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Introduction by the Organisers

The Conference on “Analysis and Geometric Singularities” took place from June 27
to July 3, 2010. The invitation to this meeting had a particularly positive response
since only three invitees turned down the invitation with regret, all others agreed
to come, bringing the number of participants to a total of 53. The organization
of the meeting followed the already well-established scheme of five talks a day
(except Wednesday), including one survey talk plus four talks onWednesday; seven
talks among the 24 were reserved for young participants. This provided plenty of
discussion time which was intensely used, especially by the young participants,
such that the workshop was characterized by an intense and vibrant atmosphere.

The four survey talks provided a certain structuring of the programme into
four major areas of discussion as follows. The first topic (Gilles Carron, Monday)
touched upon the analysis of heat kernels and resolvents on complete manifolds
which were later also discussed on incomplete singular spaces and on spaces with
various different regimes at infinity. The second topic (Jean-Michel Bismut, Tues-
day) dealt with conceptual principles of index theory on quite general spaces and
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the role of a new class of hypoelliptic geometric operators in this field. Other talks
dealt with the construction of the Chern character in singular situations, notably
with noncommutative methods, or with equivariant index theory, including a proof
of a conjecture of Vergne. The third major topic (Ulrich Bunke, Thursday) ex-
plained new topological constructions and applications, which was expanded by a
higher signature theorem for Riemannian pseudomanifolds with the Witt property,
and also various computations and applications of the analytic torsion, including
also some number theory. The last main topic (Xiaonan Ma, Friday) concerned
geometric applications of asymptotic spectral analysis, ranging from non-compact
symplectic manifolds to the heat trace expansion on a Euclidian polygon.

Among the more stunning insights during this conference was the fact, corrob-
orated in quite a few talks, that old problems of classical type or such as were
intensely discussed when our series of workshops started in 1987, become acces-
sible only now, apparently because the concepts and the techniques developed in
the field have achieved a certain maturity, which raises high expectations for the
future and which seems especially attractive for the young researchers who were
present at the workshop.
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Abstracts

Finding upper bounds for the Heat- & Green kernel

Gilles Carron

When (Mn, g) is a complete (non compact) Riemannian manifold, the Laplace
operator is defined in local coordinates by

∆ = − 1

Θ

∑

i,j

∂

∂xi
Θgi,j

∂

∂xj
,

where Θ =
√
det[gi,j].

The Laplace operator ∆ : C∞
0 (M)→ L2(M) has a unique selfadjoint extension.

The heat kernel. The operator e−t∆ has a smooth Schwartz kernel, the heat
kernel ht(x, y): For f ∈ C∞

0 (M), we have that

ft(x) :=
(
e−t∆f

)
(x) =

∫

M

ht(x, y)f(y)dy

solves the evolution equation
{

∂
∂tft +∆ft = 0 on (0,+∞)×M

f0 = f

The Green kernel. If moreover, there is some x, y ∈M such that
∫ +∞

1

ht(x, y)dt <∞,

then for all x 6= y, we can define the Green kernel

G(x, y) =

∫ +∞

0

ht(x, y)dt.

And if f ∈ C∞
0 (M) then

u(x) :=

∫

M

G(x, y)f(y)dy

solves the equation
∆u = f

with the extra property that f ≥ 0⇒ u ≥ 0.

In this survey talk, I introduced several ideas that lead to an Euclidean type upper
bound on the heat kernel or on the Green kernel:

∀x, y ∈M, ∀t > 0, ht(x, y) ≤
C

tn/2
,

or

∀x, y ∈M, G(x, y) ≤ C

d(x, y)n−2
.
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For a general account on this problem, there is a survey by T. Coulhon ([1]) and
a book of A. Grigor’yan ([2]).

For instance, we explained the techniques of A. Grigor’yan and L. Saloff-Coste
([3]), and we showed how these results can be used to obtain a result of D. Joyce
([4]).

Theorem. On a Q.A.L.E. manifold (Mn>2, g), the above Euclidean type upper
bound holds; in particular

G(x, y) ≤ C

d(x, y)n−2
.

Here a Quasi Asymptotically Locally Euclidean (Q.A.L.E.) manifold is a com-
plete Riemannian manifold whose geometry at infinity is built upon a certain
resolution of a quotient Rn/Γ where Γ is a finite subgroup of SO(n).
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Equivariant index and Chern character

Richard B. Melrose

(joint work with Pierre Albin and Frédéric Rochon)

Consider three forms of the index map in K-theory:

ind : Kc(T
∗(M/Y )) −→ K(Y )(1)

ind : KG,c(T
∗
GZ) −→ RG(2)

ind : Kc(T
∗Z/ ∼) −→ Z.(3)

These maps correspond respectively to the families index theorem of Atiyah and
Singer for fibrewise pseudodifferential operators for a smooth fibration of a compact
manifold M −→ Y, to the equivariant index for invariant and transversally elliptic
operators for the smooth action of a compact Lie group on a compact manifold
Z and to the pseudodifferential extension of the numerical index map of Atiyah,
Patodi and Singer for a compact manifold with boundary Z. The K-groups form-
ing the domains are respectively the topological (compactly supported) K-theory
of the fibrewise contangent bundle of the fibration, the G-equivariant K-theory of
the (generally singular) space of fibre conormals of the group action and the com-
pactly supported K-theory of the cotangent bundle of the manifold with boundary
with the fibration of the boundary smashed to its base, the conormal line. The
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targets for the first two maps are the K-theory of the base and the ring of virtual
representations of the group.

In this talk I had planned to try to present approaches to the analytic defi-
nitions of these maps, and the corresponding theorems – identifying them with
topological push-forward maps – which I hoped would indicate how one can freely
combine them to give an equivariant, families index of Atiyah-Patodi-Singer type.
Unfortunately due to limitiations of time I will not be able to discuss the boundary
case (in joint work with Frédéric Rochon) so will be content here with discussing
an approach to a families equivariant index theorem. I will also discuss the closely
related problem of deriving a Chern character formula, for the image of the index
in an appropriate cohomology.

First consider the families index theorem. Here is a diagram of the construc-
tion of the analytic index which corresponds to push-forward under the map
π : T ∗(M/Y ) −→ Y which has fibres diffeomorphic to T ∗Z, where Z is the model
fibre of the fibration M −→ Y :

⋃

m,E+,E−

iso(S∗(M/Y );π∗E+, π
∗E− ⊗Nm) Kc(T

∗(M/Y ))

⋃

E±

Ell∗(M/Y ;E+, E−)

⋃

E±

Ell∗(M/Y ;E+, E−)reg K(Y )

σm

inda

The ‘regular’ elliptic families are those with null spaces of constant dimension.
The ‘model’ for Kc(T

∗(M/Y )) is pairs of vector bundles over the base of the radial

compactification, T ∗(M/Y ) ⊃ T ∗(M/Y ), of the fibrewise cotangent bundle with
an identification (the symbol of the operator) between them over the boundary
(the sphere at infinity).

There is a semiclassical version of the index based on a different model for
K-theory. Namely for a compact manifold with boundary, X, the compactly-
supported K-theory of the interior can be realized as equivalence classes of projec-
tion-valued maps (idempotents) γ : X −→ M(N,C), γ2 = γ, which are constant

in Taylor series at the boundary γ ≡ γ0 ∈M(N,C) at ∂X. Here X = T ∗(M/Y ) ⊃
T ∗(M/Y ). The algebra of semiclassical pseudodifferential operators has both a
‘usual’ and a semiclassical symbol map

Ψ0(M/Y ;CN )
σsl−−−−−→ C∞(X ;M(N,C))

and this allows one to construct the diagram
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⋃
N

{
γ ∈ C∞(X ;M(N,C)), γ2 = γ ≡ γ0 at ∂X, γ0 ∈M(N,C)

}

⋃
N

{
Γ ∈ Ψ0

sl(M/Y ;CN ), Γ2 = Γ, σsl(Γ) ∈M(N,C)
}

Kc(T
∗(M/Y ))

K(Y )

σsl indsl

That

inda = indsl = indt

follows by showing that the two representations of the K-theory of the relative
cotangent bundle discussed above are each the retraction of a larger model which
can be directly quantized using similar constructions but of Toeplitz type. The
right-hand inequality is then a reorganization of the proof given by Atiyah and
Singer but in place of an axiomatic discussion one can simply follow the semiclas-
sical quantization through the definition of the topological index by embedding.
This approach to the index theorem is used in a twisted setting in [2] and a more
detailed discussion can be found in [3].

The G-equivariant case arises from the smooth action of a compact group on a
compact manifold Z, which gives a smooth homomorphism of the group into the
diffeomorphisms of the manifold. The complexity of this setting arises from the
variability of the isotropy groups, the subgroups which fix particular points. Again
there is a semiclassical realization of the index map, now (2), analogous to that
above. Indeed in on-going work with Pierre Albin a families equivariant index will
be discussed. This arises from a fibration M −→ Y where M and Y are compact
G-manifolds and the fibration is equivariant. Then the families-equivariant index
map induces the push-forward

Kc,G(T
∗
G(M/Y )) −→ K̂G(Y )

into an appropriately completed equivariant K-theory of the base.
The resolution of group actions, to have fixed isotropy type, in recent work

with Albin, allows the delocalized equivariant cohomology of Baum, Brylinski
and MacPherson [1] to be extended to the non-Abelian case and to be given a
deRham realization (on the resolution of the quotient). This in turn should allow
explicit Chern character formulæ to be developed in this more general context –
and ultimately in the (here unexplained) boundary case as well.
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The Witten deformation for singular complex curves

Ursula Ludwig

The Witten deformation is a method proposed in [10] by Witten which, given a
smooth Morse function f : M → R on a smooth compact Riemannian manifold
M , leads to an analytical proof of the Morse inequalities. A rigorous account of
the analytic proof of the Morse inequalities using semi-classical analysis has been
done in [7].

In this note we will explain how to generalise the Witten deformation for a
singular complex curve X ⊂ Pn(C) and a stratified Morse function f : X → R in
the sense of [6]. The results presented here were obtained in [8], [9].

Let us denote by Σ the singular set of X and by g be the metric on X\Σ induced
from the Fubini-Study metric on the ambient projective space. Let us recall the
local situation near a singular point p ∈ Σ of multiplicity mp. Let us first assume
that X is unibranched at p. Then there exists an open neighbourhood Up ⊂ X of

p, such that (Up \{p}, g) is isometric to
(
cone(S1

mp
), (1+O(r1/mp ))(dr2+ r2dϕ2)

)
,

see [3]. Here S1
mp

denotes the circle of length 2πmp. Thus in particular the singular

curve is a conformally conic Riemannian manifold in the sense of [4]. Moreover in
local coordinates (r, ϕ) a stratified Morse function has the form

(1) f(r, ϕ) = f(p) + r(a cosϕ+ b sinϕ) +O(r1+δ), δ > 0, (a, b) ∈ R2 \ {0}
near the singularity (see [8] for a detailed computation). If X is not unibranched
near p, the arguments above can be applied to each branch separately.

In the rest of this note we will explain how to adapt Witten’s method to the
situation described above, state the main results and explain shortly the idea of
proof.

The main principle in Morse theory is to give a relation between a “local datum”
of the Morse function, namely the critical points, and a “global topological datum”
of the space. For smooth manifolds the latter is the singular cohomology of the
manifold. In the presence of singularities the topological invariant of interest is
the so called intersection cohomology.

The intersection cohomology for a singular complex curve can be analytically
expressed as the cohomology of the complex of L2-forms: Let (Ω∗

0(X \ Σ), d) be
the de Rham complex of differential forms acting on smooth forms with compact
supports. For conformally conic manifolds the elliptic complex (Ω∗

0(X \ Σ), d)
admits a unique extension to a Hilbert complex (C, d, 〈 , 〉) in the Hilbert space
of square integrable forms equipped with the L2-metric (see [5], [4]). The L2-
cohomology of X , denoted by Hi

(2)(X), is defined as the cohomology of this Hilbert

complex. (We use the language of Hilbert complexes, as introduced in [2].)
Witten’s idea for an analytic proof of the Morse inequalities on a smooth com-

pact manifold consists in the deformation of the de Rham complex by means of a
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smooth Morse function (see [10], [7]). In the presence of singularities we deform the
complex of L2-forms instead of the de Rham complex. We use a stratified Morse
function f for the deformation. In particular we deform the complex (Ω∗

0(X\Σ), d)
into

0→ Ω0
0(X \ Σ)

dt−→ . . .
dt−→ Ω2

0(X \ Σ)→ 0,

where dt = e−ftdeft; here t ∈ (0,∞) is the deformation parameter. One can
show that the deformed complex also admits a unique extension to a Hilbert
complex, which is denoted by (Ct, dt, 〈 , 〉). The map ω → e−tfω yields an iso-
morphism of the two complexes (C, d, 〈 , 〉) and (Ct, dt, 〈 , 〉). Therefore the co-
homology of the deformed complex is also isomorphic to the L2-cohomology of X ,
i.e. Hi(Ct, dt, 〈 , 〉) ≃ Hi

(2)(X). The Witten Laplacian ∆t is defined as the Lapla-

cian associated to the Hilbert complex (Ct, dt, 〈 , 〉). Note that in the presence
of singularities ∆t |Ω∗

0(X\Σ) is not an essentially selfadjoint operator and therefore
we have to specify the domain of the Witten Laplacian carefully. Hodge theory is
still valid for the deformed complex, i.e.

(2) ker∆
(i)
t ≃ Hi(Ct, dt, 〈 , 〉) ≃ Hi

(2)(X).

For a stratified Morse function f the restriction f|X\Σ is a Morse function in the
smooth sense and we denote by ci(f|X\Σ) the number of critical points of f|X\Σ of
index i and by

ci(f) := ci(f|X\Σ), i = 0, 2; c1(f) := c1(f|X\Σ) +
∑

p∈Σ

(mp − bp),

where bp is the number of analytic branches of X at p. The advantage of the
deformed complex (Ct, dt, 〈 , 〉) compared to the initial complex (C, d, 〈 , 〉) is that
the spectrum of the Witten Laplacian has nice properties for large parameters t:

Theorem 1 (Spectral Gap Theorem).

(1) Let X be a singular complex curve and let f : X → R be a stratified Morse
function. Then there exist constants C1, C2, C3 > 0 and t0 > 0 depending
on X and f such that for any t ≥ t0,

spec(∆t) ∩ (C1e
−C2t, C3t) = ∅.

(2) Let us denote by (St, dt, 〈 , 〉) the subcomplex of (Ct, dt, 〈 , 〉) generated by
all eigenforms of the Witten Laplacian ∆t to eigenvalues in [0, 1]. Then,
for t ≥ t0,

dimSit = ci(f).

The following Morse inequalities follow from the spectral gap theorem and (2) by
a standard argument

Corollary. In the situation of Theorem 1, for all 0 ≤ k < 2

k∑

i=0

(−1)k−ici(f) ≥
k∑

i=0

(−1)k−ib
(2)
i (X),

2∑

i=0

(−1)ici(f) =
2∑

i=0

(−1)ib(2)i (X),

where b
(2)
i (X) denote the L2-Betti numbers of X.
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Note that from Corollary one can recover the Morse inequalities for intersection
homology with middle perversity known already from stratified Morse theory [6].

The key step in the proof of the spectral gap theorem is the construction of a

local model operator ∆p,loc
t for the Witten Laplacian near a singular point p ∈ Σ

of X . Using the local form (1) one can compute easily that formally

(3) ∆p,loc
t = ∆p,loc + (a2 + b2)t2.

Note however that dom(∆p,loc
t ) 6= dom(∆p,loc) on forms of degree 1. The local

spectral gap theorem can now be shown by an explicit computation. The forms

in the kernel of ∆p,loc
t can be computed explicitly in terms of the modified Bessel

functions. Thus one can see nicely that from the point of view of the analytic
proof, the contribution of the singularity to the Morse inequalities is related to the
“small eigenvalues of the transversal Laplacian”. Once the local situation near the
singularities of X is understood one can proceed as in the smooth case (see e.g.
[1], Section 9) to complete the proof of the spectral gap theorem.

In the smooth situation we know from [10] and [7] that, if the gradient vector
field satisfies the Morse-Smale transversality condition, the complex of eigenforms
of ∆t to small eigenvalues “converges”, for t → ∞, to the so called (geometric)
Thom-Smale complex. This result can also be generalised to the singular situation
treated here (see [9]).

Acknowledgement. I wish to thank J. M. Bismut for suggesting to work on
the subject.
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The higher signature operator on Witt spaces

Pierre Albin

(joint work with Eric Leichtnam, Rafe Mazzeo, and Paolo Piazza)

1. Novikov conjecture

The signature theorem of Hirzebruch identifies the signature of a 4k-dimensional
closed manifold M with the evaluation of a particular cohomology class, the L-
class of M , on its fundamental homology class, [M ]. The signature is a homotopy
invariant of M and, if M is simply connected, it is in a certain sense the unique
homotopy invariant of M.

If M is not simply-connected there are other invariants of M, the higher sig-
natures, and the Novikov conjecture is that these are homotopy invariant. If G
is the fundamental group of M, and EG −→ BG is the universal principal G-

bundle, then there is a map r : M −→ BG classifying the universal cover M̃ of M.
With this data each cohomology class [c] of BG defines a higher signature: one
pulls-back [c] via r, takes the cup product with the cohomology L-class of M, and
evaluates on the fundamental homology class of M,

σ([c]) = (r∗[c] ∪ L(M), [M ]).

The analytic approach to the Novikov conjecture consists in assembling these
signatures together into a single object, the index of the ‘higher signature operator,’
defined as follows: If C∗

rG is the reduced C∗-algebra of G (the closure of G within

the bounded operators on ℓ2(G)), and V = M̃ ×G C∗
rG, then the higher signature

operator D̃sign is the signature operator of M twisted by V .
The index of D̃sign is an element of K∗(C∗

rG) and has been shown to be equal
to Mischenko’s symmetric signature, which is known to be homotopy invariant.
Novikov’s conjecture would follow if we knew that the assembly map were injective,
a possibility referred to as the ‘strong Novikov conjecture’. The advantage is that
the latter conjecture involves the group G, but not the manifold M, so one can
think that the geometric part of the conjecture has been resolved. In the project
being reported on we show that the analogue of the Novikov conjecture on stratified
manifolds also ‘reduces’ to the strong Novikov conjecture.

2. Stratified spaces

A stratified space is a finite union of manifolds, known as the strata, together
with (Thom-Mather) data specifying how the manifolds fit together. The highest
dimensional strata is known as the ‘regular part’ and its complement is known as
the ‘singular part’. Each singular stratum S has a tubular neighborhood within
the regular stratum that can be identified with a bundle over the S with fiber the
cone over another, simpler, stratified space L known as the ‘link’ of the cone. Thus
locally a stratified space can be described as a closed manifold, or the cone over
a closed manifold, or the product of a cone over a closed manifold with a closed
manifold, or the cone over the product of a cone with a closed manifold, etc.
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Our approach, following unpublished work of Rafe Mazzeo with Richard Mel-

rose, is to resolve a stratified space X̂ to a manifold with corners X̃. The interiorX

of X̃ is diffeomorphic to the regular part of X̂, and each of the boundary hypersur-

faces of X̃ corresponds, indeed fibers over, a singular stratum of X̂. The fibrations
are compatible at the corners and form what is known as a ‘resolution structure’

or ‘iterated fibration structure.’ The Thom-Mather data of X̂ becomes the usual
differential topological data of X̃, e.g., the tubular neighborhoods correspond to
collar neighborhoods of the boundary.

3. Iterated incomplete edge metrics and the signature operator

There is a natural class of metrics on X that reflects the stratified structure in
that they degenerate conically as they approach a singular stratum. Thus if H is

a boundary hypersurface of X̃ with associated fibration Z −H −→ Y, and x is a
coordinate measuring the distance to H, then the metric asymptotically takes the
form

dr2 + r2gZ + gY

where gY is (the pull-back of) a metric on Y and gZ is a metric of the same type
on the simpler space Z. We refer to these metrics as ‘incomplete iterated edge’ (or
iie) metrics, and to the associated signature operator as the iie-signature operator.

One convenient way of studying these objects is to replace the cotangent bundle
of X, T ∗X, with a suitable rescaling that better reflects the geometry. Namely,
we define the iie-cotangent bundle, iieT ∗X, by specifying that its sections should
be the covectors on X that have bounded pointwise length with respect to an
iie-metric. One advantage of this approach is that an iie-metric defines a non-

degenerate metric on iieT ∗X over all of X̃ and similarly the iie-signature operator
induces a non-degenerate (uniformly elliptic) operator on sections of Λ∗(iieT ∗X) =
iieΛ∗X, which we continue to refer to as the iie-signature operator.

From this perspective we carry out an inductive analysis of the iie-signature
operator succored by the fact that its leading term at a boundary face (alternately
at a singular stratum) involves the link of the cone only through its iie-signature
operator. Indeed, near a boundary face H as above, the differential forms on X
can be decomposed as

Λ∗X = (Λ∗Y ∧ Λ∗Z)⊕ dx ∧ (Λ∗Y ∧ Λ∗Z)

iieΛ∗X = (Λ∗Y ∧ xNΛ∗Z)⊕ dx ∧ (Λ∗Y ∧ xNΛ∗Z)

where N is the ‘vertical number operator’, i.e., the map given by multiplication
by k when restricted to forms of vertical degree k, and the de Rham operator of
X takes the form

(dX + δX) ∼
(

1
x (dZ + δZ) + (dY + δY ) −∂x − 1

x (f −N)
∂x + 1

xN − 1
x (dZ + δZ)− (dY + δY )

)
.
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We are able to define model operators at each boundary face and prove that these
are invertible provided that the Witt condition holds, i.e., that the link is odd-
dimensional or, if it is even dimensional, that its middle-degree, middle-perversity,
intersection cohomology vanish. In this situation we put the inverses together to
form a parametrix for dX + δX , hence for the signature operator, which leads to
the following theorem:

Theorem (A.-Leichtnam-Mazzeo-Piazza) Let X̂ be a Witt space with suitably
scaled iie-metric.

i) As an unbounded operator on L2 with core domain C∞c , the iie-signature
operator Dsign has a unique closed extension and is essentially self-adjoint.

ii) The domain of this closed extension is compactly contained in L2.
iii) Dsign is Fredholm.
iv) Dsign has discrete spectrum of finite multiplicity.

Most of this was proven by Cheeger by different methods that in this context
yield stronger results (e.g., an analysis of the associated heat kernel and its trace).
Our methods however generalize easily to handle the higher signature operator
described above.
Theorem (A.-Leichtnam-Mazzeo-Piazza) Let X̂ be a Witt space with suitably

scaled iie-metric and D̃sign the signature operator with values in M̃ ×G C∗
rG

i) D̃sign has a unique closed extension and is essentially self-adjoint.

ii) D̃sign defines a higher signature index class Ind(D̃sign) ∈ K∗(C∗
rG) which

is a Witt-bordism invariant and invariant under stratified homotopies.
iii) Push-forward by the classifying map r : M → BG followed by the assembly

map sends the K-homology signature class [Dsign] ∈ K∗(X) to the higher
signature index class.

iv) The Novikov conjecture for stratified spaces ‘reduces’ to the strong Novikov
conjecture.

As in the case of closed manifolds, there is a topologically defined symmetric
signature in K∗(C∗

rG), due in this context to Banagl. We use a uniqueness result of
Sullivan to show that Banagl’s signature coincides with the higher signature index
class (rationally). In contrast to the case of closed manifolds, the topologically
defined class is not known to be a stratified homotopy invariant, though by our
theorem it is a stratified homotopy invariant over the rationals.

Relative Connes-Chern character for manifolds with boundary

Matthias Lesch

(joint work with Henri Moscovici and Markus J. Pflaum)

Let M be a compact smooth m-dimensional manifold with boundary ∂M 6= 0.
Assuming that M possesses a Spinc structure, the fundamental class in the relative
K-homology group Km(M,∂M) can be realized analytically in terms of the Dirac
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operator D associated to the given Spinc structure and to a Riemannian metric on
M . This class is denoted by [D] ∈ Km(M,∂M).

The index map Index[D] : K
•(M,∂M)→ Z, defined by the pairing of [D] with

the K-theory, can be expressed in cyclic cohomological terms by means of Connes’
Chern character in K-homology [4]. Since

K•(M \ ∂M) ≃ KK•(J∞(M,∂M);C),

one can compute the Connes-Chern character of [D] by restricting D, to the dense
(and closed under holomorphic functional calculus) subalgebra J∞(M,∂M) ⊂
C0(M \ ∂M) = C

({
f ∈ C(M)

∣∣ f|∂M = 0
})

of functions vanishing to infinite
order at ∂M . The resulting periodic cyclic cocycle, which can be computed as
in [4, Part I, §6], corresponds via the canonical isomorphismHP •(J∞(M,∂M)

)
≃

HdR
• (M \ ∂M ;C) [2] to the relative de Rham class of the Â-current associated to

the Riemannian metric.
It is the purpose of the present project (for details see [7]) to find explicit repre-

sentations for the Connes-Chern character of the fundamental relativeK-homology
class [D] ∈ K•(M,∂M) that allow to retain geometric information about the
boundary. A significant step in this direction has already been taken by Getzler [5],
who used the setting of Melrose’s b-calculus [8] to construct an entire version of the
relative Connes-Chern character. Devised for the treatment of infinite-dimensional
geometries, entire cyclic cohomology is less effective than periodic cyclic cohomol-
ogy in the finite-dimensional case. To remedy this drawback, we give explicit
cocycle realizations for the Connes-Chern character in the relative cyclic coho-
mology bicomplex associated to the pair of algebras

(
C∞(M), C∞(∂M)

)
. This is

achieved by adapting to the relative context the retraction procedure of [3], which
converts the entire Connes-Chern character into the periodic one.

More concretely, we fix an exact b-metric g on M , and denote by D the corre-
sponding b-Dirac operator. We define for each t > 0 and any n ≥ m = dimM , n ≡
m (mod 2), a pair of cochains

(
bchnt (D), ch

n+1
t (D∂)

)
over

(
C∞(M), C∞(∂M)

)
,

given by the following formulæ

bchnt (D) :=
∑

j≥0

bChn−2j(tD) +B bT/ch
n+1
t (D)

chn+1
t (D∂) :=

∑

j≥0

Chn−2j+1(tD∂) +B T/ch
n+2
t (D∂);

here Ch•(D∂) denote the components of the Jaffe-Lesniewski-Osterwalder real-
ization [6] of the Connes-Chern character in entire cyclic cohomology, bCh•(D)
stand for their b-counterparts, and the components T/ch

•
t (D∂), resp.

bT/ch
•
t (D),

are manufactured out of the canonical transgression formula as in [3].
Our main results about these cocycles are:

1.
(b+B)

(
bchnt (D)

)
= chn+1

t (D∂) ◦ i∗.
Hence

(
bchnt (D), ch

n+1
t (D∂)

)
is a cocycle in the relative total (b, B)-complex of the

pair of algebras (C∞(M), C∞(∂M)). i : ∂M →M denotes the inclusion.
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2. Its class in HCn(C∞(M), C∞(∂M)) is independent of t > 0 and its class
in HP •(C∞(M), C∞(∂M)) is independent of n.

3.

lim
tց0

(
bchnt (D), ch

n−1
t (D∂)

)
=

( ∫

bM

Â(b∇2
g) ∧ −,

∫

∂M

Â(∇2
g∂
) ∧ −

)
,

thus
[
bchnt (D), ch

n+1
t (D∂)

]
∈ HP •(C∞(M), C∞(∂M)

) ∼= HdR
• (M,∂M) does rep-

resent the Chern character of [D] ∈ Km(M,∂M).

4. Under the assumption that kerD∂ = 0, the pair of retracted cochains(
bc̃h

n

t (D), ch
n−1
t (D∂)

)
has a limit as t → ∞. For n even, or equivalently M

even-dimensional, the limit is

bchn∞(D) =

n/2∑

j=0

2j(D)+Bג bT/ch
n+1
∞ (D),

chn+1
∞ (D∂) = B T/ch

n+2
∞ (D∂),

with the cochains ,(D)•ג occurring only when kerD 6= {0}, given by

,2j(D)(a0ג . . . , a2j) = Str
(
̺H(a0)ωH(a1, a2) · · ·ωH(a2j−1, a2j)

)
;

here H denotes the orthogonal projection onto kerD, and

̺H(a) := HaH , ωH(a, b) := ̺H(ab)− ̺H(a)̺H(b), for all a, b ∈ C∞(M).

The Pairing formula. The class
[
bchnt (D), ch

n+1
t (D∂)

]
pairs with relative K-

theory classes in K0(M,∂M). Such a class can be represented as a triple [E,F, h],
where E, F are vector bundles over M , which we will identify with projections
pE , pF ∈ MatN (C∞(M)), and h : [0, 1] → MatN (C∞(∂M)) is a smooth path of
projections connecting their restrictions to the boundary E∂ and F∂ .

We prove that the pairing between [D] ∈ K0(M,∂M) and [E,F, h] ∈ K0(M,∂M)
equals

〈[D], [E,F, h]〉 = IndAPS D
F − IndAPS D

E + SF(h,D∂);(1)

here IndAPS stands for the APS-index, and SF(h,D∂) denotes a certain spectral
flow associated to D∂ and h.

The Chern character of [E,F, h] ∈ K0(M,∂M) is represented by the relative
cyclic homology cycle over the algebras

(
C∞(M), C∞(∂M)

)

ch•
(
[E,F, h]

)
=

(
ch•(F )− ch•(E) , −T/ch•(h)

)
,

where ch•, resp. T/ch• denote the components of the standard Chern character in

cyclic homology resp. of its canonical transgression. Since
[
bchnt (D), ch

n+1
t (D∂)

]
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equals the Chern character of [D] we now obtain for any t > 0:
〈
[D], [E,F, h]

〉
=
〈(

bc̃h
n

t (D), ch
n+1
t (D∂)

)
, ch•[E,F, h]

〉

=
〈∑

j≥0

bChn−2j(tD) +B bT/ch
n+1
t (D), ch•(F )− ch•(E)

〉

−
〈∑

j≥0

Chn−2j+1(tD∂) +B T/ch
n+2
t (D∂), T/ch•(h)

〉
.

The situation is now reminiscent of the celebrated McKean-Singer formula.
Indeed, letting t→ 0 yields the local form of the pairing formula

∫

bM

Â(b∇2
g) ∧

(
ch•(F )− ch•(E)

)
−
∫

∂M

Â(∇2
g∂
) ∧ T/ch•(h).

Under the additional assumption that D∂ is invertible the limit as t→∞ yields
〈 ∑

0≤k≤ℓ

2k(D)ג +B bT/ch
n+1
∞ (D), ch•(F )− ch•(E)

〉
−
〈
B T/ch

n+2
∞ (D∂),T/ch•(h)

〉
.

Comparing the limit as t → 0 and as t → ∞ gives, analogously to the Atiyah-
Patodi-Singer Index Theorem, the following equation for all n = 2ℓ ≥ m

〈 ∑

0≤k≤ℓ

,2k(D)ג ch•(F )− ch•(E)
〉

=

∫

M

Â(b∇2
g) ∧

(
ch•(F )− ch•(E)

)
−
∫

∂M

Â(∇2
g∂
) ∧ T/ch•(h)

−
√
π

2

〈
bηn+1(D), B

(
ch•(F )− ch•(E)

)〉
+

√
π

2

〈
ηn+2(D∂), B T/ch•(h)

〉
.

The left hand side is an interaction between the Chern character of [E,F, h] and
the kernel of the operator D while the right hand side is the sum of a local term
and the pairing between a higher eta–cochain and ch•(E,F, h).

Invoking (1) and the APS Index Theorem (now with a metric on M which is
non–degenerate and smooth up to the boundary) gives relations between higher
eta pairings and eta invariants:∫

M

Â(∇2
g) ∧

(
ch•(F )− ch•(E)

)
−
(
ξ(DF∂

∂ )− ξ(DE∂

∂ )
)
+ SF(h,D∂)

=
〈 ∑

0≤k≤ℓ

,2k(D)ג ch•(F )− ch•(E)
〉

+

√
π

2

〈
bηn+1(D), B

(
ch•(F )− ch•(E)

)〉
−
√
π

2

〈
ηn+2(D∂), B T/ch•(h)

〉
,

where ξ(DE∂

∂ ) = 1
2

(
η(DE∂

∂ ) + dimkerDF∂

∂

)
.

Finally on N = ∂M we obtain

ξ(DF∂

∂ )− ξ(DE∂

∂ ) − SF(h,D∂) =

∫

∂M

Â(∇2
g∂ ) ∧ T/ch•(h) ,

which is a generalization of APS index theorem for flat bundles.
Details can be found in [7].
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Index theorem and the hypoelliptic Laplacian

Jean-Michel Bismut

The purpose of the talk was to review various aspects of index theory, with an
emphasis on the Gaussian aspect of the theory.

Various questions were reviewed in the talk:

• The algebraic de Rham complex (A (V ) , d) of a vector space V was described.
Once a scalar product is fixed, the Bargmann isomorphism identifies the proper
completion of A (V ) and the Hilbert space of L2 forms on V equipped with a
Witten twist of the de Rham operator. The Bargmann isomorphism exchanges
Dirac masses and Gaussian distributions.

If X is a smooth manifold, its exterior algebra Λ· (T ∗X) has been of constant
use in de Rham theory. If X is a Riemannian manifold, the symmetric algebra
analogue of the operator d− d∗ acting on smooth forms is the generator of the
geodesic flow ∇Y .

• The McKean-Singer formula for the index of a Dirac operator is a Gaussian
like multiplicative formula. I explained that the index formula for the index
has exactly the same Gaussian character. This is obviously true for the Chern

character form, less obvious for the form Â
(
TX,∇TX

)
, which is a generalised

superconnection form associated with the Levi-Civita superconnection of the
tangent bundle [1].

The fact that both sides of the index formula have the same Gaussian charac-
ter suggests that they are just one aspect of the same object. Such considerations
play an important in the construction of the hypoelliptic Laplacian.
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• The hypoelliptic Laplacian [2, 3] is a method to reconstruct the elliptic Dirac
operator from its local index theory. The construction of the hypoelliptic Dirac
operator [3] has been described in some detail. This operator is obtained as
an easy perturbation of the Levi-Civita superconnection on the tangent bundle.
The two sides of the index formula are now put on the same Gaussian footing.

• The scalar version of the hypoelliptic Laplacian is an operator acting on the total
space of the tangent bundle of a Riemannian manifold. It is a weighted sum of
the harmonic oscillator along the fibre, and of the generator of the geodesic flow.
It deforms the classical Laplace-Beltrami operator on the base. The square of
the distance is the natural action associated with the Laplace-Beltrami operator.
Its analogue for the hypoelliptic Laplacian was described. It was emphasized
that it does not defined a distance on the total space of the tangent bundle. In
the case where the base manifold is an Euclidean vector space, uniform bounds
were given for the action as the deformation parameter b tends to 0. When X is
a symmetric space, the uniform bounds obtained in [4] for the hypoelliptic heat
kernel were explained, in relation with the estimates on the action functional.
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Heat trace in a polyhedron

Leonid Friedlander

Let P be an n-dimensional Euclidean polyhedron, let ∆ be the Dirichlet Laplacian
in P , and let h(t) be the heat trace of P , that is the trace of the operator exp t∆.
It is well known that, in the case of manifolds M with smooth boundary Γ, one
has

h(t) ∼
∞∑

k=0

akt
(−n+k)/2.

The first two coefficients can be computed easily: a0 is proportional to the volume
of M , and a1 is proportional the (n − 1)-dimensional volume of Γ; the propor-
tionality coefficients equal (4π)−n/2 and −(1/4)(4π)−(n−1)/2, respectively. The
coefficients that follow can be represented as sums of two terms: the first term is
the integral over M of a function that depends on components of the curvature
tensor and their derivatives, and the second term is an integral over Γ of a function
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that depends on the components of the curvature tensor, the second fundamental
form, and their derivatives. In the case n = 2, one has

a2 =
1

12π

(∫

M

K(x) dm(x) +

∫

Γ

κ(x) ds(x)
)

where K is the Gauss curvature and κ is the geodesic curvature of the boundary.
By the Gauss–Bonnet theorem, a2 = χ(M)/6 where χ(M) is the Euler character-
istic of M .

Computation of the coefficients in the heat trace expansion in a polyhedron is
much more difficult. The n = 2 case is already highly non-trivial. The answer
is that the contribution of a polygonal vertex with interior angle α to the heat
trace asymptotics equals (π2 − α2)/(24πα). This formula was derived in the PhD
dissertation of Fedosov (see [3]). Fedosov studied the asymptotic expansion of
the Riesz means, not of the heat trace; however a simple integral trasformation
converts his results into results about the heat trace. The same formula was also
derived by Ray (apparently unpublished; see [4]). A complete derivation of this
formula can be found in [1] and [5]. When one goes from the previous dimension
to the next one, one has to understand the constant term; each vertex contributes
to it. The problem boils down to the analysis of the heat kernel in an infinite
cone that is associated with a vertex. Such kind of analysis was done by Cheeger
[2]. We give the answer in terms of a function that is associated with Brownian
motion.

Let B0,2 be the space of continuous functions b(t) on [0, 2] such that b(0) =
b(2) = 0, and let µ0,2 be the conditional Wiener measure on B0,2. For a given
Brownian path b(t), we define a function

ξ(r; b) =
1

2

∫ 2

0

dt

(r + b(t))2
.

This function is defined for r > −min{b(t) : 0 ≤ t ≤ 2}, and it is decreasing. Let
r(ξ; b) be the inverse function, and let

r̄(ξ) =

∫
r(ξ, b) dµ0,2 .

For a vertex x of a polyhedron, by Cx we denote the infinite cone associated with
x, an ωx is the intersection of Cx with the unit sphere centered at x. Let θ(t) be
the heat trace in ωx (with the Dirichlet boundary conditions), and let

p(t) = exp

{
− (n− 1)(n− 3)

4
t

}
θ(t).

We consider the following function

J(ǫ) =

∫ ∞

ǫ

r̄(ξ)p′(ξ) dξ .

It has a complete asymptotic expansion as ǫ → 0. Our main result is that, up to
an explicitly computable expression, the contribution of the vertex x to the heat
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trace expansion in a polyhedron equals the constant term in the expansion of J(ǫ)
as ǫ→ 0.
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Radiation Field for Einstein Vacuum Equations

Fang Wang

I use the Radiation field theory to study the asymptotic behavior of solutions to
Einstein Vacuum equations, which are close to Minkowski space-time (R1+n

t,x ,m):

m = −dt2 +∑n
i=1(dx

i)2.

Radiation field. To study the asymptotic behavior of solutions to linear hyper-
bolic equations at null infinity, L. Hörmander used the radiation field introduced
by F.G. Friedlander in [4] using the coordinates

τ = t− |x|, ρ = |x|−1, θ = x/|x|,

for |x| large. Consider the Cauchy problem for the wave equation as follows:

�mu(t, x) = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x), where u0, u1 ∈ C∞
c (Rn).

By writing u = ρ
n−1
2 ũ near ρ = 0 and studying the equivalent equation

(
�m̃ + (n−1)(n−3)

4

)
ũ = 0

with the conformal metric m̃ = ρ2m near ρ = 0, Friedlander showed that ũ is
smooth up to ρ = 0. The radiation field is the image of the map

(1) R : Ḣ1(Rn)× L2(Rn) ∋ (u0, u1) −→ ∂τ ũ|ρ=0 ∈ L2(Rτ × Sn−1
θ ),

which is an isometric isomorphism. Here R is essentially the Møller wave operator
and also the free space translation representation of Lax and Phillips.
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Compactification. Friedlander’s idea can be interpreted geometrically by taking
a suitable compactification of R1+n. Let X0 be the radial compactification of R1+n

with boundary defining function of ρ̃ and X be X0 blown up at a p-submanifold
{|t| = |x|} ∩ ∂X0, resulting in a manifold with corners up to codimension 2 with 5
boundary hypersurfaces: the front face S±

1 , the top and bottom boundary hyper-
surfaces S±

2 and the middle one S0, with boundary defining function ρ1, ρ2 and
ρ0 respectively. Here S±

1 are the compactification of null infinity, in the sense of
Penrose, of Minkowski space-time. Let X2 be the double of X across S±

1 ; the con-
formal metric m̃ extends to a Lorentzian b-metric on X2 with S±

1 as characteristic
surfaces; the vector fields generating the Lorentz group and translations span all
the vector fields tangent to the boundary of X over C∞(X), denoted by Vb(X). In
this picture, the map (1) can be refined by applying the b-calculus due to Melrose
[10] [11]:

RF : ρ
n
2 +δ
0 HN+1

b (Rn)× ρ
n
2 +1+δ
0 HN

b (Rn) ∋ (u0, u1)

−→ ũ|S1 ∈ (ρ0ρ2)
1
2+δ[H−δ

b (R;Hm+1+δ(Sn−1)) ∩ L2(Sn−1;Hm+1
b (R))].

which is an isomorphism for δ ∈ (− 1
2 ,

1
2 ) and n ≥ 3.

Einstein vacuum equations. The Einstein Vacuum equations on an n + 1-
dimensional manifoldM1+n for a Lorentzian metric g make the Ricci Curvature
vanish:

(2) Rµν = 0, ∀µ, ν = 0, 1, ..., n.

The question of stability of Minkowski space-time concerns the Cauchy problem
for (2): Given an n-dimensional manifold Σ0 with a Riemannian metric g0 and a
symmetric two-tensor k0, which satisfy the constraint equations

R0 − [k0]
j
i [k0]

i
j + [k0]

i
i[k0]

j
j = 0, ∇j [k0]ij −∇i[k0]

j
j = 0, ∀i = 1, ..., n,

find a Lorentzian manifold (M1+n, g) satisfying (2) and an embedding Σ0 ⊂ M
such that g0 is the restriction of g to Σ0 and k0 is the second fundamental form
of (Σ0, g0) in (M1+n, g). For the physical case of n = 3, in 1952 Choquet-Bruhat
showed in [1] the local well-posedness of the Cauchy problem for the Einstein Vac-
uum equations with general smooth initial data and later in 1993 D. Christodoulou
and S. Klainerman proved in [2] the global stability of Minkowski space-time for
strongly asymptotically flat initial data with an asymptotic estimate of the gravi-
tational field at null infinity.

The Einstein equations are invariant under diffeomorphisms. In [1] and her
related work, Choquet-Bruhat broke this gauge invariance by working in harmonic
coordinates :

�gx
µ = 0⇔ Γµ = gαβ∂αgµβ − 1

2g
αβ∂µgαβ = 0, ∀µ = 0, 1, ..., n.

In terms of the harmonic gauge, the Einstein Vacuum equations reduce to a system
of quasilinear wave equations

(3) �ggµν = P (∂µg, ∂νg) +Qµν(∂g, ∂g), ∀µ, ν = 0, 1, ..., n,
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where P and Qµν are quadratic forms with Qµν also satisfying the null condi-
tion. For n ≥ 4, general results for quasilinear wave equations with small initial
data ensures the existence of global solutions to (3); see [3], [5], [6] and [7]. For
n = 3, in 2005, H. Lindblad and I. Rodnianski proved in [8] and [9] the global
stability of Minkowski space-time with a decay estimate on h = g − m at null
infinity for general asymptotically flat initial data with Σ0 ≃ Rn by introducing
the weak null condition. They also showed in [8] that the harmonic gauge is stable
by an argument of uniqueness of the wave equations for the components of the
connection.

To study the asymptotic behavior of solutions to (3), it is equivalent to study
the conformal transformation of it:

(4)
(�g̃ + γ̃)h̃µν = ρ

n−5
2

1 (ρ0ρ2)
n−1
2 F̃µν(h̃, ∂̃h̃),

where g̃ = ρ̃2g, h̃ = ρ̃
1−n
2 , γ̃ = −ρ̃n−1

2 �g̃ρ̃
1−n
2 , ∂̃ ∈ Vb(X).

Here γ̃ is an analytic function of h̃ with all coefficients smooth and uniformly
bounded and F̃µν is a quadratic form in (h̃, ∂̃h̃) with all coefficients having the
same property as γ̃.

Main result. Denote by UN,δ
ǫ the space of (h0, h1) such that

‖(h0, h1)‖
ρ

n
2

+δ

0 HN+1
b

(Rn)×ρ
n
2

+1+δ

0 HN
b
(Rn)

< ǫ, Γµ|t=0 = ∂tΓµ|t=0 = 0, µ = 0, ..., n,

with (h0, h1) = (g−m|t=0, ∂tg|t=0). Here ∂tΓµ|t=0 = 0 are equations of (h0, h1) if
combined with the Reduced Einstein equations (3).

Given Cauchy data (h0, h1) ∈ UN,δ
ǫ with n ≥ 4, N ≥ n

2 + 6, δ ∈ (− 1
2 , 0) and

ǫ > 0 small enough, then (4) has a global solution h̃ on X , which is C0,δ+ 1
2 up to

S±
1 . Hence the radiation field h̃|S1 of h is well defined and satisfies

(5) ∂τ [h̃|S1 ]µνθ
ν +

1

2
θµ∂τ trm[h̃|S1 ] = 0, µ = 0, ..., n.

Here we take the convention θ0 = −θ0 = 1, θi = θi = xi/|x|. Denote by

WN,δ
ǫ =

{
h̃|S1 : ‖h̃|S1‖(ρ0ρ2)

1
2
+δ[H−δ

b
(R;Hm+1+δ(Sn−1))∩L2(Sn−1;Hm+1

b
(R))]

< ǫ,

h̃|S1 satisfies (5)
}
.

Combining the linear theory and implicit function theorem, we have

Theorem 1. For n ≥ 4, N ≥ n
2 +6, δ ∈ (− 1

2 , 0) and ǫ > 0 small enough, the map

RF : UN,δ
ǫ ∋ (h0, h1) −→ h̃|S1 ∈ WN,δ

Cǫ

is an isomorphism onto its image for some constant C > 0.
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Gluing semiclassical resolvent estimates, or the importance of being

microlocal

András Vasy

(joint work with Kiril Datchev)

In this talk I give a method for gluing high energy or semiclassical resolvent
estimates, i.e. to obtain global resolvent estimates when analogous estimates are
known for local models. Such a method is useful because the estimates for the
local models can be obtained using different techniques, which might not be easy
to combine directly. The key point is the use of a microlocal understanding of the
propagation of semiclassical singularities to patch the resolvents.

As an application, one can describe solutions of the wave equation modulo
exponential decay when

(1) One has a model at infinity with good high energy resolvent estimates, such
as asymptotically hyperbolic spaces, see the work of Melrose, Sá Barreto
and the lecturer [7].

(2) One has ‘mild’ trapping in a compact set, such as normally hyperbolic
trapped sets, see the recent work of Wunsch and Zworski [10].

This combination gives a more robust way of analyzing wave propagation on de
Sitter-Schwarzschild space than done earlier in [7, 6], which relied on combining
the first listed ingredient with high energy estimates for the cutoff resolvent (i.e.
for the actual resolvent on the whole of de Sitter-Schwarzschild space, sandwiched
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between cutoffs, due to Bony and Häfner [1], who used one dimensional techniques)
by the technique of Bruneau and Petkov [2].

We actually work with more general semiclassical resolvent estimates which
can be motivated as follows. Let P̃ = ∆g + V on a Riemannian manifold (X, g)

with a real potential V , and let R(λ) = (P̃ − λ)−1 be the resolvent of P̃ when
Imλ > 0, as well as its analytic continuation across the positive real axis (λ0,+∞),
λ0 sufficiently large, when this exists. A contour deformation (in τ , the dual of t)
argument shows that, as far as high energy behavior is considered, it suffices to
obtain polynomial (in Re τ) estimates for R(τ2), | Im τ | < Γ′, Γ < Γ′, in order to
understand the solutions of the wave equation modulo exponential decay e−Γt, in
spatially compact sets. With h = |Re τ |−1, and rewriting τ , one is left to consider
h−2(h2(∆ + V )− 1− z), with | Im z| ≤ Ch (and Re z is O(h2)).

The semiclassical principal symbol of the more general operator P = h2∆g +
V − 1 is p = |ξ|2g + V (x) − 1, which thus vanishes on the typically non-empty
characteristic set Σp = {(x, ξ) : p(x, ξ) = 0}, so even though the standard principal
symbol of P is elliptic, P is not elliptic in the semiclassical sense. From the local
perspective, the best case scenario is if p is real principal type, i.e. the Hamilton
vector field Hp does not vanish on Σp. This is analogous in the standard ps.d.o.
world to (micro)hyperbolic equations, such as the wave equation, where one has
the loss of one order of derivative relative to the elliptic case. Correspondingly,
one may hope for estimates such as ‖(P − z)−1‖ ≤ Ch−1, with the norm being as
an operator acting on some weighted spaces. These indeed hold in asymptotically
hyperbolic spaces, see [7], acting on optimally weighted spaces. In smaller than
O(h) neighborhood of the real axis (Im z = 0), such estimates hold if (X, g) is a
non-trapping asymptotically Euclidean, or rather scattering, space, as proved by
the lecturer and Zworski [9], as well as in more general geometries as shown by
Cardoso and Vodev [3].

The semiclassical wave front set, WFh, of a function u, measures microlocally,
i.e. in T ∗X , whether u rapidly decays in h relative to some space (here, L2), see
e.g. [5]. Then real principal type propagation of singularities is the following:
Suppose that u ∈ h−NL2. Then WFh(u) \WFh(Pu) is a union of maximally
extended nullbicharacteristics. Note that even if Pu = 0, this allows for WFh(u)
to be non-empty, much like solutions of the wave equations need not be smooth.

When one is considering a limit such as R(z), with Im z → 0, for which one
has an elliptic problem in Im z > 0, one can sometimes get a one-sided estimate:
if the backward bicharacteristic from (y, η) is disjoint from WFh(Pu), and Pu is
compactly supported, say, then (y, η) /∈ WFh(u). Thus, singularities propagate
forwards. This holds, for instance, on asymptotically hyperbolic spaces, as follows
from [7]. In other words, singularities do not appear ‘out of nowhere’ from −∞
along bicharacteristics. The same holds for solutions of operators of the form
P − iW , at least microlocally along bicharacteristics that reach T ∗W−1(1) in
finite time, where W ∈ C∞(X ′

1; [0, 1]) has W = 0 on X1 and W = 1 off a compact
set, see the work of Nonnenmacher and Zworski [8]. In fact, complex absorbing
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potentials provide a convenient way of localizing problems to trapped sets, see e.g.
[10, 4], so our gluing construction is expected to be very useful in applications.

To set up the gluing problem, suppose X̄ is a compact manifold with boundary,
X its interior, x a boundary defining function, (X, g) is complete, P = h2∆g+V −1
is self-adjoint. Let X0 = {x < 4}, X1 = {x > 1}. The first serious assumption is
that level sets of x are (null)bicharacteristically convex in the overlap X0∩X1, i.e.
if γ is a nullbicharacteristic then ẋ(γ(t)) = 0 implies ẍ(γ(t)) < 0. This states x ◦ γ
can only have strict local maxima as critical points. It is this convexity that will
assure that the iterative construction we give ends in finitely many (three) steps.

Next, we assume that there are manifolds X ′
j , j = 0, 1, including Xj as open

sets, with some not necessarily self-adjoint semiclassical Schrödinger operators Pj ,
such that Pj |Xj

= P |Xj
. We also assume that X1 is bicharacteristically convex for

P1, i.e. that no (null)bicharacteristic of P1 can leaveX1 and return there; this holds
in most cases of interest. Assume also that the resolventsRj(z) extend analytically
to some set D ⊂ [−E,E] + i[−Ch,Ch], and, acting on certain weighted spaces,
with weight non-vanishing in X0 ∩X1 for R0 and in X1 for R1, satisfy polynomial
bounds ‖Rj(z)‖ ≤ aj(h) ≤ h−N , for 0 < h ≤ h0 and some N .

The most important assumption is a microlocal one on the Pj . Suppose q ∈
T ∗X ′

j is in the characteristic set of Pj , and let γ− : (−∞, 0] → T ∗X ′
j be the

backward Pj-bicharacteristic from q. We say that the resolvent Rj(z) is semiclas-
sically outgoing at q if u ∈ L2

comp(Xj) polynomially bounded, WFh(u) ∩ γ− = ∅
implies that q /∈WFh(Rj(z)u), i.e. WFh could only arise from the past of q. Our
microlocal assumption is then that

(0-OG) R0(z) is semiclassically outgoing at all q ∈ T ∗(X0 ∩X1) ∩ Σp,
(1-OG) R1(z) is semiclassically outgoing at all q ∈ T ∗(X0∩X1)∩Σp such that γ−

is disjoint from T ∗(X ′
1 \ (X \X0)), thus disjoint from any trapping in X1.

Theorem 1. There exists h0 ∈ (0, 1) such that for h < h0, R(z) continues ana-
lytically to D and obeys the bound ‖R(z)‖ ≤ Ch2a20a1 there, with the norm taken
in the same weighted space as for R0(z).

In particular, when a0 = C/h, we find that R(z) obeys (up to constant factor)
the same bound as R1(z), the model operator with infinity suppressed.

In order to prove the theorem, we construct a semiclassical parametrix. Let
χ1 ∈ C∞

0 (X ; [0, 1]) be such that χ1 = 1 near {x ≥ 3} and suppχ1 ⊂ {x > 2} and
let χ0 = 1− χ1. Define a right parametrix for P by

F ≡ χ0(x− 1)R0(z)χ0(x) + χ1(x+ 1)R1(z)χ1, so

PF = Id+[P, χ0(x− 1)]R0(z)χ0 + [P, χ1(x+ 1)]R1(z)χ1 ≡ Id+A0 +A1.

The error A0 + A1 is large, O(1), in h due to semiclassical propagation of singu-
larities, but using an iteration argument we can replace it by a small error.

The key point is that by the forward propagation of semiclassical singularities,
i.e. the outgoing assumptions on the resolvent, ‖A0A1‖L2→L2 = O(h∞). Indeed,
for a pair of points to be in the wave front relation of the product, there must
be a nullbicharacteristic of P going through three points in T ∗X over suppχ1,
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supp dχ1(.+1) and supp dχ0(.−1) in this order, which is excluded by the convexity
assumption. This implies that iterating the parametrix construction, i.e. solving
away the A0 error using R1 and solving away the A1 error using R0, and repeating
once more, the error is O(h∞).
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Analytic torsion of hyperbolic 3-manifolds

Werner Müller

The purpose of this talk is to show that analytic torsion can be used to detect
torsion in the cohomology of locally symmetric spaces defined by arithmetic sub-
groups of semisimple Lie groups. We consider here only the case of hyperbolic
3-manifolds. However, the methods are expected to work also for higher dimen-
sions. Furthermore, we consider only compact quotients. The goal, is of course,
to extend the methods to the finite volume case.

We write the 3-dimensional hyperbolic space as H3 = SL(2,C)/ SU(2). Let
Γ ⊂ SL(2,C) be a discrete torsion free co-compact subgroup. Then X = Γ\H3 is
a compact oriented hyperbolic 3-manifold. We are interested in co-compact arith-
metic subgroups Γ. Such discrete groups are derived from a quaternion division
algebra D over a imaginary quadratic number field F (see [5]).

For m ∈ N let ρm : SL(2,C) → GL(Sm(C2)) be the m-th symmetric power of
the standard representation of SL(2,C). Recall that this is the standard irreducible
representation of SL(2,C) of dimension m+1 acting in the space of homogeneous
polynomials Sm(C2) of degree m. By restriction of ρm to Γ we obtain a repre-
sentation of Γ which we continue to denote by ρm. This representation of Γ is
unimodular and acyclic [3], which means that | det(ρm(γ))| = 1 for all γ ∈ Γ and
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H∗(X,Em) = 0, where Em → X denotes the flat vector bundle over X attached
to ρm|Γ. Therefore the analytic torsion TX(ρm) and the Reidemeister τX(ρm) of
X with respect to ρm|Γ are well defined and independent of any choice of a fibre
metric in Em which we need to choose in order to define TX(ρm). Moreover by
[8] we have TX(ρm) = τX(ρm). Our first main result is the following asymptotic
formula for τX(ρm) as m→∞ (see [9]).

Theorem 1. Let X = Γ\H3 be a compact hyperbolic 3-manifold. Then we have

− log τX(ρm) =
vol(X)

2π
m2 +O(m)

as m→∞.

We note that there is an analogous result in the holomorphic setting. In [2]
Bismut and Vasserot studied the asymptotic behavior of the holomorphic Ray-
Singer torsion for symmetric powers of a positive vector bundle.

An immediate consequence of Theorem 1 is that the set {τX(ρm) : m ∈ N} of
Reidemeister torsions determines the volume of the hyperbolic manifold X .

The proof of Theorem 1 is based on the study of the twisted Ruelle zeta function.
We recall its definition. Let ρ : Γ → GL(V ) be a representation of Γ on a finite-
dimensional complex vector space V . Given γ ∈ Γ, denote by [γ] the Γ-conjugacy
class of γ. For γ ∈ Γ\ {e} let ℓ(γ) be the length of the unique closed geodesic that
corresponds to [γ]. Then the twisted Ruelle zeta function is defined as

(1) R(s; ρ) :=
∏

[γ] 6=e
prime

det
(
I− ρ(γ)e−sℓ(γ)

)
.

The product runs over all nontrival primitive conjugacy classes. The infinite prod-
uct converges in some half-plane Re(s) > c and admits a meromorphic extension
to C [7, Sect. 7]. Let R(s; ρm) denote the twisted Ruelle zeta function attached to
ρm|Γ. From the thesis of A. Wotzke [11] we obtain the following result. See also
[9].

Theorem 2. For each m ∈ N the Ruelle zeta function R(s; ρm) is regular at s = 0
and its value at s = 0 satisfies

|R(0; ρm)| = TX(ρm)2.

The corresponding result for unitary representations ρ of Γ was proved by Fried
[6]. Using the equality of TX(ρm) and τX(ρm) [8], we get

|R(0; ρm)| = τX(ρm)2.

The proof of Theorem 1 is now obtained by the study of the asymptotic behavior
of |R(0; ρm)| as m→∞.

Next we apply Theorem 1 in the arithmetic setting. Let Γ be a co-compact
arithmetic subgroup of SL(2,C) which is derived from a quaternion devison algebra
D over an imaginary quadratic field [5]. We assume that Γ is torsion free. This can
be achieved by choosingD appropriately or by passing to a subgroup of finite index.
It follows from the construction of Γ that for all even n ∈ N, there exists a lattice
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Mn ⊂ Sn(C2) which is Γ-stable with respect to the action given by ρn = Symn.
Let Mn be the associated local system of free Z-modules over X . Denote by
H∗(X,Mn) the cohomology of X with coefficients inMn [10]. Then H∗(X,Mn⊗
R) = 0. Hence H∗(X,Mn) is a finite abelian group. Denote by |Hp(X,Mn)| the
order of Hp(X,Mn). Then our second main result is the following theorem.

Theorem 3. The alternating sum of log |Hp(X,M2k)| is independent of the
choice of a Γ-stable lattice M2k in S2k(C2) and we have

(2)
3∑

p=1

(−1)p log |Hp(X,M2k)| =
2

π
vol(X)k2 +O(k)

as k →∞.

An immediate consequence is the following corollary.

Corollary. For any choice of lattices M2k in S2k(C2) we have

(3) lim inf
k

log |H2(X,M2k)|
k2

≥ 2

π
vol(X).

Actually, we expect that for p = 1, 3 we have log |Hp(X,M2k)| = O(k) as
k →∞. In other words, we pose the following

Conjecture. For any choice of lattices M2k in S2k(C2) we have

lim
k→∞

log |H2(X,M2k)|
k2

=
2

π
vol(X).

The proof of Theorem 3 follows from Theorem 1 and the following result about
Reidemeister torsion. Let ρ : Γ → GL(V ) be a finite-dimensional unimodular
acyclic representation of Γ on a real vector space V . Assume that there exists a
lattice M ⊂ V which is Γ-stable. Let M be the associated local system of free
Z-modules over X . Then H∗(X,M) is a finite abelian group and the Reidemeister
torsion τX(ρ) associated to ρ satisfies

τX(ρ) =

3∏

q=0

|Hq(X,M)|(−1)q+1

.

This is a general algebraic fact, which was first observed by Cheeger [4, (1.4)]. As
a simple example consider d ∈ Z, d 6= 0. Let A : R → R be the multiplication by
d. Then we have |Z/dZ| = |d| = | detA|.

In [1] Bergeron and Venkatesh established results of similar nature but in a
different aspect. They study the growth of the torsion in the cohomolgy for a
fixed local system as the lattice varies in a decreasing sequence of congruence
subgroups. Again the volume of the locally symmetric space appears as the main
ingredient of the asymptotic formulas.
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Recent Advances on the Analytic Torsion of Singular Spaces

Boris Vertman

(joint work with Rafe Mazzeo and Werner Müller)

The analytic torsion has been introduced by Ray and Singer in [13] as the analytic
counterpart to the combinatorially defined Reidemeister-Franz torsion in [11], [12]
and [4]. Equality of both invariants has been proved independently by Cheeger
[2] and Müller [9] for closed manifolds. The Cheeger-Müller Theorem asserts the
topological nature of the Ray-Singer analytic torsion, which is a priori only a spec-
tral invariant. In view of the general study of spaces with singularities, initiated
by Cheeger in [3], we may ask ourselves the following question.

Question: What topological information does the analytic torsion carry in pre-
sense of conical and edge singularities?

We present here the recent advances on that question, based on the joint
projects with Rafe Mazzeo [7] and with Werner Müller [10]. An earlier step for-
ward on the question above has been done by the author in [16], where the analytic
torsion of a bounded cone has been computed in terms of spectral and topogical
data of the cross section. The computation uses the double-summation method
developped by Spreafico in [14], [15], and a symmetry observation by Lesch [6].

Theorem 1. (Vertman, [16]) Let Mm = (0, 1]×N, gM = dx2⊕x2gN be a bounded
generalized cone over a closed oriented Riemannian manifold (Nn, gN ), n = dimN .
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Denote the Euler characteristic of N by χ(N) and the Betti numbers by bk =
dimHk(N). Put αk = (n− 1)/2− k and define

Fk := {ν ∈ R+ | ν2 = η + (k + 1/2− n/2)
2
, η ∈ Spec∆k,ccl,N\{0}},

ζk,N (s) =
∑

ν∈Fk

ν−s, ζk,N (s, α) :=
∑

ν∈Fk

(ν + α)−s, Re(s)≫ 0.

Then the logarithm of the scalar analytic torsion of (M, gM ) is given by a sum of
a topological, the torsion-like and the residual terms

logT (M, gM) = Top(M) + Tors(M, gM ) + Res(M, gM ),

where the topological term is an algebraic combination of Betti numbers

Top(M) = log 2
2 χ(N) +

n
2 −1∑

k=0

(−1)kbk
(

1
2 log(n− 2k + 1)−

n
2 −k−1∑

l=0

log(2l+ 1)
)
, m odd,

Top(M) =

(n−1)/2∑

k=0

(−1)k

2 bk log(n− 2k + 1), m even.

The torsion-like term is in fact the analytic torsion of (N, gN ) in even dimensions

Tors(M, gM ) =

n/2−1∑

k=0

(−1)k
2

(ζ′k,N (0, αk)− ζ′k,N (0,−αk)), m odd,

Tors(M, gM ) =− 1

2
logT (N, gN), m even.

The residual term is an intricate combination of residues of ζk,N (s)

Res(M, gM ) =

n/2−1∑

k=0

(−1)k

4

n/2∑

r=1

Resζk,N (2r)
2r∑

b=0

Ar,b(αk)
Γ′(b+r)
Γ(b+r) , m odd,

Res(M, gM ) =

(n−1)
2∑

k=0

(−1)k

4

(n−1)
2∑

r=1

Resζk,N (2r + 1)

2r+1∑

b=0

Br,b(αk)
Γ′(b+r+ 1

2 )

Γ(b+r+ 1
2 )

, m even,

where the coefficients Ar,b(αk) and Br,b(αk) are determined by certain recursive
formulas, associated to combinations of special functions.

In view of our general results in [16], de Melo, Hartmann and Spreafico subse-
quently evaluated in [5] and [8] the analytic torsion in the special case of a cone
over the sphere Sn, equating in even dimensions the residual term Res(M, gM ) to
the anomaly term of Brüning-Ma [1] by direct comparison. This approach however
limits the result either to the special case of spheres or the general cross-section
in lower (even) dimensions.

Nonetheless, one conjecturally expects Res(M, gM ) to equal the Brüning-Ma
anomaly, coming from the non-product metric structure of the bounded cone at
its regular boundary, and hence to vanish if the cone metric is smoothened to
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product away from the conical singularity. We answer this affirmatively with the
following precise statement.

Theorem 2. (Müller-Vertman [10], see also [17]) Under the notation of Theorem
1 we have the following identification of the residual term

Res(M, gM ) = ABM (M, gM ) +
log
√
π

2
χ(N),

where ABM (M, gM ) denotes the Brüning-Ma anomaly, coming from the non-
product metric structure of the bounded cone (M, gM ) at its regular boundary,
and the Euler characteristic χ(N) of the cross-section is zero for dimN odd.

The statement is proved by considering a bounded generalized cone, with the
conical singularity truncated off. Explicit computations relate its analytic torsion
to the residual term Res(M, gM ). On the other hand, truncation of the conical
singularity leads to a finite cylinder with a non-product metric, whose analytic
torsion metric anomaly has been discussed by Brüning-Ma in [1].

It should be noted that our new result of Theorem 2, which had already ap-
peared in the preprints [17], was subsequently announced by Hartmann-Spreafico
in [5].

In view of the intricate structure of the analytic torsion in presense of conical
singularities, it is a valid question whether one can at all hope to rediscover the
Cheeger-Müller theorem in any singular configuration, with the analytic torsion
being metric-independent and thus a topological invariant. The following result
aims precisely at this issue in the setup of edge singularities.

Theorem 3. (Mazzeo-Vertman [7]) Let (M, gM ) be an odd-dimensional compact
Riemannian manifold with a simple edge singularity B. Let U = (0, 1)× Y be an
open neighborhood of B, where Y is the total space of a fibration φ : Y → B with
fibres F . The incomplete edge metric gM takes the following form over U

(1) gM
∣∣
U
:= dx2 + x2κ(x) + φ∗h(x),

where h(x) is a smooth family of metrics on B and κ(x) is a smooth family of
bilinear forms restricting to Riemannian metrics on fibres F , such that φ is a
Riemannian submersion for each x ∈ (0, 1). Then, the analytic torsion norm
T (M, gM) is invariant under all deformations of gM which fix κ(0) and h(0). If
moreover dimB is odd, then T (M, gM) is invariant under all deformations of
admissible edge metrics gM , where κ(x) and h(x) are in fact functions of x2.
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[12] , Überdeckungen von Komplexen, J. reine angew. Math. 173 (1935), 164-173
[13] D.B. Ray and I.M. Singer, R-Torsion and the Laplacian on Riemannian manifolds, Adv.

Math. 7 (1971), 145-210
[14] M. Spreafico, Zeta function and regularized determinant on a disc and on a cone, J. Geom.

Phys. 54 (2005), no. 3, 355–371
[15] , Zeta invariants for Dirichlet series, Pacific J. Math. 224 (2006), no. 1, 185-200
[16] B. Vertman, Analytic torsion of a bounded generalized cone, Comm. Math. Phys. 290 (2009),

no. 3, 813–860.
[17] , The Metric Anomaly at the Regular Boundary of the Analytic Torsion of a Bounded

Generalized Cone, I. and II., arXiv:math.SP/1004.2067 and arXiv:math.SP/1004.2069

Hodge theory for manifolds with fibered cusps

Jörn Müller

In this talk we present the main result of [2]; for details we refer to this article
and the references given there.

Manifolds with fibered cusp metrics can be considered as a geometrical general-
ization of Q-rank one locally symmetric spaces at “infinity” as well as of manifolds
with cusps or cylindrical ends. In [1] methods from the φ-calculus developed by
Melrose, Mazzeo, Vaillant and others have been used to find an identification of
square integrable harmonic forms H

p
(2)(X) with a subspace of the middle perver-

sity intersection cohomology. We want to take another approach and identify the
de Rham cohomology of a manifold with fibered cusps with a space of harmonic
forms; generally these forms will not be square integrable.

For a Riemannian submersion M → B with f -dimensional standard fiber F we
equip Z = R+×M with the Riemannian metric gZ = du2+π∗gB+e−2ugFb , where
gB and gFb are the Riemannian metrics on B resp. the vertical tangent bundle
TF . A Riemannian manifold X is called manifold with fibered cusp metric, if X
is isometric to (Z, gZ) outside a compact set. As long as the fibers are not points,
X is a complete manifold with finite volume. The splitting TM = π∗TB ⊕ TF of
the tangent bundle induces an isomorphism Ω∗(M) = Ω∗(B,W ), where W is the
vector bundle whose fiber over b ∈ B is C∞(Fb,Λ(T

∗F )|Fb
). On W one can define

a Hermitean metric and thus the fiber-wise “vertical” Laplacian. In this way we
can define ‘fiber-harmonic forms’ over M , and from there, over Z. These turn out
to play an crucial role in the spectral theory of the Laplacian on X .
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For the analysis of the spectral theory it seems useful, if not necessary, to
ensure that fiber-harmonic forms are an invariant subspace of ∆Z . To that end
we impose two obstructions on the submersion M → B, namely (A) that the
horizontal distribution is integrable and (B) that fiber-harmonic forms are an
invariant subspace of the “horizontal Laplacian” ∆1,0. One important consequence
is that the de Rham cohomology of M can be identified with ∆1,0-harmonic forms
on B with values in harmonic sections in the fibers:

Hp(M) ∼=
⊕

r+s=p

H
r(B,H s(F )).

First we investigate the spectral theory of the Hodge-Laplace operator on X .
To that end we first examine the spectral theory of the non-compact end Z using
the Friedrichs extension of the Laplacian on compactly supported forms. The
conditions (A) and (B) introduced above allows the parametrix construction of
the resolvent for the Laplacian known from the setting of manifolds with cusps
(e.g. [4]) to be carried out in our more general fibered setting. The explicit
knowledge of the resolvent kernel, and arguments from mathematical scattering
theory show

Proposition 1.

The absolutely continuous part L2
acΩ

p(X) of dom∆X is unitarily equivalent to
the fiber-harmonic forms Π0L

2Ωp(Z). Furthermore, eigensections orthogonal
to fiber-harmonic forms (“cusp forms”), are square integrable.

In this sense, the spectral theory of ∆ on X is determined by the spectral theory
on Z.

The spectral resolution of L2
acΩ

p(X) is given by generalized eigenforms (GEs);
these will be the main ingredient in our Hodge-type theorem.

Let φ ∈H p−k(B,H k(F )) and set dk = |f/2− k|. Then there is a unique GE
E(s, φ) ∈ Ωp(X) such that

∆E(s, φ) = s(2dk − s)E(s, φ),

s 7→ E(s, φ) is meromorphic for s ∈ U ⊂ C, 2dk ∈ U , and E(s, φ) satisfies a growth
condition on the end Z. As a consequence the asymptotic expansion on the end
Z of the fiber-harmonic part of E is given by

(1) Π0E(s, φ) = e(f/2−k−dk+s)rφ+

f∑

l=0

e(f/2−l+dl−s)rT [l](s)(φ) +G(s, φ),

whereG(s, φ) ∈ L2Ωp(X) for Re(s) > dk and T [l](s) are linear operatorsH ∗(M)→
H ∗(B,H l(F )), which are meromorphic in s. In the context of mathematical scat-
tering theory, the T [l](s) are referred to as scattering operators.

In view of Hodge theory the spectral value s = 2dk is of particular interest,
because if E(·, φ) is regular there, it is harmonic and not square integrable. Then
it remains to determine under which conditions E(2dk, φ) is closed. For that, we
employ functional equations that are derived from the asymptotic expansion (1).
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The next task is to identify the poles of s 7→ E(s, φ). In the theory of auto-
morphic forms, information about the poles of generalized eigenforms can be read
off from product formulas known as the Maaß–Selberg relations. In [2] we derive
a similar formula for the inner product of GEs which are perpendicular to fiber-
harmonic forms outside of a compact set. From that, we obtain that the order of
a pole in s = 2dk coincides with the maximal order of a pole of the scattering op-

erator T (s) and is at most one. The residue Ẽ(φ) at 2dk is a closed L2−harmonic
form, thus a representative in both Hp(X) and Hp

(2)(X).

In this way to every φ ∈ H p(M) a so-called singular value, that is a closed
harmonic form Ξ(φ) ∈ Ωp(X), can be associated. This idea for the classification of
harmonic representatives of Hp(X) by GEs goes back to G. Harder in the setting
of locally symmetric spaces.

Now we can state our main result. Let r : Hp(X)→ Hp(M) be the restriction
map induced from the inclusion M ⊂ X .
Theorem 1.

Let Hp
! (X) := im(Hp

c (X)→ Hp(X)) be the image of cohomology with compact
support in the de Rham-cohomology. Let Hp

inf(X) be a complementary space to
Hp

! (X) in Hp(X),

(2) Hp(X) = Hp
! (X)⊕Hp

inf(X).

Let Rp := im(r : Hp(X) → Hp(M)). Then Ξ(Rp) is isomorphic to Hp
inf(X)

and Ξ(Hp(M)) = Ξ(Rp).

Since all classes on the right hand side of (2) have unique harmonic representatives,
this indeed is a “Hodge-type” theorem.

The image of the restriction map r is of independent interest, in fact, the proof of
Theorem 1 relies heavily on its explicit description in terms of values and residues
of the scattering operator (see [2]).

The detailed knowledge we have obtained about Hp
inf(X) also allows us to com-

pute the signature of X , by showing that there are involutions τ on L2−harmonic

forms, which commute with the construction of Ẽ,

τXẼ(ω) = Ẽ(τZω).

This leads to a direct proof of the identity L2 -sign(X) = sign(X0, ∂X0), which
was already given in [5].
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Computations and Applications of η-invariants

Sebastian Goette

Riemannian metrics of positive sectional curvature on closed manifolds are a rare
phenomenon, and sharp conditions for their existence are far from being under-
stood. For this reason, one is still interested in finding new examples. Recently,
Grove, Wilking and Ziller [10] found two families (Pk), (Qk) of 7-manifolds and one
exceptional space R, which possibly allow such metrics and contain new examples.
In [9], Grove, Verdiani and Ziller constructed a positive sectional curvature metric
on P2 (note that P1 = S7); another construction is due to Dearricott [6]. Here,
we determine the diffeomorphism types of the manifolds Pk using η-invariants and
secondary characteristic classes.

The Pk are highly connected (πk(M) = 0 for k <
[
dimM

2

]
) with π3(Pk) ∼=

Z/kZ ∼= H4(Pk). By Crowley’s work [2], their diffeomorphism type is determined
by the Eells-Kuiper invariant µ(Pk) ∈ Q/Z and a quadratic form q : H4(Pk) →
Q/Z. In joint work [4] with Crowley, we refine q(a) to an invariant t(E) of a
quaternionic line bundle E with a = c2(E) ∈ H4(M), in analogy with the Kreck-
Stolz invariants s2 and s3 for complex line bundles of [12].

In contrast to the complex case, a quaternionic line bundle is not uniquely de-
termined by its characteristic class a, and not every integer class a ∈ H4(M) arises
as c2(E) for a quaternionic line bundle E →M . By definining and analysing t(E)
over suitable 4n− 1-manifolds, we can detect all quaternionic line bundles on S7

and S11. For higher n, we recover the Feder-Gitler conjecture [7] on the existence
of quaternionic line bundle over HPn.

Coming back to Pk, the two invariants µ and t are classically defined on oriented
spin manifoldsN bounding Pk, but it is not clear how to constructN . On the other
hands, both invariants can be expressed as linear combinations of η-invariants of
certain Dirac operators and Cheeger-Chern-Simons correction terms on Pk itself.
In order to determine the necessary η-invariants, we write the spaces Pk as Seifert
fibrations with generic fibre S3 over some base orbifold Bk as indicated in [10].

It has been shown by Bismut, Cheeger [1] and Dai [5] that the η-invariants of
Dirac operators DM,ε on total spaces of fibre bundles converge in the adiabatic
limit ε → 0, if the kernels of the associated fibrewise Dirac operators DX form a
vector bundle. This result can be generalised to Seifert fibrations M → B, so M
is foliated with compact leaves such that the space of leaves forms an orbifold B.
We assume that H = ker(DX) is a vector orbibundle on B. Let ΛB be the inertia

orbifold of B and let ÂΛB(TB,∇TB) ∈ Ω•(ΛB) denote the normalised equivariant

Â-form as in Kawasaki’s orbifold index theorem [11]. Let A denote Bismut’s Levi-
Civita superconnection, then we construct equivariant η-forms ηΛB(A) ∈ Ω•(ΛB)
as in [8]. Let DH

B denote the horizontal Dirac operator on H = ker(DX) → B,
and let (λν(ε))ν denote the finite family of very small eigenvalues of DM,ε.

Theorem 1 (cf. [1], [5]). Let p : M → B be a Seifert fibration, and let DM,ε be
an adiabatic family of Dirac operators over M such that H = ker(DX) forms a
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vector orbibundle over B. With DH
B and λν(ε) as above and ε > 0 small, we have

lim
ε→0

η(DM,ε) =

∫

ΛB

ÂΛB

(
TB,∇TB

)
2ηΛB(A) + η

(
DH

B

)
+
∑

ν

sign(λν (ε)) .

With this result and the equivariant η-forms computed in [8], one can compute
the η-invariants in the definition of µ(Pk) and tPk

for any single space Pk. In order
to obtain a general formula for all members of the family (Pk), one notices that
the contributions from the singular fibres are given by generalisations of Dedekind
sums. Although we are not aware of an explicit general formula for these Dedekind
sums, we can compute them inductively modulo integers by writing each Pk as a
Seifert fibration in two different ways, see [10]. It should be noted that one can get
rid of the integer ambiguity if one is able to exhibit a family of metrics of positive
scalar curvature on each Pk that connects two adiabatic limit metrics stemming
from the two Seifert fibration structures on Pk.

Theorem 2. The Eells-Kuiper invariant of Pk is given by

µ(Pk) = −
4k3 − 7k + 3

25 · 3 · 7 ∈ Q/Z .(1)

Crowley’s quadratic form q on H4(Pk) ∼= Z/kZ is given by

q(ℓ) =
ℓ(ℓ− k)

2k
∈ Q/Z .(2)

By comparing these values with the corresponding values for S3-bundles over S4

in [3] and [4], one can construct manifolds that are diffeomorphic to Pk.

Theorem 3. Let Ek,k → S4 denote the principal S3-bundle with Euler class k ∈
H4(S4) ∼= Z, and let Σ7 denote the exotic seven sphere with µ(Σ7) = 1

28 . Then
there exists an orientation preserving diffeomorphism

Pk
∼= Ek,k #Σ

# k−k3

6
7 .

In particular, Pk and Ek,k are homeomorphic.

This result also implies that P2 with reversed orientation is diffeomorphic to
some S3-bundle over S4, and to US4#Σ7, where US4 denotes the unit tangent
bundle of S4.
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Relative Index Pairing and Odd Index Theorem for Even Dimensional

Manifolds

Zhizhang Xie

In this talk, we will prove an analogue for even dimensional manifolds of the
Atiyah-Patodi-Singer twisted index theorem for trivialized flat bundles over odd
dimensional closed manifolds [1, Proposition 6.2], and some related results. For
notational simplicity, we will restrict the discussion mainly to spin manifolds.
However all results can be straightforwardly extended to general manifolds. Unless
we specify otherwise, we always fix the Riemannian metric for each manifold in
this talk and use the associated Levi-Civita connection to define its characteristic
classes.

To motivate the subject matter of this talk, we begin by recalling the APS
twisted index theorem for odd dimensional closed manifolds in the following form,
cf. [4, Corollary 7.9]. For (ps)0≤s≤1 ∈ Mk(C

∞(N)), s ∈ [0, 1], a smooth path of
projections over N ,

∫ 1

0

1

2

d

ds
η(psDps)ds =

∫

N

Â(N) ∧ Tch•(ps).

Here psDps is the Dirac operator twisted by ps, η(psDps) its η-invariant, Â(N)

the Â-genus form of N and Tch•(ps) is the Chern-Simons transgression form of
(ps)0≤s≤1.

To prove our analogue for even dimensional closed manifolds, we shall replace
a path of projections by a path of unitaries. The more interesting issue is what
should replace the η-invariant appearing on the left hand side of the above formula.
To answer this, let us first consider the case where the manifold in question bounds,
that is, it is the boundary of some spin manifold. In this case, the η-invariant by
Dai and Zhang [3, Definition 2.2] is the right candidate. Indeed, suppose the even
dimensional manifold Y is the boundary of a spin manifold X and (Us)0≤s≤1 is
the restriction to Y of a smooth path of unitaries over X . Denote the η-invariant
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of Dai and Zhang by η(Y, Us) for each s ∈ [0, 1], then

(1)

∫ 1

0

1

2

d

ds
η(Y, Us)ds =

∫

Y

Â(Y ) ∧ Tch•(Us).

When Y bounds, it follows from cobordism invariance of the index of Dirac
operators that Ind(D+) = 0, where D+ is the restriction of the Dirac operator
over Y to the half of the spinor bundle according to its natural Z2-grading. The
condition Ind(D+) = 0 is crucial for the definition of the η-invariant by Dai and
Zhang, however is often not satisfied by an even dimensional closed spin manifolds
in general. To cover the general case, we shall use another approach where we
lift the data to S1 × Y . The main ingredient of the method of proof is using an
explicit formula of the cup product K1(S1) ⊗K1(Y ) → K0(S1 × Y ), inspired by
the Powers-Rieffel idempotent construction, cf. [6]. In fact, the formula given for
the case when Y = S1 by Loring in [5] also works for all manifolds in general.
Our analogue for even dimensional closed spin manifolds of the APS twisted index
theorem is as follows.

Theorem (I). Let Y be an even dimensional closed spin manifold and (Us)0≤s≤1 ∈
Uk(C

∞(Y )) a smooth path of unitaries over Y . For s ∈ [0, 1], es ∈M2k(C
∞(S1 ×

Y )) is a projection over S1 × Y , which is the cup product of Us with e2πiθ a
generator of K1(S1). Denote by DS1×Y the Dirac operator over S1 × Y . Then

(2)

∫ 1

0

1

2

d

ds
η(esDS1×Y es)ds =

∫

Y

Â(Y ) ∧ Tch•(Us).

A priori, the η-invariants in the formulas (1) and (2) appear to be different, we
however will show that they are equal to each other modulo Z in the case where
Y bounds.

Theorem (II). Suppose Y is the boundary of an odd dimensional spin manifold.
For U ∈ Uk(C

∞(Y )) and eU is the cup product of U with e2πiθ ∈ K1(S1), one has

η(Y, U) = η(eUDS1×Y eU ) mod Z.

The method of proof is based on a slight generalization of a theorem by Brüning
and Lesch [2, Theorem 3.9]. In this sense, η(eUDS1×Y eU ) can be thought of as the
extension to general even dimensional manifolds of the definition of the η-invariant
by Dai and Zhang.

The same technique used above also allows us to prove the following analogue
for odd dimensional manifolds with boundary of the relative index pairing formula
by Lesch, Moscovici and Pflaum [4, Theorem 7.6].

Theorem (III). For a relative K-cycle [U, V, us] ∈ K1(M,∂M), that is, U, V ∈
Un(C

∞(M)) are two unitaries over M with us ∈ Un(C
∞(∂M)), s ∈ [0, 1], a

smooth path of unitaries over ∂M such that u0 = U |∂M and u1 = V |∂M . If U and
V are constant along the normal direction near the boundary, then

Ind[D]([U, V, us]) = Ind(TV )− Ind(TU ) + SF
(
u−1
s D[0,1]us;P

us

0

)
.
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Here D[0,1] is the Dirac operator over [0, 1]×∂M and SF
(
u−1
s D[0,1]us;P

us

0

)
is the

spectral flow of the path of elliptic operators u−1
s D[0,1]us with APS type boundary

conditions Pus

0 .

This uses Dai and Zhang’s Toeplitz index theorem for odd dimensional mani-
folds with boundary [3].
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Seondary and ternary elliptic genera

Ulrich Bunke

(joint work with Niko Naumann)

In order to set up some notation we consider the first stages of the Postnikov tower
of the classifying space BO(n) for n ≥ 3

∗
...

BString(n)

BSpin(n) K(Z, 4)

BSO(n) K(Z/2Z, 2)

M BO(n) K(Z/2Z, 1)
TM

p1
2

w2

w1

fr
am

in
g

st
ri
n
g
st
ru
ct
u
re

sp
in
st
ru
ct
ur
e

ori
ent

ati
on

Here M is an n-dimensional manifold, TM is the classifying map of its tangent
bundle, and the dotted arows are labelled by the names of the geometric structures
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corresponding to the lifts of this classifying map. This sequence of classifying
spaces gives rise to a sequence of Thom spectra

S → · · · → MString → MSpin → MSO → MO .

Their homotopy groups are only known for MSpin , MSO and MO by classical
computations. Our main goal is to construct secondary and higher invariants
which detect elements in the unknown bordism groups, in particular in MString∗
and the stable homotopy group S∗.

The treatment of secondary invariants is organized in the following steps.

(1) choice of a primary invariant
(2) investigation of locality and integrality
(3) construction of the secondary invariant
(4) intrisification
(5) calculation of the secondary invariant

Let us explain this in the example of Adam’s e-invariant. The primary invariant
is the KO -orientation α : MSpin → KO of the Spin-bordism. We have a diagram

S4k 0

MSpin4k KO4k Z

R

α

ǫk
∫
M

Â(∇TM )

The down-right arrow indicates the local formula in which α(M) is given as an
integral of a characteristic form over the spin manifold M representing a class
[M ] ∈ MSpin4k, where ǫk is 1 for even k and 1

2 for odd k. This diagram explains
locality and integrality of the primary invariant. This integral formula can be
applied to a manifold with a framed boundary ∂M = Z, if we assume that the
connection ∇TM is compatible with the framing. It easily follows that

e([Z]) :=
[
ǫk

∫

M

Â(∇TM )
]
∈ R/Z

only depends on the framed bordism class [Z] ∈ S4k−1. This is the construction
of the secondary invariant

e : S4k−1 → R/Z

due to Atiyah-Patodi-Singer. They also give an intrinsic formula involving η-
invariants. Its calculation is given by the sequence

π4k−1(O)
j−→ S4k−1

e−→ R/Z .

The image of the j-homomorphism is known and splits off as a summand, and the
e-invariant is injective on this image and annihilates the complement.

Our main example is the secondary Witten genus associated to the primary
invariant

R : MSpin → KO [[q]] .
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We consider the diagram

MString4k tmf 4k MZ

2k

MSpin4k KO[[q]]4k Z[[q]]

R[[q]]

σ

q-expansion

R

ǫk
∫
M

W (∇TM )

If M is a spin-manifold, then we form the power series of vector bundles

R(TM) :=
∏

n≥1

(1− qn)8k
⊗

n≥1

Symqn(TM ⊗ C) .

The map R is given by the index of a twisted Dirac operator

[M ] 7→ index(DM ⊗R(TM)) ,

the local formula involves the characteristic form

W (∇TM ) := Â(∇TM ) ∧ ch(∇R(TM)) ,

tmf is the spectrum of topological modular forms of Goerss-Hopkins and Lurie, σ
is the Ando-Hopkins-Rezk orientation, andMZ

2k is the space of integral modular
forms for SL(2,Z) of weight 2k. Integrality and modularity of the primary invariant
is explained by the factorizations over KO and tmf .

We can write W (TM) as a polynomial in the Pontragin classes with coefficients
in the ring generated by the Eisenstein series:

W (TM) = Φ(G2, G4, . . . )(p1(TM), p2(TM), . . . ) .

We form

Φ̃ := Φ
1− eG2p1

p1
.

We now consider a spin manifold M with boundary N which has a geometric
string structure α as introduced recently by Waldorf. The geometric string struc-
ture gives rise to a form Hα ∈ Ω3(N) such that 2 dHα = p1(∇TN ). We define the
group

T2k :=
R[[q]]

Z[[q]] +M2k

and consider the class

ban([N ]) :=
[
2ǫk

∫

N

Hα ∧ Φ̃(∇TN ) + ǫkη(DN ⊗ (R(TN)⊕ R))
]
∈ T2k .

The second term is the formal power series of degree-wise η-invariants of the Dirac
operator twisted by a formal power series of bundles.

It is easy to see using the Atiyah-Patodi-Singer index theorem form manifolds
with boundary that this gives rise to a bordism invariant

ban : MString4k−1 → T2k .
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The formula for ban given above is already the intrinsic one.
The calculation of this invariant is explained by the following diagram

A4k−1 tmf 4k−1

MString4k−1 T2k

btmf

ban

Here A4k−1 ⊆ MString4k−1 is the kernel of the map to MSpin4k−1 (at the moment
it is not known if this map is non-zero). The calculation of ban is given in terms of
the factorization over tmf 4k−1 and a complete calculation of btmf . For all further
details we refer to [1].

If we consider ban as primary and proceed in a similar way, then we can construct
a ternary invariant which detects pieces of S4k−2. For details in a similar case we
refer to [2].
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Extension of the resolvent of Laplacian on geometrically finite

hyperbolic manifolds

Colin Guillarmou

(joint work with Rafe Mazzeo)

The Laplacian ∆X on a quotient X := Γ\Hn+1 of real hyperbolic space Hn+1 by
a geometrically finite hyperbolic group Γ of isometries (in the sense of Bowditch
[2]) has essential spectrum [n2/4,∞) and finitely many eigenvalues λ1, . . . , λN ∈
[0, n2/4) and 0 is not an eigenvalue if Vol(X) =∞. The resolvent of ∆X is defined
by

R(s) := (∆X − s(n− s))−1

for Re(s) > n/2 and s(n−s) 6= λj , as a family of bounded operators on L2(X). We
shall assume that Γ has no torsion, or equivalently that Γ has no elliptic elements,
so that X is smooth. The group is convex co-compact if Vol(X) =∞ and Γ has no
parabolic elements. In this case, the manifold can be conformally compactified as a
smooth manifold with boundary X̄ and the resolvent R(s) is shown to have a finite
meromorphic extension to s ∈ C by Mazzeo-Melrose [10] and later by Guillopé-
Zworski [7]. The case with parabolic elements is more complicated because of
the presence, in general, of cusps. For geometrically finite hyperbolic surfaces, the
cusps all have maximal rank and the extension of the resolvent has been proved by
Guillopé-Zworski [8], essentially by using that this is satisfied on an exact cusp or
funnel (elementary cyclic group acting on H2), and analytic Fredholm perturbation
theory. In the 3-dimensional case, there can be cusps of rank 1, modeled on the
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quotient 〈γ〉\H3 where γ is a parabolic transformation fixing ∞; it was proved by
Froese-Hislop-Perry [4] that the resolvent has a meromorphic extension to s ∈ C.
Generalizations of this case to higher dimension have been studied later by Perry
[12] and Guillarmou [5], these are cases where all the parabolic elements of Γ have
a power which is a pure translation in the horosheres associated to their parabolic
fixed point. The scattering theory on geometrically finite hyperbolic manifolds
has been developped by Bunke-Olbrich [3], in particular they are able to show
the meromorphic extension of the scattering operator acting on the quotient of
the discontinuity set of the group by the group and defined using extension and
restriction operators on the sphere Sn.

In the present talk (based on the preprint [6]), we explain how to prove the
finite meromorphic extension of R(s) to s ∈ C in weighted space, which implies

the meromorphic extension of Poincarés series P (s;m;m′) :=
∑

γ∈Γ e
−sd(m,γm′)

for m,m′ ∈ Hn+1, of Eisenstein series and of scattering operator. The scattering
operator is defined using the asymptotic profile of generalized eigenfunctions at
infinity of X , it is an operator acting on Γ\Ω(Γ) where Ω(Γ) is the discontinuity set
of Γ (the set of points of Sn which are not in the limit set of Γ). Using arguments
of Patterson [11], we recover as a corollary, a result recently proved by Roblin [13]
(and known in certain cases by Lax-Philipps [9]), ie. the asymptotic as R → ∞
of the number of lattice points of an orbit Γ.m in hyperbolic ball of radius R, in
terms of the Hausdorff dimension of the limit set. The proof of the meromorphic
extension of R(s) is based on a parametrix construction combined with a careful
study of the resolvent of models Γ0\Hn+1 where Γ0 is an elementary parabolic
group of isometries fixing ∞. These model quotients are warped products on
(0,∞)×F where F is a flat bundle with basis a flat compact manifold of dimension
k (where k is the rank of Γ0) and fibers Rn−k. We first use a spectral decomposition
for the Euclidean Laplacian on such bundles F and use it to get a rather explicit
expression of the resolventR0(s) on Γ0\Hn+1, and prove its meromorphic extension
to s ∈ C. This construction also has the advantage that one can get estimates
on the norms of the extension and the number of poles of R(s) in balls |s| ≤ R.
This is also a first step toward proving the meromorphic extension of Selberg zeta
function for such cases, as well as the study of its zeros and poles (which is not
known in this case by dynamical methods). Another interests of such geometries
is that they appeared recently for number theoretic/seaving applications in the
work of Bourgain-Gamburd-Sarnak [1].
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Large time limit and the L2-local index theorem

Sara Azzali

(joint work with Sebastian Goette, Thomas Schick)

The heat kernel of a Dirac operator interpolates between the local geometry of the
manifold and a global invariant, the index of the Dirac operator. This fundamental
property, combined with Quillen–Bismut’s superconnection formalism, leads to the
so called local index theorems.

For a family of Dirac operators on a smooth fibre bundle with compact fibres,
Bismut’s local index theorem [Bi] is a refinement at the level of differential forms
of the cohomological Atiyah–Singer families index theorem. In the proof of the
local index theorem it is crucial that the kernels of the fibrewise operators form a
bundle, and that the fibres are compact.

When the fibres are not compact, the large time asymptotic of the heat operator
is in general not convergent. For general Dirac operators, it is possible to prove
the large time limit only assuming regularity conditions on the spectrum [HL].

We present here a new method to compute explicitely the large time limit in
the L2-setting of families of normal coverings for the signature operators, without
assuming any regularity assumption.

Definition 1. Let π : M → B be a smooth fibre bundle with compact fibre. A
family of normal coverings (M,Γ) → B of π consists of a bundle of discrete
groups Γ→ B and a covering p : M →M such that for all b ∈ B pb : Mb →M b is
a normal covering with group of covering transformations Γb.

We can restrict here to the simplest example, a normal covering of a fibre bundle,
which also gives the local model of the definition above. Consider π : M → B be a
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smooth fibre bundle, with typical fibre Z2l and let Γ be a discrete group acting on
M fibrewise freely and properly discontinuosly such that M/Γ→ B has compact
fibres. Let gTZ a Γ-invariant metric on the vertical tangent bundle TZ, and denote
with Dsign = (dZb + dZb,∗)b∈B the family of signature operators, odd with respect

to the chirality grading τ . Each Dsign
b is a Breuer–Fredholm operator affiliated to

the semifinite von Neumann algebra BΓ(L2(Zb,ΛT
∗Zb)), and we denote with trΓ

Atiyah’s L2-trace on it.
Fixing a horizontal Γ-invariant subbundle THM s.t. TM = THM ⊕ TZ, one

constructs the Bismut superconnection A adapted to Dsign which satisfies

tr Γ

(
τe−A

2
T

)
− tr Γ

(
τe−A

2
t

)
= −d

∫ T

t

tr Γ

(
τ
dAs

ds
e−A

2
s

)
ds

and lim
t→0

tr Γ

(
τe−A

2
t

)
=

∫

M/B

L(M/B). On the other hand, at t → ∞ the goal is

to prove that lim
t→∞

tr Γ

(
τe−A

2
t

)
= trΓ τe

−∇2
0 , where ∇0 is the connection on the

bundle Ker(dZ + dZ,∗) → B induced by the Gauss–Manin flat connection on the
bundle of L2-cohomology of the fibres, and to prove integrability at ∞ of the eta
form.

Heitsch and Lazarov investigated the problem in the very general setting of
a foliated manifold with Hausdorff graph, for a general Dirac type operator D:
in [HL] they obtain the large time limit assuming that the spectral projections
χ{0}(Db) and χ(0,ε)(Db) are transversally smooth (in this setting, smooth with
respect to b), and that the fibrewise Novikov–Shubin invariants are bigger than

three times the codimension of the foliation. While smoothness of χ{0}(D
sign
b )

is fulfilled on Riemannian foliations (and, as particular case, in our L2 setting)
[GR, BH3], the other conditions are very restrictive and hard to verify.

Our contribution is a new method to prove the large time limit for the family
of signature operators without assuming any regularity assumption. The same
method, combined with estimates à la Cheeger–Gromov, leads to the definition
of the L2-eta form for the family Dsign under determinant class condition. We
obtain the following

Theorem 2. Let (M,Γ)→ B be a family of normal coverings of π : M → B. Let
A denote the Bismut superconnection adapted to the family of signature operators.
Then

lim
t→∞

trΓ(τe
−A

2
t ) = trΓ(τe

−∇2
0) .

Theorem 3. If the fibres Zb are determinant-class, then trΓ

(
τ
dAt

dt
e−A

2
t

)
is in-

tegrable on [1,∞), and the L2-eta form η̂Γ(D
sign) =

∫ ∞

0

trΓ

(
τ
dAt

dt
e−A

2
t

)
is well

defined as a continuos form on B.

As a consequence we get a (weak) L2 local index theorem
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Corollary 4. Let c be a smooth chain in B. Then
∫

c

∫

M/B

L(M/B)−
∫

c

trΓ e
−(∇sign)2 =

∫

∂c

η̂Γ if dimZ = even,

∫

c

∫

M/B

L(M/B) =

∫

∂c

ηΓ if dimZ = odd.

We present now the two fundamental ideas of the proofs. The first ingredient
is the particular structure of the Bismut superconnection A adapted to Dsign. It
is A = dM + dM,∗, where dM,∗ is the adjoint superconnection of the flat supercon-
nection dM [BL]. Therefore −A2 = X2, where X = dM,∗ − dM . The operator X

plays a fundamental role: being the difference of two superconnections, it does not
contain transversal derivatives. Therefore when writing the Duhamel expansion

of e−A
2
t = eX

2
t we obtain the expression

(1) eX
2
t =

mB∑

n=0

∫

∆n

es0tD̂
2

(
√
tRtD̂ +

√
tD̂Rt + R2

t )e
s1tD̂

2

. . .

. . . (
√
tRtD̂ +

√
tD̂Rt +R2

t )e
sntD̂

2

dn(s0, . . . , sn) .

where D̂ = dZ,∗−dZ , and Rt does not contain transversal derivatives. This allows
to group together functions of

√
tD̂ and get better estimates than the approach

used in [HL] for general Dirac type operators.
The second point is a new method to estimate the terms in (1) as t→∞. We

split ∆n in subsets such that on each of them we have “small” or “big” variables
sj , and use different kind of estimates accordingly.

To get the well definiteness of the eta form η̂Γ we employ our estimates to obtain
a generalization of the classical Cheeger–Gromov estimate [CG2]. Here we need
to assume that the fibres are determinant-class. Yet, we conjecture that theorem
2 should be true also without this assumption. We obtain η̂Γ as a continuous form
on B, hence the local index theorem is in the weak form.

In parallel, our method gives an L2 Bismut–Lott theorem, and allows to define
the analytic L2 torsion form under the same hypothesis.
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The resolvent trace of an elliptic cone operator

Gerardo A. Mendoza

(joint work with Juan B. Gil and Thomas Krainer)

This note discusses some aspects of the analysis leading to the proof of the main
theorem in [10] (stated here as Theorem 1) on the structure of the asymptotics
of the resolvent trace of a general elliptic cone operator as the spectral parameter
tends to infinity, under suitable minimal growth assumptions on the principal
symbols of the operator.

We deal with an elliptic cone differential operator

(1) A : C∞
c (

◦

M;E) ⊂ xγL2
b(M;E)→ xγL2

b(M;E)

of positive order m, an element of x−m Diffm
b (M;E);M is a compact n-manifold

with boundary, E → M is a smooth complex Hermitian vector bundle, and L2
b

is defined using some fixed smooth positive b-density m. As usual, x is a smooth
defining function for Y = ∂M, positive in the interior ofM. The number γ ∈ R

is arbitrary. Ellipticity means that P = xmA is a b-elliptic differential operator.
Somewhat unnaturally (see [6]), we write here cσσσ(A) = bσσσ(P ) (see [16] for the
notation bσσσ(P ) and the notion of b-ellipticity).

Details of the following setup can be found in [6]. Let Dmin, resp. Dmax, be the
domains of the minimal, resp. maximal, extensions of the operator (1):

Dmax = {u ∈ xγL2
b(M;E) : Au ∈ xγL2

b(M;E)}
is a Hilbert space with respect to the inner product (u, v)A = (Au,Av) + (u, v),
u, v ∈ Dmax, and Dmin is the closure of C∞

c (
◦

M;E) in Dmax. From [13] we know
that Dmin has finite codimension in Dmax, hence every closed extension of (1)
has as domain a subspace D ⊂ Dmax of the form D = D + Dmin where D is
uniquely determined by the condition that D is orthogonal to Dmin. We let E be
the orthogonal complement of Dmin in Dmax. Domains of closed extensions then
correspond to the points of the various complex Grassmannian varieties associated
with E .
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There is an operator

(2) A∧ : C∞
c (

◦

Y∧;℘∗E) ⊂ xγ
∧L

2
b(Y∧;℘∗E)→ xγ

∧L
2
b(Y∧;℘∗E)

canonically associated with A. Here ℘ : Y∧ → Y is the inward pointing normal
bundle of Y inM (the zero section is included), x∧ = dx|Y∧ and the L2 space is
defined using the density x−1

∧ dx∧ ⊗mY where m = x−1dx⊗mY along Y. The op-
erator (2) has its own maximal and minimal domains D∧,max and D∧,min. Lesch’s
result on the codimension of the latter in the former still holds. We let E∧ be
the orthogonal complement of D∧,min in D∧,max. There is a natural vector space
isomorphism

θ : E → E∧
which allows passage from domains of closed extensions of (1) to those of (2) and
back, namely

(3) D = D +Dmin ←→ D∧ = θ(D) +D∧,min.

Let Λ be a closed sector in C. The main result of [7] asserts that if cσσσ(A)−λ is
invertible when λ ∈ Λ and if in addition Λ is a sector of minimal growth for A∧,D∧

(A∧with domain D∧), then Λ is a sector of minimal growth for AD, where D and
D∧ are related by (3). In [10] we show:

Theorem 1. Let Λ be a sector of minimal growth both for cσσσ(A) and for A∧,D∧
.

For any ϕ ∈ C∞(M ; End(E)) and ℓ ∈ N with mℓ > n,

Tr
(
ϕ(AD − λ)−ℓ

)
∼

∑ n−1

j=0
αjλ

n−ℓm−j
m + αn log(λ)λ−ℓ + sD(λ)

with coefficients αj ∈ C that are independent of the choice of D, and
(4) sD(λ) ∼

∑∞
j=0

rj(λ
iµ1 , . . . , λiµN , logλ)λνj/m as |λ| → ∞,

where each rj is a rational function in N +1 variables, N ∈ N0, with real numbers
µk, k = 1, . . . , N , and 0 ≥ νj ց −∞ as j → ∞. We have rj = pj/qj with
pj , qj ∈ C[z1, . . . , zN+1] such that qj(λ

iµ1 , . . . , λiµN , logλ) is uniformly bounded
away from zero for large λ.

A number of references at the end of this note, needless to say incomplete, point
to earlier related work by various other authors in special cases.

Let bg-res(A∧) be the set of λ ∈ C such that A∧ − λ is injective on D∧,min

and surjective on D∧,max. For λ ∈ bg-res(A∧) set Kλ = ker(A∧,D∧,max − λ). Then
λ ∈ res(A∧,D∧

) iff λ ∈ bg-res(A∧) and Kλ ⊕ D∧ = D∧,max. Let Rλ be the range
of A∧ − λ on D∧,min. There exist

B∧,min(λ) : x
γ
∧L

2
b → Dmin with kernel equal to R⊥

λ

such that B∧,min(λ)(A∧ − λ) = I on D∧,min, and

B∧,max(λ) : x
γ
∧L

2
b → Dmax with range equal to K⊥

λ ∩ D∧,max

(the orthogonal in the space xγ
∧L

2
b) such that (A∧ − λ)B∧,max(λ) = I on xγ

∧L
2
b .

The resolvent of A∧,D∧
is (see [6])

B∧,D∧
(λ) = B∧,max(λ) −

[
I −B∧,min(λ)(A∧ − λ)

]
π∧,maxπKλ,D∧

π∧,maxB∧,max(λ)
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in which πKλ,D∧
: D∧,max → D∧,max is the projection on Kλ according to the

decomposition D∧,max = Kλ ⊕ D∧ (this holds when λ ∈ res(A∧)) and π∧,max

is the orthogonal projection on E∧. Altogether, π∧,maxπKλ,D∧
|E∧

is equal to the
projection πKλ,D∧

: E∧ → E∧ on Kλ = πmaxKλ according to E∧ = Kλ ⊕D∧.

The multiplicative group R+ acts canonically on Y∧. Define κ̺ on C∞
c (Y∧;E)

for ̺ ∈ R+ by κ̺(u)(ν) = ̺−γu(̺ν). The operators κ̺ extend to give a strongly
continuous unitary action of R+ on xγ

∧L
2
b(Y∧;℘∗E). The operator A∧ has the

property κ−1
̺ (A∧ − ̺mλ)κ̺ = ̺m(A∧ − λ), which in turn produces κ̺Kλ = K̺mλ

as well as κ−1
̺ B∧,min(̺

mλ)κ̺ = ̺−mB∧,min(λ) and the same formula with min
replaced by max.

As a consequence, B∧,D∧
(̺mλ) is equal to

̺−mκ̺

{
B∧,max(λ) −

[
I −B∧,min(λ)(A∧ − λ)

]
πKλ,κ

−1
̺ D∧

π∧,maxB∧,max(λ)}κ−1
̺ .

This formula brings to the forefront the role played by the dynamical system
̺ 7→ κ−1

̺ D∧ in the Grassmannian Grk(E∧), k = dimD∧, especially the limiting
sets, on the behavior of the resolvent. One can show that the ray through λ 6= 0
is a ray of minimal growth for A∧,D∧

if and only if the set

Ω−(D∧) = {D ∈ Grk(E∧) : ∃{̺k}∞k=1, ̺→∞, lim κ−1
̺ D∧ = D}

is disjoint from VKλ
= {D ∈ Grk(E∧) : D ∩Kλ = 0}, see [8]. The hypotheses of

Theorem 1 imply this is the case for λ in a closed arc in Λ. In [10] we elucidate
the asymptotics of πKλ,κ

−1
̺ D∧

and use it to determine the asymptotics of the trace

of the resolvent of AD.
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A glimpse of noncommutative curvature

Henri Moscovici

§1. The basic template for a space in noncommutative geometry is the notion of
p-summable spectral triple, modeled on the Dirac operator. It consists of a (local
Banach) ∗-algebraA represented in the Hilbert space H by bounded operators, and
a self-adjoint unbounded operator D with the resolvent of Schatten class p ≥ 1,
and having bounded commutators with any a ∈ A. The noncommutative gener-
alization of a “smooth space” is a spectral triple (A,H, D) which admits residual
zeta regularization, in the sense that the zeta functions ζD(P, z) = Tr(P |D|−z),
Re z > p, associated to analogues of pseudodifferential operators P ∈ Ψ(A,H, D)
admit meromorphic extensions to C. Assuming, for the sake of simplicity, that
all poles are simple, the algebra Ψ(A,H, D) acquires a residue trace functional∫
P := Resz=0 ζD(P, z), which vanishes on trace class operators and therefore

only depends on the “complete symbol” of P . The local index formula [5] ex-
presses the K-homological Chern character of such a spectral triple in terms of a
cocycle in the cyclic cohomology bicomplex {CC(A), b, B}. Its components are
linear combinations of terms of the form

∫
a0 [D, a1]

(k1) · · · [D, aq]
(kq) |D|−2|k|−q,

with P (k) = [D2, . . . , [D2, P ] . . .] (k-th order commutator), and they play the role
of the “Pontryagin forms” of the spectral triple. Actually, in the case of the Dirac
operator on a closed spin manifold they do, indeed, coincide with the Pontryagin
polynomials in the curvature of the underlying Riemannian metric.

§2. In order to shed more light on the elusive notion of “noncommutative curva-
ture”, it makes sense to look at the noncommutative 2-torus with irrational slope
θ. Its standard spectral triple (Aθ,H, D) (cf. [4]) corresponds to the flat metric,

but one can consider a conformal change by a positive element k = e
h
2 , h = h∗ in

its algebra of “smooth coordinates” Aθ. The analogue of the scalar curvature κh

for the resulting twisted Laplacian is given by the equation τ(a κh) = ζk△k(a, 0),
∀ a ∈ Aθ, where τ : Aθ → C is the unique normalized trace on the (simple !) C∗-
algebra Aθ. Using the pseudodifferential calculus developed in [3], it was shown
in [7] that ζk△k(0) := ζk△k(id, 0) is independent of k and therefore a conformal
invariant. Moreover, (computer aided) symbolic computations by A. Connes 1 give

1Private communication
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the following expression for the scalar curvature:

κh = e−h
(
K(log∆)(△(h)) +

2∑

j=1

H(∇(1),∇(2))
(
δj(h)δj(h)

))
;

here δ1, δ2 ∈ Der(Aθ) are the canonical derivations, △ = δ21 + δ22 is the Laplacian,
while ∆(x) = e−hxeh is the modular operator, ∇(i) signifies the action of log∆ =
−adh on the i-th factor of the product, and the functions K, H have the following

expressions: K(u) =
eu − eu/2u− 1
(
−1 + eu/2

)3 , and

H(s, t) =
(

1 + ch
(

s+t

2

))

×

×

−t(s+ t)ch(s) + s(s+ t)ch(t)− (s− t)(s+ t+ sh(s) + sh(t)− sh(s+ t))

s t (s+ t)sh
(

s

2

)

sh
(

t

2

)

sh
(

s+t

2

)2
.

This should be contrasted with the scalar curvature of the conformal metric on the
ordinary torus T2 with conformal factor eh, h ∈ C∞(T2,R), in which case adh = 0
and the above formidable expression simply becomes κ0

h = e−hK(0) = 1
3e

−h△h.

§3. Let (A,H, D) be a p-summable spectral triple, and let h = h∗ ∈ A. Changing
its “metric” by a conformal factor amounts to replacing D by Dh = eh D eh. The
commutators [Dh, a], a ∈ A, are no longer bounded, unless h is central. However,
inserting the automorphism σ(a) = e2h a e−2h into the datum, one observes that
the twisted commutators [Dh, a]σ := Dh a − σh(a)Dh are bounded. This gives a
particular example of a twisted spectral triple, notion which was studied in [6] and
also in [9].

For the purposes of this talk, we shall assume that (A,H, D) has good pseu-
dodifferential calculus, in the sense that there exist asymptotic expansions of the
form

Tr
(
Ae−tD2

sh

)
=tց0

∞∑

j=0

aj(A, s) t
j−N−p

2 + O(1),

for any operator A which is a (noncommutative) polynomial in D and a finite
number of elements a ∈ A. Moreover, we shall assume good resolvent approxi-
mation, property which ensures that these expansions can be differentiated in the
term-by-term in s ∈ [−1, 1].
Theorem (Conformal index à la Branson-Ørsted [1]) For a spectral triple (A,H, D)
with good pseudodifferential calculus and good resolvent approximation, ζD(0) is a
conformal invariant.

Proof. Relying on the above assumptions and notation, it can be easily shown that
d
dsaj(id, s) = 2(j − p) aj(h, s), which implies d

dsap(s) = 0. �

Since by [3] the noncommutative tori have good pseudodifferential calculus,
one obtains a non-computational proof of the corresponding result for the non-
commutative 2-torus [7, Theorem 1.1], as well as for its generalization to a general
translation invariant noncommutative metric structure (cf. [8]).
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As another consequence, one immediately recovers the independence of dilaton
field rescaling of the constant term in the Chamseddine-Connes spectral action
(cf. [2]) for the noncommutative space of the standard model.
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Bergman kernel and geometric quantization

Xiaonan Ma

(joint work with George Marinescu)

In the theory of quantization, one attempts to associate to a symplectic manifold
(X,ω) a Hilbert space H and a mapping from the space of functions on X into the
space of operators on H , and this in a canonical way. The mapping should give
some reasonable relationship between the Poisson bracket on the function side and
the commutator on the operator side. It is generally acknowledged that there is
no canonical way to construct a quantization of X without making use of certain
additional structures.

In the theory of the geometric quantization of Kostant and Souriau, (X,ω)
is assumed to be prequantizable, that is, there exists a prequantum line bundle
(L, hL,∇L) on X (i.e., ω is the first Chern form of L associated with the Her-
mitian connection ∇L). Given a compatible almost complex structure J and a
Riemannian metric gTX , we can define canonically a Dirac operator DL acting on
Ω0,•(X,L), the smooth (0, •)-forms on X with coefficients in L.

Assume that X is compact. Following an observation by Bott, we take, as a
quantization of X , Ind(DL

+) = Ker(DL
+)− Coker(DL

+) of D
L
+ := DL|Ω0,even , which

is a formal difference of finite dimensional Hilbert spaces.
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The virtual dimension of Ind(DL
+), which can be computed by the Atiyah-Singer

index theorem, does not depend on the choice of the connection and of the metric
on L.

For p ≫ 1, Ind(DLp

+ ) = Ker(DLp

+ ) is an ordinary finite dimensional Hilbert
space. The Bergman kernel is defined as the integral kernel Pp(x, x

′) associated

with the orthogonal projection Pp from Ω0,•(X,Lp) onto Ker(DLp

). We will show
that when p → +∞, the Bergman kernel Pp(x, x

′) has an asymptotic expansion
whose coefficients contain interesting geometric informations about X and L. The
kind of expansion obtained for the kernel Pp(x, x

′) also characterizes the Berezin-
Toeplitz operators. Their semi-classical limit provides a precise way to relate the
classical and quantum observables.

If (X,ω, J) is a compact Kähler manifold and if L is holomorphic, then for
p≫ 1, Ker(DLp

) is the space of holomorphic sections H0(X,Lp) of Lp on X . This
leads to many applications of the asymptotic expansion of the Bergman kernel in
Kähler geometry.

We refer the reader to our book with Marinescu [4] for a comprehensive study
of the Bergman kernel and applications. This note is a short version of our survey
[2].

In this survey talk, we start to explain our model situation: Let L = C be
the trivial holomorphic line bundle on Cn, but the metric on L is a non-trivial

metric hL: |1|hL(z) := e−
1
4

∑n
j=1 aj |zj|2 = ρ(Z) for z ∈ Cn, with aj > 0 for

j ∈ {1, . . . , n}.
To introduce the model operator L we set:

bi = −2
∂

∂zi
+

1

2
aizi , b+i = 2

∂

∂zi
+

1

2
aizi , L =

∑

i

bi b
+
i .

We can interpret the operator L in terms of complex geometry. Let ∂
L∗

be the ad-

joint of the Dolbeault operator ∂
L
on (L, hL) over (Cn,

√
−1
2

∑
j dzj∧dzj). We have

the isometry Ω0,•(Cn,C) → Ω0,•(Cn, L) given by α 7→ ρ−1α. If �L = ∂
L∗

∂
L
+

∂
L
∂
L∗

denotes the Kodaira Laplacian acting on Ω0,•(Cn, L), then ρ�Lρ−1 :
Ω0,•(Cn, C) → Ω0,•(Cn,C) is given by 1

2L +
∑

j ajdz
j ∧ i ∂

∂zj

, and its restric-

tion on functions is 1
2L .

The operator L is the complex analogue of the harmonic oscillator, the oper-
ators b, b+ are creation and annihilation operators respectively. Each eigenspace
of L has infinite dimension, but we can still give an explicit description.

Theorem 1 (Ma-Marinescu [5, Th. 1.15], [4, Th. 4.1.20]). The spectrum of L on
L2(R2n) is given by

Spec(L ) =
{
2

n∑

i=1

αiai : α = (α1, · · · , αn) ∈ Nn
}
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and an orthogonal basis of the eigenspace of λ ∈ Spec(L ) is given by

Bλ =
{
bα
(
zβ exp

(
− 1

4

∑
i ai|zi|2

))
: 2

∑
i αiai = λ, with α, β ∈ Nn

}

where bα := bα1
1 · · · bαn

n . Moreover,
⋃

λ{Bλ : λ ∈ Spec(L )} forms a complete
orthogonal basis of L2(R2n).

Let P(Z,Z ′) be the smooth kernel of P, which is the orthogonal projection
from (L2(R2n), ‖ · ‖L2) onto Ker(L ), with respect to dZ ′. Then P(Z,Z ′) is the
classical Bergman kernel on Cn given by

P(Z,Z ′) =
n∏

i=1

ai
2π

exp
(
− 1

4

∑

i

ai
(
|zi|2 + |z′i|2 − 2ziz

′
i

))
.(1)

Then we explain for a positive line bundle L on a compact symplectic manifold,
in which sense the Bergman kernel associated with Lp := L⊗p can be approximated
by the above model situation. In this way, we get a characterization of Toeplitz
operator by using the asymptotic expansion of its kernel, and we can compute the
coefficients of various expansions with the help of (1).

At the end of this talk, we review very briefly the “quantization commutes with
reduction”–phenomenon for a compact Lie group action, and its relation to the
Bergman kernel.
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Stochastic Completeness and Volume Growth

Christian Bär

Throughout the talk M denotes a connected but not necessarily geodesically com-
plete Riemannian manifold of dimension n. We denote by ∆ the Laplace-Beltrami
operator acting on smooth compactly supported functions and also its Friedrichs
extension to L2(M), the space of square-integrable functions.

Let k ∈ C∞((0,∞)×M×M) be the corresponding heat kernel. It is well-known
that either

∫
M

k(t, x, y)dy = 1 for all t > 0 and all x ∈ M or
∫
M

k(t, x, y)dy < 1
for all t and x. In the first case we call M stochastically complete. Examples
for stochastically complete manifolds are closed manifolds, Euclidean space or
hyperbolic space.

In the stochastically complete case fix x ∈M and construct a probability mea-
sure (the Wiener measure) on Ωx(M) := {ω ∈ C0([0,∞),M) |ω(0) = x} as fol-
lows. For any 0 < t1 < · · · < tm and any Borel sets B1, . . . , Bm ⊂ M put
Ix(t1, . . . , tm;B1, . . . , Bm) := {ω ∈ Ωx(M) |ω(tj) ∈ Bj}. Set

Wx(Ix(~t, ~B)) :=

∫

B1×···×Bm

k(t1, x, y1)k(t2 − t1, y1, y2) · · · k(tm − tm−1, ym−1, ym)d~y.

Here we used the abbreviations ~t = (t1, . . . , tm), ~B = (B1, . . . , Bm) and d~y =
dy1 · · · dym. In particular, for m = 1,

Wx(Ix(t, B)) =

∫

B

k(t, x, y) dy.

One easily checks that the set of sets Jx := {Ix(t1, . . . , tm;B1, . . . , Bm)} forms a
semi-algebra. It requires some work to verify that Wx is countably additive on Jx.
The Caratheodory extension theorem now tells that Wx extends to a measure on
the σ-algebra generated by Jx. This σ-algebra is easily identified to be the Borel
algebra of Ωx(M) with respect to the compact-open topology.

Wiener measure being constructed we can define M to be recurrent if for all
non-empty open subsets U ⊂M

Wx[∃tj ր∞ : ω(tj) ∈ U ] = 1.

Otherwise, we call M transient.
For r > 0 denote by B(x, r) ⊂ M the closed ball of radius r which is centered

at x. Put V (x, y) := voln(B(x, r)) and A(x, r) := voln−1(∂B(x, r)).
Now we look at spherically symmetric manifolds. By this we mean Rn equipped

with a metric which in polar coordinates takes the form

ds2 = dr2 + f(r)2dσ2

where dσ2 is the standard metric of Sn−1 and f ∈ C∞([0,∞),R) with f(r) > 0 for
r > 0, f(0) = 0, and f ′(0) = 1. These manifolds are always geodesically complete.
The most prominent examples are Euclidean space (f(r) = r) and hyperbolic space
(f(r) = sinh(r)). On a spherically symmetric manifold stochastic completeness
and recurrence have nice characterizations in terms of volume growth.
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Proposition 1. [4, Props. 3.1 and 3.2] LetM be a spherically symmetric manifold.
Then

(i) M is stochastically complete if and only if
∫ ∞

1

V (0, r)

A(0, r)
dr =∞.

(ii) M is recurrent if and only if
∫ ∞

1

dr

A(0, r)
=∞.

Knowing this it is easy to construct geodesically complete but stochastically

incomplete manifolds. E.g., choose f(r) = r(α−1)/(n−1) · exp
(

rα

n−1

)
with α > 2 for

r ≥ 1.
The beautiful survey article [4] contains a presentation of many different cri-

teria for stochastic completeness and for recurrence. In particular, for a general
geodesically complete Riemannian manifold M T. Lyons and D. Sullivan [5] and
A. Grigoryan [2, 3] have shown independently that if for some x ∈M we have

∫ ∞

1

dr

A(x, r)
=∞,

then M is recurrent.
Grigoryan asked the natural question whether the criterion for stochastic com-

pleteness of spherically symmetric manifolds is also sufficient for general manifolds
[4, Problem 9]: Suppose that for some x ∈M we have

(1)

∫ ∞

1

V (x, r)

A(x, r)
dr =∞.

Is M then stochastically complete? Somewhat to the surprise of the experts the
answer turns out to be no. In [1] counterexamples are constructed. They are
obtained as connected sums of two spherically symmetric manifolds M1 and M2.
One chooses M1 stochastically incomplete. This has the consequence that M =
M1♯M2 is stochastically incomplete as well, no matter what one chooses for M2.
Now the warping function of M2 can be chosen such that (1) holds for M .

Conversely, one may also ask whether
∫ ∞

1

V (x, r)

A(x, r)
dr <∞.

for some x ∈ M implies that M is stochastically incomplete. It turns out that
there are counterexamples as well [1].
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An Adiabatic Decomposition of the Hodge Cohomology of Manifolds

Fibred over Graphs

Karsten Fritzsch

Let (X, g) be a smooth, closed and oriented Riemannian manifold and {Ye}, e ∈ E
a finite set of mutually disjoint smooth, closed, oriented codimension 1 subman-
ifolds such that on a tubular neighbourhood of each Ye we have g = dt2 + gYe

,
t denoting the local coordinate normal to Ye. Because of the product type of
the metric, we may stretch cylindrical neighbourhoods Σe of the Ye’s to form a
prolonged manifold X(r). We try to answer the following

Question. How does the space H∗(r) of harmonic (differential)
forms on X(r) behave for r →∞?

This question has been studied (for different objects) by many authors, includ-
ing Atiyah-Patodi-Singer [1], Cappell-Lee-Miller [2], Grieser [4], Hassell-Mazzeo-
Melrose [5], Mazzeo-Melrose [6] and Nicolaescu [7].

Placing cuts at the Ye ⊂ X(r) yields manifolds with boundary Xv(r), v ∈ V
which may as well be stretched to manifolds with cylindrical ends Xv(∞). The
way we placed the cuts is encoded by a map X and a graph G = (V,E):

(1) X : X −→ G , x→
{

v , x ∈ Xv(0)
e , x ∈ Σe

.

Generalising Cappell-Lee-Miller’s concept of “matching at infinity” and their
splicing map Sr : W −→ C∞(

ΛT ∗X(r)
)
to multiple cylinders, arguments of

Cappell-Lee-Miller [2] and Nicolaescu [7] show that – for large r – splicing yields an
isomorphism between the space of matching sets W (of extended harmonic forms)
and the span of certain eigenforms of the Gauss-Bonnet operator D(r):

Theorem 1 ([2]). Let ε > 0, E(r) be the span of eigenforms of the Gauss-Bonnet
operator D(r) on X(r) corresponding to eigenvalues |µ| < r−(1+ε) and Πr denote
orthogonal projection of L2

(
ΛT ∗X(r)

)
onto E(r). Then, there is r0 > 0 such that

for r > r0

Πr ◦ Sr :W −→ E(r)

is an isomorphism.
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From a more topological point of view, slightly enlarging the sets X−1(G) gives
an open cover of X . By abuse of notation we denote the cohomology of the
corresponding Čech-de Rham complex by H∗(X ). The generalised Mayer-Vietoris
sequence reduces to a short split exact sequence

(2) 0 −→ H1(X ) −→ H∗(X(r)) −→ H0(X ) −→ 0 ,

which, by results similar to Atiyah-Singer-Patodi’s [1], is isomorphic to an exact
sequence related to a splitting of the space of matching sets:

(3) 0 −→ Lrel −→W −→ kerD(∞)⊕ Labs −→ 0 .

Here, L denotes the set of “limiting values” of matching sets and the superscripts
abs and rel refer to absolute respectively relative boundary conditions at infinity.

Combining these approaches, we obtain equality of spaces E(r) = kerD(r) and
hence

Theorem 2 ([2], [3]). Let ε > 0 and r0 suitable large. Then, for r > r0

(1) There are no non-zero eigenvalues µ of D(r) satisfying |µ| < r−(1+ε).
(2) The projected splicing map

Πr ◦ Sr :W −→ kerD(r)
is an isomorphism of matching sets of extended harmonic forms on the
disjoint union of the Xv(∞)’s and harmonic forms on X(r).

(3) Any spliced form is exponentially close to a harmonic form, to be precise
∥∥(Πr ◦ Sr − Sr

)
(u)

∥∥
L2 ≤ e−cr

∥∥Sr(u)
∥∥
L2 ,

where c > 0 depends on the geometry of the cross-sections Ye only.

Remark. It is as well planned to relate exact sequences (2) and (3) respectively
the corresponding splittings to the Hodge-Leray spectral sequence developed by
Mazzeo-Melrose in [6]. This might enable us to identify subspaces of differential
forms on X(r) with the spaces Lrel and kerD(r)⊕Labs, hence to understand the
actual behaviour of H∗(r) as r →∞.
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Quantization on noncompact symplectic manifolds

Weiping Zhang

(joint work with Xiaonan Ma)

In this talk we report our joint work with Xiaonan Ma on the resolution of a
conjecture due to Michèle Vergne [13] concerning the geometric quantization on
noncompact symplectic manifolds.

To be more precise, let (M,ω) be a (not necessarily) compact symplectic man-
ifold with symplectic form ω. We assume that (M,ω) is prequantizable, that is,
there exists a complex line bundle L (called a prequantized line bundle) carrying
a Hermitian metric hL and a Hermitian connection ∇L such that

√
−1
2π

(
∇L

)2
= ω.

Let J be an almost complex structure on TM such that

gTM (u, v) = ω(u, Jv), u, v ∈ TM

defines a J-invariant Riemannian metric on TM .
Let G be a compact connected Lie group with Lie algebra denoted by g. We

assume that the compact connected Lie group G acts on M and that this action
lifts to an action on L. Moreover, we assume that G preserves gTM , J , hL and
∇L.

For any K ∈ g, let KM be the vector field generated by K over M . Let
µ : M → g∗ be the moment map defined by the Kostant formula

2π
√
−1µ(K) = ∇L

KM − LK , K ∈ g.

Then µ verifies the Hamiltonian action condition that for any K ∈ g,

dµ(K) = iKMω.

From now on, we assume that the following fundamental assumption holds.

Fundamental Assumption. The moment map µ : M → g∗ is proper, in the
sense that the inverse image of a compact subset is compact.

Fix a maximal torus of G and let Λ∗
+ ⊂ g∗ be the corresponding set of dominant

weights of irreducible representations of G.
Take any γ ∈ Λ∗

+. If γ is a regular value of the moment map µ, then one
can construct the Marsden-Weinstein symplectic reduction (Mγ , ωγ), where Mγ =
µ−1(G · γ)/G is a compact orbifold (since µ is proper). Moreover, the line bundle
L (resp. the almost complex structure J) induces a prequantized line bundle Lγ

(resp. an almost complex structure Jγ) over (Mγ , ωγ). One can then construct
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the associated Spinc-Dirac operator (twisted by Lγ), D
Lγ

+ : Ω0,even (Mγ , Lγ) →
Ω0,odd(Mγ , Lγ) on Mγ , of which the index

Q (Lγ) := Ind
(
D

Lγ

+

)
:= dimKer

(
D

Lγ

+

)
− dimCoker

(
D

Lγ

+

)
∈ Z,

is well-defined. If γ ∈ Λ∗
+ is not a regular value of µ, then by proceeding as in [8]

(cf. [9, §7.4]), one still gets a well-defined quantization number Q(Lγ) extending
the above definition.

On the other hand, let g∗ be equipped with an AdG-invariant metric. Then
H = |µ|2 is G-invariant. Let XH = −J(dH)∗ be the Hamiltonian vector field
associated to H.

Since µ is proper, for any a > 0, Ma := H−1([0, a]) = {x ∈M : H(x) ≤ a} is a
compact subset of M . Recall that by Sard’s theorem, the set of critical values of
the function H : M → R is of measure zero.

For any regular value a > 0 of H, it is clear that XH is nowhere zero on
∂Ma = H−1(a). Thus the triple (Ma, X

H, L) defines a transversally elliptic symbol

σMa

L,XH =
√
−1 c(·+XH)⊗ IdL,

where c(·) is the Clifford action on Λ(T ∗(0,1)M), in the sense of Atiyah [1] and

Paradan [9]. Let Ind(σMa

L,XH) ∈ R[G] be the corresponding transversal index in the

sense of [9].
For any γ ∈ Λ∗

+, let V
G
γ denote the corresponding irreducible representation of

G, let Q(L)γa ∈ Z denote the multiplicity of V G
γ of Ind(σMa

L,XH) ∈ R[G].

Theorem 1.

a) For any γ ∈ Λ∗
+, there exists aγ > 0 such that Q(L)γa ∈ Z does not depend on

a ≥ aγ , with a a regular value of H.
b) Q(L)γ=0

a ∈ Z does not depend on a > 0, with a a regular value of H.
According to Theorem 1, for any γ ∈ Λ∗

+, we have a well-defined integer Q(L)γa
not depending on the large enough regular value a > 0. From now on we denote
it by Q(L)γ .

Theorem 2. For any γ ∈ Λ∗
+, the following identity holds,

Q(L)γ = Q(Lγ).

Remark 3. If the zero set of XH is compact, then Theorem 1 was already known,
while Theorem 2 was conjectured by Michèle Vergne in [13, §4.3]. Thus Theorem
2 provides a solution of Vergne’s conjecture even when the zero set of XH is
non-compact. If M is compact, then Theorem 2 reduces to the famous Guillemin-
Sternberg geometric quantization conjecture [4] first proved in [7] and [8].

Outline of Proof. Our proof of Theorems 1 and 2 is analytic. We first interpret
the transversal indices appearing in the context through the analytic indices of
Atiyah-Patodi-Singer [2] type, by making use of a result of Braverman [3]. We
then prove Theorems 1 and 2 by analyzing the corresponding APS type indices,
by adapting the analytic methods developed in [11] and [12]. Extra difficulties
appear in dealing with the γ 6= 0 case. For more details, see [5] and [6].
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Remark 4. For an alternate proof of Theorems 1 and 2, see [10].
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