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Abstract. This conference is one of the few occasions where researchers
from many different areas in algebraic and geometric topology are able to
meet and exchange ideas. Accordingly, the program covered a wide range of
new developments in such fields as geometric group theory, rigidity of group
actions, knot theory, and stable and unstable homotopy theory. More specifi-
cally, we discussed progress on problems such as the Farrell-Jones conjecture,
the Levine conjecture in grope cobordism of knots and Rosenberg’s conjec-
ture about homotopy invariance of negative algebraic K-theory, to mention
just a few subjects with a name attached. One of the highlights was a series
of four talks on the solution of Arf-Kervaire invariant problem by Mike Hill
and Doug Ravenel, reporting on their joint work with Mike Hopkins.
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Introduction by the Organisers

This conference was the first topology conferences in Oberwolfach organized by
Thomas Schick, Peter Teichner, Nathalie Wahl and Michael Weiss. About 50
mathematicians participated, working in many different areas of algebraic and
geometric topology.

The 18 regular talks of the conference covered a wide range of areas such as
3-manifolds and knot theory, geometric group theory, algebraic K- and L-theory,
and homotopy theory. One of the goals of the conference is to foster interaction
between such different areas and the passage of methods from one to the other.
Four of these talks were devoted to the solution of the Kervaire invariant question
by Mike Hopkins, Mike Hill and Doug Ravenel, allowing an in-depth discussion
of the new ideas necessary for this breakthrough on a decades-old problem in
homotopy theory.

In addition, to give the many young and very young participants the opportu-
nity to present themselves and their work to a broader audience, a “gong show”
was organized where eight participants gave an overview on their research efforts
and results. Here, Alexander Kahle from Göttingen reported on joint work with
Alessandro Valentino concerning T-duality and differential K-theory. In this work,
topological T-duality (studied for example by Bunke-Schick or Mathai-Rosenberg)
is enriched with geometric information using differential K-theory, and indeed a
T-duality isomorphism for differential K-theory is established for pairs which are
T-duals of each other. Arturo Prat-Waldron from Berkeley discussed Thom
classes for field theories. The space of certain low dimensional field theories is
used as a geometric model for associated generalized cohomology theories. The
goal now is to find a geometric description of Thom classes in this model. Ulrich
Pennig from Münster reported on twisted K-theory and obstructions to positive
scalar curvature. In his work, he gives a new geometric model for twisted K-theory,
proves an index theorem in the spirit of Kasparov’s in this context and uses this to
extend the enlargeability-obstruction to positive scalar curvature to non-spin man-
ifolds. Georgios Raptis from Osnabrück described K-theory of derivators. He
gives an example of two differential graded algebras that have the same derivator
K-theory but non-isomorphic Waldhausen K-theory. He also proves that Maltsin-
iotis’ comparison and localization conjectures for derivator K-theory cannot be
simultaneously true. Justin Noel from Strasbourg studied the complex orien-
tations preserving power operations. This is used in particular to classify which
complex oriented cohomology theories can be given an H-infinity ring structure
compatible with the standard E-infinity ring structure on MU. Lennart Meier
from Bonn gave a new proof, from a stacky point of view, of Bousfield’s classi-
fication of modules over real K-theory KO. The crucial ingredient is to find all
KO-modulesM such thatM∧KOKU isKU -free. This approach should eventually
lead to a generalization to modules over topological modular forms TMF . Wolf-
gang Steimle from Münster described obstructions to stably fibering manifolds.
In particular, he introduced and calculated family versions of Whitehead torsion,
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using higher algebraic K-theory of spaces. David Ayala from Copenhagen de-
scribed a simple and combinatorial En operad which is built out of finite posets
indexing a stratification of configuration spaces of points in an n-disk, posets which
recently became important for modeling weak n-categories. A version of Dunn’s
additivity theorem is a formal consequence of the set up.

We now report on some of the highlights of the regular talks, whose abstracts
form the main part of this report.

Arthur Bartels talked about joint work with Wolfgang Lück and Tom Farrell,
proving the Farrell-Jones conjecture and algebraic K-theory conjecture for cocom-
pact lattices in connected Lie groups. One of the most spectacular consequences is
the Borel conjecture on topological rigidity of aspherical manifolds whose funda-
mental group is a cocompact lattice as above. The proof uses controlled topology
and new constructions of transfer homomorphisms. In other talks on geometric
group theory, Michelle Bucher-Karlsson described the explicit calculation of the
Gromov norm of the universal Euler class in the cohomology of classifying space
for oriented vector bundles, and Stefan Friedl gave a survey on the group theoretic
properties of fundamental groups of three manifolds, culminating in his joint result
with Matthias Aschenbrenner that all such groups are for every prime number p
virtually residually p.

Andreas Thom presented his joint work with Guillermo Cortiñas that nega-
tive algebraic K-theory of the algebra C(X) is a homotopy invariant of the space
X . This finally implements a strategy proposed several decades ago by Jonathan
Rosenberg. Among many other tools, algebraic geometry —including Hironaka’s
resolution of singularities— is crucially used.

Cameron Gordon gave (in joint work with Danny Calegari) a complete clas-
sification of all knots in closed 3-manifolds of small rational genus. Jim Conant
presented a proof of the Levine conjecture and applications to grope cobordism
(this is joint work with Peter Teichner).

An curious application of homotopy theory to the theory of finite groups was de-
scribed by Bob Oliver. He presented a purely algebraic result about the p-subgroup
structure in finite groups of Lie type, one which was reduced to a statement about
their classifying spaces and then proved using the homotopy theory of p-local finite
groups. No algebraic proof of this result is available up to now. Jesper Grodal
used homotopy theory to study the group of self-homotopy equivalences of a finite
CW-complex X and found explicit bounds on the order of groups with a faithful
action up to homotopy on X .

Bernhard Hanke described a new construction of families of manifolds with
positive scalar curvature, jointly carried out with Boris Botvinnik, Thomas Schick
and Mark Walsh, which is based on a family version of the Gromov-Lawson surgery
method and which provides the first examples of non-trivial elements of the moduli
space of metrics of positive scalar curvature.
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Other talks addressed a construction of a delooping of the 2-category of von
Neumann algebras (with bimodules and Connes fusion as 1-morphism and 2-
morphism) via conformal nets, the complete classification of characteristic co-
homology classes of Morita-Miller-Mumford type for bundles of closed manifolds
of arbitrary dimension, stable moduli spaces of highly connected high-dimensional
manifolds, and algebraic models of equivariant stable homotopy theories.

The famous Oberwolfach atmosphere made this meeting another wonderful suc-
cess, and all thanks go to the institute for creating this atmosphere and making
the conference possible.
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Abstracts

The Farrell-Jones Conjecture for cocompact lattices

Arthur Bartels

(joint work with Wolfgang Lück, Tom Farrell)

Via surgery theory the classification of high-dimensional manifolds depends on the
understanding of the algebraicK-theory and L-theory of integral group rings. The
work of Farrell-Jones on the Borel conjecture has lead to what is now known as
the Farrell-Jones conjecture:
Let G be a group and R be a ring (with involution). Then the assembly maps

αKVCyc : HG
∗ (EVCycG;KR) → K∗(R[G])

αLVCyc : HG
∗ (EVCycG;L

〈−∞〉
R ) → L

〈−∞〉
∗ (R[G])

are isomorphisms.
In the original formulation only integral group rings were considered. This

conjecture implies many other conjectures, most notable the Borel conjecture in
dimension ≥ 5. If the conjecture is known, then it reduces in some sense the
computation of K∗(R[G]) to the computations of the groups K∗(R[V ]) where the
groups V are virtually cyclic subgroups of G. Similarly, it reduces in some sense

the computation of L
〈−∞〉
∗ (R[G]) to the computations of the groups L

〈−∞〉
∗ (R[V ])

where the groups V are virtually cyclic subgroups of G.

Theorem 1. Let G be a cocompact lattice in a virtually connected Lie group.
Then

(1) αLVCyc is an isomorphism,

(2) αKVCyc is an isomorphism for ∗ < 1 and surjective for ∗ = 1.

This does not quite prove the full Farrell-Jones conjecture, but it suffices for
many important applications.

By an argument of Farrell-Jones to prove the above theorem it suffices to prove
the assertion for CAT (0)-groups and for polycyclic groups. The methods used
to prove the result for these groups are formally quite similar. In both cases
controlled topology is used to give a more geometric description of the assembly
maps as forget control maps, a transfer argument and contracting maps are used.
However, the construction of the transfer and the contracting maps are quite
different in these two cases.

In the case of CAT (0)-groups the fiber for the transfer is a contractible space and
construction of the transfer uses the singular chain complex of this contractible
space. The contracting map depends in this case on dynamic properties of the
group. More precisely, an analog of the geodesic flow of non-positively curved
manifolds is used. Ultimately this is a refinement of a method developed and used
by Farrell-Jones.
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In the case of polycyclic groups group homomorphisms f : G → F to finite
quotients are used. The fiber for the transfer is then the finite discrete space

∐

H∈H

G/f−1(H)

where H is the family of hyper-elementary subgroups of F . The construction of
the transfer uses Frobenius induction and depends on work of Swan (for K-theory)
and Dress (in for L-theory). The construction of the contracting map depends on
the correct choice of f . For example it is important here to choose f such that
f−1(H) will have large index in G for all H ∈ H. Ultimately this is a refinement
of a method developed and used by Farrell-Hsiang.

From Heegaard Floer homology to embedded contact homology via
open book decompositions

Paolo Ghiggini

(joint work with Vincent Colin, Ko Honda)

1. Introduction

Heegaard Floer homology, embedded contact homology and monopole Floer
homology are three Floer theories which produce TQFT-like invariants for smooth
3- and 4-manifolds. In their simplest form (the so-called “hat” version), they all
associate finite dimensional vector spaces over Z/2Z to any closed, oriented and
connected 3-manifold.
These theories have different origins: monopole Floer homology is a 3-dimensional
version of Seiberg–Witten theory, and was defined by Kronheimer and Mrowka
[KM]. Embedded contact homology is a variant of symplectic field theory, and
was defined by Hutchings and Taubes [Hu, HT1, HT2]. Finally Heegaard Floer
homology is a Lagrangian intersection Floer homology in a symmetric product of
a Heegaard surface, and was defined by Ozsvàth and Szábo [OSz1, OSz2].

Despite their differences, these three theories show similar formal properties and
are conjecturally equivalent. A large portion of the isomorphism between monopole
Floer homology and embedded contact homology has been recently established by
Taubes [Ta]. The goal of this report is to announce the following isomorphism:

Theorem 1. Let M be a closed, connected, oriented 3-manifold. There is an
isomorphism

Φ: ĤF (−M) → ÊCH(M).

where ĤF and ÊCH denote the hat-versions of Heegaard Floer homology and
of embedded, and −M is the manifold M with the opposite orientation.

We refer to the original papers for the definitions, to [Li] for the cylindrical
reformulation of Heegaard Floer homology which is used in the definition of Φ,
and to [CGHH] for the definition of the hat-version of embedded contact homology.
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A different proof of a similar result has been announced recently by Kutluhan,
Lee, and Taubes: [KLT1, KLT2, KLT3].

2. Open book decompositions

The link between the geometry underlying Heegaard Floer homology and and
the geometry underlying embedded contact homology is provided by open book
decompositions.

Definition. An open book decomposition of M is a pair (B, π) where:

• B ⊂M is a compact 1-dimensional submanifold (i. e. a link)
• π : M \B → S1 is a locally trivial fibration
• near every component of B the fibration looks like:

Theorem 2. (Alexander) Every 3-manifold admits an open book decomposition.

B is called the binding, and Sθ = π−1(θ) a page. We can identify the comple-
ment of a neighbourhood of B with the suspension of a diffeomorphism φ : S → S
where S is a surface with boundary which is homeomorphic to Sθ. We can assume
without loss of generality that ∂S is connected, and φ is the identity on ∂S and
a small negative rotation in a neighbourhood of ∂S. The suspension of φ will be
denoted by Nφ.

An open book decomposition (B, π) gives rise to a Heegaard splitting M =
H1 ∪Σ H2 where:

H1 = π−1([0, π]), H2 = π−1([π, 2π]), Σ = −π−1(0) ∪ π−1(π).

An open book decomposition gives rise also to a contact structure.

Definition. (Giroux) A contact form α on M is supported by an open book de-
composition (B, π) if

• every connected component of B is a periodic orbit of the Reeb vector field
• the Reeb vector field is positively transverse to the pages.

Theorem 3. (Thurston–Winkelnkemper, [TW]) Every open book decomposition
of a 3-manifold supports a contact form.

The converse is also true, by the fundamental work of Giroux [Gi].
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3. Modification of ĤF

On S we choose a collection of disjoint arcs a = (a1, . . . , a2g) which cut S into
a disc, and consider also the collection of arcs φ(a) = (φ(a1), . . . , φ(a2g)). Then
(S, a, φ(a2g) is half of a Heegaard diagram (Σ, α, β) for the Heegaard splitting
induced by the open book decomposition.

We define C̃F (S, a, φ(a)) as the subcomplex of the Heegaard Floer complex
defined from the Heegaard diagram (Σ, α, β). We denote by xi, x

′
i the intersection

points in ai ∩ φ(ai) ∩ ∂S, and finally we define ĈF (S, a, φ(a)) as the quotient of

C̃F (S, a, φ(a)) obtained by identifying the intersection point xi with x′i for all i.

It is not hard to see that ĈF (S, a, φ(a)) is a chain complex, and that its homology

is isomorphic to ĤF (−M).

4. Modification of ÊCH

In [CGH] we proved that we can perform the Thurston-Winkelnkemper con-
struction to (B, π) with some extra care so that the following are true:

• the Reeb vector field of α has an elliptic orbit γe and a hyperbolic orbit
γh on ∂Nφ, and

• the subgroup ẼCC(M,α) of ECC(M,α) generated by orbit sets contain-
ing only Reeb orbits in Nφ is a subcomplex.

Moreover the quotient of ẼCC(M,α) obtained by declaring equivalent all orbit
sets which differ only by the multiplicity of γe is a chain complex and its homology

is isomorphic to ÊCH(M).

5. Construction of the map

Let B be the surface with a positive strip-like end and a negative cylindrical
end obtained by smoothing the corners of (R× S1) \ ([0,+∞)× [0, π]).

Let πB : WB → B be a bundle with fibre S and monodromy φ. On WB we put
a symplectic form ΩB which makes it into a symplectic fibration, and a com-
patible almost complex structure JB which makes the projection πB : WB → B
JB-holomorphic. On π−1

B (∂B) we put a Lagrangian submanifold Λ which coincides

with (n,+∞) × {π} × a on π−1
B ((n,+∞) × {π}) and with (n,+∞) × {0} × h(a)

on π−1
B ((n,+∞)× {0}).
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(WB,ΩB, JB,Λ) provide a cobordism between the geometric setup of the defini-

tion of C̃F (Σ, a, h(a)) and the geometric setup for the definition of ẼCC(M,α). A

chain map Φ̃: C̃F (Σ, a, h(a)) → ẼCC(M,α) is defined by counting JB-holomorphic
multi-sections of WB with boundary on Λ and connecting HF generators at the

strip-like end with ECH generators at the cylindrical end. The map Φ̃ passes to

the quotient and defines a map Φ: ĤF (−M) → ÊCH(M).
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A solution to the Arf-Kervaire invariant problem

Mike Hill and Doug Ravenel

(joint work with Mike Hopkins)

For more information on this topic, including links to our preprint and detailed
notes for our talks, we refer the reader to the second author’s website

http://www.math.rochester.edu/u/faculty/doug/kervaire.html
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We gave a series of four lectures, the first by the second author and the rest by
the first author. The latter was followed by a 2 hour question and answer session.

The problem in question is nearly 50 years old and began with Kervaire’s pa-
per [Ker60] of 1960 in which he defined a Z/2-valued invariant φ(M) on certain
manifolds M of dimension 4m + 2. He showed that for m = 2 and M aclosed
smooth manifolds, it must vanish. He also constructed a topological 10-manifold
M on which it is nontrivial. This was one of the earliest examples of a nonsmooth-
able manifold. Milnor’s paper on exotic 7-spheres [Mil56] had appeared four years
earlier. In their subsequent joint work [KM63] they gave a complete classification
of exotic spheres in dimensions ≥ 5 in terms of the stable homotopy groups of
spheres, modulo a question about manifolds which they left unanswered:

For whichm is there a smooth framed manifold of dimension 4m+2
with nontrivial Kervaire invariant?

Such manifolds were known to exist for m = 0, 1 and 3, and Kervaire had
shown there are none for m = 2. A pivotal step in answering the question was the
following result of Browder [Bro69] published in 1969.

Browder’s Theorem. The Kervaire invariant φ(M) of a smooth framed manifold
M of dimension 4m + 2 is trivial unless m = 2j−1 − 1 for some j > 0. In that
case such an M with φ(M) 6= 0 exists if and only if the element h2j in the Adams
spectral sequence is a permanent cycle.

The Adams spectral sequence referred to in the theorem was first introduced
in [Ada58], and we refer the reader to [Rav04] for more information. The rela-
tion between framed manifolds and stable homotopy groups of spheres had been
established decades earlier by Pontryagin.

This result raised the stakes considerably and brought the problem into the
realm of stable homotopy thoery. The name θj was given to the hypothetical
element in the stable homotopy group π2j+1−2(S

0) representing the permanent
cycle h2j . It was known to exist for j = 1, 2 and 3. In the next few years its

existence was established for j = 4 ([BMT70] and [Jon78]) and j = 5 [BJM84].
It was widely believed that such framed manifolds existed for all values of j. In
the ensuing decade there were many unsuccessful (and unpublished) attempts to
construct them. We now know that they were trying to prove the wrong theorem.

In [Mah67] Mahowald described a beautiful pattern in the unstable homotopy
groups of spheres based on the assumption that the θj exist for all j. It was
so compelling that the possibility that they did not all exist was later called the
Doomsday Hypothesis. After 1985 the problem faded into the background
because it was thought to be inaccessible. In early 2009 Snaith published a book
[Sna09] on it “to stem the tide of oblivion.”

Soon after we announced the following.

Main Theorem. The element θj ∈ π2j+1−2(S
0) (representing h2j in the Adams

spectral sequence and corresponding to a framed manifold in the same dimension
with nontrivial Kervaire invariant) does not exist for j ≥ 7.
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Our proof relies heavily on equivariant stable homotopy theory and complex
cobordism theory. Neither was available in the 1970s. Here is our strategy.

We construct a nonconnective ring spectrum Ω with the following properties:

(i) Detection Theorem. If θj exists, its composition with the unit map

S0 → Ω is nontrivial.

(ii) Periodicity Theorem. πkΩ depends only on k modulo 256.

(iii) Gap Theorem. π−2Ω = 0.

Note that (ii) and (iii) imply that π254Ω = 0, and 254 is the dimension of θ7.
But (i) says that if θ7 exists it has nontrivial image in this group, so it cannot
exist. The argument for larger j is similar.

Our spectrum Ω is the fixed point set of a C8-equivariant spectrum Ω̃, i.e.,
Ω = Ω̃C8 . We will describe Ω̃ below. It also has a homotopy fixed point Ω̃hC8 . We
show that it has properties (i) and (ii), while the actual fixed point set satisfies
(iii). Thus we need a fourth result,

(iv) Fixed Point Theorem. The map Ω̃C8 → Ω̃hC8 is an equivalence.

The starting point for constructing Ω̃ is the observation, originally due to
Landweber [Lan68], that the complex cobordism spectrumMU has a C2-equivariant
structure defined in terms of complex conjugation. Recall that MU is defined in
terms of Thom spaces of certain complex vector bundles over complex Grassman-
nians. Complex conjugation acts on everything in sight and commutes with the
relevant structure maps. The resulting equivariant spectrum is known as real
cobordism theory and is denoted by MUR.

Next there is a formal construction which we call the norm for inducing up
from an H-equivariant spectrum X to form a G-equivariant spectrum NG

HX for
any finite group G containing H . The underlying spectrum (meaning the one we
get by forgetting the equivariant structure) ofNG

HX is the |G/H |-fold smash power
of X . G then acts by permuting the factors, each of which is invariant under H .
The case of interest to us is H = C2, X = MUR and G = C8. The underlying
spectrum of NG

HMUR is MU (4), the 4-fold smash power of MU .
Let V be a real representation of G and let SV be its one point compactification.

For a G-equivariant space or spectrum X we denote the group of equivariant maps
from SV to X by πGVX . In this way a G-equivariant spectrum X has homotopy
groups indexed by RO(G), the real representation ring of G. These are denoted
collectively by πG⋆ X .

We can now describe our C8-equivariant spectrum Ω̃. We choose a certain

element D ∈ πC8

19ρMU
(4)
R

, where ρ denotes the real regular representation of C8.

There are many choices of D that would lead to Periodicity (possible with periods
other than 256) and Gap Theorems. Ours is the simplest one that also gives the

Detection Threorem. Since MU
(4)
R

is a ring spectrum, we get a map

MU
(4)
R

D
// Σ−19ρMU

(4)
R
.
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This can be iterated, and we define Ω̃ to be the resulting telescope,

Ω̃ = D−1MU
(4)
R
.
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Knots with small rational genus

Cameron McA. Gordon

(joint work with Danny Calegari)

If K is a rationally null-homologous knot in a 3-manifold M then there is a
compact orientable surface S in the exterior of K whose boundary represents
p[K] in H1(N(K)) for some p > 0. We define ‖K‖, the rational genus of K,
to be the infimum of −χ−(S)/2p over all S and p. (Here χ−(S) is the sum of
χ−(S0) = min{χ(S0), 0} over the components S0 of S, as in the definition of the
Thurston norm.) If M is a homology sphere then ‖K‖ is essentially the genus of
K. By doing surgery on knots in S3 one can produce knots in 3-manifolds with
arbitrarily small rational genus. We show that such knots are related to the geom-
etry of the ambient manifold in a specific way. More precisely we show that there
is a positive constant C (1/50 will do) such that if K is a knot in a 3-manifold
M with ‖K‖ < C then (M,K) belongs to one of a small number of classes; for
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example, M is hyperbolic and K is isotopic to a core of a Margulis tube (i.e. a
geodesic of length ≤ 0.162 with tube radius ≥ 0.531), M is Seifert fibered and K
is a fiber, K lies in a JSJ torus in M , etc. Conversely we show that there are pairs
(M,K) in each of these classes with ‖K‖ arbitrarily small.

Fundamental groups of 3-manifolds

Stefan Friedl

(joint work with Matthias Aschenbrenner)

Our goal is to study properties of fundamental groups of closed 3-dimensional
manifolds. (Here and throughout the paper all manifolds are assumed to be ori-
ented.) This class of groups sits between the class of fundamental groups of sur-
faces, which for the most part are well understood, and the class of fundamental
groups of 4-manifolds which are very badly understood for the simple reason that
any finitely presented group can appear as the fundamental group of a closed
4-manifold.

In the following we say that a closed 3-manifold N is prime if it does not admit
a non-trivial connected sum decomposition. A classic theorem due to Kneser
states that any closed 3-manifold is the connected sum of finitely many prime
3-manifolds. Put differently, the fundamental group of any closed 3-manifold is
the free product of fundamental groups of prime 3-manifolds. For most intents
and purposes we can thus restrict ourselves to the study of fundamental groups of
prime 3-manifolds.

By Perelman’s proof of the Thurston Geometrization Conjecture we know that
prime closed 3-manifolds fall into three categories:

(1) hyperbolic 3-manifolds,
(2) Seifert fibered 3-manifolds (loosely speaking these are 3-manifolds which

are the total space of a singular S1-bundle over a surface), and
(3) 3-manifolds which are obtained from gluing hyperbolic 3-manifolds and

Seifert fibered spaces along incompressible tori.

It is well-known that fundamental groups of hyperbolic 3-manifolds are subgroups
of SL(2,C) and that fundamental groups of Seifert fibered 3-manifolds are linear
over Z, i.e. subgroups of SL(n,Z) for some sufficiently large n. The following
question naturally arises.

Question. Let N be a prime 3-manifold. Is π1(N) linear, i.e. is π1(N) a subgroup
of GL(n,C) for some n?

This question remains wide open. In support of an affirmative answer we will
in the following verify that 3-manifold groups satisfy all the properties of finitely
generated linear groups which we are aware of.

We first need to introduce the following definitions.

(1) A group π satisfies the Tits alternative if π is either virtually solvable or
if it contains a non-abelian free group.
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(2) Given a ring R we say that π has virtual infinite R-Betti number (which
we denote by vb1(π;R) = ∞) if given any k ∈ N there exists a finite index
subgroup π′ ⊂ π such that b1(π

′;R) ≥ k.
(3) A group π is residually finite if given any non-trivial g ∈ π there exists a

homomorphism α : π → G to a finite group G such that α(g) 6= e.
(4) Given a prime p we say that a group π is residually p if given any non-

trivial g ∈ π there exists a homomorphism α : π → G to a p-group G (i.e.
a group of p-power order) such that α(g) 6= e.

(5) Given a property P of groups we say that π is virtually P if π admits a
finite index subgroup which satisfies P .

Note that a group which is virtually residually p for some prime p is also residually
finite. We can now list the most interesting properties of linear groups which we
are aware of.

Theorem 1. Let π be a finitely generated linear group, then the following hold:

(1) π satisfies the Tits alternative,
(2) the group π is either solvable or for all primes p the group π satisfies

vb1(π;Fp) = ∞,
(3) π is residually finite,
(4) for almost all primes p the group π is virtually residually p.

The first property was discovered by Tits [9], the second property is a conse-
quence of the Lubotzky alternative (see [5, Corollary 16.4.18] and [4, Theorem
1.3]) and the third property was proved by Mal’cev [7]. The last property admits
a short and elegant proof which we provide below. We refer to [10, Theorem 4.7]
for full details.

Proof of Theorem 1 (4). Let π be a finitely generated subgroup of GL(n,C). Since
π is finitely generated there exists a finitely generated subring R of C such that
π ⊂ GL(n,R). It is well–known that for almost all primes p there exists a maximal
ideal m of R with char(R/m) = p (see [5, p. 376f]).

Now let p be a prime for which there exists a maximal ideal m of R with
char(R/m) = p. We will show that π is virtually residually p. Before we continue
note that R/mk is a finite ring for any k ≥ 1 and that

⋂∞
k=1 m

k = {0} by the Krull
Intersection Theorem. For k ≥ 1 we let

πk = ker
(
π → GL(n,R) → GL(n,R/mk)

)
.

Each πk is a normal subgroup of π, of finite index, and clearly πk+1 ⊂ πk for every
k ≥ 1. Moreover

⋂∞
k=1 πk = {1} since

⋂∞
k=1 m

k = {0}.
We claim that π1 is residually p. We will prove this by showing that π1/πk is a

p-group for any k. This in turn follows from showing that any non–trivial element
in πk/πk+1 has order p. In order to show this pick A ∈ πk. By definition we can
write

A = id + C for some n× n-matrix C with entries in m
k.
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From p ∈ m and k ≥ 1 we get that

Ap = (id + C)p = id + pC + p(p−1)
2 C2 + · · ·+ Cp

= id + (some n× n-matrix with entries in m
k+1).

Hence Ap ∈ πk+1. �

The following theorem gives evidence to the conjecture that 3-manifold groups
are linear.

Theorem 2. Let N be a prime 3-manifold. We write π = π1(N). Then the
following hold:

(1) π satisfies the Tits alternative,
(2) the group π is either solvable or for all primes p the group π satisfies

vb1(π;Fp) = ∞,
(3) π is residually finite,
(4) for almost all primes p the group π is virtually residually p.

By the above discussion we only have to prove Theorem 2 for 3-manifolds N
which admit an incompressible torus. Note that N is Haken and Property (1)
now follows from [2, Corollary 4.10]. Since N admits an incompressible torus it
follows from work of Luecke [6] that π = π1(N) is either virtually solvable or
vb1(N ;Z) = ∞. In particular in the latter case we have vb1(N ;Fp) = ∞ for any
prime p.

Hempel [3] (see also [8]) showed that π = π1(N) is residually finite. The proof
of Hempel has two key ingredients:

(1) subgroups carried by JSJ tori are maximal abelian, separable subgroups
of the cobounding JSJ components,

(2) HNN extensions and amalgamated products of finite groups are residually
finite.

In [1] we showed that for almost all primes p the group π = π1(N) is virtually
residually p. A first standard argument shows that since the fundamental groups
of all JSJ components of N are virtually residually p one can find a finite cover N ′

of N such that the fundamental groups of all JSJ components of N ′ are residually
p. The key technical difficulty in extending Hempel’s argument at that stage is
the fact that amalgamated products of p-groups are not necessarily residually p.
Overcoming this problem requires a very careful study of the filtrations by p-power
index subgroups of the JSJ components of N ′.
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The norm of the Euler class

Michelle Bucher-Karlsson

(joint work with Nicolas Monod)

In the beginning of the 80’s, Gromov introduced norms of cohomology classes.
These have important applications since they give a-priori-bounds for character-
istic numbers; for instance, this explains Milnor-Wood inequalities, and in that
sense refers back to Milnor [Mil58]. Further motivations to study these norms
come from the Hirzebruch-Thurston-Gromov proportionality principles and from
the relation to the minimal volume of manifolds via the simplicial volume.

However, the norm of very few cohomology classes are known to this day. In-
deed, the only explicit values concern degree 2 ([DT87, CØ03]), hyperbolic man-
ifolds ([Gro82, Thu78]) or products of two surfaces ([Buc08]). Together with
Nicolas Monod, we were able to compute the norm of the universal Euler class
E ∈ Hn(GL+

n (R),R), which is new for n > 2:

Theorem. [BM10] Let E be the Euler class in Hn(GL+
n (R),R), n even. Then

‖E‖ = 2−n.

The upper bound was already known by work of Sullivan-Smillie [Sul76, Smi]
and Ivanov-Turaev [IT82]. A cohomology upper bound is usually established by
exhibiting one cocycle with this particular upper bound. It is much more diffi-
cult to obtain lower bounds, as this requires giving lower bounds on all cocycles
representing the given class. In general, there is no known method to control the
bounded coboundaries by which equivalent cocycles may differ, except in degree
two, where the double ergodicity of Poisson boundaries leads to resolutions without
any 2-coboundaries.

General considerations show that the bounded Euler class E in Hn
b (GL+

n (R),R)
is given by a unique L∞-cocycle on the projective space. However, although the
norm of this unique cocycle is patently 1/2n, this will not a priori give any lower
bound on the semi-norm of E . Indeed, the isomorphisms given by homotopic
resolutions have no reason to be isometric. In fact, to our knowledge, the only



Topologie 2483

general method that guarantees isometries is the use of averaging techniques over
amenable groups or actions.

Therefore, we pull back the cocycle to the Grassmannian of complete flags,
which is an amenable space and hence computes the right semi-norm. Of course,
this comes at the cost of losing the uniqueness of the cocycle since this space
is much larger than the projective space and thus supports many coboundaries.
Doing so, we encountered a little surprise: The unique L∞-cocycle that we pulled
back cannot be represented by an actual cocycle on the projective space when
n ≥ 4, which was quite unexpected. Nevertheless, we could extend the cochains
also to the singular locus in order to make it a cocycle everywhere. We thus
construct an explicit cocycle on oriented flags which, generically, depends only
on the projective point and thus still represents the almost everywhere defined
cocycle.

The new cocycle that we exhibit is a singular extension of the simplicial cocycles
constructed by Sullivan and Smillie. More precisely, for any flat bundle over a
simplicial complex K, the classifying map |K| → BGL+

n (R)
δ can be chosen so

that the pull-back of our cocycle is precisely Smillie’s simplicial cocycle when
restricted to the simplices of K. It presents the advantage of being immediate
to evaluate, in contrast to the Ivanov-Turaev cocycle which is obtained by taking
averages of Sullivan-Smillie cocycles. Moreover, as it is defined on all singular
simplices simultaneously, and not only the simplices of a given triangulation (or of
one particular representative of the fundamental cycle) like the simplicial cocycles
of Sullivan-Smillie, it might be more useful for actually computing Euler numbers
of flat bundles over manifolds whose triangulations are often very complicated, if
known at all.
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Monoids of moduli spaces of manifolds, II

Oscar Randal-Williams

(joint work with Søren Galatius)

In my talk I announced new results on the homology of stable diffeomorphism
groups of highly-connected manifolds. In order to motivate these results, we
consider first the diffeomorphism groups of compact 0-manifolds: these are the
symmetric groups and have classifying spaces BΣn. Adding an extra point to a
0-manifold induces maps BΣn → BΣn+1, and theorems of Barratt–Priddy [1] and
Quillen [7] provide a homology equivalence

hocolimn→∞BΣn −→ Ω∞
0 S

from the direct limit to a component of the infinite loop space corresponding to
the sphere spectrum.

Moving up two dimensions, let us write BDiff+
∂ (Σg,1) for the classifying space

of the group of diffeomorphisms of a connected, oriented surface of genus g with
a single boundary component, where the diffeomorphisms are required to restrict
to the identity on the boundary. Gluing on a torus with two boundary compo-
nents along a single boundary gives a map BDiff+

∂ (Σg,1) → BDiff+
∂ (Σg+1,1). The

theorem of Madsen and Weiss [5] provides a homology equivalence

hocolimg→∞BDiff+
∂ (Σg,1) −→ Ω∞

0 MTSO(2)

from the direct limit to a component of the infinite loop space corresponding to the
negative of the tautological bundle over BSO(2), which was used to compute the
stable rational homology of Riemann’s moduli space of curves, and hence prove
the Mumford conjecture.

Our results give an extension of these theorems to all higher even dimensions,
except dimension 4. In order to state them, let us write

θ : BO(2n)[n+ 1,∞) −→ BO(2n) θ̄ : BO(2n)[n,∞) −→ BO(2n)

for the n- and (n − 1)-connected covers of BSO(2n), and let MTθ and MTθ̄ be
the Thom spectra of the virtual bundles −θ∗γ2n and −θ̄∗γ2n respectively, where
γ2n → BO(2n) is the universal bundle.

Theorem A. Let Wg := #gSn × Sn, and n 6= 2. The map

hocolimg→∞BDiff(Wg, D
2n) −→ Ω∞

0 MTθ

is a homology equivalence.

Theorem B. Suppose W is a (n− 1)-connected 2n-manifold such that πn(W ) →
πn(BO) is surjective. Let W g :=W#Wg , and n 6= 2. The map

hocolimg→∞BDiff(W g, D
2n) −→ Ω∞

0 MTθ̄

is a homology equivalence.
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In both of these statements, we may replace the homotopy colimit by the clas-
sifying space of a diffeomorphism group with compact support, and so compute
the homology of BDiffc(W∞) and BDiffc(W∞) respectively.

These theorems follow from a more technical statement about cobordism cate-
gories. Let θ : X → BO(d) be a map and Cθ be the associated cobordism cate-
gory. Roughly speaking, it’s morphisms are d-dimensional cobordisms in [0, t]×R∞

equipped with a θ-structure on their tangent bundles, and objects are closed (d−1)-
manifolds in R∞ with a θ-structure on their once-stabilised tangent bundles. For
technical reasons it is convenient to also assume that the line [0, t] × {0} is con-
tained in every cobordism, and the origin is contained in every object. A full and
detailed definition appears in [3] (based on the definition in [2]) where the category
is called C•

θ .
We first filter the category Cθ by subcategories Cκθ containing all objects, but

only those morphisms W such that (W,∂outW ) is κ-connected. We further filter

each Cκθ by the full subcategories Cκ,ℓθ on the objects which are ℓ-connected: that

is, M ⊂ R∞ containing the origin is an object of Cκ,ℓθ precisely if π≤ℓ(M, 0) = 0.

Theorem C. For d 6= 4, the inclusion

BCκ,ℓθ −→ BCθ ≃ Ω∞−1MTθ

is a weak homotopy equivalence as long as

(1) 2κ ≤ d− 1,
(2) ℓ ≤ κ,
(3) ℓ+ κ ≤ d− 2
(4) X is ℓ-connected.

Furthermore, we require the technical assumption that θ : X → BO(d) is the
homotopy pullback of a map to BO(d+ 1).

In the case d = 2n 6= 4, the objects of Cn−1,n−1
θ are (n− 1)-connected (2n− 1)-

manifolds and hence homotopy spheres, but we can say more. Let us restrict
ourselves to the case where θ : X → BO(2n) is either the n- or (n− 1)-connected

cover of BO(2n), and choose an object of Cn−1,n−1
θ diffeomorphic to the standard

sphere. Let E denote the monoid of endomorphisms of S2n−1 in the category
Cn−1,n−1
θ . We prove that in this case the inclusion

BE −→ BCn−1,n−1
θ

is a weak homotopy equivalence onto the path component it hits, which along with
Theorem C identifies the group-completion

ΩBE ≃ Ω∞MTθ.

It is not difficult to verify that the monoid E is homotopy-commutative, and so the
group-completion theorem [6] may be applied to it. Theorems A and B follow from
two observations about the monoid E : firstly that the submonoid E ′ consisting of
those path components represented by manifolds W such that πd(W ) → πd(BO)
is surjective is a cofinal submonoid (and hence has the same group completion),
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and secondly that the discrete monoid π0(E
′) may be group-completed by inverting

multiplication by Sd × Sd, which follows by a theorem of Kreck [4].
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Algebraic independence of generalized Morita-Miller-Mumford classes

Johannes Ebert

Let M be a closed oriented smooth n-manifold, Diff+(M) be the topologi-
cal group of orientation-preserving diffeomorphisms and f : E → B be a fibre
bundle with fibre M and structure group Diff+(M). Let TvE → E be the ver-
tical tangent bundle; it is an n-dimensional oriented real vector bundle. Given
c ∈ Hk+n(BSO(n);Q), we can define the generalized Miller-Morita-Mumford
classes of E using the Gysin homomorphism:

κE(c) := f!(c(TvE)) ∈ Hk(B;Q).

In the case n = 2, one obtains the characteristic classes of surface bundles that
were defined by Miller [5], Morita [6] and Mumford [7]. Miller and Morita have
shown that these classes are algebraically independent in a sense that is explained
below. The goal of this project is to extend the result to the higher-dimensional
case. To state our theorem, we need some notation.

Let σ−nH∗(BSO(n)) be the graded vector space whose degree k part is 0
for k ≤ 0 and Hn+k(BSO(n);Q) for k > 0. Then c 7→ κE(c) is a linear map
σ−nH∗(BSO(n)) → H∗(B) of graded vector spaces.

Let Rn be a set of representatives for the oriented diffeomorphism classes of
oriented closed n-manifolds (connected or non-connected). Put

(1) Bn :=
∐

M∈Rn

BDiff+(M).

There are tautological manifold bundles on these spaces and therefore we get a
linear map
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(2) κn : σ−nH∗(BSO(n)) → H∗(Bn).

Let Λσ−nH∗(BSO(n)) denote the free graded-commutative algebra generated
by σ−nH∗(BSO(n)); there is an algebra map

(3) Λκn : Λσ−nH∗(BSO(n)) → H∗(Bn).

Here is our main result:

Theorem 2. [J. Ebert, [1]]

(1) If n is even, then Λκn : Λσ−nH∗(BSO(n)) → H∗(Bn) is injective.
(2) If n is odd, then the kernel of Λκn : Λσ−nH∗(BSO(n)) → H∗(Bn) is the

ideal that is generated by the components of the Hirzebruch L-class.

The case n = 2 of Theorem 2 is due to Miller and Morita. This is also an
immediate consequence of the Madsen-Weiss theorem [4]. The fact that the kernel
of Λκ2m+1 contains the Hirzebruch has been proven in [2] using a classical index-
theoretic argument. The proof of Theorem 2 goes in the following steps:

(1) A formal argument using Barratt-Priddy-Quillen-Segal and Nakaoka sta-
bility reduces the problem to the injectivity of the linear map κn.

(2) Multiples of the Euler class can be easily detected on sphere bundles; this
reduces the problem to the detection of polynomials in the Pontrjagin
classes.

(3) By taking products of manifold bundles, one shows the following condi-
tional statement for the even-dimensional case: Let n be even, suppose
that Theorem 2 has been shown for all even dimensions less than n and
suppose finally that κn(phk) 6= 0, where phk ∈ H4k(BSO(n);Q) is the
component of the Pontrjagin character. Then Theorem 2 holds for dimen-
sion n. The Miller-Morita theorem serves as an induction beginning.

(4) A similar inductive statement is true for odd dimensions, but we have to
assume n ≥ 7 (the 3-dimensional case of Theorem 2 is empty).

(5) One shows that the universal CP2r-bundle on BSU(r + 1) detects the
classes phk. Moreover, the universal CP2-bundle detects all classes except
the Hirzebruch L-class.

(6) As a device to increase the dimension of a bundle, we use the following
pullback construction. Given an M -bundle E → X , we form the pullback
via the evaluation map S1×LX → X from the free loop space and project
to LX to obtain an S1 ×M -bundle on LX . The MMM-classes of this new
bundle relate to the MMM-classes of E via the transgression H∗(X) →
H∗−1(LX) which is injective as long as X is simply-connected and has
the rational cohomology as a product of Eilenberg-MacLane space. This
argument is used to tie the several loose ends of the proof.

The map Λκn is closely related to the universal Madsen-Tillmann-Weiss map
[3] αn : Bn → Ω∞MTSO(n) into the infinite loop space of a well-known Thom
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spectrum. There is a classical isomorphism

H∗(Ω∞MTSO(n);Q) ∼= Λσ−nH∗(BSO(n);Q),

under which the maps α∗
n and Λκn correspond to each other. Thus our theorem

answers the question whether the map Bn → Ω∞MTSO(n) is injective in rational
cohomology for dimensions different from 2.
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Symmetry of spaces and subgroups of Baut(X)

Jesper Grodal

(joint work with Bill Dwyer)

The goal of this talk is to report on some joint work in progress [2] on understanding
the subgroup structure of the topological monoid of self-homotopy equivalences
aut(X) of a finite simply connected CW–complex X . Here, by a subgroup we
mean a map BG → Baut(X) that satisfies one of several equivalent conditions
that justifies calling it a “monomorphism”. Subgroups in this sense correspond to
faithful group actions on X , up to homotopy.

Perhaps the first indication that Baut(X) should have interesting group the-
oretic properties was discovered by Sullivan and Wilkerson, who showed that
π0(aut(X)) is an arithmetic group [3]. It is natural to speculate in which ways
this can be extended to a space-level statement.

The type of näıve questions we are interested in are the following:

(1) How many subgroups are there? (e.g., finite or infinite?)
(2) How “large” can a subgroup be?
(3) What does Baut(X) look like cohomologically?

Concerning (1), it was observed some time ago by J. Smith that the set of
conjugacy classes of subgroups of, say, order p can be infinite, e.g., for X =
S3 ∨ S3 ∨ S5, a departure from what happens for arithmetic groups. However,
it follows from the work of Grodal–Smith, that for X = Sn the set of conjugacy
classes of subgroups isomorphic to a fixed finite group G is indeed finite. Here
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we show that for any simply connected finite CW–complex the set of conjugacy
classes of subgroups which correspond to free actions is also finite, and examine
other cases where the same conclusion holds.

Concerning (2), one can define a homotopical version of the classical notion of
the p–rank of symmetry as follows:

h-rkp(X) = max{r |∃ mono f : B(Z/p)r → Baut(X)}

The homotopy p–rank of symmetry h-rkp(X) provides an upper bound for the
free p–rank of symmetry, as well as the corresponding S1–rank of symmetry. Ear-
lier work of Grodal–Smith implies that h-rk2(S

n) = n + 1 and h-rkp(S
2n−1) =

h-rkp(S
2n) = n, p odd, realized by the standard reflections in the coordinates.

One basic question one may ask is whether the rank is always finite. We answer
this in the affirmative:

Theorem 4 (Dwyer–Grodal). For any finite simply connected CW–complex X,
h-rkp(X) <∞.

Via Lannes’ theory the statement implies that the transcendence degree of
H∗(Baut1(X);Fp) is finite, where the subscript denotes the identity component,
providing information regarding (3).

The current proof produces bounds on h-rkp(X) which are homotopic in nature,
in particular they depend on information about the homotopy type of Postnikov
sections of Baut(X). It seems reasonable to expect better and more algebraic
bounds. This could provide analogs for faithful actions of various results and
conjectures of Browder, Carlsson, and others on the free rank of symmetry of
products of spheres and more general finite complexes [1].
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Algebraic models for rational equivariant stable homotopy theories

Brooke Shipley

(joint work with John Greenlees)

For a compact Lie group G of rank r, Greenlees has conjectured that there is an
abelian category A(G) of injective dimension r such that the homotopy category
of rational G-equivariant cohomology theories is modeled by the derived cate-
gory of A(G). This conjecture holds for finite groups since rational G-equivariant
cohomology theories are just graded rational Mackey functors (which are all in-
jective). This conjecture also holds for SO(2), O(2) and SO(3) by work of Green-
lees [Gr1, Gr2, Gr3]. In this talk we discussed joint work with Greenlees on this
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conjecture for G a torus. Specifically we outlined this new, simplified, proof for
SO(2) and indicate the changes needed for higher rank tori.

Theorem 3. [GS2] For any torus, T n, there is an abelian category A(T n) of
sheaves over the space of closed subgroups of T n and a Quillen equivalence of
model categories:

Rational T n-spectra ≃Q Rational dgA(T n)

Furthermore, A(T n) has injective dimension n (the rank.)

In the case of T = SO(2) this Quillen equivalence appears in [Sh1] based on the
work in [Gr2]. In [Gr4], Greenlees uses this work to construct SO(2)-equivariant
elliptic cohomlogy. Our generalization to higher dimensional tori leads to the
possibility of constructions of T g-equivariant cohomology theories associated to
complex curves of genus g; see also [Gr5].

One can also specialize to families versions of Theorem 3 for rational G-spectra
with fixed points concentrated in a given family, F . For example, free T n-spectra
are modeled by differential graded torsion modules over H∗BT n; this gives a new
proof for tori of the results in [GS1].

This work uses the work on algebraicization of rational stable homotopy theories
from [Sh2], and intrinsic formality results for (diagrams of) rational polynomial
rings. We develop several other general techniques as well which may have other
applications. The next three paragraphs list these.

First, stably any Quillen adjunction inducing an equivalence on certain cells
induces a Quillen equivalence on the cellularizations (or Bousfield colocalizations).

Proposition A. [GS2] Let M and N be right proper, stable, cellular model cat-
egories with F : M → N a Quillen adjunction with right adjoint U . Let Q be a
cofibrant replacement functor in M and R a fibrant replacement functor in N . Let
A be a compact object in M and B a compact object in N .

• If QA → URFQA is a weak equivalence in M , then F and U induce a
Quillen equivalence

A-cell-M ≃Q FQA-cell-N

• If FQURB → RB is a weak equivalence in N , then F and U induce a
Quillen equivalence

URB-cell-M ≃Q B-cell-N

Second, we often use diagram categories of modules over diagrams of rings.
Up to colocalization and Quillen equivalence, we show that omitted entries in
the diagram can be reconstructed by extension of scalars or pullback. These are
bascially generalized Hasse square type statements, such as for R the homotopy
pull-back of a diagram of rings, R-modules can be modeled by a localization of
the category of modules over the diagram.

Third, we consider a Quillen adjunction induced by fixed points between G-
equivariant modules over a ring G-spectrum A and G/K-equivariant modules over
the fixed points AK . We show that this adjunction induces equivalences on certain
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cells for the particular rings under consideration and then use Proposition A to
deduce associated Quillen equivalences.
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Local TQFT versus local CFT: results and speculations

André Henriques

Conformal nets form the objects of a symmetric monoidal category. Applying
Jacob Lurie’s theorem to a fully dualizable objects of that category, one gets
TQFTs

Bordframed
3 → CNets.

But our geometric understanding of those TQFTs is still quite incomplete. Our
best attempt to recreate those TQFTs geometrically seems to produce CFTs...
which is also quite interesting.

Homotopy invariance in algebraic K-theory

Andreas Thom

(joint work with Guillermo Cortiñas)

In this talk I presented joint work with Guillermo Cortiñas [1]. The talk was
centered arround a conjecture which arose from the work of Johnathan Rosenberg
(see [2]) about the negative algebraic K-theory of algebras of continuous functions
on compact Hausdorff spaces. Negative algebraic K-theory is a natural invariant
of a ring, which is defined in terms of projective modules over the ring itself and
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certain polynomial or Laurent extensions over it. Rosenberg conjectured that the
assignment

X 7→ K−n(C(X))

is homotopy invariant as a functor on the category of compact Hausdorff topolog-
ical spaces. Here, C(X) denotes the ring of complex-valued continuous functions
on X . Building on work Eric Friedlander and Marc Walker [3], we managed to
prove this conjecture, see [1].

As a key tool we use a technique of algebraic approximation which considers
the algebra C(X) as a union of its finitely generated subalgebras. More precisely,
for every finite set F ⊂ C(X), we consider the algebra AF = C[f ∈ F ] ⊂ C(X).
Since these subalgebras are reduced, they are algebras of regular functions on affine
algebraic varieties VF . This allows to introduce algebraic techniques such as desin-
gularization. Hironaka desingularization gives a (more of less) canonical smooth

quasi-projective variety ṼF and a proper algebraic morphism fF : ṼF → VF .
In order to illustrate how this can be useful, let us consider the special case
C(βN) = ℓ∞(N). Then, the inclusionAF ⊂ ℓ∞(N) is dual (in the sense of Gel’fand)
to a map N → VF with pre-compact image in the euclidean topology. Since fF
is proper, such maps can be lifted through the desingularization ṼF . This finally
leads to the conclusion that the negative algebraic K-theory of ℓ∞(N) vanishes
since this is the case of smooth quasi-projective varieties. Similar conclusions
holds for group rings ℓ∞(N)[Γ] and certain monoid rings, being a consequence of
the Farrell-Jones Isomorphism Conjecture and results of Richard Swan. Indeed,
the argument reveals that the Farrell-Jones Isomorphism Conjecture with coeffi-
cients in rings like C(X) or ℓ∞(N) can give interesting results about the algebraic
structure of complex group rings themselves, since non-existence of exotic classes
in K0(ℓ

∞(N)[Zn]) can be interpreted as a algebraic compactness statement.
There are various applications of those results; I want to just mention one.

Let R be a topological ring and let X be a compact Hausdorff topological space.
A R-quasi-bundle is a continuous map π : E → X together with a continuous
action R × E → E which endows each fiber Ex := π−1(x) with the structure of
an R-module. It is straighforward to define products and similar constructions
for R-quasi-bundle. A R-quasi-bundle π : E → X is said to be complemented if
there exists another R-quasi-bundle π′ : E′ → X such that π × π′ : E ×X E′ → X
is homeomorphic (over X and respecting the action of the ring R) to the R-
quasi-bundle X × Rn for some n ∈ N. It is well-known that if R is a Banach
algebra or more generally a topological algebra with an open group of invertible
elements, then complemented bundles are locally trivial. Our main result says
that this is still true for the ring R := C[Zn × Nm] equipped with the fine locally
convex topology. In fact, we can show that complemented R-quasi-bundles for
R = C[Zn ×Nm] are locally free, which gives a parametrized generalization of the
resolution of Serre’s Conjecture by Daniel Quillen and Andrei Suslin.
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An application of homotopy theory to comparing finite groups of Lie
type

Bob Oliver

(joint work with Carles Broto, Jesper Møller)

Fix a prime p. Two finite groups G and H will be called p-locally equivalent,
denoted hereG ∼

p
H , if there are Sylow p-subgroups S ∈ Sylp(G) and T ∈ Sylp(H),

and an isomorphism ϕ : S
∼=
−→ T which preserves all conjugacy relations between

elements and subgroups of S and T . More precisely, for P,Q ≤ S and α ∈
Iso(P,Q), one requires that α is conjugation by some element of G if and only if
ϕαϕ−1 ∈ Iso(ϕ(P ), ϕ(Q)) is conjugation by some element of H .

It is not hard to see that there are many cases of p-local equivalences among
finite groups of Lie type (such as linear, symplectic, or orthogonal groups over
finite fields). For example, if q and q′ are two prime powers such that v2(q −
1) = v2(q

′ − 1) ≥ 2 (where v2(−) is the 2-adic valuation), and n ≥ 2, then
GLn(q) ∼

2
GLn(q

′), SLn(q) ∼
2
SLn(q

′), PSLn(q) ∼
2
PSLn(q

′), etc. Constructing

an isomorphism between Sylow 2-subgroups is straightforward in each case, and
one can show using character theory that those isomorphisms preserve conjugacy
relations.

In joint work with Carles Broto and Jesper Møller [BMO], we proved, among
other results, the following very general theorem about such p-local equivalences
between finite groups of Lie type.

Theorem 1. Fix a connected, reductive, integral group scheme G and a prime p.
For any pair of prime powers q and q′ such that p ∤ qq′, if 〈q〉 = 〈q′〉 as closed
subgroups of Z×

p , then G(q) ∼
p
G(q′).

Theorem 1 thus applies not only to G = (P )GLn, (P )SLn, and (P )Sp2n, but
also to the exceptional groups such as G2, F4, etc.

The following is another theorem of the same type. It compares conjugacy
in unitary and linear groups, and is a special case of a more general theorem in
[BMO].
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Theorem 2. Fix n ≥ 2 and a prime p. For any pair of prime powers q and q′

such that p ∤ qq′, if 〈−q〉 = 〈q′〉 as closed subgroups of Z×
p , then U(q) ∼

p
GL(q′),

SU(q) ∼
p
SL(q′), and PSU(q) ∼

p
PSL(q′).

Our proof of Theorems 1 and 2 is homotopy theoretic. In [MP], Martino and
Priddy proved that if the p-completed classifying spaces BG∧

p and BH∧
p are ho-

motopy equivalent, then G and H are p-locally equivalent. They also conjectured
the converse, a result which has now been proven [O1, O2], but only by using the
classification theorem of finite simple groups.

Thus, to prove Theorem 1, it suffices to show that BG(q)∧p ≃ BG(q′)∧p . The
starting point when doing this is a theorem of Friedlander [Fr], which proves that
the space BG(q)∧p is equivalent to the “homotopy fixed space” (BG(C)∧p )

hψq

of
the action of some “unstable Adams operation” ψq on BG(C)∧p . This map ψq

is characterized by requiring that its restriction to BT (where T ≤ G(C) is a
maximal torus) is induced by the endomorphism (t 7→ tq) of T . By a theorem of
Jackowski, McClure, and Oliver [JMO], this condition determines ψq uniquely up
to homotopy.

These results are then combined with the following theorem, proven in [BMO,
Theorem 2.4]:

Theorem 3. Fix a prime p. Let X be a connected, p-complete space such that

• H∗(X ;Fp) is noetherian, and
• Out(X) is detected on limnH

∗(X ;Z/pn).
Let α and β be self homotopy equivalences of X which generate the same closed
subgroup of Out(X) under the p-adic topology. Then Xhα ≃ Xhβ.

Here, for any spaceX , Out(X) is the group of homotopy classes of self homotopy
equivalences of X . The “p-adic topology” on Out(X) is that determined by its
filtration by subgroups acting via the identity on H∗(X ;Z/pn), for n→ ∞.

Theorems 1 and 2 are not surprising to group theorists. But currently, no other
proof seems to be known of these purely algebraic results.
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Homotopy groups of the moduli space of metrics of positive scalar
curvature

Bernhard Hanke

(joint work with Boris Botvinnik, Thomas Schick and Mark Walsh)

LetM be a connected closed smooth manifold admitting a Riemannian metric of
positive scalar curvature. We are interested in topological properties of Riem+(M),
the space of positive scalar curvature metrics onM with the C∞-topology, and the
associated moduli space M+(M) = Riem+(M)/Diff(M). The knowledge about
global properties of these spaces is sparse. For example it has been an open
problem to decide whether πk(Riem

+(M)) for k > 1 or πk(M
+(M)) for k > 0 can

be non-zero.
The following result identifies higher degree non-zero homotopy groups of mod-

uli spaces of positive scalar curvature metrics.

Theorem 5 ([1]). For any d > 0 there exists a connected closed smooth manifold
M admitting a metric of positive scalar curvature with

π4q(M
+(M)) 6= 0

for 0 < q ≤ d.

We shall sketch a proof of this fact.
Because the action of Diff(M) on Riem(M), the space of Riemannian metrics

on M , is not free in general, we first restrict attention to a certain subgroup of
Diff(M). Let x0 ∈ M be a basepoint. Then we denote by Diffx0

(M) ⊂ Diff(M)
the subgroup of diffeomorphisms fixing x0 and inducing the identity on the tangent
space Tx0

M .
We think of Diffx0

(M) as diffeomorphisms fixing an observer at x0. Note that
Diffx0

(M) acts freely on Riem(M), since M is connected. The action admitting
local slices [2] and Riem(M) being contractible we obtain a Diffx0

(M)-principal
fibration

Diffx0
(M) →֒ Riem(M) → Mx0

(M)

where the observer moduli space of Riemannian metrics

Mx0
(M) = Riem(M)/Diffx0

(M)

is homotopy equivalent to BDiffx0
(M).

Note that a map f : Sk → BDiffx0
(M) classifying a bundle M →֒ E → Sk

gives rise to a commutative diagram

E

��

// Riem(M) ×Diffx0
(M) M

��

Sk
f

// BDiffx0
(M)

and hence f is given by a smooth family of Riemannian metrics on the fibres of
E.
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The proof of Theorem 5 comprises the following steps.

a) Construct maps f : S4q → BDiffx0
(M) representing non-zero elements in

π4q(BDiffx0
(M)).

b) Construct smooth families of positive scalar curvature metrics on the fibres
of the resulting bundles E → S4q.

c) Show that in some cases the resulting non-zero elements in π4q(M
+
x0
(M))

are not in the kernel of the canonical map π4q(M
+
x0
(M)) → π4q(M

+(M))
forgetting the base point.

The first two steps are first carried out for the special manifold M = Sn.
Step a) is now based on the following classical result.

Theorem 6 ([3]). Let 0 < k ≪ n. Then

πk(BDiffx0
(Sn))⊗Q =

{
Q if n is odd and k = 4q

0 else.

Here the shorthand notation k ≪ n means that for fixed k there is an N ∈ N
so that the statement is true for all n ≥ N .

Concerning step b) we state

Theorem 7 ([1]). The canonical map

πk(M
+
x0
(Sn))⊗Q → πk(Mx0

(Sn))⊗Q

is an epimorphism for 0 < k ≪ n. In particular, the groups πk(M
+
x0
(Sn))⊗Q are

non-zero for odd n and 0 < k = 4q ≪ n.

As remarked before this amounts to constructing smooth families of positive
scalar curvature metrics on the bundles Sn →֒ E → S4q corresponding to the
nontrivial elements in π4q(BDiffx0

(Sn))⊗Q from Theorem 6.
Here we make use of an explicit description of these bundles due to Hatcher.

Each of these bundles can be constructed by doubling a smooth fibre bundle

Dn →֒ D → S4q

along the boundary. There are fibrewise Morse functions D → [0, 1] on these
bundles constructed in [5] which are self-indexing, i.e. larger criticial values cor-
respond to larger (fibrewise) indices of the corresponding critical sets, and which
have critical sets with indices smaller than or equal to n− 3.

These fibrewise Morse functions serve two purposes.
On the one hand, they are used in [5, Theorem 5.13] to show by explicit calcu-

lations that certain higher Franz-Reidemeister torsion invariants of the resulting
Sn-bundles E → S4q are non-zero. Therefore these bundles correspond to non-
zero generators in Theorem 6. On the other hand they can be used to apply a
fibrewise version of the surgery technique due to Gromov-Lawson [6] and Gajer [4]
to obtain fibrewise metrics of positive scalar curvature on the bundles D → S4q

and E → S4q. The extension of these surgery techniques to a fibred situation is
the technical heart of our argument, cf. also [9].
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For an arbitrary manifold Mn of odd dimension and equipped with a metric
of positive scalar curvature, steps a) and b) are carried out by taking a fibrewise
connected sum of the Hatcher bundle E → S4q with a trivial bundle S4q ×M
along the maximum of the fibrewise Morse function on E constructed earlier. The
resulting element in π4q(BDiffx0

(M)) ⊗ Q is still non-zero and can be detected
by a higher Franz-Reidemeister torsion invariant. Furthermore, the resulting M -
bundle over S4q can be equipped with a smooth family of positive scalar curvature
metrics, since these metrics can be extended over connected sums.

Step c) is based on the construction of closed orientiable odd dimensional man-
ifoldsM which carry positive scalar curvature metrics, but only trivial S1-actions.
For these manifolds the isotropy groups of the action of Diff(M) on Riem(M) must
be finite (they are compact Lie groups by [8]) so that the argument needed for step
c) can be completed by a Leray spectral sequence argument. The construction of
the manifoldsM is somewhat difficult, because the well known Atiyah-Hirzebruch
obstruction to nontrivial S1-actions on smooth manifolds given in terms of the
Â-genus applies only to even dimensional spin manifolds and in particular also
obstructs positive scalar curvature metrics by the Lichnerowicz-Weitzenböck ar-
gument.

In our paper we make use of a refinement of the Atiyah-Hirzebruch obstruction
in terms of higher Â-genera, which does not only apply to spin manifolds, but to
orientable manifolds with finite second and fourth homotopy groups. This recent
result is due to Herrera-Herrera [7].
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Grope concordance and a conjecture of Levine

James Conant

(joint work with Peter Teichner and Rob Schneiderman)

We study the set of classical links up to the grope concordance equivalence
relation. We give a complete obstruction theory, modulo possible generalizations
of the Arf invariant. The algebraic machinery we use is heavily dependent on a
conjecture that a certain combinatorially defined map on trees is an isomorphism,
which was made by Jerru Levine in the context of homology cylinders several years
ago. We have recently proven Levine’s conjecture and will outline the proof in this
talk.

Reporter: Vadim Alekseev
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