(3) There is some η > 0 such that if x ∈ P is contained in an essential curve of
length at most η, then then P has all sectional curvatures at x equal to −1.

(4) P̃ is Gromov hyperbolic.

Then one can classify the ends of P as “geometrically finite” or “simply degen-
erate”, similarly as in the work of Thurston/Bonahon for hyperbolic 3-manifolds.
To a degenerate end we can associate an end invariant in ∂T . If we assume that
P is doubly degenerate, then it has two end invariants which must be distinct. If
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P ′ is another such manifold, with the same pair of end invariants, the P̃ and P̃ ′

are equivariantly quasi-isometric.
Of the above conditions, (3) is somewhat unnatural — it is equivalent to assert-

ing that the “thin part” of P is a disjoint union of constant curvature Margulis
tubes. However, it would hold for many of the standard ways one might want
to construct a model. Again, the hyperbolicity condition can be interpreted as a
flaring condition on vertical fibres, though the statement becomes more technical.
Note a hyperbolic 3-manifold automatically satisfies all the above, so it implies
the ending lamination conjecture for product manifolds.

There are a number of ways one could construct potential models, for example,
starting with Weil-Petersson geodesics. It would be interesting to know if these
satisfy such a flaring condition, and thereby give rise to models of hyperbolic
3-manifolds.

Lagrangian submanifolds: their fundamental group and Lagrangian
cobordism

Octav Cornea

(joint work with Paul Biran)

1. setting

Given a symplectic manifold (M2n, ω), a Lagrangian submanifold L ⊂ (M,ω)
is an n-dimensional submanifold so that ω|M = 0. All Lagrangians discussed here
are assumed closed. Such a Lagrangian is called monotone if the two morphisms
ω : π2(M,L) → R and µ : π2(M,L) → Z, the first given by integrating the
symplectic form ω and the second by the Maslov class, are proportional with a
positive constant of proportionality. Whenever refering to a monotone Lagrangian
we implicitly also assume that the minimal Maslov number

NL = min{µ(x) | x ∈ π2(M,L), ω(x) > 0}
verifies NL ≥ 2. There are many examples of such Lagrangians: RPn ⊂ CPn, the
Clifford torus Tn

Cliff ⊂ CPn and many others.
An important property of this class of Lagrangians is that Floer homology

HF (L,L) is defined (by early work of Oh [7]). More recently, various quantum
structures of monotone Lagrangians have been discussed in [3] and [4].

2. Lagrangian cobordism

Assume that Li ⊂ (M,ω), 1 ≤ i ≤ k are closed connected Lagrangian submani-
folds and consider also a second such set of Lagrangian submanifolds, L′

j ⊂ (M,ω),
1 ≤ j ≤ h.

Definition. We say that (Li)1≤i≤k is cobordant to (L′
j)1≤j≤h if there exists a

smooth, connected, cobordism (V ;
∐

i Li,
∐

j L
′
j) and a Lagrangian embedding

V →֒ (M × T ∗[0, 1], ω ⊕ ω0)
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so that

V |M×[0,+ǫ) =
∐

i

Li × [0, ǫ)× {i} , V |M×(1−ǫ,1] =
∐

j

L′
j × (1 − ǫ, 1]× {j}

where T ∗[0, 1] = [0, 1]× R and ǫ > 0 is very small.

It is useful to imagine a cobordism V as extended - trivially - to T ∗R ⊃ T ∗[0, 1]
and viewed as a non-compact manifold with k-cyclindrical ends to the left and
h-cyclindrical ends to the right. A Lagrangian cobordism with h = k = 1 will be
called an elementary cobordism.

Lagrangian cobordisms have been introduced, in a slightly different setting, by
Arnold [1]. They have been studied by Audin [2], Eliashaberg [6] as well as by
Chekanov [5]. The results obtained on this topic have been somewhat contrasting.
On one side, the results of Eliashberg together with the calculations of Audin
and combined with the Lagrangian surgery technique (see for instance Polterovich
[8]) show that general Lagrangian cobordism is very flexible. The argument for
this is roughly as follows: as shown by Eliashberg, if one considers the notion of
immersed Lagrangian cobordism that corresponds to requiring V above to be only
an immersion and not an embedding, then, by an application of the Gromov h-
principle, classifying Lagrangians up to immersed cobordism is a purely algebraic
topology question and is computable by classical homotopy theoretical techniques.
At the same time, by surgery, any immersed cobordism between two embedded
Lagrangians can be transformed in an embedded cobordism. On the other hand,
using J-holomorphic techniques Chekanov’s result shows a certain form of rigidity
for monotone cobordisms. By definition, a cobordism V as above is monotone if
V itself is a monotone Lagrangian. Chekanov’s argument essentially shows that
the number (mod 2) of J-holormophic disks passing through a point on any of the
manifolds Vi or V

′
j is the same, independently of i, j, J and the point in question,

whenever (Vi)1≤i≤k is cobordant to (Vj)1≤j≤h.

3. Results on cobordism

We list here a number of results of increasing degree of generality - we caution
the reader that, at this time, this is still work in in progress.

Theorem 1. Any monotone elementary Lagrangian cobordism (V ;L,L′) is a
quantum h-cobordism in the sense that for an appropriately defined relative quan-
tum homology we have QH(V, L) ∼= QH(V, L′) = 0. In particular, there exists a
ring isomorphism (depending on V ):

QH(L) ∼= QH(L′) .

In this result the coefficients are in Z2 in general and in Z if the cobordism V is
oriented and carries a spin structure. The same convention is implicitly understood
for the statements below.
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It is useful to note at this time that there are examples of Lagrangian cobordisms
as above that are not topological h-cobordisms (in the sense that singular homology
H(V, L) 6= 0).

We also recall here that the quantum homology of a Lagrangian is the homology
of the “pearl” chain complex C(L; f, 〈, 〉, J) where f : L → R is a Morse function
on L, 〈−,−〉 is a generic metric on L and J is a generic almost complex struc-
ture on M . Its generators are the critical points of f and the differential counts
configurations that combine Morse trajectories with J-holomorphic disks [3], [4].

Theorem 2. Let (V ; (Li)1≤i≤k, L
′) be a monotone Lagrangian cobordism. Then

for generic J and any Morse functions fi : Li → R there are chain maps φi :
C(Li; fi, J) → Ci−1 where the chain complex Ci−1 is the cone of the chain map
φi−1 for i ≥ 3 and C1 = C(L1; f1, J). Moreover, the chain complex C(L′; f, 〈, 〉, J)
is chain homotopy equivalent Ck.

In other words, the chain homotopy type of L′ can be recovered from that of
the Li’s by an iterated cone-construction. A different and somewhat richer way
to formulate this result is to say that the existence of the cobordism between L′

and the family (Li)1≤i≤k translates - inside the adequate Fukaya derived category
- into the fact that the class of L′ belongs to the subcategory spanned by the
Li’s, [L

′] ∈ [L1, . . . , Lk] (the meaning of the Fukaya category used here appears in
Seidel [9]).

There are two wide-reaching extensions of this result that are worth mention-
ing here. First, one can extend the theory to cobordisms in the total space of a
Lefschetz fibration with basis C and with finitely many singular fibres. In this
case the decomposition in Theorem 2 has to take into account also the vanish-
ing cycles. In other words, in the Fukaya derived category language we have
[L′] = [L1, . . . , Lk, S1, . . . , Sr] where Sj ’s are the vanishing cycles of the fibration.
Secondly, it is expected that most of the results here remain valid outside of the
monotone category by using the appropriate algebraic formalism.

4. Application to the study of Fundamental groups of Lagrangians.

Not much is known in a systematic way concerning the following natural prob-
lem: given a symplectic manifold (M,ω) what can be said about the class of groups
G so that there exists a Lgrangian submanifold L ⊂ (M,ω) with π1(L) = G.

One way to approach this question is to analyze how the fundamental group
of Lagrangians changes along Lagrangian cobordism. A first rigidity result in this
direction is available.

Theorem 3. Assume (V ;L,L′) is a Lagrangian cobordism with L and L′ con-
nected. If QH(L) 6= 0, then the maps: i : H1(L;Z2) → H1(V ;Z2) and i′ :
H1(L

′;Z2) → H1(V ;Z2) have the same image.

When dim(L) = 2 it is possible to say more: both i and i′ are isomorphisms.
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Almost linear functionals on Lie algebras

Michael Entov

(joint work with Leonid Polterovich)

Let g be a real Lie algebra. A function ζ : g → R is called a Lie quasi-state if
its restriction to any abelian subalgebra is linear.

The interest to the notion of a Lie quasi-state is three-fold.

Lie quasi-states and quasi-morphisms on Lie groups: Recall that a homo-
geneous quasi-morphism on a group G is a function µ : G→ R such that

• There exists C > 0 so that |µ(xy)− µ(x) − µ(y)| ≤ C for all x, y ∈ G.
• µ(xk) = kµ(x) for all k ∈ Z, x ∈ G.

It is known that restriction of any homogeneous quasi-morphism to an abelian
subgroup is a genuine morphism, and that homogeneous quasi-morphisms are con-
jugation invariant. Therefore, given a continuous homogeneous quasi-morphism µ
on a Lie group G, its pull-back to the Lie algebra g by the exponential map,

ζ : g → R, a 7→ µ(exp a) ,

is a continuous AdG-invariant Lie quasi-state.

Lie quasi-states and Gleason’s theorem: Gleason’s theorem [5] is one of
the most famous and important results in the mathematical formalism of quantum
mechanics. In the finite-dimensional setting the proof of Gleason’s theorem yields
the following result about Lie quasi-states.

Theorem 1 (Gleason). Any Lie quasi-state ζ on the Lie algebra u(n), n ≥ 3,
which is bounded on a neighborhood of zero, is linear and has the form ζ(A) =
tr(HA) for some H ∈ u(n).
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Lie quasi-states in symplectic topology: As the third point of interest in
Lie quasi-states, we note that such functionals on the infinite-dimensional Poisson-
Lie algebra of Hamiltonian functions on a symplectic manifold appeared recently in
symplectic topology and Hamiltonian dynamics before they were properly studied
in the finite-dimensional setting. We refer to [1, 2, 3] for various aspects of this
development.

The talk concerned the existence and uniqueness of (continuous) Lie quasi-
states on various Lie algebras, covering the above-mentioned results as well as the
following recent theorem of ours:

Theorem 2 ([4]). Let g = sp (2n,R), n ≥ 3. Then the factor-space Q(g) of
the space of continuous Lie quasi-states on g by g∗ (the dual space to g) is 1-
dimensional.

The generator ζ of Q(g) looks as follows: its value on a matrix B ∈ sp (2n,R)
equals, roughly speaking, to the asymptotic Maslov index of the path etB as t → ∞.
The Lie quasi-state ζ comes from a continuous homogeneous quasi-morphism on

the simply connected Lie group G = S̃p (2n,R) and hence is AdG-invariant [4].
Moreover, the whole space of AdG-invariant Lie quasi-states on g = sp (2n,R) is 1-
dimensional and is generated by ζ (for any n) [4]. A similar result on Ad-invariant
Lie quasi-states holds, in fact, for any Hermitian simple Lie algebra; Ad-invariant
Lie quasi-states can be also completely described for compact Lie algebras – see
[4]. The continuity assumption in Theorem 2 is essential:

Theorem 3 ([4]). The space of (not necessarily continuous) Lie quasi-states on
sp (2n,R) which are bounded on a neighborhood of zero is infinite-dimensional for
all n ≥ 1.
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Groups of interval exchange transformations

Koji Fujiwara

(joint work with François Dahmani, Vincent Guirardel)

Let I = [0, 1) be an interval. Break it into finitely many subintervals, [a, b), and
rearrange those pieces to obtain the interval again. This is an interval exchange
transformation. Let IET be the group of all interval exchange transformations of
the interval. We want to know which groups can appear as subgroups of IET (cf.
[1]). For example, J. Franks asked two years ago at Oberwolfach if one can find
SO3 in IET. We answer negatively.

Theorem 1. If a subgroup of IET is isomorphic to a connected Lie group, then
it is abelian.

Next we show:

Theorem 2. Every finitely generated subgroup of IET is the limit of a sequence
of finite groups in the space of marked groups.

Corollary 3. Every finitely presented subgroup of IET is residually finite.

Corollary 4. Thompson’s groups F (on the interval) and T (on a circle) are not
subgroups of IET.

We also find interesting subgroups:

Theorem 5. There is a subgroup in IET generated by two elements which contains
all finite groups. In particular this group is not linear.

Theorem 6. The lamplighter group L is a subgroup of IET.

Recall that L is solvable and contains a free semigroup. It is still open if IET
contains a free group of rank two (this is the other question Franks asked). We
rather ask:

Question 1. If G < IET, then is G amenable ?
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Geometry of convergence group actions

Victor Gerasimov

(joint work with Leonid Potyagailo)

1. A star is a tree which is a “cone over a nonempty finite set”: it has one
central vertex, and at least one non-central. Each non-central vertex is joined
with the central vertex. Even when such a tree has just one edge we mark the
central vertex.

A star of groups is a graph of groups being a star.

Theorem 1. Let G be a group relatively hyperbolic with respect to a collection
P of subgroups. Then G is the fundamental group of a star of groups whose set of
non-central subgroups is P and the central group is finitely generated and relatively
hyperbolic with respect to the collection of those edge group which are infinite.

Remark. Without the hypothesis that the group is finitely generated some
common definitions of relative hyperbolicity (r.h. for short) are not known to be
equivalent [Hr08]. Furthermore, each of the definitions requires or implies that
the group is countable. We adopt a definition that impose no restriction on the
cardinality and for countable groups is equivalent to Gromov’s definition. For
example, a free product of two arbitrary group is r.h. with respect to the factors.

We call a group relatively hyperbolic [Ge09] if it possesses an action on a com-
pactum T with at least 3 points such that the induced action on the space Θ3T of
subsets of cardinality 3 is properly discontinuous, the space Θ2T/G is compact,
and the limit set ΛG has at least 2 points. Remark: the countability of G is
equivalent to the metrisability of T .

2. Let G be a finitely generated r.h. group with respect to P . Denote by
GB(G,P) the Gromov-Bowditch completion[Gr87],[Bo97] of G. This is a com-
pactum containing G as a discrete dense open subset. The group G acts on
GB(G,P) discontinuously on triples (i.e. with “convergence property”) and co-
compact on pairs. Denote by StGp the stabilizer in G of a point p.

Denote by Fl(G) the Floyd’s completion [Fl80] of G.
Proposition[Ge10]. The identity map G → G extends to a continuous equi-

variant map ϕ : Fl(G) → GB(G,P) non-ramified over the conical points.

Theorem 2. For every parabolic point p∈GB(G,P) the set ϕ−1p is canonically
homeomorphic to Fl(StGp).

This is the full generalization of Floyd’s theorem [Fl80] for Kleinian groups. A
weaker result was obtained in [GP09].

3. On the Cayley graph of a f.g. relatively hyperbolic group G along with the
usual graph distance d one uses the geometry F of Farb’s “conned-off” graph and
the geometry GB of “Gromov-Bowditch space” when the distance between points
x, y in an “horosphere” is changed from n to log(1+n). For every geodesic in
the metrics F or GB one naturally defines its lift by joining any points x, y in an
horosphere by a d-geodesic segment.
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A distortion function is any non-decreasing function α : N={0, 1, . . . } → R>0.
Given two graphs Γ,∆ a map f : ∆0 → Γ0 between the sets of vertices is called
α-distorted if
(1) dist(f(x), f(y))=n =⇒ dist(x, y)6α(n) and
(2) dist(f(x), f(y))6α(1) if dist(x, y)=1.

Lemma. The lifts of geodesics in the geometries F and GB are α-distorted
where α is a polynomial of degree two.

For a Floyd scaling function f and a vertex v of a connected graph Γ denote by
δv,f the Floyd metric on Γ centered at v determined by f . Our main geometric
tool is the following “generalized Karlsson lemma” (see [Ka03])

Let f be a scaling function and α be a distortion function such that
∑

n α2nfn6∞.
Then, for every ε>0 there exists K such that for every connected graph Γ, a vertex
v and an α-distorted path γ : I → Γ0, if d(v, Imγ)>K then the δv,f -length of γ is
less than ε.

We fix f and α from the above lemma.
Theorem 3 (compare with [BDM09]). Let ψ : H → G be α-distorted map

between f.g. groups. Suppose that G is r.h. modulo P . Then H is r.h. modulo
some collection Q (the case Q={H} is allowed) and ψ maps each Q∈Q into a
uniformly bounded neighborhood of a right coset gP of some P∈P .

4. Let a group G act on a compactum T discontinuously on triples. A sub-
group H of G is dynamically quasiconvex if for every entourage u of T the set
{g∈G : g·ΛH is not u-small}/H is finite. D. Osin [Os06] conjectured that for
r.h. groups the dynamical quasiconvexity is equivalent to the geometric relative
quasiconvexity.

Theorem 4. Osin’s conjecture is true.

5. As an application of the generalized Karlsson lemma we give simple proofs of
Yaman theorem [Ya04] and Drutu-Sapir theorem “Morse property of r.h. groups”
[DS05, theorem 1.12].
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No planar billiard has open set of quadrangular trajectories

Alexey Glutsyuk

(joint work with Yuri Kudryashov)

Consider the Dirichlet problem for the Laplace equation in a bounded domain
of a Euclidean space. The asymptotic behavior of the number of its eigenvalues
that are smaller than a given number N , as N tends to infinity, was studied
by many mathematicians. In 1911 H. Weyl had found its first asymptotic term
and stated a conjecture about the second asymptotic term. In 1980 the Weyl’s
conjecture about the second asymptotic term was proved by V.Ivrii modulo the
following Ivrii’s conjecture: in every billiard with piecewise-smooth boundary the
set of periodic trajectories has Lebesgue measure zero. In 1989 M. Rychlik proved
that in every planar billiard the set of triangular trajectories has measure zero. In
1994 Ya.Vorobets proved the same result in any dimension. We show that in any
piecewise-smooth planar billiard (with sufficiently smooth pieces of boundary) the
set of quadrangular orbits has measure zero.

Isomorphism problem for relative hyperbolic groups

Vincent Guirardel

(joint work with François Dahmani)

The isomorphism problem for a class of groups C asks for an algorithm that
takes as input two presentations of groups G,G′ in C, and which decides whether
G is isomorphic to G′. This is known to be unsolvable for the class of all finitely
presented groups since the 50’s [Ady55, Rab58]. In fact, the isomorphism prob-
lem is unsolvable for some very natural classes of groups, including the class of
free-by-free groups (Miller [Mil71]), the class of [free abelian]-by-free groups (Zim-
mermann [Zim85]) or the class of finitely presented solvable groups of derived
length 3 (Baumslag-Gildenhuys-Strebel [BGS85]).

On the positive side, the isomorphism problem is known to be decidable for the
class of nilpotent groups and virtually polycyclic groups (Grunewald-Segal [GS80],
Segal [Seg90]), and, following Sela, for the class of hyperbolic groups ([Sel95, DG08,
DG10]), and toral relatively hyperbolic groups [DG08]. As a corollary, Dahmani
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and Groves give a solution to the isomorphism problem for fundamental groups of
hyperbolic manifolds with finite volume [DG08].

In pinched variable negative curvature, the parabolic subgroups are virtually
nilpotent instead of virtually abelian. Our initial motivation is to generalize this
solution for fundamental groups of such manifolds, and more generally, to a class of
relative hyperbolic groups with virtually nilpotent parabolic subgroups. However,
one cannot rely on the same approach. Indeed, the solutions to the isomorphism
problem for classes of hyperbolic and relative hyperbolic groups mentioned above
fundamentally rely on a solution of the equations problem in these groups. But
this problem is known to be unsolvable in the class of nilpotent groups [Rom79].

Instead, our strategy is to use Dehn filling theorems by Groves-Manning and
Osin [GM08, Osi07] to produce sequences of canonical hyperbolic quotients of
the given groups, and then to use our solutions of the isomorphism problem for
hyperbolic groups with torsion to compare these Dehn fillings. The success of this
approach might be surprising since there exists non-isomorphic groups having the
same finite quotients, even among nilpotent groups.

For simplicity, we state our main result with only one parabolic subgroup, but
the obvious generalization with several parabolic subgroups also holds.

Theorem 0.1. Given two finite presentations of groups G1 = 〈S1|R1〉, G2 =
〈S2|R2〉, and two finite generating sets of subgroups P1 < G1, P2 < G2 such that

• Gi is a non-elementary relatively hyperbolic with parabolic group Pi,
• G does not split relative to Pi over an elementary subgroup,
• Pi is residually finite

one can decide if there exists an isomorphism f : G1 → G2 sending P1 to a
conjugate of P2.

Here, an elementary subgroup of Gi is a group that is either virtually cyclic, or
contained in a conjugate of Pi. The first assumption therefore asks that Gi 6= Pi,
and Gi not virtually cyclic.

In many situations, building on work by Dahmani, one can find the parabolic
subgroups. For instance, we get:

Theorem 0.2. The isomorphism problem is solvable for the class of relative hyper-
bolic groups with virtually polycyclic parabolic groups, and which do not split over
virtually polycyclic groups relative to their non virtually cyclic parabolic subgroups.

In particular, the isomorphism problem is solvable for the class of fundamental
groups of manifolds with pinched negative curvature and finite volume.

This also applies to parabolic groups in the class C of semi-direct products
Fr ⋉ Zn with r, n ≥ 2. Since the isomorphism problem in C is unsolvable, the
following corollary might be surprising.

Corollary 0.3. The isomorphism problem is solvable for the class of non-elementary
relative hyperbolic groups with parabolic groups in C that do not split over an ele-
mentary subgroup, relative to its parabolic subgroups.
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Non-coherence of lattices

Michael Kapovich

Recall that a group Γ is called coherent if every finitely-generated subgroup of Γ is
finitely-presented. Coherence is known for various families of groups. In particular,
surface groups are coherent since every subgroup in a surface group is either free
or has finite index. 3-manifold groups are coherent by a theorem of P. Scott [12].
In particular, lattices in SL(2,R) and SL(2,C) are coherent.

This paper is motivated by the following

Conjecture 1. Let G be a semisimple Lie group which is not locally isomorphic
to SL(2,R) and SL(2,C). Then every lattice in G is noncoherent.

In the case of lattices in O(n, 1), this conjecture is due to Dani Wise. Conjecture
1 is true for all lattices containing direct product of two nonabelian free groups
since the latter are incoherent. Therefore, it holds, for instance, for SL(n,Z), n ≥
4. The case n = 3 is unknown (this problem is due to Serre, see the list of problems
[13]).
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Conjecture 1 is out of reach for general non-arithmetic lattices in O(n, 1) and
SU(n, 1), since we do not understand the structure of such lattices. However, all
known constructions of nonarithmetic lattices lead to noncoherent groups: See [7]
for the case of Gromov–Piatetsky-Shapiro construction; the same argument proves
noncoherence of nonarithmetic reflection lattices and non-arithmetic lattices ob-
tained via Agol’s [1] construction. In the case of lattices in PU(n, 1), all known
nonarithmetic lattices contain fundamental groups of complex-hyperbolic surfaces
which fiber over hyperbolic Riemann surfaces. Noncoherence of such groups is
proven in [4].

In this talk (based on [5]) we discuss the case of arithmetic subgroups of rank
1 Lie groups. Conjecture 1 was proven in [7] for non-uniform arithmetic lattices
in O(n, 1), n ≥ 6 (namely, it was proven that the noncoherent examples from [6]
embed in such lattices). The proof of Conjecture 1 in the case of all arithmetic
lattices of the simplest type appears as a combination of [7] and [2]. In particular,
it covers the case of all non-uniform arithmetic lattices (n ≥ 4) and all arithmetic
lattices in O(n, 1) for n even, since they are of the simplest type. For odd n 6= 3, 7,
there are also arithmetic lattices in O(n, 1) “quaternionic origin,” while for n = 7
there is one more family of arithmetic groups associated with octonions. Lattices
of “quaternionic origin” appear as groups commensurable to the integer groups of
automorphisms of certain hermitian forms over division rings over number fields.
One of the keys to the proof of noncoherence above is a virtual fibration theorem
for certain classes of hyperbolic 3-manifolds. Our main result (Theorem 3) will be
conditional to the existence of such fibrations:

Assumption 2. We will assume that every arithmetic hyperbolic 3-manifold M
of “quaternionic origin” admits a virtual fibration, i.e., M has a finite cover which
fibers over the circle. (For general finite volume hyperbolic 3-manifolds, this is
known as Thurston’s Virtual Fibration Conjecture.)

This assumption would follow if the recent work of on subgroup separability
by Dani Wise [14] is correct: Wise’s paper asserts Thurston’s Virtual Fibration
Conjecture for Haken hyperbolic 3-manifolds of finite volume. On the other hand,
every arithmetic hyperbolic 3-manifold M of “quaternionic origin” is virtually
Haken.

Our main results are:

Theorem 3. Under the Assumption 2, Conjecture 1 holds for all arithmetic lat-
tices of quaternionic type.

Corollary 4. Under the Assumption 2, Conjecture 1 holds for all arithmetic lat-
tices in O(n, 1) for n 6= 7.

Theorem 5. Let Γ < SU(2, 1) be a uniform lattice (arithmetic or not) whose
quotient CH2/Γ has positive first Betti number. Then Γ satisfies Conjecture 1.

Corollary 6. Let Γ < SU(n, 1) be a uniform lattice of the simplest type (also
called type 1 arithmetic lattices, see [9]). Then Γ satisfies Conjecture 1.
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Proof. The lattice Γ always contains a (uniform) sublattice Λ < SU(2, 1) of the
simplest type. By a theorem of Kazhdan [8], such Λ always contains a finite-index
subgroup Λ′ with infinite abelianization. Then, the result follows from Theorem
5. �

Theorem 7. Let X be either a quaternionic–hyperbolic spaces HHn or the
octonionic–hyperbolic plane OH2. Then every lattice Γ < Isom(X) is nonco-
herent.
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Entropies of covers of compact manifolds

François Ledrappier

Let π : M → M be a regular Riemannian cover of a compact manifold: M is a
Riemannian manifold and there is a discrete group G of isometries of M acting
freely and such that the quotientM = G\M is a compact manifold. The quotient
metric makes M a compact Riemannian manifold. The following limits exist and
do not depend on the reference point x0 ∈M :

• the volume entropy v := lim
R→∞

ln vol(BM (x0, R))

R
,

• the stochastic entropy h := lim
t→∞

−1

t

∫

M

ln p(t, x0, y)p(t, x0, y)dy,

• the linear drift ℓ := lim
t→∞

∫

M

1

t
dM (x0, y)p(t, x0, y)dy,
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where we write p(t, x, y) for the heat kernel associated with the Laplacian ∆ on
M . Our result is the following:

Theorem A.([L2]) Let π : M →M be a regular Riemannian cover of a compact
manifold. With the above notation, we have:

ℓ2 ≤ h ≤ v2.

Recall that h ≤ ℓv ([Gu]). Theorem A then follows from
Theorem B.([L2]) Let π : M →M be a regular Riemannian cover of a compact

manifold. With the above notations, we have:

(1) ℓ2 ≤ h.

Moreover, either equality ℓ = v, h = v2 implies equality in (1).

Let l be the bottom of the spectrum of the Laplacian on M :

l := inf
f∈C2

K(M)

∫
M

‖∇f‖2∫
M
f2

.

Clearly (by considering C2
K approximations to the functions e−sd(xo,.) for s > v/2),

we have 4l ≤ v2. It can be shown that 4l ≤ h ([L1], Proposition 3). Therefore,

Corollary 0.1. Let π : M → M be a regular Riemannian cover of a compact
manifold. With the above notations, equality 4l = v2 implies equality in (1).

In the case when M is the universal covering of a compact manifold with nega-
tive curvature, inequality (1) is due to V. Kaimanovich ([K1]). Moreover in that
case, there is equality in (1) if, and only if, the manifold M is a symmetric space
of negative curvature.

Our proof of (1) is based on the construction of a compact bundle space XM

overM which is laminated by spaces modeled onM and of a laminated Laplacian.
In the case when M has negative curvature and M is the universal cover of M ,
the bundle space is the unit tangent bundle T 1M and the lamination on T 1M is
the weak stable foliation of the geodesic flow.

We consider the Busemann compactification of the metric spaceM : fix a point
x0 ∈M and define, for x ∈M the function ξx(z) on M by:

ξx(z) = d(x, z)− d(x, x0).

The assignment x 7→ ξx is continuous, one-to-one and takes values in a relatively
compact set of functions for the topology of uniform convergence on compact

subsets of M . The Busemann compactification M̂ of M is the closure of M

for that topology. The space M̂ is a compact separable space. The Busemann

boundary ∂M := M̂ \M is made of Lipschitz continuous functions ξ on M such
that ξ(x0) = 0. Elements of ∂M are called horofunctions. Observe that we may

extend by continuity the action of G from M to M̂ , in such a way that for ξ in M̂
and g in G,

g.ξ(z) = ξ(g−1z)− ξ(g−1(x0)).
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We define now the horospheric suspension XM ofM as the quotient of the space
M × ∂M by the diagonal action of G. The projection onto the first component in
M × ∂M factors into a projection from XM to M so that the fibers are isometric
to ∂M . It is clear that the space XM is metric compact.

To each point ξ ∈ ∂M is associated the projection Wξ of M × {ξ}. As a

subgroup of G, the stabilizer Gξ of the point ξ acts discretely on M and the space

Wξ is homeomorphic to the quotient of M by Gξ. We put on each Wξ the smooth

structure and the metric inherited from M . The manifold Wξ and its metric vary

continuously onXM . The collection of allWξ, ξ ∈ M̂ form a continuous lamination

WM with leaves which are manifolds locally modeled onM . In particular, it makes
sense to differentiate along the leaves of the lamination and we denote ∆W the
laminated Laplace operator acting on functions which are smooth along the leaves
of the lamination. A Borel measure on XM is called harmonic if it satisfies, for all
f for which it makes sense, ∫

∆Wfdm = 0.

By [Ga], there exist harmonic measures and the set of harmonic probability mea-
sures is a weak* compact set of measures on XM . Moreover, if m is a harmonic
measure and m is the G-invariant measure which extends m on M × ∂M , then
([Ga]), there is a finite measure ν on ∂M and, for ν-almost every ξ, a positive
harmonic function kξ(x) with kξ(x0) = 1 such that the measure m can be written
as;

m = kξ(x)(dx × ν(dξ)).

The harmonic probability measure m is called ergodic if it is extremal among
harmonic probability measures. In that case, for ν-almost every ξ, the following
limits exist along almost every trajectory of the foliated Brownian motion:

• the linear drift of m ℓ(m) := limt→∞
1
t ξ(Xt).

• the transverse entropy k(m) := limt→∞ − 1
t ln kξ(Xt).

The proof of Theorem B reduces to the three following results:

Proposition 0.2. With the above notation, there exists an ergodic harmonic mea-
sure such that ℓ(m) = ℓ.

Proposition 0.3. For all ergodic harmonic measures m, we have ℓ2(m) ≤ k(m)
with equality only if the harmonic functions kξ are such that ∇W ln kξ = −ℓ(m)∇Wξ
m-almost everywhere.

Proposition 0.4. For all ergodic harmonic measures m, we have k(m) ≤ h.

The proof of Proposition 0.2 is an extension of the proof of the Furstenberg for-
mula in [KL]. Kaimanovich ([K1]) proved Proposition 0.3 under the hypothesis
that the horofunctions are of class C2 by applying Itô’s formula to the function
ξ. In the general case, horofunctions are only uniformly 1-Lipschitz, but the inte-
grated formulas of [K1] are still valid. See [K2] for Proposition 0.4.
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McCool groups

Gilbert Levitt

(joint work with Vincent Guirardel)

Let C be a finite set of conjugacy classes in a free group Fn. Let OutC(Fn) be the
pointwise stabilizer of C in Out(Fn). If for instance C is the class of [a, b][c, d] in
F (a, b, c, d), then OutC(Fn) is a mapping class group. We call OutC(Fn) a McCool
group because of:

Theorem 1 (McCool). OutC(Fn) is finitely presented.

McCool’s proof used peak reduction. Using JSJ theory and outer space, we can
prove:

Theorem 2. OutC(Fn) is VFL: some finite index subgroup has a finite K(π, 1).
This also holds if Fn is replaced by a torsion-free word-hyperbolic group G.

Our motivation for studying McCool groups is the following result:

Theorem 3. The stabilizer of a point in the boundary of outer space is built out
of McCool groups (so is VFL).

The goal of the talk was to present the basic techniques used in the proof of
Theorem 2: JSJ theory (introduced by Rips-Sela) in the one-ended case (G is not
a free product), outer space (introduced by Culler-Vogtmann) in the general case.

For a typical exemple, let G be the fundamental group of the space X obtained
by gluing compact surfaces Σ1,Σ2,Σ3, each with one boundary component, along
their boundary. It is a torsion-free one-ended hyperbolic group.

By van Kampen’s theorem, one can construct G by taking amalgamated free
products. This is encoded in a graph of groups decomposition Γ of G, with a
central vertex carrying Z and three other vertices carrying π1(Σi). Edge groups
are Z.

This decomposition (the cyclic JSJ decomposition of G) has two nice properties:
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(1) every cyclic splitting of G (way of writing G as an amalgamated product
over Z, or an HNN extension) may be read from Γ: it comes from an edge
of Γ or from a simple closed curve in a Σi.

(2) Γ is invariant under Out(G): every automorphism of G comes from a
homeomorphism of X .

In particular, automorphisms may come from permutations of the Σi’s (if they
have the same genus), a reflection (reversing orientation of each Σi), mapping
classes of the Σi’s. This leads to an exact sequence

1 → T → Out0(G) →
3∏

i=1

MCG(Σi) → 1

where Out0(G) is the finite index subgroup obtained by restricting to homeomor-
phisms mapping each Σi to itself in an orientation-preserving way, MCG(Σi) is
the mapping class group of the punctured surface, and T is generated by Dehn
twists near the boundary of the Σi’s (T is isomorphic to Z2 because the product
of all three twists gives an inner automorphism). Finiteness properties of Out(G)
follow from this exact sequence.

To understand OutC(G) in this example one has to use a different decomposition
ΓC , which has properties similar to (1) and (2) above relative to C. For instance, if
C is represented by curves filling Σ1, the graph of groups is the same for ΓC as for Γ,
but the vertex carrying π1(Σ1) has become rigid: it has no cyclic splitting relative
to C, and no nontrivial element of MCG(Σ1) fixes C. There is an exact sequence

for Out0C(G) similar to the one above, but the quotient is now
∏2

i=1MCG(Σi).
For a general OutC(G), with G one-ended (relative to C), one uses the cyclic

JSJ decomposition ΓC of G relative to C. Its vertex groups are Z, surface groups,
or rigid groups (having no further splitting), and there is an exact sequence as
above with T free abelian and a product of mapping class groups as quotient.
Understanding automorphisms of the rigid groups requires the Bestvina-Paulin
method and Rips theory for actions on R-trees.

Moving on to the infinitely-ended case (when G is a free product), Culler-
Vogtmann proved that Out(Fn) is VFL by constructing a space CVn (outer space)
with the following properties:

(1) Out(Fn) acts on CVn simplicially with finitely many orbits of simplices.
(2) Stabilizers are finite.
(3) CVn is contractible.

These properties imply VFL by standard arguments. Outer space is constructed
as a space of marked metric graphs, and the hard part is to prove contractibility.

To understand OutC(G) for a general G (infinitely ended relative to C), one uses
an outer space relative to C. The action of OutC(G) satisfies the same properties
as above, except for (2): stabilizers are not finite, but they are controlled by the
one-ended case.
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The Ehrenpreis and the surface subgroup conjectures

Vladimir Markovic

(joint work with Jeremy Kahn)

It is now well known that most 3-manifolds admit hyperbolic structure. There-
fore in order to study topology of 3-manifolds it is necessary to understand topol-
ogy of hyperbolic 3-manifolds. Machinery has been developed to study hyperbolic
3-manifolds that are Haken (a manifold is Haken if it contains an embedded in-
compressible surface). Although many hyperbolic 3-manifolds are not Haken it
has been conjectured that every such manifold has a finite degree cover that is.
There is an even stronger conjecture of Thurston that says that every such man-
ifold has a cover that fibres over a circle. These two conjectures are known as
the Virtual Haken conjecture and the Virtual fibering conjecture, and are among
central problems in low dimensional topology.

A related well known problem is the Surface subgroup conjecture which asserts
that every closed hyperbolic 3-manifold contains an immersed essential surface.
Let M = H3/G denote a closed hyperbolic three manifold. If such a surface exists
then one may hope to find a finite cover M1 of M such that there exists a lift of
this surface to M1 that is embedded, which implies that M1 is Haken. The most
general version of the Surface subgroup conjecture is the following conjecture of
Gromov.

Conjecture 1. Given a word hyperbolic group G is there an injective homomor-
phism

ρ : π1(S) → G,

where S is a closed surface of genus at least two.

In case when M = H3/G is a closed hyperbolic three manifold, where G is the
corresponding Kleinian group, Jeremy Kahn and I have announced the following
theorem [2].

Theorem 1. Let ǫ > 0. Then there exists a Riemann surface Sǫ = H2/Fǫ where
Fǫ is a Fuchsian group and a (1 + ǫ)-quasiconformal map g : ∂H3 → ∂H3, such
that the quasifuchsian group g ◦ Fǫ ◦ g−1 is a subgroup of G (here we identify the
hyperbolic plane H2 with an oriented geodesic plane in H3 and the circle ∂H2 with
the corresponding circle on the sphere ∂H3).

In particular we have the following.

Theorem 2. Let M be a closed hyperbolic 3-manifold, n ∈ N. Then one can find
a closed surface S (of genus at least two) and an immersion f : S → M such that
the induced map between fundamental groups is injective.

Let S and R be two finite type Riemann surfaces that are both either closed
or both have at least one puncture. The well-known Ehrenpreis conjecture asserts
that for a given ǫ > 0 one can find covers S1 and R1, of S and R respectively, so
that S1 and R1 are quasiconformally equivalent and the distance between them



Geometric Group Theory, Hyperbolic Dynamics and Symplectic Geometry 1789

is less than ǫ. Since S1 and R1 are quasiconformally equivalent they belong to
the same moduli space and the distance between them is measured in terms of a
chosen metric on the Moduli space. There are two cases of this conjecture, the first
is when S and R have punctures, and the second when they are both closed. The
two natural metrics to be considered are the Teichmüller and the Weil-Petersson
metrics.

In [1] Kahn-Markovic have announced the following result which settles this
conjecture for punctured surfaces with respect to the Weil-Petersson metric.

Theorem 3. Let S and R be two finite type Riemann surfaces that both have at
least one puncture. Then given ǫ > 0 one can find covers Sǫ and Rǫ of S and
R respectively, so that Sǫ and Rǫ are quasiconformally equivalent and the Weil-
Petersson distance between them is less than ǫ.
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Finitely generated infinite simple groups of infinite square width and
vanishing stable commutator length

Alexey Muranov

Definition. Let G be a group. The commutator length of g ∈ [G,G], denoted
clG(g), is the minimal n such that there exist x1, . . . , xn, y1, . . . , yn ∈ G such that

g = [x1, y1] · · · [xn, yn]. The stable commutator length clG(g) is defined by

clG(g) = lim
n→∞

clG(g
n)

n
= inf

n∈N

clG(g
n)

n
.

The commutator width of G is

cw(G) = sup
[G,G]

clG .

The square length of g ∈ G2 = 〈x2 | x ∈ G 〉, denoted sqlG(g), is the minimal n
such that there exist x1, . . . , xn ∈ G such that g = x21 · · ·x2n. The square width of
G is

sqw(G) = sup
G2

sqlG .

Since every commutator is the product of 3 squares, finite commutator width
implies finite square width.
Stable commutator length is related to the space of homogeneous quasi-morphisms
onG, and hence to the kernel of the natural homomorphismH2

b (G,R) → H2(G,R),
which is isomorphic to the quotient of the space of all homogeneous quasi-morphisms
G→ R by the subspace of all homomorphisms G→ R, see Proposition 3.3.1(1) in
[2] or Theorem 3.5 in [7].
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Definition. Let G be a group. A function φ : G → R is a quasi-morphism if the
function (x, y) 7→ φ(xy) − φ(x) − φ(y) is bounded on G × G. A quasi-morphism
is homogeneous if its restriction to every cyclic subgroup is a homomorphism to
(R,+).

Christophe Bavard [2, Proposition 3.4] proved that stable commutator length
vanishes on the whole of the derived subgroup if and only if so do all homogeneous
quasi-morphisms. Observe (or see Proposition 3.3.1(2) in [2]) that a homogeneous
quasi-morphism vanishes on the derived subgroup only if it is a homomorphism.
Therefore, the natural homomorphism H2

b (G,R) → H2(G,R) is injective if and
only if stable commutator length vanishes on [G,G].

Until 1991, no simple group was known to have the commutator width greater
than 1. For finite simple groups, it was shown in 2008 by Martin W. Liebeck,
Eamonn A. O’Brien, Aner Shalev, and Pham Huu Tiep [8] that every element
of every non-abelian finite simple group is a commutator (thus the long-standing

conjecture of Oystein Ore [11] was proved). Jean Barge and Étienne Ghys [1,
Theorem 4.3] showed that there are simple groups of symplectic diffeomorphisms
of R2n (kernels of Calabi homomorphisms) which possess nontrivial homogeneous
quasi-morphisms, and thus their commutator width is infinite. Existence of finitely
generated simple groups of commutator width greater than 1 was proved in [10].
Pierre-Emmanuel Caprace and Koji Fujiwara [4] recently shown that there are
finitely presented simple groups for which the space of homogeneous quasi-morphisms
is infinite-dimensional, and in particular whose commutator width is infinite.
Those groups are the quotients of certain non-affine Kac-Moody lattices by the
center; they were defined by Jaques Tits [12] and their simplicity was proved by
P.-E. Caprace and Bertrand Rémy [5].

Commutator length in a group G is an example of a conjugation-invariant norm
on the derived subgroup [G,G].

Definition. A conjugation-invariant norm on a group G is a function ν : G →
[0,∞) which satisfies the following five axioms:

(1) ν(g) = ν(g−1) for all g ∈ G,
(2) ν(gh) ≤ ν(g) + ν(h) for all g, h ∈ G,
(3) ν(g) = ν(hgh−1) for all g, h ∈ G,
(4) ν(1) = 0,
(5) ν(g) > 0 for all g ∈ G \ {1}.

For brevity, conjugation-invariant norms shall be called simply norms.

Definition. If ν is a norm on G, then its stabilization ν is defined by

ν(g) = lim
n→∞

ν(gn)

n
= inf

n∈N

ν(gn)

n
, g ∈ G.

A norm ν is stably unbounded if ν(g) > 0 for some g ∈ G.

(In general the stabilization of a norm is not a norm, as it has no reason to
satisfy the axioms (2) and (5) of the definition.)

The following question was asked in [3]:
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Does there exist a group that does not admit a stably unbounded
norm and yet admits a norm unbounded on some cyclic subgroup?

The main result of the author is the following.

Theorem ([9]). There exists a torsion-free simple group G generated by 2 ele-
ments a and b such that :

(1) a2 and b2 freely generate a free subgroup H such that

lim
n→∞

clG(h
n) = ∞ for every h ∈ H \ {1}

(in particular, cw(G) = ∞),
(2) sqlG is unbounded on H = 〈a2, b2〉 (in particular, sqw(G) = ∞),
(3) G does not admit any stably unbounded conjugation-invariant norm (in

particular, clG = 0),
(4) G is the direct limit of a sequence of hyperbolic groups with respect to a

family of surjective homomorphisms,
(5) the cohomological and geometric dimensions of G are 2,
(6) G has decidable word and conjugacy problems.

This theorem provides positive answer to the question of Burago-Ivanov-Polterovich
[3] and also shows that stable commutator length can vanish on a simple group
of infinite commutator width (and even of infinite square width). A recursive
presentation of a desired group is found using small-cancellation methods.
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Contact topology on the space of light rays

Stefan Nemirovski

(joint work with Vladimir Chernov)

Let N be the the space of light rays (that is to say, future pointing endless null
geodesics considered up to an orientation preserving reparameterisation) of a glob-
ally hyperbolic spacetime X . Then N is a co-oriented contact manifold contacto-
morphic to the spherical cotangent bundle ST ∗M of a smooth spacelike Cauchy
surfaceM ⊂ X . To each point x ∈ X , one associates a Legendrian sphere Sx ⊂ N

formed by the geodesics passing through x and calls it the sky of x.
It was suggested by Robert Low in a series of papers starting from his DPhil

thesis in 1988 that under suitable assumptions on the topology of M , it should be
possible to describe causal relations between points of X in terms of the (Legen-
drian) linking of their skies.

A basic observation is that if x, y ∈ X are not causally related then their
skies do not intersect and the Legendrian isotopy class of the link Sx ⊔ Sy does
not depend on the choice of x and y. Under the isomorphism N ∼= ST ∗M this
Legendrian linking class corresponds to the class of the link formed by any pair of
distinct fibres of ST ∗M . Thus, it seems natural to call a pair of skies Legendrian
linked if they either intersect or form a Legendrian link that is not in that ‘trivial’
Legendrian isotopy class. The following result was conjectured by Natário and
Tod [4] in the case when M is diffeomorphic to an open subset of R3.

Theorem 1. Suppose that the universal cover of the Cauchy surface M of a
globally hyperbolic spacetime X is non-compact. Then two points x, y ∈ X are
causally related if and only if their skies are Legendrian linked.

For (2 + 1)-dimensional spacetimes, one has a stronger result in terms of usual
(rather than Legendrian) linking conjectured by Low [3]. It is deduced from Theo-
rem 1 and the classification of Legendrian cable links in ST ∗R2 ∼= J1(S1) obtained
by Ding and Geiges [2].

Theorem 2. Suppose that M is a two-surface other than S2 or RP2. Then two
points x, y ∈ X are causally related if and only if their skies are smoothly linked.

The proof of Theorem 1 is based on minimax (spectral) invariants of generating
functions introduced by Viterbo [5] and on the following geometric characterisation
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of causal curves in terms of skies. Suppose that x(t) is a past pointing curve
in X , then the associated Legendrian isotopy of skies Sx(t) is non-negative in
the sense that it can be parameterised in such a way that the tangent vectors
of the trajectories of individual points lie in the non-negative tangent half-spaces
determined by the co-oriented contact structure on N.

It is not difficult to see that Theorems 1 and 2 are false for static spacetimes
of the form (M × R, ḡ ⊕ −dt2) such that the Riemannian manifold (M, ḡ) has
the following ‘Wiedersehen property’: There exist a point x ∈ M and a positive
number ℓ > 0 such that every unit-speed ḡ-geodesic starting from x returns back
to x in time ℓ. In particular, the assumptions of Theorems 1 and 2 are sharp for
spacetimes of dimension 2 + 1 and 3 + 1 because all surfaces and three-manifolds
with compact universal cover are diffeomorphic to quotients of the standard round
sphere by finite groups of isometries.
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Spectral partial quasistates and symplectic intersections

Yong-Geun Oh

(joint work with Fukaya, K., Ohta, H., Ono, K.)

In this lecture, I will first explain a deformation theory of Floer homology via
ambient cycles (which we call bulk deformations) of symplectic manifold (M,ω)
and extend construction of spectral invariants of Hamiltonian paths involving the
bulk deformations. Then we explain how we can extend Entov and Polterovich’s
construction of spectral quasimorphisms of the Hamiltonian diffeomorphism group
Ham(M,ω) and of spectral partial quasi-states of (M,ω) to a family thereof pa-
rameterized by the big quantum cohomology ring of (M,ω). We also apply these
extended spectral invariants and Fukaya-Oh-Ohta-Ono’s critical point theory of
bulk-deformed potential functions of Lagrangian submanifolds. Finally using these
machinery, we analyze the continuum family of non-displaceable Lagrangian tori
in S2 × S2 previously discovered by Fukaya-Oh-Ohta-Ono and prove that all of
them cannot be separable from the product torus S1

eq × S1
eq ⊂ S2 × S2 where S1

eq

is the equator of S2.
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On the flatness of Riemannian cylinders without conjugate points

Victor Bangert

(joint work with Patrick Emmerich)

In 1948 E. Hopf published the following celebrated result.

Theorem 1 ([5]). A Riemannian metric without conjugate points on a two-
dimensional torus is flat.

This theorem and the method of its proof have attracted much interest ever
since. Most importantly, by a completely different and beautiful proof, D. Burago
and S. Ivanov [2] showed in 1994 that Theorem 1 also holds for the n-dimensional
torus for all n ≥ 2. E. Hopf’s original method is short and elegant, and has
proved useful also in other situations, see e.g. [1]. It depends on the Gauß-Bonnet
theorem and the invariance of the Liouville measure under the geodesic flow via an
integration over the unit tangent bundle. Thus it uses the compactness of the two-
torus in an essential way. If one tries to generalize this method to a noncompact
manifold, one will try to apply it to an appropriate sequence of compact sets
exhausting the manifold. Since the compact sets have boundaries one will be
confronted with boundary terms arising from the integration. These have to be
controlled in the limit. In this way, K. Burns and G. Knieper proved

Theorem 2 ([3]). Let g be a complete Riemannian metric without conjugate points
on the cylinder C = S1 × R. Assume that

(i) the Gaussian curvature of g is bounded below, and
(ii) there exists a constant L such that at every point p ∈ C there exists a

noncontractible loop of length at most L.

Then g is flat.
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Under the stronger assumption that g has no focal points, this had been proved
by L. W. Green [4]. It is clear that some condition of the type of condition (ii)
is necessary for the result to hold: There exist complete cylinders of negative
Gaussian curvature (hence without conjugate points), e.g. surfaces of revolution
in R3 generated by the graph of a positive function f : R → R with f ′′ > 0. In
these examples at least one end of the cylinder “opens at least linearly”, i.e. for
points p in this end the length l(p) of a shortest noncontractible loop at p grows at
least linearly with the distance from p to a fixed point. In [6] H. Koehler showed
that condition (ii) in Theorem 2 can be weakened to a condition that allows l(p)
to grow logarithmically with the distance to a fixed point.

The purpose of this paper is to prove versions of Theorem 2 where both con-
ditions (i) and (ii) are considerably relaxed. Instead of the lower bound on the
Gaussian curvature K, we only require K to be bounded below by −tκ for some
0 < κ < 1, and instead of the logarithmic upper bound on l we allow l to grow
at most like tλ where λ > 0 and κ + 2λ < 1; here t denotes the distance to an
arbitrarily fixed point p0 ∈ C. The precise statement is:

Theorem 4. Let g be a complete Riemannian metric without conjugate points
on the cylinder C = S1 × R. Assume that for some constants c, κ, λ in R+ with
κ+ 2λ < 1, and for all p ∈ C we have that

(i’) the Gaussian curvature K of g satisfies K(p) ≥ −c (d(p, p0) + 1)κ, and
(ii’) the length l(p) of the shortest noncontractible loop at p satisfies l(p) ≤

c (d(p, p0) + 1)λ.

Then g is flat.

Here d denotes the Riemannian distance, and p0 ∈ C is an arbitrary point.
The improvement of Theorem 4 over Theorem 2 is made possible by a different

choice of exhaustion of C. While in [3] the exhaustion is by compact subcylinders
bounded by two geodesic loops, we use subcylinders bounded by horocycles. Here,
we give a brief description of this exhaustion.

Given a ray γ in C, i.e. a minimal geodesic γ : R+ → C, we consider its
Busemann function bγ : C → R defined by

bγ(p) := lim
t→∞

(d(p, γ(t)) − t)

and its horocyles
hγt := b−1

γ {−t}.
The notation is chosen so that γ(t) ∈ hγt . If C has no conjugate points and satisfies
the condition

(1) lim inf
t→∞

1

t
l(γ(t)) < 1,

then bγ is a proper function and each of its horocyles hγt is a closed curve winding
once around the cylinder. Obviously, condition (ii’) implies that (1) is satisfied for
every ray γ. To define the exhaustion we choose two rays γ1, γ2 converging to the
two ends of C. For sufficiently large t the horocyles hγ1

t and hγ2

t bound a compact
subcylinder of C. For t → ∞ these subcylinders form the exhaustion that we
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use in the proof of Theorem 4. The fact that horocycles of a ray are equidistant
makes a crucial difference in the treatment of the boundary terms arising from the
integration.

As a precursor to Theorem 4 we prove the following result in which we replace
(i’) and (ii’) by a sublinear bound on the lengths of horocycles. In this case we
can omit any bound on the curvature.

Theorem 3. Let g be a complete Riemannian metric without conjugate points on
the cylinder C = S1×R. Assume there exist two rays γ1, γ2 : R+ → C converging
to the different ends of C such that, for i ∈ {1, 2}, the 1-dimensional Hausdorff
measures of the corresponding horocycles hγi

t satisfy

lim
t→∞

1

t
H1(hγi

t ) = 0.

Then g is flat.

Remark. Surfaces of revolution with negative curvature provide nonflat examples
of complete cylinders without conjugate points such that limt→∞

1
tH1(hγi

t ) is an
arbitrarily small positive number. So, if one is willing to assume bounds on the
lengths of horocycles, then Theorem 3 is close to being optimal.
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Quasi-morphisms defined by knot invariants

Michael Brandenbursky

Quasi-morphisms are known to be a helpful tool in the study of algebraic
structure of non-Abelian groups. A quasi-morphism on a group G is a function
ϕ : G → R which satisfies the homomorphism equation up to a bounded error:
there exists Dϕ > 0 such that

|ϕ(gg′)− ϕ(g)− ϕ(g′)| ≤ Dϕ

for all g, g′ ∈ G. A quasi-morphism ϕ is called homogeneous if ϕ(gm) = mϕ(g)
for all g ∈ G and m ∈ Z. Any quasi-morphism ϕ can be homogenized: setting
ϕ̃(g) := limp→+∞ ϕ(gp)/p we get a homogeneous (possibly trivial) quasi-morphism
ϕ̃.
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Let D be the group of compactly supported area-preserving diffeomorphisms of
a unit open two-dimensional disc in the Euclidean plane. The group D admits a
unique (continuous, in the proper sense) homomorphism to the reals – the famous
Calabi homomorphism (see e.g. [1], [4], [7]). At the same time D is known to admit
many (linearly independent) homogeneous quasi-morphisms (see e.g. [2], [5], [8]).
In this talk we explain an explicit geometric construction, due to Gambaudo and

Ghys [8], which takes a homogeneous quasi-morphism s̃ignn on the pure braid
group Pn on n strings and produces from it a quasi-morphism on D. The quasi-
morphism signn on Pn is constructed, in turn, from the signature link invariant
sign of n-component links in R3 in the following way: close up a pure braid in a
link in the standard way and take the value of the signature on that link. In [8]

Gambaudo and Ghis proved that signn is a quasi-morphism on Pn. By s̃ignn we
denote it homogenization.

Denote by Xn the configuration space of ordered n-tuples of points in D2. First
we fix a base point z = (z1, . . . , zn). Let x = (x1, . . . , xn) be any point in Xn.
Take g ∈ D and any path gt, 0 ≤ t ≤ 1, in D between Id and g. Connect z to x by
the straight line in (D2)n, then act on x with the path gt, and then connect g(x)
to x by the straight line in (D2)n. The group D is path-connected and contractible
[6]. Thus for almost every x ∈ Xn we get a loop γ(g, x) in Xn with a homotopy
type independent of the path gt. Now identify Pn with π1(Xn, z). Thus γ(g, x) is
an element in Pn. Set

S̃ignn,D2(g) := lim
p→∞

1

p

∫

Xn

s̃ignn(γ(g
p;x))dx,

where dx = dx1 · . . . · dxn.
Gambaudo and Ghys proved that S̃ignn,D2 : D → R is a well defined non-trivial

homogeneous quasi-morphism for each n > 1.
There arises a natural

Question. Which knot/link invariants may be used to define quasi-morphisms on
Pn in a similar way?

First we define some useful notions. Let I be a real-valued knot invariant. We
define Î : Pn → R by setting Î(α) := I(α̂σ). Here σ = σ1 · . . . · σn−1, where σi is a
standard generator of the full braid group Bn. We denote by g4(K) the four-ball
genus of a knot K and by Conc(S3) the concordance group of knots in S3.

The following theorem gives a partial answer to the question above.

Theorem ([3]). Suppose that a real-valued knot invariant I is a homomorphism
I : Conc(S3) → R, such that |I(K)| ≤ cg4(K), where c is some real positive

constant independent of K. Then Î is a quasi-morphism on Pn.

The definition of Î can be extended to Bn such that the theorem described
above is true for Bn. Note that g4 defines a norm on Conc(S3). The theorem
above can be reformulated as follows: each element of Hom(Conc(S3),R), which
is Lipshitz with respect to this norm, defines a quasi-morphism on Bn.
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Corollary ([3]). The Rasmussen knot invariant s [11], which comes from a Khova-
nov-type homology, Oszvath-Szabo knot invariant τ [10], which comes from knot
Floer homology, and the hermitian knot signatures induce quasi-morphisms on Bn.

The invariants s and 2τ share similar properties and coincide on positive and
alternating knots. It was conjectured by Rasmussen [11] that they are equal. This
conjecture was disproved by Hedden and Ording [9]. In this work we prove the
following

Theorem ([3]). Let s and τ be the quasi-morphisms on Bn induced by Rasmussen
and Oszvath-Szabo knot invariants. Then for every α ∈ Bn the following inequality
holds |s(α) − 2τ(α)| ≤ 2(n− 1).

Corollary ([3]). The homogenization of s and 2τ are equal s̃ = 2τ̃ .

Recall that every knot K in R3 can be presented as a closure of some braid in
Bn. The braid number of K is the minimal such n. It is denoted by br(K).

Corollary ([3]). For every knot K the following inequality holds:

|s(K)− 2τ(K)| ≤ 2(br(K)− 1).

In the remaining part we show that any quasi-morphism on Pn induces a quasi-
morphism on D.

Theorem ([3]). Let ϕ be any quasi-morphism on Pn. Then

Φ(g) :=

∫

Xn

ϕ(γ(g;x))dx,

is a quasi-morphism on D.

We also discuss the computation of the homogeneous quasi-morphisms on D,
obtained by the construction above, on a diffeomorphism generated by a generic,
time-independent (compactly supported) HamiltonianH . We present the result
of the computation in terms of the Reeb graph of H and the integral of the push-
forward of H to the graph against a certain signed measure on the graph. This
result helps us to proof the following asymptotic statement.

Theorem ([3]). For each g ∈ D generated by an autonomous Hamiltonian

lim
n→∞

S̃ignn,D2(g)

πn−1n(n− 1)
= C(g),

where C is the celebrated Calabi homomorphism.
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Heat kernels and counting in Cayley graphs

Anders Karlsson

(joint work with G. Chinta, J. Jorgenson)

1. Heat kernels on Cayley graphs

The heat kernel of a space with Laplacian is a fundamental object in its own
right. To any group G generated by a finite set S there is an associated Cayley
graph X(G,S) and combinatorial Laplacian. We show that in a natural way
the building blocks of the heat kernel KX(t, x) = KX(t, e, x) of X(G,S) are the
functions

q−n/2e−(q+1)tIn(2
√
qt),

where q = 2 |S| − 1, n ∈ Z≥0 , time t ∈ R≥0, and In the I-Bessel function of order
n. This comes from a new expression for the heat kernel on free groups (quite
different from the previous expression due to Chung-Yau [3]):
Proposition. The heat kernel of the (q + 1)-regular tree is given in the radial
coordinate r ≥ 0 as

K(t, r) = q−r/2e−(q+1)tIr(2
√
qt)− (q − 1)

∞∑

j=1

q−(r+2j)/2e−(q+1)tIr+2j(2
√
qt),

where I denotes the I-Bessel function.
In view of a periodization procedure this leads to an expression on any Cayley

graph:
Theorem. The heat kernel on a Cayley graph X(G,S) is

KX(t, x) = e−(q+1)t
∞∑

m=0

bm(x)q−m/2Im(2
√
qt),
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where Im is the I-Bessel function of order m, bm(x) = cm(x)− (q − 1)(cm−2(x) +
cm−4(x)+ ...) and cm(x) is the number of geodesics from the identity to x of length
m ≥ 0.

In view of a combinatorial observation we obtain:
Corollary. Let Ne(m) denote the number of closed geodesics of length m in X at
e. Then we have

KX(t, e) = Kq+1(t, e) + e−(q+1)t
∞∑

m=1

Ne(m)q−m/2Im(2
√
qt)

where Kq+1 denotes the heat kernel of the (q + 1)-regular tree.
Applications we have in mind include: asymptotics of number of spanning trees,

counting of geodesics, Mahler measure computations. The general idea is to ex-
press the heat kernel in two ways, and use this equality using integral transforms
and other manipulationsa to extract the desired information. In a sense it is the
usage of a generalized Poisson summation principle.

2. Asymptotics of number of spanning trees

The number of spanning trees τ(G), called the complexity, of a finite graph G is
an invariant which is of interest for several sciences: electrical networks, statistical
physics, theoretical chemistry, etc. Via a well-known theorem the complexity
equals the determinant of the combinatorial laplacian ∆G divided by the number
of vertices.

For compact Riemannian manifolds M there is an analogous invariant h(M),
the height, defined as minus the logarithm of the zeta regularized determinant of
the Laplace-Beltrami operator, and which is of interest for quantum physics. The
analogy of these two invariants has been commented on by Sarnak in [7].

In statistical physics it is of interest to study the asymptotics of the complexity,
and other spectral invariants, for families of graphs. Important cases to study
are various subgraphs of the standard lattice Zd. It is shown in [1] that in the
asymptotics of the complexity of discrete tori, the height of an associated real
torus appears as a constant.

Let Λ be an invertible r × r integer matrix. This matrix defines a lattice ΛZr

in Rr. Let the group quotient

DT (Λ) = ΛZr\Zr

be the associated discrete torus.
Theorem.Given a sequence Λn of integer matrices converging normalized to A ∈
SLr(R) as n→ ∞. Then

log det∆DT (Λn) = cr detΛn +
2

r
log detΛn + log det∆AZr\Rr + o(1)

as n→ ∞, and where

cr = log 2r −
∫ ∞

0

e−2rt(I0(2t)
r − 1)

dt

t
.
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Deninger and Lück informed us that also the constant cr can be interpreted
as the logarithm of a determinant of a Laplacian. The formula for this constant
converges very fast making numerical computations easy. More generally one can
make similar formulas for other Mahler measures of several variables in terems of
Bessel integrals. Thanks to the fact that the first two terms in the asymptotics
are universal in the sense that they only depend on Λn via detΛn, the theorem
gives a close connection between the complexity of certain graphs and the height
of an associated manifold.

Conjecturally the height of AZr\Rr has a global minimum when AZr is the
densest regular sphere packing. Extremal metrics for heights of tori has for ex-
ample been studied in [2] and [8]. In these papers, the question is phrased as the
study of the derivative of Epstein zeta functions at s = 0. From this theory we can
for example deduce the following corollary from the theorem:
Corollary. Given a sequence Λn of integer matrices with detΛn → ∞ that nor-
malized stays in a compact subset of SLr(R). For all sufficiently large n we have
that

τ(DT (Λn)) ≤
(detΛn)

2/r−1

4π
exp(cr detΛn + γ + 2/r),

where γ is Euler’s constant and cr is as in the theorem.

3. Counting of geodesics

A geodesic in a graph is a path without back-tracking. A loop is a closed path. A
closed geodesic is a geodesic loop without tail, which means that no mather which
starting point we take for the loop it remains withou bactrackings. Consider the
numbers an(x) defined by

e(q+1)tKX(t, x) =

∞∑

n=0

an(x)
tn

n!

then it is well-known and simple to see that an(x) is the number of paths from x0
to x. We are after the counting of geodesics. The various counting functions can
be extracted from the heat kernel expressions above, and formulas are obtained
by a second heat kernel expression, such as

KX(t, e) =
1

n

n−1∑

j=0

e−λjt

for a finite Cayley graph. We will employ the transform

Gf(u) = (1− u−2)

∫ ∞

0

e−(u+1/u)te(q+1)tf(t)dt.

to the heat kernel building block yielding

G(e−(q+1)tq−k/2Ik(2
√
qt))(u) = uk−1

for k ≥ 0 and u > 0. From our expressions in particular the Ihara determinantal
formula [5] quickly comes out. Further applications are in progress.
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On the growth of quotients of Kleinian group

Marc Peigné

(joint work with Françoise Dal’Bo, Jean-Claude Picaud, Andrea Sambusetti)

1. Introduction and main results

We study the growth and divergence of quotients of Kleinian groups G i.e.
discrete, torsionless groups of isometries of a Cartan-Hadamard manifold X̃ with
pinched negative curvature. Namely, we give general criteria ensuring the diver-
gence of a quotient group G of G and the “critical gap property” δG < δG. As
a corollary, we prove that every geometrically finite Kleinian group satisfying the
parabolic gap condition (i.e. δP < δG for every parabolic subgroup P of G) is
”growth tight” for the distance on G induced by the Riemannian metric.

The notion of growth tightness was introduced by Grigorchuk and de la Harpe,
relatively to word metrics of finitely generated groups. It was investigated with
respect to more general distances by A. Sambusetti in the case of fundamental
groups of hyperbolic surfaces, with some estimation of the gap between the differ-
ent growth rates in terms of systolic lengths.

An important tool in this context is the Poincaré series PG(s,x) of G, defined
by

PG(s,x) =
∑

g∈G

e−sd(x,g·x),
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for x ∈ X̃ and s ∈ R. Its abscissa of convergence, called the critical exponent of
G, does not depend on x and is equal to

δG = lim sup
R→+∞

1

R
ln ♯{g ∈ G/d(x, g · x) ≤ R}.

One says that G is divergent when PG(δG,x) = +∞ ; otherwise, it is convergent.
It is not easy to decide wether or not a Kleinian group G acting on X is

convergent or divergent ; surprisingly, there exist only partial answers to this
natural question. In particular, a result due to Sullivan states that geometrically
finite groups in Hn are divergent. The fact that the parabolic groups are always
divergent in constant curvature is a crucial fact in the proof ; this property fails
in the variable curvature case where there may exist parabolic and geometrically
finite groups of convergent type.

We now consider a proper normal subgroup N of G and study the action of
Ḡ := N\G on X̄ := N\X̃. The metric on X̃ induce a distance d̄ on X̄ defined by

∀x̄ = Nx, ȳ = Ny ∈ X̄ d̄(x̄, ȳ) = inf
n∈N

d(x, n · y)

and the elements of Ḡ are isometries of (X̄, d̄). We denote by

PḠ(s, x̄) :=
∑

ḡ∈Ḡ

e−sd̄(x̄,ḡ·x̄),

the Poincaré series of Ḡ and δḠ its abscissa of convergence ; one clearly gets
δḠ ≤ δG. We may state the

Theorem 1.1 (Growth tightness of geometrically finite groups).
Let G be a geometrically finite Kleinian group of a Cartan-Hadamard manifold
X̃ with pinched negative curvature. If G is convex-cocompact or δG > δP for any
parabolic subgroup P of G, then G is growth tight with respevt to the Riemannian
metric, i.e. δḠ < δG for any proper quotient Ḡ of G.

To prove this theorem, we will first establish the criteria :

Theorem 1.2. Let X̃ be a complete, simply connected Riemannian manifold with
pinched negative curvature, G a Kleinian group of X̃ and N a non trivial normal
subgroup of G. If the group G := N\G is divergent, then δḠ < δG.

This result gives a new interest to the question of divergence/convergence of the
group G, with respect to the induced distance d̄ on X̄. Theorem 1.1 will be thus a
consequence of the divergence of the quotient group Ḡ ; this property holds in fact
as soon as δP̄ < δḠ for any parabolic subgroup P ⊂ G, where P̄ = (P ∩N)\P .

In the following section, we just propose a sketch of a new proof of the divergence
of geometrically finite groups ; indeed, contrarily to previous works, we do not need
the Patterson-Sullivan theory to obtain this result, the approach we developp is
based on a purely geometrical point of view and a subadditivity type argument
and may be easily applied when X̃ is replaced by a normal covering X̄.
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2. A subadditivity type argument for the annulus orbital function

Throughout this section, G is a geometrically finite group of isometries of X̃
such that δP < δG for any parabolic subgroup P of G. We thus fix δ > 0 such
that δP < δ < δG and will use the following notations ; for any x ∈ X̃ and any
R,α ∈ R∗+, we denote by

• AG(x, α,R) the “annulus ” of width α defined by

AG(x, α,R) := {y ∈ X̃/R− α < d̄(x,y) ≤ R+ α},

• vG(x, α,R) := ♯
(
AG(x, α,R) ∩G · x

)
,

• wG(x, α,R) := e−δR vG(x, α,R).

We have the

Proposition 2.1. There exist α > 1 and C > 0 such that, for any A,B ≥ 2α

(1) If G is convex-cocompact, then

(1) vG(x, 2α,A+B) ≤ C × vG(x, 2α,A)× vG(x, 2α,B).

(2) If G contains parabolic elements and , one gets
(2)

wG(x, 2α,A+B) ≤ C×
( ∑

0≤n≤A+3α+2

wG(x, 2α, n)
)
×
( ∑

0≤n≤B+3α+2

wG(x, 2α, n)
)
.

We thus set wn := CwG(x, 2α, n), Wn := w1 + · · · + wn and W̃n := 1 +W1 +
...+Wn for all n ≥ 1 ; by the above, for some n0 ≥ 1 one gets

∀n,m ≥ 1 wn+m ≤Wn+n0Wm+n0 .

It yields

∀n,m ≥ 1 Wn+m =Wn + wn+1 + · · ·+ wn+m ≤Wn+n0W̃m+n0

and consequently

∀n,m ≥ 1 W̃n+m = W̃n +Wn+1 + · · ·+Wn+m ≤ W̃n+n0W̃m+n0 .

Hence, the sequence
(

ln W̃n

n

)
n
converges to some L ≥ 0 (since W̃n ≥ 1) and one

gets W̃n ≥ eLn. By the definition of the wn, one gets L = δG − δ > 0 and one
concludes using the following elementary lemma :

Lemma 2.2. Let (un)n≥1 be a sequence of positive numbers and set

∀n ≥ 1 Un := u1 + · · ·+ un.

Then, for any s > 0, the series
∑

n≥1

e−nsun and
∑

n≥1

e−nsUn converge or diverge

simultaneously. In particular, these series have the same critical exponent su and,
when su > 0, they both diverge or converge for s = su.
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Statistical products of matrices

Mark Pollicott

(joint work with Richard Sharp)

1. Introduction

The basic theme of this talk was about how one can use that certain Fuchsian
groups Γ are hyperbolic groups, to associate a dynamical model for the action
Γ × ∂H2 → ∂H2 on the boundary ∂H2 of Poincaré upper half space H2. In
particular, we can then use this approach to recover results on the action Γ×H2 →
H2.

In particular, since the group Γ is strongly markov (a consequence of being
Gromov hyperbolic) elements in the group can be described in terms of a finite
directed graph.

Lemma 1.1. Let Γ0 ⊂ Γ be a symmetric finite set of generators. We can associate
a finite directed graph G such that there is a bijection between the elements in
Γ − {e} and finite paths in Γ. (Moreover, the length of the path is equal to the
word length of the corresponding element of the group).

The ideas in this result seem to date back to work of Cannon (and perhaps in
special cases of cocompact groups to earlier work of Hedlund and Morse). A very
nice reference is the book of Ghys and de la Harpe [1].

Example 1.2 (Free group on two generators). For group Γ = 〈a, b〉 we let Γ0 =
{a±1, b±1}. Then Γ is described by a directed graph G with 4 vertices.

Example 1.3 (Surface groups). For surface groups

Γ = 〈a1, · · · , ag, b1, · · · , bg :
∏

i

[ai, bi] = e〉

we let Γ0 = {a±1
i , b±1

i }. The associated directed graphs G can be explicitly pre-
sented, although they can be quite large if g is large.
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2. Shift spaces and boundaries

We can consider the space Σ of infinite (one-sided) paths in the graph G. This
is one particular definition of a subshift of finite type. As usual, we can then
associate a shift map σ : Σ → Σ by starting the path one step further along its
route. In the above examples, the shift σ : Σ → Σ is topologically mixing.

We can naturally identify sequences i = (in) ∈ Σ with points in the limit set,
in the boundary of hyperbolic space, i.e., for x ∈ H2 we associate the sequence
gi0x, gi0gi1x, . . . , gi0gi1 · · · gin−1x ∈ H2 which converges to a point in the boundary
∂H2 (with respect to the usual Euclidean metric). We recall that Γ ⊂ PSL(2,R) =
Isom(H2) and thus we can interpret gi0gi1 · · · gin−1 as a matrix product.

In order to consider statistical properties of this sequence it is convenient to
consider shift invariant ergodic measures on Σ. For even stronger results, we want
to consider a Gibbs measure µ associated to a Hölder continuous function (e.g.,
the Parry measure of maximal entropy on Σ or more generally a Markov measure
on Σ; a measure corresponding to the Patterson-Sullivan measure on ∂H2, etc.).
We can then associate the value λµ > 0 characterized by

λµ = lim
n→+∞

1

n
d(x, gi0gi1 · · · gin−1x) a.e.(µ)

which quantifies the average speed at which typical sequences move the point x.

3. Central Limit Theorem and Large Deviations

The following two theorems appear in [2] and were the main results in this talk.

Theorem 3.1 (Central Limit Theorem). There exists σ > 0 such that for any
y ∈ R,

lim
n→∞

µ

{
i ∈ Σ :

1√
n

(
d(x, gi0gi1 · · · gin−1x) − nλµ

)
≤ y

}
=

1√
2πσ

∫ y

−∞
e−t2/2σ2

dt.

It is also possible to prove stronger invariance principles, which imply the Cen-
tral Limit Theorem, as well as deduce related results, such as the Law of the
Iterated Logarithm.

The Central Limit Theorem also has a natural interpretation in terms of the
action Γ × ∂H2 → ∂H2 on the boundary. This then has a natural extension to a
Local Central Limit Theorem for the action on the boundary, although the method
of proof is very different.

Finally, we also have results of the following type.

Theorem 3.2 (Large Deviations). Let ǫ > 0. We have that

lim sup
n→+∞

1

n
logµ

{
i ∈ Σ :

∣∣∣∣
1

n
d
(
x, gi0gi1 · · · gin−1x

)
− λµ

∣∣∣∣ > ǫ

}
< 0

These results are somewhat similar in flavour to those for random walks or
Brownian motion on H2, but again the methods of proof are very different.
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4. Final Comments

Returning to the principle of encoding the boundary points by sequences in
Σ, one can also use this method and standard methods involving Poincaré series
to show the following simple result where Γ is a Fuchsian-Schottky group or a
compact surface group acting on H2 (e.g., the earlier examples).

Proposition 4.1. Let x ∈ H2. There exists C > 0 and δ > 0 such that

Card{g ∈ Γ : d(gx, x) ≤ T } ∼ CeδT as T → +∞.

In particular, δ is the Hausdorff Dimension of the limit set.

With some modification this gives similar results for certain Kleinian groups,
e.g., Apollonion circle packings.
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Spectral asymptotics on negatively curved surfaces and hyperbolic
dynamics

Iosif Polterovich

(joint work with D. Jakobson and J. Toth)

Let M be a compact Riemannian manifold of dimension n without boundary.
Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of the Laplace–Beltrami operator on
M . The eigenvalue counting function N(λ) = #{λi < λ} satisfies the following
asymptotic formula called the Weyl’s law:

(1) N(λ) =
Vol(M)λ

n
2

(4π)
n
2 Γ(n2 + 1)

+R(λ), R(λ) = O(λ
n−1

2 ).

The upper bound on the remainder is sharp and attained on a round sphere.
Let us focus on the lower bounds for the error term. Under certain conditions

on the manifold one can prove that

1

λ

∫ λ

0

|R(µ)| dµ >> λ
n−2
2 ,

where f(λ) >> g(λ) means that there exist constants C and λ0 such that f(λ) >
C g(λ) for all λ > λ0.

In dimension n = 2 this bound is quite weak. In particular, one may ask the
following

Question: Is lim supλ→∞ |R(λ)| = ∞ on any surface?

We apply methods of hyperbolic dynamics to give a positive answer to this question
for negatively curved surfaces.
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Theorem 1. [JPT] Let M be a compact surface of negative curvature. Then for
any δ > 0

R(λ) 6= o
(
(logλ)

P (−H/2)
h −δ

)
.

Here h is the topological entropy of the geodesic flow onM , P is the topological
pressure and H is the Sinai–Ruelle–Bowen potential (see [JP, JPT]).

The exponent on the right hand is side is always positive: if the Gaussian
curvature of M lies in the interval [−K2

1 ,−K2
2 ], then

P (−H/2)
h

≥ K2

2K1
.

On surfaces of constant negative curvature, the inequality above becomes an equal-
ity and the exponent equals 1/2. In this case, Theorem 1 was proved independently
by Randol [Ran] and Hejhal [Hej, section 17] more than thirty years ago using
the Selberg zeta function techniques. Our approach, based on the Duistermaat–
Guillemin wave trace formula [DG], hyperbolic dynamics and microlocal analysis,
allows us to treat the variable curvature case as well.

We conclude by noting that Theorem 1 is in good agreement with a “folklore”
conjecture stating that R(λ) = o(λǫ) for any ǫ > 0 on a generic (in particular,
non–arithmetic) negatively curved surface (see [P, Conjecture 3]).
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From Symplectic Embeddings to Number Theory?

Felix Schlenk

(joint work with Dusa McDuff and Dorothee C. Müller)

In recent work with Dusa McDuff and Dorothee Müller on symplectic embeddings
of 4-dimensional ellipsoids into balls and cubes, various algebraic, arithmetic and
number theoretic notions and identities naturally arise. Among them are Dio-
phantine equations and perfect solutions to them, Fibonacci numbers and Pell
numbers, weight expansions and continued fractions, and lattice point counting
problems.
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In the standard symplectic vector space R4 with the symplectic form ω0 =
dx1 ∧ dy1 + dx2 ∧ dy2 consider, for a, b > 0, the closed ellipsoid

E(a, b) :=

{
(z1, z2) ∈ C2 ≡ R4

∣∣∣∣
|z1|2
a

+
|z2|2
b

≤ 1

}
.

In particular, B4(a) := E(a, a) is the closed ball of radius
√
a. Given a, b > 0 and

c, d > 0 we are looking for the smallest λ > 0 such that E(a, b) symplectically
embeds into E(λc, λd). After scaling we can assume that b = 1 and d = 1.

We first assume that c = 1, that is, we ask for the smallest λ such that

E(1, a)
s→֒B4(λ).

In other words, we want to find the function cB : [1,∞) → R,

cB(a) := inf
{
λ | E(1, a)

s→֒B4(λ)
}
.

Since the function cB(a) is continuous, we can assume throughout that a is ratio-
nal. Using symplectic polar coordinates, we can think of the ellipsoid E(1, a) as
the triangle in the figure below.

1

a
x1

x2

We decompose E(1, a) into a finite collection of balls. Instead of giving the
formal definition of this decomposition, [7], we explain it by examples:

(i) E(1, 2) decomposes into the disjoint union B4(1)
∐
B4(1):

1111

1

2

The weight expansion of 2 is w(2) = (1, 1).

(ii) E(1, 2 1
2 ) decomposes into the disjoint union B4(1)

∐
B4(1)

∐
B4(12 )

∐
B4(12 ):

11 1
2

1
2,
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The weight expansion of 2 1
2 is w(52 ) =

(
1×2, 12

×2
)
.

(iii) Similarly, the weight expansion of 4 2
3 is

w(4 2
3 ) =

(
1×4, 23

×1
, 13

×2
)
.

In this way, to every ellipsoid E(1, a) with a ∈ Q we associate the weight
expansion w(a). The multiplicities of the weights in w(a) form the continued
fraction expansion of a. For instance

4 2
3 = 4+

1

1+
1

2

Also note that
w(a) ·w(a) = a.

Denote by ℓ(a) the length of the weight expansion w(a). The weight expansion of

a determines the disjoint union of balls
∐ℓ(a)

i=1 B
4(wi(a)). If E(1, a)

s→֒B4(λ), then,

clearly,
∐ℓ(a)

i=1 B
4(wi(a))

s→֒B4(λ). Dusa McDuff has shown in [5] by a geometric
construction that the converse is true too:

Theorem (McDuff) E(1, a)
s→֒B4(λ) if and only if

∐
i=1 ℓ(a)B

4(wi(a))
s→֒B4(λ).

Our problem E(1, a)
s→֒B4(λ) is thus translated into a symplectic ball pack-

ing problem. This problem has a long history, starting with Gromov’s work [2],
followed by McDuff’s and Polterovich’s work [6], and culminating with Biran’s
work [1]. A further ingredient is the work by Li–Li [3, 4].

Theorem (Gromov, McDuff–Polterovich, Biran, Li–Li)
k∐

i=1

B4(wi)
s→֒B4(λ) if and only if (1)

k∑

i=1

w2
i < λ2 and

(2) for each solution (d;m1, . . . ,mk) ∈ N× Nk of the Diophantine system

(DB) 3d− 1 =

k∑

i=1

mi, d2 + 1 =

k∑

i=1

m2
i

it holds that
1

d

∑

i

wimi < λ.

The constraint (1) is the volume constraint, coming from the fact that symplec-
tic embeddings preserve the volume. The constraint (2) comes from J-holomorphic
curves. Define

µ(d;m)(a) :=
1

d

∑

i

wi(a)mi < λ

and

cB(a) := inf
{
λ | E(1, a)

s→֒B4(λ)
}
.
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In view of the above two theorems we have

cB(a) = max
{√

a, sup
{
µ(d;m)(a) | (d;m) solves (DB)

}}
.

Examples. a) Consider the problem E(1, 2)
s→֒B4(λ). By (1) we have 2 < λ2.

Since (1; 1, 1) is a solution to (DB), we have 1 + 1 = 2 < λ. Since E(1, 2)
id→֒B4(2)

we find that cB(2) = 2.

b) Consider the problem E(1, 5)
s→֒B4(λ). By (1) we have 5 < λ2. Since (2; 1×5)

is a solution to (DB), we have 5
2 < λ. One checks that there is no stronger

constraint. Thus cB(5) =
5
2 .

c) For a ≥ 9 we have cB =
√
a, since then the volume constraint (1) is stronger

than all constraints in (2). Indeed, since wi(a) ≤ 1 and by the first equation
in (DB),

1

d

∑
miwi(a) ≤ 1

d

∑
mi =

1

d
(3d− 1) < 3 ≤ √

a.

We point out that it is impossible to find all solutions to (DB). Namely, for
k ≥ 9, the system (DB) has infinitely many solutions. Notice that by the Cauchy–
Schwarz inequality and by the second equation in (DB),

µ(d;m)(a) :=
1

d

∑
miwi(a) ≤ 1

d
‖m‖ ‖w(a)‖ =

√
1 + 1/d2

√
a.

Therefore, solutions (d;m) that give a constraint >
√
a at a must have the vector

m “essentially parallel” to w. We say that a solution (d;m) is a perfect solution
if m is parallel to w(a) for some a.

We have worked out the function cB(a) on [1,∞) in [7]. We describe the answer

for a ∈ [1, τ4], where τ := 1+
√
5

2 = [1; 1, 1, 1, . . . ] is the golden ration. Recall
that the Fibonacci numbers fn are recursively defined by

f0 = 0, f1 = 1, fn+1 = fn + fn−1.

Define gn = f2n−1. Then the sequence gn starts with 1, 2, 5, 13, 34, . . . . Abbreviate

an :=

(
gn+1

gn

)2

, bn :=
gn+2

gn
.

Then a0 = 1 < b0 = 2 < a1 = 4 < b1 = 5 < a2 =
(
5
2

)2
< b2 = 13

2 < . . . , and, in
general,

· · · < an < bn < an+1 < · · · → τ4 ≈ 6.85.

Theorem 1 (McDuff–Schlenk) The function cB(a) on [1, τ4] is given by the
“Fibonacci stairs”: For each n ≥ 0, cB(a) = a√

an
for a ∈ [an, bn], and cB is

constant with value
√
an+1 on the interval [bn, an+1].

Define the rescaled weight expansionsW (bn) := gnw(bn) and W (an) := g2nw(an).
The main step in the proof of Theorem 1 is to show that

E(bn) :=
(
gn+1;W (bn)

)
and E(an) :=

(
gngn+1;W (an), 1

)
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1

1

2

2

4 5 25
4

τ2

τ4
a

c(a)

5
2

are solutions to (DB). Note that E(bn) is a perfect solution, while E(an) is only
almost perfect. It turns out that the solutions E(bn) are the only perfect solutions.

Assume next that c = 2, that is, we are looking for the smallest λ such that

E(1, a)
s→֒E(λ, 2λ).

This problem is equivalent to the problem of embedding E(1, a) into a polycube,

E(1, a)
s→֒C4(λ) := D2(λ) ×D2(λ).

This latter problem is, again, equivalent to the problem
∐

B4
(
wi(a)

) s→֒C4(λ)

which is, this time, equivalent to (1)
∑

w2
i (a) < 2λ2 and

(2) for each solution (d, e;m1, . . . ,mk) ∈ N× Nk of the Diophantine system

(DC) 2(d+ e)− 1 =
∑

mi, 2de+ 1 =
∑

m2
i ,

it holds that
1

d+ e

∑
wi(a)mi < λ.

We thus have

cE(1,2)(a) = cC4(1)(a) = max

{√
a

2
, sup

{
µ(d, e;m)(a) | (d, e;m) solves (DC)

}
.

It turns out that µ(d, e;m) ≥
√

a
2 only if |d− e| ≤ 1.
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The Pell numbers Pn are recursively defined by

P0 = 0, P1 = 1, Pn+1 = 2Pn + Pn−1.

Define xn := P2n−1 + P2n and yn := P2n−1, and

αn :=
xn
xn−1

, βn :=
yn+1

yn
γn :=

1

2

(
xn
yn

)2

, δn := 2

(
yn+1

xn

)2

.

Then

· · · < αn < γn < βn < δn < αn+1 < · · · → σ2 ≈ 5.83

where σ = 1 +
√
2 = [2; 2, 2, 2, . . . ] is the silver ratio.

Theorem 2 (Müller [8]) The function cE(1,2)(a) = cC on [1, σ2] is given by the
“Pell stairs”: For each n ≥ 0, the function cC on [δn−1, δn] forms a double step
as described in the figure below.

δn−1 αn βnγn δn

yn

xn−1

xn−1

2yn−1

yn+1

xn

Again, the main step of the proof is to show that there are perfect solutions at
αn and βn and almost perfect solutions at γn and δn.

For connections of our embedding problems to lattice point counting problems
in triangles, and for curious quadratic identities for weight expansions we refer
to [7].
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scl in free groups

Danny Calegari

(joint work with Alden Walker)

1. Abstract of talk

Let G be a group, and [G,G] the commutator subgroup. Given g ∈ [G,G] the
commutator length of g, denoted cl(g), is the least number of commutators in G
whose product is equal to g. The stable commutator length, denoted scl(g), is the
lim inf of cl(gn)/n as n goes to infinity.

A quasimorphism of G is a function φ : G → R for which there is a constant
D(φ) ≥ 0 such that |φ(a) + φ(b) − φ(ab)| ≤ D(φ) for all a, b ∈ G. The least
constant D(φ) with this property is called the defect of φ.

A quasimorphism is homogeneous if φ(an) = nφ(a) for all integers n and all
a ∈ G.

The Bavard Duality Theorem says that in any group G, there is an equality

scl(g) = sup
φ

φ(g)

2D(φ)

where the supremum is taken over all homogeneous quasimorphisms. See [1] for a
more substantial introduction.

Bavard Duality is highly nonconstructive, and raises a fundamental question:
given g ∈ G, to give an explicit construction of a homogeneous quasimorphism φ
for which scl(g) = φ(g)/2D(φ).

In general, this question is much too hard to say anything reasonable about.
However, for certain specific groups it might be able to say more.

We conjecture that for G a free group, for every g ∈ [G,G] there is an extremal
quasimorphism φ for g that arises “from symplectic geometry”. This is somewhat
vague, but there are some intriguing families of examples where this is precise:

(1) Hyperbolic surfaces: G is realized as π1(S) where S is a hyperbolic surface
with geodesic boundary. φ in this case is the rotation quasimorphism, a
primitive for the hyperbolic area form.

(2) Taut sutured handlebodies: G is realized as π1(X) where X is the sym-
plectization of a taut foliated handlebody. φ in this case is the rotation
quasimorphism associated to a universal circle for the foliation.

(3) Siegel handlebodies: G is π1(X) where X = H/Γ, where H is the Siegel
upper half-space, and Γ is a free subgroup of Sp(2n,Z). φ in this case is
the symplectic rotation number.
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Smooth rigidity at infinity of negatively curved manifolds

Chengbo Yue

Let M be a closed Riemannian manifold of negative curvature. Its universal cover

M̃ can be compactified by an ideal sphere at infinity. By Hadamard’s Theorem,

M̃ is diffeomorphic to a round ball. The ideal sphere ∂M̃ , however, is in general
only a rugged topological sphere.

Main Conjecture(Gromov[DG], Kanai[K1], et al.): ∂M̃ is C2 if and only
if M is locally symmetric.

This has been solved in dimensional 2 by the work of Hurder-Katok[HK] and
Ghys[Gh]. In higher dimension, after a long series of works by Kanai[K1,K2],
Feres and Katok[FK1, FK2, F], Benoist-Foulon-Laborie[BFL] was able to prove
the C∞-case applying a general principle of Gromov[Gro] on rigid transformation
groups.

This talk describes a solution to the higher dimensional optimal C2-case. The
key ingredient in our approach is the observation that if the ideal sphere is C2,
then a certain Busemann pairing cocycle must also be C2 and its second order
mixed partial derivatives recover the symplectic geometry of the geodesic flow
completely. In fact, the Busemann pairing cocycle B, which can be thought of
as the logarithm of a pseudo-distance between points at infinity, plays the role of
some sort of potential for the transversal symplectic 2-form Ω of the geodesic flow:

Ω = ddyB.

This in turn implies that B satisfies a system of second order hyperbolic partial
differential equations:

∂2B

∂xi∂yj
= aij .

To solve such equations, one needs to integrate twice: (1) We first integrate
along a Lagrangian foliation in the guise of leaf-wise Poincaré Lemma, which shows
that {∂yjB} define exactly the flat affine parameters along the Lagrangian leaves;
(2) A further integration of {∂yjB} gives rise to the cross ratio, which in effect
converts hyperbolic regularity to elliptic regularity. Using a bootstrap argument
typical in elliptic regularity, one can promote C2-regularity first to C2+α(0 < α <
1), then to C∞, inductively.

As consequence, we prove:

Theorem[Y]: If ∂M̃ is C2, then it is C∞.
Hence, combining with the C∞-result of Benoist-Foulon-Laborie[BFL] and the

entropy rigidity result of Besson-Courtois-Gallot[BCG], we obtain a complete so-
lution to the main conjecture:
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Theorem: The ideal sphere ∂M̃ of a negatively curved closed manifold M is C2

if and only if M is locally symmetric.
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différentiables, Jour. Amer. Math. Soc., 4(1992), 33–74.

[DG] G. D’Ambra, M. Gromov, Lectures on transformation groups: geometry and dynamics,
Surveys in Differential Geometry(Supplement of Jour. Diff. Geom.), 1(1991), 19–111.

[FK1] R. Feres, A. Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov
exponents and rigidity of geodesic flows, Ergod. Th. & Dyn. Sys., 9(1989), 427–432.

[FK2] R. Feres, A. Katok, Anosov flows with smooth foliations and rigidity of geodesic flows
in three dimensional manifolds of negative curvature, Ergod. Th. & Dyn. Sys., 10(1990),
657–670.

[F] R. Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric folia-
tions, Ergod. Th. & Dyn. Sys., 11(1991), 653–686.

[Gh] E. Ghys, Flots d’Anosov dont des feuilletages stables sont différentiables, Ann. Ecole Nor-
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Problem Session

A session for discussing interesting open questions was held at the workshop. It
was organized and moderated by Anatole Katok and carefully transcripted by Lev
Buhovsky and Wenyuan Yang.

Some questions were already solved during the workshop and have not been
included here.
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1. Questions by Danny Calegari

1. Let G be a hyperbolic group with a fixed generating set S.

Fact 1 (Calegari-Maher [2]). There exist positive constants C1, C2 such that the
following holds.

Let scln denote the value of scl of a random element of word length n (in the
generators S), conditioned to lie in [G,G]. Then the following is true:

P(C1n/ logn < scl(g) < C2n/logn) → 1 as n→ ∞
Conjecture 1. There exists a positive constant C such that the following holds:

(with notation as above)

scln logn/nC → 1 with respect to probability measure.

Question 1. What one can say about the constant C? What does the error term
look like?

2. Let G be a finitely generated group with a finite generating set S.

Fact 2 (Calegari-Maher [2]). Let G be a group where scl does not vanish identi-
cally, and let S be a symmetric generating set. Let scln denote the value of scl on
a random walk of length n in the generators, conditions to lie in [G,G].

Then the growth rate of scln is at least of order
√
n, and at most of order

n/ logn.

Question 2. Is there a finitely generated (finitely presented) group for which scln
has growth intermediate between these two possibilities?

3. Let F be a free non-abelian group.

Fact 3 (Calegari [1]). If g, h ∈ F do not commute, then there is a homogeneous
quasimorphism φ : F → R satisfying

φ(g) + φ(h)− φ(gh) = D(φ)

Question 3. Which other groups G have the same property?

4. Let G be a finitely generated subgroup of a free group F . Let OutG(F ) denote
the set of outer automorphisms of F that conjugate G to itself; i.e. for which
φ(G) = tGt−1 for some t ∈ F .

Question 4. Is OutG(F ) finitely generated? finitely presented? VFL?

2. Five questions from M. Entov and L. Polterivich

These questions arise from the joint work of M. Entov and L. Polterovich on
Lie quasi-states.

Definition 1. A Lie quasi-state on a real Lie algebra g is a functional ζ : g → R
whose restriction to any abelian subalgebra is linear.
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Fact:
If g = Lie(G) for a Lie group G and µ : G → R is a continuous homogeneous
quasi-morphism, then ζ := µ ◦ exp : g → R is a continuous Lie quasi-state, which
is Ad -invariant.

Question 5. Describe the space of continuous Lie quasi-states (modulo the linear
functionals) on classical Lie algebras. The simplest open cases: sl(4,R), sp(4,R).

Question 6. Find a meaningful cohomology theory incorporating Lie quasi-states
(similarly to the way the bounded cohomology of groups incorporates quasi-morphisms).

Question 7. Find dynamical/geometric constructions of Lie quasi-states that do
not yield quasi-morphisms.

Question 8. Does any Ad -invariant Lie quasi-state come from a homogeneous
quasi-morphism?

Question 9. Do there exist (continuous) functionals µ : G → R on Lie transfor-
mation groups which are not quasi-morphisms but such that the restriction of µ
to any abelian subgroup is a homomorphism?

3. Anna Erschler: Symmetric measures and entropy on groups

Let G be a finitely generated group.

Question 10. Suppose there exist a finite subset V of G and a sequence of sym-
metric measures {µi} on G such that Supp(µi) ⊂ V and < Supp(µi) >= G for
each i. If µi → µ, does it follow that h(µi) → h(µ)?

Question 11. Suppose that µ1, µ2 are two symmetric finitely-supported measures
on G. If < Supp(µ1) >= G and < Supp(µ2) >= G and h(µ1) > 0, then is it true
that h(µ2) > 0?

4. Two questions by Gerhard Knieper

Definition 2. Let (M, g) be a complete Riemannian manifold. We call a geodesic
flow φt : SM → SM partially hyperbolic if there exists a continous splitting

TvSM = Es(v)⊕ Eu(v)⊕ Ec(v)

of the tangent bundle of SM into subbundles such that dimEs(v) = dimEu(v) =
k > 0 and the following properties are fulfilled: there are constants b ≥ 1, α > 0
such that for all ξ ∈ Es(v)

‖Dφt(v)ξ‖ ≤ b‖ξ‖e−αt, t ≥ 0, ‖Dφt(v)ξ‖ ≥ 1

b
‖ξ‖e−αt, t ≤ 0

and for all ξ ∈ Eu(v)

‖Dφt(v)ξ‖ ≥ 1

b
‖ξ‖eαt, t ≥ 0, ‖Dφt(v)ξ‖ ≤ b‖ξ‖eαt, t ≤ 0.
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Furthermore, for all ξ ∈ Ec(v) and t ∈ R we have

‖Dφt(v)ξ‖ ≤ ‖ξ‖f(t).
where f is a positive function of subexponential growth. The norm is given by the
Sasaki-metric

Question 12. Let (M, g) be a compact Riemannian manifold and φt : SM → SM
a partially hyperbolic geodesic flow. Is it true that φt is Anosov?

It is known by a theorem of Klingenberg [Kl] and Mané [Ma] that on compact
manifolds Anosov geodesic flows have no conjugate points.

Question 13. Let (M, g) be a compact Riemannian manifold and φt : SM → SM
a partially hyperbolic geodesic flow. Is it true that (M, g) has no conjugate points?

In the case that the geodesic flow has no focal points, we answered question
1 affirmatively without assumption that M is compact [K]. However, we had to
assume that f growth at most linearly.

5. A problem by Frederic LeRoux

Question 14. Is it true that, for any smooth (C∞) compact manifold M , every
element of Diff0(M) (the group of all smooth diffeomorphisms of M that are iso-
topic to the identity) can be expressed as the commutator [a, b] = aba−1b−1 of two
elements a, b in Diff0(M)?

This is a question about the commutator width of Diff0(M). It is well-known
that for any compact manifold M , the group Diff0(M) is simple. Hence any
element of Diff0(M) is a product of a finite number of commutators. Given some
element g ∈ Diff0(M), the commutator length of g is the minimum number k such
that g is the product of k commutators. The commutator width cw(Diff0(M))
is the maximum of the commutator length of elements of Diff0(M). Hence the
question is to determine whether cw(Diff0(M)) = 1 for every compact manifold.

Burago, Ivanov and Polterovich have recently shown that, for many manifolds
M , cw(Diff0(M)) < ∞. This is true in particular for every sphere Sn, and every
compact manifold in dimension three (this has been generalized by Tsuboi to every
odd-dimensional compact manifold). In the case of the circle, it is even known that
cw(Diff0(S

1)) ≤ 2. But, to my knowledge, there is no manifold M for which the
precise value of cw(Diff0(M)) is known.

6. A problem by Yong-Geun Oh

Consider the following groups:
The groupHomeoΩ(D2, ∂D2) of area preserving homeomorphisms of the standard
2-dimensional disc, that are identity near the boundary;
The group HomeoΩ0 (S

2) of area preserving homeomorphisms of the standard 2-
dimensional sphere, that are isotopic to the identity.

The following conjecture, originally posed by J. Mather, is still open:

Conjecture 2. Are the groups HomeoΩ(D2, ∂D2), HomeoΩ0 (S
2) simple?



1820 Oberwolfach Report 30/2010

A possible answer could come from the C0 symplectic topology and continuous
Hamiltonian dynamics. The groups of Hamiltonian homeomorphisms
Homeo(D, ∂D2,Ω) of the disc D2 and Homeo(S2,Ω) of the sphere S2 are nor-
mal subgroups of HomeoΩ(D2, ∂D2) and HomeoΩ0 (S

2) respectively (we refer the
reader to the paper “The group of Hamiltonian homeomorphisms and C0 sym-
plectic topology” by Y.-G. Oh and S. Müller, for the definitions of the group of
Hamiltonian homeomorphisms, and more generally, for foundations of the C0 sym-
plectic topology). A positive answer to the following open question will provide a
solution to the conjecture of J. Mather:
Are the groups Homeo(D, ∂D2,Ω) and Homeo(S2,Ω) proper subgroups of
HomeoΩ(D2, ∂D2) and HomeoΩ0 (S

2) respectively?

7. Three questions by Mark Sapir

Let G be the group with following presentation

< x, y, t|txt−1 = xy, tyt−1 = yx >∼=< x, t|[[x, t], t] = x >.

Note that G is a hyperbolic group having cohomological dimension 2.

Question 15. Is G linear?

Conjecture: “no”. The group is residually finite (Borisov and Sapir). That would
be an easy example of a non-linear hyperbolic group.

Question 16. Does G contain π1(Sg)? Here Sg is the closed surface with genus
g ≥ 2.

Conjecture: “no”. That would solve a problem of Gromov.

Let Fn be the free group of rank n ≥ 2, and φ be an irreducible proper injective
endomorphism Fn → Fn. Let G be the fundamental group of the mapping torus
of φ.

Question 17. Can G be embeddable into SL2(C)?

Conjecture: “no” is supported by computer experiments. By a result of D. Calegari
and N. Dunfield, the irreducibility condition cannot be dropped.
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Universitätsstr. 150
44801 Bochum

Prof. Dr. Dieter Kotschick

Mathematisches Institut
Ludwig-Maximilians-Universität
München
Theresienstr. 39
80333 München

Dr. Frederic Le Roux

Laboratoire de Mathematiques
Universite Paris Sud (Paris XI)
Batiment 425
F-91405 Orsay Cedex

Prof. Dr. Francois Ledrappier

LPMA / UMR 7599
Universite Pierre & Marie Curie
Paris VI
Boite Courrier 188
F-75252 Paris Cedex 05

Prof. Dr. Enrico Leuzinger

Universität Karlsruhe
Institut für Algebra und Geometrie
Kaiserstr. 89-93
76133 Karlsruhe

Prof. Dr. Gilbert Levitt

University of Caen
Department of Mathematics
LMNO
BP 5186
F-14032 Caen Cedex

Dr. Vladimir Markovic

Mathematics Institute
University of Warwick
Gibbet Hill Road
GB-Coventry CV4 7AL

Prof. Dr. Dave Witte Morris

Department of Mathematics and
Computer Science
University of Lethbridge
4401 University Drive
Lethbridge AB T1K 3M4
CANADA

Prof. Dr. Shahar Mozes

Institute of Mathematics
The Hebrew University
Givat-Ram
91904 Jerusalem
ISRAEL

Prof. Dr. Alexey Yu. Muranov

Institut de Mathematiques de Toulouse
Universite Paul Sabatier
118, route de Narbonne
F-31062 Toulouse Cedex 9



1824 Oberwolfach Report 30/2010

Dr. Stefan Nemirovski

V.A. Steklov Institute of
Mathematics
Russian Academy of Sciences
8, Gubkina St.
119991 Moscow GSP-1
RUSSIA

Prof. Dr. Yong-Geun Oh

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison , WI 53706-1388
USA

Dr. Andreas Ott

Departement Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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