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Introduction by the Organisers

Stochastic Networks is a flourishing area in the very heart of modern Applied
Probability. Its primary aim is to obtain a fundamental understanding of the
mathematical properties of complex interacting random systems. Among the main
goals are the design, analysis and evaluation of important benchmark systems, as
well as the development of efficient tools for the optimization and simulation of
networks.

Among the 52 participants there were many leading experts in the field as well
as many very promising young scientists. For about a half of the participants the
workshop was their first opportunity to visit Oberwolfach.

The programme included three 2-hour lectures, nineteen 40-minute talks, and
two 90-minute open problems sessions. The lectures formed the organizational
backbone of the workshop. They were delivered by Bruce Hajek on ”Peer to
peer communication in networks - issues, models, and analysis”, by Alexandre
Proutiere on ”Short and long-term behaviors of Markov processes through mean
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field asymptotics” and by Volker Schmidt on ”Distribution of cost functionals
in spatial network models: Scaling limits and Monte- Carlo methods”. All the
lectures have received a very warm welcome from the audience.

Bruce Hajek gave an impressive overview on the modelling and analysis of peer
to peer networks and, in particular, on problems related to the so-called ”single-
chunk syndrome” problem. These models are very new, they are influenced by the
practice, and their analysis is very challenging and practically important. Alexan-
dre Proutiere was speaking about modern problems in understanding and analysis
of the dynamics of high dimensional Markov processes using the mean-field ap-
proximation. He also discussed two practical examples, of the epidemic diffusion
of viruses and of large wireless networks with random access. Volker Schmidt lec-
tured on a stochastic geometry approach to the modeling and performance analysis
of spatial stochastic networks. The focus was on telecommunication networks in-
volving road systems.

The contributed talks were typically linked to one or more issues covered by
these lectures. In more detail, the topics discussed during the workshop were re-
lated to the following areas. One main theme was the probabilistic analysis of
stochastic processes (uni- and multivariate Levy processes, random walks, Markov
additive processes, etc.) relevant to stochastic networks (with talks by V. Anan-
tharam, S. Asmussen, E. Baurdoux, O. Kella, L. Leskela, V. Wachtel, R. Szekli).
Another direction was around various scaling techniques and related asymptotic
analysis of stochastic networks. In addition to the lecture by A. Proutiere, there
were several other talks (T. Dieker, D. Gamarnik, R. Johari, D. McDonald, A.
Stolyar) on scaling in general Markov processes, parallel server systems, stochas-
tic games, large deviations, and back-pressure algorithms. Another topic was the
optimization, complexity, and scheduling problems in communication and spatial
networks, and related asymptotic analysis (B. Hajek, V. Schmidt, I. Norros, D.
Shah, P. Thiran). There were also several presentations (M. Lelarge, G. Hooghiem-
stra, J. Salez) on routing, matching and related problems in random graphs. Fi-
nally, C. Wichelhaus gave a talk on non-parametric inference for general stochastic
networks.

An integral part of the programme was provided by two problem sessions orga-
nized by S. Foss and M. Mandjes. These sessions provided space for participants
to bring up new ideas and discuss open problems in an informal manner. There
were 8 presentations which covered a broad range of problems and, in particular,
on classical stability analysis of Markov processes (P. Glynn), on greedy server
and vacuum cleaner models (T. Konstantopoulos), and on sequential algorithms
for solving linear equations (D. Wischik). Finally, Balaji Prabhakar gave a very
informal presentation on how to use incentives to make ”Societal Networks” more
efficient. For example, how to decongest the roads? How to increase the use of
public transit? How to reduce energy waste? He described the results of actual
deployments and illustrated the role played by computer communication networks
and incentive algorithms in these deployments.
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Markov couplings, stochastic orders, and stochastic relations . . . . . . . . . . 2773

David McDonald (joint with Ivo Adan, Bob Foley)
Nonlinear large deviations: Exact Asymptotics . . . . . . . . . . . . . . . . . . . . . . 2775



2748 Oberwolfach Report 48/2010

Ilkka Norros (joint with Hannu Reittu)
On the stability of population processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2782

Alexandre Proutiere (joint with Charles Bordenave, David McDonald)
Short and Long-term behavior of Stochastic Systems through Mean Field
Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2783

Justin Salez (joint with Charles Bordenave, Marc Lelarge)
Counting and sampling matchings on infinite graphs . . . . . . . . . . . . . . . . . 2785

Volker Schmidt (joint with Frank Fleischer, Catherine Gloaguen and
Florian Voss)
Distribution of cost functionals in spatial network models: Scaling limits
and Monte-Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2788

Devavrat Shah (joint with David Tse, John Tsitsiklis, Damon Wischik,
Yuan Zhong)
Three metrics for stochastic networks: capacity, queue-size and
complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2789

Alexander Stolyar
Scaling properties of queues under back-pressure algorithm . . . . . . . . . . . . 2795

Ryszard Szekli (joint with Hans Daduna, Pawel Lorek)
Remarks on convergence to stationarity for unreliable queueing networks 2797

Patrick Thiran (joint with Florence Bénézit, Vincent Blondel, Alexandros
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Abstracts

Stochastic Approximation with Long-Range-Dependent and
Heavy-Tailed Noise

Venkat Anantharam

(joint work with Vivek Borkar)

We analyze stability and convergence properties of stochastic approximation algo-
rithms when the noise includes a long-range-dependent component, modeled by a
fractional Brownian motion, and a heavy-tailed component, modeled by a symmet-
ric stable process, in addition to the usual martingale noise. The proofs are based
on comparing suitably interpolated iterates with a limiting ordinary differential
equation. Key prior work providing the tail estimates that replace the traditional
tail estimates for martingale noise in the proof scheme are Fernique’s inequality,
see the book of Berman [1] and Joulin’s inequality, see [3]. The proof scheme is a
variation of that found in the book of Borkar [2].

References

[1] S. M. Berman, Sojourns and Extremes of Stochastic Processes, Wadsworth and Brooks-Cole,
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Markov bridges, bisection and variance reduction

Søren Asmussen

(joint work with Asger Hobolth)

Let X be a continuous-time Markov process with state space E. A Markov bridge
(T, a, b) is then defined as the distribution of X in [0, T ] conditioned on X(0) = a,
X(T ) = b. Such bridges are important in many areas, in particular statistical infer-
ence for Markov processes and a number of biological applications like coalescence
problems, and there is a considerable literature on simulation algorithms, see the
references. For example, in statistical inferenceX may only be observed at discrete
time points 0, h, 2h, . . . , Nh and a Markov bridge with T = h, a = X((k − 1)h),
b = X(kh) may then be useful to estimate sufficient statistics like the total time
spent in a given state, which is a key step in the stochastic EM algorithm. In
coalescence, a simplified problem is to obtain information on the mutations at a
single site of a DNA string from a common ancestor to two species, say mouse and
human. Modeling mutations as a reversible Markov process, the evolution from
mouse via ancestor to human is then a Markov process where the endpoints are
observable, i.e. a Markov bridge.
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We consider here simulation algorithms for the case of a finite state space.
Some previous algorithms are reviewed and we present a new one using bisection.
Preliminary examples are presented that the algorithm has good potential for
variance reduction.

For processes such as diffusions or Lévy processes (E = R or E = Rd), it is
not obvious how to simulate a Markov bridge and existing algorithms tend to
deal with special cases and be difficult to implement. The situation of a finite
E is typically much easier, since simple rejection sampling applies: just simulate
forward from X(0) = a using the description in terms of exponential holding
times and Markovian changes of states, and accept the first sample path with
X(T ) = b. However, if the event X(T ) = b is rare, rejection sampling is inefficient,
and therefore alternatives have been suggested (see [15] for a survey). We consider
here yet another, bisection based on subsequently dividing the interval into two.
The main idea is to classify intervals as having 0, 1 or at least 2 jumps, and noting
that the sample path in intervals with 0 or 1 jumps can easily be generated. The
algorithm then uses a recursion to proceed with intervals with at least 2 jumps.

Bisection is sometimes faster than existing algorithms and sometimes not. How-
ever, our main argument in its favor is the potential for variance reduction. As
for Brownian motion (e.g. [10], [11]), one then identifies the ‘most important vari-
ables’ with X(T ), X(T/2),

(
X(T/4), X(3T/4)

)
, . . . (in that order), selects a finite

number of them and applies variance reduction techniques like stratification, im-
portance sampling or quasi-Monte Carlo to the selected variable. Examples from
ongoing experimentation were presented in the talk and show excellent potential
for variance reduction.

The final version of this research is expected to appear in [2].
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Scale functions for spectrally negative Lévy processes and some
applications

Erik J. Baurdoux

Spectrally negative Lévy processes (i.e. those without positive jumps and which
are not the negative of a subordinator) appear naturally in queueing theory. In-
deed, the workload of an M/G/1 queue is given in terms of a compound Poisson
process with negative drift, reflected at its supremum. In many queueing applica-
tions the compound Poisson process with negative drift is replaced by a spectrally
negative Lévy process, see for example [7, 10, 11, 12, 13, 14, 18] and references
therein. For this class of processes the so-called scale functions play a vital role in
exit problems and excursion calculations.

Since a spectrally negative Lévy processX does not have positive jumps it holds
for any λ ≥ 0 that

E[eλXt ] = eψ(λ)t,

where ψ is the Laplace exponent which is of the form

ψ(λ) = aλ+
σ2

2
λ2 +

∫

(−∞,0)

(1 − eλx − λx1{x>−1})Π(dx).
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Here a ∈ R, σ2 ≥ 0 and Π is called the Lévy measure of X which satisfies∫
(−∞,0)

(1 ∧ x2)Π(dx) <∞. It is easily shown that ψ is a strictly convex function

on [0,∞) and that ψ(∞) =∞. This allows us to introduce the right inverse of ψ
which we denote by Φ.

Denote by Xt := sup0≤s≤tXs the supremum process and for q ≥ 0 let eq be an
exponentially distributed random variable with parameter q, independent ofX (for
q = 0 we interpret eq as being infinite with probability 1). For spectrally negative

Lévy processes the Wiener–Hopf factorisation simplifies, since in this case Xeq
can

be shown to be exponentially distributed with parameter Φ(q). If X denotes the
infimum process, this leads to

(1) E[eλX∞ ] = ψ′(0+)
λ

ψ(λ)

whenever ψ′(0+) > 0, which corresponds to the situation that X drifts to +∞.
Further details can be found in Chapter VII of [3] and Chapter 8 of [15] and
references therein.

For a, b ∈ R, introduce the first passage times

τ+a = inf{t ≥ 0 : Xt > a} and τ−b = inf{t ≥ 0 : Xt < b}
and for x ∈ R denote by Px the law of X given that X0 = x. The following
definition of a scale function is essentially due to Zolotarev [23] and Takács [22]
(further references can be found in the books [3] and [15]).

Theorem 1. For q ≥ 0 there exists a unique continuous function (called scale
function) W (q) : R≥0 → R≥0 satisfying

∫ ∞

0

e−λxW (q)(x)dx =
1

ψ(λ)− q ∀λ > Φ(q).

and for 0 < x < a

Ex[e
−qτ+

a 1{τ+
a <τ

−

0 }] =
W (q)(x)

W (q)(a)
.

One way of proving this result is to first assume that q = 0 and ψ′(0+) > 0 and
by taking W (0)(x) = P(X∞ ≥ −x)/ψ′(0+). From (1) it follows that for any λ ≥ 0

∫ ∞

0

e−λxW (0)(x) dx =
1

ψ(λ)
.

Furthermore, for 0 < x < a an application of the strong Markov property yields

P(X∞ ≥ −x) = Ex[Px(X∞ ≥ 0|Fτ+
a
)]

= Ex[1{τ+
a <τ

−

0 }Pa(X∞ ≥ 0)] + Ex[1{τ+
a >τ

−

0 }PXτ
−

0

(X∞ ≥ 0)].

It does not take much work to show that the second quantity in the last line
is equal to zero, and hence Px(τ

+
a > τ−0 ) = W (0)(x)/W (0)(a). The other cases

(q > 0 or ψ′(0+) ≤ 0) can be deduced by using a change of measure based on
the martingale eΦ(q)Xt−qt which leads to a probability measure under which the
process drifts to +∞.
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Explicit examples of scale functions are given in [4, 16, 17] and numerical
schemes for scale functions can be found in [20] and [21]

To indicate the usefulness of scale functions in the fluctuation theory of spec-
trally negative Lévy processes we mention two applications. Firstly, the last pas-
sage time below zero of a spectrally negative Lévy process, which was studied in
[6] with an application to insurance mathematics in mind. In [2] this is extended
as the Laplace transform is given for various last passage times before an expo-
nential independent, exponentially distributed time. As a corollary, we deduce an
extension to a result from [8] where it was shown that for a spectrally negative
stable process X of index α

P(∃t > 0 : Xt = Xt = t) =
1

α
.

Secondly, in [19], using martingale techniques, the resolvent measure was found
for a reflected spectrally negative Lévy process. In [9] a new proof was given based
on excursion calculation making use of the relationship between the scale function
and the process conditioned to stay positive. Using results from [5] about a general
Lévy process conditioned to stay positive this method was extended in [1] and, as
an application, the resolvent measure was found for a reflected symmetric stable
process.
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negative Lévy processes, Elect. J. Probab. 13 (2008), 1672–1701.

[17] A.E. Kyprianou and F. Hubalek, Old and new examples of scale functions for spectrally
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Spectral gaps for large-scale Markov processes

Ton Dieker

The research presented in the talk aims to assess dominant behavior of large-scale
stochastic processes through quantities that can be provably calculated numerically
by small-scale algorithms. The particular focus lies on Markov chains on finite but
large state spaces, such as those arising in the context of graphs. Here small-scale
algorithms must be understood as algorithms which operate on objects of size many
orders of magnitude less than the size of the state space. Many key properties of
such large-scale processes can be deduced from the eigenvalues and eigenspaces of
their transition matrices. For instance, as a consequence of the spectral theorem,
the so-called spectral gap determines the ‘speed’ at which the process traverses
its state space (the spectral gap is defined as the difference between the trivial
eigenvalue 1 and the second largest eigenvalue of the transition matrix).

Calculating eigenvalues numerically becomes prohibitive for Markov chains on
large state spaces, which poses significant challenges for determining spectral char-
acteristics such as spectral gaps. This motivates the search for theory which, under
structural assumptions on the Markov chain, allows one to connect the dominant
large-scale eigenvalues and eigenvectors to corresponding small-scale quantities
which can be computed quickly (e.g., numerically).

My talk describes a first result of this kind. Given a permutation σ of 1, . . . , n,
let the neighborhood of σ be all assignments σ′ which are different from σ at
exactly two places. (This ‘transposition’ neighborhood is a standard neighborhood
structure for local search in the quadratic assignment problem [1], as the change in
the objective function from σ to σ′ can be calculated relatively efficiently.) Suppose
that σ(i) and σ(j) are interchanged with probability αij , where

∑
1≤i<j≤n αij = 1.

This leads to a Markov chain {σm : m ≥ 0} on the set of all permutations, to be
referred to as the ‘large Markov chain’ since the state space is of size n!. A much
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smaller Markov chain, of size n, arises when looking at the position of a fixed
number in the permutation (say number 1); this is the process {σ−1

m (1) : m ≥ 0}.
The dynamics of this smaller process are readily described in terms of the αij .
Indeed, if the state of the small process is currently i, then it becomes j in the
next step with probability αij . We call the process the ‘small Markov chain’.
Note that, under natural irreducibility assumptions, the small chain remains in its
current state with positive probability.

The following theorem has originally been conjectured by David Aldous and
Persi Diaconis in 1992 for a special case, and has received much attention over
the years [3, 6, 7, 8]. The proof relies on several novel insights, and I intend to
explore the extent of which these insights can be further utilized and exploited.
The theorem is the main result from my article [5] as well as the simultaneous
work by Caputo et al. [2]. The paper by Caputo et al. contains the only known
proof of a key technical lemma needed in the proof, which was conjectured to hold
in my paper [5]. Recall that the spectral gap of a Markov chain is defined as the
difference between the largest and the second largest eigenvalue of the transition
matrix.

Theorem 2. For any n and any choice of {αij}, the spectral gap of the large
Markov chain equals the spectral gap of the small Markov chain. In particular, the
spectral gap of the large-scale chain can be determined by a small-scale algorithm.

The intuition behind this theorem relies on the connection, briefly mentioned
earlier, between the spectral gap and the speed at which a Markov chain traverses
its state space. The theorem intuitively says that the large Markov chain cannot
reach equilibrium before the small Markov chain, and vice versa it is impossible
for the small chain to reach equilibrium with the large chain being ’away’ from
equilibrium. Thus, the speed at which the large-scale process converges to equilib-
rium is completely determined by a small-scale quantity. Interestingly, there exist
numerical examples for which a result like Theorem 2 does not hold even though
there is no (apparent) reason for the intuition to fail.

It is my hope to establish further results in the spirit of Theorem 2, specifically
focusing on the following two directions:

(1) Prove results in the spirit of Theorem 2 for neighborhood structures dif-
ferent from the one arising by swapping two numbers. Although the proof
of Theorem 2 has recently been found, the key inequality proved by Ca-
puto et al. [2] arguably relies on ‘brute force’ techniques which cannot be
expected to hold much value when building a general theory for results of
this type. Thus, novel insights will be needed.

(2) Establish theory outside of the setting of permutations. The spectral gap
is determined by the largest nontrivial eigenvalue, but other eigenvalues of
the large Markov chain are of interest from the point of view of stochastic
processes on other discrete structures than permutations; examples include
perfect matchings, Hamiltonian cycles, or colorings of a graph [2, 4, 5].
The objective of this research task is to find analogs of Theorem 2 in these
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cases. In general one cannot expect that the small Markov chain has a
state space of size n, but perhaps of size polynomial in n.
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Steady state GI/GI/n queue in the Halfin-Whitt regime

David Gamarnik

(joint work with David Goldberg)

Parallel server GI/GI/n queueing systems can operate in a variety of regimes
that balance between efficiency and quality of offered service. This is captured by
the Halfin-Whitt (H-W) regime, which can be described as critical with respect
to the probability that an arriving customer has to wait for service. Namely, in
this regime the stationary probability of wait is bounded away from both 0 and
1 as the number of servers grows. Although studied originally by Erlang [1] and
Jagerman [4], the regime was formally introduced in [3] by Halfin and Whitt,
who established the criticality of the probability that a customer waits in terms
of the square-root spare capacity rule for large multi-server (FCFS GI/GI/n)
queues with exponentially distributed processing times. They also showed that as
the size of the multi-server queue grows, the queueing process (properly scaled)
converges weakly to a non-trivial positive recurrent diffusion. In addition, they
showed that the sequence of normalized steady-state queue length distributions

{
(
Qn(∞)− n

)+
n− 1

2 } is tight, and explicitly computed the associated weak limit,
where Qn(∞) denotes the steady state number of jobs in the GI/M/n queueing
system.

Similar weak convergence results under the H-W scaling were subsequently ob-
tained for GI/GI/n systems with non-exponential service time distributions [8],
[5], [6], [2], with the most general results appearing in [10] (and follow-up papers
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[9],[7]). As the theory of weak convergence generally relies heavily on the assump-
tion of compact time intervals, the most general of these results hold only in the
transient regime. Indeed, with the exception of [3] (which treats exponential pro-
cessing times), [5] (which treats deterministic processing times), and [2] (which
treats processing times with finite support), all of the aforementioned results are
for the associated sequence of normalized transient queue length distributions
only, leaving many open questions about the associated steady-state queue length
distributions. In [2], the authors show (for processing times with finite support)

that the sequence of steady-state queue length distributions (normalized by n
1
2 ) is

tight, and has a limit whose tail decays exponentially fast. In particular it is shown

that Q(∞) which is the unique weak limit of the sequence {
(
Qn(∞) − n

)+
n− 1

2 },
satisfies the property

E[exp(θQ(∞))] <∞, ∀θ < 2β

c2a + c2s
,(1)

E[exp(θQ(∞))] =∞, ∀θ > 2β

c2a + c2s
,(2)

where β is the spare capacity parameter in the GI/GI/n queueing system in
the Halfin-Whitt regime, and c2a and c2s are the coefficients of variations of the
interarrival and service times, respectively. It was conjectured in [2] that these
results should hold for more general processing time distributions, but prior to
this work no further progress had been made along those lines.

In this paper we establish that the sequence of queue length of the GI/GI/n
system in the Halfin-Whitt regime, normalized by n is tight, under very minor
assumptions on the interarrival and service times. Namely, we show that the

sequence {
(
Qn(∞) − n

)+
n− 1

2 } is tight. Furthermore, we partially confirm the
conjecture introduced in [2] regarding the decay rate. In particular, for every

weak limit Q(∞) of the sequence {
(
Qn(∞) − n

)+
n− 1

2 } we show that the bound
(1) holds. We also establish the matching lower bound (2) for the case when the
arrival process is Poisson.

Our method of proof is based on a clever bounding the queueing process by an-
other process which loosely speaking can be defined as GI/GI/n queueing system
which ”never” idles. This is a system in which each server upon starting an idling
phase creates an artificial job and works on it. The resulting queueing process
has a cleanly defined weak limit which is a Gaussian process with negative drift.
Then using the process level weak convergence technique, the tightness result is
established, and the bounds on the decay rate for the limiting queue length are
obtained from the known results on the supremum of a Gaussian process with a
negative drift.
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Wide-sense Regeneration for Harris Recurrent Markov Processes: An
Open Problem

Peter W. Glynn

Harris recurrence is a widely used concept in the analysis of stochastic systems.

Definition 1 A (strong) Markov process X = (X(t) : t ≥ 0) taking values in
a separable metric space S is said to be Harris recurrent if there exists a non-
trivial (reference) measure η such that whenever η(A) > 0, then

∫ ∞

0

I(X(t) ∈ A) dt =∞ Px a.s.

for each x ∈ S (where Px(·) , P(·|X(0) = x)).

In the presence of Harris recurrence, it is known that one-dependent regenera-
tive structure can always be identified within the process X . In particular, one can
find randomized stopping times (T (n) : n ≥ 0) for which 0 ≤ T (0) < T (1) < · · ·
and such that:

(1) ((X(T (j − 1) + s) : 0 ≤ s < T (j) − T (j − 1)) : j ≥ 0) is a sequence of

1-dependent random elements where T (−1) , 0;
(2) ((X(T (j − 1) + s) : 0 ≤ s < T (j) − T (j − 1)) : j ≥ 0) is a sequence of

identically distributed random elements.

See [1] for details. Such regenerative structure permits one to easily develop strong

laws and central limit theorems for time averages of the form t−1
∫ t
0
f(X(s)) ds.

Furthermore, the associated centering and scaling constants can be expressed in
terms of “cycle quantities”, thereby providing straightforward estimation of these
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quantities within the context of Monte Carlo simulation of these processes; see
[2]. Such regenerative estimation can then be used to develop asymptotically valid
confidence interval procedures for steady-state simulation of such Harris recurrent
processes.

One important mathematical tool that is often available in the context of Harris
recurrence is that of renewal theory.

Definition 2 A stochastic process X = (X(t) : t ≥ 0) is said to be wide-sense
regenerative if there exist random times (β(n) : n ≥ 0) for which 0 ≤ β(0) <
β(1) < · · · and such that:

(1) (X(β(n) + u) : u ≥ 0) is independent of β(n) for n ≥ 0;

(2) (X(β(n) + u) : u ≥ 0)
D
= (X(β(0) + u) : u ≥ 0) for n ≥ 0.

In the presence of wide-sense regeneration, renewal equations can be developed.
In particular, if X is non-delayed (so that β(0) = 0) and f is nonnegative, one can
express Ef(X(t)) in terms of the renewal equation

Ef(X(t)) = Ef(X(t))I(β(1) > t) +

∫

[0,t]

Ef(X(t− s))P(β(1) ∈ ds)

for t ≥ 0. Renewal theory can then be applied to study issues such as rates of
convergence to equilibrium.

In the discrete time setting, it is known that all Harris recurrent Markov chains
are both one-dependent regenerative and wide-sense regenerative (and we may
take β(n) = T (n) for n ≥ 0 if we wish). In continuous time, this issue has not
been resolved, and remains open.

Open Problem: Is every Harris recurrent Markov process wide-sense regenera-
tive?

Settling this issue one way or the other would represent a major step forward in
our understanding of the probabilistic and analytical structure of Harris recurrent
Markov processes.
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Peer to Peer Communication in Networks – Issues, Models, and
Analysis

Bruce Hajek

(joint work with Laurent Massoulié, Sujay Sanghavi, Kuang Xu, Ji Zhu)

Distributed protocols for peer to peer file sharing, streaming video, and video
on demand have revolutionized the way the majority of information is conveyed
over the Internet. The peers are millions of computers, acting as both clients
and servers, downloading and uploading information. Information to be shared is
broken into pieces, and the pieces are traded among peers in the network. There
can be turnover in the set of pieces of information being collected and/or in the
set of peers collecting the information. Coding, in which groups of pieces are
combined to form new pieces, can enhance the collection process. The systems
are distributed and scalable. The theory for understanding peer-to-peer systems
has lagged far behind our ability to mathematically model, predict, and optimize
system performance. This presentation discusses stochastic models, mathematical
results, and challenges relating to the performance of peer to peer communication
in large networks.

1. Introduction

Peer-to-peer (P2P) communication in the Internet is communication provided
through the sharing of widely distributed resources. Our focus is on peer-to-peer
networks of unstructured type, such as BitTorrent [1], meaning there is no specific
network topology to be formed by the participating peers. Use of network coding
for replication of a single file is described in [2]. In [11] the same constants are
obtained as in [2] but without network coding and without exchange of piece lists
as in BitTorrent [1]. The work [7] considers file replication with continuous arrival
of peers. The model of our paper is close to the one in [7]. Each peer receives a set
of pieces upon arrival. The paper [7] studies the fluid limit model derived from the
theory of density dependent jump Markov processes [4]. Simpler two-state models
were derived and studied in [10] and [13]. An instability phenomenon discussed
here was discovered independently by Norros et al. [9]. The paper [9] discusses
interesting mechanisms for selecting rarest pieces that may stabilize the system.

2. A system with a fixed population of peers

The paper [11] investigates the dissemination of multiple pieces of information
in large networks where users contact each other in a random uncoordinated man-
ner, and users upload one piece per unit time. The underlying motivation is the
design and analysis of piece selection protocols for peer-to-peer networks which
disseminate files by dividing them into pieces. It first investigates one-sided pro-
tocols, where piece selection is based on the states of either the transmitter or the
receiver. It shows that any such protocol relying only on pushes, or alternatively
only on pulls, is inefficient in disseminating all pieces to all users. It proposes a
hybrid one-sided piece selection protocol – INTERLEAVE – and shows that by
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using both pushes and pulls it disseminates k pieces from a single source to n users
in 10(k + logn) time, while obeying the constraint that each user can upload at
most one piece in one unit of time, with high probability for large n. An optimal,
centralized protocol, such as the one given in [8], takes k + log2 n time in this
setting. Moreover, efficient dissemination is also possible if the source implements
forward erasure coding, and users push the latest-released coded pieces (but do
not pull).

The paper [11] also briefly investigated two-sided protocols where piece selection
is based on the states of both the transmitter and the receiver. Users carry out
pushes/pulls, but have knowledge of the target’s current state. We consider an
initial state where n distinct pieces are present in the system, one in each user.
Completion from such an initial state has been previously studied, often under the
alternate title of “all-to-all communication”. For this state, consider the following
two-sided pull protocol:

ADVOCATE: If the user does not already possess the target’s initial piece,
it downloads that piece. Else it pulls a random piece from among those
present in the target but absent in the user.

In this protocol each user acts as an advocate for its initial piece. If each user is
restricted to downloading at most one piece in every time slot, an optimal central
protocol takes at least n− 1 time slots to complete. The following theorem shows
that the ADVOCATE protocol completes in time very close to this optimal, with
high probability.

Theorem ([11]) Starting with each user having one unique piece, the ADVO-
CATE protocol operating under soft constraints finishes in n+O(log n) time with
high probability.

In the above theorem the preconstant 1 of n is the best possible. The above
theorem means that for large n the fraction of wasted time slots is negligible. A
conjecture, backed by preliminary simulations [5], is the following:

Conjecture Starting with each user having one unique piece, the ADVOCATE
protocol operating under soft constraints finishes in n time steps with probability
converging to one as n→∞. That is, at most one extra time step is needed. (This
may also hold without invoking the advocate mechanism.).

3. A system with continuous-arrivals of peers

The following is a composite of models in [6, 7, 14].

• C = set of subsets of {1, . . . ,K}, where K is the number of pieces
• A peer with set of pieces c is a type c peer
• A type c peer becomes a type c ∪ {i} peer if it downloads piece i 6∈ c
• The detailed Markov state is x = (xc : c ∈ C), with xc=number of type c
peers, and |x| is the number of peers in the system
• Exogenous arrivals of peers of type c form a rate λc Poisson process, and
such processes for different c are mutually independent
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• Each peer contacts other peers, chosen uniformly at random from among
all peers, for opportunities to download a piece (i.e. pull) from the other
peers, according to a Poisson process of rate µ > 0.
• Downloads are modeled as being instantaneous. This assumption is rea-
sonable in the context of the previous assumption.
• Random useful piece selection – when a peer of type c has an opportunity
to download a piece from a peer of type s, the opportunity results in no
change of state if s ⊂ c. Otherwise, the type c peer downloads one piece
selected at random from s − c, with all |s − c| possibilities having equal
probability.
• There is one fixed seed, which contacts peers for opportunities to upload
a random useful piece to the peers according to a Poisson process of rate
Us.
• After obtaining a complete collection of pieces, a peer remains in the sys-
tem an exponentially distributed amount of time with parameter γ as a
peer seed, and then departs.

Given a state x and c ∈ C, let Tc(x) denote the new state resulting from the
arrival of a new type c peer. Given c ∈ C, 1 ≤ i ≤ K such that i /∈ c, and
a state x such that xc ≥ 1, let Tc,i(x) denote the new state resulting from a
type c peer downloading piece i. Finally, let Td(x) denote the new state resulting
from the departure of a peer seed. The positive entries of the generator matrix
Q = (q(x,x′) : x,x′ ∈ S) are given by:

q(x, Tc(x)) = λc

q(x, Tc,i(x)) =
xc
|x|

(
Us

K − |c| + µ
∑

s:i∈s

xs
|s− c|

)

if xc > 0 and i /∈ c.
q(x, Td(x)) = γxK

One of the models of Massoulié and Vojnović [6, 7] is the special case of the
above with γ = ∞ and Us = 0 (no peer seeds or fixed seeds). The model is
a refinement of the two-dimensional models of [14, 10]. Massoulié and Vojnović
[6, 7] applied the theory of density-dependent jump Markov processes (see [4]) to
analyze their model. They found that there is a finite resting point of the fluid
ordinary differential equation. The model is a bit like anM/GI/∞ system because
the total service rate tends to scale linearly with the number of peers.

Norros et al. [9] and, independently, Ji Zhu and I, found that the actual system
behavior, in some regimes, is not accurately predicted by assuming all pieces are
in equal supply. Rather, if the rate of the fixed seed Us is small enough and the
departure rate of peer seeds γ is large enough, the system can get into a state such
that all the peers are missing the same piece, and most of the peeers have all the
pieces except that missing piece. That is the main intuition behind the following
result. (A proof of this result for the special case γ = ∞ and λs = 0 for s 6= ∅ is
given in [3].)
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Theorem (with Ji Zhu, in preparation) Given (λc : c ∈ C), Us, µ, and γ, the
system is positive recurrent if either

• γ ≤ µ and for 1 ≤ k ≤ K, it is possible for type k pieces to enter the
system.
• 0 < µ < γ ≤ ∞ and the following condition holds for each k ∈ C :

(1) λtotal <

[
Us +

∑

k∈C
λC(K + 1− |C|)

](
1

1− µ/γ

)

Conversely, the system is transient if γ > µ and, for some k,

λtotal >

[
Us +

∑

k∈C
λC(K + 1− |C|)

](
1

1− µ/γ

)
.

We remark that the stability condition (1) is equivalent to

∑

C:k 6∈C
λC <

(
Us +

∑

C:k∈C
λC(K − |C|)

)

+

[
Us +

∑

k∈C
λC(K + 1− |C|)

](
µ/γ

1− µ/γ

)

4. Live-streaming with a fixed population of peers

The interesting work of Zhao, Liu, and Chiu on the optimal piece selection policy
for live-streaming was reviewed in the presentation. The following comments on
this model are taken from [12]. Zhao, Liu, and Chiu [15] simulated and formulated
a mean field approximation. The state of a peer is the set of buffer positions filled.
The mean field approximation taking into account the entire buffer occupation as a
state (so 2N states for a buffer of length N) matches simulation results better than
assuming buffer positions are occupied independently of each other. Zhao, Liu,
and Chiu found that a mixture of greedy and rarest first strategy performs much
better than either strategy. Kuang Xu [12] showed uniqueness of the mean field
fixed points for those strategies. He also showed that if a tit for tat constraint is
added, then there are multiple fixed points, and the earliest deadline first strategy
is not always the optimal greedy strategy for a peer interacting with an arbitrary
distribution of buffer occupancy for contacted peers. Kuang numerically calculated
the mean field game equilibria for small buffer sizes.
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Shortest weight routing in complex networks

Gerard Hooghiemstra

(joint work with Shankar Bhamidi, Remco van der Hofstad)

We consider random graphs with i.i.d. weights on the edges and focus on distances
between two randomly chosen nodes in these graphs. Here the distance is defined
as the number of edges on the path with minimal total weight.

A surprising universal picture emerges: there is a central limit theorem (CLT)
for many random graphs and edge weights (but not for all). This CLT has been
proven for the configuration model (including the case where the degree distri-
bution has a heavy tail) in [2], and for the Erdős-Rényi graph in [2]. In both
cases the weights are i.i.d. exponential with mean 1. The mean and variance are
asymptotically equal and of order logn, where n denotes the number of vertices
of the underlying random graph.

For the complete graph the CLT is true (with adapted asymptotic mean and
variance) for i.i.d. weights of the form Es, with E exponential and s > 0 ([4]).

However, on the complete graph with edge-weights E−s, s > 0, the hopcount
remains bounded and the CLT is no longer valid. In this case we were able show
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that the hopcount converges in probability to the closest integer to s + 1, larger
than or equal to 2 ([3]).

In many applications, edge weights represent cost structure of the use of an
edge, such as actual economic costs or congestion costs across edges. Actual time
delay experienced by vertices in the network is given by hopcount Hn, which is the
number of edges on shortest-weight path. One of the most important questions
is How does weight structure influence hopcount and what is the weight of the
minimal path?.

The problem with exponential edge weights has received tremendous attention
on the complete graph; it is our intention to extend these results to general (ran-
dom) graphs. We start by considering the configuration model.
Let n be number of vertices. Consider an i.i.d. sequence of degrees D1, D2, . . . , Dn

with given distribution. We pay special attention to power-law degrees, i.e.,

P (D1 = k) = cτk
−τ ,

where cτ is constant and τ > 2.
The configuration model is constructed from a given degree sequence for which

we take i.i.d. sequence D1, D2, . . . , Dn as defined above. Assign to vertex j degree
Dj and assume that the total degree Ln =

∑n
i=1Di is even. Incident to vertex i

we have Di ‘stubs’ or half edges.

(1) Connect stubs to create edges as follows: Number stubs from 1 to Ln in
any order. First connect first stub uniformly at random with one of other
Ln − 1 stubs.

(2) Continue with second stub (when not connected to the first one) and so
on, until all stubs are connected...

The following theorem has been proven in [1]

Theorem 3. Let Hn be number of edges between two uniformly chosen vertices
on CM with i.i.d. exponential edge weights. Assume that D ≥ 2 a.s. and ν =
E[D(D−1)]

E[D] > 1. For τ > 3 or τ ∈ (2, 3),

Hn − α logn√
α logn

d→ Z,

where Z is standard normal, and

α = ν
ν−1 > 1 for τ > 3,

α = 2(τ−2)
τ−1 ∈ (0, 1) for τ ∈ (2, 3).

It is interesting to compare this theorem to two older results concerning the
graph distance between two uniformly chosen vertices, which were proven in [5]

and in [7], respectively. In these theorems H̃n denotes the graph distance between
two uniform vertices.

Theorem 4. When τ > 3 and ν > 1,

H̃n

logν n

P→ 1.
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Theorem 5. When τ ∈ (2, 3),

H̃n

log logn

P→ 2

| log (τ − 2)| ,

Below we present a short discussion on the differences between the results for
the hopcount and for the graph-distance.

(1) Notice that the introduction of edge weights have a remarkable effect on
the distances: with edge weights distances scale as logn for all τ > 2,
whereas without edge weights the distance scales in the same way for τ > 3,
whereas for τ ∈ (2, 3), distances are ultra small and scale as log logn.

(2) It is known that the fluctuation of the graph distance around the centering
is bounded in probability [5] and [6]. Including the edge weights the as-
ymptotic variance of the hopcount is of the same order as the asymptotic
mean. Moreover the asymptotic variance of the hopcount is equal to the
asymptotic mean of the hopcount.

(3) For the proof of the first theorem we compare the neighborhood of a uni-
form vertex to branching process, and use wealth of results on FPP on
trees.

(4) Finally, we observe a surprisingly universal behavior for FPP on config-
uration model. Universality is a leading paradigm in statistical physics.
Only few examples exist where universality can be proved rigorously.

The above observations lead to the following key question: To what extent is
universality true for processes on random graphs models?

To shed some more light on this key question consider the complete graph Kn

with edge weights Ese , where Ee are i.i.d. exponentials. Then the following theorem
holds ([4]):

Theorem 6. Let Hn be number of edges of shortest path between two uniform
vertices. Then, with Z standard normal,

Hn − s logn√
s2 logn

d→ Z.

On the other hand: consider again the complete graph Kn but now take the
i.i.d. edge weights E−s

e , s > 0.. Then according to [3]

Theorem 7. For almost all s > 0, the hopcount converges in probability to the
nearest integer of s+ 1.

This raises the following open problem what are the universality classes for FPP
on the complete graph?

We finish with a tightness-proof of the hopcount Hn on the complete graph
with edge weights E−s, s > 0.

Observe that the maximum of n independent exponentials scales like logn, and
that therefore, whp,

(1) Wn ≥ Hn log
−s(n(n− 1)/2).
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On the other hand Wn is at most equal to the minimal weight of all two-edge
paths between 1 and n, so that:

(2) Wn ≤ min
2≤j≤n−1

((E′
j)

−s + (E′′
j )

−s),

It is not hard to verify, that (2) implies that whp,

(3) Wn ≤
C

(log n)s
.

Together this yields tightness of Hn.
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Equilibrium analysis of large scale stochastic games

Ramesh Johari

A range of modern systems, such as markets, communication systems, and online
social systems, are characterized by dynamic interactions among a large population
of agents. While game theoretic methods appear to hold promise for providing
insight into incentives of agents in such systems, they often struggle on two fronts.
First, computing equilibria in large dynamic games rapidly becomes intractable,
due to the curse of dimensionality. Second, equilibrium concepts for dynamic
games make strong rationality assumptions about players’ behavior; these may
not hold even with moderate numbers of players.

These challenges have spurred renewed recent interest across economics, opera-
tions research, and control theory in an approximation methodology that we term
mean field equilibrium (MFE). In MFE, each player reacts to only the long run
average state of other players. This construction simplifies both computational
and rationality requirements.

We present an overview of recent results concerning mean field equilibrium.
First, we describe MFE in dynamic stochastic games with strategic complemen-
tarities (joint work with S. Adlakha); formally, these are games where the payoff
of a player has increasing differences between her own state and the aggregate
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empirical distribution of the states of other players. Such games naturally arise in
models of interdependent security, or in collaborative filtering systems. We prove
that such games possess MFE, and further, that a natural, myopic best response
dynamic converges to MFE. We provide an analysis of sensitivity of equilibria to
parameter changes.

We also demonstrate that under appropriate continuity conditions on model
primitives, MFE is a good approximation to equilibria of general stochastic games
with finitely many players (joint work with S. Adlakha and G.Y. Weintraub).

We devote the bulk of the talk to surveying an application of MFE to dynamic
auctions with learning. In particular, we consider a setting with a sequence of
repeated second price auctions, where bidders do not know their valuations. Each
time a bidder wins, they receive an additional observation correlated with their
true valuation. Thus bidders have a tendency to bid above their current expected
valuation, since they have a value for learning. How much do they overbid? Char-
acterizing this overbidding behavior structurally is intractable in auctions with
finitely many players, but we demonstrate that a simple description of MFE can
be constructed in a limit where the number of players grows large. (Joint work
with K. Iyer and M. Sundararajan.)
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Some recent observations regarding growth collapse processes and
their generalizations

Offer Kella

(joint work with Onno Boxma, Marc Yor, Andreas Löpker and David Perry)

This talk summarizes four recent studies related or motivated by growth collapse
processes. Growth collapse processes are processes that increase and from time to
time collapse to a fraction of their pre-collapse times. When the increase is linear,
the decrease is to a fixed fraction of the pre-collapse time and the epochs between
collapse times are independent and identically distributed (i.i.d.) exponential ran-
dom variables, these models are used to model TCP window size control. Other
phenomena that exhibit this kind of behavior are stock indexes when one speeds
up time and observes the increases followed by crashes or sand piles which build
up until they collapse to a fraction of their former height.

The first study is [9] where the aim is to generalize earlier results for the steady
state distribution of growth collapse processes. It begins with a stationary setup
with some relatively general growth process and it is observed that under certain
expected conditions point and time stationary versions of the processes exist as
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well as a limiting distribution for these processes which is independent of initial
conditions and necessarily has the marginal distribution of the stationary version.
It is then specialized to the case where an i.i.d. structure holds and further spe-
cialize to the case where the growth process is a nondecreasing Lévy process and in
particular linear and the times between collapses form an i.i.d. sequence. Known
results can be seen as special cases for example when the inter-collapse times form
a Poisson process or when the collapse ratio is deterministic. Finally a relation
between these processes and shot-noise-type processes is commented on and it is
observed that under certain conditions, the steady state distribution of one may
be directly inferred from the other.

The second study which seems unrelated is [11] and was actually motivated
by observing that a growth collapse process satisfies a stochastic linear equation
where the free process (and also the integrator) has bounded variation on finite
intervals. In this paper a new representation is given for the solution for a sto-
chastic linear equation of the form Xt = Yt +

∫
(0,t]

Xs−dZs where Z is a càdlàg

semimartingale and Y is a càdlàg adapted process with bounded variation on finite
intervals. As an application the case where Y and −Z are nondecreasing, jointly
have stationary increments and the jumps of −Z are bounded by 1 is studied.
Special cases of this process are shot-noise processes, growth collapse (additive in-
crease, multiplicative decrease) processes and clearing processes. When Y and Z
are in addition independent Lévy processes the resulting X is called a generalized
Ornstein-Uhlenbeck process.

The third study is [10] where a growth collapse model in a random environment
is considered, where the input rates may depend on the state of an underlying
irreducible Markov chain and at state change epochs there is a possible downward
jump to a level which is a random fraction of the level just before the jump. The
distributions of these jumps are allowed to depend on both the originating and
target states. Under a very weak assumption an explicit formula is developed
for the conditional moments (of all orders) of the time stationary distribution.
Special cases are then considered and it is shown how to use this result to study
a growth collapse process in which the times between collapses have a phase type
distribution.

The fourth study is [3]. In this paper is about generalizing existing results for
the steady state distribution of growth collapse processes with independent expo-
nential inter-collapse times to the case where they have a general distribution on
the positive real line having a finite mean. In order to compute the moments of
the stationary distribution, no further assumptions are needed. However, in order
to compute the stationary distribution, the price that one is required to pay is
the restriction of the collapse ratio distribution from a general one concentrated
on the unit interval to minus-log-phase-type distributions. A random variable
has such a distribution if the negative of its natural logarithm has a phase type
distribution. Thus, this family of distributions is dense in the family of all distri-
butions concentrated on the unit interval. The approach is to first study a certain
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Markov modulated shot-noise process from which the steady state distribution for
the related growth collapse model can be inferred via level crossing arguments.

Some (certainly not all) earlier literature is given in [1, 2, 4, 5, 6, 7, 8, 12, 13, 14]
and references therein.
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Diameter in weighted random graphs

Marc Lelarge

(joint work with Hamed Amini, Moez Draief)

Given a graph G = (V,E), the distance dist(a, b) between two nodes a and b in
V is the number of edges in E in the shortest path connecting these two vertices.
The diameter of G, denoted by diam(G), is the maximum graph distance between
any pair of vertices in V , i.e.

diam(G) = max{dist(a, b), a, b ∈ V, dist(a, b) <∞} .
To define the weighted diameter of a graph G = (V,E), we assign to each edge

e ∈ E a weight we which will be an exponential random variable with parameter
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one independent of everything else. For any a, b ∈ V , a path between a and b is
a sequence π = (e1, e2, . . . ek) where ei = (vi−1, vi) ∈ E and vi ∈ V for i ∈ [1, k],
with v0 = a and vk = b. We write ei ∈ π to denote the fact that edge ei belongs
to the path π. For a, b ∈ V , we define

distw(a, b) = min
π∈Π(a,b)

∑

e∈π
we ,

where the minimum is taken over all paths between a and b in the graph. The
weighted diameter is given by

diamw(G) = max{distw(a, b), a, b ∈ V, distw(a, b) <∞} .
For n ∈ N, let (di)

n
1 be a sequence of non-negative integers such that

∑n
i=1 di

is even. By means of the configuration model [4], we define a random multigraph
with given degree sequence (di)

n
1 , denoted by G∗(n, (di)n1 ) as follows. To each

node i we associate di labeled half-edges. All half-edges need to be paired to
construct the graph, this is done by randomly matching them. When a half-edge
of i is paired with a half-edge of j, we interpret this as an edge between i and
j. The graph G∗(n, (di)n1 ) obtained following this procedure may not be simple,
i.e., may contain self-loops due to the pairing of two half-edges of i, and multi-
edges due to the existence of more than one pairing between two given nodes.
Conditional on the multigraph G∗(n, (di)n1 ) being a simple graph, we obtain a
uniformly distributed random graph with the given degree sequence, which we
denote by G(n, (di)

n
1 ), [7].

For r ∈ N, let u
(n)
k = |{i, di = k}| be the number of vertices of degree k and

m(n) be the total degree defined by

m(n) =

n∑

i=1

di =
∑

k≥1

ku
(n)
k .

We assume that the sequence (di)
n
1 satisfies the following regularity conditions

analogous to the ones introduced in [8]:

(i) There exists a distribution p = {pk}∞k=0 such that u
(n)
k /n → pk for every

k ≥ 0 as n→∞;
(ii) λ :=

∑
k≥0 kpk ∈ (0,∞);

(iii)
∑n
i=1 d

2
i = O(n),

(iv) for some τ > 0, ∆n := maxi∈V di = O(n1/2−τ ).

Let dmin denote the minimum degree of the graph G(n, (di)
n
1 ), i.e. dmin =

min{ k | u(n)k > 0 }. We define q = {qk}∞k=0 the size-biased probability mass

function corresponding to p, by qk = (k+1)pk+1

λ , and let ν denote its mean, i.e.

ν =
∞∑

k=0

kqk ∈ (0,∞) .

The condition ν > 1 is equivalent to the existence of a giant component in the
configuration model and we will consider this case only in what follows.
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The typical graph distance has been studied in this framework by Van der
Hofstad, Hooghiemstra and Van Mieghem:

Theorem 8. [9] For a and b chosen uniformly at random in the giant component
of G(n, (di)

n
1 ), we have

dist(a, b)

logn

p→ 1

log ν
.

Let Gq(z) be the probability generating function of {qk}∞k=0, i.e. Gq(z) =∑∞
k=0 qkz

k. The extinction probability of the branching process with offspring
distribution q, is the smallest solution β in [0, 1] of the fixed point equation β =
Gq(β). We also define β∗ = G′

q(β).
The diameter has been studied by Fernholz and Ramachandran:

Theorem 9. [6] We have

diam(G(n, (di)
n
1 ))

logn

p→ 1

log ν
− 1(dmin = 2)

log q1
− 2

1(dmin = 1)

log β∗

=
1

log ν
+

2− 1(dmin ≥ 2)− 1(dmin ≥ 3)

| log β∗|
Concerning weighted distances, the typical distance has been investigated by

Bhamidi, Van der Hofstad and Hooghiemstra:

Theorem 10. [3] For a and b chosen uniformly at random in G(n, (di)
n
1 ) with

dmin ≥ 2 and with i.i.d. exponential 1 weights on its edges, we have

distw(a, b)

logn

p→ 1

ν − 1
.

A similar result holds for Erdős-Rényi random graph [2].
Our main result gives the asymptotic behavior of the diameter of G(n, (di)

n
1 )

(extending the result of [5] dealing with regular graphs):

Theorem 11. Consider a random graph G(n, (di)
n
1 ) with i.i.d. exponential 1

weights on its edges. Then

diamw(G(n, (di)
n
1 ))

logn

p→ 1

ν − 1
+ 2

1(dmin ≥ 3)

dmin
+

1(dmin = 2)

(1− q1)
+ 2

1(dmin = 1)

1− β∗
.

These results allow us to analyze an asynchronous randomized broadcast algo-
rithm for random regular graphs. Our results show that the asynchronous version
of the algorithm performs better than its synchronized version [1]: in the large size
limit of the graph, it will reach the whole network faster even if the local dynamics
are similar on average.
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Markov couplings, stochastic orders, and stochastic relations

Lasse Leskelä

Stochastic monotonicity is a key methodology for approximating random vari-
ables and processes whose distributions are hard to compute explicitly [7, 8, 10].
For example, the stochastic ordering of two stationary Markov jump processes
can be established without the explicit knowledge of the stationary distributions,
by verifying that the generators of the systems preserve the order (Massey [6],
Whitt [11]).

In this talk I will discuss my recent paper [5] which introduces a new definition
of stochastic relation. This definition is motivated by the observation that for
the stochastic ordering of two stationary random dynamical systems, it suffices to
show that the generators of the systems preserve some, not necessarily reflexive or
transitive, subrelation of the order. A relation between two measurable spaces S1

and S2 is a measurable set R ⊂ S1 × S2, and we denote

x ∼ y
if (x, y) ∈ R. The stochastic relation generated by R is defined in terms of cou-
plings. Recall that a coupling of two random elements X and Y is a bivariate
random element (X̂, Ŷ ) such that X̂ is distributed according to X and Ŷ is dis-
tributed according to Y . For random variables X and Y we denote

X ∼st Y

if there exists a coupling (X̂, Ŷ ) of X and Y such that X̂ ∼ Ŷ with probability one.
The relation ∼st is called the stochastic relation generated by ∼. The stochastic
relation ≤st generated by a partial order ≤ on a space S corresponds to the usual
strong stochastic order on S.

One of the main results of the paper is the following functional characteriza-
tion [5, Theorem 2.5], which can be regarded as a measurable version of Strassen’s
coupling theorem [9]. The conjugate of a set B ⊂ S1 is defined by B→ =
∪x1∈B{x2 ∈ S2 : x1 ∼ x2} (see Figure 1) and the conjugate of a function f
on S1 by f→(x2) = supx1:x1∼x2

f(x1).
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S1

S2

B

B
→

R

Figure 1. Relational conjugate of a set B ⊂ S1.

Theorem. For any stochastic relation generated by a closed relation R between
two complete separable metric spaces S1 and S2, the following are equivalent:

(1) X ∼st Y ,
(2) P(X ∈ B) ≤ P(Y ∈ B→) for all compact B ⊂ S1,
(3) E f(X) ≤ E f→(Y ) for all upper semicontinuous compactly supported f :

S1 → R+.

The following results are obtained by applying the above theorem:

(1) necessary and sufficient conditions for a pair of probability kernels to pre-
serve a stochastic relation, and

(2) an iterative algorithm for computing the maximal subrelation of a given
relation that is preserved by a pair of probability kernels (see [4] for a
numerical implementation).

Coupling results based on this theory have a broad range of applications. In this
talk I will discuss applications to multilayer call centers [3] and load balancing in
parallel queues [5, Section 5.3]. Besides queueing systems, such coupling techniques
have also been seen to be valuable when analyzing interacting particle systems (e.g.
[1]).
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Nonlinear large deviations: Exact Asymptotics

David McDonald

(joint work with Ivo Adan, Bob Foley)

Rare events are important in fields such as finance, inventory, reliability, manufac-
turing and telecommunications, and often correspond to catastrophes. Simulation
is difficult precisely because the rare events are rare. Here we study large devia-
tions that are more likely to result from the accumulation of many slightly unusual
steps (light-tailed) rather than a single giant step (heavy-tailed). The aim is to
develop methodology for determining how rare a particular large deviation is; i.e.
the probability of the rare event, and how the system evolves as the large deviation
develops. In particular, we are primarily interested in the unscaled process—not
the fluid limit and not the log probability of the rare event. Among other things,
these two pieces of information can help a designer decide whether, and how, to
redesign a system to make a particular large deviation less likely.

We are particularly interested in analyzing large deviations where a large de-
viation in one part of the system was triggered by an earlier large deviation in
another part of the network. In such situations, the most probable path (fluid
limit) changes direction.

If the earlier large deviation is not a problem or even desirable, the system
manager can be sideswiped by the later catastrophic large deviations. To illustrate
this large deviation we propose a simplistic model called Subprime. We wish the
reader to know that the model is not serious, but the message is.

Suppose new mortgages in good standing arrive at rate λ. Mortgages in good
standing are paid off at rate µ2r20 or go into arrears at rate µ2r21. Mortgages in
arrears convert to mortgages in good standing at rate µ1 although this conversion
may be the result of a short sale. Let x represent the number of mortgages in
arrears; i.e. the number of customers at node 1. Let y be the number of mortgages
in good standing; i.e. the number of customers at node 2. Let X denote the
Markov process with states (x, y). The flow rates along the arcs when both queues
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✲
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✛

❄
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Figure 1. Transition rates for the Subprime network

are positive is shown in Fig. 1. The steady state of this Jackson network is

π(x, y) = (1− λ1
µ1

)(
λ1
µ1

)x(1 − λ2
µ2

)(
λ2
µ2

)y where λ1 =
λr21
µ1r20

, λ2 =
λ

µ2r20

and where we assume λ1 < µ1 and λ2 < µ2 for stability.
Note that large deviations in the first coordinate correspond to a large number

of mortgages in arrears, which would be undesirable. Large deviations in the
second coordinate correspond to a large number of mortgages in good standing,
which would seem to be desirable.

This simplistic model is simply a two node Jackson network with a single server
at each node, and the stationary distribution π is known, which will make it easier
to illustrate several points. However, our methodology is designed for situations
where π is unknown, and we address that later.

Consider the following folk theorem: The large deviation path from the origin
to a rare event can be obtained by observing the time reversal from the rare event
back to the origin.

The folk theorem has been applied rigorously for a few networks [2, 8, 10]. As-
sume that we have an irreducible, discrete time Markov process X on a countable
state space with a stationary distribution π. Let X∗ denote the time reversal of
X . Let x0 be a state with π(x0) > 0 and xℓ be a sequence of states with π(xℓ)→ 0
as ℓ → ∞. Let E∗

ℓ denote the set of paths that start at xℓ and go to x0 without
returning to xℓ. Let F

∗
ℓ be a set of paths such that

lim
ℓ→∞

Pxℓ
(X∗ ∈ F ∗

ℓ ) = 1(1)

Theorem 12 (Large Deviation Folk Theorem). Let Eℓ denote the time reversal
of paths in E∗

ℓ . Let Fℓ denote the time reversal of paths in F ∗
ℓ ∩E∗

ℓ ; i.e. determine
the first time the path in F ∗

ℓ ∩ E∗
ℓ hits x0 and take this as time 0 for the time

reversal. Then

lim
ℓ→∞

Px0(X ∈ Fℓ|X ∈ Eℓ) = 1(2)

To apply this theorem to our Subprime example first define X to be the discrete
time chain whose uniformization is the Subprime process (also denoted by X). Let
xℓ = (ℓ, 0) and x0 = (0, 0). Using Kurtz’s theorem [7] and Corollary 1 in [4], there
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is a fluid limit p∗(t); 0 ≤ t ≤ T that is piecewise linear connecting the points:

p∗(0) = (1, 0)

p∗(
1

(µ1 − µ2r21)
) = (0,

µ1 + λ− µ2

µ1 − µ2r21
) and

p∗(T ) = (0, 0)

with T = (µ2r20 − λ)−1 and that

lim
ℓ→∞

P(ℓ,0)

{
sup

0≤t≤T

∣∣∣∣
X∗[ℓt]

ℓ
− p∗(t)

∣∣∣∣ ≤ ǫ
}

= 1(3)

for all ǫ > 0. Consequently, define F ∗
ℓ = {X∗ : sup0≤t≤T |X

∗[ℓt]
ℓ − p∗(t)| ≤ ǫ}.

Thus, defining p(t) = p∗(T − t) we have

lim
ℓ→∞

P(0,0)

{
sup

0≤t≤T
|X [ℓt]

ℓ
− p(t)| ≤ ǫ | X hits (ℓ, 0) before (0, 0)

}
= 1

Proof of Folk Theorem.

Px0(X ∈ Fℓ | X ∈ Eℓ) =
π(x0)Px0{X ∈ Fℓ}
π(x0)Px0(Eℓ)

=
π(xℓ)Pxℓ

{X∗ ∈ F ∗
ℓ ∩ E∗

ℓ }
π(xℓ)Pxℓ

(X∗ ∈ E∗
ℓ )

→ 1 because of (1).

�

We can apply the folk theorem to the Subprime network even if we didn’t know
the steady state since the Subprime chain is time reversible. More generally if we
know the steady state π we can calculate the time reversal. We discuss what to
do if we don’t later. Assume µ1 + λ > µ2 then by stability

µ1 > µ2 − λ > µ2 − µ2r20 = µ2r21

i.e. the chain drifts northwest. Therefore the time reversal starting from (ℓ, 0)
drifts northwest until it hits the y axis. Then it jitters down the y axis. Hence the
large deviation path from (0, 0) has two segments. The first is the time reversal of
the subprime chain with respect to the measure

(
1− µ2r21

µ1

)(
µ2r21
µ1

)x

which is equivalent to running the film of the jitter down the y axis backwards.
This results in a jitter up the y axis to a point at roughly ℓ(µ1+λ−µ2)/(µ1−µ2r21).
The network seen by the loan manager is as in Figure 2. The loan manager sees
mortgages in good standing increasing at rate µ2r20−λ while mortgages in arrears
are arriving at rate µ2r21 which convert to mortgages in good standing at rate µ1.

The second segment starts at roughly ℓ(µ1 + λ − µ2)/(µ1 − µ2r21). The large
deviation heads south-east after reversing the arrows of the Subprime chain. The
loan manager sees Figure 3.
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µ2r20 ✲ y ✣✢
✤✜

2

❄

λ

paid off

✲
µ2r21

x ✣✢
✤✜

1 ✲

✻
✛

❄
µ1

Figure 2. Transition rates for the large deviation path as it jit-
ters up the y axis

µ2r20 ✲ y ✣✢
✤✜

2

❄

λ

paid off

✲
µ1

x ✣✢
✤✜

1 ✲

✻
✛

❄
µ2r21

Figure 3. Transition rates for the large deviation path as loans
turn bad too fast to convert them.

Lots of good mortgages turn bad at rate µ1 and only convert to good mortgages
at rate µ2r21. The mortgage manager has been sideswiped by an excessive number
of new good mortgages turning bad.

Unfortunately we usually cannot directly calculate the time reversal since the
steady state is unknown. Suppose the government increases lending when the
number of good loans gets too small. Then the product formula fails. Can we still
use the folk theorem? The answer is yes by using an approximate time reversal.

Let Z+ = {0, 1, 2, . . .} and Z = {. . . ,−1, 0, 1, . . .}. Uniformize the CTMC to a
DTMC with transition kernel K on the state space S = Z+ × Z+. Assume that
there is a Markov additive kernel K∞ on S∞ = Z× Z+; i.e.

K∞((x0, y0); (x1, y1) = K∞((0, y0); (x1 − x0, y1)
and a region N ( N = {(x, y) : x ≤ 0} in the subprime example) such that
K(i; j) = K∞(i; j) for points i = (x0, y0), j = (x1, y1) where i ∈ S and j ∈ Nc.
Let ∆ = S ∩N.

Now find a left invariant measure ψ for K∞ which has the same asymptotics as
π on ∆ as y → ∞. For the subprime network ψ(x, y) = (λ1/µ1)

x · (λ2/µ2)
y ; i.e.

ψ is proportional to π. The approximate time reversal

←−
K(i; j) =

ψ(j)

ψ(i)
K∞(j; i)

is defined for i in S \∆ and j in S. Let←−X represent the approximate time reversal.
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Let h(x, y) = π(x, y)/ψ(x, y) Then h is harmonic for
←−
K in S \∆. If i ∈ S \∆

then
∑

j∈S

←−
K(i; j)h(j) =

1

ψ(i)

∑

j∈S

ψ(i)

ψ(j)

←−
K(i; j)π(j)

=
1

ψ(i)

∑

j∈S
π(j)K∞(j; i) =

1

ψ(i)

∑

j∈S
π(j)K(j; i) =

π(i)

ψ(i)
= h(i)

We now prove a neat lemma. Assume
←−
X drifts toward ∆ (west in the Subprime

example). Let ←−τ be the first time the x-component of
←−
X is in ∆. By assumption←−τ < ∞ a.s. h(0, y) → C as y → ∞ by construction and is therefore bounded.

It follows that h(
←−
X (n ∧ ←−τ )) is a uniformly integrable martingale and h(x, y) =

E(x,y)h(
←−
X (←−τ )); i.e.

π(x, y)

ψ(x, y)
= E(x,y)h(

←−
X (←−τ )).

The uniform integrability follows as below plus the structure of
←−
X .

To check that h(
←−
X (n∧←−τ )) is a uniformly integrable martingale we use Propo-

sition IV-3-16 in [9]. To do so we must check
∫

τ<∞
|h(←−X (←−τ ))|dP <∞(4)

lim
n→∞

E((x,y)

(
χ{←−τ > n}|h(←−X (n))|

)
<∞(5)

(4) follows immediately from the fact that h tends to a constant for y → ∞. (5)
follows by the observation that by time reversal with respect to π:

lim
n→∞

E((x,y)

(
χ{←−τ > n}|h(←−X (n))|

)
=

1

ψ(x, y)
lim
n→∞

Eπ (χ{τ > n;X(n) = (x, y)})

≤ 1

ψ(x, y)
lim
n→∞

Pπ (τ > n) = 0

where τ is the first time X is in ∆.
If
←−
X drifts northwest then as (x, y) tends to ∞ the y component of

←−
X (τ) tends

to ∞ so

lim
x→∞

π(x, y)

ψ(x, y)
= C.

In the subprime case this just gets us that

lim
(x,y)→∞

π(x, y)

(λ1/µ1)x · (λ2/µ2)y
= C;

but of course we already knew that. As we will see below, if the government gets
involved, ψ is still asymptotically of product form

ψ(x, y) = (λ1/µ1)
x ·H(y)(λ2/µ2)

y

where H(y)→ 1 as y →∞.
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We now sketch how to construct an invariant measure. Suppose K∞ is close
to random walk kernel R on Z × Z. Suppose π(0, y) decays like exp(−θ2y) with
exp(−θ2) = λr21/µ2r20 as it does for the Subprime example since the exact asymp-
totics can be obtained by an analysis of the jitter case up the y axis. Find a pair
(θ1, θ2) such that η(x, y) = exp(−θ1x − θ2y) is left invariant for R and such that←−
R drifts west where

←−
R is the reversal with respect to η. Define the kernel

Qy1,y2 =
∑

x

e−(θ1x+θ2(y2−y1))K∞((x, y2); (0, y1)).

In general Q will not be substochastic. Then by the proposition below there exists
a harmonic function H(y) for Q such that H(ℓ)→ 1 as ℓ→∞.

Since H is harmonic for Q:

H(y1) =
∑

y2≥0

Qy1,y2H(y2)

=
∑

y2≥0

∑

x

e−(θ1x+θ2(y2−y1))K∞((x, y2); (0, y1))H(y2)

i.e.

H(y1)e
−θ2y1 =

∑

y2≥0

∑

x

e−(θ1x+θ2y2)H(y2)K
∞((x, y2); (0, y1)).

Hence ψ(x, y) = H(y)e−(θ1x+θ2y) is left invariant for K∞ and has the required
asymptotics in y.
H will exist under the following conditions:

• Q is not substochastic but still has radius of convergence R > 1.
• Q is “close” to a matrix J where

Jy1,y2 =
∑

x

e−(θ1x+θ2(y2−y1))R∞((x, y2); (0, y1)).

By close, we mean that
∑

i≥0

∑
j≥0 |Qij − Jij | <∞.

• Moreover

Jij = pj−i for i, j ∈ Z+ where(6)

{px, x ∈ Z} is a proper probability distribution(7)

there exists x < 0 < y with px > 0 and py > 0,(8)

d
.
=
∑

x∈Z

xpx exists and is finite, and(9)

d 6= 0(10)

The following Proposition is proved in [5]: Let A
.
= Q ∧ J, which is also sub-

stochastic. Suppose that Q is an irreducible, nonnegative matrix with convergence
parameter R > 1 and that Q is close to J where J satisfies (6) through (10). If the
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drift defined (9) satisfies d > 0, then

An~1 ↓ ~a = A~a > 0(11)

~ay = ~1(12)

Qn~a ↑ H = QH > 0, and(13)

lim
y→∞

H(y) = 1.(14)

Thus, H is a nonnegative harmonic function with H(ℓ)→ 1.
We conclude by remarking that exact asymptotics with non-linear path be-

haviour was first described in [3] although the conditions to check that this be-
haviour applies are not given explicitly. Moreover the work [6] is closely related
to ours. We believe the idea of an approximate time reversal has potential for
calculating exact asymptotics for a variety of networks and for simulation. After
all it is a lot easier to start a simulation at the rare event (ℓ, 0) and let it wander
back to (0, 0).
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On the stability of population processes

Ilkka Norros

(joint work with Hannu Reittu)

Consider the following idealized peer-to-peer file-sharing system. The file consists
of k chunks that can be transfered separately. There is one permanent seed peer
possessing all chunks. Every non-seed peer makes, with Exp(1) distributed inter-
vals, a contact to a randomly selected peer (seed included). If the contacted peer
has a chunk that the contacting peer is missing, a download can happen instanta-
neously. New peers arrive according to the Poisson(λ) process. When a non-seed
peer has collected all chunks, it leaves the system immediately. Our aim is to find
algorithms for the contacting peer that provide stable operation with any input
rate λ despite the ‘non-altruism’ of the peers. For simplicity, we focus on the ‘toy
model’ case k = 2.

The non-seed peer population is partitioned into classes according to the chunks
a peer possesses, and often also according to its state in the algorithm it follows.
This type of models for file-sharing systems were introduced by Massoulie and
Vojnovic [2], making them instances of population processes as studied by Kurtz
[1]. The models in question are Markovian queueing networks whose transition
intensities scale linearly when both the input rates and node occupancies are mul-
tiplied by N →∞. In this scaling, they approach deterministic dynamic systems
described by autonomous ordinary differential equations. Kurtz’ little monograph
[1] gives limit theorems in both LLN and CLT regimes concerning the behaviour
of population processes on fixed time intervals. However, he did not study the
connection between the stability of a population process and the stability of the
dynamical system obtained as the ‘large system limit’ of the former. Still today,
little seems to be known about this question (unless something important has es-
caped our attention). Nevertheless, together with each system, identified by the
chunk selection algorithm, we analyse its large system limit, since studying the
stability of the dynamical system is easier than that of the stochastic system and
can yield valuable insights concerning the latter.

We first show that a ‘Plain Random Contact’ system with the trivial greedy
algorithm is unstable (when λ > 1): one of the chunks is eventually present as at
most one non-seed copy, while the number of copies of the other grows linearly.
This result has been recently proven by Hajek and Zhu also in the case of many
chunks — see Hajek’s talk in this workshop.

As our first attempt to alleviate the ‘rare chunk phenomenon’, we consider the
‘Deterministic First Chunk’ system where an incoming peer first decides randomly
which chunk it wants to download first, and downloads nothing in its encounters
until it finds a peer possessing that chunk. Interestingly, the large system limit
of this system is unstable, but the stochastic one is conjectured, by simulation
evidence, to be stable despite of showing rather strong irregular fluctuations. If
this conjecture is true, we thus have an example showing that the instability of a
population process cannot be inferred from the instability of its large system limit.
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We are still missing an example of a population process with ‘stability discrepancy’
in the opposite direction.

Arrivals to the Plain Random Contact system are similar to those of the clas-
sical Pólya urn, where upon picking a ball a new one with same color is added.
To keep the system in balance, the arrivals should rather be those of Bernard
Friedman’s urn, where the added ball is of the opposite colour. We first tried to
improve the performance of the Deterministic First Chunk system by letting the
arriving peer make one test contact and decide to download the opposite chunk
first. The resulting system seemed to be stable, but showed strong, rather regular
oscillations. The next algorithm finally provided the desired performance. In [4]
it was generalized for many chunks as follows:

Enforced Friedman algorithm: Make contact to three peers
simultaneously. If there are ‘minority chunks’ possessed by exactly
one of the three, download a randomly chosen minority chunk,
otherwise download nothing.

We proved that the corresponding dynamical system is globally asymptotically
stable in the two-chunk case. However, proving the stability of the stochastic
Enforced Friedman system has remained a challenge for us.
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Short and Long-term behavior of Stochastic Systems through Mean
Field Asymptotics

Alexandre Proutiere

(joint work with Charles Bordenave, David McDonald)

In statistical physics, Mean Field Asymptotics (MFA) have been traditionally used
to analyze the behavior of stochastic systems comprising a large number of inter-
acting particles. By letting the number of particles tends to infinity, the system
dynamics are captured in most cases by a set of deterministic ODEs or PDEs,
see e.g. Boltzmann equation [2] describing the evolution of the statistical dis-
tribution of particles in rare gazes. Beyond statistical physics, MFA have been
successfully applied in many contexts, including population dynamics [6], genetics
[7], econophysics [4], computer networks [3]. MFA are primarily used to approx-
imate dynamics of large stochastic systems, but have also been instrumental in
the analysis of the underlying limiting ODEs or PDEs, for instance in solving



2784 Oberwolfach Report 48/2010

Cauchy problems related to these limiting equations [10, 11]. Probabilistic meth-
ods have been developed to justify the convergence of stochastic systems towards
their deterministic counterpart in the mean field regime. The most common ar-
gument to derive mean field convergence involves the construction of appropriate
martingales associated with the Markov processes describing the evolution of the
empirical distribution of the particle system, see [6, 5]. A different approach to
justify convergence to the mean field regime relies on the concept of propagation
of chaos originated with Kac’s Markovian models of gas dynamics [9], see [12] for
a comprehensive review.

Using the aforementioned standards approaches, convergence towards the mean
field regime is limited to short time horizons only. More precisely, if fN(t) denotes
the empirical distribution at time t of the stochastic system with N particles, we
obtain
limN→∞ P[supt≤τn ‖fN(t)−f(t)‖] = 0, where f(t) denotes the particle distribution
in the mean field regime, i.e. a solution of the limiting ODE or PDE, at time t,
and where τN is a time horizon that should remain o(log(N)). In particular, MFA
cannot say anything about the long-term behavior of stochastic systems. We may
construct examples of stochastic systems with a unique steady-state distribution,
but whose corresponding limiting mean field ODE or PDE does not converge to any
equilibrium point. In some cases, see e.g. [8], it is possible to show convergence
to the mean field regime of stochastic systems in steady state. To do so, one
has to assume that the stochastic system with N particles possesses a unique
steady state distribution πN , that the sequence of probability measures πN is
tight, and that the limiting ODE has a unique attractive equilibrium point f(∞).
Under such strong assumptions, we have limN→∞ πN = limN→∞ limt→∞ fN (t) =
limt→∞ limN→∞ fN (t) = f(∞).

In general, MFA asymptotics cannot help predicting ergodicity conditions of the
initial stochastic systems. One may wonder under which conditions the following
equivalence holds: the system in the mean field regime is globally stable if and only
if the initial stochastic systems are ergodic when N is large enough. We investigate
this equivalence in the case of systems of coupled queues. We consider a system of
N infinite queues, and sharing a single resource (e.g. a radio channel) in a decen-
tralized manner using slotted Aloha [1], a classical random multi-access protocol.
Packets arrive in queue i according to some Markovian process of intensity λi, and
in each slot, in queue i is non-empty, a packet is transmitted with fixed probability
pi. When two or more queues transmit simultaneously, none of the transmissions
is successful. Deriving ergodicity conditions of the Markov chain describing the
evolution of queue lengths has long eluded probabilists, and only a few simple
systems (comprising very few queues, N = 2 or 3) can be analyzed, see e.g. [13].
When N grows large, the transient behavior of the system can be approximated
using MFA. In the mean field regime, the distribution of queue lengths satisfies a
set of ODEs. By studying the conditions under which these ODEs form a globally
stable dynamical system, we hope to get a good approximation of the ergodicity
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conditions of the original stochastic systems. Indeed we show that the ergodic-
ity conditions converge when N tends to ∞ to the global stability conditions of
the corresponding ODEs in the mean field regime. The proof of this equivalence
essentially relies on some structural and monotonicity properties of the coupled
queue systems.
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Counting and sampling matchings on infinite graphs

Justin Salez

(joint work with Charles Bordenave, Marc Lelarge)

A matching on a graph G = (V,E) is a subset of pairwise disjoint edges M ⊆ E.
In the so-called monomer-dimer model [12, 16], a random matchingMz

G is drawn
on G according to the Gibbs-Boltzmann distribution with parameter z > 0 :

(1) P(Mz
G =M) =

z|M|

PG(z)
, where PG(z) =

∑

M

z|M|.

In particular,M1
G is just a uniformly chosen matching on G, andMz

G converges in
distribution to a uniformly chosen maximummatching as z →∞. The normalizing
factor PG(z) is known as the matching polynomial of G; it has been extensively
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studied in algebraic graph theory [11, 15]. The marginal distribution viewed by a
given vertex v ∈ V can be described by the [0, 1]−valued number

(2) πz(G, v) = P (v is unmatched inMz
G) .

This defines a [0, 1]−valued functional πz on the class of finite rooted graphs, and
it happens to satisfy the following local recursion [12, 10, 3] :

(3) πz(G, v) =

(
1 + z

∑

w∼v
πz(G− v, w)

)−1

.

Our first result states that this formula can be used to define πz on infinite graphs,
in a way that continuously extends the finite case definition. Continuity is here
understood with respect to the topology of local convergence introduced by Ben-
jamini and Schramm [4], and studied further by Aldous and Steele [2], and Aldous
and Lyons [1]. It provides a natural and convenient framework for studying asymp-
totical properties of large diluted graphs [5, 9, 14, 8]. Although our results hold in
slightly larger generality, for the sake of clarity we here restrain ourselves to the
class G of all locally finite rooted graphs with at most exponential growth, which
contains in particular all graphs with bounded degree. We let H be the space of
analytic functions on C \ (−∞, 0], with uniform convergence on compact sets.

Lemma 1 (The fundamental local recursion).

(1) For any z > 0, the recursion (3) admits a unique solution πz : G → [0, 1].
(2) For any fixed (G, v) ∈ G, z 7→ πz(G, v) extends analytically to C\ (−∞, 0].
(3) The resulting mapping (G, v) ∈ G 7−→ π(·)(G, v) ∈ H is continuous.

This has strong implications for random matchings, which we now list. The first
one is the existence and uniqueness of the monomer-dimer model on any graph
G ∈ G. On the regular lattice G = Zd, this is well known [12, 6].

Theorem 13 (Random matchings on infinite graphs). Let G ∈ G and z > 0. As
M ranges over all finite matchings of G, the cylinder-event marginals

P(M ⊆Mz
G) := z|M|

2|M|∏

k=1

πz(G \ {v1, . . . , vk−1}, vk),

are consistent and independent of the ordering v1, . . . v2|M| of the vertices matched
by M . They thus determine the law of a random matchingMz

G on G, which con-
tinuously extends the finite case definition (in the sense of local weak convergence).

Theorem 14 (Scaling limit for the matching polynomial). Let (Gn)n≥1 be a se-
quence of finite graphs converging locally weakly under uniform rooting to a random
rooted graph (G, v) in G. Then,

1

|Vn|
logPGn

(z) −−−−→
n→∞

∫ z

0

1− E [πs(G, v)]

s
ds

analytically on C \ (−∞, 0], under the only requirement that the degree of a uni-
formly chosen vertex in Gn is uniformly integrable as n→∞.
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Motivated by the asymptotics of the matching number

ν(G) = degPG = max{|M |;M matching on G},
we now let z → ∞. The limit π∞(G, v) = limz→∞ πz(G, v) turns out to exist for
any (G, v) ∈ G. Moreover, π∞ : G → [0, 1] is the largest solution to the recursion

(4) π∞(G, u) =


1 +

∑

v∼u

(
∑

w∼v
π∞[G− u− v, w]

)−1



−1

,

with the conventions 0−1 = ∞, ∞−1 = 0. Unfortunately, several distincts so-
lutions may exist, and this results in the non-continuity of π∞ with respect to
local convergence. However, continuity turns out to hold “on average”, i.e. when
looking at a uniformly chosen vertex v. Consequently, we obtain :

Theorem 15 (Scaling limit for the matching number). Let (Gn)n≥1 be a sequence
of finite graphs satisfying |En| = O(|Vn|) and converging locally weakly under
uniform rooting to a random rooted graph (G, v) in G. Then,

ν(Gn)

|Vn|
−−−−→
n→∞

1− E[π∞(G, v)]

2
.

In particular, in the case where the limit (G, v) is a unimodular Galton-Watson
tree with degree distribution π, (4) can be solved explicitely [7] and we obtain:

ν(Gn)

|Vn|
−−−−→
n→∞

min
x∈[0,1]

{
1− 1

2
xφ′(1− x) − 1

2
φ(1 − x)− 1

2
φ

(
1− φ′(1− x)

φ′(1)

)}
,

where φ(x) =
∑
πnx

n is the generating function of π.

For example, the random weak limit of a sequence of Erdős-Rényi graphs with
parameter c/n on n vertices is a unimodular Galton-Watson tree with degree
distribution π = Poisson(c). In this case, φ(x) = exp(cx − c), and we recover
precisely the well known formula by Karp and Sipser [13]. More generally, a
unimodular GWT with degree distribution π (where π has finite mean) is a random
rooted tree obtained by a Galton-Watson branching process where the root has
offspring distribution π and all other genitors have offspring distribution π̂, where

(5) ∀n ∈ N, π̂n = (n+ 1)πn+1/
∑

k≥1

kπk.

Although this tilted offspring distribution might seem unnatural at first sight, uni-
modular GWTs are in fact the most reasonable random weak limit for a sequence
of locally tree-like random graphs (see [1]).

References

[1] D. Aldous and R. Lyons, Processes on unimodular random networks, Electronic Journal of
Probability 12 (2007), 1454–1508.

[2] D. Aldous and J. M. Steele, The objective method: probabilistic combinatorial optimization
and local weak convergence. In Probability on discrete structures, volume 110 of Encyclopae-
dia Math. Sci., pages 1–72. Springer, Berlin (2004).



2788 Oberwolfach Report 48/2010

[3] M. Bayati, D. Gamarnik, D. Katz, C. Nair, P. Tetali Simple deterministic approximation
algorithms for counting matchings, Proc. of the 39th Annual Symposium on Theory of
Computing (2007).

[4] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs,
Electron. J. Probab. 6 (2001), no. 23, 13 pp. (electronic).

[5] I. Benjamini, O. Schramm, and A. Shapira, Every minor-closed property of sparse graphs
is testable. In R. E. Ladner and C. Dwork, editors, STOC, pages 393–402, ACM (2008).

[6] J. Berg, On the absence of phase transition in the monomer-dimer model, Technical report,
Amsterdam, The Netherlands (1998).

[7] C. Bordenave, M. Lelarge, and J. Salez, The rank of diluted random graphs, to appear in
Annals of probability.

[8] C. Borgs, J. Chayes, J. Kahn, L. Lovász, and W. Notes, Left and right convergence of graphs
with bounded degree, Arxiv preprint arXiv:1002.0115 (2010).

[9] G. Elek, On limits of finite graphs, Combinatorica 27 (2007), (4) 503–507.
[10] C. D. Godsil, Matchings and walks in graphs, J. Graph Theory 5 (1981), (3) 285–297.
[11] C. D. Godsil, Algebraic combinatorics, Chapman and Hall Mathematics Series. Chapman

& Hall, New York (1993).
[12] O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys.

25 (1972), 190–232.
[13] R. Karp and M. Sipser, Maximum matchings in sparse random graphs, Proc. of the Twenty-

second Annual Symposium on Foundations of Computer Science, IEEE 364–375 (1981).
[14] R. Lyons, Asymptotic enumeration of spanning trees, Combin. Probab. Comput. 14 (2005),

491–522.
[15] L. Lovász and M. D. Plummer, Matching theory, AMS Chelsea Publishing, Providence, RI

(2009). Corrected reprint of the 1986 original [MR0859549].
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Distribution of cost functionals in spatial network models: Scaling
limits and Monte-Carlo methods

Volker Schmidt

(joint work with Frank Fleischer, Catherine Gloaguen and Florian Voss)

We consider stationary point processes on random geometric graphs and Palm
calculus in order to analyse the distribution of shortest path lengths and other
cost functionals in spatial stochastic networks [3,6,8]. More precisely, we model
location and type of network stations by marked point processes on the edge sets
of random tessellations. Our model can be applied e.g. to telecommunication
networks involving road systems [4]. Based on this modelling approach it is then
possible to define cost functionals like typical connection lengths which can be
analysed by Monte Carlo simulation and, simultaneously, by asymptotic methods.

In particular, we show how the distribution of such cost functionals can be
estimated using efficient simulation algorithms for the typical cell of random tes-
sellations [1,2,5,7]. Furthermore, we derive scaling limits for the distribution of
these cost functionals for infinitely dense and sparse networks, respectively. In
both cases the limit distribution is a parametric distribution whose parameters
are known or depend on the underlying tessellation [5,9].
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Finally, both approaches can be combined in order to obtain parametric dis-
tributions for connection lengths in spatial networks which can be used e.g. to
efficiently analyse existing and future telecommunication networks [4].
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Three metrics for stochastic networks: capacity, queue-size and
complexity

Devavrat Shah

(joint work with David Tse, John Tsitsiklis, Damon Wischik, Yuan Zhong)

1. Model, A class of Policies

We consider a collection of N queues operating in discrete time, indexed by
τ ∈ {0, 1, . . . }: Qn(τ) be work in queue n, 1 ≤ n ≤ N at time τ , Q(τ) = [Qn(τ)]
be the vector of queue-sizes and initially it is Q(0). Let An(τ) be the total amount
of work arriving to queue n and Bn(τ) be the cumulative potential service provided
to queue n, up to time τ respectively, with A(0) = B(0) = 0 = [0]. We consider
single-hop network (for simplicity of exposition). Let dA(τ) = A(τ + 1) −A(τ)
and dB(τ) = B(τ + 1)−B(τ). Then basic Lindley recursion is

(1) Q(τ + 1) =
[
Q(τ)− dB(τ)

]+
+ dA(τ)
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where the [·]+ is taken componentwise. The fundamental ‘switched network’ con-

straint is that there is some finite set S ⊂ R+
N such that

(2) dB(τ) ∈ S for all τ .

For simplicity, we shall consider S ⊂ {0, 1}N . We will refer to π ∈ S as a schedule,
and S as the set of allowed schedules. The departure from queue n up to time τ is

Dn(τ) =
τ∑

s=0

dBn(τ)1{Qn(τ)>0},(3)

where 1{x} = 1 if x = true and 0 otherwise.
A policy needs to choose schedule dB(τ) ∈ S in each time slot. The specific

class of policies of interest are the so called maximum weight (MW) introduced (in
basic version) by Tassiulas and Ephremides [10]. In the basic version, the schedule
is chosen as follows (ties broken randomly or as per a fixed rule):

(4) dB(τ) ∈ argmax
π∈Sπ·Q(τ),

where we use notation: u · v =
∑
n unvn for u,v ∈ RN . More generally, given an

increasing function f : R+ → R+ with f(0) = 0, f(x)→∞ as x→∞ , the MW-f
policy chooses schedule

(5) dB(τ) ∈ argmaxπ∈Sπ·f(Q(τ)).

The specific class of policies of interest are those induced by f(x) = xα for α ∈
(0, 1); we shall denote this policy as MW-α policy. We shall assume the following.

Assumption 1. We assume that S ⊂ {0, 1}N is monotone: if π ∈ S, then for
any ρ ∈ {0, 1}N with ρn ∈ {0, πn}, ρ ∈ S.

To evaluate the performance of the system, we model the uncertainty in the
system (in form of arrivals) by means of appropriate stochastic model. Specifically,
we assume the following.

Assumption 2. Let A(·) be a random process with stationary increments. Let

there be λ ∈ R+
N so that for any r ∈ Z+

P

(
sup
τ≤r

1

r

∣∣∣A(τ) − λτ
∣∣∣ ≥ εr

)
≤ δr,(6)

where εr, δr go to 0 as r →∞.

The specific instances of A(·) that satisfy Assumption 2 and we shall consider
are: (a) An(·) is Bernoulli process with parameter λn ∈ [0, 1] independent across
n; (b) An(·) is Poisson process with parameter λn ∈ R+ independent across n.

2. Results

We describe the known results about interplay between three performance met-
rics of scheduling policies: (a) capacity, (b) average queue-size as well as expo-
nential tail bounds on queue-sizes, and (c) complexity of implementation of the
policy.
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2.1. Capacity. This is about how well the network resource is utilized by the
scheduling policy. While there are various ways to understand this, we shall define
the effective resource utilization by studying the net departure rate. Specifically,
define

dn = lim inf
τ

1

τ
Dn(τ).(7)

The net departure rate is d̄ =
∑
n dn. An algorithm is called optimal in terms of

capacity if for any given λ ∈ R+
N , the induced net departure rate d̄ = d̄(λ) is

maximal possible with probability 1. In [9], the following is established (by means
of fluid model):

1. For any policy with probability 1, d̄(λ) ≤
(∑

n λn
)
− q̄(λ) where q̄(λ) is

the value of the following optimization problem:

minimize
∑

n

rn over r ∈ R+
N

subject to ζ · r ≥ ζ · λ− 1, ∀ ζ ∈ D,(8)

where D = {ζ ∈ R+
N : ζ · π ≤ 1 ∀ π ∈ S}.

2. The net departure rate induced by MW-α is, with probability 1, d̄α(λ) =(∑
n λn

)
− q̄α(λ) where q̄α(λ) is the value of the following optimization

problem:

minimize
∑

n

r1+αn over r ∈ R+
N

subject to ζ · r ≥ ζ · λ− 1, ∀ ζ ∈ D,(9)

where D = {ζ ∈ R+
N : ζ · π ≤ 1 ∀ π ∈ S}.

3. Therefore, for any λ ∈ R+
N ,

lim
α↓0

q̄α(λ) =
(∑

n

λn
)
− q̄(λ).

The above results implies that the MW-α policy is asymptotically optimal in terms
of maximizing the departure rate as α→ 0+.

2.2. Queue-size on average. Here interest is in understanding the behavior of
average queue-size induced by policy when the notion of stationary distribution
as well as average queue-size (with respect to it) are well defined. To state results
(in a clean form) about average queue-sizes, we shall assume arrival process to be

independent Poisson. Given rate vector λ ∈ R+
N , define the load ρ(λ) as

minimize
∑

π∈S
απ over απ ≥ 0, ∀ π ∈ S subject to λ ≤

∑

π

αππ.(10)

Clearly,Q(·) is a Markov chain under MW-α policy when arrival process is Poisson.
When ρ(λ) < 1 then it is positive recurrent with well defined, unique stationary
distribution and ρ(λ) < 1 is necessary for this. For any MW-α policy with α > 0,
E[
∑

nQn] with respect to this stationary distribution is well defined (see [6]). Us-
ing the Foster-Lyapunov moment bound, it follows that for any system considered
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here, under the MW-1 policy, the stationary average queue-size is bounded above
as

E

[∑

n

Qn

]
≤ C n2

1− ρ(λ) ,(11)

where C > 0 is a universal constant. In [8] the following S dependent lower bound
on the net average queue-size under any policy is established:

minimize
∑

n

rn over r ∈ R+
N

subject to ζ · r ≥ λ · ζ2
2(1− λ · ζ) , ∀ ζ ∈ D,(12)

where D = {ζ ∈ R+
N : ζ · π ≤ 1 ∀ π ∈ S}.

The overall challenge is to identify χ1(S) that depends on S so that under the
best policy with well defined stationary distribution for any ρ ∈ (0, 1),

sup
λ:ρ(λ)=ρ

E
[∑

n

Qn
]
= Θ

(χ1(S)
1− ρ

)
.(13)

Clearly, the above statement implicitly conjectures existences of such χ1(S) that
determines the optimal (up to universal constants) dependence of average queue-
size on scheduling constraints S for any such system. The (11) and (12) provide
upper and lower bound on such quantity. In [8] it is shown that the χ1(S) (up
to constants) is characterized by the lower bound (12) for the (general enough)
instance of switched network model induced by wireless network model (see Section
2.4 for description of this model) with regular enough constraint graph structure
describing S. Indeed, we believe that bound of (12) is reasonably accurate.

2.3. Exponential tail probability. Here interest is in understanding the fur-
ther detailed behavior of the stationary distribution of queue-size when it exists.
Specifically, we shall assume that arrival process is Bernoulli with rate vector
λ ∈ [0, 1]N so that ρ(λ) < 1. Again, in this setup the Q(·) forms a Markov chain
under MW-α policy for any α > 0. It is positive recurrent with unique stationary
distribution as long as ρ(λ) < 1. In [6], it is shown that with respect to this
stationary distribution, under MW-α policy

lim sup
x→∞

1

x
log P

(
‖Q‖1+α ≥ x

)
≤ −(1− ρ(λ))N− 2+α

1+α .(14)

Further, for any policy it can be shown that for each ρ ∈ (0, 1) there exists λ such
that ρ(λ) = ρ and

lim inf
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≥ −(1− ρ)N α

1+α .(15)

Similar to the average queue-size, the overall challenge is to identify χ2(S, α)
that depends on S (and α > 0) so that under the best policy with well defined
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stationary distribution for any ρ ∈ (0, 1),

sup
λ:ρ(λ)=ρ

lim inf
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≥ −C1(1− ρ)χ2(S, α)

sup
λ:ρ(λ)=ρ

lim sup
x→∞

1

x
logP

(
‖Q‖1+α ≥ x

)
≤ −C2(1− ρ)χ2(S, α),(16)

where 0 < C1 ≤ C2 are some universal constants. Clearly, the above statement
implicitly conjectures existences of such χ2(S, α) that determines the optimal (up
to universal constants) dependence of exponential tail bound of 1 + α norm of
queue-sizes with respect to the stationary distribution. Indeed, the (14) and (15)
provide upper and lower bound on such quantity.

2.4. Complexity. The summary of results thus far suggest that the MW-α class
of policies are reasonably good: MW-0+ policy is (near) optimal in terms of ca-
pacity, it has good scaling in terms of average queue-size and very good behavior
in terms of exponential tail probability. And most importantly, it is a myopic
policy, i.e. it uses only current network state (queue-sizes) to make the scheduling
decision. Therefore, it is only natural to wonder: do we have a reasonable answer
for the problem of designing scheduling policies for switched networks?

To answer this question, it is important to understand the context where such
policies will be used. Specifically, in the application domain like communication
networks, the implementation of policies is highly constrained: (i) it should be
very simple in terms of computation and data structure requirement so that it
can operate at very high aggregate bandwidth (say making decision once every
few nano seconds !) with existing limitations on the memory bandwidth with
limited hardware requirement at low power; (ii) it should be preferably iterative
and distributed so as to allow for architectures that are scalable. Such stringent
constraints immediately lead to the following questions: is it possible to implement
the MW policy with above requirements for arbitrary scheduling set S ? if not,
how does the performance suffer from implementation limitation ?

Before we start answering these questions rigorously, it is important to lay
down constraints explicitly. The main problem is that the precise constraints are
problem dependent and the above stated constraints, while provide flavor of the
problem, do not define them explicitly. For that reason, collectively over the past
decade or so, researchers have focused on few concrete applications where the
constraints are quite clear. One such important problem has been the design of
medium access in wireless networks. Formally, there are N wireless transmitters
or nodes or queues, denoted by V = {1, . . . , N}. Let E ⊂ V × V represent the
scheduling or transmission constraints: if (i, j) ∈ E then no two nodes/queues can
transmit/be served simultaneously. Thus, the space of all possible schedules is

S = {x ∈ {0, 1}N : xi + xj ≤ 1 ∀ (i, j) ∈ E}.
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The implementation of any policy for making transmission decision is highly con-
strained: (C1) each node must make decision (using few, preferably constant num-
ber of computations) to transmit or not in each time slot on its own based on lo-
cal observations/historical information possibly summarized through limited data
structure; (C2) nodes have (so called delayed carrier sense) information about
transmission of other nodes in prior time slots (and hence if they transmitted,
they know whether their transmissions were successful or not). Indeed, the pop-
ular implemented protocols that go by the names Aloha, Random Backoff, etc.
satisfy C1 and C2.

Now in this setup, the maximum weight policy requires solving the so called
maximum weight independent set problem in graph G (with weights dependent
on queue-size). In general, this is hard problem and hence it is not clear if one can
implement the maximum weight policy as is with stringent constraints like C1 and
C2. This led to a long line of research finally resulting in its resolution very recently
by Shah and Shin [3, 4] and Jiang and Walrand [2, 1]: they provide implementation
so that the resulting policy keeps network Markov process positive recurrent as
long as the system is underloaded (i.e. ρ(λ) < 1). However, the performance of
such implementation in terms of queue-size scaling is not clear.

As mentioned above, the MW-1 policy for example, induced average queue-
size with respect to stationary distribution that scales as O(N2/(1 − ρ(λ)) when
ρ(λ) < 1. And the best bound one can obtain on average queue-size under the
above mentioned implementations are scaling super polynomially in N , at the
best.

In summary, MW is capacity achieving, provides small (polynomially scaling
in N) average queue-size but may not yield to implementation that has (time-
)computational complexity scaling polynomial in N (C1, C2 is too much to ask
for !). The implementations of [3, 4, 2, 1] have polynomial complexity (actually,
they satisfy C1, C2), is capacity achieving (positive recurrence when ρ(λ) < 1) but
may not yield small (polynomially scaling in N) average queue-sizes. This leads
to the following fundamental question: is it possible to have an implementation
that is (i) capacity achieving, (ii) has small (polynomial in N) queue-sizes, and
(iii) has polynomial in N computational complexity?.

Recently, Shah, Tse and Tsitsiklis [5] established that the answer to this ques-
tion is NO for arbitrary G (assuming the standard computational hypothesis).
The precise statement of the result, details as well as extensions can be found in
[5].

3. Conclusion

In conclusion, we would like to take note of the key results and open prob-
lems surveyed here. Specifically, we surveyed performance of scheduling policies
for switched networks in the context of three metrics: capacity, queue-size and
complexity. The MW-α policy as α ↓ 0 achieves the maximal capacity, defined
in terms of the effective net departure rate for any switched network. This is a
strong evidence of the qualitative conjecture about goodness of MW-0+ policy
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in the MW class of algorithms originally introduced by Shah and Wischik [7].
The MW family of policies induce stationary average queue-sizes when system is
underloaded: they are reasonably good and close to fundamental, policy indepen-
dent, lower bounds on them; similar qualitative result holds for the exponential
tail probability. Though MW policies are mypoic and have very good performance
in terms of capacity and queue-size, in general their implementation can require
solving computationally hard problems. Indeed, for general switched network, it
is not possible to have any policy that is computationally simple and has good
performance in terms of queue-size in complexity.

The questions of determining exact scaling of average queue-size (i.e. χ1(S) and
exponential tail probability (i.e. χ2(S)) remain important quest going forward –
resolution of these will definitely advance the frontiers of methods for large complex
queuing networks. And the grand challenge is to develop framework to understand
the pareto boundary reflecting interplay between these three performance metrics.
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Scaling properties of queues under back-pressure algorithm

Alexander Stolyar

The back-pressure (MaxWeight) algorithm [3] has well-known optimality proper-
ties, in particular throughput maximization. It also has a well-known drawback:
queues may scale ”badly” as network size increases, both in terms of queue sizes
and the number of queues. The issue of back-pressure (BP) algorithm bad scaling
has been addressed in [1, 2], where a generic ”remedy” is proposed: the algorithm
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is ”run” on virtual queues, as opposed to real ones, while real traffic uses conven-
tional, per-next-hop FIFO queues. Paper [2] proves that this scheme guarantees
stability, and demonstrates by simulation that it indeed dramatically reduces queue
sizes and traffic delays. Work [2] also proves, in a very general setting, that under
BP the queue length accumulation along each flow route grows at most quadrat-
ically with the max route lengths in the network. However, besides that upper
bound, the question of how the queues scale under BP in specific network settings
remains largely open.

It is of interest to understand fundamental scaling properties of BP algorithms.
In this talk, we address this problem for a simple system – a single, rate λ, Poisson
flow served by N queues in tandem, each is a ·/M/1 system with unit service rate.
We show that, perhaps somewhat surprisingly, the scaling behavior of BP is not
always bad. Namely, if load is below some critical level, λ < 1/4 for our model, all
queues remain uniformly stochastically bounded for all N . (In fact, we show that
the stochastic bound has exponentially decaying tail.) When λ > 1/4, the queues
increase to infinity with N .

We show that the asymptotic behavior of the sequence of finite systems, as
N →∞, is essentially reduced to the behavior of the system with infinite number
of queues in tandem. Such infinite-tandem model is within the framework of
interacting particle systems – methods and results of the corresponding theory
serve as our main analysis tools. In particular, the criticality of load 1/4 is closely
related to the fact that 1/4 is the maximum possible flux (average flow rate) of a
stationary totally asymmetric simple exclusion process (TASEP). In the subcritical
case, λ < 1/4, a stationary regime exists such that only a finite (random) number
of “left-most” queues can be greater than 1, the rest of the queues have at most
one customer and the process “there” behaves like TASEP. In the supercritical
case, λ > 1/4, each queue grows without bound with time; we prove this by
contradiction: if this fact were not true, we could construct a stationary (“one-
sided”) TASEP with flux exceeding 1/4 (which is impossible).
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Remarks on convergence to stationarity for unreliable queueing
networks

Ryszard Szekli

(joint work with Hans Daduna, Pawel Lorek)

We study unreliable Jackson networks, and give for them necessary and sufficient
conditions for geometric speed of convergence to stationarity via spectral gap.
Next we give bounds on spectral gap for networks and propose a strong duality
for Mőbius monotone chains.

Let X̃ be unreliable Jackson network process with the infinitesimal generator Q̃.
Suppose that Q̃ is bounded and the minimal service intensity µ > 0. If the routing
matrix R is reversible, and regular then the following cond. are equivallent:

• Gap(Q̃) > 0
• (πi)i≥0 is strongly light-tailed, i = 1, . . . , J
• infk

1

1+
∑

∞

j=k+1

λ
j−k
i

µi(k+1)···µi(j)

> 0, i = 1, . . . , J.

Consequently we have as a corollary the following result. Let X̃ be unreliable
Jackson network with generator Q̃, and the corresponding transition semigroup
(P̃t). Suppose the routing matrix R is reversible, and Rk > 0 for some k ≥ 1.

If µi(n)/λ represents equilibrium rate of strongly light-tailed distribution for
each i = 1, . . . , J , (which is then πi) then equivalently

(i) for all f ∈ L2(Ẽ, π)

||P̃tf − π(f)||2 ≤ e−Gap(Q̃)t||f − π(f)||2, t > 0,

(ii) for each e ∈ Ẽ there exists C(e) > 0 such that

||δeP̃t − π||tv ≤ C(e)e−Gap(Q̃)t, t > 0.

Next we give one step correlation formulas for networks (see for details [1]), for
example for arbitrary real functions f, g, and ξ which is the probability solution
of the extended traffic equation, and for

W g,f (n) = [g(n+ ei)f(n+ ej)]i,j=0,1,...,J .

we have

〈f,QXg〉π − 〈f,QX̂g〉π =

(λ/ξ0)Eπ

(
tr
(
W g,f (Xt) · diag(ξ) · (R− R̂)

))
.

This formula allows for comparison of spectral gaps. Consider ergodic Jackson
networks with the same arrival and service intensities, and with state processes
X and X̂. Assume that for the extended routing matrices R and R̂ the stochastic
solutions ξ of the traffic equation coincide. If R ≺pd R̂, then

Gap(QX̂) ≤ Gap(QX).
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As a consequence we have the following result. Consider an ergodic Jackson net-
work process X with state dependent service intensities and with positive external
arrival rates λi > 0 at all nodes i = 1, . . . , J .
• Assume that the extended routing matrix R = [rij ]i,j=0,1,...,J has strict posi-

tive departure probabilities ri0 > 0 from every node i = 1, . . . , J .
• Assume further that the routing of X fulfills overall balance for all network

nodes with respect to the solution ηi, i = 1, . . . , J, of the traffic equation

ηj

J∑

i=1

rji =
J∑

i=1

ηirij , ∀j = 1, . . . , J.

then for the ergodic Jackson network process X̂ of independent birth-death pro-
cesses, the nodes of which have the same service intensities and external arrival

rates λ̂i = λi
Gap(QX) ≥ Gap(QX̂)

Finally we study the failure coordinate of unreliable networks. We introduce
for transition matrices on a finite partially ordered set the following monotonicity.
P is *-Möbius monotone if

C−1PC ≥ 0,

for C representing the Möbius function of the ordering.
We present a partial order analog of a result by Diaconis and Fill [2], originally

related to linearly ordered spaces.
Assume that there exists eM ∈ E such that for all e, e � eM and that

• µ(e)
π(e) is Möbius monotone

• ←−P is *-Möbius monotone
Then there exists strong dual (µ∗,P∗) on E∗ = E with link Λ(e∗, e) = I(e �

e∗) π(e)
H(e∗) , where H(e∗) =

∑
e�e∗ π(e). Moreover, the dual is uniquely determined

as

µ∗(e) = H(e)
∑

e′�e

η(e, e′)
µ(e′)

π(e′)

P∗(e∗, e) =
H(e)

H(e∗)

∑

e′�e

η(e, e′)P(e′, {←−Y1 � e∗}),

where
←−
P corresponds to the time reversed process, {Yn} is a chain with transition

matrix P.
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Gossip Algorithms Using (Weighted) Path Averaging

Patrick Thiran

(joint work with Florence Bénézit, Vincent Blondel, Alexandros G. Dimakis,
John Tsitsiklis, Martin Vetterli)

Gossip algorithms are distributed message-passing schemes designed to dissemi-
nate and process information over networks, in particular wireless sensor networks,
in which case the network topology can be modeled by a random geometric graph
or even a lattice. They have received significant interest because the problem
of computing a global function of data distributively over a network, using only
localized message-passing, is fundamental for numerous applications.

Every node or agent i ∈ {1, n} in a network holds an initial state xi(0), and
wants to learn the average xave = (1/n)

∑n
i=1 xi(0) of all the values in the net-

work in a distributed manner. Ideally a distributed averaging algorithm should be
ef?cient in terms of energy and delay, and not require too much knowledge about
the network topology at each node, nor sophisticated coordination between nodes.
In order to achieve this goal, each agent i holds at any iteration t an estimate xi(t)
of the average xave. All the estimates are gathered in a vector of size n denoted
by x(t). The goal of an average consensus algorithm can thus be restated as

(1) lim
t→∞

x(t) =
11T

n
x(0) = xave1,

where 1 denotes the vector of all ones and T denotes transposition.
At each iteration t one or several nodes receive the estimates of one or several

other nodes. Based on the received estimates, nodes update their own estimate
according to certain update rules. The common feature between all the algorithms
described is the linearity of these estimate update rules. For any algorithm and
any of its iteration t, there is a matrix W(t) such that:

(2) xT (t) = xT (t− 1)W(t).

The choice of the matrix W(t) depends on the particular averaging algorithm,
see [1] for some examples. In a nutshell, there are three main constraints on the
matricesW(t). First, consensus must be stable. If, at time t, all nodes agree on one
estimate, then they should keep agreeing on this estimate for times greater than
t. Because of Eq. (2), this mathematically translates to: 1TW(t) = 1T . Second,
in order to guarantee that the only possible consensus is average consensus, the
average of the estimates at any time should be equal to xave, which yields that
W(t)1 = 1. The matrices W(t) must therefore be doubly stochastic. Finally, the
estimates should contract to the true average, and the condition for convergence,
which can in general be formulated as conditions on of the spectrum of a function
of W(t), depends on the type of convergence; see Chapter 3.1 in [1].

The simplest gossip algorithm is Pairwise Gossip, where random pairs of con-
nected nodes iteratively and locally aver- age their values until convergence to
the global average [7, 4]. Pairwise Gossip algorithms on random geometric graphs
require a total expected cost of Θ(n2) messages to converge to the global average
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xave within a given degree of accuracy [4, 6]. In contrast, the obvious solution
of averaging numbers on a spanning tree and flooding back the average to all
the nodes requires only O(n) messages (Note that any algorithm that averages n
numbers will require Ω(n) messages).

Dimakis et al. [6] proposedGeographic Gossip, an alternative gossip scheme that
reduces the cost to O(n1.5

√
logn) messages, with slightly more complexity at the

nodes. Assuming that the nodes have knowledge of their geographic location and
under some assumptions in the network topology, greedy geographic routing can be
used to build an overlay network where any pair of nodes can communicate. The
overlay network is a complete graph on which standard Pairwise Gossip converges
with O(n) iterations. At each iteration we perform greedy routing, which costs

Θ(
√
n/ logn) messages on a random geometric graphG(n, r). In total, Geographic

Gossip thus requires O(n1.5
√
logn) messages.

Path Averaging [2] is the same algorithm as Geographic Gossip, with the addi-
tional modification of averaging all the nodes on the routed paths. Averaging the
whole route comes almost for free in multihop communication, because a packet
can accumulate the sum and the number of nodes visited, compute the average
when it reaches its final destination and follow the same route backwards to dis-
seminate the average to all the nodes along this route.

In Path Averaging, the selection of the routed path (and hence the routing
algorithm) will affect the performance of the algorithm. The mathematical analysis
of Path Averaging with greedy routing is complex because the number of possible
routes increases exponentially in the number of nodes.

Path Averaging on random geometric graphs combines gossip with random
greedy geographic routing. A key assumption is that each node knows its location
and is able to learn the geographic locations of its one-hop neighbors (for example
using a single transmission per node). Also the nodes need to know the size of the
space occupied by the network.

The algorithm operates as follows: at each time-slot one random node activates
and selects a random position (target) on the unit square region where the nodes
are spread out. Note that no node needs to be located on the target, since this
would require global knowledge of locations. The node then creates a packet that
contains its current estimate of the average, its position, the number of visited
nodes so far (one), the target location, and passes the packet to a neighbor that
is randomly chosen among its neighbors closer to the target. As nodes receive the
packet, randomly and greedily forwarding it towards the target, they add their
value to the sum and increase the hop counter. When the packet reaches its
destination node (the first node whose nearest neighbors have larger distance to
the target compared to it), the destination node computes the average of all the
nodes on the path, and reroutes that information backwards on the same route.

Using the same overlay network construction as for Geographic Gossip, and the
Poincaré inequality [5], we prove in [2] that on a random geometric graph G(n, r)

deployed on torus, with a sufficiently high connectivity radius r > 15
√
logn/n,

the cost drops to O(n log n) messages only with Path Averaging.
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All the previous algorithms require some amount of coordination to route the
packets back and forth between the two end-nodes of the chosen route at each
iteration, which can be quite difficult in wireless networks, where the connectivity
graph is often time-varying. Replacing the Path Averaging gossip algorithm de-
scribed above by a one-way version of this algorithm eliminates this problem, but
at the same time forces the matrix W(t) to be triangular, which in turns prevents
it to be doubly stochastic.

As a solution, we propose in [3] an asynchronous generalization of the synchro-
nous Uniform Gossip algorithm outlined in [7], which we call Weighted Gossip,
where the states are written as ratios between sums s(t) and weights w(t). In
other words, x(t) = s(t)/w(t) with the division performed element-wise. The up-
date rule (2) is then replaced by an update rule on both s(t) and w(t), which
is

sT (t) = sT (t− 1)D(t)

wT (t) = wT (t− 1)D(t),

where the diffusion matrices {D(t), t ≥ 0} form a stationary and ergodic sequence
of stochastic matrices with positive diagonal entries, with the property that their
expectation E[D] is irreducible. The initial values are s(0) = x(0) and w(0) = 1.
Observe that D(t)1 = 1, but that 1TD(t) 6= 1T : sums and weights are conserved
through the iterations because of the former equality, but do not reach consensus
because of the latter inequality. Nevertheless, we prove in [3] that the ratio x(t) =
s(t)/w(t) verifies (1) with probability 1. Consequently, Weighted Gossip using
{D(t), t ≥ 0} converges to a consensus with probability 1.
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Ordered random walks

Vitali Wachtel

(joint work with Denis Denisov)

Let W be the k-dimensional Weyl chamber of type A, that is,

W := {x ∈ Rk : x1 < x2 < . . . < xk}.
Let S = (S1, S2, . . . , Sk) denote a k-dimensional random walk with independent
and identically distributed coordinates. We are interested in the behaviour of the
exit time

τx := min{n ≥ 1 : x+ S(n) /∈W}, x ∈ W,
and in the behaviour of paths of S conditioned on {x+ S(k) ∈ W for all k ∈ I},
where I = {1, 2, . . . , n} or I = N.

The case of I = N seems to be more interesting, since P(τx =∞) = 0. There-
fore, it is not at all obvious how to understand a process which never leaves W .
Usually one performs a Doob transform with some positive harmonic function h.
Recall that h is called harmonic, if E[h(x+ S(1)), τx > 1] = h(x). The question is
how to find such a function. It is well known, that the Vandermonde determinant
∆(x) is harmonic for the Brownian motion. The corresponding process is called
the Dyson Brownian motion. It is also known, that ∆(x) is harmonic for some spe-
cial cases of nearest neighbour random walks, see [4]. The reason, why one could
use ∆, is that in all these cases ∆(x + S(τx)) = 0 or, in other words, the random
walk can not jump over the boundary of W . But if S is a random walk that can
jump over the boundary, then the question on the harmonic function was open
for quite a long time. Only recently, Eichelsbacher and König [3] have shown that

V (x) := ∆(x)−E∆(x+ S(τx)) is harmonic for random walks with E|X |ck3 <∞.
In [1] we have shown the harmonicity of V under much milder condition: It suffices
to assume that E|X |rk <∞ with rk = (k − 1)1{k ≥ 4}+ (2 + ε)1{k = 3}. Under
this condition the relation

(1) P(τx > n) ∼ κV (x)n−k(k−1)/4

holds too. This result has been obtained earlier by Eichelsbacher and König [3]
under their moment restriction. Since V is harmonic, we may perform the corre-
sponding Doob transform:

P(V )(x + Sn ∈ dy) = P(x + Sn ∈ dy, τx > n)
V (y)

V (x)
, y ∈ W.

It is not surprising that the rescaled conditioned random walk converges to the
Dyson Brownian motion. More precisely,

(a) the process x
√
n+S([nt])√

n
under P(V ) converges to B(t) under P

(∆)
x ;

(b) the process x+S([nt])√
n

under P(V ) converges to B(t) under P
(∆)
0 .

The proof of well-posedness of V is based on martingale theory. To show all the
asymptotic relations we use the standard Komlos-Major-Tushnady-coupling and
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known formulae for the Brownian motion. (The use of coupling explains, why we
need at least 2 + ε moments in the three dimensional case.)

Relying on the analogy to the central limit theorem, one can expect that any
ordered random walk with finite second moments should converge to the Dyson
Brownian motion. The main problem is how to construct ordered random walks,
or, equivalently, how to find a harmonic function. (The function V (x) is not
defined for random walks with E|X |k−1 =∞.) Assuming that P(|X | > x) ∼ x−α
with some α ∈ (k − 2, k − 1) we studied the tail behaviour of τx: There exist a
positive function U and an absolute constant θ such that

(2) P(τx > n) ∼ θU(x)n−α/2−(k−1)(k−2)/4.

Behind this relation lies a quite simple strategy. In order to achieve τx > n,
either the random walk on the top or the random walk on the bottom should
jump away, i.e., Xk(l) ≈

√
n or X1(l) ≈ −

√
n for some l ≥ 1. After such a jump

we have a system of k − 1 random walks with bounded distances between each
other and one random walk on the characteristic distance

√
n. This implies that

the probability that all k random walks stay in W up to time n is of the same
order as the probability that k − 1 random walks stay in W up to time n − l.
But E[|X |k−2] < ∞. So we can apply our first result, which says that the latter
probability is of order n−(k−1)(k−2)/4. Since P(|X | > √n) ∼ n−α/2, we see that
P(τx > n) is of order n−α/2−(k−1)(k−2)/4.

The function U is strictly superharmonic, i.e., E[U(x+ S(1)), τx > 1] < U(x).
This implies that the measure

P(U)(x+ Sn ∈ dy) = P(x + Sn ∈ dy, τx > n)
U(y)

U(x)
, y ∈ W

is not a probability, P(U)(W ) < 1. We loose a part of the mass because of one big
jump. To reintroduce the lost mass we enlarge the state-space:

Ŵ :=W ∪W1 ∪W2,

where

W1 = {(x1, x2, . . . , xk−1,∞), x1 < x2 < . . . < xk−1}
W2 = {(−∞, x2, x3, . . . , xk), x2 < x3 < . . . < xk} .

On this enlarged set we can define a transition kernel, which does not loose mass.
The asymptotic behaviour of the corresponding Markov process, which we also
call ’ordered random walks’, is quite clear. The process jumps at the random (but
finite) time-point from W either to W1 or to W2, and stays there for all times.
The rescaled process converges to the limit, which can be described as follows:
Take the k − 1 dimensional Dyson Brownian motion starting from zero. With
some probability, say p(x), we add one coordinate with constant value ∞ and
with probability 1 − p(x) we add the coordinate with value −∞. We see that,
at least for this version of ordered random walks, the analogy to the central limit
theorem is not complete. We leave the question open, whether one can find a
harmonic function in the described situation.
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Auction Networks a Stochastic Network Enviroment

Neil Walton

(joint work with Peter Key)

In this abstract, we discuss the application of stochastic network theory to the
theory of auctions. This summarises a presentation in the open problem session
of the Mathematical Challenges in Stochastic Networks programme. Indeed, the
problems discussed here do not represent a single unsolved problem but are more
accurately a relevant space of models, problems and concepts which, in the opinion
of this author, are amenable the Stochastic Networks research community and
could greatly benefit from their attention.

The problems discussed here are based on the observation of two data sets.
Chiefly, from the auction data from Forza Motorsport 2 a car racing game for
Microsoft’s Xbox 360 games console but, also, from auction data for adverts on
Microsoft’s Bing search engine. Both data sets represent of millions of auctions
with hundreds of thousands of bidders. The participation and execution of auc-
tions in both systems are fundamentally stochastic and the network formed though
trade and competition is large and complex. Even so, simple microscopic effects
can be observed and macroscopic phenomenon are evident. We develop the com-
ponents of a model which reflects different interests within the stochastic networks
community, and then, we discuss qualitative phenomenon which one would wish
to observe in a formal mathematical analysis.

A Stochastic Auction Model : We consider an assending price auction. Bidders,
wishing to buy an item, arrive to the auction as a Poisson process. With each
bidder, we associate an independent identically distributed bid. After r units of
time the auction begins. From a price $r the auctioneer raises the price linearly in
time until there are no remaining bidders. The item is then sold at this price to the
last remaining bidder. The auctions of this sort should be analytically tractable by
analysing point processes. The time dependent auction given here represents and
auction where bidding extends the remaining time of an auction, such techniques
are employ by companies such as eBay and Swoopo [2]

A Queueing Model : Consider a taxi stand. Taxis and customers both arrive
at the stand as two independent Poisson process and both are willing to wait for
service but will renege after an exponentially distributed time. Normally, at a taxi
stand service is first-come-first-served, but we can change this. Suppose customers
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are willing to bid for quicker service. Such queueing analysis has been applied to
the study of government corruption [3]. We suppose the queued customers bid for
the taxi at the head of the queue. An auction of the type described above thus
ensues. We note that the auction time to process the winning customer is given by
the maximum bid within the queue. Thus, we could interpret the queueing policy
as a longest processing time first policy. The long run return to the taxi company
is the length of time the head of the line taxi spends during bidding minus the
costs of taxi abandonments. Creating an optimal return to the taxi firm is thus a
relevant problem. In addition, if we consider the prices paid if customers arrival
and are served within batches the resulting payments form a “generalised first
price auction”. These auctions were used by early internet search engines and
currently a somewhat similar “generalised second price auction” is deployed by
Goggle, Yahoo! and Microsoft [6].

A Network Model : Suppose now that there is a common pool of users. Users
can set up auctions or bid on existing auctions. When an auction is set up by a
user it is equivalent to sending a taxi into the above queueing model. Similarly
bidding is equivalent to becoming a customer. The trading between users will form
a network. When a user sells an item, he creates a half edge and when he bids on
an auction he offers a half edge. When an item is sold between two users an edge
is created between them. This creates a network. Rather than edges occurring
at uniformly at random, like in the configuration model or Erdös-Renyi random
graphs [4], the auctioneer choose which edge he prefers to connect. This is also
different to preferential attachment models currently considered as the auctioneers
choice of edge is locally optimal, not by a probabilistic weight [5, 1].

The above three components loosely describe how a closed stochastic network
economy could be constructed, though certainly other models of network trade
could be constructed. What sort of phenomenon and behaviours would we like to
understand and what analysis do we believe would be amenable?

Variability in prices : We find in data that prices and user wealths are best
described by heavy tailed distributions. The distributions are developed over time
and there are distinct phases where prices are low due lack of competition and
where prices are high but to the generation of wealth through the auction network.
This phenomenon seems very analogous to percolation effects, where there is a
critical point at which every node is influenced by the state of every other node.
The heavy tail distribution in prices in turn effect performance of the auction queue
described above. Auctions take longer and lead to high levels of abandonment.
Thus the above queueing model is best studied when jobs have heavy tailed service
requirements.

Network Structure: Data suggests that the degree distribution of the auction
network is power law distributed and the network is highly connected (with a single
giant component emerging even over short time periods). The game theoretic
process by which edges form is a non-standard random graph enviroment and a
successful mathematical analysis could represent a generalisation of traditional
random graph models.
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User behaviour : As pointed out at the open problem session, a large number of
complex behaviours could be exhibited by users. Even so, data suggests behaviour
is much more simple. Users increase and decrease their bids based on the success
or failure. Users do not bid for items far beyond the first few auctions displayed.
Such price probing is somewhat similar to rate control in a communications system.
Perhaps such an analysis yield results?

As we have mentioned, this is certainly not a conjecture. These are observable
phenomena. But hopefully this provokes thoughts to other areas of application,
different theoretical models and different limiting regimes which may be relevant
to this research community.
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Nonparametric inference for networks of queues

Cornelia Wichelhaus

(joint work with Roland Langrock and Susan Pitts)

We consider stochastic networks as interacting systems of nodes between which
indistinguishable items (customers) move in order to receive service. Each node
represents a single or multiserver and a waiting room in which customers queue
for service. The external interarrival times, the sojourn times at the nodes and
the routing decisions of the customers follow underlying stochastic rules. Impor-
tant application fields of these systems with strongly dependent components are
computer and telecommunication networks, the internet, manufacturing networks,
supply chain networks and population dynamical systems.

In all these fields there is an increasing interest in statistical inference for system
characteristics based on incomplete information of the working systems. However,
whereas the probabilistic structure of stochastic networks (e.g. stability conditions,
steady state behavior) has been widely explored over the last decades, statistical
inference for these systems (e.g. parameter estimation, identifiability results) has
not been developed properly yet. Difficulties arise due to the inner dependence
structure of the networks which yields dependent multidimensional data. The aim
is to establish a thorough statistical theory, including data selection, necessary and
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sufficient criteria for identifiability as well as the construction and comparison of
different classes of estimators.

A challenging problem of particular importance is the inference for the service
time distributions at the nodes. The knowledge of the distribution of the operating
times at the nodes is essential for specifying the performance behavior and for
guaranteeing reliability and quality standards of the systems. In the literature,
nonparametric approaches exist for single queues, see [1], [2], [3], [4], [5]. However,
up to no there are no results for connected systems with two or more nodes.
Thus, most of the currently applied techniques for service demand estimation
in queueing networks focus only on the first and second order moments of the
service times obtained e.g. by linear regression of measured utilization values.
Appropriate techniques from nonparametric statistics must be derived for this
new field of research. The mathematics behind is challenging, it is in the interplay
of multivariate stochastic processes and inverse statistical problems.

In the talk we present a nonparametric approach for the service time estima-
tion problem for networks with an arbitrary fixed number of nodes. We consider
networks with general point processes as external arrival processes, with an infi-
nite number of servers and a general service time distribution at each node. The
routing topology is unknown. We assume that we are able to observe the external
arrivals and external departures over a stretch of time whereas we cannot assign
the departures to the arrivals and directly measure the individual sojourn times of
the customers in the system. We give various identifiability criteria. The crucial
point of our approach is the observation that the influence of the external arrival
processes on the external departure processes can be described in a linear and
time-invariant way. This makes it possible to apply cross-spectral techniques for
multivariate point processes. We derive estimators for the routing probabilities
and for the! service time distributions at the nodes. The estimators are shown to
be consistent and asymptotically normal. Simulation results for small networks
show satisfactory results and illustrate the good quality of the estimators. In [7]
we present the general theory and the results for feedforward systems, the gener-
alization to networks with general routing topologies is given in [6].
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