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Abstract. Linear series have long played a central role in algebraic geom-
etry. In recent years, starting with seminal papers by Demailly and Ein-
Lazarsfeld, local properties of linear series – in particular local positivity, as
measured by Seshadri constants – have come into focus. Interestingly, in their
multi-point version they are closely related to the famous Nagata conjecture
on plane curves. While a number of important basic results are available by
now, there are still a large number of open questions and even completely
open lines of research.
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Introduction by the Organisers

The mini-workshop Linear Series on Algebraic Varieties gathered together ex-
perts in the subject with a spread of backgrounds and professional experience.
Participants came from all over the world: US (Colorado, Illinois, Nebraska), Eu-
rope (France, Germany, Italy, Norway, Poland, Spain, Sweden) and Asia (Korea)
and ranged from post docs to senior researchers. This variety of experience and
background greatly contributed to generating stimulating discussions during the
talks and the working group sessions, leading to what we believe will be the basis
for several research collaborations.

The theme of the workshop

The theme of the workshop revolved around two related conjectures which in
recent years stimulated important developments in the field of linear series, the
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Nagata conjecture [19] and the SHGH conjecture [21, 11, 10, 14], sometimes also re-
ferred to as the Harbourne-Hirschowitz conjecture. The Nagata conjecture bounds
the least degree d of a curve passing through r ≥ 10 general points in the pro-
jective plane with prescribed multiplicities m1, . . . ,mr. While this conjecture has
remained open for half a century, several people observed recently that it could be
a piece of a much more general picture, which is by no means specific to P2 ([3], [2]).
The concept which allows passing from a rather special question on the projective
plane to a much more general setting is that of Seshadri constants. Recall that
given a polarized variety (X,L) and a subscheme Z ofX the Seshadri constant of L
at Z is the real number ε(X,L;Z) := sup {λ : f∗L− λE is ample on Y = BlZX}
(see [2] for details). An elegant and uniform way to generalize the Nagata conjec-
ture is to assert that if Z is a union of sufficiently many and sufficiently general
reduced points of X , then the Seshadri constant ε(X,L;Z) is the maximal possi-
ble. Recently there were several interesting developments towards approximating
from below the numbers ε(X,L;Z) ([12], [9], [20], [5], [13], [15]). During the
mini-workshop various approaches to this problem were presented.

The SHGH conjecture gives a precise prediction for the actual dimension of the
linear series L(d;m1, . . . ,mr) of curves of degree d passing through r general points
of the plane with multiplicities m1, . . . ,mr, giving a simple geometric condition for
a linear series of this type to be special, i.e., of higher dimension than is expected
by a naive dimension count. Several approaches have been developed to attack this
problem. We first mention the so-called Horace method, a specialization method
introduced by Alexander and Hirschowitz [1] and pursued by Mignon [18], Roé
[20], and Evain [9]. A second approach is Ciliberto and Miranda’s [4, 5, 6] method
of degenerations of the underlying variety for linear series on families of planes.
A third approach relates the problem to packing type questions in symplectic
geometry as observed by McDuff-Polterovich [17] and pursued by Biran [3] and
recently by Eckl [8]. Finally there are approaches via symbolic computations, most
prominently those of Lorentz-Lorentz [16] and Dumnicki [7].

The structure of the workshop

The aim of the workshop was twofold: to gather together experts working on
the three different aspects mentioned above, and to stimulate collaboration by
discussing open problems in the field. For this reason every day consisted of two
main activities:

- research talks, typically two or three in the morning; and
- working group discussions, in the afternoon.

A list of possible questions to work on during the workshop was discussed via
email well ahead of the workshop. During the first day, the final selections were
made. Two main areas of interest emerged from the discussion: asymptotic ap-
proaches and combinatorial ones. Consequently two working groups were formed.
The workshop was just the starting point and an ignition to collaborate on the
chosen problem. The working groups continue their efforts. The outcome of these
discussions will appear elsewhere.



Mini-Workshop: Linear Series on Algebraic Varieties 2615

References

[1] Alexander, J., Hirschowitz, A.: An asymptotic vanishing theorem for generic unions of
multiple points. Invent. Math. 140 (2000), 303–325

[2] Bauer, Th. et al.: A primer on Seshadri constants. Contemporary Mathematics 496 (2009),
33-70

[3] Biran, P.: Constructing new ample divisors out of old ones. Duke Math. J. 98 (1999),
113–135

[4] Ciliberto, C., Miranda, R.: Degenerations of planar linear systems. J. Reine Angew. Math.
501 (1998), 191–220

[5] Ciliberto, C., Miranda, R.: Nagata’s conjecture for a square or nearly-square number of
points. Ric. Mat. 55 (2006), 71–78

[6] Ciliberto, C., Miranda, R.: Homogeneous interpolation on ten points arXiv:0812.0032
[7] Dumnicki, M., Jarnicki, W.: New effective bounds on the dimension of a linear system in

P2. J. Symbolic Comput. 42 (2007), 621–635
[8] Eckl, Th.: An asymptotic version of Dumnicki’s algorithm for linear systems in CP2. Geom.

Dedicata 137 (2008), 149–162
[9] Evain, L.: Computing limit linear series with infinitesimal methods. Ann. Inst. Fourier

(Grenoble) 57 (2007), 1947–1974
[10] Gimigliano, A.: On linear systems of plane curves, Ph.D. thesis. Queen’s University,

Kingston, 1987.
[11] B. Harbourne, B.: The geometry of rational surfaces and Hilbert functions of points in the

plane. Proccedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf.
Proc., 6 Amer. Math. Soc., Providence, RI, (1986) 95.

[12] Harbourne, B.: Seshadri constants and very ample divisors on algebraic surfaces. J. Reine
Angew. Math. 559 (2003), 115–122
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Linear systems of plane curves with A-D-E singularities . . . . . . . . . . . . . . 2633
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Abstracts

Open problems on linear systems

Brian Harbourne

One way of stating the SHGH Conjecture [9, 6, 3, 7] is:

Conjecture 1. Let C ⊂ X be a prime divisor where X → P2 is the blow up of
generic points p1, . . . , ps. Then h1(X,OX(C)) = 0.

This raises the question of how to extend this conjecture more generally. Joint
discussions between the speaker and J. Roé, C. Ciliberto and R. Miranda produced
the following possibility:

Conjecture 2. Let X be a smooth projective surface over an algebraically closed
field K (where either X is rational or char(K) = 0). Then there exists a constant
cX such that for every prime divisor C [alternatively, for every reduced divisor C]
we have h1(X,C) ≤ cXh0(X,C).

[Discussions among the mini-workshop participants after the talk show that this
is false, but there is still hope that it may hold when X is rational.]

Another question to be discussed in this talk was raised by M. Velasco and D.
Eisenbud in an email to the speaker:

Question 3. Consider a divisor D = dH −∑
imiEi on X where π : X → PN is

the blow up of a finite set of points p1, . . . , ps, Ei = π−1(pi) and H is the pullback
of a hyperplane. Is there a procedure to determine if D is semi-effective (i.e., is
h0(X, kD) > 0 for some k > 0, or alternatively, is there a t and a form F of degree
td which vanishes at each point pi to order at least tmi)?

This question can be partially addressed using an asymptotic invariant defined by
Waldschmidt [10]:

Definition 4. Given points pi ∈ PN , let α(
∑

i mipi) be the least t such that there
is a form of degree t vanishing at each point pi to order at least mi; i.e., the least
t such that h0(X, tH−∑

i miEi) > 0. Then Waldschmidt’s constant is defined as:

e
(∑

i

mipi

)
= lim

k→∞

α(k
∑

imipi)

k
.

Proposition 5. Given D = dH −∑
i miEi on X, then:

• d < e(
∑

i mipi) implies kd < α(k
∑

imipi) for all k, hence h0(X, kD) = 0
for all k; and

• d > e(
∑

i mipi) implies kd > α(k
∑

i mipi) for k ≫ 0, hence h0(X, kD) >
0 for k ≫ 0.
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By [5], using results of [8], it is possible in principle to compute e(
∑

imipi) ar-
bitrarily accurately, but it is not known how to compute it exactly. Thus when
d 6= e(

∑
i mipi) it is in principle possible to verify the lack of equality compu-

tationally, which then allows the above proposition to be applied to answer the
Velasco-Eisenbud question. However, when d = e(

∑
i mipi) it is not clear how to

verify equality even in principle, nor is it clear how to determine semi-effectivity
even if one knew d = e(

∑
imipi). Moreover, because the computations needed

to estimate e(
∑

imipi) are large and hard to carry to completion, it is of interest
to find easier to compute bounds. Lower bounds are of particular interest. This
talk will discuss conjectural such bounds due to Chudnovsky [2] and explain appli-
cations and discuss additional conjectures related to the problem of determining
which symbolic powers of an ideal are contained in a given ordinary power of the
ideal [1, 4].
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Emptiness of linear systems and the effect of rescaling

Marcin Dumnicki

Let p1, . . . , pr ∈ P2 = P2(K) be distinct points, where K is a field of charac-
teristic 0. Let m1, . . . ,mr be nonnegative integers. By L(d;m1p1, . . . ,mrpr) we
denote the linear system of plane curves of degree d with multiplicity at least mj

at pj , j = 1, . . . , r. The (projective) dimension of L(d;m1p1, . . . ,mrpr) is upper
semicontinuous in the position of imposed base points and reaches minimum for
points in general position. This minimum will be denoted by

dimL(d;m1, . . . ,mr).
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We will also write L(d;m1, . . . ,mr) for a system with imposed base points in
general position, and L(d;m×s1

1 , . . . ,m×sr
r ) for repeated multiplicities. Define

nL(d;m1, . . . ,mr) = L(nd;nm1, . . . , nmr).

Our aim is to prove the following:

Theorem 1. For each n ≥ 0, the system nL(13; 5, 4×9) is empty.

One of the main ingredients is the cutting diagram algorithm from [1]. Briefly,
it is proved that in order to show non-speciality of a given system it suffices to find
an appropriate finite set of points in N2 enjoying some combinatorial properties.
To be precise, we must first define, for any finite D ⊂ N2, the system

L(D;m1, . . . ,mr)

of polynomials with support (supp) in D and with multiplicity at least mj at pj ,
j = 1, . . . , r. Formally, we identify N2 with monomials in K[X,Y ]

N2 ∋ (x, y) 7→ XxY y ∈ K[X,Y ]

and put

L(D;m1, . . . ,mr) = {f ∈ K[X,Y ] : supp(f) ∈ D,multpj
(f) ≥ mj , j = 1, . . . , k}.

The set L(D;m1, . . . ,mr) is a K-linear subspace of K[X,Y ]. The system
L(D;m1, . . . ,mr) is called empty if

dimK L(D;m1, . . . ,mr) = 0.

Observe that, by dehomogenizing and generality assumption, L(d;m1, . . . ,mr)
is empty if and only if L(D;m1, . . . ,mr) is empty for D = {(x, y) : x+ y ≤ d}.

The cutting diagram algorithm is based on the following two theorems:

Theorem 2 (Theorem 14 in [1]). Let D,D′ ⊂ N2 be finite, let m1, . . . ,mr,
m′

1, . . . ,m
′
s be nonnegative integers. If

• L(D;m1, . . . ,mr) is empty,
• L(D′;m′

1, . . . ,m
′
s) is empty,

• there exists an affine function N2 : f ∋ (a, b) 7→ q1a + q2b + q3 ∈ Q,
q1, q2, q3 ∈ Q such that f has strictly negative values on D and nonnegative
values on D′

then L(D ∪D′;m1, . . . ,mr,m
′
1, . . . ,m

′
s) is empty.

Theorem 3 (Proposition 13 in [1]). Let D ⊂ N2, let m be a nonnegative integer.

If #D =
(
m+1
2

)
and D, considered as a set of points in Q2, does not lie on a curve

of degree m − 1, then L(D;m) is empty (for one point p in a general position,
which means here that p does not lie on x-axis neither y-axis).

The proofs are technical but use only simple linear algebra.

To prove emptiness of L(13n; 5n, (4n)×9) for a fixed n, we consider the diagram

D = {(x, y) : x+ y ≤ 13n}.
and cut D with nine lines into ten subsets.
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Since vdimL(13n; 5n, (4n)×9) = −n, it is enough to show that L(D1; 5n) and
L(Dk; 4n) are empty for k = 2, . . . , 10. For each Dk we proceed using Theorem 3.

For the all of subsets D1, . . . , D10 we can use Bezout theorem to show non-
existance of a curve of degree 4n− 1 (5n− 1 for D1) passing through all points of
Di. I fact, there are always 4n lines L1, . . . , L4n such that #(Di ∩ Lj) ≥ j.
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The effect of points fattening on postulation

Cristiano Bocci

(joint work with Luca Chiantini)

Given a set of points Z ⊂ P2, an interesting problem concerns the study of the
geometric properties of the fattening 2Z and their relations with the properties
of Z itself. When Z is general, the postulation of 2Z is well understood, but as
soon as the points come to some special position, our knowledge on the geometry
of 2Z becomes less effective ([2],[3]). A specific point of this analysis, consist of
considering the first interesting step of the Hilbert function, namely the smallest
degree of a curve containing the set of points or its fattening. In more detail, let
Z be a configuration of points in P2 and let I = I(Z) be the homogeneous ideal.
Put I(2) = I(2Z). We say that Z has type (d− t, d) if the generators of I and I(2)

have minimal degrees d− t and d respectively.
In this talk I present the classification Theorems, given in [1], for set of points

Z ⊂ P2 of type (d− t, d) with t = 1 and t = 2.
The classification for t = 1 is relatively simple since, in this case, Z is a set of

collinear points (and d = 2) or Z is a star configuration, i.e. a set of
(
d
2

)
distinct

points given by the pair-wise intersection of d lines. More precisely one has

Theorem 1. Let Z be a set of points in P2. Then Z has type (d − 1, d) if and
only if

(i) Z is the set of
(
d
2

)
distinct points given by the pair-wise intersection of d

lines or
(ii) Z is a set of collinear points and d = 2.

In the classification for t = 2 we can find three different cases. In the event
that the minimal curve passing through 2Z is non-reduced, Z could be a set of
points on a conic, or Z = Z ′ ∪ Y where Z ′ has type (d − 3, d− 2) and Y is a set
of collinear points.

The case in which the minimal curve passing through 2Z is reduced, presents
an interesting large family of sets that are the main topic of the talk.

To describe them, we need to define some specific object. The first object to
define is the tame curve C = C1 + C2 + · · · + Cn, that is a plane curve which
satisfies the following conditions:
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a) all the components Ci of C are rational;
b) the singular points of each Ci are either nodes or ordinary cusps;
c) no singular point of Ci belongs to some other component Cj ;
d) no components Ci, Cj are tangent at two points;
e) for i 6= j the local intersection multiplicity of Ci and Cj at any point is at

most two;
f) no components Ci, Cj of C are tangent anywhere if some point of Ci ∩Cj

belongs to a third component;
g) for i < j < k, the intersection Ci ∩ Cj ∩Ck consists of at most one point;
h) if some point of Ci ∩ Cj belongs to a third component, then no other

components contain points of Ci ∩ Cj ; in particular no point belongs to
four components of C.

The singular locus Z0 of a tame curve, of degree d, is a good candidate to have
type (d− 2, d). To check if a subset Z ⊂ Z0 could have still type (d− 2, d) we need
to define the graph related to the tame curve and its adaption to Z.

Thus, let C = C1 + · · ·+Cn be a reduced, reducible plane curve of degree d. C
defines a (labelled) graph GC as follows: any component Ci of C corresponds to
a vertex v(i) of GC . For any point P where Ci and Cj meet with multiplicity m,
we draw m edges e1(i, j, P ), . . . , em(i, j, P ) joining v(i) and v(j).

If Z is a subset of the singular locus of C, then we obtain the subgraph of GC

adapted to Z as follow: for each point P ∈ Z where two or more components meet,
we erase exactly one edge labelled by P in GC .

In the last part of the talk, we show that the third case of set of points of type
(d− 2, d) can be described in terms of this adapted graph. As a matter of fact we
say that a subset Z of the singular locus of a tame curve of degree d is admissible
if Z contains all singular points of any component Ci and any subgraph of GC

adapted to Z is a forest. Thus, the classification Theorem can be finally stated.

Theorem 2. Let Z be a set of at least four points in P2, not in the list of Theorem
1. Then Z has type (d− 2, d) if and only if either:

i) Z is contained in a conic and d = 4; or
ii) there exists a line L such that the set Z ′ := Z − L is non empty, of type

(d − 3, d − 2) and there are no curves of degree d − 2 singular at Z ′ and
passing through Y := Z∩L, neither there are curves of degree d−3 passing
through Z ′ and Y ; or

iii) Z is contained in the singular locus of a tame curve C of degree d, and Z
is admissible for C.
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Linear Systems on Edge-Weighted Graphs

Rick Miranda

(joint work with Rodney James)

Let G be a connected graph with vertex set V and edge set E. We assume that
there are no loops or multiple edges. We also assume that there are non-negative
weights wij on the edge joining vertices i and j; these weights are assumed to be
real numbers. The degree of a vertex is the sum of the weights of the edges on it.

Define the genus g of G to be

g = 1− |V |+
∑

i<j

wij .

Define a divisor on G to be an assignment of a real number to every vertex. The
space of divisors is an R-vector space. The degree of a divisor is the sum of the
coordinates. For a real number x, we write D > x if every coordinate of D is
bigger than x.

For each vertex i, consider the divisor Hi defined by Hi(i) = − deg(i), and
Hi(j) = wij for j 6= i. Notice that each Hi has degree zero.

We say that a divisor P is principal if it is a Z-linear combination of the Hi’s.
We define two divisors to be linearly equivalent if their difference is a principal

divisor; we write D1 ≡ D2 in that case.
The canonical divisor K is defined by K(i) = deg(i)− 2 The canonical divisor

has degree 2g − 2.
We define the linear system of D, denoted by |D|, to be

|D| = {E | E > −1, E ≡ D}.
Define

ℓ(D) = min{e | there exists E ≥ 0, deg(E) = e, |D − E| = ∅}
Theorem: ℓ(D)− ℓ(K −D) = deg(D) + 1− g.

This Riemann-Roch theorem generalizes a similar statement for non-edge-weighted
graphs (allowing multiple edges) proved by Baker and Norine in [1].

The proof relies on three statements. Let A(G) be the set of divisors with an
empty linear system.
(1). There is a discrete set B of divisors in A(G) such that

D ∈ A(G) if and only if there exists N ∈ B such that D ≤ N.

(2) The set B is symmetric with respect to K:

N ∈ B if and only if K −N ∈ B.

(3) Every N in B has degree g − 1.
For a divisor D, define D+ to be the least non-negative divisor satisfying D+ ≥

D. (This is obtained from D by setting all negative coordinates equal to zero.)
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Statement (1) then easily implies that

ℓ(D) = min
N∈B

{deg(D −N)+}.

Statement (2) permits a change of coordinates in the above, and implies that

ℓ(K −D) = min
M∈B

{deg(M −D) + deg(D −M)+}.

Statement (3) allows us to take the first term out of the above min, and gives
the result.

The proofs of the three statements rely on a normal form for divisors, up to
linear equivalence. This normal form is obtained by fixing a vertex (call it 0). A
divisor D is in normal form if

(∗) D(i) > −1 for every i > 0,

and in addition, for every positive linear combination P =
∑

i>0 ciHi with non-
negative integer coefficients ci, the divisor D + P violates (*).

One proves that every linear equivalence class contains a unique divisor in nor-
mal form, and a relatively straightforward analysis of the inequalities that are
implied by that, gives the set B as the maximal divisors in normal form, that have
an empty linear system.
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Hilbert Functions and Initial Degrees of Fat Points

Susan Marie Cooper

The Hilbert function of the homogeneous ideal of a scheme has played a central
role in attacking many intriguing problems. Although Hilbert functions of ideals
defining reduced 0-dimensional schemes are well understood, much less is known
about symbolic powers of such ideals which define non-reduced schemes called
fat point schemes (for some partial results see [1, 3, 4, 5, 6]). In [1] we give
combinatorially defined upper and lower bounds for the Hilbert function of a fat
point scheme A in projective n-space using nothing more than the multiplicities of
the points and information about which subsets of the points are collinear. When
n = 2 we obtain the bounds by repeatedly trimming down the fat point scheme via
taking residuals with respect to lines. In this case we give the bounds explicitly
and show that they are easy to calculate. In addition, when n = 2, we give an
easy to check sufficient condition for the upper and lower bounds to be equal.

Related to the Hilbert function of a fat point scheme A is the initial degree. The
initial degree of A, denoted α(A), is defined to be the least degree t for which there
is a non-zero homogeneous polynomial in the ideal of A. In projective 2-space,
the upper and lower bounds on the Hilbert function of A from [1] lead to natural
upper and lower bounds on the initial degree of A. Recently, unpublished work
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of Harbourne and Huneke suggests a conjectural relationship between the initial
degrees of fat point schemes and the corresponding support set. More precisely:

Conjecture 1. Let X be a finite set of points in projective n-space, r be any
positive integer and Y be the fat point scheme supported on X with each point
having multiplicity rn− n+ 1. Then α(Y) ≥ rα(X) + (r − 1)(n− 1).

Work of Chudnovsky shows that for a finite set B in P2 there is a subset A ⊆ B

such that α(A) = α(B) = reg(I(A)). As a consequence the Hilbert function of A
must be of the form achieved by special point sets called line count configurations
of type (t, t − 1, . . . , 3, 2, 1). In general, we say that X = X1 + · · · + Xt ⊂ P2 is a
line count configuration of type c = (c1, . . . , ct) if each Xi consists of ci points on a
line Li where the lines L1, . . . ,Lt are distinct and no point of X occurs where two
of the lines Li meet. After re-indexing, we assume that c1 ≥ c2 ≥ · · · ≥ ct.

In joint work of S. Cooper and S. G. Hartke [2], we have

Theorem 2. Conjecture 1 is true for r ≥ 75 when X is a line count configuration
of type (t, t− 1, . . . , 3, 2, 1).

Restricting to projective 2-space, the first part of this talk will focus on the
bounds arising from the work of [1]. We then apply the bounds to investigate the
initial degree relationship from Conjecture 1.
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Combinatorial bounds for Hilbert functions and graded Betti numbers
of fat point schemes in the plane

Zach Teitler

(joint work with Susan Cooper, Brian Harbourne)

Let A = m1p1 + · · · + mrpr be a fat point scheme in P2, so that the ideal
IA ⊂ R = k[P2] is given by IA = I(p1)

m1 ∩· · ·∩ I(pr)
mr . We give upper and lower

bounds for the Hilbert function hA, along with a condition for them to coincide,
generalizing a result of Geramita–Migliore–Sabourin [1] for double point schemes
(each mi = 2) with support points in certain configurations. In the case they
do coincide, thus computing hA exactly, we give upper and lower bounds for the
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graded Betti numbers of the ideal IA, along with a condition for these bounds to
coincide.

In many naturally arising geometric situations, one does not know the support
points pi explicitly. Instead, one has some information about curves on which
some of the pi lie. We focus on the information of which sets of pi are collinear.
That is, we are given some collinear subsets S1, . . . , Sk ⊆ {p1, . . . , pr} such that
each Si is the intersection of A with some line Li. There may be other collinear
subsets; our results use only the given S1, . . . , Sk.

Given this data, we describe a reduction procedure which, at each step, reduces
the fat point scheme A by reducing the multiplicities at all the support points in
a collinear subset Si without changing the support points, until all multiplicities
have been reduced to zero. This corresponds to residuating A with respect to the
line Li. At each step we record the total of the multiplicities which are reduced
in that step; the resulting sequence, which we call a reduction vector for A, is the
output of the reduction procedure. At each step of the reduction procedure there
may be a choice of collinear subsets along which to reduce, and in general different
choices may yield a different reduction vector and different bounds for the Hilbert
function hA.

For each vector d = (d1, . . . , dn) ∈ Zn
≥0 we define functions fd, Fd : Z≥0 → Z≥0.

We have the following:

Theorem 1. Let A be a fat point scheme and let d be a reduction vector for A.

(1) We have fd(t) ≤ hA(t) ≤ Fd(t) for all t ≥ 0.
(2) If d has non-zero, non-increasing entries then fd = Fd if and only d

satisfies the following equivalent conditions:
• For 1 ≤ i < j ≤ n, di − dj ≥ j − i− 1.
• Between any two 0 entries in the vector ∆d of successive differences,
there is an entry which is less than or equal to −2.

• There is no subsequence in d of the form (a, a, a) or of the form
(ai, . . . , ai+j+1) for j > 1 where ai = ai+1, ai+j = ai+j+1, and
ai+1, . . . , ai+j are consecutive integers.

Finite sequences d of non-zero, non-increasing integers meeting the condition
in the second part of the theorem are called GMS or generalized monotone se-
quences. Note that the condition di − dj ≥ 0 is equivalent to the sequence being
non-increasing while the condition di − dj ≥ j − i is equivalent to the sequence
being strictly decreasing, so every strictly decreasing sequence is GMS. The GMS
condition was used in [1] to characterize when the Hilbert functions of certain
double point schemes are uniquely determined by combinatorial data.

The bounds fd ≤ hA ≤ Fd arise from a quite general principle by consider-
ing, for each step in the reduction procedure, the natural short exact sequence of
sheaves on P2 coming from residuation with respect to the line Li. Rank consid-
erations in the long exact sequence of cohomology bound the Hilbert function at
each step in terms of the next step.
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A similar strategy gives bounds for Hilbert functions in PN in terms of both a
reduction vector, and the restrictions of the fat point scheme to various hyperplanes
H ∼= PN−1. Ultimately bounds are obtained by induction on the dimension. While
one can readily work out specific examples, the combinatorial analysis required to
give a general statement is quite difficult.

Similarly, using curves in P2 of higher degree in place of lines, bounds can often
be worked out in specific examples, usually giving tighter bounds than would result
from using lines alone. However because the restriction of a set of points to a curve
may be a special divisor, in order to give good bounds in a general statement one
must either keep track of speciality at each step (along with the reduction vector
and the sequence of the degree and genus of the curve used at each step), or one
must use only rational curves, on which speciality never arises. In either case it is
again quite difficult to give a general statement.

Returning to the case of P2 and reduction along lines, we consider the graded
Betti numbers, which are a more subtle invariant than the Hilbert function. For
each t, the number of generators of IA of degree t (in a minimal generating set)
is denoted νt. (From hA and νt one can recover the number of syzygies in each
degree.) We obtain the following.

Theorem 2. Let A be a fat point scheme in P2 with GMS reduction vector d.

(1) There are explicit lower and upper bounds for the graded Betti numbers νt
of the ideal IA, determined by d.

(2) These bounds coincide if and only if d has one of the following forms:
• The entries of d are strictly decreasing.
• d = (m,m,m− 1, . . . , 2, 1) for some m ≥ 1.
• d = (d1, . . . , dk,m,m,m− 1, . . . , 2, 1), where d1 > · · · > dk ≥ m+ 2.

As examples one can obtain a GMS, or even strictly decreasing, reduction vector
in many combinatorially interesting examples, including certain fat point schemes
supported at general points on each of a set of lines, and certain fat point schemes
supported at the pairwise intersections of a set of lines.
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Asymptotic Syzygies of Higher Dimensional Varieties

Lawrence Ein

(joint work with Robert Lazarsfeld)

In this note, we give a very preliminary report on some of my recent joint work
with Rob Lazarsfeld on the asymptotic syzygies of higher dimensional varieties. In
the 80’s Green and Lazarsfeld began a systematic study of the syzygies of smooth
projective curves. One of the main driving problems in this area is the important
conjecture of Green which predicts that the behavior of the syzygies of a canonical
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curve is determined by the Clifford index of the curve. See [5] and [6] for more
details. In an important recent breakthrough, Voisin ([9] and [10]) proved that
Green’s conjecture is true for a generic curve of genus g. Combined with the result
of Texidor Bigas [8], they show that Green’s conjecture also holds for a general
p−gonal curve.

It is natural to ask whether we can generalize these results and questions to
higher dimensional varieties. In this report, we’ll discuss my joint work with
R. Lazarsfeld where we begin studying asymptotic behavior of the syzygies of
higher dimensional varieties. It is well known that the canonical ring of a minimal
projective variety of general type may require very high degree generators. This
leads us to study the syzygies of X when it is embedded by a sufficiently very
ample line bundle instead.

First we’ll recall some basic notations. Let S = C[x0, x1, · · · , xr] be the poly-
nomial ring of r + 1 variables. Suppose that G is a finitely generated graded
S-module. We consider a minimal free resolution of G.

0 −→ Es −→ . . . −→ E1 −→ E0 −→ G −→ 0

Let C = S/m, where m is the homogenous maximal ideal of S. By Nakayama’s
lemma, one observes that

Torp(G,C) = Ep ⊗ C.

Observe that Torp(G,C) is a graded vector space. Using the notations of Green,
we set the Koszul group Kp,q(G) to be the homogenous degree p + q piece of
Torp(G,C). Let X be a closed subvariety of dimension n in Pr. In the following
we assume that the restriction map gives an isomorphism between H0(OPr(1))
and H0(OX(1)). Let F be a coherent sheaf on X and F be its associated graded
S−module. We will denote by

Kp,q(F) for Kp,q(F ).

We say that the pair (X,OX(1)) satisfies the propertyN0, if |OX(1)| gives a projec-
tively normal embedding of X in Pr. Note that this is equivalent to K0,q(OX) = 0
for q > 0. For p > 0, inductively we say that (X,OX(1)) satisfies the property
Np, if it satisfies Np−1 and Kp,q(OX) = 0 for q ≥ 2.

Let X be a smooth projective variety of dimension n and OX(1) be a very
ample line bundle on X and B be another line bundle on X . Choose d >> 0 with
respect to B. We consider the coordinate ring

R = ⊕∞
m=0H

0(OX(md)).

We consider the S-module

NB,d = ⊕∞
m=0H

0(OX(md)⊗B).

We would like to investigate the asymptotic behavior of the syzygy groups

Kp,q((X,OX(d));B) = Torp(C, NB.d)p+q

as d → ∞. Set L = OX(d) and r + 1 = h0(OX(d)). We would like to be able to
predict the rough shapes of the minimal resolutions OX and NB,d in Pr in some
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asymptotic sense. Consider the rank r vector bundle ML, which is defined as the
kernel of the natural surjective map from H0(L)⊗OX → L. It is well know that
the Koszul groups can be computed by the cohomologies of the vector bundles of
the form

∧p ML ⊗B ⊗ L⊗q.
First we describe the situation, when X is a smooth projective curve of genus

g and L is line bundle on X of degree d, where d is sufficiently large compared
to 2g. Then the complete linear system |L| embeds X into a non-degenerate in
Pr, where r = d− g. Then the line bundle L is 2−regular with respect to OPr(1).
Then the Betti table of OC has only three rows and the length of the minimal
resolution is r − 1. It follows from a theorem of Green that Kp,2((X,L);OC) 6= 0
if and only if d− (2g + 1) < p ≤ r − 1 = d− g − 1 [5]. It is conjectured by Green
and Lazarsfeld that Kp,1((X,L);OX) 6= 0 if and only if 1 ≤ p ≤ r − 1 − δ, where
δ is the gonality of X . In particular, one can read off the gonality of X from the
shape of the minimal resolution of OX in Pr. The conjecture is known for generic
δ-gonal curve, when gonality is relatively large [1] and [2]

Our knowledge of syzygies of higher dimensional varieties is fairly minimal.
Only a few years ago Ottaviani and Paoletti obtained the following result for P2.

Theorem 1. [7] (P2,OP2(d)) for d ≥ 3 satisfies N3d−3 but not N3d−2.

See also [4] and [3] for different proofs. The following is a version of the non-
vanishing theorem that we obtain.

Theorem 2. (Ein and Lazarsfeld). Let X be a smooth projective variety of di-
mension n and OX(1) is a very ample line bundle on X. Consider L = OX(d),
where d is sufficiently large. Then
(a) Kp,q((X,L);OX) = 0 if p > n+ 1.
(b) For each q, where 2 ≤ q ≤ n, there are two constants bq = O(dq−1) and
cq = O(dn), such that Kp,q((X,L);OX) 6= 0 for every p between bqand cq.

If X is a projective space, or more generally a Fano manifold, we have obtained
more precise result. For projective space, we even have a very precise conjecture.
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Seshadri numbers along diagonals and linear syzygies

Jun-Muk Hwang

(joint work with Wing-Keung To)

For a given projective manifold X and an ample line bundle L, it is not easy to
check Green’s linear syzygy condition (Np) for the line bundle L. In a recent joint
work with Wing-Keung To, we obtained a numerical criterion for (Np)-property of
the adjoint bundle KX ⊗ L in terms of Seshadri numbers along diagonals. Recall
that for a given submanifold Z ⊂ Y of a projective manifold Y and a line bundle
M on Y , the Seshadri number of M along Z is the real number

ε(M ;Z) := sup{ε ∈ R, π∗M − εE is nef and big.}
where π : BlZ(Y ) → Y is the blow-up of Y along Z and E is the exceptional
divisor. Our result says

Theorem 1. Let X be a projective manifold of dimension n. Let L be an ample
line bundle on X with KX ⊗ L nef. Let D ⊂ X × X be the diagonal and pi :
X × X → X be the projection for i = 1, 2. If ε(p∗1L ⊗ p∗2L;D) ≥ n(p + 1), then
KX ⊗ L satisfies (Np), p ≥ 0.

When p = 0, this is essentially proved by Bertram-Ein-Lazarsfeld in [1]. Our
proof generalizes their approach to higher p > 0 by using the result of Inamdar [2]
on linear syzygies and the work of Li [4] on blow-ups along union of subvarieties,
following the suggestion in [3]. We can apply Theorem 1 to complex hyperbolic
manifolds as follows. Let X be a compact quotient of the unit ball Bn. By
Kodaira’s embedding theorem, it is well-known that X is a projective manifold
and KX is ample. However, very little is known about the defining equations of
X under the embedding given by powers of KX . In our work, we prove a lower
bound for ε(p∗1L⊗ p∗2L;D) in terms of the injectivity radius of X with respect to
the hyperbolic metric on Bn. By Theorem 1, this implies that for a hyperbolic
manifold with a large injective radius, the line bundle K⊗m

X ,m ≥ 2, satisfies (Np)
for an explicit p depending on m and the injectivity radius.
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Linear syzygies and linear series on a blowup of P2 at the singular
points of a line arrangement

Hal Schenck

For a hyperplane arrangement

A =

d⋃

i=1

⊆ Cn

with complement M = Cn \ A, conjectures of Suciu [7] relate π1(M) to the first
resonance variety R1(A) of H∗(M,Z). Work of Orlik-Solomon [5] shows that
H∗(M,Z) is a quotient of an exterior algebra on generators e1, . . . , ed. For a one
form λ =

∑
aiei it is possible to define a chain complex H(A, λ), with ith term

Hi(M,Z), and differential ·λ. The first resonance variety

R1(A) = {(a1 : · · · : ad) ∈ P(H1(M,Z)) for which H1(A, λ) 6= 0.

The geometry of R1(A) is analyzed in detail in work of Falk, Libgober, and Yuzvin-
sky [2], [4], [8]. In [6], we describe a connection between the first resonance variety
and the Orlik-Terao algebra C(A) of the arrangement; C(A) is a commutative
analog of H∗(M,Z). In particular, we show that non-local components of R1(A)
give rise to determinantal syzygies of C(A). As a result, Proj(C(A)) lies on a
scroll, placing geometric constraints on R1(A). The key observation is that C(A)
is the homogeneous coordinate ring associated to a nef but not ample divisor DA
on a blowup of P2 at the singular points of A. Non-local components of R1(A)
actually yield a decomposition DA = A + B; results of Harbourne [3] allow us to
show that h0(A) = 2, and then work of Eisenbud [1] gives the the connection to
determinantal varieties. The talk closed with several questions:

(1) Find formulas relating TorRi (C(A),C)j to combinatorics.
(2) For an arrangement in Pn, n ≥ 3, is

⊕
t≥0 H

0(DA(t)) ≃ C(A)?

(3) Understand the intersection theory on a blowup of Pn at the codimension
two singular locus of a hyperplane arrangement. The Hilbert series of C(A)
is known, so Riemann-Roch provides a link to the previous question.
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Linear systems of plane curves with A-D-E singularities

Joaquim Roé

A fair amount of work has been devoted in recent years to the study of linear sys-
tems of plane curves with imposed multiple points in general position, motivated
mainly by the Nagata and the Segre-Harbourne-Gimigliano-Hirschowitz conjec-
tures (see [7, 6, 3] and other talks in this workshop). Linear systems of plane
curves with non-ordinary singularities in general position, in contrast, have been
much less studied, even though there is a strong motivation for them: G. M. Greuel,
C. Lossen and E. Shustin in [5] have shown that such systems serve as a means to
construct irreducible plane curves with given singularity types, and that one often
obtains curves with the lowest known degree.

The singularity theory of plane curve germs classifies them by equisingularity,
which can be roughly defined as putting two germs in the same class when their
embedded resolutions are combinatorially equal (this can be made precise with
the notions of multiplicity at an infinitely near point, and proximity between in-
finitely near points, see [2]). This is a discrete classification, rather coarse, which
happens to coincide with the topological classification of germs of curve in a com-
plex surface. The theory goes further with the analytic classification, much finer,
which provides a whole moduli space with often complicated structure for each
equisingularity type. There are a few equisingularity types for which no analytic
moduli exists (i.e., every curve in one of these equisingularity types is analytically
isomorphic to a fixed one, which can be used as a “normal form”). These are
called simple singularities, and are known, after Arnold, by the names Aµ (normal
form: y2 − xµ+1 = 0, µ ≥ 1), Dµ (normal form: xy2 − xµ−1 = 0, µ ≥ 4), E6 (nor-
mal form: y3 − x4 = 0), E7 (normal form: y3 − yx3 = 0), and E8 (normal form:
y3 − x5 = 0). The subindex µ given for these singularities stands for the Milnor
number, a topological invariant easily computed for any given equisingularity type.

It is generally not known for a given set of singularity types (either by the
equisingularity or by the analytic classification) what is the minimal degree of
a plane projective curve with those singularities. Restricting to ordinary nodes
(A1 in Arnold’s notation), the classical result by Severi of course tells that the

necessary and sufficient condition is that
(
d−1
2

)
is at least equal to the number of

nodes, where d is the degree. But already for nodes and cusps such a complete
answer is not known (although a number of restrictions and constructions are
available). The most general sufficient condition is the following theorem, due to
E. Shustin [10].

Theorem 1. Let S1, . . . ,Sr be singularity types (topological or analytic), and de-
note µi the Milnor number of the ith type. If d2 − 2d+3 ≥ 9

∑
µi then there exist

irreducible reduced plane curves C of degree d with SingC ∼ S1 ∪ · · · ∪ Sr.
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Our purpose is to get sharper bounds by restricting to the class of singularities
of types A, D and E. The improvement consists in getting rid of the factor 9 in
the formula. Theorem 1 was obtained by proving that certain linear systems of
plane curves have the expected dimension, and that their general member has the
prescribed singularity type (via a Bertini-type theorem). For equisingularity types,
the relevant linear systems can be described as push downs of some complete linear
systems on particular blowups of the plane. Thus, if π : X → P2 is a composition of
point blowups whose centers p11, . . . , p1k1 , . . . , prkr

satisfy the proximities dictated
by the types S1, . . . ,Sr, then general members of π∗|dπ∗L−∑

(multpij
Si)Eij | are

expected to have the required singularities for large d (where as usual L denotes
a line and Eij denotes the exceptional divisor above pij). Denote

C(S1, . . . ,Sr) =
∑(

multpij
Si + 1

2

)

the “expected” number of conditions imposed by the singularities on the linear
system. It is natural in this context to propose the following generalization of the
Segre-Harbourne-Gimigliano-Hirschowitz conjecture, due to Greuel, Lossen and
Shustin:

Conjecture 2. Let S1, . . . ,Sr be equisingular singularity types, and let m1, m2,
m3 be the three largest associated multiplicities. For a composition of point
blowups π : X → P2 which is general among those whose centers p11, . . . , p1k1 ,
. . . , prkr

satisfy the proximities dictated by the given types, and for every d ≥
m1 +m2 +m3,

dim |dπ∗L−
∑

(multpij
Si)Eij | = max

{
−1,

(
d+ 2

2

)
− C(S1, . . . ,Sr)− 1

}
.

It is not hard to show that if S1, . . . ,Sr satisfy the conjecture, then a sufficient
condition for existence as in Shustin’s theorem follows, where the lower bound on
d2 is only of the same order as the sum of the Milnor numbers (i.e., one gets rid
of the factor 9). We are able to prove the conjecture for singularities of type Aµ,
Dµ or Eµ (with an extra assumption on the degree that is not restrictive for the
application to the existence problem):

Theorem 3. Let S1, . . . ,Sr be equisingular singularity types, where each Si is of
type Aµ, Dµ or Eµ. For a composition of point blowups π : X → P2 which is
general among those whose centers p11, . . . , p1k1 , . . . , prkr

satisfy the proximities
dictated by the given types, and for every d ≥ 21,

dim |dπ∗L−
∑

(multpij
Si)Eij | = max

{
−1,

(
d+ 2

2

)
− C(S1, . . . ,Sr)− 1

}
.

Ingredients of the proof. We exploit the genericity of the points by a specialization
argument similar to that of [8] (where the case of singularities Aµ was treated)
which leads to a linear system of curves containing a zero-dimensional scheme
supported at a single point. This scheme is a generic embedding of a monomial
scheme.
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In [9], the “differential Horace method” of J. Alexander-A. Hirschowitz and

L. Évain [1, 4] was developed in a way suitable to the study of generic embeddings
of a monomial scheme as obtained here. Successive applications of the method
reduce the problem to the computation of the dimension of a new linear system
|dπ∗L − ∑

(multpj
S)Ej | with a single singularity S, for which only one point

appears with multiplicity > 1. This can be done by hand. �

We expect to be able to lower the hypothesis d ≥ 21 to d ≥ 9 by treating the
(finitely many) lower degree cases with ad-hoc methods, and thus effectively prove
the conjecture by Greuel-Lossen-Shustin for A−D − E singularities.
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larités hyperquartiques de P5, J. Alg. Geom. 1 (1992), 411–426.

[2] E. Casas-Alvero, Singularities of plane curves, London Math. Soc. Lecture Notes Series,
vol. 276, Cambridge University Press, 2000.

[3] C. Ciliberto and R. Miranda, The Segre and Harbourne-Hirschowitz conjectures, Applica-
tions of algebraic geometry to coding theory, physics and computation (Eilat, 2001), NATO
Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 37–51.

[4] L. Évain, Computing limit linear series with infinitesimal methods, Ann. Inst. Fourier
(Grenoble) 57 (2007), no. 6, 1947–1974.

[5] G.M. Greuel, C. Lossen, and E. Shustin, Plane curves of minimal degree with prescribed
singularities, Invent. Math. 133 (1998), 539–580.

[6] B. Harbourne, The geometry of rational surfaces and the Hilbert functions of points in the
plane, Can. Math. Soc. Conf. Proc. 6 (1986), 95–111.

[7] M. Nagata, On the fourteenth problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.
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Arithmetic properties of volumes of divisors

Alex Küronya

(joint work with Victor Lozovanu, Catriona Maclean)

The volume of a divisor on an irreducible projective variety describes the asymp-
totic rate of growth of the number of global sections as we take higher and higher
multiples. Our purpose here is to look at volumes of divisors from the point of
view of arithmetic. We work over the complex number field.

Along with stable base loci, the volume is one of the first asymptotic invariants
of line bundles that have been studied. It has first appeared in some form in
[2] (and is elegantly explained in [7]), where Cutkosky used the irrationality of a
volume of a divisor to show the non-existence of birational Zariski decompositions
with rational coefficients. For a complete account, the reader is invited to look at
[7] and the recent paper [8].
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Since it is invariant with respect to numerical equivalence of divisors, the volume
can be considered as a function on the Néron–Severi space. There it is homoge-
neous, log-concave, and extends in a continuous fashion to divisors classes with
real coefficients. The volume function can be often described in terms of addi-
tional structures on the underlying varieties. It can be explcitly determined on
toric varieties [4], on surfaces [1], and on abelian varieties and homogeneous spaces
for example. In every case, the volume reveals a fair amount of the underlying
geometry.

Our main focus here is the multiplicative submonoid of the non-negative real
numbers consisting of volumes of integral divisors. As a starting point, we take the
fact that the volume of a divisor with finitely generated section ring is rational.
Looking at the low-dimensional situation, an immediate consequence of Zariski
decomposition on surfaces gives that every divisor there — even the ones with
non-finitely generated section ring — has rational volume. Conversely, a simple
application of Cutkosky’s construction from [2] provides us with examples that
every non-negative rational number can be displayed as the volume of an integral
divisor.

Moving on to higher dimensions, we have seen above that the volume of an
integral divisor need not be rational, although the example Cutkosky obtains is
algebraic, leaving a considerable gap, and the question whether an arbitrary non-
negative real number can be realized as the volume of a line bundle. This is the
issue that we intend to address from two somewhat complimentary directions.

Theorem 1. Let V denote the set of non-negative real numbers that occur as the
volume of a line bundle. Then

(1) V is countable;
(2) V contains transcendental elements.

Let us briefly give an idea why the above results appearing originally in [6] hold.
The transcendency of volumes of integral divisors is an application of Cutkosky’s
principle to look for examples among projectivized vector bundles over varieties
whose behaviour we understand quite well. In our particular case we consider
O(1) of the projectivization of a rank three vector bundle on the self-product of
a general elliptic curve. We exploit the non-linear shape of the nef cone on an
abelian surface to arrive at the required transcendency of the volume of O(1). As
a by-product of our reasoning one can also see that divisors with transcendental
volume show up quite naturally and often in a non-finitely generated setting.

As far as the cardinality of V is concerned, it is a direct consequence of a
much stronger countability result: building on the existence of multigraded Hilbert
schemes as proved in [3], we establish the fact that there exist altoghether count-
ably many volume functions and ample/nef/big/pseudo-effective cones for all ir-
reducible varieties in all dimensions.

Getting back to the issue of transcendental volumes, it is an interesting fact
that the irregular values obtained so far by Cutkosky’s construction have all been
produced by evaluating integrals of polynomials over algebraic domains. In fact,
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all volumes computed to date can be put in such a form quite easily. Such numbers
are called periods, and are studied extensively in various branches of mathematics,
including number theory, modular forms, and partial differential equations. An
enjoyable account of periods can be found in [5].

To some degree the phenomenon that all known volumes are periods is explained
and accounted for by the existence of Okounkov bodies. Expanding earlier ideas
of Okounkov [9, 10], Lazarsfeld and Mustaţă associate a convex body to any di-
visor with asymptotically sufficiently many sections. The actual Okounkov body
depends on the choice of an appropiate complete flag of subvarieties, however, it is
not difficult to see that the volume of a divisor D on an n-dimensional irreducible
projective variety X equals up to a constant of n! the n-dimensional Lebesgue
measure of the corresponding Okounkov body. Consequently, whenever the Ok-
ounkov body of a divisor with respect to a judiciously chosen flag is an algebraic
domain, the volume of D will be a period, which indeed happens in all known
cases.

This gives rise to the following question: is it true that the volume of a line
bundle on a smooth projective variety is always a period?
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[1] Thomas Bauer, Alex Küronya, Tomasz Szemberg, Zariski chambers, volumes, and stable
base loci. J. Reine Angew. Math. 576 (2004), 209–233.

[2] Steven D. Cutkosky, Zariski decomposition of divisors on algebraic varieties. Duke Math.
J. 53 (1986), no. 1, 149–156.

[3] Mark Haiman, Bernd Sturmfels, Multigraded Hilbert schemes. J. Algebraic Geom. 13 (2004),
no. 4, 725–769.
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Rank two vector bundles on Fano manifolds

Roberto Muñoz

(joint work with Gianluca Occhetta, Luis E. Solá-Conde)

In this talk we present some results on the classification of rank two vector bundles
on Fano manifolds. In fact, we will introduce a numerical invariant t ∈ R, called
the Fano threshold, which seems to be of interest for our purposes. We relate
this invariant, via a family of examples, with the so called Seshadri constants of
points in the plane. A bunch of results on the Fano threshold and tools for the
classification are presented.

Setup. We will work with a pair (X,E) where X is a complex projective Fano
manifold of index iX and E is a rank two vector bundle on X . On X we also
assume:

(i) Pic(X) ≃ ZH , being H ample;
(ii) H4(X,Z) ≃ ZH2;
(iii) there exists an unsplit covering family M of rational curves on X ;
(iv) Hℓ = 1 for ℓ ∈ M.

We will normalize E by twisting with proper powers of H and we will use the
following notation for its Chern classes and discriminant ∆:

c1(E) = c1H (c1 = 0,−1), c2(E) = c2H
2 (c2 ∈ Z), ∆ = c21 − 4c2.

Our general goal on this topic would be to give a complete classification of
rank two vector bundles on X . Inspired by the Harshorne conjecture on complete
intersections (X = Pn and n ≥ 5 implies E splits, i.e., is the direct sum of line
bundles) our more concrete goal is to produce splitting criteria, that is, conditions
on (X,E) implying that E splits. We look for these conditions with the help of
the two following ingredients:

• Ingredient 1. Rational curves on X .
• Ingredient 2. Nef cone of P(E).

1. The uniruledness of X assures the existence of rational curves on X . Hence
we can restrict E to a rational curve ℓ ⊂ X to get a pair of integers aℓ ≤ bℓ
called the splitting type of E with respect to ℓ. If this splitting type does not
depend on ℓ ∈ M then E is called uniform with respect to M and some results
of classification of uniform vector bundles are known (on linear spaces, quadrics,
Grassmannians and other Fano manifolds) providing that, with the exception of
some concrete examples, uniformity of E implies that E splits.

2. The Picard number of the projective bundle π : P(E) → X is two and we
would like to describe the nef cone of P(E), being known one of the two extremal
rays, namely π∗H . If P(E) is Fano (more information on the cone is known) we
will say that E is Fano. For linear spaces and quadrics is known that, with the
exception of some concrete examples, E being Fano implies E splits.

Trying to classify Fano vector bundles on Grassmannians of lines we realized
that the restriction of a Fano vector bundle to a subvariety is possibly non-Fano.
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Anyways we can twist the anticanonical bundle by a power of π∗H in order to get
ampleness. This suggests us the following definition.

Definition. The Fano threshold of (X,E) is the infimum t such that the divisor
−KP(E) + tπ∗H is ample.

It is inmediate to check that being Fano is equivalent to t < 0. It is natural to
put some questions:

Q1. When t ∈ Q?
Q2. If t ∈ Q, when −KP(E) + tπ∗H is semiample?
Q3. When does exist a rational curve ℓ such that (−KP(E) + tπ∗H)ℓ = 0?

Example ([3]). Blow up the projective plane in d points σ : B → P2 and construct
a vector bundle E′ = σ∗E on B which fits in the following exact sequence:

0 → O(C) → E′ → O(−C) → 0,

where C is the exceptional divisor. The Fano threshold of this vector bundle is
−3+ 2ε, being ε the Seshadri constant of the set of blown up points. This relates
the problems of the rationality of t and ε. In particular when d = 9 and the
points are in general position, t = 3 and there are no rational curves for which
(−KP(E) + tπ∗H)ℓ = 0, showing that the rational curve searched in Q3 does not
exist in these example.

This is our toolbox to deal with the problem of the study of the Fano threshold:

• Tool 1. Splitting types and positivity.
• Tool 2. Vanishing results and Castelnuovo-Mumford regularity.
• Tool 3. Minimal sections.

1. We just use that E(−c1+iX+t
2 ) is nef to provide two different type of results:

some control on the splitting types (giving a lower bound for t, reached only if
E is trivial); and, via Schur polynomials or intersections with effective cycles,
inequalities or results of the following type:

(1.1) tan
(

π
n+1

)
<

√
4− c21/(iX + t) implies ∆ ≥ 0,

(1.2) (iX + t)2 ≥ |∆|.
2. It is possible to show that to provide effective divisors is of interest to refine
1. We use the vanishing results of Le Potier and Griffiths to get E(α) globally
generated for α big enough (under the extra hypothesis on the linear system |H | to
be base-point free) via Castelnuovo-Mumford regularity. For ∆ > 0 we get results
of the type:

(2.1) t ≤ {
√
∆+ 3iX − 2n− 6,

√
∆+iX
3 − 8} implies E splits.

3. The family of lines through a point x ∈ X is stratified by their different splitting
types. Using the Euler relative sequence it was known ([1] and [2]) that if there
is a compact curve parametrizing minimal sections of the same type through a
point p on π−1(x) then E splits. This says that there is no room for t to bee too
negative when E is not split:
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(3.1) E Fano implies that either t = −2 and there is another structure of P1-
bundle for P(E) or t ≥ −1.

Finally we can apply these results to get splitting results for Fano vector bundles
on low index Fano manifolds.
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Seshadri constants for toric vector bundles on toric varieties

Kelly Jabbusch

Fix an algebraically closed field k. Let X be a smooth, complete d-dimensional
toric variety determined by the fan Σ in N ≃ Zd. Let M be the dual lattice
and T := Spec(k[M ]) be the torus acting on X . Let ρ1, . . . , ρn ∈ Σ(1) be the
1-dimensional cones of Σ. Each ρi corresponds to a prime T -invariant divisor Di.
For each maximal cone σ = 〈ρ1, . . . , ρd〉, we get a fixed point x(σ) that lies in the
intersection of the invariant divisors D1, . . . , Dd. For any τ ∈ Σ(d − 1), we get a
T -invariant curve C = V (τ), and each of these is isomorphic to P1.

A toric vector bundle E on X is a locally free sheaf of finite rank on X with
a T -action on V(E) = Spec(Sym(E)) such that the projection ϕ : V(E) → X is
equivariant and T acts linearly on the fibers. Note that P(E) has a T -action such
that the projection π : P(E) → X is equivariant, however neither V(E) nor P(E) is
a toric variety in general. Similarly one can define Q-twisted toric vector bundles.

Hering, Mustaţǎ and Payne showed that a toric vector bundle is ample, respec-
tively nef, if and only if its restriction to each invariant curve is ample, respectively
nef [3]. Similarly, the Seshadri constants of toric vector bundles can computed by
restricting to invariant curves. More precisely, let E be a nef toric vector bundle

and let x ∈ X be a point. Let p : X̃ → X be the blow-up at x, with exceptional
divisor F . The Seshadri constant of E at x is

ε(E , x) := sup{λ ∈ Q|p∗E〈−λF 〉 is nef},
and the global Seshadri constant is

ε(E) := inf
x∈X

ε(E , x).

On the other hand, for each invariant curve, we have a decomposition

E|C ≃ OP1(a1)⊕ · · · ⊕ OP1(ar).

Define τ(E , x) := min{ai}, where the minimum ranges over all ai, and over all
invariant curves passing through x. We then define τ(E) := minx τ(E , x), where
the minimum is taken over all fixed points of X .
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Proposition 1 ([2] for line bundles, [3] for toric vector bundles). If X is a smooth
complete toric variety, then ε(E , x) = τ(E , x) for each fixed point x = x(σ) ∈ X.
Furthermore, ε(E) = τ(E).

We also can relate the Seshadri constant of a toric vector bundle and k-jet am-
pleness. We first recall the notion of k-jet ample for vector bundles as introduced
in [1]. Let X be a smooth projective variety (not necessarily toric) and E a vector
bundle on X . A vector bundle E is k-jet spanned at x ∈ X if the evaluation map

X × Γ(X, E) → Γ(X, E ⊗ OX/mk+1
x )

is surjective; and E is is k-jet spanned if it is k-jet spanned at all x ∈ X . Let
x1, . . . , xt be distinct points of X with maximal ideal sheaves mi, 1 ≤ i ≤ t.
Consider the 0-cycle Z = x1 + · · · + xt. A vector bundle E is k-jet ample at Z
if for every t-ple (k1, . . . kt) of positive integers such that

∑t
i=1 ki = k + 1, the

evaluation map

Γ(X, E) → Γ(X, E ⊗ (OX/⊗t
i=1 m

ki

i ))

is surjective; E is is k-jet ample if it is k-jet ample at all Z.
Returning now to the toric case, we remark if X is toric, then E is k-jet spanned

if and only if it is k-jet spanned at all fixed points x(σ) ∈ X , and similarly
for k-jet ampleness. For line bundles on toric varieties, we have the following
characterization

Theorem 2. [2] Let L be a line bundle on a smooth projective toric variety, then
the following are equivalent:

(1) L is k-jet ample,
(2) L · C ≥ k for any invariant curve C,
(3) ε(L) ≥ k.

To generalize this to a higher rank toric vector bundle E consider the following
conditions:

(1) E is k-jet ample,
(2) τ(E) ≥ k,
(3) ε(E) ≥ k.

We’ve seen (2) and (3) are equivalent, and clearly (1) implies (2). If E is nef,
then τ(E) ≥ 0, however E may not be globally generated, i.e. E is not 0-jet ample
[3, Ex 4.15]. In recent work in progress, [4], we conjecture that for k ≥ 1, (2)
implies (1′) where (1′) := E is k-jet spanned.
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Isolated smooth curves in Calabi-Yau threefolds

Andreas Leopold Knutsen

In the paper [5], Kley developed a framework for showing existence of curves of
certain genera and degrees in Calabi-Yau complete intersection (CICY ) threefolds.
The paper built on the original idea in the case of genus zero curves of Clemens
[1] (then used also in [4], [10] and [3]): one starts with a K3 complete intersection
surface X containing a smooth rational curve C, embeds the surface in a nodal
CICY of suitable intersection type Y and proves that under a general deformation
Yt of Y0 = Y , the rational curve deforms to an isolated curve in the deformation.
In the higher genus case, the curve C is replaced by a complete linear system |L| of
curves on the surface of dimension equal to the genus, and the idea is to prove that
only finitely many of these deform to the deformation Yt and possibly also that
these are smooth and isolated. The main existence result Theorem 1 in [5] claims
that for any d ≥ 3, the general CICY threefold contains smooth, isolated elliptic
curves of degree d, except for degree 3 curves in the CICY of type (2, 2, 2, 2).

A crucial point in the proof is to show that the curves on X do not acquire any
additional deformations when considered as curves in Y , precisely that

h0(NC/X) = h0(NC/Y ) for all C ∈ |L|.
Unfortunately, the proof of this step contains a serious gap, which also influences
the proof of a later corollary.

In the talk I gave an outline of the main results in my paper [7], which can be
summarized as follows:

• We give criteria for a continuous family of curves on a regular surface in
a nodal threefold Y with trivial canonical bundle to deform to a scheme
of finitely many smooth isolated curves in a general deformation Yt of
Y0 = Y , using results from [2] and ideas from the unpublished preprint [6]
of Kley, see Theorem 1.

• We apply these results to prove existence of smooth, isolated curves of low
genera in the various CICY threefold types, see Theorem 2 (of which [5,
Thm. 1] is a special case).

The first main result is the following. It is an improvement under slightly
stronger hypotheses of a result in the preprint [6] of Kley.

We first state the assumptions.

Setting and assumptions. Let P be a smooth projective variety of dimension
r ≥ 4 and E a vector bundle of rank r − 3 on P that splits as a direct sum of line
bundles

E = ⊕r−3
i=1Mi.

Let

s0 = s0,1 ⊕ · · · ⊕ s0,r−3 ∈ H0(P, E) = ⊕r−3
i=1H

0(P,Mi)

be a regular section, where s0,i ∈ H0(P,Mi) for i = 1, . . . , r − 3. Set

Y = Z(s0) and Z = Z(s0,1 ⊕ · · · ⊕ s0,r−4)
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(where Z = P if r = 4).
Let X ⊂ Y be a smooth surface with H1(X,OX) = 0 and L a line bundle on

X . We make the following additional assumptions:

(1) Y has trivial canonical bundle;
(2) Z is smooth along X and the only singularities of Y which lie in X are ℓ

nodes ξ1, . . . , ξℓ. Furthermore, ℓ ≥ dim |L|+ 2;
(3) |L| 6= ∅ and the general element of |L| is a smooth, irreducible curve;
(4) for every ξi ∈ S := {ξ1, . . . , ξℓ}, if |L ⊗ Iξi | 6= ∅, then its general member

is nonsingular at ξi;
(5) H0(C,NC/X) ≃ H0(C,NC/Y ) for all C ∈ |L|;
(6) H1(C,NC/P ) = 0 for all C ∈ |L|;
(7) the image of the natural restriction map H0(P,Mr−3) → H0(S,Mr−3 ⊗

OS) ≃ Cℓ has codimension one.

Let s ∈ H0(P, E) be a general section. Then our result is the following:

Theorem 1. Under the above setting and assumptions (1)-(7), the members of

|L| deform to a length
(

ℓ−2
dim |L|

)
scheme of curves that are smooth and isolated in

the general deformation Yt = Z(s0 + ts) of Y0 = Y . In particular, Yt contains a
smooth, isolated curve that is a deformation of a curve in |L|.

The main ingredient of the proof involves a careful study of condition (5). The
crucial result states that condition (5) is equivalent to the condition

(5)’ The set of nodes S imposes independent conditions on |L|, and the
natural map γC : H0(C,NX/Y OC) → H1(C,NC/X) is an isomorphism
for all C ∈ |L|.

The first of the two conditions in (5)’ assures that the locus of curves in |L| passing
through at least one node is a simple normal crossing (SNC) divisor (consisting
of ℓ hyperplanes). This enables us to identify a certain sheaf Q of obstructions to
deformation as the locally free sheaf of differentials with logarithmic poles along
an SNC divisor, which is a crucial point to assure that smooth and isolated curves
survive in a general deformation Yt of Y0 = Y .

Our main application is Theorem 2 right below, of which [5, Thm. 1] is the
special case with g = 1.

Theorem 2. Let d ≥ 1 and g ≥ 0 be integers. Then in any of the following cases
the general Calabi-Yau complete intersection threefold Y of the given type contains
an isolated, smooth curve of degree d and genus g:

(a) Y = (5) ⊂ P4: g = 0 and d > 0; g = 1 and d ≥ 3; 2 ≤ g ≤ 6 and d ≥ g+3;

7 ≤ g ≤ 9 and d ≥ g + 2; g = 10 and d ≥ 11; 11 ≤ g ≤ 22 and d ≥ g+13
2 .

(b) Y = (4, 2) ⊂ P5: g = 0 and d > 0; g = 1 and d ≥ 3; g = 2 and d ≥ 5;
3 ≤ g ≤ 8 and d ≥ g + 4; 9 ≤ g ≤ 11 and d ≥ g + 3; 12 ≤ g ≤ 15 and
d ≥ g+16

2 .

(c) Y = (3, 3) ⊂ P5: g = 0 and d > 0; g = 1 and d ≥ 3; g = 2 and d ≥ 5;
3 ≤ g ≤ 7 and d ≥ g + 4.
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(d) Y = (3, 2, 2) ⊂ P6: g = 0 and d > 0; g = 1 and d ≥ 3; g = 2 and d ≥ 5;
g = 3 and d ≥ 7; 4 ≤ g ≤ 10 and d ≥ g + 5.

(e) Y = (2, 2, 2, 2) ⊂ P7: g = 0 and d > 0; g = 1 and d ≥ 4; g = 2 and d ≥ 6;
g = 3 and d ≥ 7.

We remark that the genus zero case of the theorem is already known by [4,
10, 3]. In [6] an existence result similar to Theorem 2 was claimed, but only for
geometrically rigid, connected curves (not necessarily smooth and isolated). But
the proof of that result also relied on [5, Thm. 3.5].

The proof follows by applying Theorem 1 to the case of K3 surfaces in complete
intersection Calabi-Yau threefolds. For each of the complete intersection types in
Theorem 2, there is a standard construction allowing to embed a K3 surface of
one (or more) of the three complete intersection types (4) in P3, (2, 3) in P4 and
(2, 2, 2) in P5 into a nodal CICY threefold. We are then in the setting of Theorem
1 with X the K3 surface, Y the CICY , P a projective space and E the vector
bundle corresponding to the complete intersection type of Y .

The existence of smooth curves of certain degrees and genera on the three types
of complete intersection K3 surfaces is given by the existence results in [9] and [8].

The numerical conditions we end up with are due to conditions (1)-(7) in The-
orem 1.
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Collisions of zero dimensional schemes and applications

Laurent Evain

LetX be a smooth algebraic variety and z1, . . . , zk be zero-dimensional subschemes
of X . We are interested in determining the possible collisions of the zi’s on X .

There are two main applications of these computations, namely the description
of the Hilbert functions of generic unions of fat points in the projective plane, and
constructions of compactifications. Accordingly, our main interest is when X is a
surface S and when each subscheme zi is a fat point. However, other cases are to
be considered in some applications.

We denote by Coll(n1, . . . , nk)(S) the closed irreducible subvariety of the Hilbert

scheme Hilb
∑ ni(ni+1)

2 (S) whose generic point parametrizes the generic union of k
fat points of order n1, . . . , nk. We denote by pn the fat point with support p and
order n.

The following theorem explains that constructing collisions is a useful tool to
study the Hilbert function of generic unions of fat points.

Theorem 1. [1] The following two conditions are equivalent:

• There exists an integer r, two consecutive fat points pr and pr+1, a collision
Z in Coll(n1, . . . , nk)(S) such that pr ⊂ Z ⊂ pr+1.

• The Hilbert function of a generic union of fat points pn1
1 ∪ · · · ∪ pnk

k is

HZ(d) = min( (d+1)(d+2)
2 ,

∑ ni(ni+1)
2 ).

This theorem suggests that computing every collision is a far too difficult
collision, since for instance it would give a description of the ample and nef
cones of the generic blow-up of the projective plane, a problem more difficult
than the still unproved Nagata’s conjecture. Note that even for simple points,
Coll(1, . . . , 1)(S) = Hilbk(S) is equivalent to the irreduciblity of the Hilbert
scheme on a surface, which is not a trivial result.

Since computing all collisions is too difficult, a more sensible goal is the follow-
ing:

• Construct good collisions sufficient to estimate the dimensions of linear
series.

• Classify the collisions for a small number of points.

In connection with his counter-example of the fourteenth Hilbert problem, Na-
gata has proved the following:

Theorem 2. [5] There is no projective plane curve of degree d = km through k2

points in general position with multiplicity m.

An improvement of this result is:

Theorem 3. [2] [4] The Hilbert function of the generic union of k2 fat points of

multiplicity m in the plane is HZ(d) = min( (d+1)(d+2)
2 , k2m(m+1)

2 ).

A generalization of Nagata’s result in higher dimension is the following:
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Theorem 4. [3] There is no projective hypersurface of degree d = km through kr

points of the projective space Pr in general position with multiplicity m.

When the number of points is small, namely at most three, the collsions are
well understood. It is possible to describe the collisions individually, but also
to describe completly the variety Coll(n1, n2, n3)(S) as an abstract variety. It is
related to the variety of complete triangles T (S) constructed by Schubert/Le Barz
[6] [7] for enumerative purposes. When the ni’s are equal, one has to consider
quotients of T (S).

Theorem 5. If n1 > n2 > n3 > 1 and n1 < n2 + n3, Coll(n1, n2, n3(S)) ≃ T (S).
The symetric group σ3 acts on T (S) and, when n ≥ 2, Coll(n, n, n)(S) ≃ T (S)/σ3.

When the number of points is at most four, not all the collisions have been
computed, but the collisions are understood when the points approach successivly
the origin. These collisions can be described by explicit divisors on the blow-up of
the surface. In particular:

Theorem 6. [4] A collision of 4 fat points in a smooth surface is defined by an
integrally closed ideal.
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New remarks on Seshadri constants

Tomasz Szemberg

(joint work with Thomas Bauer)

This is report on recent works [2] and [5].
Let X be a smooth projective variety and L a nef line bundle on X . Recall that

the number

ε(L;x) := inf
L · C

multxC

is the Seshadri constant of L at the point x ∈ X (the infimum being taken
over all irreducible curves C passing through x). Its multi-point counterpart
ε(L;x1, . . . , xr) is defined similarly.

We are interested in possible values of Seshadri numbers. Building upon ex-
amples due to Miranda and Viehweg [3, Examples 5.2.1 and 5.2.2] we show first
that all positive rational numbers appear as Seshadri constant of some ample line
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bundle L on a variety of given dimension. There is not a single example of an
irrational Seshadri constant known and it would be extremely interesting to know
if there are any. If Nagata and Harbourne-Hirschowitz conjectures hold true, then
in fact most of Seshadri constants should be irrational, at least in the multi-point
setting.

Using result of Angehrn and Siu [1, Theorem 0.1] we show that there is a lower
bound on Seshadri constants of adjoint line bundles depending only on dimension
of X .

Theorem 1. Let X be a smooth projective variety of dimension n. Let L be a nef
line bundle on X and assume that the adjoint line bundle KX +L is ample. Then

ε(KX + L) ≥ 2

n2 + n+ 4
.

In particular not all rational numbers may appear as Seshadri constants of
adjoint line bundles. In case of algebraic surfaces one can be surprisingly precise
about possible values.

Theorem 2. Let X be a smooth projective surface and L a nef line bundle such
that KX+L is ample. If for some point x ∈ X the Seshadri constant ε(KX+L, x)
lies in the interval (0, 1), then

ε(KX + L, x) =
m− 1

m
for some integer m ≥ 2.

Even more can be said in the hyper-adjoint case.

Theorem 3. Let X be a smooth projective surface and L a very ample line bundle
on X such that KX + L is ample. Then

a) ε(KX + L) ≥ 1.
b) If ε(KX +L, x) = 1 for all x ∈ X, then either (X,L) = (P2,OP2(4)) or X

is a ruled surface. In the latter case, one has L = −3C0 + s · f , where C0

is a section, f a fiber of the ruling, and s a positive integer.

The proof of the last part uses nice adjoint-theoretic arguments and the struc-
ture theorem established in [4, Theorem 0.1].

Passing to the multi-point Seshadri constants we show the parallel picture.
Whereas again all positive rational numbers may appear as Seshadri constant of
an ample line bundle, their values for adjoint line bundles are subject to strong
restrictions. For surfaces we get the following very precise statement.

Theorem 4. We fix an integer r ≥ 2. Let X be a smooth projective surface and let
L be a nef line bundle on X such that KX+L is ample. If for some distinct points
x1, . . . , xr ∈ X the Seshadri constant ε(KX + L;x1, . . . , xr) lies in the interval
(0, 1

r ), then

ε(KX + L;x1, . . . , xr) =
1

r + 1
or

1

r + 2
,

unless r = 2 and ε(KX + L;x1, x2) =
2
5 .
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We provide examples showing that all presented results are sharp.
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