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Introduction by the Organisers

The workshop Deformation Methods in Mathematics and Physics, was organised
by Alice Fialowski(Budapest), Jürg Fröhlich(Zürich), and Martin Schlichenmaier
(Luxembourg) and took place from September 25 to October 1st, 2010 at the
Mathematisches Forschungsinstitut Oberwolfach (MFO).

Deformation theory plays an important role in many branches of mathematics
and physics. In mathematics, deformation theoretical methods are crucial for
constructing and for studying classifying spaces (moduli spaces). Furthermore, by
deformation one obtains new interesting mathematical objects from known ones.

In physics, the mathematical theory of deformations is a powerful tool to con-
struct new theories of physical reality from known ones. The concepts of symmetry
and deformations are considered to be two fundamental guiding principle for fur-
ther developing physical theory.

In 2006, there was a precursor workshop in Oberwolfach (2006/3) with the
title ”Deformations and Contractions in Mathematics and Physics”, where both
mathematicians and physicists participated. The Workshop was an enlightening
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experience for the participants and turned out to be very successful. Both groups
- mathematicians and physicists - benefited from the week. For a more detailed
description of the talks presented, see Oberwolfach Reports 2006/3.

Based on the success of the workshop, the organizers were invited by the Editor
of the International Journal of Theoretical Physics to prepare a special volume
(Vol. 46, No. 11, 2007) dedicated to the topics presented at the workshop .

To a certain extent the actual workshop took up the challenges and open prob-
lems of the 2006 workshop. But, equally important, it evolved into new directions.
The infinite-dimensional case was more in the center of interest and deformations
of higher order algebraic structures played a prominent role.

The following is a (non-exhaustive) list of topics discussed at the workshop.

(1) Formulations of formal deformations in the context of differential graded
Lie algebras, Maurer Cartan elements, higher structures, (curved) A∞

algebras, operads, graph complexes, in particular also the deformation of
diagrams.

(2) Constructions of moduli spaces, versal families for a given deformation
problem, in particular also the discussion of global versus formal defor-
mations and the question of rigidity. There exist (infinite-dimensional)
algebras which are formally rigid but admit nontrivial (non-formal) defor-
mations (sometimes called parameters).

(3) The deformation quantization of symplectic and Poisson manifolds, in par-
ticular also the question to find subalgebras for which the deformation
quantization converges, furthermore the behaviour of deformation quanti-
zations under reduction by a group action, Drinfeld associators.

(4) Deformed Geometry and Gravity, with the help of fuzzy space geometries,
large N limits of Yang-Mills matrix models, Anti-de-Sitter space time.

(5) Quantum Field Theory, in particular the deformation of the local observ-
able algebra, renormalisation and regularisation of QFT, family of Dirac
operators.

The talks were supplemented by two talks of overview character on deformation
quantization and on the deformation philosophy in physics.

The workshop was attended by 49 participants from all over the world. The
official program consisted of 21 lectures.

On Thursday night a Young Researchers Session took place. Five advanced
PhD students and post-docs gave short presentations on results obtained during
their PhD research. This activity was well received by the speakers and by the
audience.

Beside the official program, there was ample time for further activities of the
participants, such as self-organised sessions and discussion groups.
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Abstracts

The deformation philosophy, historical background, mathematical
frameworks and physical applications

Daniel Sternheimer

1. Presentation

This opening talk1 at the Workshop Deformations in Mathematics and Physics
aims at giving the “flavor” of deformation quantization and of some aspects of
noncommutative geometry, their background and perspectives. It also exemplifies
that it is advisable to have an idea of why one develops some theories. Indeed an
often ignored issue in the interaction between mathematics and physics is that,
when they at all care about mathematical issues, physicists usually explain to
mathematicians what they are doing, sometimes also how (at their level of rigor),
but not why they are dealing with such questions in such a manner – maybe because
they do not ask themselves the question, following what is done in the community,
and/or because they are convinced that mathematicians should only be asked
to provide a “toolbox”. Mathematical physicists try to speak the mathematical
language of physics with both accents and grammar.

The presentation summarizes an approach developed over many joint works
(some, in progress) that would not have been possible without the deep insight
on the role of deformations in physics of Moshe Flato, my friend and coworker for
35 years, a true mathematical physicist and physical mathematician.

Deformations in physics and mathematics are part of a deformation philosophy,
promoted in mathematical physics in joint work with Moshe Flato since the 70’s.
The main conceptual advances in 20th century physics, relativity and quantization,
manifest it. In deformation quantization (including its realization on manifolds),
quantization is understood as deformations of commutative algebra structures into
non commutative algebra structures (which includes quantum groups). One may
also think of objects dual to noncommutative algebras, the so-called quantum
spaces, as deformations of classical spaces, the objects dual to commutative al-
gebras (that is the essence of noncommutative geometry). Deforming Minkowski
space-time leads to a fruitful object which together with its group of symmetries is
referred as AdS or “anti de Sitter space”. The study of AdS has significant phys-
ical consequences (e.g. composite massless particles, AdS/CFT correspondence).
Combining all this leads to an ongoing program in which AdS would be quantized
in some regions related to black holes, with possible implications in particle physics
and cosmology. In particular we speculate that this could explain a universe in
accelerated expansion and maybe baryogenesis. Hopefully this broad picture will
inspire some junior attendants and readers of this Report.

1 c©2010 Daniel Sternheimer
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2. Deformations: the physical philosophy, their ancient origins,

modern and some possible future developments

Physical theories have domains of applicability defined by the relevant distances,
velocities, energies, etc. involved. The passage from one domain (of distances, etc.)
to another doesn’t happen in an uncontrolled way: experimental phenomena ap-
pear that contradict accepted theories. Eventually a new fundamental constant
enters and the formalism is modified: the attached structures (symmetries, ob-
servables, states, etc.) deform the initial structure to a new structure which in the
limit, when the new parameter goes to zero, “contracts” to the previous formalism.
A relatively easy to read exposition of that philosophy in the present context can
be found in the recent [5].

In physics the first example is the discovery that the Earth is not flat. Much
later Einstein’s theory of relativity can be viewed as a deformation of Newtonian
mechanics and its Galilean symmetry. In mathematics Riemann surface theory is
probably the first example, followed in the late 50’s by the Kodaira–Spencer theory
of deformations of complex structures and in the early 60’s by the Gerstenhaber
theory of deformations of algebras, at the time when Flato came to Paris (from the
Racah school in Jerusalem): we immediately realized that the above “physical”
deformations are naturally cast in that formulation. From there we felt that the
intuitive idea of quantization should also fall in that framework. But it took
another decade before we could realize the mathematical developments showing
that quantization is a deformation, and develop what is now called deformation
quantization. We shall not enter into any of its many details nor go beyond
what was said in the previous section about its manifold avatars, referring to the
founding papers [1] and e.g. the comprehensive survey of the “state of the art”
about 10 years ago in [2], recent reviews such as [5], and references quoted therein.

In the past decade there has been an extremely wide array of developments
and applications of deformation quantization, both in mathematics and in physics
(including algebraic geometry and string theory). A particularly active area of
research deals with “singular spaces”, while until the 90’s mostly manifolds (real
or complex) were considered: new phenomena appear, and new tools are needed.

The deformation of (1+3 dimensional) Minkowski space-time to AdS has, among
its physical consequences, the fact that massless particles can be treated, in a way
compatible with quantum electrodynamics for the photon, as composite of more
elementary objects, the singletons (discovered by Dirac in 1963), massless parti-
cles in (1+2) dimensions (a manifestation of AdS/CFT). That was extended by
Frønsdal in 2000 to treat leptons as composite of singletons, massified by inter-
action with some Higgs. See e.g. a review in [3]. Deforming further the AdS
symmetry group to the quantum group SOq(3, 2) is then natural and (e.g. for q
root of unity) brings challenging new phenomena such as finite-dimensional unitary
irreducible representations. Combining all this brought us [4] to realize quantized
anti de Sitter space (qAdS) black holes, building a Lorentzian version of Connes’
spectral triples based on universal deformation quantization formulae obtained
from an oscillatory integral kernel on an appropriate symplectic symmetric space.
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Based on that study a cosmological Ansatz would then be that space-time is,
in some small regions at the edge of our Universe, not only deformed (to AdS with
tiny negative curvature ρ, which does not exclude at cosmological distances to have
a positive curvature or cosmological constant, e.g. due to matter) but also “quan-
tized” to some qAdS. These regions could be considered, in a sense to make more
precise (e.g. with some measure or trace) as having “finite” (possibly “small”)
volume (for q even root of unity) and behave like black holes. At the “border” of
these one would have, for most practical purposes at “our” scale, the Minkowski
space-time, obtained by qρ → 0. From these, “q-singletons” could emerge, create
massless particles that would be massified by interaction with dark matter or dark
energy. That could (and should, otherwise there would be manifestations closer
to us, that were not observed) occur mostly at or near the “edge” of our universe
in accelerated expansion. These “qAdS black holes” (“inside” which one might
find compactified extra dimensions) could be a kind of “shrapnel” resulting from
the Big Bang (in addition to background radiation) and maybe provide a clue to
baryogenesis. At this stage these are mere speculations, but the many mathe-
matical and physical problems suggested by that application of our deformation
philosophy are challenging, worth studying independently, and could lead to yet
unexpected important developments.
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2007.

[4] P. Bieliavsky, L. Claessens, D. Sternheimer and Y. Voglaire, Quantized Anti de Sitter spaces
and non-formal deformation quantizations of symplectic symmetric spaces, Contemp. Math.
450, 1–24, Amer. Math. Soc. Providence, R.I. 2008 (arXiv:0705.4179v1 [math.QA]).

[5] D. Sternheimer, The deformation philosophy, quantization and noncommutative space-time
structures, in press inHigher Structures in Geometry and Physics, Progr. Math. 287, Springer
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Time and dynamics in physics. The quest for well-defined
mathematical models

Olav Arnfinn Laudal

If we want to study a natural phenomenon, called P, we would, in the present
scientific situation, want to describe P in some mathematical terms, say as a
mathematical object, X, depending upon some parameters, in such a way that
the changing aspects of P would correspond to altered parameter-values for X.
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X would be a model for P if, moreover, X with any choice of parameter-values,
would correspond to some, possibly occurring, aspect of P.

Two mathematical objects X(1), and X(2), corresponding to the same aspect
of P, would be called equivalent, and the set, M, of equivalence classes of these
objects should be called the moduli space of the models, X. The study of the
natural phenomenon P, would then be equivalent to the study of the structure of
M. In particular, the notion of time would, in agreement with Aristotle and St.
Augustin, see [4], be a metric on this space.

With this philosophy in mind I have embarked on the study of the dynamics of
moduli spaces of representations of associative algebras, see [3]. For any associative
k-algebra A, k a field, we have, in [4], and [5], defined a phase space Ph(A), i.e. a
universal pair of a morphism ι : A→ Ph(A), and an ι- derivation, d : A→ Ph(A),
such that for any morphism of algebras, A → R, any derivation of A into R
decomposes into d followed by an A- homomorphism Ph(A)→ R, see [4] and [5].
Iterating this construction we obtain a limit morphism ιn : Phn(A) → Ph∞(A)
with image Ph(n)(A), and a universal derivation δ ∈ Derk(Ph

∞(A), Ph∞(A)),
the Dirac-derivation.

This Dirac derivation will, as we shall see, create the dynamics in our different
geometries, on which we shall build our theory. A dynamical structure, defined for
a space, or for any associative k-algebra A, is now an ideal (σ) ⊂ Ph∞(A), stable
under the Dirac derivation. The quotient algebra A(σ) := Ph∞(A)/(σ), together
with the induced Dirac derivation, will be called a dynamical system.

Recall now that for any k-algebra A, and right A-modules V , W , there is
an exact sequence, Homk(V,W ) → Derk(A,Homk(V,W ) → Ext1A(V,W ) → 0,
where the image of, Homk(V,W )→ Derk(A,Homk(V,W )) is the sub-vectorspace
of trivial (or inner) derivations. Recall also that Ext1A(V, V ) is the tangent space
of the deformation functor of the A-module V .

The basic notions of non-commutative deformations of families of modules, and
the resulting affine non-commutative algebraic geometry, have been treated in
several texts, see in particular [1] and [2]. Given a finitely generated k-algebra A,
k a field, there is a commutative algebra C(n), and an open subvariety U(n) ⊆
Spec(C(n)) forming an étale covering of the set of isomorphism classes, Simpn(A),
of simple n-dimensional representations. Moreover there exists a versal family,
ρ̃ : A −→ EndC(n)(Ṽ ), inducing all isoclasses of simple n-dimensional A-modules.

Suppose, in line with our philosophy, that we have uncovered the moduli space
of the mathematical models of our subject, and that A is the affine k-algebra of this
space, assumed to contain all the parameters of our interest. Assume moreover that
we have guessed a dynamical system A(σ), with Dirac derivation δ, and a metric
defining of time. Notice first that any right A(σ)-module V is also a Ph∞(A)-
module, and therefore corresponds to a family of Phn(A)-module-structures on V ,
for n ≥ 1, i.e. to V , considered as an A-module, together with a sequence {ξn}, of a
tangent, or a momentum, ξ0, an acceleration vector, ξ1, and any number of higher
order momenta ξn. Thus, specifying a point v ∈ Simpn(A(σ)) implies specifying
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a formal curve through v0, the base-point, of the miniversal deformation space of
the A-module V .

Knowing the dynamical structure, (σ), and the state of our object V at a time
τ0, i.e. knowing the structure of our representation V of the algebra A(σ), at
that time (which is a problem that we should return to), this makes it reasonable
to believe that we, from this, may deduce the state of V at any later time τ1.
This assumption, on which all of science is based, is taken for granted in most
textbooks in modern physics. The mystery is, of course, why Nature seems to
be parsimonious, in the sense of Fermat and Maupertuis, giving us a chance of
guessing dynamical structures.

Any family of components of Simp(A(σ)), with its versal family Ṽ , will, in

the sequel, be called a family of particles. A section φ of the bundle Ṽ , is now a
function on the moduli space Simp(A), not just a function on the configuration

space, Simp1(A), nor on Simp1(A(σ)). The value φ(v) ∈ Ṽ (v) of φ, at some point
v ∈ Simpn(A), will be called a state of the particle, at the event v.

EndC(n)(Ṽ ) induces also a bundle, of operators, on the étale covering U(n)
of Simpn(A(σ)). A section, ψ of this bundle should be called a quantum field.
In particular, any element a ∈ A(σ) will, via the versal family map, ρ̃, define a
quantum field, and the set of quantum fields form a k-algebra.

Physicists will tend to be uncomfortable with this use of their language. A
classical quantum field for any traditional physicist is, usually, a function ψ, defined
on some configuration space, (which is not our Simpn(A(σ)), with values in the
polynomial algebra generated by certain creation and annihilation-operators in a
Fock-space. This interpretation may, however, be viewed as a special case of our
general set-up.

Let v ∈ Simpn(A(σ)) correspond to the right A(σ)-module V , with structure
homomorphism ρv : A(σ) → Endk(V ), then the Dirac derivation δ composed
with ρv, gives us an element, δv ∈ Derk(A(σ), Endk(V )). Modulo the trivial
(inner) derivations, δv defines a class, ξ(v) ∈ Ext1

A(σ)(V, V ), i.e. a tangent vector

to Simpn(A(σ)) at v. The Dirac derivation δ therefore defines a unique one-
dimensional distribution in ΘSimpn(A(σ)), which, once we have fixed a versal family,
defines a vector field, ξ ∈ ΘSimpn(A(σ)), and in good cases, a (rational) derivation,

ξ ∈ Derk(C(n)), inducing a derivation, [δ] ∈ Derk(A(σ), EndC(n)(Ṽ )), lifting ξ,
and, in the sequel, identified with ξ. By definition of [δ], there is now a Hamiltonian
operator Q ∈ Mn(C(n)), satisfying the fundamental equation δ = [δ] + [Q, ρ̃(−)].
This equation means that for an element (an observable) a ∈ A(σ) the element

δ(a) acts on Ṽ ≃ C(n)n as [δ](a) = ξ(ρ̃V (a)) plus the Lie-bracket [Q, ρ̃V (a)].
The dynamics of the system is now given in terms of the Dirac vector-field [δ],

generating the vector field ξ on Simpn(A(σ)). An integral curve γ of ξ is a solution
of the equations of motion. Let γ start at v0 ∈ Simpn(A(σ)) and end at v1 ∈
Simpn(A(σ)), with length τ1−τ0. This is only meaningful for ordered fields k, and
when we have given a metric (time) on the moduli space Simpn(A(σ)). Assume

this is the situation. Then, given a state, φ(v0) ∈ Ṽ (v0) ≃ V0, of a particle, there is
a canonical evolution map, U(τ0, τ1) transporting φ(v0) from time τ0, i.e. from the
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point representing V0, to time τ1, i.e. corresponding to some point representing V1,
along γ. It is given as, U(τ0, τ1)(φ(v0)) = exp(

∫
γ
Qdτ)(φ(v0)), where exp(

∫
γ
) is the

non-commutative version of the classical action integral. There are analogies of the
S-matrix, of perturbation theory, and so also of Feynman-integrals and diagrams.
In particular, Planck’s Constants and Fock space pop up in a natural way.

In [4], I sketched a physical toy model, of the physical systems composed of an
observer and an observed, both sitting in Euclidean 3-space. The corresponding

moduli space, Hilb(2)(E3), is easily computed. Provided with a natural metric,
i.e. with time, it was called the time-space of the model. A relative velocity in E3 is
now seen to be an oriented line in the tangent space of a point of H̃ . Thus the space
of velocities is compact. This lead to a physics where there are no infinite velocities,
and where the principle of relativity comes for free. Moreover, he operators C,P, T
of classical physics, and the three fundamental gauge groups of the standard model,

U(1), SU(2) and SU(3) are part of the structure of Hilb(2)(E3) = H̃/Z2, where

H̃ is the space of ordered pairs of points of E3, blown up along the diagonal ∆.
Experimenting with natural metrics defined in H̃ , we see a promising possibility of
defining notions like mass and charge, of different colors, related to this structure.
A catchy way of expressing this would be: Every point in our real world, E3 ≃ ∆,
corresponds to a ”black hole”, the exceptional fiber of the blow up, outfitted with
mass and charge.
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Quantum deformation theory

Alexander A. Voronov

Quantum deformation theory is based on the Quantum Master Equation (QME),
also known as the Batalin-Vilkovisky (BV) Master Equation:

dS + ~∆S +
1

2
{S, S} = 0,
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inasmuch as classical deformation theory is based on the Classical Master Equation
(CME), a.k.a. the Maurer-Cartan Equation:

dS +
1

2
[S, S] = 0.

The QME is defined in a space V [[~]] of formal power series with values in a
(differential graded) dg BV algebra V , whereas the CME is defined in a dg Lie
algebra g.

In classical deformation theory, there are two sides of the story: abstract defor-
mation theory, coming from the works of Deligne, Schlessinger, Stasheff, Goldman,
Millson, Kontsevich, and Soibelman, and concrete deformation theories, such as
deformations of complex structures (Kodaira-Spencer), associative algebras (Ger-
stenhaber), and many others. Abstract deformation theory takes the dg Lie alge-
bra g as a primary object and studies the CME, the associated deformation functor,
and its moduli space. Concrete deformation theory presents a dg Lie algebra gov-
erning the deformation problem and uses the specifics of the concrete situation to
understand the local structure of the moduli space, such as smoothness, formality,
obstructions, virtual dimension, etc.

In quantum deformation theory, just a tip of the iceberg is beginning to appear.
There are a few papers, [1, 2, 3], which may be viewed as making first steps in
abstract quantum deformation theory. In the paper [4], Terilla puts forward a
program of quantizing deformation theory.

There is no general theory of quantum deformations yet, and it is not understood
what quantum deformations are in concrete examples. Further steps in quantum
deformation theory have been discussed in the talk.
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Construction of Moduli Spaces of Lie, Associative and Infinity
Algebras through Extensions and Deformation Theory

Michael Penkava

(joint work with Alice Fialowski, Joshua Frinak, Austen Ott)

An A∞-algebra is an odd codifferential on the tensor coalgebra of the parity
reversion of a Z2-graded vector space. In other words, it is an odd coderivation
of this coalgebra whose square is zero. Similarly an L∞-algebra is an odd codif-
ferential on the symmetric coalgebra of the parity reversion of a Z2-graded space.
The parity reversion W = ΠV is the same same underlying space, but with the
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parity of homogeneous elements reversed. Associative algebras are examples of
A∞-algebras and (graded) Lie algebras are examples of L∞- algebras.

Let A(W ) denote either the tensor or symmetric coalgebra of W , and d be a
codifferential on it. If d′ is a codifferential on A(W ′), then a coalgebra morphism
g : A(W ) → A(W ′) is said to be a morphism of infinity algebras if g ◦ d = d′ ◦ g.
However, this definition has a problem, because the image of an infinity algebra
under a morphism will not be in general an infinity algebra. The problem is that
this definition really is the definition of a morphism of coalgebras equipped with
a codifferential, and infinity algebras are more specialized coalgebras. To modify
the definition, it is simply necessary to require that the kernel of the morphism
be a “standard coideal”, and the image be an infinity algebra. Conditions for this
are easy to state, and all examples that arise in the literature, including minimal
models, satisfy this more restricted definition.

There are two features that allow the theory of extensions of an associative or
Lie algebra by another such algebra to be expressed in a nice form, which make
it possible to construct moduli spaces of higher dimensional algebras from lower
dimensional ones using extensions. The first feature is a classification theorem
of algebras in terms of simple algebras. In the Lie case, an algebra is either
semisimple, solvable, or has a unique maximal solvable ideal, and the quotient
of the algebra by this solvable ideal is semisimple. This means that any finite
dimensional Lie algebra is either solvable, or an extension of a semisimple algebra
by a solvable algebra. For associative algebras, there is a unique maximal nilpotent
ideal, and if the algebra is not itself nilpotent, the quotient of the algebra by
this maximal nilpotent is semisimple. For both Lie and associative algebras, the
complex simple algebras are completely classified.

The second feature is that there is a complete theory of extensions of Lie and
associative algebras. Given an algebra structure δ onW , and an algebra structure
µ on M , an algebra structure d on V = M ⊕W , which extends the structures
δ and µ is given by a “module” structure λ, which can be thought of as a map
λ : W → hom(M,M) and a “cocycle” ψ, which is a map ψ :W ⊗W →M , which
satisfy certain conditions, namely

[µ, λ] = 0

[δ, λ] + 1
2 [λ, λ] + [µ, ψ] = 0

[δ + λ, ψ] = 0

These conditions can be unraveled to say that the extensions are classified by a
certain cohomology Hµ on the space of coderivations of the coalgebra on V . This
cohomology is also a graded Lie algebra, and there is a cohomology operator on Hµ

giving a space Hµ,δ+λ. The conditions for (δ, ψ) to be determine an extension, and
the classification of such extensions, can be given in terms of these two cohomology
spaces.

An infinity algebra is given by a codifferential d = d1 + d2 + · · · , where dk :
W k → W , and W k is either T k(W ) or Sk(W ), depending on whether we are
considering an A∞ or L∞ algebra (or others). If n is the least integer such that
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dn 6= 0, then dn is itself a codifferential, and the structure of d can be studied as
a deformation problem for the codifferential dn. Thus the first step in classifying
codifferentials on W is to study the moduli space of degree n codifferentials.

To classify them, we consider the space Ck,l of linear maps V k+l → M which
vanish unless there are k elements from M and l elements from W . If λk,l ∈ Ck,l,
then to classify extensions of a degree n codifferential δ on W by a degree n
codifferential µ on M , we consider λ = λn−1,1 + · · ·+ λ1,n−1, and ψ ∈ C0,n. If we
set δ0 = µ, δk = λn−k,k for 1 ≤ k < n − 1, δn−1 = δ + λ1,n−1 and δn = ψ then
the condition for d = δ + µ + λ + ψ to be a codifferential is

∑
i+j=k[δi, δj] = 0,

for k = 0, . . . 2n. This means that we obtain 2n + 1 equations which need to be
satisfied to obtain an extension.

There is a sequence of coboundary operators D0, , · · · , Dn, where D0 is defined
on the whole space C•,• of coderivations, giving a cohomology H0, and Dk+1

defined on Hk, giving a descending sequence of cohomology spaces. These spaces
are involved in the classification of extensions. In fact, the first three of these
spaces arise in the classical problem of extensions of associative or Lie algebras.

With Alice Fialowski and some undergraduate researchers, we have been study-
ing moduli spaces of infinity algebras of fixed degree n for some low dimensional
spaces V and low degrees n. We have determined a complete classification of these
moduli spaces, and have studied which algebras arise as extensions. Unlike the
Lie or associative algebra case, most algebras are not extensions, and the ones
which fail to be extensions do not have some of the properties one might hope for
if they were to play the role of simple algebras. For example, they may deform
into other algebras. Thus the classification of infinity algebras is not as easy as
the associative or Lie case, because we cannot build higher dimensional spaces by
the theory of extensions.

Contractions, Relaxations and Deformations of the hyperbolic plane

Pierre Bieliavsky

(joint work with S. Detournay and Ph. Spindel)

Contractions As it is well known, the group SL2(R) “contracts” onto the
(1+1) Poincaré group P := SO(1, 1) ⋉ R2 inducing a “curvature contraction”
of the SL2(R)-co-adjoint orbits. Focusing first on the Hermitean co-adjoint orbit
D := SL2(R)/SO(2), we realize the contraction just by observing that the Iwasawa
factor S := NA ≃ ax+ b of G := SL2(R) simply transitively acts on both D and
M := SO(1, 1) ⋉ R2/R, the generic co-ajoint orbit of the (1+1) Poincaré group
P. As a consequence of this observation one gets two S-equivariant symplectic
identifications: D = S = M .

The symplectic homogeneous space M admits a unique structure of symplec-
tic symmetric space i.e. a unique P-invariant symplectic connection ∇M whose
associated geodesic symmetries are global affine transformations. Realizing both
symmetric space geometries, the hyperbolic planar one on D and the one on M
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induced by ∇M, at the level of the same space S, one realizes∇M as a S-equivariant
contraction of ∇D.
Solvable symplectic symmetric spaces such asM admit invariant strict deformation
quantizations defined by oscillatory three-point kernels [Bi02]. To explain this, we
use Severa’s canonical map on a symplectic symmetric space. AssumeM = G/K is
a symplectic symmetric space for which the action ofG is strongly Hamiltonian. As
a G-symplectic space,M is thus locally isomorphic to a co-adjoint orbit in the dual
g⋆ of the Lie algebra g of G. At every point x of M, the symmetric space structure
induces a canonical linear injection ιx : Tx(M) → g that dualizes as a linear
projection ι⋆x : g⋆ → T ⋆

x (M). The Severa map around x is then simply defined
as the local subimmersion:πx := ι⋆x ◦ J : M → T ⋆

x (M), where J denotes the
moment map [Se06]. When Severa’s map happens to be a global diffeomorphism
(e.g. for M and D), we define the following canonical three-point function [BDS09]
that we call Severa’s area:SM :M ×M ×M → R : (x, y, z) 7→ ωx(πxy, πxz) where
ωx denotes the symplectic structure on T ⋆

x (M).
Severa’s area enjoys the remarkable property of being totally skewsymmetric in
the three points x, y and z [Bi02]. In the case of the solvable space M = M (and
many others that are solvable), Severa’s area coincides with the symplectic area of
the oriented geodesic triangle that admits x, y and z as midpoints of its geodesic
edges [Bi02]. Denoting by m(x, y) the midpoint on the geodesic arc between x
and y, the map: (x, y, z) 7→ (m(x, y),m(y, z),m(z, x)) actually defines a global
diffeomorphism of M ×M ×M onto itself (this does not hold for the hyperbolic
plane D). We denote by Φ : M ×M ×M → M×M ×M the inverse of the above
described diffeomorphism.

The full “space of quantizations” is then described as follows. We denote by Θ
the set of smooth functions valued in the Schwartz operator multipliers P : R →
OM (A) (A ≃ R) such that limθ→0 Pθ ≡ 1.
Theorem 1: [BBM03, Bi07] Let u and v be compactly supported continuous
functions on M.

(i) Let P ∈ Θ. There exists a pre-Hilbert space structure on D(M) := C∞
c (M)

such that the formula1

u ⋆Pθ v(x) =
1

θ2

∫

M×M

√
JacΦ(x, y, z) e

i
θ
SM(x,y,z) Pθ(ax − ay)Pθ(ay − az)

Pθ(ax − az)
u(y) v(z) dy dz

extends to the Hilbert completion Hθ,P := D(M) as an associative Hilbert algebra
structure on which the automorphism group Aut(M) acts by unitary automor-
phisms.

(ii) For every element P ∈ Θ, the asymptotic expansion: u ⋆Pθ v(x) ∼ ∑k θ
k

CP
k (u, v)(x) =: u⋆̃Pθ v(x) defines a Aut(M)-invariant formal ⋆-product on C∞(M)

[[θ]].

(iii) Every Aut(M)-invariant formal ⋆-product on C∞(M) [[θ]] is of the form ⋆̃Pθ
for some element P of Θ.

1For every x in M, we set x = nxax according to the decomposition M = S = NA.
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In other words, the space of quantizations is realized by the space Θ. All this
extends to the higher dimensional situation [BM01, Bi07].

Relaxations The quantizations described in the preceding subsection are Poin-
caré invariant but never SL2(R)-invariant. We now explain a process that yields
every SL2(R)-invariant quantization on S (hence on D) from a given one at the
contracted level (i.e. on M).
Let us start by considering the Lie algebra s := a ⊕ n of NA and view it as a
subalgebra of both P and G. Let ⋆ be any Aut(M)-invariant formal ⋆-product on
C∞(M)[[θ]]. Consider the natural linear injection s → Der(⋆) into the derivation
algebra Der(⋆) of ⋆.
Proposition 1: [BDS09] Let D ∈ Der(⋆) be any derivation that generates to-
gether with s an sl2-algebra of derivations of ⋆: RD ⊕ s ≃ sl2(R) . Then:

(i) Denoting by FN the partial Fourier transform on S w.r.t the N -variable, the
operator FN ◦ D ◦ F−1

N =: �D is a second-order differential operator.
(ii) Up the a real multiple, the principal symbol �D 7→ σ(�D) =: σ(�) is

independent of the choice of D and ⋆.
(iii) The principal symbol σ(�) is the one of the Laplace operator associated to

an anti- de Sitter metric.
Let us now consider a generator F ∈ g := sl2(R) of the line τn where τ is a Cartan
involution that anti-fixes a. Note that the associated fundamental vector field F ⋆

does not act as a derivation of ⋆, however, one has:
Proposition 2: [BDS09] Consider the natural Hopf algebra (C∞(S), .,∆, ǫ) in-
duced by the Lie group structure on S. Then, every formal weak solution u ∈
D′(S)[[θ]] of −(D ⊗ I)(ǫ ⊗ I)∆(u) = (I ⊗ F ⋆)(ǫ ⊗ I)∆(u) whose associated
convolution operator ℓu : ϕ 7→ u × ϕ on D(S)[[θ]] is invertible determines an
SL2(R)-invariant associative product ♯u by transporting ⋆ under ℓu. Moreover,
every SL2(R)-invariant ⋆-product on D = S is of the form ♯u for some solution u.

We call relaxation such a convolution operator ℓu. Note that, since the operator
D⊗I commutes with the vector field I⊗F ⋆, determining the evolution essentially
amounts to solving an evolution equation for D or equivalently (by intertwining
under the partial Fourier transform FN) to determining the evolutions of the
second order operator �D.
Proposition 3: [BDS09] The evolution equation can be explicitly solved by sep-
aration of variables (SOV).

Having the explicit solution of the evolution of D at our disposal, we are now
able to explicitly determine the quantizations. We focused on two examples. The
first one concerns the hyperbolic plane. We describe it below. The second one
deals with Zagier’s construction of Rankin-Cohen deformations of the modular
algebra [Za94]. The geometry involved in the latter is flat [BTY07].

Unterbeger type solutions In [UU88], A. and J. Unterberger defined what
they called Bessel’s symbolic calculus on the hyperbolic plane as a curved analogue
of Weyl’s calculus. The composition formula of symbols they end with does not,
as they observe, yield a ⋆-product in the sense that the semiclassical limit is not
defined. Disposing of the full space of such products, we produced Unterberger
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type quantizations that possess the right semiclassical limit. The resulting integral
kernel involves, again, Severa’s area SD on the hyperbolic plane.
Theorem 2: Consider the following special function: Kθ(̟) := 1

16π3θ4

∫∞

0 t2

J 1
θ

(
t
θ

)
e

i
θ
t̟ dt . Then, there exists a pre-Hilbert space of functions HD

θ ⊂ C∞(D)

that closes as an associative Hilbert algebra under the integral product formula:

u ♯θ v (x) :=

∫

D×D

Kθ

(
SD(x, y, z)

)
u(y) v(z) dy dz .
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différentielle. Ann. Sci. Ècole Norm. Sup. (4) 21 (1988), no. 1, 133–158.
[Za94] Zagier, Don; Modular forms and differential operators. K. G. Ramanathan memorial

issue. Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 1, 57–75.

Involutions and Representations for Reduced Quantum Algebras

Simone Gutt and Stefan Waldmann

The results that we presented in our two talks can be found with details and
references in [10].

Some mathematical formulations of quantizations are based on the algebra of
observables and consist in replacing the classical algebra of observablesA (typically
complex-valued smooth functions on a Poisson manifoldM) by a non commutative
one A. Formal deformation quantization was introduced in [1]; it constructs the
quantum observable algebra by means of a formal deformation (in the sense of
Gerstenhaber) of the classical algebra. Given a Poisson manifold M and the
classical algebra A = C∞(M) of complex-valued smooth functions, a star product
on M is a C[[λ]]-bilinear associative multiplication on C∞(M)[[λ]] with

(1) f ⋆ g =

∞∑

r=0

λrCr(f, g),
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where C0(f, g) = fg and C1(f, g) − C1(g, f) = i{f, g}, where the Cr are bidiffer-
ential operators so that 1 ⋆ f = f = f ⋆ 1 for all f ∈ C∞(M)[[λ]]. The algebra of
quantum observables is A = (C∞(M)[[λ]], ⋆).

An important classical tool to “reduce the number of variables”, i.e. to start
from a “big” Poisson manifold M and construct a smaller one Mred, is given
by reduction: one considers an embedded coisotropic submanifold in the Poisson
manifold, ι : C →֒M and the canonical foliation of C which we assume to have a
nice leaf space Mred. In this case one knows that Mred is a Poisson manifold in a
canonical way.

We consider here the particular case of the Marsden-Weinstein reduction: let
L : G ×M −→ M be a smooth left action of a connected Lie group G on M by
Poisson diffeomorphisms and assume we have an ad∗-equivariant momentum map
J : M −→ g∗ . The constraint manifold C is chosen to be the level surface of J
for momentum 0 ∈ g∗ (thus we assume, for simplicity, that 0 is a regular value).
Then C = J−1({0}) is an embedded submanifold which is coisotropic. The group
G acts on C and the reduced space is the orbit space of this group action of G
on C (in order to guarantee a good quotient we assume that G acts freely and
properly).

Given a mathematical formulation of quantization, one studies then a quantized
version of reduction and how “quantization commutes with reduction”. This has
been done in the framework of deformation quantization by various authors [3,
8, 7]. We shall use here the approach proposed by Bordemann [2] . Since the
emphasis is put in our quantization scheme on the observable algebra, recall that
at the classical level if ι : C →֒ M is an embedded coisotropic submanifold, one
considers JC = {f ∈ C∞(M) | ι∗f = 0} = ker ι∗ the vanishing ideal of C. It is
an ideal in the associative algebra C∞(M) and a Poisson subalgebra of C∞(M).
One defines BC = {f ∈ C∞(M) | {f,JC} ⊆ JC}, and assuming that the canonical
foliation of C has a nice leaf space Mred (i.e. a structure of a smooth manifold
such that the canonical projection π : C −→Mred is a submersion); then

(2) BC
/
JC ∋ [f ] 7→ ι∗f ∈ π∗C∞(Mred) = Ared

induces an isomorphism of Poisson algebras.
The fact that this is an isomorphism in our setting of Marsden Weinstein re-

duction can be seen using the Koszul resolution as follows. The Koszul complex
is C∞(M,Λ•

C
g) = C∞(M)⊗ Λ•

C
g with Koszul differential defined by

(3) ∂x = i(J)x.

Since the group G acts properly on M one can find (see for instance [3] ) a nice G-
invariant tubular neighborhood Mnice of C and a G-equivariantly diffeomorphism

(4) Φ :Mnice −→ Unice ⊆ C × g∗

so that Unice ∩ ({p}× g∗) is star-shaped ∀p ∈ C and J|Mnice
= pr2 ◦Φ. This allows

to define a G-equivariant prolongation map from functions on C to functions on
M

(5) C∞(C) ∋ φ 7→ prol(φ) = (pr1 ◦Φ)∗φ ∈ C∞(Mnice)
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and homotopies hi for the Koszul complex, explicitly given on the nice neighbour-
hood by

(6) (hkx)(p) = ea ∧
∫ 1

0

tk
∂(x ◦ Φ−1)

∂µa

(c, tµ) d t,

for x ∈ C∞(Mnice,Λ
k
C
g).

In particular ker i∗ = im ∂ and the quotient space BC
/
JC is isomorphic to

C∞(Mred) via the mutually inverse maps BC
/
JC ∋ [f ] 7→ ι∗f ∈ π∗C∞(Mred) and

C∞(Mred) ∋ u 7→ [prol(π∗u)] ∈ BC
/
JC . The Poisson bracket on Mred is defined

through this bijection

(7) π∗{u, v}red = ι∗{prol(π∗u), prol(π∗v)} u, v ∈ C∞(Mred).

Passing to a deformation quantized version of phase space reduction, one starts
with a formal star product ⋆ on M . The associative algebra A = (C∞(M)[[λ]], ⋆)
is playing the role of the quantized observables of the big system. A good analog
of the vanishing ideal JC will be a left ideal J C ⊆ C∞(M)[[λ]] such that the
quotient C∞(M)[[λ]]

/
J C is in C[[λ]]-linear bijection to the functions C∞(C)[[λ]]

on C. Then we define BC = {a ∈ A | [a,J C ] ⊆ J C}, i.e. the normalizer of J C

with respect to the commutator Lie bracket of A, and consider the associative
algebra BC

/
J C as the reduced algebra Ared. Of course, this is only meaningful

if one can show that BC

/
J C is in C[[λ]]-linear bijection to C∞(Mred)[[λ]] in such

a way, that the isomorphism induces a star product ⋆red on Mred.
Starting from a strongly invariant star product on M , there is a method to

construct a good left ideal inspired by the BRST approach in [3], simpler as we
only need to deform the Koszul part of the BRST complex. The quantized Koszul
operator ∂ : C∞(M,Λ•

C
g)[[λ]] −→ C∞(M,Λ•−1

C
g)[[λ]] is defined by

(8) ∂x = i(ea)x ⋆ Ja +
iλ

2
Cc

abec ∧ i(ea) i(eb)x +
iλ

2
i(∆)x,

where {ea} is a basis of g, Cc
ab = ec([ea, eb]) are the structure constants of g and

∆(ξ) = tr ad(ξ) is the modular one-form ∆ ∈ g∗ of g.
The good left ideal is the image of the Koszul differential J C = im∂1. Then

J C = ker ι∗ where ι∗ = ι∗ (id+(∂1 − ∂1)h0)−1
: C∞(M)[[λ]] −→ C∞(C)[[λ]].

The quotient algebra BC

/
J C is isomorphic to C∞(Mred)[[λ]] via the mutually

inverse maps BC

/
J C ∋ [f ] 7→ ι∗f ∈ π∗C∞(Mred)[[λ]] and C∞(Mred)[[λ]] ∋ u 7→

[prol(π∗u)] ∈ BC

/
J C . The induced star product ⋆

(κ)
red on C∞(Mred)[[λ]] is

(9) π∗(u ⋆
(κ)
red v) = ι

∗ (prol(π∗u) ⋆ prol(π∗v)) .

1. Involutions for the reduced quantum algebra

The algebra of quantum observables is not only an associative algebra but it
has a ∗-involution; in the usual picture, where observables are represented by
operators, this ∗-involution corresponds to the passage to the adjoint operator.
In the framework of deformation quantization, a way to have a ∗-involution on
A = (C∞(M)[[λ]], ⋆) is to ask the star product to be Hermitian, i.e. such that
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f ⋆ g = g ⋆ f and the ∗-involution is then just given by complex conjugation. The
problem we presented in the first talk is how to get in a natural way a ∗-involution
for the reduced algebra, assuming that ⋆ is a Hermitian star product on M . We
want a construction coming from the reduction process itself; we start with a left
ideal J ⊆ A in some algebra and take B

/
J as the reduced algebra, where B is

the normaliser of J in A. If now A is in addition a ∗-algebra we have to construct
a ∗-involution for B

/
J . From all relevant examples in deformation quantization

one knows that J is only a left ideal, hence can not be a ∗-ideal and thus B can not
be a ∗-subalgebra. Consequently, there is no obvious way to define a ∗-involution
on the quotient.

The main idea here is to use a representation of the reduced quantum algebra
and to translate the notion of the adjoint. Observe that B

/
J can be identified

(with the opposite algebra structure) to the algebra of A-linear endomorphisms
of A

/
J . We shall use an additional positive linear functional i.e. a C[[λ]]-linear

functional ω : A −→ C[[λ]] such that ω(a∗a) ≥ 0 for all a ∈A, where positivity in
C[[λ]] is defined using the canonical ring ordering of R[[λ]]. Defining the Gel’fand
ideal of ω by J ω =

{
a ∈A

∣∣ ω(a∗a) = 0
}
, one can construct a ∗-representation

(the GNS representation), of A on Hω = A
/
J ω with the pre Hilbert space

structure defined via 〈ψa, ψb〉 = ω(a∗b) where ψa denotes the equivalence class of
a ∈ A. Then the algebra of A-linear endomorphisms of Hω (with the opposite
structure) is equal to B

/
J ω. Hence, to define a ∗-involution on our reduced

quantum algebra, the main idea is now to look for a positive linear functional ω
such that the left ideal J we use for reduction coincides with the Gel’fand ideal
J ω and such that all left A-linear endomorphisms of Hω are adjointable. In this
case B

/
J becomes in a natural way a ∗-subalgebra of the setB(Hω) of adjointable

maps. Up to here, the construction is entirely algebraic and works for ∗-algebras
over rings of the form C = R(i) with i2 = −1 and an ordered ring R, instead of
C[[λ]] and R[[λ]].

A formal series of smooth densities
∑∞

r=0 λ
rµr ∈ Γ∞(|Λtop|T ∗C)[[λ]] on the

coisotropic submanifold C such that µ = µ is real, µ0 > 0 and so that µ transforms
under the G-action as L∗

g−1µ = 1
∆(g)µ, where ∆ is the modular function, yields a

positive linear functional

(10) ωµ(f) =

∫

C

ι∗(f)µ for f ∈ C∞0 (M)[[λ]].

The corresponding GNS representation of (C∞(M)[[λ]], ⋆) is defined on the pre

Hilbert space C∞0 (C)[[λ]] with scalar product 〈φ, ψ〉µ =
∫
C
ι∗
(
prol(φ) ⋆ prol(ψ)

)
µ

as the left module structure •

(11) f •κ φ = ι∗(f ⋆ prol(φ)) φ ∈ C∞(C)[[λ]], f ∈ C∞(M)[[λ].

For any u ∈ C∞(Mred)[[λ]] there exists a unique u∗ ∈ C∞(Mred)[[λ]] such that
〈φ, ψ •red u〉µ = 〈φ •red u∗, ψ〉µ for all φ, ψ ∈ C∞0 (C)[[λ]], and the map u 7→ u∗ is a
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∗-involution for ⋆red of the form

(12) u∗ = u+
∞∑

r=1

Ir(u)

with differential operators Ir on Mred.
In our Marsden-Weinstein reduction context, complex conjugation is also a ∗-

involution for ⋆red. Studying whether the ∗-involution corresponding to a series of
densities µ is the complex conjugation yields a new notion of quantized modular
class in the following way. Formal series of densities µ correspond to formal series

of densities Ω on Mred (locally Φ∗
(
µ|

π−1U

)
= Ω|U ⊠ Dleftg) and one has

(13)

∫

Mred

v ⋆red u Ω =

∫

Mred

u∗ ⋆red v Ω u, v ∈ C∞0 (Mred)[[λ]].

The ∗-involution corresponding to a formal series µ, hence to a formal series Ω, is
the complex conjugation iff the automorphism of ⋆red defined by

(14) IΩ : C∞0 (Mred)[[λ]] −→ C[[λ]] : u 7→ u∗

is equal to the identity, and this is true iff the map τΩ defined by

(15) τΩ : C∞0 (Mred)[[λ]] −→ C[[λ]] : u 7→ τΩ(u) :=

∫

Mred

u Ω

is a trace functional. The existence of a trace density for ⋆red is non-trivial: it
implies that Ω0 is a Poisson trace (i.e. τΩ0 vanishes on Poisson brackets) and this
implies that the Poisson structure ofMred is unimodular [12]. Given another series
of densities Ω′ = ̺Ω onMred there is a unique ̺ ∈ C∞(Mred)[[λ]] with ̺0 = ̺0 > 0
such that

(16) τΩ′(u) = τΩ(̺ ⋆red u) ∀u ∈ C∞0 (Mred)[[λ]]

and the ∗-involutions ∗ and ∗′

are related by the inner automorphism

(17) u∗
′

= ̺ ⋆red u
∗ ⋆red ̺

−1.

Observe that the automorphism IΩ coincides with the identity at order 0 in λ so
that one can write

(18) IΩ = exp(DΩ)

for a derivation DΩ =
∑∞

r=1 λ
rD

(r)
Ω of ⋆red. Given two series of densities on Mred,

the difference DΩ − DΩ′ is an inner derivation of ⋆red so that the Hochschild
cohomology class of DΩ is independent of Ω; we call it the quantum modular class.

One sees that D
(1)
Ω = i∆Ω0 , where ∆Ω0 is the modular vector field of Mred with

respect to Ω0.
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2. Representations of the reduced quantum algebra

The question we addressed in the second talk is the study of the representations
of the reduced algebra with the ∗-involution given by complex conjugation. We
want to relate the categories of modules of the big algebra and the reduced algebra.
The usual idea is to use a bimodule and the tensor product to pass from modules of
one algebra to modules of the other. In the context of quantization and reduction
this point of view has been pushed forward by Landsman [11], mainly in the context
of geometric quantization. Contrary to his approach, we have, by construction of
the reduced star product, a bimodule structure on C∞(C)[[λ]]. We want more
properties to have a relation between the ∗-representations of our algebras on
inner product modules. The notions are transferred, following [6, 4], from the
theory of Hilbert modules over C∗-algebras to our more algebraic framework.

In order to build such a bimodule we look at
(19)
C∞cf (C) =

{
φ ∈ C∞(C)

∣∣ supp(φ)∩π−1(K) is compact for all compactK ⊆Mred

}
.

The space C∞cf (C)[[λ]] is then a sub-bimodule for the left (C∞(M)[[λ]], ⋆)- and
right (C∞(Mred)[[λ]], ⋆red)-module structure on C∞(C)[[λ]]. We define on it a
C∞(Mred)[[λ]]-valued inner product by the explicit formula

(20) π∗ 〈φ, ψ〉red =

∫

G

ι∗(prol(φ) ⋆ prol(ψ))Dleftg,

where we use the left invariant Haar measure on G. The bimodule structure and
inner product on C∞cf (C)[[λ]] gives a strong Morita equivalence bimodule between
C∞(Mred)[[λ]] and the finite rank operators on C∞cf (C)[[λ]]. The crucial point is
to show the complete positivity of the inner product. In some sense, the resulting
equivalence bimodule can be viewed as a deformation of the corresponding classical
limit which is studied independently in the context of the strongMorita equivalence
of the crossed product algebra with the reduced algebra. If G is not finite, the
finite rank operators do not have a unit, thus we have a first non-trivial example
of a strong equivalence bimodule for star product algebras going beyond the unital
case studied in [5].

The ∗-algebra (C∞(M)[[λ]], ⋆) acts on C∞cf (C)[[λ]] in an adjointable way with re-
spect to the C∞(Mred)[[λ]]-valued inner product and we obtain a Rieffel induction
functor from the strongly non-degenerate ∗-representations of (C∞(Mred)[[λ]], ⋆red)
on pre-Hilbert right D-modules to those of (C∞(M)[[λ]], ⋆) , for any auxiliary co-
efficient ∗-algebra D over C[[λ]]. Thus we obtain a functorial induction only for
the direction “bottom-up”. It does not seem to be possible to get a functorial
induction of the other direction.

As example, we study the geometrically trivial situation M = Mred × T ∗G
where on Mred a Poisson bracket and a corresponding star product ⋆red is given
while on T ∗G we use the canonical symplectic Poisson structure and the canon-
ical star product ⋆G from [9]. Up to the completion issues, the Rieffel induction
with C∞cf (Mred ×G)[[λ]] simply consists in tensoring the given ∗-representation of
C∞(Mred)[[λ]] with the Schrödinger representation on C∞0 (G)[[λ]].
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Deformation quantization and flat connections

Anton Alekseev

The KZ connection comes from the WZW model in 2D CFT,

An
KZ =

∑

i<j

tij ln(zi − zj) ∈ Ω1(Cn \ diag, tn)

where tn = freeLie(tij , i, j = 1, . . . , n)/relations, the relations being

• ti,i = 0
• ti,j = tj,i
• [ti,j , tk,l] = 0
• [ti,j + ti,k, tj,k] = 0

tn is the Lie algebra of pure braids.

The holonomy

ΦKZ = Hol(A3
KZ , ·z1

z2−→ ·z3)
is a Drinfeld associator. That is,

(1) Φ = 1 + 1
24 [t1,2, t2,3] + · · ·

(2) Φ satisfies pentagon equation.
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It turns out that the Torossian connection in 2D BF theory gives rise to another
solution of associator conditions. This connection has the form

An
T =

∑

Γ∈trees

WΓ · 〈Γ〉

where WΓ is the Feynman weight of a tree and 〈Γ〉 is the image of a tree in the
Lie algebra

treen =

〈
trivalent planar oriented trees
with leaves colored in elements

of {1, 2, . . . , n}

〉
/relations

the relations being

• = −

•
A B

C
+ cycl = 0

One can prove

ΦT = Hol(A3
T , · −→ ·) 6= ΦKZ

giving a new solution of associator axioms.

Curved infinity-algebras and their characteristic classes

Andrey Lazarev

(joint work with Travis Schedler)

Kontsevich has associated certain characteristic classes to finite-dimensional L∞-
or A∞-algebras equipped with an invariant inner product, [Kon93, Kon94]. These
are expressed in terms of the homology of certain complexes spanned by graphs
with some additional structures. This construction is by now well-understood
both from the point of view of Lie algebra homology and topological conformal
field theory; see, for example, [HL08].

In this note, we explore a natural generalization of this construction to the
case of curved algebras, introduced by Positselski in [Pos93]. It turns out that a
complete description of these classes, and of the homology of the associated graph
complexes, is possible. We show that these are all obtainable from one-dimensional
algebras, and that these classes are zero for algebras with zero curvature. This
contrasts with the corresponding problem for conventional graph complexes, which
is still widely open.

As explained by Kontsevich, these graph complexes can be viewed as computing
the stable homology of Lie algebras of symplectic vector fields on a vector space
W (in the A∞ case, one should take noncommutative symplectic vector fields).
This motivates us to consider the stability maps. In this direction, we prove that
the map from the Lie algebra of symplectic vector fields on W vanishing at the
origin to the homology of the Lie algebra of all vector fields on W ⊕ C · w, where
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w is an odd vector, is zero. Similarly, we show the same for the Lie algebra of
noncommutative symplectic vector fields.

The precise relation to the previous result is as follows. Any cyclic L∞-algebra
structure on V defines an unstable characteristic class in the homology of the
Lie algebra of symplectic vector fields on the shifted vector space W = ΠV . As
dimV → ∞, the homology of this Lie algebra converges to the graph homology,
and the image of the unstable characteristic class under the stability maps gives, in
the limit, the aforementioned (stable) characteristic class. Hence, our result above
says that the unstable curved characteristic class of an algebra with zero curvature
already maps to zero under the first stability map W := ΠV →֒W ⊕ C · w.

A related observation is the following: if A is a curved (associative or Lie, or
more generally A∞- or L∞-) algebra with nonzero curvature, then A is gauge
equivalent (i.e., homotopy isomorphic) to the algebra with the same curvature
and zero multiplication, in a sense we will recall below. In the case of cyclic
curved algebras, we also compute the gauge equivalence classes, which are less
trivial: nontrivially curved algebras are gauge equivalent to the direct sum of a
curved algebra of dimension at most two of a certain form (but having nontrivial
multiplications in general), with a zero algebra.

This observation hints at a triviality of curved infinity-algebras from a homo-
logical point of view, at least when the cyclic structure is not considered. A similar
result on the triviality of the corresponding derived categories was obtained re-
cently in [KLN10].

Finally, we generalize these results to the operadic setting, i.e., to types of
algebras other than associative and Lie algebras. In particular, we can apply it to
Poisson, Gerstenhaber, BV, permutation, and pre-Lie algebras. For the most part,
the generalization is straightforward, and we restrict ourselves with giving only an
outline of arguments in this section. There is, however, one important aspect which
is less visible in the special cases of commutative and ribbon graphs: a curved graph
complex associated with a cyclic (or even modular) operadO is quasi-isomorphic to
a variant of the deformation complex of a curved O-algebra on a one-dimensional
space. Therefore, this graph complex supports the structure of a differential graded
Lie algebra. This differential Lie algebra, and its Chevalley-Eilenberg complex,
appeared in various guises in the works of Zwiebach-Sen, Costello and Harrelson-
Voronov-Zuniga on quantum master equation, [SZ96, Cos09, HVZ07].
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The four-punctured sphere and the Weyl algebra: two exercises in
algebraic deformation theory

Murray Gerstenhaber

Classically, the deformation theory of algebras identifies the space of infinitesimal
deformations of an algebra A over a commutative unital ring k with the coho-
mology group H2(A,A). When this vanishes A is called absolutely rigid and no
non-trivial deformation is possible. Nevertheless, A may depend in an essential
way on one or more parameters. (The same problem arises for non-compact com-
plex analytic manifolds.) This paper examines (i) the algeba of the sphere with
four marked points (“punctures”) k[1/(x− a1), 1/(x− a2), 1/(x− a3), 1/(x− a4)]
and (ii) the Weyl algebra k[x, y]/(xy− qyx− 1), both of which are absolutely rigid
but where the more general cohomology theory of presheaves of algebras over a
small category detects the existence of non-trivial infinitesimals. In both one con-
siders instead of A alone, how it is “put together” from the inclusion of smaller
subalgebras whose images generate A and which “move” relative to each other.
(The theory is patterned after that for complex manifolds where if a covering is
given then its sets are the objects of the category and the inclusions its morphisms;
to each set of the covering one assigns its ring of holomorphic functions.) From
every presheaf of associative algebras over a small category one can build a single
algebra whose cohomology and deformation theories are identical with those of
the entire presheaf, but the examples here differ. In the first one must use only
cocycles which vanish at the marked points to insure that they remain deleted;
these form the subcomplex whose cohomology detects the infinitesimals; in the
second there is no restriction.

Geometric and algebraic structures for general crossed modules

Christoph Schweigert

(joint work with Jennifer Maier, Thomas Nikolaus)

A finite crossed module consists of two finite groups H and G, an action µ : G→
Aut(H) by group automorphisms and a boundary map ∂ : H → G compatible
with the adjoint action:

∂(g.h) = Adg(∂h) (∂h).h′ = Adh(h
′)
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for all g ∈ G and h, h′ ∈ H . To a finite crossed module, one can associate a

finite-dimensional complex braided Hopf-Algebra D(H ∂→ G) whose representation
category is a premodular category [1].

This category is a modular tensor category, if and only if the boundary map ∂
is an isomorphism of groups. Its failure to be modular is encoded by a Tannakian
subcategory for the finite group J := (ker∂)∗ ⋊µ̂ coker∂. The regular repre-
sentation of J is a commutative symmetric Frobenius algebra in the Tannakian
subcategory. Induction with respect to this algebra gives a modularization in the
sense of Bruguières [2]. One can show that this modularization is [6] equivalent,
as a braided tensor category, to the representation category of the Drinfeld double
D(X) of the finite group

X := im∂ ∼= H/ker∂ .

Hence finite crossed modules do not lead to new modular tensor categories.
Still, as we have shown in this talk, they lead to interesting algebraic structure:
We show that a finite crossed module allows to construct a J-equivariant modular
tensor category [4, 7] whose neutral component is the modular tensor category
D(X) − mod. A J-equivariant modular tensor category C allows to construct
a J-equivariant three-dimensional TFT, i.e. a tensor functor from a cobordism
category with J-covers to the symmetric monoidal category of finite-dimensional
vector spaces. Moreover, by the so-called orbifold construction, one can associate
to the J-equivariant modular tensor category C a modular tensor category C/J .
In our case, the orbifold category of the untwisted sector of the J-equivariant
category is just Bantay’s premodular tensor category.

Our constructions rely on a geometric realization of the representation category
of the Drinfeld double. As a target space, we take the groupoidBX with one object
that is associated to the finite groupX . Loop space is then modelled by the inertia
groupoid, i.e. the functor category

ΛBX = [BZ, BX ] = X//X

which turns out to be equivalent to the action groupoid for the adjoint action
of X on itself. The representation category is then the category [X//X, vect] ∼=
D(X)−mod of X-equivariant vector bundles on X . Fusion and braiding are then
obtained using the techniques of [5, 8] via pull-push constructions.

For injective boundary map ∂, the construction of the J-equivariant category
is based on Schreier theory. It asserts that for finite groups X, J , exact sequences
of groups

0→ X → G→ J → 0

with a fixed set-theoretic section s : J → G are in bijection with weak two-
functors from BJ to the automorphism 2-category AUT(BX). In this way, we get
(categorified) J-actions on the target space BX , the configuration spaceX//X and
finally on the category [X//X, vect] ∼= D(X)−mod of vector bundles. Orbifoldizing
by this action gives Bantay’s category in the case of injective boundary map.
Twisted sectors are obtained by constructing vector bundles on twisted loop spaces.
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They turn out to be vector bundles over twisted action groupoids X//jX , where

the adjoint action is twisted by the automorphism j ∈ AUT(X) to Adj
x(y) :=

xyj(x)−1.
Our results fit into the general picture developped in [3]: J-equivariant cate-

gories with neutral component X//X −mod are in bijection to morphisms to the
Brauer-Picard 2-group BrPic(X//X −mod). The latter has as objects invertible
module categories over the modular tensor category [X//X, vect], as 1-morphisms
invertible functors of module categories and as 2-morphisms invertible natural
transformations of such functors. Our construction amounts to a factorization

J //

$$HHHHHHHHHH BrPic(X//X −mod)

AUT(BX)

55llllllllllllll

where the left arrow is the categorified action and the right arrow maps j ∈
AUT(X) to the module category X//jX −mod over the tensor category X//X−
mod.

The general case uses 2-gerbes on the groupoid BX and implements an action
of J by 2-gerbe endomorphisms. In the case of surjective boundary map, the
equivariance group acts by tensoring with equivariant line bundles over X .

Our results illustrate in particular the usefulness of higher categorical notions
and techniques (as developped e.g. in [5, 8] ) for algebraic constructions.

References

[1] P. Bantay, Characters of Crossed Modules and Premodular Categories in: Moonshine:
the first quarter century and beyond: proceedings of a workshop on the moonshine
conjectures and vertex algebras. J. Lepowsky, J. McKay and Michael P. Tuite eds.
arXiv:math/0512542v1 [math.QA]
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Deformations of algebras and their diagrams

Martin Markl

We will work over a fixed characteristic zero field k. Everyone knows that
deformations of an associative algebra (A, µ) are controlled by the Hochschild
cohomology. By ‘controlled by’ we usually mean that

– H1(A,A) classifies infinitesimal deformations and
– H2(A,A) contains obstructions for their extensions.
But more is true: the Hochschild cochain complex C∗(A,A) carries the Ger-

stenhaber bracket [−,−] which turns it into a dg-Lie algebra

g := (C∗(A,A), [−,−], δ).
Let L := g⊗ (t) ⊂ g⊗ k[[t]]. If one considers the solutions of the Maurer-Cartan
equation with the associated Lie group

MC(g) := {s ∈ L1; δs+
1

2
[s, s] = 0}, G(g) := exp(L0),

then the moduli space of formal deformations of µ equals the quotient Def(g) =
MC(g)/G(g).

Our aim is to show that the same scheme holds for a wide class of algebras
and their diagrams, though instead of dg-Lie one sometimes needs an L∞-algebra.
We will show how to construct, for a (diagram of) algebra(s) A belonging to a
specified class of structures, an L∞-algebra g = (C∗(A,A), δ = l1, l2, . . .) governing
its deformations.

We will focus on explicit calculations and examples. We, in particular, show
that deformations of morphisms are controlled by a fully-fledged L∞-structure.
We give an example where a ‘curved’ (= with l0-term) L∞-algebra occurs. We
also demonstrate that L∞-deformation algebras are crucial for deformations of
exotic structures.

– – – – –

Let us explain some points mentioned above. By a ‘class of structures’ we mean
algebras over a (colored, in the case of diagrams) k-vector space operad P . The
construction of the L∞-deformation complex

g = (C∗(A,A), δ = l1, l2, . . .)

goes in two steps:
Step 1: Finding the minimal , or at least cofibrant , model α : (F(E), ∂)→ (P , 0)

of the operad P . By definition, α is a homology isomorphism, F(E) the free operad
on a collection E, and the minimality means that ∂(E) consists of decomposable
elements of F(E). This step is nontrivial. A rich theory of minimal models exists,
but it will not be discussed here.

Step 2: The minimal model determines g via a straightforward procedure which
will be illustrated on several examples.

Conclusion. By analyzing examples and observing some general rules, we con-
clude that:
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– Deformations of a single reasonable algebra are always governed by a dg-Lie
algebra. Here ‘reasonable’ means an algebra over a Koszul quadratic operad, while
the anthropic principle says that all algebras one might find in Nature are of this
type. For algebras over a non-Koszul operad the deformation complex, however,
carries nontrivial higher ln’s.

– The situation dramatically changes when one considers deformations of di-
agrams of algebras. The corresponding deformation complex carries nontrivial
higher operations even for the diagram consisting of a single morphism between
algebras.

– The situation develops even further when one considers diagrams with loops.
The L∞-deformation complex then contains a non-trivial curvature term l0.

History and references. The classical deformation theory for associative alge-
bras was worked out in a series of seminal papers [2, 3, 4]. The standard reference
for operads is [10], their minimal models were introduced in [7]. The standard
reference for L∞-algebras is [5].

The deformation cohomology based on a resolution of the corresponding op-
erad was first considered in the proceedings [6] of the Winter School ‘Geometry
and Physics,’ Zd́ıkov, Bohemia, January 1993. The L∞-deformation complex was
constructed by van der Laan in [11]. The explicit description used in the talk
was obtained in [8], its colored version in [1]. An example of the L∞-deformation
complex of a non-Koszul algebra was given in [9].
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The Deformation Philosophy - An Example: Atomism as Quantization

Jürg Fröhlich

20th century physics has been characterized by the confirmation of a paradigm and
three revolutions. The paradigm is the atomistic structure of matter, the revolu-
tions are quantum theory and the relativity theories. It is argued that all the new
theories can be viewed as arising from precursor theories by deformations (of kine-
matical algebras and/or symmetries). This point of view is illustrated by showing
(on examples) that certain atomistic theories of matter arise by quantization of
continuum theories of matter. As an example, it is shown that the Newtonian
mechanics of identical point particles interacting through 2-body potentials can
be viewed as the quantization of Vlasov theory.

Emergent (noncommutative) geometry and gravity from Yang-Mills
Matrix Models

Harold Steinacker

A introductory review to emergent noncommutative gravity within Yang-Mills
Matrix models is presented. Space-time is described as a noncommutative brane
solution of the matrix model, i.e. as submanifold of RD. Fields and matter on the
brane arise as fluctuations of the bosonic resp. fermionic matrices around such a
background, and couple to an effective metric interpreted in terms of gravity.

Our starting point is the identification of a gravity sector within noncommu-
tative gauge theory. NC gauge theory has been considered previously as a defor-
mation of Yang-Mills gauge theory, living on NC space. From that point of view,
it is well-known that the U(1) sector of U(n) gauge theory on the Moyal-Weyl
quantum plane Rn

θ (which is the simplest example of a NC space) plays a special
role: it does not decouple from the remaining SU(n) degrees of freedom, and its
quantum effective action is drastically different from its commutative counterpart
due to UV/IR mixing. These and other ”strange” features have been viewed as
obstacles for the physical application of NC gauge theory, and a relation to gravity
has been widely conjectured.

In order to have a well-defined framework, we will focus on matrix models of
Yang-Mills type. These models have non-commutative spaces or space-time as
solutions, i.e. quantized Poisson manifold. Thus space-time and geometry are
dynamical rather than put in by hand, and the models should be considered as
background independent. U(1) fluctuations of the matrices around NC space-time
describe geometrical deformations such as gravitons, while SU(n) fluctuations de-
scribe nonabelian gauge fields. The kinetic terms of these fields arises from the
commutators in the matrix model, and encodes an effective metric which is essen-
tially universal for all fields and matter. Since this metric is dynamical, it must
be interpreted in terms of gravity. This leads to an intrinsically non-commutative
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mechanism for gravity, combining the metric and the Poisson structure in a spe-
cific way. It provides a natural role for non-commutative or quantized space-time
in physics.

Space-time is described as a 3+1-dimensional NC brane Mθ ⊂ RD (possibly
with compactified extra dimensions), which carries a Poisson tensor θµν(x). All
matter and gauge fields live on this space-time brane, and there are no physical
fields propagating in the ambient D-dimensional space unlike in other braneworld
scenarios. An effective metric Gµν ∼ θµµ′

θνν
′

gµ′ν′ arises on this space-time brane,
which governs the kinetic term of all fields more-or-less as in general relativity
(GR). This metric is dynamical, however it is not a fundamental degree of freedom:
it is determined by the embeddingMθ ⊂ RD, and the Poisson tensor θµν describing
noncommutativity. Hence the fundamental degrees of freedom are different from
GR, and can be interpreted alternatively in terms of NC gauge theory. This makes
the dynamics of emergent NC gravity somewhat difficult to disentangle, and the
effective metric is not governed in general by the Einstein equations.

Furthermore, we will identify higher-order terms in the matrix model which
incorporate the intrinsic curvature of the NC manifold, similar to the Einstein-
Hilbert action.

We will identify 2 classes of solutions: in the ”Einstein branch”, solutions of
the Einstein equations can be realized as embedded submanifolds for D ≥ 10.
Since the Einstein-Hilbert action arises upon quantization and is not part of the
bare matrix model, the model must be free of UV/IR mixing above a scale Λ
identified as Planck scale. This singles out the IKKT model [4] or close relatives,
with D = 10 and maximal supersymmetry above Λ. In contrast, the solutions in
the ”harmonic branch” are governed by the brane tension rather than the induced
Einstein-Hilbert term.

References

[1] H. Steinacker, “Emergent Geometry and Gravity from Matrix Models: an Introduction,”
Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134 [hep-th]]. (Review)

[2] D. N. Blaschke and H. Steinacker, “Schwarzschild Geometry Emerging fromMatrix Models,”
arXiv:1005.0499[hep-th].

[3] D. N. Blaschke and H. Steinacker, “Curvature and Gravity Actions for Matrix Models,”
arXiv:1003.4132 [hep-th].

[4] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, “A large-N reduced model as super-
string,” Nucl. Phys. B 498 (1997) 467 [arXiv:hep-th/9612115].

[5] H. Steinacker, “Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-
Mills Matrix Models,”, JHEP 0902: 044,2009 [arXiv:0812.3761 [hep-th]]; H. Steinacker,

“On the Newtonian limit of emergent NC gravity and long-distance corrections,”
arXiv:0909.4621 [hep-th], JHEP0912:024,2009

[6] D. Klammer, H. Steinacker, “Cosmological solutions of emergent noncommutative gravity”.
Phys.Rev.Lett. 102:221301,2009 [arXiv:0903.0986]

[7] H. Steinacker, “Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix
Models,” Nucl. Phys. B 810:1-39,2009. [arXiv:0806.2032 [hep-th]].

[8] D. Klammer, H. Steinacker, “Fermions and Emergent Noncommutative Gravity”. JHEP 08
(2008)074; [arXiv:0805.1157 (hep-th)]; D. Klammer and H. Steinacker, “Fermions and



2534 Oberwolfach Report 43/2010

noncommutative emergent gravity II: Curved branes in extra dimensions,” arXiv:0909.5298
[hep-th].

[9] H. Grosse, H. Steinacker, M. Wohlgenannt, “Emergent Gravity, Matrix Models and UV/IR
Mixing”. JHEP 04:023 (2008). [arXiv:0802.0973 (hep-th)]

[10] H. Steinacker, “Emergent Gravity from Noncommutative Gauge Theory”. JHEP 12 (2007)
049. [arXiv:0708.2426v1 (hep-th)]

Progress in Solving a 4 dimensional NCQFT

Harald Grosse

(joint work with Raimar Wulkenhaar)

This report is based on [1].
In previous work [3] we have proven that the following action functional for a

φ4-model on four-dimensional Moyal space gives rise to a renormalisable quantum
field theory:

S =

∫
d4x
(1
2
φ(−∆+Ω2x̃2 + µ2)φ+

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)
(x) .(1)

Here, ⋆ refers to the Moyal product parametrised by the antisymmetric 4×4-matrix
Θ, and x̃ = 2Θ−1x. The model is covariant under the Langmann-Szabo duality
transformation and becomes self-dual at Ω = 1. Evaluation of the β-functions for
the coupling constants Ω, λ in first order of perturbation theory leads to a coupled
dynamical system which indicates a fixed-point at Ω = 1, while λ remains bounded
[6, 7]. The vanishing of the β-function at Ω = 1 was next proven in [8] at three-
loop order and finally by Disertori, Gurau, Magnen and Rivasseau [9] to all orders
of perturbation theory. It implies that there is no infinite renormalisation of λ,
and a non-perturbative construction seems possible. The Landau ghost problem
is solved.

The action functional (1) is most conveniently expressed in the matrix base of
the Moyal algebra [3]. For Ω = 1 it simplifies to

S =
∑

m,n∈N2
Λ

1

2
φmnHmnφnm + V (φ) ,(2)

Hmn = Z
(
µ2
bare + |m|+ |n|

)
, V (φ) =

Z2λ

4

∑

m,n,k,l∈N2
Λ

φmnφnkφklφlm ,(3)

The model only needs wavefunction renormalisation φ 7→
√
Zφ and mass renor-

malisation µbare → µ, but no renormalisation of the coupling constant [9] or of
Ω = 1. All summation indices m,n, . . . belong to N2, with |m| := m1 +m2, and
N2

Λ refers to a cut-off in the matrix size.
The key step in the proof [9] that the β-function vanishes is the discovery of

a Ward identity induced by inner automorphisms φ 7→ UφU †. Inserting into the
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connected graphs one special insertion vertex

V ins
ab :=

∑

n

(Han −Hnb)φbnφna(4)

is the same as the difference of graphs with external indices b and a, respectively,
Z(|a| − |b|)Gins

[ab]... = Gb... −Ga...:

Z(|a| − |b|) _^]\XYZ[
������

������

�� ??

CC
CC

CC
C

CC
CC

CC
C

aa!!

. ........

		 UUa
b

a

b

= _^]\XYZ[
������

������

�� ??

CC
CC

CC
C

CC
CC

CC
C

aa!!

. ........

b

b

− _^]\XYZ[
������

������

�� ??

CC
CC

CC
C

CC
CC

CC
C

aa!!

. ........

a

a

(5)

The Schwinger-Dyson equation for the one-particle irreducible two-point func-
tion Γab reads

Γab =

GFED@ABC
//
oo

OO��

b a

a
b +

GFED@ABC
//
oo

�� OO

baa
b p + ONMLHIJKGFED@ABC//

oo oo
//a

b
a
bp(6)

The sum of the last two graphs can be reexpressed in terms of the two-point
function with insertion vertex,

Γab = Z2λ
∑

p

(
Gap +G−1

ab G
ins
[ap]b

)
= Z2λ

∑

p

(
Gap −G−1

ab

Gbp −Gba

Z(|p| − |a|)
)

(7)

= Z2λ
∑

p

( 1

Hap − Γap

+
1

Hbp − Γbp

− 1

Hbp − Γbp

(Γbp−Γab)

Z(|p|−|a|)
)
.

This is a closed equation for the two-point function alone. It involves the divergent
quantities Γbp and Z, µbare in H (3). Introducing the renormalised planar two-
point function Γren

ab by Taylor expansion Γab = Zµ2
bare−µ2+(Z−1)(|a|+|b|)+Γren

ab ,
with Γren

00 = 0 and (∂Γren)00 = 0, we obtain a coupled system of equations for
Γren
ab , Z and µbare. It leads to a closed equation for the renormalised function Γren

ab

alone, which is further analysed in the integral representation.
We replace the indices in a, b, . . .N by continuous variables in R+. Equation (7)

depends only on the length |a| = a1+a2 of indices. The Taylor expansion respects

this feature, so that we replace
∑

p∈N2
Λ
by
∫ Λ

0 |p| dp. After a convenient change of

variables |a| =: µ2 α
1−α

, |p| =: µ2 ρ
1−ρ

and

Γren
ab =: µ2 1− αβ

(1− α)(1 − β)
(
1− 1

Gαβ

)
,(8)

and using an identity resulting from the symmetry G0α = Gα0, we arrive at [1]:
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Theorem 1. The renormalised planar connected two-point function Gαβ of self-
dual noncommutative φ44-theory satisfies the integral equation

Gαβ = 1 + λ

(
1− α
1− αβ

(
Mβ − Lβ − βY

)
+

1− β
1− αβ

(
Mα − Lα − αY

)
(9)

+
1− β
1− αβ

(Gαβ

G0α
− 1
)(
Mα − Lα + αNα0

)

− α(1− β)
1− αβ

(
Lβ +Nαβ −Nα0

)
+

(1− α)(1 − β)
1− αβ (Gαβ − 1)Y

)
,

where α, β ∈ [0, 1),

Lα :=

∫ 1

0

dρ
Gαρ −G0ρ

1− ρ , Mα :=

∫ 1

0

dρ
αGαρ

1− αρ , Nαβ :=

∫ 1

0

dρ
Gρβ −Gαβ

ρ− α ,

and Y = limα→0
Mα−Lα

α
.

The non-trivial renormalised four-point function fulfils a linear integral equation
with the inhomogeneity determined by the two-point function [1].

These integral equations are the starting point for a perturbative solution. In
this way, the renormalised correlation functions are directly obtained, without
Feynman graph computation and further renormalisation steps. We obtain

Gαβ = 1 + λ
{
A(Iβ − β) +B(Iα − α)

}
(10)

+ λ2
{
AB
(
(Iα

•

− α) + (Iβ

•

− β) + (Iα − α)(Iβ − β) + αβ(ζ(2) + 1)
)

+A
(
βIβ

•

− βIβ
)
− αAB

(
(Iβ)

2 − 2βIβ + Iβ
)

+B
(
αIα

•

− αIα
)
− βBA

(
(Iα)

2 − 2αIα + Iα
)}

+O(λ3) ,

where A := 1−α
1−αβ

, B := 1−β
1−αβ

and the following iterated integrals appear:

Iα :=

∫ 1

0

dx
α

1− αx = − ln(1− α) ,(11)

Iα

•

:=

∫ 1

0

dx
α Ix

1− αx = Li2(α) +
1

2

(
ln(1 − α)

)2
.

We conjecture that Gαβ is at any order a polynomial with rational coefficients in
α, β,A,B and iterated integrals labelled by rooted trees.

Acknowledgement: We would like to thank the organizers for the kind invi-
tation to the Workshop at Oberwolfach.
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Courant bracket contractions and generalized geometries

Janusz Grabowski

Dirac structures on manifolds provide a geometric setting for Dirac’s theory of
constrained mechanical systems. To formulate the integrability condition defining
Dirac structure, Courant [3] introduced a natural skew-symmetric bracket oper-
ation on sections of TM = TM ⊕ T ∗M . The Courant bracket does not satisfy
the Leibniz rule with respect to multiplication by functions nor the Jacobi iden-
tity. These defects disappear upon restriction to a Dirac subbundle because of
the isotropy condition. Particular cases of Dirac subbundles are graphs of closed
2-forms (presymplectic forms) and Poisson bivector fields on M.

The nature of the Courant bracket itself remained unclear until several years
later when it was observed by Liu, Weinstein and Xu [10] that TM endowed with
the Courant bracket plays the role of a ‘double’ object, in the sense of Drinfeld
[5], for a pair of Lie algebroids over M . Thus, in complete analogy with Drin-
feld’s Lie bialgebras, in the category of Lie algebroids there also exist ‘bi-objects’,
Lie bialgebroids, introduced by Mackenzie and Xu [9] as linearizations of Poisson
groupoids. On the other hand, every Lie bialgebra has a double which is a Lie
algebra. This is not so for general Lie bialgebroids. Instead, Liu, Weinstein and
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Xu [10] show that the double of a Lie bialgebroid is a more complicated structure
they call a Courant algebroid, TM with the Courant bracket being a special case.

There is also another way of viewing Courant algebroid as a generalization of
Lie algebroid. This requires a change in the definition of the Courant bracket to
produce its non-skewsymmetric version, the Courant-Dorfman bracket, so that the
traditional Courant bracket becomes skew-symmetrization of the new one [4, 12].
This change replaces one of the defects with another one: a version of the Jacobi
identity is satisfied, while the bracket is no-longer skew-symmetric. Such algebraic
structures have been introduced by Loday [11] under the name Leibniz algebras,
but they are often called now Loday algebras. This approach allows us to describe
the corresponding Courant-Dorfman bracket as a derived bracket of a symplectic
Poisson bracket in a supergeometric setting [12].

On any Courant algebroid E one can consider analogs of Nijenhuis tensors, as
the latter concept can be applied to a large class of algebraic structures on vector
bundles [1, 2]. Nijenhuis tensors N which are compatible with the symmetric form
on E being a part of the Courant algebroid structure are called Corant-Nijenhuis
tensors and they lead naturally to contractions of the Courant-Dorfman bracket.
Being a Courant-Nijenhuis tensor is a strong condition which, in the case of the
classical Courant algebroid TM , forces that any orthogonal Courant-Nijenhuis
tensor has its square proportional to the identity. We therefore distinguish three
main cases: N2 = −I, N2 = I, andN2 = 0. They are Courant analogs of complex,
product, and tangent structures on the manifold M . The case N2 = −I has been
introduced by Hitchin and studied by his student Gualtieri [7, 8] under the name
generalized complex structure. This generalized complex geometry unifies complex
geometry with symplectic geometry, like the concept of a Dirac structure unifies
Poisson geometry with the presymplectic one.

All this can be presented in a supergeometric setting in which a Courant al-
gebroid is a graded supermanifold equipped with a homological vector field [12].
Generalized geometries have also a nice supergeometric description [6].
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Twist deformation quantization, noncommutative gravity and Einstein
spaces

Paolo Aschieri

The study of the structure of spacetime at Planck scale, where quantum grav-
ity effects are non-negligible, is one of the main open challenges in fundamental
physics. Since the dynamical variable in Einstein general relativity is spacetime
itself (with its metric structure), and since in quantum mechanics and in quantum
field theory the classical dynamical variables become noncommutative, one is lead
to conclude that noncommutative spacetime is a feature of Planck scale physics.
A first question to be asked in this context is whether one can consistently deform
Riemannian geometry into a noncommutative Riemannian geometry. In [1] we
address this question by considering deformations of the algebra of functions on
a manifold obtained via a quite wide class of ⋆-products. In this framework we
successfully construct a noncommutative version of differential and of Riemann-
ian geometry, and we obtain the noncommutative version of Einstein equations.
In [2] we show existence and uniqueness of the Levi-Civita connection on a non-
commutative Riemannian manifold, and study a class of noncommutative Einstein
manifolds.

The ⋆-products we consider are associated with a deformation by a twist F
[3] of the Lie algebra of infinitesimal diffeomorphisms on a smooth manifold M
. Since F is an arbitrary twist, we can consider it as the dynamical variable
that determines the possible noncommutative structures of spacetime. Examples
of the noncommutative spacetime structures we obtain include the Moyal-Weil
(or θ-constant) noncommutative space and the quantum (hyper)plane xy = qyx.
The twists F is an element F ∈ UΞ ⊗ UΞ, where UΞ is the universal enveloping
algebra of the Lie algebra of vector fields (infinitesimal local diffeomorphisms).
Since vector fields act on functions, forms and tensor fields, using the twist F we
canonically deform these spaces into the ⋆-noncommutative spaces of functions,
forms and tensor fields. The Lie algebra of vector fields is similarly deformed to
a ⋆-Lie algebra: a quantum Lie algebra in the spirit of [4]. Furthermore we show
that this deformed Lie algebra has a deformed action on the noncommutative
spaces of functions, forms and tensor fields. We have thus constructed a tensor
calculus that is covariant under infinitesimal noncommutative diffeomorphisms.
In the special case of θ-constant noncommutativity, if we choose the preferred
coordinate system [xµ, xν ] = iθµν we recover the results of [5]. Next the ⋆-covariant



2540 Oberwolfach Report 43/2010

derivative is then defined in a global coordinate independent way. Locally the ⋆-
covariant derivative is completely determined by its coefficients Γρ

µν . Using the
deformed Leibniz rule for vector fields we extend the ⋆-covariant derivative to
all type of tensor fields. Having the covariant derivative it is easy to guess the
expression for the noncommutative curvature and torsion. Then one has to show
that these operators are well defined noncommutative tensors. This is done by
showing that they are (left) A⋆ -linear maps on vector fields, where A⋆ is the
space of noncommutative functions. Also the noncommutative Ricci tensor is
singled out by requiring it to be a (left) A⋆ -linear map. Finally the metric is an
arbitrary ⋆-symmetric element in the ⋆-tensor product of 1-forms Ω ⊗⋆ Ω⋆. The
scalar curvature can then be defined and Einstein equations on ⋆-noncommutative
space are obtained. The requirement of A⋆-linearity fixes the possible ambiguities
arising in the noncommutative formulation of Einstein gravity theory.

This noncommutative gravity is a minimal deformation of usual gravity, based
on considering a noncommutative spacetime structure and implementing the equiv-
alence principle via noncommutative general covariance.
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Equivariant Vector Bundles on Fuzzy Spaces

Denjoe O’Connor

Fuzzy spaces are usually taken to be sequences of finite dimensional matrix
approximations to the algebra of functions of a commutative space. The geometry
is imposed on the matrix algebra by prescribing either a Dirac or Laplace-Beltrami
operator. There is now a large variety of such spaces [1, 2], mostly based on adjoint
orbits of classical groups, but many other examples have been constructed [3].
However, the ability to retain rotational and higher symmetries is of significant
advantage in applications especially in the non-perturbative study of field theories.

One application of such spaces is as an alternative regularisation of quan-
tum field theory suitable for non-perturbative studies [1]. The standard non-
perturbative regularisation is a lattice approximation to the theory. This of neces-
sity breaks spacetime symmetries. The advantage of adjoint orbit fuzzy spaces is
that they typically preserve the spacetime symmetries. It is also hoped that such
models can guide us towards new models for the microstructure of spacetime.
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The simplest field theory is that of a real scalar field. When regulated on a
fuzzy space it becomes a Hermitian matrix model in the presence of external fixed
matrices. For the fuzzy sphere the Euclidean action is given by SN(Φ; a, b, c) =
Tr(−a[La,Φ]

2 + bΦ2 + cΦ4) where La are generators in the N dimensional ir-
reducible representation of su(2) and Φ an N × N matrix. The Euclidean Field
theory for this model is given by the probability measure

µ(Φ) =
e−SN(Φ)

Z
d[Φ] where Z =

∫

MatN

[dΦ]e−SN(Φ) .

The action SN (Φ; a, b, c) converges for N →∞ to the action of a scalar field φ
on the round commutative sphere S(φ, r, λ) =

∫
S2 d

2x
√
g(12∂µφ∂

µφ+ r
2φ

2 + λ
4!φ

4)

provided Φ =
∑N−1

l=0

∑l
m=−l clmŶlm where φ =

∑∞
l=0

∑l
m=−l clmYlm prescribes

the commutative field to be approximated, with Ŷlm polarization tensors (eigen-
vectors of the fuzzy Laplacian) and Ylm are spherical harmonics. More precisely
one has:

lim
N→∞

∣∣∣∣S(φ, r, λ)− SN(Φ,
1

2N
,
r

2N
,
λ

4!N
)

∣∣∣∣→ 0 .

In the fluctuating theory with the measure µ(Φ) the physics is richer than in
the commutative case. The phase diagram of the model (found by Monte Carlo
simulation [4]) is shown in the figure. A full theoretical determination of the phase
lines is still elusive, though, there has been progress in recent perturbative efforts
to calculate the transition lines [5]. The phase diagram is controlled by the triple
point (a Lifshitz point). To recover the commutative theory we must add a term
to modify the action which moves the triple point off to infinity in both variables.
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To describe fuzzy spinor and gauge field theories it is useful to have a con-
struction of fuzzy vector bundles that can serve as a guide to the construction
of suitable action functionals. This can be achieved by following a Fock space
construction along the lines of lines of [6] where equivariant line bundles for S2

F

were constructed. The construction [7] uses the Fock space generated by the

N(N + 1) oscillators a†
α

ı = (aıα)
†
, denoted FTotal. These oscillators carry the

anti-fundamental representation of u(N + 1) and the fundamental representation

of u(N). The u(N + 1) generators Ĵα
β = a†

α

ı a
ı
β and u(N) generators Ĵ 

ı = a†
α

ı a

α

mutually commute and have the common u(1) generator N̂ = a†
α

ı a
ı
α = NN̂ .

The Fock space FTotal carries a representation of su(N + 1)× su(N)× u(1) and
FTotal = ⊕RFR , where the sum is over all irreducible representations R of u(N).
Identical oscillators and Schur-Weyl duality guarantee that each representation
occurs precisely once in the decomposition.

The su(N) singlet representations are generated by the pseudo-oscillators

A†
α :=

1√
cN (N̂ )

1

N !
ǫαθ1···θN ǫı1···ıN a

ı1
θ1
· · · aıNθN with cN (L) =

(N + L− 1)!

L!
.

A†
α and Aα obey the Heisenberg commutation relations on reduced Fock space (the

subspace of singlet representations) F , which is orthogonal to the remainder so
that we have FTotal = F ⊕ F⊥ . and the space F⊥ can further be decomposed
under su(N) with the leading representation the fundamental of su(N), carried

by the index ı on a single oscillator a†
α

ı .
The natural generalization of operators introduced in [6] is then given by

K̂ı := (A†
α)

L
((a†)

α

ı )
R

: FL ⊗F∗
L 7−→ FL+1 ⊗F∗

L,ı

K̂ı̄ := (Aα)
L
(aıα)

R
: FL ⊗F∗

L 7−→ FL−1 ⊗F∗
L,ı̄

K̂0 :=
1
2 (N̂L

A − N̂R) : FL ⊗F∗
L 7−→ 0 ,

where N̂A = A†
αA

α and we have denoted the subspace of Fock space spanned by

vectors of the form (a†)
α

ı A
†
α1
. . . A†

αL
|0 〉 by FL,ı = F ı̄

L .

The algebra FL ⊗F∗
L is annihilated by [K̂ı, K̂̄] and non-square matrices Mq ∈

FL ⊗ F∗
L−q represent equivariant line bundles, when the geometry is specified

by the Laplacian ∆K = 1
2

(
K̂ıK̂ı̄ + K̂ı̄K̂ı

)
+ 2N

N+1K̂
2
0 . We can re-express ∆K in

the form ∆K = (L̂L
a − ĴR

a )2, where L̂a = A† λa

2 A and Ĵa = (a†)ı
λa

2 a
ı. With

the Laplacian ∆KMR = (L̂L
a − ĴR

a )
2
MR = (ĴL

a − ĴR
a )

2
MR , where (ĴL

a − ĴR
a )

2

is the su(N + 1) quadratic Casmir. Equivariant vector bundles over CPN
F are

represented by MR ∈ FL⊗F∗
R where R is any irreducible representation of u(N)

The eigenspaces of ∆K are the irreducible representations in the decomposition
of FL ⊗ F∗

R. The su(N + 1) quadratic Casimir in this representation give the
eigenvalues.
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The Fermionic oscillators γı and γ ı̄ = (γı)† have vacuum |Ω 〉 and generate the
Clifford algebra {γı, γ ̄} = δı̄ . A universal massless Dirac operator [8] for CPN

F is

/D := γ ı̄K̂ı̄ + γıK̂ı = (Aα)L(aıα)
Rγ ı̄ + (A†

α)
L(a†αı )

Rγı ,

with a noncommutative spinor on CPN
F given by

Ψ =

n∑

k=0

1

k!
ψı̄1···̄ıkγ

ı̄1 · · · γ ı̄k |Ω 〉 =
n∑

k=0

1

k!
FL−k ⊗F∗

R,ı̄1···̄ıkγ
ı̄1 · · · γ ı̄k |Ω 〉

where ψı̄1···̄ık are equivariant fuzzy vector bundles as described above. In field the-
ory these will have coefficients which are Grassmann variables. The construction
gives spinors for odd N and spinc more generally. The spectrum of /D coincides
precisely with the commutative one except that the higher modes are cutoff.
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Formality and free algebras

Olivier Elchinger

(joint work with Martin Bordemann, Abdenacer Makhlouf, Simone Gutt)

An associative algebra is called formal if its Hochschild complex equipped with
the Gerstenhaber graded Lie structure is quasi-isomorphic in the L∞ sense to its
Hochschild cohomology.

In 1997, in his paper [9] on deformation quantization on a Poisson manifold,
Kontsevich showed that the symmetric algebra of a vector space is formal.

We consider here the case of free algebras. We will show that except in dimen-
sion 0 and 1, free algebras are not formal.
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1. Definitions

We consider an associative algebra (A, µ0) over K with car(K) = 0.
We consider the Hochschild cochains of degree k :

A0 := A, Ak := Ck
H(A,A) = Hom(A⊗k,A), A :=

∞⊕

k=0

Ak

Equipped with the Gerstenhaber bracket, the shifted space (A[1], [ , ]G) is a
graded Lie algebra.

We consider the differential b = [µ, ]G, the Hochschild cohomology groups :

ak := Hk
H(A,A) and a :=

⊕
k∈Z

ak. We call φ an HKR map if :

(1) A ⊃ ZA
p−−→
←−−

φ

a with bφ = 0 and p ◦ φ = ida

For ξ, η ∈ a, we have

(2) φ([ξ, η]s) = [φ(ξ), φ(η)]G + b
(
φ2(ξ, η)

)

so that φ is not a morphism of graded Lie algebras (a[1], [ , ]s)→ (A[1], [ , ]G) in
general.

Definition 1.1 ([9]). (A, µ0) is called formal if there is a morphism of differential
graded coalgebras (of degree 0) Φ : S(a[2])→ S(A[2]) such that the restriction Φ1

of Φ to a[2] is an HKR map. Φ is called a formality map or an L∞-morphism.

Proposition 1.2 ([2]). We consider a sequence of linear maps {φk}k∈N⋆ , with
φk : a[1]⊗k → A[1], satisfying

(i) φ1 is an HKR map
(ii) φk is of degree 1− k
(iii) φk is graded antisymmetric

and such that for each k ∈ N, ∀ x1, . . . , xk+1 ∈ a

∑

16i<j6k+1

ǫij(x1, . . . , xk+1)φk([xi, xj ]s, x1, · · · , x̂i, · · · , x̂j , · · · , xk+1)

= (−1) k(k+1)
2 bφk+1(x1, . . . , xk+1)

+
1

2

k∑

a=1

∑

16i1<···<ik6k+1

ωa(x1, . . . , xk+1)·

[φa(xi1 , . . . , xia ), φk−a+1(x1, . . . , x̂i1 , . . . , x̂ia , . . . , xk+1)]G,

(3)

where εij and ωa are signs dependant on the xi.

Then Φ =
∑

k>1

φk is a formality map.
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2. Settings for free algebras

Let V be a K-vector space, A := TV =

∞⊕

k=0

V ⊗k the free algebra on V .

For dimV = 0, TV = K is formal, and for dimV = 1, TV ∼= K[x] is formal too.

Theorem 2.1. For dim V > 2, the Hochschild cohomology of TV is

a = a0 ⊕ a1

= TV TV ⊕Der(TV, TV )/ Inder(TV, TV )

= K1⊕HomK(V, TV )/TV +.

(4)

Lemma 2.2. If TV is formal, then φk have to vanish for k > 3.

We have TV = TV + ⊕ ε(TV ) with ε the counit. (Hom(V, TV ), [ , ]D) is a
Lie algebra with [ψ, ξ]D = ψ̄ξ − ξ̄ψ where ψ̄ is the derivation associated to ψ.
We decompose Hom(V, TV ) = H ⊕ TV + by choosing a graded complement Hk

in each degree; we note Pk : Hom(V, V ⊗k+1) → Hk the canonical projection and
Qk : Hom(V, V ⊗k+1)→ V ⊗k such that 1− Pk = bQk.

3. Non formality

Let φ1 : a→ A be the HKR map according to this decomposition. To see if TV
is formal, we have to verify the equation (3) for 0 6 k 6 2. The level k = 0 is the
condition for φ1 to be an HKR map. At the level k = 1, working in H, we obtain
a condition on φ2 and an arbitrary map q : H ∧H → K. With this condition, the
equation at the level k = 2 rewrites

	x1,x2,x3 φ2(P [x1, x2]D, x3)− [x1, φ2(x2, x3)]D

=	x1,x2,x3 q([x1, x2]s, x3) + ε(x1(Q[x2, x3]D)).
(5)

For TV to be formal, the right-hand side should vanish.

Define σ : ∧3a→ K

(x1, x2, x3) 7→	x1,x2,x3 ε
(
pr−1(x1)(Q[x2, x3]D)

)

Proposition 3.1. 	x1,x2,x3 q([x1, x2]s, x3) = −δCEq is a scalar 3-coboundary of
the Chevalley-Eilenberg cohomology of a.
σ is a scalar 3-cocycle of the Chevalley-Eilenberg cohomology of a.

σ is a 3-cocycle but not a 3-coboundary, so there is no map q such that the
right-hand side of (5) vanishes. The algebra TV is not formal for dimV > 2.
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Nichols algebras over nilpotent groups

Simon Lentner

Hopf algebras present a common generalization of groups and Lie algebras, such
that representations can still be tensored, and appear as natural deforma-
tions thereof, like in noncommutative spacetime. The most prominent example is
Uq(sl2) and it’s truncations acting on the quantum plane, followed by other Uq(ℓ).

I am concerned with classifying pointed Hopf algebras over C, meaning their
(co)semisimple part (coradical) is just a groupring k[G]. Like the above, they
further contain Lie algebra elements V (primitives) and their enveloping Nichols
algebra B(V ) is deformed by G and thus sometimes happens to break off at finite
dimension. Over abelian groups, Scheider and Andruskiewitsch classified in [AS10]
most cases, but over the nonabelian groups this seem a rather rare phenomenon.

While there’s some progress especially for simple groups (e.g. [MS00], [AFGV09],
[AFGV10]), I construct new examples for centrally extended groups G← E ← H
(or rule out such) by H-orbifoldizing a known Nichols algebra B(V ) over G.
This is a technique I adopted from Quantum Field Theory, namely the algebra

H → H2(G,C∗) ⇒ B(V̄ ) :=

(
⊕

σ∈Im H

B(V )σ

)H

is again a Nichols algebra, this time over E! Here we map H to a 2-cocycle sub-
group corresponding to the extension, sum over all twists (Bigalois objects, see
[S03]) and take the H-stabilizer to eliminate the new coradical k[Im H ].
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I first Z2-orbifoldized successfully new examples like Z
2
2 ← Q8 (also the known

D4 in [MS00]) and S4 ← GL2(Z3). Another example might be obtained by Z4-
orbifoldizing the only open case [(123)(45)] ⊂ S5 in [AFGV09] to GL2(Z5).

Currently I aim the classification of nilpotent G as my dissertation by induc-
tively (de-)orbifoldizing. This works now for odd orders, where only abelian groups
can appear, and also produces new examples over the 2-extraspecial groups. Still,
some irregular cases like the quasidihedrals D̃8 are to be treated. At the conference,
we noticed a striking similarity to the concept presented by Prof. Schweigert.

References

[AFGV09] N. Andruskiewitsch, F. Fantino, M. Grana, L.Vendramin: On pointed Hopf algebras
associated with the symmetric groups II, 2009.

[AFGV10] N. Andruskiewitsch, F. Fantino, M. Grana, L.Vendramin: Pointed Hopf algebras over
some sporadic simple groups, C. R. Math. Acad. Sci. Paris 348 (2010) pp. 605–608.

[AS10] N. Andruskiewitsch, H.-J. Schneider: On the classification of finite-dimensional pointed
Hopf algebras. Ann. Math. Vol. 171 (2010), No. 1, pp. 375-417.

[MS00] A. Milinski, H.-J. Schneider: Pointed indecomposable Hopf algebras over Coxeter groups,
Contemp Math. 267, pp. 215–236, 2000.

[S03] Peter Schauenburg. Hopf-Galois and bi-Galois extensions, preprint 2003.

Quantum Field Theory on Noncommutative Curved Spacetimes

Alexander Schenkel

(joint work with Thorsten Ohl)

Motivations for a NC spacetime geometry are provided by string theory, quantum
gravity and Gedanken experiments combining quantum mechanics with general
relativity. Recently, there has been a lot of progress in QFT on NC flat space,
but only little has been done on QFT on NC curved spacetimes, which however
is essential for cosmology and black hole physics. To fill this gap we propose an
approach to QFT on NC curved spacetimes [1, 2] based on formal deformation
quantization using Drinfel’d twists. Let (M, g) be a time-oriented, connected
and globally hyperbolic Lorentzian manifold and let F ∈ UΞ[[λ]] ⊗ UΞ[[λ]] be an
abelian Drinfel’d twist, where Ξ is the Lie algebra of vector fields on M and λ
is the deformation parameter. We define a deformed action functional for a real
scalar field using the formalism of [3]

S⋆ = −1

2

∫

M

(
〈dΦ, 〈g−1⋆ , dΦ〉⋆〉⋆ +Φ ⋆ Φ

)
⋆ vol⋆ .(1)

In [1] we have shown that the deformed wave operator P⋆ obtained by varying the
action (1) has a unique retarded and advanced Green’s operator ∆±⋆, provided
we assume a support condition on P⋆. Moreover, we have shown that the space
of real solutions of the wave equation P⋆Φ = 0 is isomorphic to the factor space
V⋆ := H/P⋆[C

∞
0 (M,R)[[λ]]], where

H :=
{
ϕ ∈ C∞

0 (M)[[λ]] : (∆±⋆[ϕ])
∗ = ∆±⋆[ϕ]

}
.(2)
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The space V⋆ can be equipped with a symplectic structure

ω⋆ : V⋆ ⊗R V⋆ → R[[λ]], ([ϕ], [ψ]) 7→ ω⋆([ϕ], [ψ]) =

∫

M

ϕ∗ ⋆∆⋆[ψ] ⋆ vol⋆ ,(3)

where ∆⋆ := ∆+⋆−∆−⋆, and can be quantized canonically in terms of the ∗-algebra
(over C[[λ]]) of field polynomials A(V⋆,ω⋆). We have established a ∗-algebra iso-
morphism S : A(V⋆,ω⋆) → A(V [[λ]],ω) between the NC QFT A(V⋆,ω⋆) and the formal
power series extension of the commutative QFT A(V [[λ]],ω). In [2] we have investi-
gated examples of convergent deformations of QFTs and have studied the similar-
ities and differences to formal deformation quantization. Besides the expected fea-
tures of convergent deformations, e.g. nonlocality, we have found that the relation
between the deformed and the undeformed QFT changes. More precisely, we have
obtained an injective, but not surjective, ∗-homomorphism S : A(V⋆,ω⋆) → A(V,ω).
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Gerstenhaber-Schack diagram cohomology from operadic point of view

Martin Doubek

Developped in a series of papers by M. Markl (e.g. [3]), there is a construction
of a cohomology theory for any type of algebras described by an operad A. To
rougly describe this construction, let A be an algebra over the operad A. This
is equivalent to give a morphism A → EndA, where EndA is the endomorphism
operad of the underlying vector space of A. Given a free (or cofibrant) resolution

R ∼−→ A, the composition R → A → EndA makes EndA an operadic R-module
and we can consider the space of operadic derivations Der(R, EndA) with a natural
differential. Then the operadic cohomology is

H∗(A,A) = H∗(Der(R, EndA))

In fact this is André-Quillen cohomology, but performed on the level of operads and
with coefficients in EndA. In standard case, one recovers Hochschild cohomology
(A = Ass), Chevalley-Eilenberg cohomology (A = Lie) and many others.

Of course, the problem is to construct R explicitly and as small as possible. In
many cases of interest, this has been solved in a satisfying way by Koszul duality
theory (e.g. [4]).

We can consider A to be a coloured operad and this allows us to write down
the cohomology for diagrams of morphisms between algebras. Then however we
are no longer in the Koszul case and convenient resolutions are hard to come by.
A single morphism between algebras over Koszul operad is probably the only well
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understood case. What we are interested in is a completely general diagram D
of algebras over a fixed operad. Cohomology for this diagram is already known,
it was invented by Gerstenhaber and Schack [1]. Understanding this from the
operadic point of view would allow us to equip the corresponding complex with
L∞ structure governing the deformations of the diagram [2].

Although this is not yet achieved, we have shown that Gerstenhaber and Schack
cohomology is isomorphic to the operadic cohomology. To do so, we have followed
ideas of M. Markl in [2] to show that the operadic cohomology can be in general
computed as an Ext functor in the category of operadic A-modules,

H∗(D,D) = Ext∗(MDA, EndD)

for certain module MDA. This reduces the problem of constructing cohomology
for A-algebras to making explicit resolutions ofMDA in the abelian category of
A-modules. So far resolutions of A-modules are very little explored.
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Infinitesimal deformations of unital algebraic structures

Joseph Hirsh

(joint work with Joan Millès)

Given a unital associative algebra A, one may study its deformations as a unital
associative algebra, or forget the fact that it has a unit and study its deformations
as an associative algebra [1]. It is known, however, that deformations of A as
a unital associative algebra, and as an associative algebra, are identical, because
every associative deformation of a unital associative algebra is itself unital.

Many familiar algebraic structures have reasonable notions of “unit.” For exam-
ple, one can define unital commutative associative algebras, unital Gerstenhaber
algebras, or unital BV algebras. In each case, one can study the deformations of a
unital algebra A within the unital category, or forget that it has a unit and study
its deformations among all algebras of its type.

In this talk, we propose a method for studying this phenomenon for general
“unital algebraic structures,” as defined in [2]. Given P an operad, and uP an
operad encoding a unital version of P , we combine the explicit resolution of uP
given in [2] and the study of operadic cohomology theories in [3] to analyze the
relationship between infinitesimal unital-P deformations and infinitesimal P de-
formations.
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In the case when the infinitesimal deformations are isomorphic, the speaker
wonders whether one can extend this to an isomorphism of general deformations
by means of the associated Lie∞-algebras.
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Derived Brackets Approach to Deformations of Morphisms

Yaël Frégier

(joint work with Marco Zambon)

In [1], a L∞ algebra governing simultaneous deformations of two Lie algebras g

and h and a morphism φ : g −→ h between them has been constructed.
On the one hand, Lie algebra morphisms can be understood as a linear version of

coisotropic submanifolds since the graph of φ∗ (the linear dual of φ) is a coisotropic
submanifold of the Poisson manifold g∗ × h∗ equipped with the Poisson bivector
coming from the Lie algebra brackets.

On the other hand, in [2] has been constructed a L∞ algebra governing de-
formations of coisotropic submanifolds of a Poisson manifold. But simultaneous
deformations of the coisotropic submanifolds and the background Poisson struc-
ture were not considered. The original motivation of our work was to consider
simultaneous deformations in such a geometrical context and exhibit a L∞ alge-
bra governing them.

The operadic methods used in [1] do not apply to the geometric case, this is why
our strategy was to reconsider the linear problem of [1] with the tools used in the
geometrical setting [2], namely the derived bracket construction of T. Voronov [3].
The hope was that we could understand how to deal with simultaneity within the
derived bracket approach, and then later tackle the geometrical problem thanks
to this knowledge.

This strategy worked well, since it turned out that it suffices to replace the tools
of [3] by their extensions given in [4]. We have formulated a convenient theoretical
setting enabling other applications in the theory of Courant algebroids and Dirac
structures, and also in generalized complex geometry. But in the following we will
limit ourselves to recalling Voronov’s results and show how they can be applied
in the linear case. For the sake of simplicity of exposition, we consider associative
algebras and their morphisms rather than their Lie analogues. But one should
have in mind that all that is done here also works for algebras over an arbitrary
quadratic Koszul operad.

Definition 0.1. A V-data consists in a a quadruple (L, a, P,∆) where (L, [·, ·]) is
a graded Lie algebra, a an abelian sub-Lie algebra, P : L → a a projection whose
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kernel is a Lie subalgebra of L and ∆ an element of degree one in Ker(P ) such
that [∆,∆] = 0.

Theorem 0.1. [3, Thm. 1] & [4, Thm. 2] Let (L, a, P,∆) be a V-data, then
1) a is a L∞[1] algebra for the multibrackets (n ≥ 1)

{a1, . . . , an} = P [. . . [[∆, a1], a2], . . . , an].(1)

2) the space L[1]⊕ a is a L∞[1]-algebra for the differential

d(x[1], a) := (−(Dx)[1], P (x +Da)),

the binary bracket
{x[1], y[1]} = [x, y][1](−1)|x|,

and for n ≥ 1:

{x[1], a1, . . . , an} = P [. . . [x, a1], . . . , an],

{a1, . . . , an} = P [. . . [Da1, a2], . . . , an].

Here a1, . . . , an ∈ a. All the remaining multibrackets vanish.

Notation 0.1. We will denote by aP∆ and by (L[1]⊕ a)P∆ the L∞[1]-algebras pro-
duced by the previous theorem.

Let us now consider a morphism Φ : U → V between two associative algebras
(U, µ) and (V, ν). It is well known that the space L := ⊕Li with

Li := T i+1(U ⊕ V )⋆ ⊗ (U ⊕ V )

is a graded Lie algebra for the Gerstenhaber bracket. Let us define a = ⊕ai with
ai := T i+1U⋆ ⊗ V.

It is an abelian subalgebra.
In order to define a projection P onto the abelian subalgebra a, let us introduce

the notation T I,J(U, V ), where I ∐ J = {1, . . . n}, by saying that an element
x1 ⊗ · · · ⊗ xn of T n(U ⊕ V ) belongs to T I,J(U, V ) if xi belongs to U when i ∈ I,
xi belongs to V otherwise. One has the natural decomposition

Li =
⊕

I∐J={1,...,i+1}

T I,J(U⋆, V ⋆)⊗ U
⊕

I∐J={1,...,i+1}

T I,J(U⋆, V ⋆)⊗ V

and one recognizes ai as the term T {1,...,i+1},∅(U⋆, V ⋆) ⊗ V . Denoting by P the
projection onto a given by this decomposition, one defines the projection PΦ onto
a by

PΦ := P ◦ e[·,Φ].

The main result of this note is

Proposition 0.1. The set (L, a, PΦ,∆) forms a V-data, and in particular theorem

0.1 applies, leading to the L∞[1] algebra (L[1]⊕ a)PΦ

∆ on L[1]⊕ a

To make the connection with the problem of simultaneous deformations of mor-
phisms and associative algebras, one considers the graded subspace L′ of L defined
by L′n = T n+1U⋆ ⊗ U ⊕ T n+1V ⋆ ⊗ V :
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Lemma 0.1. L′[1] ⊕ a is a sub L∞[1] algebra of L[1] ⊕ a. In other words, the

brackets of (L[1] ⊕ a)PΦ

∆ , when restricted to elements of L′[1] ⊕ a, take values in

L′[1]⊕ a. One denotes by (L′[1]⊕ a)PΦ

∆ this sub-L∞[1] algebra.

One can compare (L′[1]⊕ a)PΦ

∆ to the L∞[1] algebra constructed in [1], whose
Maurer-Cartan elements are simultaneous deformations of the associative algebras
µ and ν and of the morphism Φ. Since these two L∞[1] algebras are isomorphic,
one obtains

Corollary 0.1. (L′[1]⊕ a)PΦ

∆ governs the simultaneous deformations of the asso-
ciative algebras µ and ν and of the morphism Φ.
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Families of Dirac operators and quantum affine groups

Jouko Mickelsson

The motivation for this work comes from the following problem: Twisted equi-
variant K-theory on compact Lie groups can be constructed in Fredholm operator
realization using the representation theory of loop groups. The construction can
be done using a quantum field theory model in 1+1 space-time dimensions, namely
the supersymmetric Wess-Zumino-Witten model. In a moral sense the Fredholm
family of operators can be thought of as a family of Dirac operators on a loop
group. Although this idea cannot (yet) be made precise analytically, it makes
sense algebraically through representation theory of loop groups. The problem
is now whether it is possible to deform the family of Fredholm operators, trans-
forming covariantly under the loop group, to a family of operators transforming
covariantly under an affine quantum group. It is clear that the construction must
be done completely algebraically, already because of the fact that a compact quan-
tum group is not a manifold.

In the undeformed case, for a compact Lie group G, twisted K-theory is defined
by an element of H3(G,Z), the Dixmier-Douady class of a gerbe. It turns out that
in the Fredholm operator realization this class corresponds precisely to level of an
irreducible highest weight representation of the central extension of the loop group.
In particular, when G is compact and simple Lie group we have H3(G,Z) = Z and
the relation to the level is given by k + κ = the Dixmier-Douady class. Here κ is
the dual Coxeter number of G.
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The Dirac operator Q is acting in Hf ⊗ Hb where Hf is the q-fermionic Fock
space and Hb carries another highest weight representation of the quantum affine
algebra Uq(ĝ), where ĝ is the affine algebra defined by a simple Lie algebra g.
The action of the nontrivial central extension is seen in the action of the element
K0K1 . . .Kℓ, which is no more equal to the unit operator but a power of q where
the exponent depends on the level of the representation. The Ki’s are the Cartan
elements (which are group like) of Uq(ĝ).

Q = i
∑

ψn
a ⊗ T−n

a + i
1

3

∑
ψn
aK

−n
a ⊗ 1

where T n
a are basis vectors of the adjoint module, acting as linear operators in

the space Hb. The labels are: n ∈ Z corresponds to the Fourier index in a loop
algebra and 1 ≤ a ≤ N labels the basis in an adjoint module of Uq(g). We need
also another copy of the adjoint module, acting in the space Hf . The components
are denoted by Kn

a . The vectors ψn
a are elements in a quantum Clifford algebra

acting as operators in a q-Fock space Hf .
The adjoint action of an element a ∈ Uq(ĝ) is defined by x 7→∑

(a) a
′xS(a′′), in

Sweedler’s notation for the coproduct ∆(a) =
∑

(a) a
′⊗a′′. Here S is the antipode.

In contrast to the undeformed case, the operators Kn
a , T

n
a do not satisfy the

defining relations of the algebra Uq(ĝ).
The construction of the defining relations of the quantum Clifford algebra gen-

erated by the ψn
a ’s involves the R-matrix in the adjoint representation of Uq(g)

and a generalized Hecke algebra. The reason for the need of the generalization of
the Hecke algebra is due to the fact that in the adjoint representation the twisted
R-matrix Ř = σR has more than two eigenvalues; σ is the transposition of compo-
nents in a tensor product. In the defining represention the eigenvalues are −q, q−1,
corresponding to generalized antisymmetric and symmetric tensors in the braid-
ing relations and for this reason the minimal polynomial for R is quadratic. But

already in the case of Uq(ŝl(2)) there are three different eigenvalues −q−2, q2, q−4

and therefore the quadratic relation (Ř + q)(Ř − q−1) = 0 has to be replaced by
(Ř + q−2)(Ř− q2)(Ř − q−4) = 0.

Finally, we can define a family of operators QA = Q + A transforming covari-
antly under the quantum adjoint action. Here A is linear in the Clifford algebra
generators ψn

a and is an element of the adjoint module for Uq(ĝ). It plays the role
of a vector potential on a unit circle in the undeformed case (q = 1).
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Local and covariant deformations of observable algebras in QFT

Gandalf Lechner

(joint work with D. Buchholz, S. J. Summers)

Quantum field theory is a rich playground for deformation theory: For study-
ing quantization of classical field theories, the connection between non-relativistic
and relativistic systems, or the relation between interaction-free and interacting
quantum field theories, one can study deformations taking the quantum of action,
the inverse speed of light, or the coupling constant as deformation parameter.
Formal deformations in coupling constants (perturbation theory) still provide the
main predictions of high energy physics. Motivated by the long-standing problem
of constructing interacting quantum field theories in four space-time dimensions
beyond the perturbative level, this talk reviews a new approach to convergent de-
formations of quantum field theories, emphasizing the operator-algebraic aspects
of the subject.

Starting with the simple example of a chiral quantum field theory on a lightray,
it is explained how locality and covariance lead to the involved structure of the
algebra of observables in quantum field theory. In this setting, one considers a
strongly continuous unitary representation U of the translation group (R,+) on a
separable Hilbert space H, a U -invariant vector Ω ∈ H, representing the vacuum,
and a von Neumann algebra R ⊂ B(H), representing the observables localized
in the right half line R+. These data are required to satisfy the compatability
conditions

• Ω is cyclic and separating for R,
• U(x)RU(x)−1 ⊂ R for x ≥ 0,

expressing covariance and the Reeh-Schlieder property of the vacuum.
If the above conditions are satisfied, a full quantum field theory, i.e., a local,

covariant net of von Neumann algebras I 7→ A(I) associated with intervals I ⊂ R,
can be reconstructed from the data (R, U,H), Hence deformations of quantum
field theories can be obtained from deformations of such triples (R, U,H). In
this context, it is interesting to note that under very general assumptions [1, 2],
the structure of the algebra is severely restricted (type III1 factor), and in most
situations even uniquely determined (hyperfinite type III1 factor). So R is rigid
in the sense of deformation theory, and one has to consider deformations of the
inclusions R ⊂ B(H) instead of deformations of R alone.

In this very general setting, deformations can be obtained from the action of
a symmetry group. Whereas the case of chiral quantum field theories, where
the non-abelian translation-dilation group acts, is currently under investigation
[3], higher-dimensional theories deformed by an action of Rd, d ≥ 2, are better
understood [4], and will be reviewed here.

The examples of deformations of quantum field theories to be discussed here rely
on the technique of warped convolution [5] and Rieffel’s closely related deformations
of C∗-algebras with Rd-action [6]. For the formulation of warped convolutions, we
consider a Hilbert space H with a unitary, strongly continuous representation U
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of Rd, and a (d × d)-matrix Q which is antisymmetric w.r.t. a chosen bilinear
form (p, x) on Rd, as deformation parameter. A smooth operator A on H is then
deformed according to

AQ := (2π)−d

∫
dp

∫
dx ei(p,x)U(Qp)AU(x−Qp) ,(1)

where the integral is defined in an oscillatory sense. Algebras of warped oper-
ators form representations of Rieffel-deformed C∗-algebras, and the deformation
map A 7→ AQ is linear, compatible with taking adjoints, preserves the unit, and
commutes with the adjoint action of U .

Further properties of warped convolutions are explained by considering products
of deformed operators AQBQ, the interplay with an invariant vector, and connec-
tions to Tomita-Takesaki modular theory. Moreover, the covariance of A 7→ AQ

w.r.t. representations extending U to the semidirect product of GL(d) and Rd

is described, and necessary conditions for commutators of the form [AQ, B−Q] to
vanish, are given.

With this tools at hand, an example of a local, covariant deformation of quan-
tum field theories on four-dimensional Minkowski space is discussed. Adopting an
appropriately generalized, causal notion of “left” and “right” in terms of wedges
rather than in terms of half lines, a description of quantum field theories in terms
of triples (R, U,H) similar to the one in the introductory example is given. It
is then explained how warped convolution can be applied to deform such triples,
making use of the spectrum condition (positivity of the energy), and adjusting the
deformation parameter to the geometry of Minkowski space.

This discussion shows that to deform a quantum field theory in a local, covariant
manner, one has to deal not with a single deformation of one global algebra, but
rather has to take into account a whole family of deformations, corresponding to
subalgebras localized in different regions in spacetime.

Finally, some properties of the emerging deformed quantum field theories and
the relation of the described procedure to theories on non-commutative Minkowski
space [7, 8] is explained. Further applications of this method to field theories on
curved spacetimes and conformal field theories have been studied in [9] and [10].
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Universitätsstr. 14
86159 Augsburg


