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Abstract. The feasible regions of mathematical optimization models quite
often exhibit a high degree of symmetry. In recent years, several groups of
researchers have independently worked on algorithmic approaches to exploit
such symmetries in a variety of contexts. Many of the techniques that have
been developed are related or rely on similar computational tools. The work-
shop brought together researchers working on symmetry aspects in different
areas of optimization. The exchange of state-of-the-art knowledge between
these areas lead to identification of important directions for future research
activities.
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Introduction by the Organisers

If a mathematical optimization problem has many symmetries, then algorithms
need to exploit this in order to be efficient. Here, symmetry usually means that
a (large) group acts on the set of feasible solutions with the property that the
objective function of the optimization problem is constant on every orbit of the
action. Such symmetries can be inherent to the problem (e.g., automorphisms of
some graph on which the problem is defined), but they can also be introduced by
the way the problem is modeled.

Different strategies to cope with symmetric optimization problems have been
developed over the last few years. One important approach is to break the symme-
try of the solution space during a branch-and-bound algorithm by trying to avoid
dynamically to enter equivalent copies of parts of the search space (e.g. by isomor-
phism pruning or by orbital branching). Another strategy is to enhance the model
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by additional constraints, preferably leaving only one representative out of every
orbit of equivalent solutions. In case of the very important class of linear problems,
the underlying geometric objects are convex polyhedra, whose algorithmic treat-
ment (e.g., polytope conversion) in many cases needs sophisticated exploitation of
symmetry as well. Quite often, the approaches heavily rely on efficient algorithms
in computational group theory.

The aim of the workshop was to bring together researchers who are working
on aspects of symmetry in areas such as mixed integer linear optimization, mixed
integer and continuous nonlinear optimization (in particular semidefinite program-
ming), algorithmic polytope theory, constraint programming, and computational
group theory. The 17 participants, including four organizers, very well covered
these topics. From the first day on the atmosphere of the workshop was very
lively, the audience was actively participating in the presentations, and a lot of
discussions were going on in smaller groups whenever there were no talks sched-
uled. In particular, there was a lot of exchange between researchers from the
different communities. The doctoral students attending the workshop were very
well integrated into these activities.

During the workshop, all participants and organizers gave presentations. The
schedule was as follows. On Monday, there were two tutorials on computational
group theory and the software package GAP, as well as three talks on research
projects that aim at providing other tools for computational algebra or strongly
rely on the use of GAP. The entire Tuesday was devoted to symmetries in integer
linear optimization. The topics on Wednesday were polyhedral symmetries and
exploitation of symmetries in computing Hilbert bases. On Thursday, nonlinear
optimization as well as constraint programming were at the focus of the talks.
The program on Friday started with two talks scheduled additionally upon special
request of the participants. One of these talks was an online demonstration on
how to use GAP to answer some questions that came up during an earlier talk.
The program ended with an extensive discussion of open problems and future per-
spectives. Next to a lot of rather concrete requests with respect to integrating
additional features into existing algebraic software tools, further research topics
emerged from the discussion. Among those, the question for a detailed study to
identify the symmetries arising in the most common libraries of optimization prob-
lems, new methods and paradigms for both automatically detecting symmetries
in models as well as providing interfaces to the model creating user for enhancing
models by information on symmetry, the continued development of alternative ap-
proaches, e.g., based on invariant subspaces or fundamental domains, and, just to
name one more topic, investigations of symmetric triangulations and algorithms
to construct them.

In view of the very stimulating interaction between the researchers during the
workshop and of the presumably ongoing strong interest in symmetries in optimiza-
tion problems (as demonstrated by the many open directions of future research),
the workshop participants strongly agreed that a similar meeting in one or two
years would be most desirable.
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Symmetries in linear and integer linear programming . . . . . . . . . . . . . . . . 2257

James Ostrowski (joint with M.F. Anjos, A.Vannelli)
Symmetry in Scheduling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2260

Marc E. Pfetsch (joint with Tim Januschowski, Cork University)
The Maximum k-Colorable Subgraph Problem and Symmetry . . . . . . . . . . 2263

David Bremner (joint with Thea Gegenberg, Achill Schürmann, Mathieu
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Abstracts

An Introduction to Computational Group Theory

Alexander Hulpke

The computation of orbits and stabilizers is a fundamental problem in compu-
tational group theory. While the ordinary orbit/stabilizer algorithm ( in priciple
solves this task, it suffers from two issues that quickly grow worse as the orbit
length/stabilizer index grows: Storing the orbit will become problematic, also the
number of Schreier generators becomes large and requires either random selec-
tion (at the potential cost of unverified results) or rejection of redundant elements
(requiring an element test in the prospective stabilizer subgroup). Software engi-
neering methods, such as the use of subgroup orbits or so-called “tadpoles” — to
every orbit element γ we assign (by defining an “image” function based on hash
values) a eventually periodic sequence of orbit elements, depending on γ. We only
store sequence representatives — can push the feasibility limit somewhat further,
but for better results more group theoretic information is necessary.

The first fundamental improvement is given by the use of backtrack algorithms
for the search of stabilizers, representing the group via a stabilizer chain (which
can be obtained from any sequence of actions). Still, the cost is related to the
stabilizer index and can only be reduced if one can replace the group with an
appropriate subgroup, for example by first stabilizing a (weaker) invariant of the
object to be stabilized.

Two further approaches become possible by first computing the radical and
associated normal subgroups of the radical factor. (Standard permutation group
algorithms can do so, for matrix groups, the matrix group recognition project
essentially provides such a structure, see [2].)

First, this data structure provides often a multitude of normal subgroups, which
can be used in turn to use a normal-subgroup version of the orbit algorithm:
Compute the orbit under N , then compute the action of G on N -orbits, correcting
the stabilizer of the N -orbit to stabilize the original element.

Secondly, such a data structure enables algorithms for computing (maximal)
subgroups, in which one can compute the stabilizer first. Furthermore one can
test whether a given maximal subgroup U < G stabilizes an element γ, which can
be mapped by g ∈ G to ω. (Such a mapping element can be found comparatively
easily, thanks to the birthday paradox.) Then Ug contains this stabilizer, and
the stabilizer calculation can be done in U . The whole orbit is obtained from the
U -orbit by mapping with coset representatives for U in G.

Thirdly, in principle (in practice it requires knowledge of all subgroups of the
simple groups) one can use a modification of the maximal subgroup algorithm to
determine for a known subgroup S of the stabilizer (e.g. from a partial run) all
minimal supergroups S < T < G. Then testing whether any of these stabilize, one
can verify whether S is the full stabilizer, even if not the whole orbit is known.
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A detailled description and discussion of many of the involved algorithms can
be found in [1, 4] and – in more basic form – in the author’s notes [3].
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PermLib – A C++ Library for Computations in Permutation Groups

Thomas Rehn

Many algorithms using permutation groups to solve problems in various areas of
mathematics rely on methods from computational group theory. The usual way
to work with permutation groups on computers is to represent them with bases
and strong generating sets (BSGS). In this structure a backtrack search can be
performed to search for certain subgroups of interest like setwise stabilizers or to
decide whether two sets are in the same group orbit (cf. [1, 3]). These problems
can usually be solved with standard computer algebra software like GAP [4] or
Magma [5]. Because these software packages lack interfaces for external software
the author’s PermLib library offers a lightweight implementation of fundamental
algorithms and data structures to work with permutation groups. PermLib is
written in C++ for maximal interoperability and is released under an open source
license. It currently provides computations of orbits and stabilizers and in-orbit
checks. The performance of PermLib and the implemented algorithms are analyzed
in the author’s thesis [2].

For the end user the most important directory of the PermLib package is
include. No installation is required to use PermLib, only its include direc-
tory has to be added to the user’s project includes. However, PermLib uses parts
of the Boost C++ library, which has to be installed. The file permlib api.h

in include/permlib offers an abstraction of the core functionality. It provides
the data types Permutation, PermutationGroup and OrbitAsSet and the func-
tions construct, setStabilizer, setImage and orbits. Examples covering all
functionality can be found in the example directory of PermLib, especially in
api-example.cpp. PermLib is available from [6].

References

[1] D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of Computational Group Theory, Chap-
man & Hall/CRC, 2005.

[2] T. Rehn, Fundamental Permutation Group Algorithms for Symmetry Computation,
Diploma Thesis (Computer Science), Otto von Guericke University Magdeburg, 2010.
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A GAP/Sage package for computation with coherent configurations

Dmitrii V. Pasechnik

(joint work with Keshav Kini)

Coherent configurations (CCs, for short—terminology due to D. Higman) gen-
eralize the centralizer algebras of a permutation representations of finite groups
and association schemes.

CC of degree n and dimension d is a collection A = {A1, . . . , Ad} of d 0-1
n× n-matrices s.t.

(1)
∑d

i=1 Ai = Jn, the all-1 matrix.
(2) ∃S ⊂ A: In =

∑

A∈S A.

(3) A ∈ A, then A∗ := A⊤ ∈ A.

(4) ∃ pki,j , 0 < i, j, k ≤ d, s.t. AiAj =
∑d

k=1 p
k
i,jAk, ∀i, j.

A is a basis of a ∗-matrix algebra with identity. If I ∈ A then we have a (non-
commutative) association scheme.

CCs find applications in finite permutation groups (S-rings, representations,
sporadic groups, Moonshine, “synchronization”, etc), coding theory (e.g. bounds
on codes, sphere packings, etc), algebraic graph theory (e.g. distance-regular
graphs), optimization (“Data compression” for various problems, in particular
semidefinite and linear programming)

Schurean CCs and their representations. I. Schur thought that all CCs are
coming from orbitals (aka 2-orbits) of permutation groups:

(1) given permutation group G := (G,Ω), with |Ω| = n,
(2) for x, y ∈ Ω; define Oxy := {(xg, yg) | g ∈ G} (orbit on 2-tuples))
(3) define matrix A := A(Oxy) — the adjacency matrix of the graph with

vertex set Ω and edge set Oxy;
(4) take A = A(G) := {A(Oxy) | x, y ∈ Ω}

True for n < 15 – every CC is like this, but gets wrong by a large margin as
n → ∞: e.g. for n = 36 there are ≫ 103 of CCs (even if d = 3), and only a
handful of such G’s.

Remark. Given a (vertex and edge) weighted graph Γ with adjacency matrix
A(Γ), there is unique minimal (w.r.t. d) CC s.t. A(Γ) =

∑

A∈A cAA, computable
byWeisfeiler-Leman stabilization in polynomial time. If Schur were right we would
have had a polynomial-time algorithm for graph isomorphism (Weisfeiler-Leman
stabilization would be recognizing isomorphic graphs).

Let C[A] = {
∑

A∈A cAA | cA ∈ C} ⊆ Mn(C) be the C-algebra generated by A.
C[A] is semi-simple, i.e.

C[A] ∼= ⊕d
j=1Mdj

(C), (as a ∗-algebra).
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In the group case, when A = A(G), and π : G → Mn(C) the permutation repre-
sentation of G, we have

C[A] ∼= ⊕d
j=1Mmχ

(C), where π =
∑

χ∈Irr(G)

mχχ.

One of goals of the package is to compute ∗-representations φχ : C[A] → Mmχ
(C),

i.e. φχ(A)
∗ = φχ(A

∗), ∀A ∈ A.
It is easy to construct the regular (∗-)representation of A. The map

reg : C[A] → Md(C), Ai 7→ Bi, (Bi)kj = pkij

is an algebra isomorphism, and d =
∑

χ∈Irr(G) m
2
χ. (This is true for any subalgebra

of Mn(C)).
Sometimes (e.g. in optimization applications) we need a ∗-isomorphism. Scaling

A ∈ A

A := Tr(AA∗)−1/2A and setting AiAj =

d
∑

k=1

pkijAk

we obtain

reg : C[A] → Md(C), Ai 7→ Bi, (Bi)kj = pkij .

Note that Bi’s can contain quadratic irrationals.
We can factor reg into regχ:

C[A]
reg
−−→ Md(C)

regχ
−−−→ Mm2

χ
(C),

where regχ, for χ ∈ Irr(G), is given by the projector, certain weighted sum of
conjugacy classes of π(G):

πχ :=
∑

g∈G

χ(g−1)
∑

h∈gG

π(h) ∈ C(C[A]),

so that πχC[A] ∼= Mmχ
(C). This is easy when the character table of G and a

transversal G of representatives of conjugacy classes gG are available.
It is easy to compute generators for the centre of C[A], namely,

∑

h∈gG π(h),

for g ∈ G (they generate C(C[A])). The naive summing over gG is way too slow.
However, we can find

∑

h∈gG

π(h) =
∑

A∈A

αAA

directly, by viewing g ∈ G as h ∈ Aut(Γ(A)), where Γ(A) means the digraph
defined by A, and noting that αA = |gG|Tr(π(g)A). This is implemented in our
GAP [1] package [3] and appears to work very well.

We already explained how to compute πχ, providing

πχC[A] ∼= Mmχ
(C) ∼= Mmχ

(C)⊗ Imχ
⊂ Mm2

χ
(C).

Further, we employ the following heuristic.



Mini-Workshop: Exploiting Symmetry in Optimization 2253

• Assume we know X = X∗ ∈ πχC[A] such that the f(t) = charpol(X)
factors over the splitting field of G into linear factors (t−ρ1), . . . , (t−ρmχ

),
so that ρi 6= ρj for i 6= j.

• Take any X-eigenvectors v1, . . . , vmχ
of the eigenvalues ρ1, . . . , ρmχ

.
• Then v1, . . . , vmχ

span a mχ-dimensional submodule of πχC[A].
• Compute this action and return it.

Works for many examples. It is currently an open question whether one can do
better, without that factoring assumption.

An example application: Lovasz-Schrijver bound θ′(Γ). Let Γ = (V,E) be
a graph, n = |V |, G ≤ Aut(Γ). Then for A = A(G) = {A1, . . . , Ad} there is
S ⊂ {1, . . . , d} s.t. A(Γ) =

∑

s∈S As. Introduce a variable yk for each k 6∈ S and
require that

(1)
∑

k∈D

yk 〈Ak, Ak〉 = 1, where
∑

k∈D

Ak = In.

(2)
∑

k 6∈S

ykφ(Ak) is positive semidefinite,

where φ is a faithful ∗-representation of A, e.g. reg. Then

θ′(Γ) := 1 +max
y

∑

k 6∈S∪D

yk 〈Ak, Ak〉 , y ≥ 0 : (1) and (2)

gives an upper bound, due to Lovasz and Schrijver, on α(Γ), the size of a maximum
coclique in Γ. The lower the dimension of φ, the more tractable the computation,
solving this semidefinite programming problem, becomes. In order to provide an
easy interface between our GAP package [2] and an SDP solver, we use Sage [4].
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A GAP package for polytope and lattice computations using symmetries

Mathieu Dutour Sikirić

A polytope can be described alternatively as the convex hull of its finite set of
vertices or as the intersection of its finite set of facet defining inequalities. The
process of obtaining one description from the other is named dual description prob-
lem and is an essential step in many algorithms. We propose here some methods
for computing such dual description in the cases where the polytope is highly
symmetric.

The key such method is the computation of the set of orbits by the adjacency
decomposition method [2, 8]. It allows an optimal use of the existing symme-
tries and allowed the solution of several famous problems [4, 7, 3]. It is based
on existing software for polyhedral computations [14, 13], on nauty [16] for graph
computation and GAP [15] for group theoretic computations. Running the adja-
cency decomposition method implies computing the set of facets adjacent to a
given facet. This computation is precisely a dual description computation and so
we may apply the adjacency decomposition method recursively when this becomes
too complicated. The problem is that the number of cases may grow too fast. We
used three methods for dealing with this problem:

(1) One is to connectivity results like Balinski theorem to prove that we do
not need to go any further in the computation.

(2) Another is to use a banking system to store known dual descriptions and
check in advance before computing one.

(3) Another is to use the specific symmetry group of a face, which might be
larger than the stabilizer of the face.

So, one needs efficient methods for computing symmetry groups. For a given
polyhedral cone C ⊂ Rn given by generating rays (vi)1≤i≤N one can define three
possible symmetry groups:

(1) Combinatorial symmetry group Comb(C): this is the group of transfor-
mations σ ∈ Sym(N) preserving the set of faces of P globally.

(2) Projective symmetry group Proj(C): this is the group of transformations
σ ∈ Sym(N) such that there exist ασ > 0, A ∈ GLn(R) with Avi =
ασ(i)vσ(i).

(3) Linear symmetry group Lin(C): this is the group of transformations σ ∈
Sym(N) such that there exist A ∈ GLn(R) with Avi = vσ(i).

Essentially the only general way to obtain Comb(C) is to compute the set of
facets of C which is precisely the problem we want to solve. The linear symmetry
group can be computed efficiently by defining an edge colored graph for which we
can apply nauty [7, 8]. Finding a general method for computing the projective
symmetry group is unfortunately an open problem.

One of the standard application of the recursive adjacency decomposition method
is the computation of the Delaunay tesselations of lattices [3]. Using this we can
solve in a standard way many computations of rigidity degree, free vector, quan-
tization constant, etc.
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Another context where ideas reminiscent of adjacency decomposition can be
applied is the determination of polyhedral tesselations. Currently we can deal
with perfect forms [7] and L-type [11], with or without symmetry being specified.
Recently some extension of the software have been done towards working with
polytopes with coordinates in an algebraic number field [9].

The program polyhedral is also useful for computing with face lattice and flag
systems [5, 6]. It can also compute the volume of polytope [1], which proved useful
in deriving classical mathematical proofs [10].

Besides its polytopal features, the polyhedral software [12] also has some com-
binatorial and lattice enumeration functions.
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Solving Symmetric Integer Programs

Jeff Linderoth

(joint work with François Margot, Jim Ostrowski, Fabrizio Rossi, Stefano
Smriglio, Greg Thain)

We will discuss mechanisms for dealing with integer programs that contain a
great deal of symmetry. The methods use information encoded in the symmetry
group of the integer program to guide the branching decision and prune nodes of
the search tree. We will discuss orbital branching [5], isomorphism pruning [2, 3],
and new flexible variants of isomorphism pruning. Some of these methods have
been recently incoporated into commercial IP software. We will conclude with a
brief discussion of powerful computing platforms known as computational grids
and instances of using these platforms for solving symmetric integer programs
[4, 1].
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Orbitopes and Orbitopal Branching

Volker Kaibel

(joint work with Yuri Faenza, Andreas Loos, Matthias Peinhardt, Marc Pfetsch)

An orbitope is the convex hull of all 0/1-matrices that are lexicographically maxi-
mal within their orbits under some group action that works via permuting columns.
We distinguish between full orbitopes (no restrictions) and packing-, partitioning-,
as well as covering-orbitopes, where for the latter ones only matrices with at most,
exactly, or at least one, respectively, 1-entry per row are considered. Investigations
of these orbitopes have been started a few years ago in order to understand those
linear inequalities that can be used for lexicographical symmetry breaking in cer-
tain integer programming models, like, e.g., common models of graph partitioning
problems.

In the first part of this talk, we survey the most important results that have been
obtained on these polytopes, mainly focussing on the case of the full symmetric
group acting on the columns of the matrices. In this case, a 0/1-matrix (with
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a feasible number of ones in their rows) is a vertex of the respective orbitope
if and only if its columns come in lexicographically non-decreasing order. The
main results are the following: For full orbitopes we can provide polynomial size
extended formulations [2], but no linear descritpion in the original space seems to
be in sight, except for the case of matrices with two columns only, for which a
complete description is known. For the packing- and for the partitioning cases,
we have both complete descriptions in the original space [4] (by means of shifted-
column-inequalities) as well as very small (linear size) extended formulations [1].
For the covering case none of this can be expected as the liner optimization problem
over these polytopes turns out to be NP-hard.

In the second part of the talk we describe the method of orbitopal fixing [3] that
allows to exploit knowledge on partitioning orbitopes within the context of branch-
and-cut algorithms without explicitly adding any constraints to the formulation.
Instead, at every node of the branch-and-bound-tree a linear time procedure is
applied that performs simultaneous fixing with respect to the orbitope. We briefly
discuss some computational results for graph partitioning problems indicating that
the method is quite effective.
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Symmetries in linear and integer linear programming

Katrin Herr

(joint work with Richard Bödi, Michael Joswig)

We investigate the potential of symmetry in the context of linear and integer linear
programming. A symmetry of a linear program LP(A, b, c) of the form

max ctx
s.t. Ax ≤ b , x ∈ Rn

is a linear transformation which leaves the feasible region P (A, b) := {x ∈ Rn |Ax ≤
b} invariant, only inducing a permutation of the rows of the matrix A, and which
does not change the utility value ctx of any feasible point. Symmetries of inte-
ger linear programs additionally need to preserve the standard lattice Zn, which
confines the set of potential symmetries of bounded and full-dimensional integer
linear programs to OnZ, the group of signed permutation matrices. Notice that
this definition of symmetry is based on the description of the problem by linear
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inequalities, although this description might disguise some of the symmetries of
the set of feasible integer points.
In the following we consider symmetries of linear and integer linear programs that
are elements of OnZ, which act on the signed standard basis {±e1,±e2, . . . ,±en}
of Rn as signed permutations. Throughout let Γ be a subgroup of OnZ. Then Γ
splits the signed standard basis into disjoint orbits. There are two kinds of orbits
to distinguish: The bipolar orbits contain at least one pair ±ei, while the unipolar
orbits do not. Since Γ is a linear group, a signed permutation σ ∈ Γ with σei = ǫej
and ǫ ∈ {±}maps −ei to −ǫej. Hence, a bipolar orbit O only consists of pairs, that
is, −O = O. On the other hand, for each unipolar orbit O the set −O = {−ei | ei ∈
O} forms another orbit, and Γ acts equivalently on O and −O. An action is called
semi-transitive if there exists an orbit representing a basis of Rn. The main idea
for the exploitation of symmetry in linear programming is to efficiently restrict
the linear program to a certain subspace which is known to contain an optimal
solution. The convexity of the feasible region P (A, b) guarantees this property for
the fixed space of Rn given by

FixΓ(R
n) := {x ∈ Rn | γx = x for all γ ∈ Γ} .

To use this knowledge in an efficient way, it is necessary to provide an appropriate
characterization of the fixed space. To this end, we define a vector βO :=

∑

v∈O v
for each orbit O of the orbit decomposition. Then βO spans the fixed space
FixΓ(linR(O)). Notice that FixΓ(linR(O)) is zero-dimensional for bipolar orbits
and one-dimensional for unipolar orbits. A characterization of the fixed space of
Rn is now given by

FixΓ(R
n) = linR {βO |O orbit of Γ} = linR {βO |O unipolar orbit of Γ} .

In fact, it suffices to choose one orbit per pair of unipolar orbits since βO = −β−O.
The characterization allows for projection onto the fixed space, and the dimension
of the resulting linear program is equal to half of the number of unipolar orbits.
In the semi-transitive case, we already receive a one-dimensional problem.

We now turn to integer linear programming. Notice that by restricting the fea-
sible region of a linear program to the standard lattice we lose convexity, and with
it the guarantee for an optimal solution in the fixed space. For the exploitation of
symmetry in integer linear programming we focus on affine hyperplanes orthogo-
nal to the utility vector c that contain at least one integer point; we will call them
c-layers. The c-layers between the origin and the point c are characterized by

Hc, k

||c||2
= ker (x 7→ ctx) +

k

||c||2
c , k = 0 , . . . , ||c||2 .

In particular, the number of c-layers between the origin and the point c is finite,
and, in the case of a semi-transitive action, it equals the dimension of the integer
linear program. A straightforward procedure is to check IP-feasibility of each
c-layer in descending order with respect to the utility value, starting with the
c-layer next to the solution of the LP-relaxation. For general infeasible integer
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linear programs this procedure does not stop. However, for integer linear programs
with a symmetry group acting semi-transitively on the signed standard basis the
following criterion reveals infeasibility. A center of a c-layer is defined as the
intersection point of the c-layer with the line spanned by the utility vector c. For
semi-transitive actions this line is equal to the fixed space. Therefore, the center is
the only element of the restriction of the linear program to the c-layer and the fixed
space. Thus, the c-layer is LP-feasible if and only if its center is LP-feasible. Due
to the convexity of the linear program, the LP-infeasibility of one center implies
the LP-infeasibility of the c-layers with smaller utility values. Hence, in the semi-
transitive case, we can stop the procedure described above after having tested
the first integral center, and state IP-infeasibility of the problem if no feasible
integer point has been found during the procedure up to this point in time. For
integer linear programs with highly transitive symmetry groups we can check IP-
feasibility of a c-layer efficiently: A core point is an integer point with minimal
Euclidean distance to the center of a c-layer. Given an integer linear program of
dimension n with a (⌊n

2 ⌋ + 1)-transitive symmetry group (i.e., isomorphic to An

or Sn for n ≥ 5) a c-layer is feasible if and only if all core points are feasible.
Therefore, we can restrict the set of integer points that need to be tested to the
core points. Moreover, a (⌊n

2 ⌋)-transitive symmetry group acts transitively on the
set of core points. Hence, it suffices to test the IP-feasibility of one core point per
c-layer. Conclusively, for symmetry groups isomorphic to An or Sn, where n is
the dimension of the integer linear program, the algorithm tests the feasibility of
one core point in each of the at most n c-layers, i.e., the algorithm is linear in the
number of dimensions.
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Symmetry in Scheduling Problems

James Ostrowski

(joint work with M.F. Anjos, A.Vannelli)

Symmetry has been an obstacle in mixed integer linear programming (MILP)
for more than 40 years. In [4], Jeroslow presented a class of problems with only
one equality constraint on n variables where branch-and-bound trees contain an
exponential number nodes if symmetry is not removed from the problem. Around
the same time period [3] suggested that a class of highly symmetric covering prob-
lems called Steiner Triple Systems (STS) be included in test libraries because they
were notoriously difficult, especially considering the small number of variables in
the problem. In the past decade, effective symmetry breaking techniques have
been developed for MILP problems. Symmetry breaking methods such as isomor-
phism pruning [6] are able to remove all symmetries from the branch-and-bound
tree. While we know how to break symmetry, we do not yet have a clear under-
standing of the most effective way to break symmetry, and more importantly, how
symmetry-breaking methods interact with other MILP features such as branching
strategies and cutting plane methods.

To better study how symmetry breaking affects integer programming tech-
niques, we examine symmetry breaking in scheduling problems. Scheduling prob-
lems cover a very broad class of problems with important real world applications.
The structure of symmetry present in these problems allow for efficient symme-
try breaking techniques. It is this structure, also found in bin-packing and graph
coloring problems, that makes them ideal candidates for our study.

We discuss the relationship between symmetry-breaking techniques and branch-
ing strategies in reducing computation time. If good branching strategies are
known a priori, symmetry breaking constraints that augment the branching strat-
egy can be added to the problem with great result. However, if branching strategies
are not known, adding symmetry-breaking constraints to the problem formulation
may not be the best option. In this case, orbital branching- a symmetry breaking
method that removes symmetry during the branch-and-bound process [8], is shown
to be most effective.

The addition of symmetry breaking constraints like in [1] and orbitopal fixing [5]
restrict the set of feasible solutions to be the matrices x with lexicographically de-
creasing columns. The difference between the methods is that [1] restricts the
feasible region by explicitly adding inequalities, while orbitopal fixing uses these
inequalities implicitly to fix variables. Explicitly adding these inequalities may
remove fractional solutions that would have been optimal in the LP relaxation,
resulting in better LP relaxations and thus, smaller branch-and-bound trees. An-
other advantage of the inequality method over orbital branching is that commercial
solvers may be able to use these inequalities to generate stronger cutting planes.
The cost of the improved relaxations is that the additional inequalities make the
LP relaxations more computationally intensive. Also, as many optimal solutions
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may be made infeasible by the constraints, finding an optimal solution may be
more difficult.

Because the minimal fundamental domain is defined a priori, both the constraint
version of the formulation and orbitopal fixing can perform more fixing than orbital
branching.

While there are many applications, we provide computational results for the
deterministic operating room (OR) scheduling problem. In this application there
is a set of m blocks of surgeries planned for the day and a set of r available
operating rooms. It is assumed that the operating rooms are identical and that
the time required for each surgery block is known. Using an operating room
incurs a one-time fixed cost. If the time required to perform the blocks assigned
to a particular operating room is over a predefined limit an overtime cost must be
paid for every additional hour. The OR scheduling problem is to find the minimum
cost allocation of patients to operating room.

There can be more than one minimal fundamental domain. Does it matter
which fundamental domain is used? Reducing the feasible region to a fundamen-
tal domain can allow for more opportunities to fix variables. It is these fixings
that make symmetry-exploiting tools like orbital branching and orbitopal fixing
powerful. Ideally, it is preferable to fix variables with respect to symmetry as early
in the tree as possible. When the fundamental domain is generated by choosing
only lexicographical minimal solutions, i.e. the fundamental domain described by
adding the lex-ordering constraints, this additional fixing is done when branching
on variables with small row indices. For example, suppose there were 100 surgery
blocks and 25 operating rooms. Fixing a variable x100,j , for any j, as a result of a
branching disjunction does not strengthen any lexicographic inequality. Branching
on the variable xi,j for any small i and any j, does strengthen lex inequalities and
leads to additional fixings. For example, fixing x2,2 to zero as a result of branching
(either by branching on x2,2 directly, or by fixing x2,1 to one) also allows for the
fixing of x3,3, x4,4, ... xk,k to zero.

Because restriction of the feasible region to the lexicographic fundamental do-
main strengthens the branching disjunctions associated with variables of small
row indices, it is important (for symmetry considerations) to branch on variables
with a small row index early in the branch-and-bound tree. However, from an
integer programming perspective, the choice of branching variables is very impor-
tant, and can have a significant effect on the size of the branch-and-bound tree.
Good branching candidates from an IP perspective are those that improve the LP
relaxation the most. What if variables that are good branching candidates from
a symmetry point of view are bad candidates from an IP point of view? This can
be remedied by a better choice of fundamental domain.

An intuitive and effective branching strategy for bin packing type problems like
the OR scheduling problem is to first branch on items with the largest weight, in
this case the largest surgery time. Given this branching strategy, a fundamental
domain that increases the importance of surgery blocks with larger completion
time can be created. This is done by reindexing the variables such that the di
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terms, the completion time for each surgery, form a decreasing sequence. Now,
instead of representing a random surgery block, variable x1,j indicates whether
the block with the largest completion time is performed in room j.

As orbital branching creates the minimal fundamental domain throughout the
branching process, it is not necessary to determine how to best reindex variables.
In theory, reindexing should not affect the overall performance of orbital branching,
as it uses symmetry to strengthen CPLEX’s branching, something that should not
be dependent on variable indices. However, in the case of tie-breaks, indices may
play a role in determining what variable is chosen for branching.

Computational results for the reindexed problems show reindexing variables
leads to significant improvements in computation time for both the constraint
method as well as orbitopal fixing. With orbital branching, reindexing the variables
does affect the results, but not in a predictable way.

As is shown by the results, choosing an appropriate fundamental domain is
important if one wishes to break symmetry by adding constraint or by orbitopal
fixing. Doing so seems to lead to the best possible solution times. However,
in order to construct an ideal fundamental domain, good branching strategies
must be known a priori. If the branching strategy is not know a priori, orbital
branching is the more effective choice in solving these problems. One method
for determining a branching strategy for general MILP problems is discussed in
[7]. The idea is to perform a dive in the branch-and-bound tree using strong
branching to choose branching variables. The variables are then reindexed to
reflect the order in which they were branched upon during the initial dive. The
minimal fundamental domain used is the one generated by the lexicographically
minimal solutions in the reindexed problem. Ideally strong branching will branch
on variables that influence the LP bound the most first, so these variables should
be given smaller indices.

References

[1] B. Denton, A. Miller, H. Balasubramanian, and T. Huschka. Optimal allocation of surgery
blocks to operating rooms under uncertainty. Operations Research, accepted, 2009.

[2] S. Gul, B. Denton, J. Fowler, and T. Huschka. Bi-criteria scheduling of surgical services for
an outpatient procedure center. Working Paper, 2010.

[3] D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. Two computationally difficult set
covering problems that arise in computing the 1-width of incidence matrices of Steiner
triples. Mathematical Programming Study, 2:72–81, 1973.

[4] R. Jeroslow. Trtivial integer programs unsolvable by branch-and-bound. Mathematical Pro-
gramming, 6:105–109, 1974.

[5] V. Kaibel, M. Peinhardt, and M.E. Pfetsch. Orbitopal fixing. In IPCO 2007: The
Twelfth Conference on Integer Programming and Combinatorial Optimization, pages 74–88.
Springer, 2007.

[6] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–
90, 2002.

[7] F. Margot. Exploiting orbits in symmetric ILP.
[8] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical

Programming, 2010. To appear. Mathematical Programming, Series B, 98:3–21, 2003.



Mini-Workshop: Exploiting Symmetry in Optimization 2263

The Maximum k-Colorable Subgraph Problem and Symmetry

Marc E. Pfetsch

(joint work with Tim Januschowski, Cork University)

Given an undirected graph and some positive integer k, the Maximum k-Colorable
Subgraph Problem is to select an induced subgraph of largest cardinality, which
is k-colorable, i.e., one can assign one of k colors to each node such that adjacent
nodes receive different colors. This problem has a straight-forward assignment
integer programming formulation. It is symmetric with respect to the columns, i.e.,
color classes. Thus, one can use so-called orbitopes to remove these symmetries.
Orbitopes were introduced in [3] in order to handle symmetry in problems that
have an assignment structure as in the maximum k-colorable subgraph problem.

This talk will mainly deal with the intersection of the polytope corresponding
to the Maximum k-Colorable Subgraph Problem with (packing) orbitopes. The
study of this intersection has been started by Januschowski [1].

The maximum k-colorable subgraph problem is strongly connected to the col-
oring problem and the stable set problem and has rarely been studied in the
literature. We use it as a prototype of a problem where we can combine problem-
specific with symmetry handling structure. One of the messages of this talk is
that the interaction of these structures can have complicated effects on the facet
structure.

In this talk, we show that the LP-relaxation remains weak, even when adding
the complete description of the corresponding orbitope. However, several facets of
one of the two polytopes can be changed to yield facets of the intersection. This
includes so-called shifted-column inequalities, which in some cases yield facets and
in some cases can be strengthened to facet-defining so-called clique shifted column
inequalities. We give a characterization of these different cases. It turns out, that
the conditions for these inequalities to be facet-defining depend on the labeling of
the graph and are usually quite complicated.

We will complement these results with preliminary computational experiments.
These computations show that handling symmetries is important, where the vari-
ant that uses orbitopal fixing is slightly superior to variants that additionally or
only use shifted column inequalities. Orbitopal fixing was introduced in [2] and
allows to use the orbitope structure in order to additionally fix variables at the
nodes of the branch-and-bound tree. Additional cutting planes can help to reduce
the number of nodes, but not the computation time. We also study the effects of
turning off cutting planes, graph symmetry constraints, and of changing the order
of the nodes. In all cases the performance deteriorates with turning of cuttings
planes having the largest negative impact.
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Orbitwise polyhedral representation conversion

David Bremner

(joint work with Thea Gegenberg, Achill Schürmann, Mathieu Dutour Sikirić,
Gordon Williams)

Converting between the inequality and finite-generator representations of a con-
vex polyhedron is both a fundamental problem in algorithmic geometry and a
useful subroutine in various optimization techniques. Unfortunately many prob-
lems of interest remain out of reach for current conversion methods. In certain
applications the output is both large and symmetric. This has motivated study
of the problem of orbitwise representation conversion: instead of producing all of
the output, one looks for at least one element in each orbit (under some natural
symmetry group).

Before considering the orbitwise problem, it is worth having a high level under-
standing of the strengths and weaknesses of existing methods for the symmetry-free
version of the problem (cf. [1]). There are three main techniques (and some others
closely related via e.g. geometric duality). In methods based on the pivot opera-
tion of the simplex method, the graph of feasible bases is explored; this is efficient
precisely when the system has not many more feasible bases than output elements
(i.e. is non-degenerate). In incremental methods one inductively finds the second
representation for the polyhedron defined by n− 1 of n input elements and then
updates this description for the last piece of input. These methods work well in
many degenerate cases, but sometimes construct an exponentially large interme-
diate structure which is discarded in the final output. A third class of methods
recursively constructs the entire face lattice (or a substantial part of it). These
methods are also largely immune to degeneracy, but typically construct a large
number of faces of intermediate dimensions not of interest in the application. For
this reason, recursive methods have not been as widely applied as incremental and
pivoting based methods.

In contrast to the symmetry-free case, methods based on recursive decompo-
sition into orbits of subproblems have been the most successful in applications
related to combinatorial optimization and the geometry of numbers. For the sake
of exposition, suppose we are converting from the extreme ray representation of a
convex cone to its inequality representation. Orbits of subproblems can be con-
structed either by dividing the input rays into orbits, and finding all facet orbits
adjacent to a given representative ray (so-called incidence decomposition), or by
finding the facets adjacent to a given representative facet (with the initial facet
found e.g. by Linear Programming); in this adjacency decomposition method one
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then carries out a graph search in the dual graph (facet/ridge graph) of the poly-
tope. In both cases one is left with one or more representation conversion problems
in one lower dimension. Depending on various heuristics, one can either solve the
subproblems directly (perhaps using one of the methods below), or further ap-
ply decomposition. Existing software using decomposition methods includes the
Polyhedral package of Dutour Sikirić [5] and the Sympol package of Rehn [10].

Of the direct methods of orbitwise representation conversion, the incremental
Cascade Method of Jaquet [7] was as far as I know the first to be elaborated. In
this method, most easily understood in terms of projection, the n input vectors
in Rd are lifted to a simplicial cone in Rn. Representatives of orbits of facets and
ridges are then successively projected down, with stabilizers being recomputed,
and orbits split or fused at each step. In addition to the well known dependence
on input ordering (i.e. intermediate size) common to other incremental methods,
the success of the Cascade Method also depends on the computation of many
stabilizer groups, which also depends on the ordering.

In [4] the authors describe a method of pivoting under symmetry. Because
this method finds orbits of the complete basis graph, it is particularly sensitive
to finding a good perturbation scheme that does not destroy too much symmetry.
Although it remains open to what extent this is possible in general, there seem to
be a few specialized applications where pivoting is a good approach, particularly
in certain algebraic methods where one apparently wants all of the orbits of bases.
A prototype system in GAP [3] allowing exploration of pivoting and perturbation
under symmetry is available.

In addition to systems based on recursive decomposition, there is also the pos-
sibility of using the extend and canonicalize technique used to good effect in the
combinatorial enumeration community (see e.g. [6], [9], or [8]). In an extend step,
one extends representatives of k-face orbits to (k + 1)-faces. A canonical repre-
sentative is then chosen for each orbit of (k + 1)-faces. Given an efficient parent
function which determines for a given (k + 1)-face, what canonical k-face it is an
extension of, memoryless enumeration can be performed using the reverse search
technique of Avis and Fukuda [2].

One common theme in efficient implementations of all of methods described here
is the use of invariants to avoid expensive isomorphism tests. Another approach
to avoiding isometry tests, and also permitting a more straightforward use of
perturbation, is to construct a linear approximation of a fundamental domain for
the given symmetry group. In this talk I also describe some ongoing work with
Gegenberg, Schürmann and Williams using this fundamental domain approach in
incremental and pivoting based approaches.
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Generating sets and generating functions under symmetry

Matthias Köppe

Generating sets. Let C ⊂ Rn be a pointed rational polyhedral cone. The Hilbert
basis H(C) of C is the set of nonzero vectors x ∈ C∩Zn such that x 6= y+z for any
y, z ∈ C ∩Zn. It is a theorem that H(C) is a finite set that generates C ∩Zn over
the non-negative integers. Hilbert bases play various important roles in Integer
Optimization. For instance, via the notion of Graver bases, which are unions of
Hilbert bases, efficient primal (augmentation) algorithms for linear and separable
convex objective functions are obtained, whenever the bases are available.

In the language of commutative algebra, the computation of Hilbert bases pro-
vides the normalization of affine semigroups. In particular, if the Hilbert bases
only consists of the primitive representatives of the rays of the cone, this proves
the normality of the semigroup.

A problem in algebraic statistics concerns the normality of semigroups associ-
ated with contingency tables. Let r1, . . . , rN be natural numbers. An r1 × r2 ×
· · · × rN contingency table is a function T : {1, . . . , r1} × · · · × {1, . . . , rN} → Z+.
Marginals are formed by summing over entries; for example, by fixing all but one
index and summing the entries when that one index varies, one obtains line sums.
Let Ax = b denote the corresponding constraints for the entries of the table (col-
lected in a vector x ∈ Z

r1...rN
+ ), where b is a vector of prescribed line sums. Let

Sr1,...,rN be the semigroup generated by the column vectors of A. The question is
now which of these semigroups are normal.
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The normality of monoids derived from r1 × r2 × · · · × rN contingency tables
(with line sums) was settled almost completely in [4]. The remaining open cases
(5 × 5 × 3, 5 × 4 × 3, and 4 × 4 × 3) could not be solved computationally by the
existing state-of-the art software for Hilbert basis computations (Normaliz, 4ti2).

With Raymond Hemmecke, we used a symmetric Hilbert basis computation
to resolve these cases computationally, showing that all of them are normal. The
construction recursively computes polyhedral subdivisions of the cone and uses the
large symmetry group of the tables (Sr1×Sr2×· · ·×SrN ) to cover “small” cones by
symmetric copies of “large” cones; then the small cones can be discarded. This is
implemented in the software package LattE-for-tea-too. Independently, Bruns,
Ichim, and Söger gave another computational proof, exploiting the fact that the
cones are nearly compressed; hence many cones in any pulling triangulation are
unimodular.

The joint paper [2] details both computational approaches and highlights other
challenging examples from algebraic statistics that could be solved with them.

Generating functions. The Khovanski–Pukhlikov–Lawrence theorem asserts the
existence of a linear map (valuation) F from the vector space generated by indica-
tor functions of rational polyhedra in Rn to the rational functions in Q(z1, . . . , zn)
that agrees for pointed polyhedra P with the rational function defined by the
series (generating function)

∑

a∈P∩Zn za, for all z for which this series converges
absolutely.

By Barvinok’s theorem [1], for every fixed dimension n, it can be efficiently
computed in the form

F ([P ])(z) =
∑

i∈I

ǫi
zai

∏n
j=1(1− zbi,j )

,

where all data are integers and I is a polynomial-sized index set, a so-called “short”
rational generating function. Variants of Barvinok’s algorithm are implemented
in the software packages LattE, LattE macchiato, and barvinok.

In optimization, short rational generating functions appear as follows. By eval-
uating the generating function at z = (1, . . . , 1) (nontrivial, because 1 is a pole of
all basic rational terms in the sum), one obtains the number of integer points in a
polytope. Thus the integer feasibility problem and, by binary search, the integer
optimization problem can be solved. This gives a proof of the polynomial-time
solvability of integer linear programs in fixed dimension, which is independent of
Lenstra’s branching on hyperplanes algorithm.

For the the problem of maximizing a polynomial objective function (without
convexity) over the integer points in a polytope, one can use the relation

max{f(x) : x ∈ P ∩ Zn} = lim
k→∞

(

fk
(

z1
∂

∂z1
, . . . , zn

∂
∂zn

)F ([P ])(z)

∣

∣

∣

∣

z=1

)1/k

to obtain a fully polynomial time approximation scheme (FPTAS) [3].
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If the polyhedron P is symmetric, polyhedral computations using symmetry
(orbitwise computation of vertices and their tangent cones; computation of tri-
angulations that preserve a large part of the existing symmetry) can be used to
obtain an orbitwise rational generating function.

An open question is how to then solve the evaluation problem in an orbitwise
way, to extract information from the rational generating function. The known
evaluation procedures choose a generic vector t ∈ Qd, i.e., a vector not orthogonal
to any of the vectors bij , which is used to define a curve z(τ) (with z(0) = 1)
which meets the poles of the rational summands only transversally. Then residue
calculus in one variable can be used to compute the limit for τ → 0. The necessary
generic choice conflicts with the goal of exploiting symmetry. A solution for a first
interesting special case, where orbits are generated by a cyclic group, is presented.
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Polyhedral symmetries

Achill Schürmann

Polyhedra with symmetries occur naturally in many contexts of pure and applied
mathematics, and in particular in symmetric (mixed) linear (integer) programming
problems. Often not all of the symmetries of a problem are known and one may
ask what the possible symmetries are and how they could be found? What do
known symmetries tell us about a given polyhedron? Here, we address these and
related basic questions about symmetric polyhedra, some of which appear to be
widely open.

Symmetry groups. First of all, let us ask what kind of symmetries are there?
And how can they be detected? In practice, the answer to this question largely
depends on the given description of a polyhedron. For simplicity of this exposition
we assume that we have a description as the convex hull

P = conv{x1, . . . , xk}

of finitely many points xi ∈ Rn. So we in particular assume that the polyhedron
is bounded.
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Combinatorial. The combinatorial (or full) symmetry group of a polyhedron is the
group of all permutations of the vertices that preserve the combinatorial structure
of the polyhedron, that is, its face-lattice. So it naturally embeds as a permuta-
tion group into the full symmetric group Sk on k-element sets. For example, the
combinatorial symmetry group of any 4-gon is the dihedral group D4 of order 8.
To compute the combinatorial symmetry group of a polyhedron P , one needs not
only to know the vertices of P , but also a dual description by inequalities (cf.
[KS03]), which is usually infeasible in practice.

Geometric. Geometric symmetries are distance and angle preserving linear maps.
For example, the only 4-gon having a geometric symmetry group of order 8 is
the square. If we assume (without loss of generality) that the vertex barycenter
1
k

∑k
i=1 xi of P is equal to the origin, then the geometric symmetries of P form a

subgroup OP of the orthogonal group. Typical geometric symmetries occurring in
optimization problems are coordinate permutations.

Linear. Often polyhedra may have a slightly larger linear symmetry group GP .
For example, a non-square parallelogram has a geometric symmetry group of or-
der 4, but a linear symmetry group of order 8, namely D4. Although the linear
group is usually smaller than the full combinatorial symmetry group, it has the
advantage that it can be computed without any additional knowledge about the
face lattice. This is due to the following theorem, whose proof can be found in
[Sch09, Appendix A]:

THM: Let P = conv{x1, . . . , xk} be a full dimensional polyhedron in Rn. Then
its linear automorphism group GP is equal to the automorphism group of the

complete graph Kk with edge labels xt
iQ

−1xj , where Q =
∑k

i=1 xix
t
i.

The requirement that P is full dimensional is not essential, but simplifies the
exposition, as we may “work” with Q−1. As this matrix is positive definite, it
has a Cholesky decomposition Q−1 = AtA with a regular matrix A that allows us
to realize the linear symmetry group of P as the geometric symmetry group of a
transformed polyhedron AP = {Ax : x ∈ P}. That is, GP = OAP .

For the computation of graph isomorphisms several software packages are avail-
able. A simple alternative is our software package [SymPol] that takes care of
the technicalities (also for lower dimensional input). It uses the above theorem
to compute the automorphism group of a polyhedron that is given by a stan-
dard description with inequalities or generators (vertices and rays). The package
also allows to convert a given polyhedral description up to symmetry, using the
Incidence and Adjacency Decomposition Methods (see [BDS09]).

The detection method above is problematic for large k. To the best of our
knowledge, other practical detection methods are not known. A new method that
works well for larger k, when n is comparatively small, will be described in [Reh10].
It is based on computing automorphisms of the Gram matrix Q (see [PS97]).
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Symmetry types. Given a polyhedron P with k vertices, what are the possible
geometric and linear symmetry groups OP and GP ? For a 4-gon for example,
the geometric symmetry group can not be isomorphic to the cyclic group C4 of
order 4, as the presence of such rotational symmetries would imply an additional
reflection symmetry, forcing OP to be isomorphic to D4. This on the other hand
would imply that P is a square. It is easily checked that the linear symmetry group
GP of a 4-gon P can not even be of order 4. Such implications provide additional
insight that could potentially be used in polyhedral algorithms and which could
be valuable not only for the detection of symmetries. To the best of our knowledge
not much is known in this direction.

The only systematic study of such implications for geometric symmetry groups,
with results mainly in 2 and 3-dimensions, can be found in [Rob84]. For this, the
“space of polytopes” is considered as a manifold which decomposes into strata
of symmetry types. The points of the manifold represent similarity classes of
polytopes, and are grouped into “cells” with the same geometric symmetry group,
respectively the same symmetry type. For example, parallelograms form a two-
dimensional family of 4-gons (up to similarity). On the boundary of the associated
2-cell, one finds four “extreme cases”, two 1-cells (rectangles and rhombuses) and
two 0-dimensional cells (perfect symmetry types), one consisting of a square and
one consisting of a segment (the similarity class of one-dimensional polyhedra).

Many basic questions about possible symmetry types appear to be open: The
symmetry types in dimension n ≥ 3 have not yet been classified. The perfect
symmetry types for n ≥ 4 are unknown, and for odd dimensions n ≥ 5 it is not
even known if there exist infinitely many of them. To the best of our knowledge,
a corresponding study of linear symmetry types (according to the groups GP ) has
not at all been looked at.

Decompositions. Not only in (mixed) integer linear programming problems,
the considered symmetry groups G are usually – if not always – linear (respec-
tively affine). This implies that there exists a linear (or affine) invariant subspace
fixG (Rn). In linear programming one may simply restrict the optimization over a
polyhedron P (of feasible solutions) to the G-fixed part in

fixG (P ) = P ∩ fixG (Rn) ,

as there is always an optimal solution in the invariant subspace (see also the
exposition of Katrin Herr). In integer programming this is usually not possible,
as it can not be guaranteed that an integral solution is contained in the invariant
subspace. Nevertheless, we think that ”working” with or within fixG (P ) could be
beneficial (generalizing the approach of [BH09]). For this one needs to consider the
polyhedron P as a collection of G-symmetric fibers that project (orthogonally with
respect to a suitable inner product) onto the fixed points fixG (P ). In particular
the vertices of P themselves lie in such fibers and they allow a nice description of
fixG (P ) in terms of barycenters (a proof is given in [SS10]):

THM: Let P = conv{x1, . . . , xk} be a polyhedron in Rn and suppose G is a
subgroup of the linear symmetry group GP . Suppose the set of xi is split into l
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disjoint G-orbits O1, . . . , Ol. Then

fixGP = conv{b1, . . . , bl},

where bi =
1

|Oi|

∑

x∈Oi

x denotes the barycenter of orbit Oi.
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Software

[SymPol] a C++ tool for the work with symmetric polyhedra, by T. Rehn and A. Schürmann,
preliminary version 0.1.1, http://fma2.math.uni-magdeburg.de/~latgeo/sympol/sympol.

html.

Symmetry Breaking Constraints in Constraint Programming

Barbara Smith

A common way to exploit symmetry in constraint satisfaction problems is to trans-
form the symmetric CSP instance by adding constraints in such a way the new
CSP has at least one solution from each symmetry equivalence class of solutions
in the original CSP, and ideally only one. Crawford, Ginsberg, Luks and Roy, in
a 1996 paper [1], gave a standard procedure for deriving so-called lex-leader con-
straints in SAT problems that has subsequently been adapted for the general CSP,
principally for variable symmetries. The lex-leader constraint for a given element
of the symmetry group excludes any solution that is lexicographically larger than
its symmetric equivalent, given an ordering of the variables of the CSP instance.

Ensuring that there is only one solution in the transformed CSP instance for
every symmetry equivalence class requires in principle a lex-leader constraint for
every element of the symmetry group. Where it is impracticable to generate
so many constraints, we can resort to partial symmetry breaking, and generate
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constraints for only a subset of the symmetry group. I discuss which symmetries
might be a good choice in that case.

In constructing lex-leader constraints, we also have to choose a variable ordering
and I discuss the effect of changing the ordering and why it might be efficient to
use the same variable ordering for search.
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Algebraic Symmetry in Semidefinite Programs

Renata Sotirov

(joint work with Etienne de Klerk)

Semidefinite programming (SDP) is a generalization of linear programming
where the nonnegativity constraints are replaced by positive semidefiniteness on
the matrix variables. SDP has recently become a very powerful tool for provid-
ing tight relaxations for hard combinatorial optimization problems. Derived SDP
relaxations are often large scale and therefore hard to solve with the currently
available algorithms. In order to avoid computational difficulties, there are several
techniques for reducing complexity of semidefinite programs.

In this talk, we show how to exploit algebraic symmetry of the data matrices,
when present, in order to greatly reduce the size of the SDP relaxations. Here, we
assume that data matrices of an SDP relaxation belong to a matrix *-algebra of
low dimension. (Recall that a matrix *-algebra over C is a subspace of Cn×n, where
n is the order of the data matrices, that is closed under matrix multiplication and
taking conjugate.) Under this algebraic symmetry assumption, we may restrict the
optimization to the corresponding matrix *-algebra. Every matrix *-algebra has
a basis that is known as a coherent configuration and a canonical block-diagonal
structure after a suitable unitary transformation. This can be exploited in order
to reduce the size of the corresponding SDP problem. More details may be found
e.g., in the survey by Parrilo and Gatermann [1].

The described approach has several areas of applications: error correcting bi-
nary codes, kissing numbers, truss topology design, the traveling salesman prob-
lem, the quadratic assignment problem, etc. For an overview on problems in which
algebraic symmetry has been successfully exploited see [4]. To illustrate the ap-
proach, we consider here the quadratic assignment problem and report the best
known bounds for large instances whose one of the data matrix is a Hamming
distance matrix (see [2, 3]).



Mini-Workshop: Exploiting Symmetry in Optimization 2273

References

[1] K. Gatermann and P.A. Parrilo, Symmetry groups, semidefinite programs, and sum of
squares, Journal of Pure and Applied Algebra, 192 (2004), 95–128.

[2] E. de Klerk and R. Sotirov, Exploiting group symmetry in semidefinite programming relax-
ations of the quadratic assignment problem, Math. Program. A, 122/2 (2010), 225–246.

[3] E. de Klerk and R. Sotirov. Improved semidefinite programming bounds for quadratic as-
signment problems with suitable symmetry, Math. Program. A (accepted).

[4] E. de Klerk and R. Sotirov. A new library of structured SDP instances, Optimization Meth-
ods and Software, 24/6 (2009), 959–971.

Infinite-dimensional semidefinite programs

Frank Vallentin

(joint work with Christine Bachoc, Hans D. Mittelmann)

Starting point of my talk are approximation algorithms for NP-hard problems in
combinatorial optimization which are based on semidefinite programming (SDP),
a recent and powerful method in convex optimization. One example is the theta
number of Lovász [5] which provides an upper bound for the largest size of an
independent set of finite graphs based on a solution of a semidefinite program.

Many problems in extremal discrete geometry can be formulated as maximum
independent set problems, but then for infinite geometric graph, see for instance
[8] for packing and coloring problems.

A famous example is the kissing number problem which goes back to a discussion
betweem Newton and Gregory in 1692: What is the maximum number of non-
overlapping unit balls that can simultaneously touch a central unit ball?

Here the vertex set of the underlying infinite graph Γ(Sn−1, (0, π/3)) is the unit
sphere Sn−1 = {x ∈ Rn : x · x = 1} and we have edges between two different
vertices if the angular distance between them is strictly less than π/3, or if the
inner product between them is strictly bigger than 1/2. Independent sets of this
graph correspond to possible touching points in a kissing configuration.

To tackle this problem we generalize the theta number (and strengthenings
based on SDP hierarchies of Lovász, Schrijver [6], and of Lasserre [4]) to infinite
graphs which yields an infinite-dimensional semidefinite program. For instance,
the following infinite-dimensional semidefinite program gives an upper bound to
the kissing number in dimension n:

ϑ′(Γ(Sn−1, (0, π/3))) = inf
{

λ : K ∈ C(Sn−1 × Sn−1)�0,

K(x, x) = λ− 1, for all x ∈ Sn−1,

K(x, y) ≤ −1, for all x, y ∈ Sn−1

with x · y ≤ 1/2
}

,

where C(Sn−1×Sn−1)�0 denotes the cone of positive definite Hilbert-Schmidt ker-
nels. (In fact it turns out that this semidefinite program is equivalent to Delsarte’s
linear programming bound, see [2]).
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By using symmetries and tools from harmonic analysis one can solve these semi-
definite programs by computer giving the best known upper bounds in dimensions
up to 24.

For further details see [3] where the method is explained and [7] where compu-
tational results are given.
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Symmetry in Mathematical Programming

Leo Liberti

1. Encoding of a mathematical program

Mathematical Programming (MP) is a formal language for describing optimization
problems of the form:

(1) min{f(x) | g(x) ≤ 0 ∧ x ∈ X},

where x ∈ Rn is a vector of decision variables, X ⊆ Rn might include bounds and
integrality constraints on subsequences of x, and f : Rn → R and g : Rn → Rm are
functions that can be written as strings of a formal language E on the alphabet
A = O ∪Q∪ V , where V = {xi | i ∈ N} and O = {+,−,×,÷, (·)(·), log, exp, (, )}.
The strings of E are only and all those that can be obtained as follows: (a)
∀s ∈ Q∪ V (s ∈ E ); (b) ∀⊗ ∈ O representing a k-ary operator and e1, . . . , ek ∈ E ,
⊗(ej | j ≤ k) is in E [2]. If P ∈ MP, let F(P ) ⊆ X be the set of its feasible
solutions, i.e. those x ∈ X satisfying g(x) ≤ 0, and G(P ) ⊆ F(P ) the set of its
globally optimal solutions.

The recognition process (or parsing) of a valid string h ∈ E naturally yields a
directed graph D(h) whose leaf nodes are elements of Q ∪ V and whose non-leaf
nodes are elements of O. Every P ∈ MP has a Directed Acyclic Graph (DAG)
representation D(P ) obtained as a minor of D(f)∪

⋃

i≤m D(gi) by contracting all

equal leaf nodes [2].
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2. Solution and formulation groups

For a group G acting on X , we let Gx = {gx | g ∈ G} be the orbit of x in G for
all x ∈ X ; we let stab(Y,G) = 〈g ∈ G | ∀y ∈ Y (gy ∈ Y )〉 be the setwise stabilizer
and GY = 〈g ∈ G | ∀y ∈ Y (gy = y)〉 be the pointwise stabilizer of Y w.r.t. G for
all Y ⊆ X . Let [n] = {1, . . . , n}. For a permutation π ∈ Sn let Γ(π) be the set of
all the cycles in its (unique) disjoint cycle representation. For N ⊆ [n] we define
π[N ] =

∏

σ∈Γ(π)∩stab(N,Sn)
σ to be the restriction of π toN . If g1, . . . , gk ∈ G ≤ Sn

are generators for G (i.e. G = 〈gj | j ≤ k〉) we define G[N ] = 〈gj [N ] | j ≤ k〉 to
be the restriction of G to N . We consider the action of G ≤ Sn on X given
by πx = (xπ(i) | i ≤ n). This action induces a right action P 7→ Pπ (where
π ∈ Sn) on MP by replacing x with πx everywhere in (1). Sm also induces a
left action P 7→ σP (where σ ∈ Sm) given by replacing g = (g1, . . . , gm) by σg.
Because optimization problems (1) are independent of the order of the constraints,
σP = P for all σ ∈ Sm, which implies ∀σ ∈ Sm, π ∈ Sn (σP )π = σ(Pπ).

We define the solution group G∗(P ) = stab(G(P ), Sn) and the formulation group
GP = 〈π ∈ Sn | ∃σ ∈ Sm (σPπ = P )〉 of a MP formulation P given by (1); it
is easy to show that GP ≤ G∗(P ). Computing the solution group in general
requires aprioristic knowledge of G(P ), which is usually the ultimate aim when
considering and solving MPs, and is therefore impractical. Since deciding whether
two function encodings h1, h2 ∈ E are equal has linear complexity in |D(P )|,
computing generators for GP is a decidable problem [6] which can be solved once
the formulation of P is known. By choosing an appropriate colouring γ : D(P ) →
N of the vertices ofD(P ) (in order to avoid permutations of nodes of different types,
e.g., operator nodes with variable nodes), we show that GP = Aut(D(P ), γ)[N ],
where Aut(G, δ) is the group of automorphisms of the graph G which stabilizes
each equivalence class given by the vertex colouring δ setwise [6].

3. Impact of symmetry on solution algorithms

Although there appears to be no clearly defined relation between how large GP

is and how hard it is to solve P in practice, there are two common sense argu-
ments motivating the study of symmetries in MP, having to do with two different
algorithmic classes. When P is solved exactly (or approximately) using Branch-
and-Bound (BB) type algorithms, such as [3] when P is a Mixed-Integer Linear
Program or [1] when P is a Mixed-Integer Nonlinear Program, and only one global
optimum is required, then multiple symmetric global optima generally yield larger
BB trees, and therefore longer solution processes. When heuristic or meta-heuristic
algorithms (e.g. [7]) are used in order to find good solutions of P , the picture is
sometimes reversed: if the algorithm stochastically explores the neighbourhood of
the most recent (or best) found local optimum, having several optima generally
prevents the algorithm from getting stuck early on in the search [5].

Our research, being motivated by BB type algorithms, aims to determine GP

in view to somehow exclude symmetric global optima in order to reduce the size
of the search tree. The techniques used to break symmetries can be split into two
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categories: static and dynamic symmetry breaking [9]. Static symmetry break-
ing consists in reformulating P in such a way that at least one global optimum
is preserved, but (hopefully) many are excluded: this is known as a narrowing
reformulation [4]. The reformulated problem is then solved by means of an appro-
priate solution algorithm. Dynamic symmetry breaking techniques are embedded
in the BB algorithm and attempt to determine whether the current node is the
symmetric map of another, previously treated, node [8]. The rest of this abstract
focuses on static symmetry breaking.

The occurrence of symmetry in MP is far from rare. The computational exper-
iments in [6] show that 18% of the instances in three well-known public libraries
(MIPLib, GlobalLib, MINLPLib) have a nontrivial formulation group.

4. Symmetry breaking constraints

In [6], new methods were presented in order to break symmetries with two types
of general-purpose Symmetry Breaking Constraints (SBC) derived from the set
Ω of orbits of the action of GP on the variable index set [n]. Specifically, for
a nontrivial orbit ω ∈ Ω, if the transitive constituent GP [ω] can be ascertained
to be isomorphic to the full symmetric group Sym(ω) on ω, then a unique order
can be imposed on the variables indexed by ω by adjoining the following linear
inequalities to P :

(2) ∀j ∈ ω r {maxω} xj ≤ xj+ ,

where j+ is the successor of j in ω. Otherwise, for any structure GP [ω] might have,
one can always choose a variable (for example xminω) that should have minimum
values among all those indexed by ω:

(3) ∀j ∈ ω r {minω} xminω ≤ xj .

In general, if ω, θ ∈ Ω with ω 6= θ and gω(x) ≤ 0 and gθ(x) ≤ 0 are SBCs w.r.t.,
resp., ω and θ, adjoining both gω(x) ≤ 0 and gθ(x) ≤ 0 to P does not yield
a valid narrowing of P . We showed in [6] some sufficient conditions by which
SBCs originating from different orbits could be combined into a valid narrowing
of P . Specifically, this holds if: (a) GP [ω ∪ θ] contains a subgroup H such that
H [ω] ∼= C|ω| and H [θ] ∼= C|θ| (where Cp is the cyclic group of order p for all p ∈ N)
and (b) gcd(|ω|, |θ|) = 1. We remark that these conditions are quite restrictive
but not believed necessary.

An idea to improve this state of affairs was suggested to me during the workshop
by J. Ostrowski. Consider the SBCs generated by the following procedure.

(1) Let G = GP

(2) Let Ω be the set of orbits of the action of G on [n]
(3) Choose an orbit ω ∈ Ω
(4) Adjoin some SBCs g(xj | j ∈ ω) ≤ 0 to P
(5) If Gω is nontrivial, set G = Gω and go to Step 2.

The above algorithm generates a sequence ω1, . . . , ωk of disjoint subsets of [n]
(not necessarily a partition thereof) with corresponding SBCs g1(x) ≤ 0, . . . ,



Mini-Workshop: Exploiting Symmetry in Optimization 2277

gk(x) ≤ 0 which can all be simultaneously adjoined to P , for each ωh is an orbit
of the pointwise stabilizer of ωh−1.
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Detecting and breaking symmetries in circle packing

Alberto Costa

1. Introduction

The performance of Branch-and-Bound algorithms is severely impaired by the
presence of symmetric optima in a given problem; in fact, this situation causes
longer branches, and a higher number of nodes to explore. In order to break these
symmetries, some Symmetry Breaking Constraints (SBCs) can be adjoined to the
original formulation [1, 2], obtainig a narrowing reformulation [3]. After finding
these symmetries for the circle packing in a square problem [4], three different
classes of SBCs are proposed, and some computational results obtained with these
SBCs are provided.

2. Static Symmetry Breaking Constraints for circle packing in a

square problem

Consider the following problem.

Circle Packing in a Square (CPS). Given N ∈ N and S ∈
Q+, can N non-overlapping circles of unit radius be arranged in a
square of side 2S?
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Type of SBCS Set of inequalities
weak x1 ≤ x2, x1 ≤ x3, . . . , x1 ≤ x9

x1 ≤ y1, x1 ≤ y2 . . . , x1 ≤ y9
strong x1 ≤ x2, x2 ≤ x3, x3 ≤ x4,

x4 ≤ x5, x5 ≤ x6, x6 ≤ x7,

x7 ≤ x8, x8 ≤ x9

mixed x1 ≤ x2, x2 ≤ x3, y1 ≤ y4,
x4 ≤ x5, x5 ≤ x6, y4 ≤ y7,

x7 ≤ x8, x8 ≤ x9

Table 1. SBCS for the instance with N = 9 and S = 3.

We formulate the CPS as the following nonconvex NLP:

(1) max{α | (xi−xj)
2+(yi−yj)

2 ≥ 4α∀i < j ≤ N∧xi, yi ∈ [1−S, S−1] ∀i ∈ N}

For any given N,S > 1, if a global optimum (x∗, y∗, α∗) of (1) has α∗ ≥ 1 then
the CPS instance is a YES one.

The following theorem is proved in [5]:

Theorem 2.1. The formulation group of the CPS is isomorphic to C2 × SN .

In this case C2 (the cyclic group of order 2) represents the permutation between
x and y axes, while SN (the symmetric group of order N) represents the permu-
tations of the circles.

In order to break these symmetries, three classes of constraints are proposed:

• weak constraints [5]: x1 ≤ xi, ∀i ≤ N, x1 ≤ yi, ∀i ≤ N ;
• strong constraints [5]: xi ≤ xi+1, ∀i < N ;
• mixed constraints [6]: let L = ⌊S⌋; starting from the strong constraints,
replace xiL ≤ xiL+1 with y1+(i−1)L ≤ y1+iL, ∀i ∈ {1, 2, . . . , ⌈N

L ⌉ − 1}.

2.1. Example. Consider the instance with N = 9 circles and S = 3 (hence, the
side of the square is 6). Table 1 shows the different SBCs in this case.

3. Computational results

The experiments performed in [5] show that the results obtained with the strong
and the weak SBCs are better than the ones obtained with the original formulation;
however, the formers are more efficient than the latters, as suggested by their
names. Nevertheless, the best results are obtained with the mixed constraints, as
reported in [6]. Our comparative results, shown in table 2, have been obtained
on a 2.4GHz Intel Xeon CPU with 24 GB RAM running Linux and the solver
Couenne [7] for some “limit” instances of CPS (i.e. N circles fit in the square
but N + 1 do not); the table displays the following statistics at termination (10h
of CPU time): objective function value f∗ of the incumbent, number of BB nodes
closed, number of BB nodes still on the tree. The best upper bound at termination
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was fixed at 2 (and hence the gap was always > 100%) for all reformulations and
instances.

strong mixed
Instance (N S) f∗ nodes tree f∗ nodes tree

16 4 0.660 2381772 642285 1 2795501 839240
25 5 1 461224 188835 1 521487 222846
36 6 0 49962 23784 1 76409 34825
49 7 0 12577 6090 1 21366 10136
68 8 0 4 1 0.943 1057 497
86 9 0 4 1 0.640 5 1

Table 2. Results obtained with strong and mixed constraints.

4. Conclusion

As expected, adjoining SBCs improve the results. As a matter of fact, with these
new formulations it is possible to solve more instances of CPS, although this
approach does not scale so well to big ones. Moreover, unfortunately the upper
bound on does not decrease by moving from the original formulation to one of
the narrowings, but we notice a strange behaviour of the mixed SBCs: it seems
that with this constraints the optimal solution is found earlier on the search. The
future work has two main directions: first, finding other classes of SBCs for the
CPS. Second, try to adjoin dynamically the constraints at each Branch-and-Bound
node.
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