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Abstract. In focus are interacting stochastic systems with many compo-
nents, ranging from stochastic partial differential equations to discrete sys-
tems as interacting particles on a lattice moving through random jumps.
More specifically one wants to understand the large scale behavior,large in
spatial extent but also over long time spans, as entailed by the characteriza-
tion of stationary measures, effective macroscopic evolution laws, transport
of conserved fields, homogenization, self-similar structure and scaling, critical
dynamics, aging, dynamical phase transitions, large deviations, to mention
only a few key items.
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Introduction by the Organisers

“Large Scale Stochastic Dynamics” is at the crossroad of probabilitity theory and
statistical physics, the central theme being the stochastic evolution of a system
with many interacting components. A prototypical example is the stochastic Ising
model: at the sites of a regular lattice one has spins which take values ±1. A spec-
ified spin flips at random times with a rate depending on the current neighboring
spin configuration. Such a seemingly simple model has a very rich phenomenol-
ogy. For example, let us impose that at the initial time the spin values are random
according to a Bernoulli measure, whereas the dynamics runs at low temperatures
forcing spins to align. Which laws govern the resulting spatial coarsening process?
One may modify the dynamics by requiring the number of up spins (= particles) to
be conserved, which is implemented by exchanging the spin values for a neighbor-
ing pair of spins. This model leads to a system of interacting symmetric random
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walks. One can drive the system by a uniform force field making the random walks
asymmetric. The variations are without bound. Mathematically one has to focus
on a few central issues. Our workshop is like a snap-shot of the current activities,
in fact quite distinct from the two previous snap-shots. A partial list of topics
reads

• low temperature Ising dynamics

•• stochastic growth and the Kardar-Parisi-Zhang equation
• random walks in random environments
• energy transport
• condensation and coarsening phenomena
• hydrodynamic limits

We had 53 participants from 15 countries, mostly probabilists, but also ex-
perts from partial differential equations, numerical analysis, and statistical physics.
They all enjoyed tremendously the unique and stimulating atmosphere at the
Mathematische Forschungsinstitut Oberwolfach and hope to return some day.

Claudio Landim,
Stefano Olla,
Herbert Spohn.
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Abstracts

Current fluctuations in non equilibrium systems

Bernard Derrida

The talk was a review of of recent results on the fluctuations of the current in
non-equilibrium diffusive systems.

When a system is maintained in a non-equilibrium steady state by contact with
two reservoirs at unequal densities or two heat baths at unequal temperatures, the
fluctuations of the current have in general a non-Gaussian distribution which can
be computed exactly for diffusive systems [1, 2, 3, 4, 5, 8, 9, 10] by applying to
current fluctuations the macroscopic fluctuation theory developed by Bertini, De
Sole, Gabrielli, Jona–Lasinio, Landim [6, 7].

For systems at equilibrium on a ring geometry, the cumulants of these fluctua-
tions take a universal scaling form which can be understood by several theoretical
approaches such as the Bethe anstazt or fluctuationg hydrodynamics [11]. For
driven systems on a ring geometry, one can observe a phase transition in the large
deviation function of the current from a phase where the optimal density profile, to
generate a certain current, is flat to a phase where it becomes space (and possibly
time) dependent [13, 5, 14]. This phase transition is very reminiscent of the phase
transition in the ABC model [15, 16].

Some recent results concerning nonsteady state initial conditions were also dis-
cussed [17, 18].

One knows [19, 20, 21] that mechanical systems which conserve momentum
exhibit an anomalous Fourier’s law in one dimension. What the large deviation
functions of the current or of the density become for such systems looks to me an
interesting and challenging question.
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Diffusion in Hamiltonian systems

Wojciech De Roeck, Antti Kupiainen

Our work concerns the problem of proving diffusion in a system described by
Hamiltonian dynamics. The particular system that we study is the following:
Consider a particle with a large mass M and an internal degree of freedom. One
can, for example, imagine that the particle is a molecule consisting of two atoms
and the internal degree of freedom is the relative position of the two atoms. The
particle is coupled weakly (coupling strength λ) to a scalar wave field at some
positive temperature. This wave field models, for example, the vibration modes of
a crystal or the electromagnetic field. In the absence of coupling, the particle moves
ballistically, with the evolution of the internal degree of freedom decoupled from its
translational motion, and the wave field evolves freely (different wave packets do
not interact). When the coupling is switched on, one expects that the particle will
emit and absorb wavepackets and, since it can change its momentum in the process
of doing so, diffuse in the the long-time limit. Next, we make a modification that
should be of no importance to the result, not even to the description given above,
but that does make the problem technically a bit easier, at least from the point of
view of our techniques: We consider the whole setup to be quantum-mechanical.
There are two (closely related) reasons why this is useful: Firstly, it becomes
natural to model the internal degree of freedom by a finite dimensional variable
(in quantum physics, this is called a ’few level’-system). Secondly, it is natural to
consider the particle in discrete space, instead of the continuum. Its free ballistic
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motion is now generated by the lattice Laplacian which does not admit arbitrarily
high velocities, hence the technical simplification. We stress however that in the
transition from classical to quantum, the core of the problem was not lost. The
dynamics is still deterministic, the microscopic entropy is constant and the system
displays Poincare recurrencies in finite volume.

Let us now focus on a way to make the problem simpler, although this is not
what we do. As the coupling constant λ becomes small, the behaviour of the
particle starts looking Markovian. One could take the point of view that the
particle emits and absorbs wave-packets at a frequency of λ2, and, because of
this small frequency, different emission and absorption events become virtually
independent. This picture becomes sharp in the limit where one observes the
particle at macroscopic time τ ∼ λ2t (where t is microscopic time) and one sends
λ → 0 and t → ∞ with τ fixed. Indeed, the approach to a Markovian process
in the time coordinate τ (in this case: the linear Boltzmann equation) has been
proven in [1]. However, our aim is to prove diffusion in the long time limit, t → ∞,
for a small, but fixed coupling strength λ. The most logical way to attack this
problem is to attempt an expansion around the Markovian regime. This is exactly
what we do, except that the Markovian regime that we study is a different one:
it is obtained by recaling not only time and the coupling, but also the mass M
which is chosen to scale as M ∼ λ−2. Hence,

t → ∞, λ→ 0, M ∼ λ−2 → ∞, λ2t = τ fixed

In that limit, the internal degree of freedom plays an important role: the emerg-
ing picture is that of the particle emitting and absorbing waves and keeping the
energy balance not by changes in its kinetic energy, but by changes in the internal
degree of freedom. This is ultimately the reason why we need this degree of free-
dom. The expansion around this Markovian regime can be viewed as a random
walk in a random environment, where the disorder is weak and time-dependent.
The time-dependent random environment is of course due to the wave field, more
precisely to that part of the wave field that is non-Markovian, and the random
walk originates from the free particle together with a Markovian component of the
wave field. The random walk in random environment problem is then tackled by a
renormalization group treatment that imposes some constraints on the free wave
field. The electromagnetic field can be studied in dimension d ≥ 4, the massive
phonon field in dimension d ≥ 3. Our treatment uses elements of earlier work of
the authors, most importantly [2] where the problem is considered for a rather
restricted class of wave-fields, and [3], where a renormalization group approach of
random walk in time-dependent random environment is performed.
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Entropy of stationary nonequilibrium measures of boundary driven
symmetric simple exclusion processes

Cédric Bernardin

(joint work with Claudio Landim)

In the last decade important progress has been accomplished in the understand-
ing of nonequilibrium stationary states through the study of stochastic lattice gases
([5, 9] and references therein).

The simplest nontrivial example of such dynamics is the one-dimensional simple
symmetric exclusion process on the finite lattice {1, 2, . . . , N − 1} with particle
reservoirs coupled to the sites 1 and N − 1. In this model the microscopic states
are described by the vector η = (η(1), η(2), . . . , η(N − 1)), where η(i) = 1 if the
site i is occupied and η(i) = 0 if the site is empty. Each particle, independently
from the others, perform a nearest-neighbor symmetric random walk with the
convention that each time a particle attempts to jump to a site already occupied
the jump is suppressed. At the boundaries, particles are created and destroyed in
order for the density to be α at the left boundary and β at the right boundary,
0 ≤ α, β ≤ 1.

We denote by µNα,β the stationary state of this system which is a probability
measure in the space of configurations and which can be expressed in terms of a
product of matrices [10]. Since the particle number is the only conserved quantity
in the bulk, in the scaling limit N → ∞, i/N → x ∈ [0, 1], the system is described
by a single density field ρ(x), x ∈ (0, 1). The typical density profile ρ̄(x) is the
stationary solution of a partial differential equation with boundary conditions. In
the context of symmetric exclusion processes,

ρ̄(x) = α(1− x) + βx .

The nonequilibrium stationary states exhibit long range correlations [14] which
are responsible in the large deviations regime for the non locality of the free energy
functional [10, 3]. More precisely, if γ stands for a density profile different from
the typical one ρ̄, the asymptotic probability of γ is exponentially small and given
by

µNα,β [γ(·)] ∼ e−NVα,β(γ) ,

where the so called nonequilibrium free energy Vα,β is a non local functional.
Since in equilibrium the probability of such large deviations is determined by

the induced change in the entropy, it is natural to investigate the entropy of
nonequilibrium stationary states.

Denote by SN(ν
N ) the Gibbs–Shannon entropy of a state νN :

SN(ν
N ) = −

∑

η

νN (η) log νN (η) ,
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where the sum is carried over all lattice configurations η. Recently, Bahadoran
[1] proved that for a large class of stochastic lattice gases the Gibbs–Shannon
entropy of nonequilibrium stationary states has the same asymptotic behavior as
the Gibbs–Shannon entropy of local equilibrium states. In our context of boundary
driven symmetric simple exclusion processes this result can be stated as follows.
Denote by νNα,β the product measure

νNα,β(η) =

N−1
∏

i=1

ρ̄(i/N)η(i)[1− ρ̄(i/N)]1−η(i) .

Thus, at site i, independently from the other sites, we place a particle with prob-
ability ρ̄(i/N) and leave the site empty with probability 1 − ρ̄(i/N). Bahadoran
proved that

lim
N→∞

1

N
SN (µNα,β) = lim

N→∞

1

N
SN (νNα,β) .

The long range correlations of the nonequilibrium stationary state is therefore not
captured by the Gibbs–Shannon entropy.

Derrida, Lebowitz and Speer [11] showed that for the symmetric simple exclu-
sion process the difference

SN (µNα,β) − SN(ν
N
α,β)

converges as N → ∞, and that the limit depends on the two points correlation
functions. Hence, the long range correlations appear in the first order correction
to the Gibbs–Shannon entropy.

In this talk we examine the entropy of the stationary nonequilibrium states µNα,β .

In the classical Boltzmann–Gibbs theory of equilibrium statistical mechanics [5],
the steady state µNβ (η) of a microstate η is given by

(1) µNβ (η) =
1

ZN (β)
exp(−βH(η))

where β is the inverse of the temperature, H(η) the energy of η and ZN (β) the
partition function. The Boltzmann entropy is then defined as the limit, when
the degrees of freedom N of the system converges to infinity, of 1/N times the
logarithm of the number of microstates with a prescribed energy:

S(E) = lim
δ→0

lim
N→∞

N−1 log
(

∑

η

1{|H(η)−NE| ≤ δN}
)

,

where the summation is performed over all configurations η and where 1{A} is
the indicator of the set A. The pressure P (β) is defined by

P (β) = lim
N→∞

1

Nβ
logZN(β)

and the Boltzmann entropy is related to the pressure function by

S(E) = inf
β>0

{βP (β) + βE} .
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In view of (1) and by analogy, we define the energy of a microstate η as
− logµNα,β(η) and the entropy of the stationary nonequilibrium measure µNα,β by

Sα,β(E) = lim
δ→0

lim
N→∞

N−1 log
(

∑

η∈ΩN

1{|N−1 logµNα,β(η) + E| ≤ δ}
)

.

There is also a probabilistic interpretation of this function. Consider the se-
quence of random variables YN (η) = −N−1 logµNα,β(η) defined on the probability

space ΩN equipped with the probability measure µNα,β . Then if the sequence

(YN : N ≥ 1) satisfies a large deviations principle, the corresponding rate function
Jα,β is given by Jα,β(E) = E − Sα,β(E).

Our first result is the following formula for Sα,β

Sα,β(E) = sup
m∈M

{

S(m) : Vα,β(m) + S(m) = E
}

,

where M is the set of macroscopic profiles m : [0, 1] → [0, 1] and

S(m) = −
∫ 1

0

s(m(x)) dx , s(q) = q log q + (1− q) log(1− q)

is the Gibbs-Shannon entropy corresponding to the macroscopic profile m. The
derivation of this formula is based on a strong form of local equilibrium and heuris-
tics arguments are proposed in [2] to show the validity of this assumption. We
guess that the variational formula for Sα,β in terms of the nonequilibrium free
energy Vα,β and Gibbs-Shannon entropy S is valid for generic diffusive systems.

Since in the context of the boundary driven symmetric simple exclusion process
the nonequilibrium free energy can be computed exactly ([4]) one can derive a
more explicit formula for the entropy. Let Pα,β : R → R+ be the real function
defined by

Pα,β(θ) = θ log
( 1

β − α

∫ β

α

dx

[xθ + (1− x)θ]
1/θ

)

then we have

Sα,β(E) = inf
θ∈R

{

θE − Pα,β(θ)
}

.

We also show that the entropy of the nonequilibrium stationary states µNα,β
is different from the entropy of the local equilibrium states νNα,β. From he exact

computation of Sα,β and its probabilistic interpretation (see above) we then recover
some of the results of [1] and some of [11].

These results can be found in [2].
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Energy transport in a fast-slow hamiltonian system

Carlangelo Liverani

(joint work with Dmitry Dolgopyat)

One of the central problems in the study of non-equilibrium statistical physics is
the derivation of transport equations for conserved quantities, in particular energy
transport, from first principles, (see [1], and references therein, or [9], for a more
general discussion on the derivation of macroscopic equations from microscopic
dynamics).

We consider a microscopic dynamics determined by a (classical) Hamiltonian
describing a finite number of weakly interacting strongly chaotic systems and we
explore the following strategy to derive a macroscopic evolution: first one looks at
times for which there is an effective energy exchange between interacting systems,
then takes the limit for the strength of the interaction going to zero and hopes to
obtain a self-contained equation describing the evolution of the energies only. We
call such an equation mesoscopic since most of the degrees of freedom have been
averaged out. Second, one performs on such a mesoscopic equation a thermody-
namic limit to obtain a macroscopic evolution. In particular, one can consider a
scaling limit of the diffusive type in order to obtain a non linear heat equation as
in the case of the so called hydrodynamics limit for particle systems, see [7, 10] for
more details. A similar strategy has been carried out, at a heuristic level, in [5, 6].
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In this talk I will describe the first step of such a program.
For ν ∈ N, we consider a lattice Zν and a finite connected region Λ ⊂ Zν .

Associated to each site in Λ we have the cotangent bundle T ∗M of a C∞ compact
Riemannian d-dimensional manifold M of strictly negative curvature and the as-
sociated geodesic flow gt. We have then the phase space M = (T ∗M)Λ and we
designate a point as (qx, px), x ∈ Λ. It is well known that the geodesic flows is an
Hamiltonian flow. If we define i : T ∗M → TM to be the natural isomorphism de-
fined by w(v) = 〈i(w), v〉G, G being the Riemannian metric, then the Hamiltonian
reads1 H0 =

∑

x∈Λ
1
2p

2
x.

Note that, by the Hamiltonian structure, ex := 1
2p

2
x is constant in time for each

x ∈ Λ. It is then natural to use the variables (qx, vx, ex), where vx := (p2x)
−1i(px)

belongs to the unit tangent bundle T1M of M .
Next we want to introduce a small energy exchange between particles. To

describe such an exchange we introduce a symmetric, non constant, function (po-
tential) V ∈ C∞(M2,R) and, for each ε > 0, consider the flow gtε determined by
the Hamiltonian Hε =

∑

x∈Λ
1
2p

2
x+

ε
2

∑

|x−y|=1 V (qx, qy). The equation of motions

reads

q̇x =
√
2exvx

v̇x =
√
2exF (qx, vx) +

ε√
2ex

∑

|y−x|=1

{vxLxV −∇qxV (qx, qy)}

ėx = −ε
√
2ex

∑

|x−y|=1

LxV,

(1)

where 〈∇V,w〉G = dV (w), F is an homogeneous function of degree two in the
second variable and Lx = vx∂qx + F (qx, vx)∂vx denotes the generator associated
to the geodesic flow of the x particle on T1M .

We will consider random initial conditions of the following type

E(f(q(0), v(0)) =

∫

(T1M)Λ
f(q, v)ρ(q, v)dm, ∀f ∈ C0((T1M)Λ,R)

ex(0) = Ex > 0,

(2)

where m is the Riemannian measure on (T1M)Λ and ρ ∈ C1.
Since the currents LxV have zero average with respect to the microcanonical

measure, one expects that it will take a time of order ε−2 in order to see a change
of energy of order one. It is then natural to introduce the process ex(ε

−2t) and to
study the convergence of such a process in the limit ε→ 0.

Our main result is the following.

Theorem [3]. The process {ex(ε−2t)} defined by (1) with initial conditions (2)
converges in law to a random process {Ex(t)} with values in RΛ

+ which satisfies the

1By p2x we mean 〈i(px), i(px)〉G(qx) = 〈px, px〉G̃ where G̃ = i∗(G).
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stochastic differential equation

dEx =
∑

|x−y|=1

a(Ex, Ey)dt+
∑

|x−y|=1

b(Ex, Ey)dBxy

Ex(0) = Ex > 0,

(3)

where Bxy are standard Brownian motions which are independent except that

Bxy = −Byx.
The coefficients have the following properties: b is symmetric and a is antisym-

metric; b ∈ C0([0,∞)2,R+) and b(a, b)2 = abG(a, b) where G ∈ C∞((0,∞)2,R+)∩
C1((0,∞)× [0,∞),R+) and G(a, 0) = A(2a)−

3
2 for some A > 0. Moreover,

(4) a =
1

2
(∂Ex

− ∂Ey
)b2 +

d− 1

2
(E−1
x − E−1

y )b2.

In addition, (3) has a unique solution and the probability for one energy to reach
zero in finite time is zero.

A direct computation shows that the measures
∏

x∈Λ E
d
2
−1

x e−βEx are invariant
for the above process for each β ∈ R+.

It is interesting to note that the mesoscopic equation that we obtain seems to
have some very natural and universal structure since it holds also when starting
from different models. Indeed, essentially the same equation is obtained in [8] for
a system of coupled nonlinear oscillators in the presence of an energy preserving
randomness. In addition, such an equation is almost identical to the one studied
in [10] apart from the necessary difference that the diffusion is a degenerate one.
Indeed, since it describes the evolution of energies, and energies are positive, the
diffusion coefficients must necessarily be zero when one energy is zero.

Since, due to the weak interaction, the energies vary very slowly, once the time
is rescaled so that the energies evolve on times of order one all the other variables
will evolve extremely fast. Thus our result is an example of averaging theory for
slow-fast systems. Yet, in our case the currents have zero average which means
that standard averaging theory (such as, e.g. [4]) cannot suffice. It is necessary to
look at longer times when the fluctuation play a fundamental role. The study of
such longer times can in principle be accomplished thanks to the theory developed
in [2].

Unfortunately, the results in [2] do not apply directly and we are forced to a
roundabout in order to obtain the wanted result. Not surprisingly, the trouble
takes place at low energies. Indeed, when the energy of a particle is of order
ε, then the interaction is no longer a small perturbation and we may loose the
control of the microscopic dynamics. We have thus to investigate with particular
care the behavior of the system at low energies. In particular, we prove that for
each strictly positive initial condition and each T, ǫ > 0 there exists δ such that the
probability that the energy of any particle becomes less than δ in the time interval
[0, ε−2T ] is smaller that ǫ for each ε small enough. Hence, the unreachability of
zero for the limiting process.
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Quenched invariance principle for random walks in balanced random
environment

Ofer Zeitouni

(joint work with Xiaoqin Guo)

This work explores the extent to which the assumption of uniform ellipticity
can be dropped in the non-reversible, but balanced, setupi of random walks in ran-
dom environments. Not surprisingly, it turns out that some moment assumptions
on the ellipticity constant suffice to yield the invariance principle in the ergodic
environment setup, after some analytical effort has been expanded in obtaining
a-priori estimates. What is maybe more surprising is that for i.i.d. environments,
no assumptions of uniform ellipticity are needed at all.

Let M be the space of all probability measures on V = {v ∈ Zd : |v| ≤ 1},
where | · | denotes the l2-norm. We equip M with the weak topology on probability

measures, which makes it into a Polish space, and equip Ω = MZ
d

with the induced
Polish structure. Let F be the Borel σ-field of Ω and P a probability measure on
F .

A random environment is an element ω = {ω(x, v)}x∈Zd,v∈V of Ω with distri-
bution P . The random environment is called i.i.d. if {ω(x, ·)}x∈Zd are i.i.d. across
the sites x under P . The random environment is called balanced if

P{ω(x, ei) = ω(x,−ei) for all i and all x ∈ Zd} = 1,

and elliptic if P{ω(x, e) > 0 for all |e| = 1 and all x ∈ Zd} = 1.



Large Scale Stochastic Dynamics 2893

The random walk in the random environment ω ∈ Ω (RWRE) started at x is the
canonical Markov chain {Xn} on (Zd)N, with state space Zd and law P xω specified
by

P xω{X0 = x} = 1,

P xω{Xn+1 = y + v|Xn = y} = ω(y, v), v ∈ V.

The probability distribution P xω on ((Zd)N,G) is called the quenched law, where G
is the σ-field generated by cylinder functions.

Define the canonical shifts {θy}y∈Zd on (Ω,F) by (θyω)(x, v) = ω(x + y, v).
Assume that the system (Ω,F , P ) is ergodic with respect to the group of shifts
{θy} and that the environment is balanced and elliptic.

Let o = (0, · · · , 0) denote the origin and

Xn
t :=

1√
n
X⌊tn⌋ +

tn− ⌊tn⌋√
n

(X⌊tn⌋+1 −X⌊tn⌋), t ≥ 0.

We say that the quenched invariance principle holds with nondegenerate covari-
ances if for P -almost every ω ∈ Ω, the P oω law of the path {Xn

t }t≥0 converges
weakly to a Brownian motion on Rd with covariance matrix (aiδij)1≤i,j≤d, ai > 0,
as n→ ∞.

Lawler [3] proved a quenched invariance principle for random walks in a bal-
anced random environment under the assumption that the random environment
is uniformly elliptic, i.e.

P{ω(x, e) ≥ ε0 for all |e| = 1} = 1 for some ε0 > 0.

The paper studies the extent to which the uniform ellipticity assumption can
be dropped. Let

(1) ε(x) = εω(x) := [

d
∏

i=1

ω(x, ei)]
1
d .

Theorem 1. Assume that the random environment is ergodic, elliptic and bal-
anced.

(i) If Eε(o)−p <∞ for some p > d ≥ 2, then the quenched invariance princi-
ple holds with a nondegenerate limiting covariance.

(ii) If E[(1 − ω(o, o))/ε(o)]q < ∞ for some q > 2 and d ≥ 3, then the RWRE
is transient P -almost surely.

Recurrence for d = 2 under the condition Eε(0)−p < ∞ follows from the
quenched invariance principle and ergodicity by an unpublished argument of Kesten
detailed in [5, Page 281]. That some integrability condition on the tail of ε(o) is
needed for part (i) to hold is made clear by the (non-Gaussian) scaling limits of
random walks in Bouchaud’s trap model, see [1]. In fact, it follows from that
example that Theorem 1(i), or even an annealed version of the CLT, cannot hold
in general with p < 1.
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The proof of Theorem 1 is based on a sharpening of the arguments in [3, 4, 5];
in particular, refined versions of the maximum principle for walks in balanced
environments and of a mean value inequality play a crucial role.

Next, the iid setup is considered.

Theorem 2. Assume that the random environment is i.i.d., elliptic and balanced.

(i) If P{max|e|=1 ω(o, e) ≥ ξ0}=1 for some positive constant ξ0, then the
quenched invariance principle holds with a non-degenerate limiting covari-
ance.

(ii) When d ≥ 3, the RWRE is transient P -almost surely.

The proofs combine percolation arguments with Theorem 1. Because the tran-
sience or recurrence of the random walks does not change if one considers the
walk restricted to its jump times, one concludes, using Kesten’s argument and the
invariance principle, compare with Theorem 1, that for d = 2, a random walk in a
balanced elliptic i.i.d. random environment is recurrent P -a.s.
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Bose-Einstein condensation and probabilistic methods for nonlinear
Schrödinger equations

Kay Kirkpatrick

(joint work with Sourav Chatterjee)

Near absolute zero, a gas of quantum particles can condense into an unusual
state of matter, called Bose-Einstein condensation, that behaves like a giant quan-
tum particle. Recently we’ve been able to make the rigorous probabilistic connec-
tion between the physics of the microscopic dynamics and the mathematics of the
macroscopic model, the cubic nonlinear Schrodinger equation (NLS).

I’ll discuss new work with Sourav Chatterjee about a phase transition for in-
variant measures of the focusing NLS. Using techniques from probability theory,
we show that the thermodynamics of the NLS are exactly solvable in dimensions
three and higher. A number of explicit formulas are derived, with implications for
some open questions about blow-up and statistical mechanics of the NLS.
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1. Motivation

Studying the statistical mechanics of the nonlinear Schrödinger equation (NLS)
is crucial to understanding certain physical phenomena that the NLS models:
Bose-Einstein condensation, Langmuir waves in plasmas, nonlinear optics, and
envelopes of water waves [8, 9, 11, 22]. Water wave systems in particular have
interesting features called rogue waves: non-tsunami waves around sixty meters
tall that occur on the open ocean and are thought to appear in finance and be
replicable in BECs [1]. Rogue waves cannot be explained by a traditional Rayleigh
distribution of wave heights and instead should be linked to statistical mechanical
properties of the NLS.

One celebrated approach to understanding these phenomena is via the NLS’s in-
variant measures, which ignore transient states and focus instead on the long-time
probabilistic behavior of the system. Studying invariant measures was initiated
in the seminal work of Lebowitz, Rose, and Speer [12], for the one-dimensional
focusing NLS on [0, L] with periodic boundary conditions:

(1) i∂tφ = −∂xxφ− |φ|p−1φ.

They conjectured that, at least with a mass cutoff, the Hamiltonian energy func-
tional,

(2) H(φ) :=
1

2

∫ L

0

|φ′(x)|2dx− 1

p+ 1

∫ L

0

|φ(x)|p+1dx,

gives natural formal invariant (or Gibbs) measures with inverse temperature pa-
rameter β:

e−βH(φ)
∏

x

dφ(x).

Here the product has to be interpreted properly, and numerical simulations led
them to make a conjecture about a possible phase transition in the invariant
measures.

Bourgain continued the investigation [2] by proving that indeed, with an L2

truncation, the following weighted Wiener measure is invariant for the periodic
1D focusing cubic (p = 3) NLS:

(3) dνβ,B = Z(β,B)−1 exp

(

β

4
‖φ‖44

)

1{‖φ‖2
2≤B}dµβ(φ).

(Here µβ is the Wiener measure with scale parameter β.) Simulations in [7] sug-
gested that there is no phase transition, and then Rider, following on the works
of McKean and Vaninsky [14, 15, 16], confirmed this for the 1D infinite-volume
focusing NLS by proving that the thermodynamic limit is trivial [17, 18]. Bourgain
also studied invariant measures of the 1D infinite-volume defocusing NLS [3] and
of the 2D defocusing NLS [4] (see also the review article [5]), as did Tzvetkov [20].

Limitations of this approach became apparent at criticality, as when Brydges
and Slade studied the 2D focusing NLS [6] and saw that the natural construction
cannot produce an invariant measure for large coupling coefficients of the (critical)
nonlinearity. We present an alternative approach to the supercritical NLS by
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replacing the continuum with a discrete grid, where invariant measures are clear
and amenable to techniques from discrete probability, and by letting the grid size
go to zero eventually.

This approach has been investigated previously in the physics literature (see
e.g., Rumpf [19] and references therein), as well as in mathematics (e.g., Weinstein
[21]). However, it seems unlikely that this approach will yield useful information
about the continuous system, because the mass and energy levels attained by
the discrete system Gibbs measures are typically too low to be relevant for the
continuous NLS. Still, the discrete system is interesting in its own right and the
tractability of the Gibbs measures in dimensions ≥ 3, which is our main result, is
remarkable.

2. Our results

We prove that in the discrete setting in dimensions three and higher, the natural
invariant measure of the cubic focusing NLS is “exactly solvable” in the limit as
the grid size goes to zero. The exact solvability is manifest in a number of ways:

• We are able to compute the limit of the partition function explicitly.
• Analysis of the partition function yields a first-order phase transition: if
µ̃β,B is now a discrete multidimensional version of (3), then for βB2 less
than an explicit critical threshold (approximately 2.455407, independent
of dimension), a random function with µ̃β,B as its probability law must
be uniformly small with high probability. And if βB2 is bigger than this
threshold, then such a random function must have exactly one highly
localized mode, sometimes called ‘discrete breather’. This is the so-called
anti-integrable regime (see e.g., MacKay and Aubry [13] and Weinstein
[21]).

• Besides the partition function and the critical point, we are also able to
compute the exact size of the breather and the energy density, and the
limiting probability distributions of individual coordinates.

• Additionally, we show that the localized mode persists at one site for an
exponentially long time.

The study of discrete breathers has a long history in the physics literature, with
applications to crystals, biological macro-molecules, and optical waveguides (see
[21] and references therein). It is of interest to understand when these structures
occur, and moreover, how prevalent and concentrated they are. Flach, Kladko, and
MacKay made conjectures about positive minimum energies necessary for discrete
breathers for (roughly) supercritical lattice models, e.g., discrete cubic NLS in
3D [10]. Weinstein proved one of the conjectures, that in the supercritical case,
ground state standing waves exist if and only if the total power is larger than some
strictly positive threshold [21].

Putting this in the context of statistical mechanics, it was previously known
that there are localized modes at zero temperature (β = ∞) for mass going to
infinity; we show that such modes exist for finite mass and energy and non-zero
temperature – and not only exist, but are typical.
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Our results may be connected to the phenomenon of blow-up in supercritical
NLS, suggesting that blow-up is typical in 3D, at least for the discrete NLS – and
we address how energy and mass concentrate.

The two-dimensional periodic analog is open and should be more interesting
from the probabilistic point of view.
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Approximations to the Stochastic Burgers Equation

Jochen Voss

(joint work with Martin Hairer)

This talk studies several finite difference schemes for stochastic partial differen-
tial equations (SPDEs) of the form

(1) ∂tu(x, t) = ν ∂2xu+ g(u) ∂xu+ σ ξ(x, t), x ∈ [0, 2π], t ≥ 0

where ν, σ > 0 are constants. In this equation, ξ denotes space-time white
noise, that is the centred, distribution-valued Gaussian random variable such that
E
(

ξ(x, t)ξ(y, s)
)

= δ(t−s)δ(x−y). This equation is equipped with periodic bound-

ary conditions and we consider solutions u taking values either in R or in Rd (in
which case g is matrix-valued). For d = 1 and g(u) = −u, the SPDE (1) is known
as the viscous stochastic Burgers equation.

We study the effect of finite difference discretisations on this equation and in
particular show that many discretisation schemes which look ‘reasonable’ at a first
glance are in fact not even consistent.

In contrast to the situation presented here, the solution of the stochastic Burg-
ers equation (or rather the integrated process which solves the corresponding KPZ
equation) arising as the fluctuations process in the weakly asymmetric exclusion
process [3, 4] is driven by the derivative of space-time white noise. As a conse-
quence, it does not solve an SPDE that is well-posed in the classical sense and
can currently only be defined via the Hopf-Cole transform. Such a process is even
rougher (by “one derivative”) than the process considered here and one would
expect the ‘wrong’ numerical approximation schemes to fail there in an even more
spectacular way.

An extended version of the results presented here is submitted for publication
as [1]. Some of the conjectures presented in the talk have in the meantime been
proved in [2].

To discretise the SPDE (1) we consider the approximating equation

(2) ∂tu(x, t) = ν ∂2xu+ g(u)Dδu+ σ ξ(x, t),

where we define the approximate derivative Dδ by

Dδu(x) =
u(x+ aδ)− u(x− bδ)

(a+ b)δ

for some a, b ≥ 0. In the absence of the noise term ξ, it would be a standard result
in numerical analysis that the solution of (2) converges to the solution of (1) as
δ ↓ 0. Here we will argue that, if ξ is taken to be space-time white noise, the limit
of (2) as δ → 0 depends on the values a and b and is equal to (1) only if either g
is constant or a = b. More precisely, we conjecture that, as δ → 0, the solution of
(2) converges to the solution of

(3) ∂tu(x, t) = ν ∂2xu+ g(u) ∂xu− σ2

4ν

a− b

a+ b
g′(u) + σ ξ(x, t).
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Currently, this result is mostly supported by numerical evidence. To validate
the conjecture, we perform numerical experiments like the following: We numer-
ically solve the “approximating” equation (2) until a fixed time T and store the
solution u. Then, for the same instance of the noise and a function γ : R → R, we
use a known-good discretisation scheme to solve the “corrected” SPDE

(4) ∂tuγ(x, t) = ν ∂2xuγ + g(uγ) ∂xuγ −
σ2

4ν

a− b

a+ b
γ(uγ) + σ ξ(x, t).

Finally, we numerically optimise the correction term γ in (4) (using some para-
metric form) to minimise the distance ‖u(T, · ) − uγ(T, · )‖2. If the conjecture is
correct, one would expect the minimum to be attained for a function γ which is
close to the predicted correction term g′ from (3).

The result of a simulation for the one-dimensional example g(u) = sin(u)2,
using the right-sided discretisation a = 1, b = 0, is shown in the following figure
(taken from [1]):
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Here we use a fifth-order polynomial for the correction term γ. The top panel
shows the resulting fitted correction term −σ2γ/4ν (full line) together with the
conjectured correction term −σ2g′(u)/4ν (dotted line). To give an idea which
range of arguments is actually used in the computation, the lower panel shows the
histogram of the values of u (the vertical bars indicate the 5% and 95% quantiles).
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In the interval between these quantiles, the graph shows a good fit between the
numerically determined and conjectured correction terms, thus giving support to
the conjecture presented here.
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Crossover to the KPZ equation

Patŕıcia Gonçalves, Milton Jara

1. Introduction

We consider the one-dimensional weakly asymmetric simple exclusion process
(wasep), i.e. our microscopic dynamics is given by a stochastic lattice gas with hard
core exclusion. This process arises as a simple model for the growing of random
interfaces. The presence of a weak asymmetry in the microscopic dynamics, breaks
down the detailed balance condition, which implies the system to exhibit a non
trivial behavior even in the stationary situation. The dynamical scaling exponent
has been established by the physicists as being z = 3/2 and one of the challenging
problems is to establish the limit distribution for the density and the current of
particles, see [9]. We take the process with asymmetry given by an2−γ and we
want to analyze the effect of strengthening the asymmetry in the limit distribution
of the density field.

The wasep was studied in [2] and in [3], for γ = 1; and in [1] for γ = 1/2. The
equilibrium density fluctuations (for γ = 1) are given by an Ornstein-Uhlenbeck
process. For γ = 1/2 (which corresponds to strength asymmetry nz), [3] used the
Cole-Hopf transformation to derive the non-equilibrium fluctuations of the current
of particles. By removing the drift to the system, there is no effect of the strength
of the asymmetry on the limit distribution of the density field. By strengthening
the asymmetry the limit distribution ”feels” the effect of this strengthening, by
developing a non linear term in the limit distribution. In this case the limit density
field is a solution of the Kardar-Parisi-Zhang (KPZ) equation. The KPZ equation
was proposed in [8] to model the growth of random interfaces. Denoting by ht the
height of the interface, this equation reads as ∂th = D∆h+ a(∇h)2 + σWt, where
D, a, σ are constants related to the thermodynamical properties of the interface
and Wt is a space-time white noise. According to z, a non-trivial behavior occurs
under re-scaling hn(t, x) = n−1/2h(tn3/2, x/n). This means, roughly speaking,
that in our case, for γ = 1/2 a non trivial behavior is expected even in the sta-
tionary situation and in this case, the model belongs to the universality class of
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the KPZ equation. Here we provide the characterization of the transition from
the Edwards-Wilkinson class to the KPZ class, for the wasep. We prove that the
transition depends on the strength of the asymmetry without having any other
intermediate state and by establishing precisely the strength in order to have the
crossover. From this result we obtain the crossover regime for the current of par-
ticles across a characteristic. Our method relies on a stronger Boltzmann-Gibbs
Principle introduced in [4] and is robust enough in the sense that it can be applied
for general interacting particle systems.

2. Equilibrium fluctuations

Let ηt be the wasep evolving on Z and with space state Ω = {0, 1}Z. In this
process, each particle waits a mean one exponential time after which jumps to an
empty neighboring site according to a transition rate that has a weak asymmetry
to the right. The process is taken on the diffusive time scale n2 so that ηnt = ηtn2

and the transition rate to the right is 1/2 + 1/nγ and to the left is 1/2 − 1/nγ .
We notice that if we decrease the value of γ, this corresponds to speeding up the
asymmetric part of the dynamics on longer time scales as n2−γ . A stationary
measure for this process is the Bernoulli product measure on Ω of parameter ρ,
that we denote by {νρ : ρ ∈ [0, 1]}.

We denote by πnt the empirical measure as the positive measure in R defined
by πnt (dx) = 1

n

∑

x∈Z
ηnt (x)δx/n(dx), where for u ∈ R, δu is the Dirac measure

at u. We are interested in establishing the fluctuations of the empirical measure
from the stationary state νρ. From now on, fix a density ρ and take ηnt moving
in a reference frame with constant velocity given by (1− 2ρ)n2−γ . Let Ynt be the
density fluctuation field on H ∈ S(R) as:

(1) Yn,γt (H) =
1√
n

∑

x∈Z

T γt Hx

(

ηnt (x) − ρ
)

,

where T γt H(·) = H(· − (1 − 2ρ)tn1−γ). From now on we use the denotation
Hx = H(x/n).

For γ = 1, it is not hard to show that {Yn,γt ;n ∈ N} converges to Yγt solution
of the Ornstein-Uhlenbeck equation:

(2) dYγt =
1

2
∆Yγt dt+

√

χ(ρ)∇dWt,

where Wt is a space-time white noise. So, for γ = 1 the system belongs to the
Edwards-Wilkinson universality class.

In order to see the effect of the asymmetry in the limit density field we increment
the strength of the asymmetry by decreasing the value of γ. According to [3], the
effect of the asymmetry is presented in the limit field when γ = 1/2 and in that
case Yγt has a very different qualitatively behavior from the one obtained for γ = 1,
namely the solution of (2).

In this work, we characterize the limit field Yγt for the intermediate state, i.e.
for γ ∈ (1/2, 1), by showing that for this range of the parameter it also solves
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(2). As a consequence, for γ ∈ (1/2, 1) the system still belongs to the Edwards-
Wilkinson universality class. The idea of the proof of last result is to use Dynkin’s
formula so that

Yn,γt (H) =Mn,γ
t (H) + Yn,γ0 (H) + In,γt (H) +An,γ

t (H)

where Mn,γ
t (H) is a martingale with respect to the natural filtration and the

integral terms In,γt (H) and An,γ
t (H) are given (respectively) by

∫ t

0

1

2
√
n

∑

x∈Z

∆nT γs Hx(η
n
s (x)− ρ)ds,

∫ t

0

n1−γ
√
n

∑

x∈Z

∇nT γs Hx

{

ηns (x)(1 − ηns (x+ 1))− χ(ρ)− (1 − 2ρ)(ηns (x) − ρ)
}

ds,

and ∆n, ∇n are the discrete laplacian and the discrete derivative, respectively.
Now we analyze the asymptotic behavior of the martingale and the integral

terms above. The hard programme of this approach is to analyze the limit of the
integral term An,γ

t (H). For that purpose, we derive a stronger Boltzmann-Gibbs
principle as in Corollary 7.4 of [4], which implies that An,γ

t (H) vanishes as n→ ∞.
In [4] the result was obtained for the symmetric simple exclusion but is also true
for the process we consider here. In fact that result can be stated as: if ψ : Ω → R

is a local function, γ ∈ (1/2, 1) and if H ∈ S(R) then

(3)

∫ t

0

n1−γ
√
n

∑

x∈Z

Hx

{

τxψ(η
n
s )− Eνρ [ψ(η)] − ∂ρEνρ [ψ(η)](η

n
s (x) − ρ)

}

ds,

vanishes as n → ∞ in L2(Pνρ). Last result together with some computations on
the quadratic variation of the martingale, gives us that Yγt is solution of (2).

From the previous arguments we have seen that if we want to see the effect
of the asymmetry in the limit field, we go towards decreasing the value of γ,
which, as mentioned above, corresponds to speeding up the asymmetric part of
the dynamics. This is in agreement with the result of [7] which says that for
γ = 1/2 that is indeed the case.

Recently in [5], it was shown that for γ = 1/2, {Yn,γt ;n ∈ N} is tight and any
limit point is an energy solution of the KPZ equation:

(4) dYγt =
1

2
∆Yγt dt+∇(Yγt )2dt+

√

χ(ρ)∇dWt.

Since we are in the presence of a stronger asymmetry, the result in (3) is no
longer true. In order to establish last result, a second order Boltzmann-Gibbs prin-
ciple was derived in [5]. The ingredients invoked in order to derive this stronger
replacement is a multi-scale argument introduced in [4] combined with some fun-
damental features of the model: as a sharp spectral gap bound for the dynamics
restricted to finite boxes, plus a second order expansion on the equivalence of
ensembles.
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The results beyond the hydrodynamic time scale, the crossover at γ = 1/2 and
the KPZ class, are in fact true for a general class of weakly asymmetric exclusion
processes see [6].

As a consequence of last result and by relating the current of particles with the
density field, we can obtain the crossover on the fluctuations of the current and
we obtain that for γ ∈ (1/2, 1) the limit is Gaussian, while for γ = 1/2 the limit is
written in terms of the KPZ equation. For details we refer the interested reader
to [6].
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Universality of KPZ equation and renormalization techniques in
interacting particle systems

Milton Jara, Patŕıcia Gonçalves

1. Introduction

In the middle eighties, Kardar, Parisi and Zhang in [7] proposed a phenomeno-
logical model for the stochastic evolution of the profile of a growing interface ht(x).
The Kardar, Parisi and Zhang (KPZ) equation has the following form in one di-

mension: ∂th = D∆h + a
(

∇h
)2

+ σWt, where Wt is a space-time white noise
and the constants D, a, σ are related to some thermodynamic properties of the
interface. The quantity ht(x) represents the height of the interface at the point
x ∈ R. From a mathematical point of view, this equation is ill-posed, since the
solutions are expected to look locally like a Brownian motion, and in this case the
nonlinear term does not make sense, at least not in a classical sense.

In dimension d = 1, a conservative version of the KPZ equation can be obtained
by defining Yt = ∇ht: ∂tYt = D∆Yt + a∇Y2

t + σ∇Wt. This equation has spatial
white noise as an invariant solution. In this case is even clearer that some procedure
is needed in order to define Y2

t in a proper way. It is widely believed in the
physics community that the KPZ equation governs the large-scale properties of
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one-dimensional, weakly asymmetric, conservative systems in great generality. The
microscopic details of each model should only appear through the values of the
constants D, a and σ. In this work we provide a new approach which is robust
enough to apply for a wide family of one-dimensional weakly asymmetric systems.
As a stochastic partial differential equation, the main problem with the KPZ
equation is the definition of the square Y2

t .
Our first contribution is the notion of energy solutions of the KPZ equation,

which we introduce in order to state in a rigorous way our second contribution.
Take a one-dimensional, weakly asymmetric conservative particle system and con-
sider the rescaled space-time fluctuations of the density field Ynt . When the
strength of the asymmetry is of order 1/

√
n, we prove that any limit point of

Ynt is an energy solution of the KPZ equation. The only ingredients needed in
order to prove this result are a sharp estimate on the spectral gap of the dynamics
of the particle system restricted to finite boxes and a strong form of the equiva-
lence of ensembles for the stationary distribution. Therefore, our approach works,
modulo technical modifications, for any one-dimensional, weakly asymmetric con-
servative particle system satisfying these two properties. As a consequence, we say
that energy solutions of the KPZ equation are universal, in the sense that they
arise as the scaling limit of the density in one-dimensional, weakly asymmetric
conservative systems satisfying fairly general, minimal assumptions.

In order to prove this result, we introduce a new mathematical tool, which we
call second-order Boltzmann-Gibbs principle. The usual Boltzmann-Gibbs princi-
ple, introduced in [1] and proved in [3] in our context, basically states that the
space-time fluctuations of any field associated to a conservative model can be writ-
ten as a linear functional of the density field Ynt . A stronger Boltzmann-Gibbs
Principle was derived in [4], which implies that for strength asymmetry less than
1/

√
n, the limit field falls into the Edwars-Wilkinson universality class [5]. Our

second-order Boltzmann-Gibbs principle states that the first-order correction of
this limit is given by a singular, quadratic functional of the density field. It has
been proved that in dimension d ≥ 3, this first order correction is given by a white
noise [2]. As a consequence for strength asymmetry 1/

√
n the system fall into the

KPZ universality class [6].

2. The results

2.1. The process. Let Ω = {0, 1}Z be the state space of a continuous-time
Markov chain ηt which we will define as follows. We say that a function f : Ω → R

is local if there exists R = R(f) > 0 such that f(η) = f(ξ) for any η, ξ ∈ Ω such
that η(x) = ξ(x) whenever |x| ≥ R. Let c : Ω → R be a non-negative function.
We assume the following conditions on c:

i) Ellipticity: There exists ǫ0 > 0 such that ǫ0 ≤ c(η) ≤ ǫ−1
0 for any η ∈ Ω.

ii) Finite range: The function c(·) is local.
iii) Reversibility: For any η, ξ ∈ Ω such that η(x) = ξ(x) whenever x 6= 0, 1,

c(η) = c(ξ).
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For any x ∈ Z let τxf(η) = f(τxη) for any η ∈ Ω, where τxη denotes the space
translation by x. We will also assume a fourth condition, which is the most
restrictive one:

iv) Gradient condition: There exists a local function h : Ω → Ω such that
c(η)(η(1)− η(0)) = τ1h(η)− h(η) for any η ∈ Ω.

In this work, we consider the Markov process {ηnt ; t ≥ 0} generated by the operator
Ln acting over local functions f : Ω → R as

Lnf(η) = n2
∑

x∈Z

τxc(η)
{

pnη(x)(1 − η(x+ 1)) + qnη(x+ 1)(1− η(x))
}

∇x,x+1f(η),

where n ∈ N, ∇x,x+1f(η) = f(ηx,x+1)−f(η), pn and qn are non-negative constants
such that pn + qn = 1 (and pn − qn = a/

√
n with a 6= 0) and ηx,x+1 is given by

ηx,x+1(x) = η(x+ 1), ηx,x+1(x + 1) = η(x), otherwise ηx,x+1(z) = η(z).
For ρ ∈ [0, 1] let νρ be the Bernoulli product measure in Ω of parameter ρ.

Under condition iii), the measures {νρ; ρ ∈ [0, 1]} are invariant and reversible with
respect to the evolution of ηnt . Under condition i), these measures are also ergodic
with respect to the evolution of ηnt .

2.2. Equilibrium Fluctuations. In this work we are interested in a central limit
theorem for the density of particles starting from the equilibrium state νρ. Let
us fix a density ρ ∈ (0, 1) and let S(R) be the Schwartz space of test functions
and let S ′(R) be the space of tempered distributions in R, which corresponds to
the topological dual of S(R). The fluctuation field {Ynt ; t ≥ 0} is defined as the
S ′(R)-valued process given by

Ynt (G) =
1√
n

∑

x∈Z

(

ηnt (x) − ρ
)

G(x/n− v(ρ)tn1/2)

where v(ρ) = aβ′(ρ). Our main result in this work says that the sequence of
processes {{Ynt ; t ∈ [0, T ]};n ∈ N} is tight in D([0, T ],S ′(R)) and any limit point
is a stationary energy solution of the KPZ equation:

(1) dtYt =
ϕ′(ρ)

2
∆Ytdt−

aβ′′(ρ)

2
∇Y2

t dt+
√

χ(ρ)ϕ′(ρ)∇dWt.

2.3. Energy solutions of the KPZ equation. The space C([0, T ],S ′(R)) is the
space on which the solutions of the KPZ equation (1) will live. For ǫ > 0 we
define iǫ(x) : R → R by iǫ(x)(y) = ǫ−11(x < y ≤ x + ǫ). We say that a process
{Yt; t ∈ [0, T ]} with trajectories in C([0, T ],S ′(R)) and adapted to some natural
filtration {Ft; t ∈ [0, T ]} is a weak solution of (1) if:

i) There exists a process {At; t ∈ [0, T ]} with trajectories in C([0, T ],S ′(R))
and adapted to {Ft; t ∈ [0, T ]} such that for any G ∈ S(R),

(2) lim
ǫ→0

∫ t

0

∫

R

Ys(iǫ(x))2
G(x+ ǫ)−G(x)

ǫ
dxds = At(G).
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ii) For any function G ∈ S(R) the process

(3) Mt(G) = Yt(G)− Y0(G)−
ϕ′(ρ)

2

∫ t

0

Ys(G′′)ds− aβ′′(ρ)

2
At(G)

is a martingale of quadratic variation χ(ρ)ϕ′(ρ)t
∫

G′(x)2dx.

Now we introduce a stronger notion of solution, which captures well some of the
particularities of the solutions of (1). Let {Yt; t ∈ [0, T ]} be a weak solution of
(1). For 0 ≤ s < t ≤ T , let us define the fields

Is,t(G) =
∫ t

s

Yu(G′′)du,

As,t(G) = At(G)−As(G),

Aǫ
s,t(G) =

∫ t

s

∫

R

Yu(iǫ(x))2
G(x+ ǫ)−G(x)

ǫ
dxdu.

We say that {Yt;∈ [0, T ]} is an energy solution of (1) if there exists a constant
κ > 0 such that

E[Is,t(G)2] ≤ κ(t− s)

∫

G′(x)2dx

and

E[(As,t(G)−Aǫ
s,t(G))

2] ≤ κǫ(t− s)

∫

G′(x)2dx

for any 0 ≤ s < t ≤ T , any ǫ ∈ (0, 1) and any G ∈ S(R). We say that a weak
solution {Yt; t ∈ [0, T ]} is a stationary solution if for any t ∈ [0, T ] the S ′(R)-valued
random variable Yt is a white noise of variance χ(ρ).

An immediate consequence of last result is the existence of weak solutions of
the KPZ equation. Let Yt be a limit point of Ynt . Since the measure νρ is invariant
under the evolution of ηnt , for any fixed time t ∈ [0, T ] the S ′(R)-valued random
variable Yt is a white noise of variance χ(ρ). As a consequence of the previous
result we obtain that for any limit point {Yt; t ∈ [0, T ]} of {{Ynt ; t ∈ [0, T ]};n ∈ N},
there is a finite constant c > 0 such that the process {At; t ∈ [0, T ]} defined as
above satisfies the moment bound E[As,t(G)

2] ≤ c|t− s|3/2
∫

G′(x)2dx. Moreover,
for any γ ∈ (0, 1/4) and any G ∈ S(R) the real-valued process {Yt(G); t ∈ [0, T ]}
is Hölder-continuous of order γ.
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Scaling exponents for certain 1+1 dimensional directed polymers

Timo Seppäläinen

(joint work with Márton Balázs, Jeremy Quastel, and Benedek Valkó)

This talk describes three 1+1 dimensional models of a directed polymer in a
random environment for which the precise values of the two fluctuation exponents ζ
and χ have been computed. The directed polymer is a statistical mechanical model
of a random walk path in a random potential. The two fluctuation exponents are
defined somewhat informally as follows:

• Fluctuations of the path {x(t) : 0 ≤ t ≤ n} are of order nζ.
• Fluctuations of the partition function logZn are of order nχ.

The conjectured values for 1+1 dimensions are ζ = 2/3 and χ = 1/3. Next we
present a brief description of some results for the three models.

1. Log-gamma polymer

The 1+1 dimensional log-gamma polymer is a directed path from the origin
(0, 0) to a fixed endpoint (m,n). Here are the basic notational elements of the
model.

• The set of admissible paths is Πm,n = {up-right paths x · = (xk)
m+n
k=0 from

(0, 0) to (m,n)}
• The environment (Yi, j : (i, j) ∈ Z2

+) consists of independent weights Yi,j
with joint distribution P.

• The quenched polymer measure on paths and the partition function are
given by

Qm,n(x ·) =
1

Zm,n

m+n
∏

k=1

Yxk
and Zm,n =

∑

x ·∈Πm,n

m+n
∏

k=1

Yxk
.

• The averaged measure is Pm,n(x ·) = EQm,n(x ·).

The key assumption is on the distributions of the weights. Fix two parameters
0 < θ < µ < ∞. Then the weights are reciprocals of gamma distributed ran-
dom variables, with these parameters for i, j ≥ 1: Y −1

i,0 ∼ Gamma(θ), Y −1
0,j ∼

Gamma(µ− θ), and Y −1
i,j ∼ Gamma(µ).

For the asymptotic results the endpoint (m,n) of the polymer is taken to infinity
in a particular characteristic direction as N ր ∞:

|m−NΨ1(µ− θ) | ≤ γN2/3 and |n−NΨ1(θ) | ≤ γN2/3

for some fixed constant γ. Under these assumptions we have the following fluctu-
ation bounds that verify the conjectured values for the exponents.
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Theorem 1. There exist constants 0 < C1, C2 <∞ such that, for N ≥ 1,

C1N
2/3 ≤ Var(logZm,n) ≤ C2N

2/3.

Let v0(j) and v1(j) denote the left- and rightmost points of the path on the
horizontal line with ordinate j:

v0(j) = min{i ∈ {0, . . . ,m} : ∃k such that xk = (i, j)}
and

v1(j) = max{i ∈ {0, . . . ,m} : ∃k such that xk = (i, j)}.
Theorem 2. Let 0 < τ < 1. Then there exist constants C1, C2 <∞ such that for
N ≥ 1 and b ≥ C1,

P
{

v0(⌊τn⌋) < τm− bN2/3 or v1(⌊τn⌋) > τm+ bN2/3
}

≤ C2b
−3.

Given ε > 0, there exists δ > 0 such that

lim
N→∞

P{ ∃k such that |xk − (τm, τn)| ≤ δN2/3 } ≤ ε.

Further details can be found in [5].

2. Polymer in a Brownian environment

The results for the polymer in a Brownian environment are analogous to those
for the log-gamma polymer. We only indicate what that model is like by giv-
ing the partition function. (The model was introduced and first studied by [4].)
The environment is given by independent Brownian motions B1, B2, . . . , Bn. The
partition function (without special boundary conditions) is defined by

Zn,t(β) =

∫

0<s1<···<sn−1<t

exp
[

β
(

B1(s1) + B2(s2)−B2(s1) +

+ B3(s3)−B3(s2) + · · ·+ Bn(t)−Bn(sn−1)
)]

ds1,n−1.

Further details can be found in [6].

3. Hopf-Cole solution of the Kardar-Parisi-Zhang equation

The Kardar-Parisi-Zhang (KPZ) equation for the height function h(t, x) of a
1+1 dimensional interface is the formal stochastic partial differential equation

ht = 1
2 hxx − 1

2 (hx)
2 + Ẇ

where Ẇ is Gaussian space-time white noise. We take the initial height h(0, x) as a
two-sided Brownian motion for x ∈ R. Giving the KPZ equation a rigorous mean-
ing has been a challenge. The formal transform Z = exp(−h) satisfies a stochastic

heat equation Zt = 1
2 Zxx − Z Ẇ that can be solved rigorously and uniquely in

a class of functions that includes the Brownian initial condition Z(0, x) = e−B(x).
It is also a fact that Z(t, x) > 0, so one can define the Hopf-Cole solution of the
KPZ equation by h = − logZ. For this solution of KPZ we have these variance
bounds:
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Theorem 3. There exist constants 0 < c,C1, C2 <∞ such that, for t ≥ c,

C1t
2/3 ≤ Var(h(t, 0)) ≤ C2t

2/3.

The key points behind this theorem are (i) that the KPZ height function h can
be realized as the weak limit of the scaled height of a weakly asymmetric simple
exclusion process (WASEP) [3] and (ii) that analogous variance bounds can be
established for the exclusion process [2]. Here is a description of the WASEP
height function ζε(t, x). The increments satisfy ζε(x + 1) − ζε(x) = ±1 and the
jump rates are

ζε(x) −→
{

ζε(x) + 2 with rate 1
2 +

√
ε if ζε(x) is a local minimum

ζε(x)− 2 with rate 1
2 if ζε(x) is a local maximum.

The initial height function is taken as ζε(0, x+1)− ζε(0, x) = ±1 with probability
1/2. The scaled height is

hε(t, x) = ε1/2
(

ζε(ε
−2t, [ε−1x]) − vεt

)

.

Theorem 4. [3] As εց 0, hε ⇒ h in the path space of height processes.

From coupling arguments for WASEP we can deduce these variance bounds:

Theorem 5. There exist constants 0 < c,C1, C2 <∞ such that, for t ≥ c and all
ε ∈ (0, 1/4),

C1t
2/3 ≤ Var(hε(t, 0)) ≤ C2t

2/3.

These ingredients and some analysis lead to the bounds for h. Further details in
[1].

References

[1] Márton Balázs, Jeremy Quastel, and Timo Seppäläinen. Scaling exponent for the Hopf-Cole
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How the KPZ equation fits into the KPZ universality class

Ivan Corwin

(joint work with Gideon Amir, Jeremy Quastel)

We consider the solution to the stochastic heat equation ∂TZ = 1
2∂

2
XZ − ZẆ

with delta function initial data whose logarithm, with appropriate normalizations,
is the free energy of the continuum directed polymer, or the solution of the Kardar-
Parisi-Zhang (KPZ) equation with narrow wedge initial conditions. We obtain
explicit formulas for the one-dimensional marginal distributions – the crossover
distributions – which interpolate between a standard Gaussian distribution (small
time) and the GUE Tracy-Widom distribution (large time). The proof is via a
rigorous steepest descent analysis of the Tracy-Widom formula for the asymmet-
ric simple exclusion with anti-shock initial data, which is shown to converge to
the continuum equations in an appropriate weakly asymmetric limit. The limit
also describes the crossover behavior between the symmetric and asymmetric ex-
clusion processes and hence demonstrates that the KPZ equation is, in fact, a
crossover equation between two universality classes – the KPZ class and the Ed-
wards Wilkinson class.
The KPZ and EW universality classes are believed to describe the large-scale/long-
time behavior and fluctuations of a wide array of stochastic models in one space
and one time (1 + 1) dimension. These models include: (1) Growth models,
among which the such as the corner growth or polynuclear growth model; (2)
Interacting particle systems such as the exclusion process; (3) Polymer models
such as last passage percolation, directed polymers in random environments, or
the continuum directed random polymer; (4) Stochastic PDEs such as the KPZ
equation, stochastic heat equation or stochastic Burgers equation. A few of these
models benefit from also being exactly solvable which means that one can write
down formulas for many of the natural observables. Using this solvability we
are able to solve for the exact distribution of the solutions to these continuum
stochastic PDEs.

1. Growth models

There exist a variety of models which have been created to simulate the be-
havior of interfaces growing stochastically according to local rules. Depending on
the nature of these rules an interface will fluctuate around its limiting profile in
different ways. It was predicted in [13] that the fluctuations for a variety of dif-
ferent such models would all behave (i.e., scale) in the same way. These models
were then said to be in the KPZ universality class. Underlying this predication
was a continuum object – the stochastic PDE now known of as the KPZ equation.
The physical predictions only suggested the scaling exponents for these KPZ class
models, and it wasn’t until mathematicians took up the problem that the exact
scaling distributions and processes were uncovered.

Much of my work has revolved around developing our understanding of this
universality class as well as its relationship to the KPZ equation. The growth
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model I have focused on is the corner growth model in which local valleys ∨ are
replaced with local hills ∧ at rate q and the reverse occurs at rate p = 1− q.

Different geometries, or the existence of certain external growth sources can
affect both the limit shape as well as the fluctuations of the interface height func-
tion. In [5] we proved a conjecture of Prähofer and Spohn [14] which provides a
complete characterization of the effect of different geometries and external sources
on the one-point fluctuations of the height function. In [8] we expand this charac-
terization from one-point fluctuations to multi-point fluctuations. The results of
these two papers expand on the ground-breaking work of [12] and [15] and con-
tribute to an understanding of how geometry and external sources affect growth
behavior.

In [9] we prove a general phenomena for growth processes – that there exist
certain space-time directions (characteristics) along which height function fluc-
tuations are carried to a much longer scale than any other direction. With this
scaling in mind, the results of [8] give a spatial limit process for the height function
fluctuations, and a full non-trivial space-time limit remains open.

The above results were shown for the totally asymmetric case of the corner
growth model (q = 1 and p = 0). Some of the one-point function results have
since been generalized to q > p by Tracy and Widom [22, 23, 24, 25]. The case of
symmetry q = p = 1/2 has a different flavor with fluctuations no longer described
by the KPZ universality class, but rather the EW class.

In [2, 10] we discover that there exists a very interesting crossover between
these two classes which is achieved by scaling the asymmetry q − p to zero with
the other model parameters. In this weakly asymmetric scaling we are able to
describe the entire space-time limit and to prove an exact formula for the one-point
function (for two different geometries), which we call the crossover distributions.
We also prove that the process limit is described in terms of the KPZ equation and
thus demonstrate that the KPZ equation, originally conjured up as a continuum
model to predict scaling exponents, is actually a crossover equation between two
universality classes. [17, 18, 19] also determine the crossover distribution formula
in a similar manner (independently and in parallel to [2]).

It would be very interesting to expand the scope of growth models for which
the above can be done rigorously beyond the corner growth model – for instance
the ballistic deposition model, or models with growth rules which are more than
just nearest neighbor. Additionally, there remain certain geometries, such as the
equilibrium or flat geometries for which the above analysis is not complete (see
[11, 4, 3] for progress in equilibrium), especially in the case of weak asymmetry.

2. Interacting particle systems

Particles moving stochastically and interacting according to a specified rule
system are effective ways of simulating real world systems and gaining key insight
into complex phenomena. We consider particle systems where individual particles
attempt to orchestrate random walks with the caveat that they are influenced by
their local environment (of other particles). It is believed that for a wide range
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of mechanisms for this influence, the limiting fluctuations in integrated particle
density are universally and governed by the KPZ and EW classes.

The simple exclusion process is the poster child for all such particle systems
since it is simple to state and exactly solvable (in many cases), yet still seems
to contain all of the expected complexities and phenomena of a general system.
Particle’s attempt continuous time simple random walks, jumping left at rate q
and right at rate p with the caveat that jumps are suppressed if the destination
site is already inhabited. The exclusion process can be coupled to the corner
growth model by replacing up-steps by particles and down-steps by holes. On
account of this, the results stated above also apply here and imply KPZ/EW class
fluctuations for a variety of observables.

It remains an important problem to extend the scope of rigorous universality
beyond the nearest neighbor exclusion process (see [16] for some results for finite
range exclusion).

3. Directed polymers and last passage percolation

Directed polymers are an important class of models which were originally in-
troduced as simplifications of self-avoiding polymers, but have come to be studied
and applied in their own right. The basic model is of a (discrete) path stretched in
one (time) dimension, but allowed to wiggle in the other dimension (space). With-
out any effects of environment the polymer would configure itself randomly as a
random walk path (due to entropic/elastic energy). However, when one introduces
a disordered environment the path must now take into account the combine en-
tropic/elastic energy and the disordered energy (the sum of disorder energy along
the path). The relative strength of the competition of entropy and disorder energy
is determined by the temperature of the system and in the limit of zero temper-
ature the disorder energy becomes of singular importance and the model reduces
to directed last/first passage percolation.

An important statistical observable in these polymer models is the free energy
which is essentially the logarithm of the quenched partition function. It is predicted
that as long as the disorder energy distribution has sufficiently many moments,
the fluctuations of the free energy should be in the KPZ universality class. There
are, however, only a few cases in which this has been proved and finding a more
general approach remains an important problem.

My work on polymers has been focused on two extremes – the zero temperature
last passage percolation model and the high temperature polymer limit [1] of the
continuum polymer. Last passage percolation can be mapped into a version of
the corner growth process, and in the case of exponentially distributed disorder
the results of [5, 8, 9] apply to give a complete characterization of the free energy
multi-point fluctuations for a family of models with boundary pinning.
Rigorously, very little is known for distributions other than exponential/geometric
(for positive temperature polymers, the log-gamma and Brownian cases have been
shown to have the right KPZ scaling [20, 21]). In fact the connection between
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polymers with exponential/geometric disorder seems to break down at positive
temperature and so the above results are only valid for last passage percolation.

Surprisingly there is a second, very high temperature regime at which polymers
and growth models become rigorously related again [1]. Scaling temperature along
with the other model parameters one shows convergence to the free energy of a
model called the continuum directed random polymer. This continuum object is
related to the continuum limit of the weakly asymmetric corner growth model,
i.e., the KPZ equation, via the Hopf-Cole transform and a version of the Feynman
Kacs formula [6]. In [2, 10] we prove formulas for the exact probability distribution
for the one-point fluctuations of the free energy of this continuum polymer in a
space-time white-noise disorder (in the point-to-point case and also a point-to-line
model). Our work confirms the physical prediction that the long-time scaling of
the free energy of the continuum polymer is given by the KPZ universality class.
We also determine the short-time scaling which is given by the EW class.

4. Continuum limits and KPZ

Continuummodels in statistical physics often arise at critical phase transition as
fine scaling limits of systems and display a high level of universality with respect to
perturbations of the discrete models being considered. My work in [2, 10] has shed
some light on the collection of continuum models associated with 1+1 dimensional
growth models, particle systems and polymers.

The continuum models which we consider are the KPZ equation, the stochastic
heat and Burgers equation and the continuuum directed random polymer. All are
connected via various transforms. Our contributions are two fold: We prove exact
formulas for one-point functions for the solution to these equations; and we prove
convergence of critically scaled models to these continuum objects. A punch-line
of our work is the rigorous understanding that the KPZ equation represents a
crossover between the KPZ and EW universality classes.

There are a host of problems left in this area: Analyzing these continuum
models in geometries such as equilibrium (see [3]) or flat; computing multipoint
functions; determining whether the integrable structure of the Tracy-Widom dis-
tributions generalizes to these crossover distributions; and proving convergence
to these continuum models in greater generality. Also, if one could use weakly
asymmetric convergence too these continuum objects to rigorously prove positive
asymmetry/temperature results, this could prove a very powerful technique to-
wards proving universality.
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Interacting particle systems and random matrices

Patrik L. Ferrari

TASEP. We consider the totally asymmetric simple exclusion process on Z

(in continuous time). Particles jump independently to their right neighboring site
with rate 1, provided the site is empty. Denote by ηt(j) ∈ {0, 1} the occupation
variable of site j at time t (with 1 meaning occupied). The standard representation
as height function h (at position x and time t) is given by

(1) h(x, t) =







2Nt +
∑x
y=1(1 − 2ηy(t)), for x ≥ 1,

2Nt, for x = 0,

2Nt −
∑0
y=x+1(1− 2ηy(t)), for x ≤ −1,

where Nt is the number of particles which have crossed the bond 0 to 1 during the
time span [0, t]. This model belongs to the Kardar-Parisi-Zhang [15] universality
class of growth models in 1 + 1 dimensions.

Universality is expected in the long time limit, i.e., the asymptotic height fluctu-
ations should be independent of the particular model used to derive them. Unlike
in the equilibrium statistical mechanics, the scaling exponents are not enough
to single out the large time statistics: initial conditions matter! One still have to
distinguish between (a) curved limit shape, (b) flat limit shape obtained from non-
random initial fluctuations, (c) flat limit shape coming from stationary (random)
initial conditions.

From KPZ scaling, the correlation length scales as t2/3 and height fluctuations
as t1/3 [11, 20]. Therefore, given the limit shape

(2) hma(ξ) := lim
t→∞

h(ξt, t)

t
,

the scaling limit to be considered is

(3) hresct (u) =
h(ξt+ ut2/3, t)− thma(ξ + ut−1/3)

t1/3
,

with of course a freedom in the choice of scaling coefficients (independent of t) for
horizontal and vertical scaling.

TASEP with step Initial Conditions. Consider first step initial condition,
ηj(0) = 1 for j ≤ 0 and ηj(0) = 0 for j > 0, i.e., h(x, 0) = |x|. The limit shape is
curved : 1

2 (1 + ξ2) for |ξ| ≤ 1. Let us focus around ξ = 0, i.e., consider

(4) hresct (u) :=
h(2u(t/2)2/3, t)−

(

t/2 + u2(t/2)1/3
)

−(t/2)1/3
.

For the one-point distribution it is proven [12] that

(5) lim
t→∞

P

(

h(0, t) ≥ t/2− s(t/2)1/3
)

= F2(s),

where F2 is known as the GUE Tracy-Widom distribution, first discovered in
random matrices [18]. Moreover, concerning the joint distributions, it is proven [6,
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4, 13] that

(6) lim
t→∞

hresct (u) = A2(u),

whereA2 is called the Airy2 process, first discovered in the PNG model by Prähofer
and Spohn [16].

GUE matrices. The distribution function F2 and the Airy2 process describe
also the statistics of the largest eigenvalue in the Gaussian Unitary Ensemble of
random matrices. Consider N × N hermitian matrices distributed according to
the probability measure

(7) const exp
(

−Tr(H2)/2N
)

dH,

where dH =
∏N
i=1 dHi,i

∏

1≤i<j≤N dℜ(Hi,j)dℑ(Hi,j) is the reference measure. De-

note by λGUE
N,max the largest eigenvalue of a N ×N GUE matrix. Then Tracy and

Widom [18] showed that fluctuations of λGUE
N,max are asymptotically F2-distributed:

(8) lim
N→∞

P

(

λGUE
N,max ≤ 2N + sN1/3

)

= F2(s).

The parallel between GUE and TASEP with step initial condition goes even
further. Dyson’s Brownian Motion (DBM) is a matrix-valued Ornstein-Uhlenbeck
process introduced by Dyson in 1962 [7]. More precisely, the GUE DBM is the
stationary process on matrices H(t) whose evolution is governed by

(9) dH(t) = − 1

2N
H(t)dt+ dB(t)

where dB(t) is a (hermitian) matrix-valued Brownian motion. More precisely, the
entries Bi,i(t), 1 ≤ i ≤ N , ℜ(Bi,j)(t) and ℑ(Bi,j)(t), 1 ≤ i < j ≤ N , perform
independent Brownian motions with variance t for diagonal terms and t/2 for the
remaining entries. Denote by λGUE

N,max(t) the largest eigenvalue at time t (when

started from the stationary measure (7)). Its evolution is, in the large N limit,
governed by the Airy2 process:

(10) lim
N→∞

λGUE
N,max(2uN

2/3)− 2N

N1/3
= A2(u).

TASEP with step Alternating Conditions. The alternating initial condi-
tion is the following: ηj(0) = 0 for odd j and ηj(0) = 1 for even j. The limit shape
flat, not curved: hma(ξ) = 1/2. Thus, the rescaled height function becomes

(11) hresct (u) :=
h(2ut2/3, t)− t/2

−t1/3 .

In the large time limit

(12) lim
t→∞

P

(

h(0, t) ≥ t/2− st1/3
)

= F1(2s),

where F1 is known as the GOE Tracy-Widom distribution, first discovered in
random matrices [19]. Moreover, as a process, it was discovered by Sasamoto,
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see [17, 5], it holds

(13) lim
t→∞

hresct (u) = A1(u),

where A1 is called the Airy1 process.
GOE matrices. The Gaussian Orthogonal Ensemble (GOE) of random ma-

trices has density on N ×N symmetric matrices

(14) const exp
(

−Tr(H2)/4N
)

dH,

where dH =
∏

1≤i≤j≤N dHi,j is the reference measure. Denote by λGOE
N,max its

largest eigenvalue. The asymptotic distribution of the largest eigenvalue is F1 [19]:

(15) lim
N→∞

P

(

λGOE
N,max − 2N ≤ sN1/3

)

= F1(s).

Also DBM is defined for symmetric matrices by

(16) dH(t) = − 1

4N
H(t)dt+ dB(t)

where dB(t) is a symmetric matrix-valued Brownian motion (as before without
imaginary parts). However, numerical evidence shows [2] that, the limit process
of a properly rescaled λGOE

N,max(t) is not the Airy1 process:

(17) lim
N→∞

λGOE
N,max(8uN

2/3)− 2N

2N1/3
=: B1(u) 6= A1(u).

The process B1 is yet unknown.
Conclusion. First of all, initial conditions matter for the long time statistics

of interfaces in the KPZ class. Secondly, there are partial connections with ran-
dom matrices. The parallel between TASEP with step initial conditions and GUE
random matrices holds for joint distributions. To understand this connection, one
way is to compare the interlacing structure on the GUE minors [14] and the inter-
lacing structure on an extension of TASEP to a 2 + 1 interacting particle system
introduced in [3], see the lecture notes [8] for details. Note that the connection
extends partially to the evolution of minors as shown in [10, 1]. On the other
hand, the parallel between TASEP with alternating initial conditions and GOE
random matrices stops at the level of one-point distributions. For a more extended
discussion, see the recent review paper [9].
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Directed Polymers in a Heavy Tailed Environment

Antonio Auffinger

Originally introduced in [8], Directed Polymers in Random Environment is a
model for an interaction between a polymer chain and a medium with microscopic
impurities. In one variant of this model, the environment σ is a signed measure
on ([0, n] ∩ Z) × Zd and the polymer s : [0, n] → Zd is a random walk trajectory
whose measure conditioned on the environment is

µσn,β(s) =
1

Qσn,β
exp (−βHσ(s)) ; Hσ(s) = −σ(graph(s))

whereHσ(s) is the Hamiltonian or energy of s, the parameter β ∈ [0,∞) represents
the overall strength of the interaction (the inverse temperature) and Qσn,β is a
normalizing constant.

It is expected (yet far from being proved) that in d ≤ 2 and any finite tempera-
ture, or d > 2 and low enough (but not necessarily zero, at least for d small enough)
temperature, the behavior of the polymer path is super-diffusive with transversal
fluctuations of order nψ for some ψ > 0, while in infinite (d ≤ 2) or high enough
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(d > 2) temperature the polymer is diffusive with fluctuations of order n
1
2 . This

should be universal with respect to a large class of environment distributions, cer-
tainly including the case where σ are i.i.d. with marginal distribution whose tail
decays sufficiently fast. For partial results see [3, 4, 9, 15].

At zero temperature (β → ∞), the polymer measure is uniform over all H-
minimizing paths and the model coincides with the well known model of directed
last passage percolation (LPP). Here universal super-diffusive behavior is expected
in all dimensions, but very little is proved (see [10, 12, 14]).

In the paper ”Directed polymers in random environment with heavy tails” [1]
we address the case where σ({z}) are i.i.d. but their marginal distribution has a
(right) tail which is heavy enough to fall outside the universality classes discussed
above. The zero temperature case was treated in [7] and our work can be seen as
an extension to all temperatures. Among the results in the paper, we show that for
any finite temperature β > 0 the polymer is localized to a region of diameter o(n)
around the last passage (energy minimizing) path and if the temperature is scaled

correctly β(n) = βn
2
αL0(t) (where L0(t) is another slowly varying function), then

localization to a region of diameter o(n) around a β-dependent optimal energy-
entropy balancing curve is observed. We identify this β-optimal path and show
that its distribution admits a scaling limit on a linear order, thus we prove that
fluctuations are of order n. The scaling limits form two-parameters (α, β) family
of distributions on 1-Lipschitz curves on [0, 1] that interpolates the cases β = 0
to β = ∞ and we discuss some of its properties. The proof uses tools from large
deviations, extreme value theory, random walks and functional analysis. It is joint
work with O. Louidor (UCLA).
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Quasi-potential for conservation laws with boundary conditions

Christophe Bahadoran

Setting. In [10, 11, 12], non-local free energy functionals were derived for
stationary exclusion processes with open boundaries coupled to reservoirs. In
symmetric and weakly asymmetric cases, these functionals were recovered ([5, 6, 7])
as a quasi-potential:

(1) V [r(.)] := inf{I[ρ(., .)] : ρ(−∞, .) ∈ S, ρ(0, .) = r(.)}

where r(.) = (r(x), x ∈ [0, 1]) is a stationary fluctuation of the spatial density
profile, ρ(., .) = (ρ(t, x), t ≤ 0, x ∈ [0, 1]), a dynamic fluctuation of the space-time
profile, I[ρ(., .)] the dynamic large deviation functional, and S the set of station-
ary solutions of the hydrodynamic equation. In [2], we undertake this derivation
starting from a dynamic large deviation functional relevant to asymmetric systems.
Here, the hydrodynamic equation is of hyperbolic type:

(2) ∂tρ(t, x) + ∂xf [ρ(t, x)] = 0

where ρ(t, x) ∈ [0, 1]. For such PDE’s, entropy conditions inside, and boundary
conditions in the sense of Bardos et al. ([3]), are essential differences compared
to previously studied cases (where a diffusion term was present). They induce
boundary-driven phase transition (i.e. S may not reduce to a singleton) and
deeply modify the structure of the relevant dynamic functional.

Stationary solutions and dynamic functional. These are constructed from
the following input: (i) an exclusion-like flux function f in (2), i.e. f is uniformly
concave on [0, 1] with f(0) = f(1) = 0 and a unique maximum at ρ∗ ∈ (0, 1); (ii)
a strictly convex entropy h(ρ); iii) left/right reservoir densities ρl, ρr ∈ [0, 1].

The set S consists of three phases ([13, 1]) : low-density (LD) ρl < ρr, f(ρl) <
f(ρr) or ρr ≤ ρl < ρ∗, with bulk density ρl; high-density (HD) ρl < ρr, f(ρl) >
f(ρr) or ρ

∗ < ρr ≤ ρl with bulk density ρr; maximal current (MC) ρl ≥ ρ∗ ≥ ρr,



Large Scale Stochastic Dynamics 2921

with bulk density ρ∗. On the phase transition line ρl < ρr, f(ρl) = f(ρr), S
consists of arbitrarily located shocks connecting ρl and ρr. For ASEP,

(3) f(ρ) = ρ(1 − ρ), h(ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

The dynamic functional is decomposed as I = I0 + I l + Ir, where I0 measures
deviation from (2) including entropy conditions, and I l, Ir measure deviation from
boundary conditions. A natural bulk functional I0[ρ(., .)] ([16, 18]) is the total
positive mass of entropy production ∂th(ρ) + ∂xg(ρ) if ρ(., .) is a weak solution of
(2), +∞ otherwise. We consider instead (see below) a closely related functional
J0 introduced in [4, 17]. Boundary functionals write

(4) I l[ρ(., .)] =

∫ 0

−∞
il[ρ(t, 0)|ρl]dt, Ir[ρ(., .)] =

∫ 0

−∞
ir[ρ(t, 1)|ρr]dt

for local cost functions il(ρ|ρl) and ir(ρ|ρr). These functions were introduced in
[8] in the case (3).

Results. Let ϕ(ρ) be the unique decreasing function such that f ◦ ϕ = ϕ, e.g.
ϕ(ρ) = 1− ρ for ASEP. Under the symmetry assumption h′′[ϕ(ρ)]ϕ′(ρ) = −h′′(ρ),
we obtain a closed expression for (1) that is a generalization of the functional in
[6]. We determine all fluctuation paths ρ(., .), i.e. minimizers of (1). Contrary
to the diffusive case, these paths relax from r(.) to S in finite time, except in the
MC phase. In the regime ρl > ρr, the unique fluctuation path is the space-time
reversal of an entropy solution of (2) with time-dependent boundary conditions
different from ρl, ρr. In the regime ρl < ρr there may be several paths. Each of
them evolves in two steps. First, it is the space-time reversal of a weak solution
of (2) with a single antishock and boundary data ρl, ρr. The antishock starts at a
position y ∈ [0, 1] determined from r(.) as a minimizer of some function. For each
such minimizing position there is a unique fluctuation path. When the antishock
reaches a boundary, the solution turns entropic inside and the driving boundary
condition is also imposed at the opposite boundary.

Open questions.
1. Weakly asymmetric systems with vanishing viscosity. The bulk part J0 of

the dynamic functional ([17]) governs large deviations for a vanishing visosity sto-
chastic perturbation of (2). Can we add boundary conditions to this stochastic
equation and obtain the boundary terms for the dynamic large deviations ? Com-
bined with [1], this would yield stationary large deviations similar to [6]. Weakly
asymmetric exclusion-like models with vanishing viscosity ([14]) are formally sim-
ilar. Perhaps the same could be done for such systems.

2. Extension to Jensen-Varadhan functional. Do we have similar results with
the functional I0 of [16, 18], which governs TASEP large deviations ? The two
functionals are very close for stricly concave flux: J0 ≥ I0, and J0 = I0 at least
for BV functions. But J0 provides control over all entropies of (2), while I0 only
does for a single entropy. To deal with I0 we need would need an extension of [9]:
that if entropy production is a measure for a single stricly convex entropy, then it
is for all convex entropies. The statement of [9] is with “negative measure” only.
3. Dynamic large deviations for TASEP. Assuming the above extension holds, a
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dynamic large deviation principle for open TASEP combined with [1] would imply
stationary large deviations. However it is not clear how to rigorously obtain the
boundary large deviation terms for genuinely asymmetric systems. One reason
seems to be that boundary conditions for (2) really use many entropies, while for
[16, 18] only the microscopic entropy is available.
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Euler hydrodynamics of one-dimensional attractive particle systems in
random environment

Ellen Saada

(joint work with C. Bahadoran, H. Guiol, K. Ravishankar)

We have been analyzing Euler hydrodynamics of conservative attractive inter-
acting particle systems on Z (see [12] for definition and properties of attractiveness)
in a series of papers described below. We consider models with at most K par-
ticles per site (K ∈ N), of ‘misanthrope type’ (see [9]), that is, particles’ jump
rates depend on the configuration only through the occupation numbers on the
departure and target sites of the jump. However the validity of our results is not
restricted to this condition, they apply for instance to k-step exclusion processes
(see [10]).

Alternative to previous methods (see [14], [11], [15], [19], [20]), we have devel-
oped a constructive method to derive that the hydrodynamic limit under Euler
time scaling is given by the entropy solution (see e.g. [21]) to the scalar conserva-
tion law

(1) ∂tu(t, x) + ∂xG(u(t, x)) = 0

where the macroscopic flux function G is Lipschitz-continuous. Our idea was to
generalize the proof done in [1], [2] by Andjel & Vares, of Riemann hydrodynamics
for misanthropes processes with convex flux function. Our approach relies on: (i) a
variational formula for entropy solutions (to the hydrodynamic equation) without
assuming flux convexity, and (ii) an approximation method (inspired by Glimm’s
scheme) to prove that the hydrodynamic limit for initial Riemann profiles implies
the hydrodynamic limit for general initial profiles.

In [3], we studied systems with irreducible and finite range jumps, and product
invariant measures. In [4], we generalized the previous work to processes without
explicit invariant measures. Papers [3] and [4] are summarized in [18] (see also
[17]).

In [5], under the same hypotheses on the model, we obtained strong hydrody-
namics, that is an almost sure limit, with respect to the probability distribution un-
derlying the graphical representation of the process (indeed, in the aforementioned
works, hydrodynamic limits referred to weak convergence of empirical measures).
We did not use the subadditive ergodic theorem (unsufficient in our setting), which
was the core of the strong hydrodynamic results obtained up to now (see for in-
stance the seminal work [16]); our key idea was to replace it by large deviation
estimates.

A crucial tool in those proofs was ‘macroscopic stability’ of the models, which
had been derived by Bramson & Mountford in [8] for exclusion processes with
finite range jump kernels. In [13], we got rid of the finite range assumption on
the jump rates to derive macroscopic stability for misanthrope type models on
compact state spaces.

Quenched hydrodynamic limits in random environment under Euler time scaling
have been derived in [7] (for asymmetric zero-range process with site disorder on



2924 Oberwolfach Report 50/2010

Z
d) and in [19] (for the totally asymmetric nearest-neighbor K-exclusion process

on Z with i.i.d. site disorder).
We are now able, in [6], to prove a quenched hydrodynamic limit under hyper-

bolic time scaling for bounded attractive particle systems on Z in random ergodic
environment. Our result is again a strong law of large numbers. An essential dif-
ficulty for the disordered system is the simultaneous loss of translation invariance
and absence of explicit invariant measures. A central idea is to introduce a joint
disorder-particle process that is translation invariant, to characterize its invariant
measures, and then (thanks to the tools developed in [5]), to derive its strong
hydrodynamic limit; the latter induces our quenched result. The flux G is defined
as an integral of the microscopic flux independent of the chosen disorder. Our
method is quite robust with respect to the model (so long as it is attractive) and
to the form of the disorder: We apply it to generalizations of misanthropes process
(including site or bond disorders), of k-step exclusion, and to a traffic model in
various cases of random environment.
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Hydrodynamic limit for 2D and 3D Young diagrams

Tadahisa Funaki

(joint work with Makiko Sasada)

The asymptotic shapes of two-dimensional random Young diagrams with large
size were studied by Vershik [3] under several types of statistics including the
uniform and restricted uniform statistics, which were also called the Bose and
Fermi statistics, respectively. To each partition p = {p1 ≥ p2 ≥ · · · ≥ pj ≥ 1}
of a positive integer n by positive integers {pi}ji=1 (i.e., n =

∑j
i=1 pi), the height

function of the Young diagram is defined by

ψp(u) =

j
∑

i=1

1{u<pi}, u ≥ 0.

For each fixed n, the uniform statistics (U-statistics in short) µnU assigns an
equal probability to each of possible partitions p of n, i.e., to the Young dia-
grams of area n. The restricted uniform statistics (RU-statistics in short) µnR also
assigns an equal probability, but restricting to the distinct partitions satisfying
q = {q1 > q2 > · · · > qj ≥ 1}. These probabilities are called canonical ensem-
bles. Grandcanonical ensembles µεU and µεR with parameter 0 < ε < 1 are defined
by superposing the canonical ensembles in a similar manner known in statistical

physics. Vershik [3] proved that, under the canonical U- and RU-statistics µN
2

U

and µN
2

R (with n = N2), the law of large numbers holds as N → ∞ for the scaled
height variable

ψ̃Np (u) :=
1

N
ψp(Nu), u ≥ 0,

of the Young diagrams ψp(u) with area N2 and for ψ̃Nq (u) defined similarly, and
the limit shapes ψU and ψR are given by

(1) ψU (u) = − 1

α
log

(

1− e−αu
)

and ψR(u) =
1

β
log

(

1 + e−βu
)

, u ≥ 0,
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with α = π/
√
6 and β = π/

√
12, respectively. These results can be extended to

the corresponding grandcanonical ensembles µεU and µεR, if the averaged size of
the diagrams is N2 under these measures.

Our goal is to study these results from a dynamical point of view. Allowing a
creation and an annihilation of a unit square on the surface of the Young diagram,
to the grandcanonical U- and RU-statistics, one can associate a weakly asymmetric
zero-range process pt respectively a weakly asymmetric simple exclusion process
qt on a set of positive integers with a stochastic reservoir at the boundary site {0}
in both processes as natural time evolutions of the Young diagrams or those of
the gradients of their height functions. Then, under the diffusive scaling in space
and time and choosing the parameter ε = ε(N) of the grandcanonical ensembles
such that the averaged size of the Young diagrams is N2, one can derive non-linear
partial differential equations in the limit and show that the Vershik curves defined
by (1) are actually unique stationary solutions to the deived PDEs in both cases.

We state our main results more precisely. Define

ψ̃Np (t, u) := ψ̃NpN2t
(u) ≡ 1

N
ψpN2t

(Nu), u > 0,

from pt in U-case and define ψ̃Nq (t, u) similarly from qt in RU-case.

Theorem 1. (1) If ψ̃Np (0, u) −→
N→∞

ψ0(u), then ψ̃Np (t, u) −→
N→∞

ψU (t, u) in proba-

bility. The limit ψU (t, u) is a solution of nonlinear PDE:

∂tψ = ∂u

(

∂uψ

1− ∂uψ

)

+ α
∂uψ

1 − ∂uψ
, u > 0,

ψ(0, ·) = ψ0(·),
ψ(t, 0+) = ∞, ψ(t,∞) = 0,

where ∂tψ = ∂ψ/∂t, ∂uψ = ∂ψ/∂u (< 0).

(2) If ψ̃Nq (0, u) −→
N→∞

ψ0(u), then ψ̃
N
q (t, u) −→

N→∞
ψR(t, u) in probability. The limit

ψR(t, u) is a solution of nonlinear PDE:

∂tψ = ∂2uψ + β∂uψ(1 + ∂uψ), u > 0,

ψ(0, ·) = ψ0(·),

∂uψ(t, 0+) = −1

2
, ψ(t,∞) = 0.

I discussed the conservative dynamics associated with the canonical ensemble.
Under the scaling t 7→ N4t, one can expect to derive a Cahn-Hilliard type nonlinear
PDE of fourth order in the limit. This is a model for the so-called surface diffusion.

The extension to 3D situation was studied by Cerf and Kenyon [1] under uniform
statistics and the limit surface called the Wulff shape is characterized by a certain
variational formula. I also stated a conjecture for the hydrodynamic limit for
the associated dynamics of the 3D Young diagrams (confined on a torus). Our
model can be viewed as describing a motion of (decreasing) interfaces, called SOS
dynamics.
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Superdiffusive bounds on self-repellent precesses in d = 2

Bálint Tóth

(joint work with Benedek Valkó)

We study the long time asymptotics of the self repelling Brownian polymer
process (SRBP) in Rd defined by the SDE

(1) dXt = dBt
(

η0 − gradV ∗ lt
)

(X(t))dt,

where Bt is standard Brownian motion in Rd, η0 : Rd → Rd is a gradient vector
field with sufficient regularity,

lt(A) := | {s ∈ [0, t] : Xs ∈ A} |
is the occupation time measure of the process Xt and V : Rd → [0,∞) is a C∞,
spherically symmetric approximate identity with sufficiently fast decay at infinity.
It is assumed that V (·) is positive definite:

V̂ (p) =

∫

R2

eip·xV (x)dx ≥ 0.

The process is pushed by the negative gradient of its own local time, mollified by
convoluting with V . The process was introduced by Durrett and Rogers in [2] and
further investigated in a series of probability papers. For a survey and complete
list of references see [6]. It is phenomenologically similar to the so-called true self-
avoiding random walk (TSAW) which arose in the physics literature initiated by
Amit, Parisi and Peliti in [1] and further investigated in a series of physics papers.
For a survey and complete list of references see [10].

Conjectures based on scaling and renormalization group arguments regarding
this family of models are the following (see e.g. [1]):

(1) In d = 1: X(t) ∼ t2/3 with intricate, non-Gausssian scaling limit.
(2) In d = 2: X(t) ∼ t1/2(log t)1/4 and Gaussian (that is Wiener) scaling limit

expected.
(3) In d ≥ 3: X(t) ∼ t1/2 with Gaussian (i.e. Wiener) scaling limit expected.

Some if these conjectures had been proven or at least partially settled. For
results in d = 1 see [9], [13], [12], [8] and the survey [10]. For results in d ≥ 3
see [3]. The present lecture concentrates on recent results on the d = 2 case. The
complete results and proofs will appear in [11].
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The natural framework of formulation of the problem and results is the envi-
ronment seen by the random walker. Let

ηt(x) :=
(

η0 − gradV ∗ lt
)

(X(t)).

Then t 7→ ηt is a Markov process with continuous sample paths in the function
space

Ω =
{

ω ∈ C∞(R2 → R
2) : rotω ≡ 0, ‖ω ‖k,m,r <∞

}

where ‖ω ‖k,m,r are the seminorms

‖ω ‖k,m,r = sup
x∈Rd

(

1 + |x |
)−1/r

∣

∣

∣
∂|m |
m1,...,md

ωk(x)
∣

∣

∣

defined for k = 1, 2, multiindices m = (m1, . . . ,md), mj ≥ 0, and r ≥ 1.
It was proved in [8] (for d = 1) and [3] (for arbitrary d) that the Gaussian

measure π on Ω defined by the covariances
∫

Ω

ωk(x)dπ(ω) = 0, Kkl(x − y), with K̂kl(p) =
pkpl

| p |2
V̂ (p)

is stationary and ergodic for the Markov process ηt.
The random vector field ω distributed according to π the gradient of the massless

free Gaussian field smeared out by convolution with U , where U ∗ U = V .
Let

Ê(λ) :=

∫ ∞

0

e−λtE
(

|Xt |2
)

dt.

The main result of [11], reported in this lecture is the following theorem.

Theorem 1. Consider the process defined by the stochastic differential equation
(1) in R

2 and let the initial vector field η0 be sampled from the stationary distri-
bution π. Then there exist constants 0 < C1, C2 <∞ such that for 0 < λ < 1 the
following bounds hold

C1 log | logλ | ≤ λ2Ê(λ) ≤ C2 | logλ |

Remarks: (1) Modulo Tauberian inversion, these bounds mean in real time

C3t log log t ≤ E
(

|X(t) |2
)

≤ C4t log t,

with 0 < C3, C4 <∞ and for t sufficiently large.
(2) The upper bound is straightforward, it follows directly form estimates on dif-
fusion in random scenery. The superdiffusive lower bound is the main result.

The proof of Theorem 1 follows the main lines of [5]. See also [4]. However on
the computational level there are notable differences. For similar recent results
referring to second class particle motion in various asymmetric exclusion processes
see also [7].

Full proofs are available in [11].
Acknowledgement. The work of BT was partially supported by OTKA (Hun-
garian National Research Fund) grant K 60708.
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Hydrodynamic limit for exclusion processes with velocity

Makiko Sasada

We introduce a new class of one-dimensional exclusion processes with velocities
featuring random flips of the sign of velocities. We consider a system of particles
with velocity +1 or −1 where particles interact with each other via hard-core
exclusion potential. Each particle can only hop in the direction of its velocity. The
sign of the velocity of each particle flips at rate γ > 0. We prove the hydrodynamic
limit for this nonreversible and nongradient system under the diffusive space-time
scaling. The hydrodynamic equation is a certain nonlinear diffusion equation and
its diffusion coefficient is characterized by a variational formula. We also obtain
the asymptotic behavior of the diffusion coefficient as γ goes to ∞ or 0.
The model we consider is a system of particles with velocity on the one-dimensional
discrete lattice Z under the constraint that at most one particle can occupy each
site. A set of possible velocities is {1,−1} and the state space of the process is
{1, 0,−1}Z. Its elements (called configurations) are denoted by ω = (ω(x), x ∈ Z)
with ω(x) = 0 or 1 or −1 depending on whether x ∈ Z is empty or occupied by
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a particle with velocity 1 or a particle with velocity −1, respectively. A particle
at site x with velocity 1 (resp. −1) waits for an exponential time at rate one and
then jumps to x + 1 (resp. x − 1) provided the site is not occupied. If the site
is occupied by a particle with velocity 1 (resp. −1), then the jump is suppressed.
On the other hand, if the site is occupied by a particle with velocity −1 (resp. 1),
then the particle at x collides to the particle at x + 1 (resp. x − 1), namely the
particle cannot jump to x+ 1 but instead the velocities of these two particles are
exchanged. The changes of velocities also happen due to random external factors.
The sign of velocity of each particle flips (from 1 to −1 or from −1 to 1) with
exponential law with a positive constant rate γ. Flips of the sign of each particle’s
velocity happen independently of each other. Moreover, jumps or collisions of each
particle and flips of the sign of each particle’s velocity are all independent.

It is easy to see that the number of particles is a unique conserved quantity
for such process. We prove the hydrodynamic limit for the density of particles
and obtain a variational formula for the diffusion coefficient of the hydrodynamic
equation, assuming the continuity of the diffusion coefficient.

The hydrodynamic limit for a nonreversible and nongradient system is first
considered in [8] where the hydrodynamic behavior of a one-dimensional mean-
zero zero-range process is studied. Later, Komoriya studied the hydrodynamic
behavior of a mean-zero exclusion process in [1]. A crucial step for extending
the entropy method first developed for reversible systems to nonreversible systems
consists in controlling the asymmetric part of the generator by the symmetric one.
This is related to the so-called sector condition. In [8], [7] and [6], some versions
of the sector condition are proved using the idea called loop decomposition first
introduced in [8]. The idea depends deeply on the mean-zero property of random
walks considered there. In our proof, we do not use loop decomposition, and instead
we use the parity of the system to show a version of the sector condition. This
new method can be applied to Hamiltonian systems.

The model defined above can be considered as an intermediate between the
totally asymmetric exclusion process (TASEP) and the simple symmetric exclusion
process (SSEP). If we consider the case with γ = 0 and the initial condition
satisfying that the velocities of all particles are same (e.g. 1), the system evolves
as same as TASEP. In this situation, since there is a transport in the system, we
have to consider the hyperbolic space-time scaling instead of the diffusive scaling
to know the time evolution of the density of particles. On the other hand, if
we consider the case with γ = ∞ heuristically, each particle jumps to right or
left with probability 1/2 under the exclusive constraint after exponential waiting
time with rate one. Therefore the system evolves as same as SSEP where the
density of particles evolves according to the heat equation with a constant diffusion
coefficient 1/2 under the diffusive scaling. From this point of view, we study the
asymptotic behavior of the diffusion coefficient of our model as γ goes to 0 or ∞
and obtain some results which show that the asymptotic behavior of the diffusion
coefficient is consistent with the asymptotic behavior of the evolution of the model.
Specifically, we show that the diffusion coefficient, denoted by Dγ(ρ) as a function
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of the density of particles ρ, is strictly bigger that 1/2 for all positive γ and
ρ ∈ [0, 1], and it converges to 1/2 as γ goes to ∞ for all ρ ∈ [0, 1]. We also show
that Dγ(ρ) = O( 1γ ) as γ goes to 0 for ρ ∈ [0, 1). On the other hand, for ρ = 1,

we show that Dγ(ρ) ≤ O( 1√
γ ). The difference of the order between ρ ∈ [0, 1)

and ρ = 1 implies that ρ = 1 has some special property. In [5], we study a
high-dimensional version of the model we consider here and show that in the case
d ≥ 3, the diffusion coefficient Dγ(ρ) of the hydrodynamic equation goes to ∞ for
ρ ∈ [0, 1) but remains finite for ρ = 1 as γ goes to 0. Especially, we conjecture
that limγ↓0Dγ(1) relates to the diffusion coefficient for TASEP, which diverges for
d = 1, 2 but remains finite for d ≥ 3 (see e.g. [2], [3]) .

In the talk, I also stated two following conjectures implied from numerical sim-
ulations: (i) the diffusion coefficient Dγ(ρ) is decreasing as a function of ρ, (ii)
the diffusion coefficient Dγ(ρ) is decreasing as a function of γ. The first statement
means that the lower the density is, the faster the diffusion is. This property itself
is usual and natural from the physical point of view. The significant thing is even
though there is no such a structure in the microscopic system of our model, we can
see this property at the macroscopic level. This is not the case for SSEP where
the diffusion coefficient is a constant.
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Thermal transport in one-dimensional systems: Some numerical
results

Gabriel Stoltz

(joint work with Alessandra Iacobucci, Michele Lazzeri, Frédéric Legoll,
Francesco Mauri, Natalio Mingo and Stefano Olla)

Thermal properties are usually investigated using Fourier’s law. For nonequi-
librium steady states where the system is put in contact with two reservoirs at
different temperatures, there is a net energy flow from the hotter to the colder
reservoir. The heat current density J is proportional to the temperature gradient

(1) J = κ∇T,

κ being the thermal conductivity (a tensor, in general). Denoting by ∆T the
temperature difference between the reservoirs, and by L the system size in the
direction of the temperature gradient,

κ =
|J|L
∆T

,

provided the temperature profile is linear. For usual three dimensional materials,
the thermal conductivity does not depend on the system size, and so, it is a well-
defined thermodynamical quantity. The situation is different for one-dimensional
(1D) systems. For defect free periodic one-dimensional harmonic systems, there is
no scattering mechanism, and these systems can sustain a current which does not
depend on the system’s length. The thermal conductivity therefore diverges as L,
and is not well-defined. In general, one dimensional (1D) systems in which scatter-
ing processes can take place should exhibit an intermediate scaling |J|/|∇T | ∼ Lα

with 0 < α < 1, in which case the thermal conductivity is again not well-defined.
We here study the thermal conductivity of one dimensional systems in two

cases:

• the Toda lattice perturbed by a stochastic dynamics preserving energy and
momentum;

• carbon nanotubes with harmonic interactions and mass disorder.

Thermal transport in the Toda chain with a noise preserving energy
and momentum. Numerical evidence shows that non-integrability (whatever the
definition of this concept one considers) is not a sufficient condition for normal
conductivity, in particular for anharmonic chains of unpinned oscillators like the
FPU model. Stochastic perturbations of the dynamics have been introduced in
order to understand these phenomena. Stochastic perturbation conserving both
the energy and the momentum, as introduced in [1], model the chaotic effect
of nonlinearities. These systems may then be seen as completely non-integrable,
since the only conserved quantities left are the energy and the momentum. For
anharmonic interactions, rigorous upper bounds on the thermal conductivity can
be established. In the one dimensional case, this leads to κL ≤ C

√
L (see [2]).
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These rigorous results motivated us to analyze the effect of stochastic perturba-
tions on another completely integrable system, the Toda chain. In contrast with
the harmonic case where many computations can be performed analytically, the
nonlinear dynamics considered here has to be solved numerically. We considered a
chain in the nonequilibrium steady state setting, with two Langevin thermostats at
different temperatures attached to its boundaries. We chose the simplest possible
stochastic perturbation conserving both momentum and energy: Each couple of
nearest neighbor particles exchange their momentum at random times distributed
according to an exponential law of parameter γ > 0. The corresponding numerical
results are presented in [3].

Our main results are the following:

(1) As soon as some noise is present, i.e. γ > 0, the ballistic transport is
immediately destroyed (as in the harmonic case) and energy superdiffuses,
with κL ∼ Lα for 0 < α ≤ 1/2;

(2) the exponent α seems to depend on the noise strength γ, in a monotonically
increasing way.

If 1 was somehow expected, 2 is quite surprising. It may be explained by the fact
that the noise destroys some diffusive phenomena due to nonlinearities, like local-
ized breathers, with the result that current-current correlation decays slower when
more noise is present Besides, 2 suggests that any theory claiming the existence
of a universal parameter α has to be properly circumstanced.

Quantum thermal transport in harmonic carbon nanotubes with mass
disorder. We present in [4, 5] a study of the phononic thermal conductivity of
isotopically disordered carbon nanotubes. In particular, the behavior of the ther-
mal conductivity as a function of the system length is investigated, using Green’s
function techniques to compute the transmission across the system. The method
is implemented using linear scaling algorithms, which allows us to reach systems
of lengths up to L = 2.5 µm (with up to 200,000 atoms). As for 1D systems, it
is observed that the conductivity diverges with the system size L. We also con-
sider the agreement of the model with a reduced description based on Boltzmann’s
equation in [4], and study the influence of the mass disorder patterns in [5].

References

[1] G. Basile, C. Bernardin, and S. Olla, Momentum conserving model with anomalous thermal
conductivity in low dimensional systems. Phys. Rev. Lett., 96:204303, 2006.

[2] G. Basile, C. Bernardin, and S. Olla, Thermal conductivity for a momentum conserving
model. Commun. Math. Phys., 287(1):67–98, 2009.

[3] A. Iacobucci, F. Legoll, S. Olla, G. Stoltz, Thermal conductivity of the Toda lattice with
conservative noise, J. Stat. Phys. 140(2) (2010) 336-348

[4] G. Stoltz, M. Lazzeri and F. Mauri, Thermal transport in isotopically disordered carbon
nanotubes, J. Phys.:Cond. Matter 21 (2009) 245302

[5] G. Stoltz, N. Mingo and F. Mauri, Reducing the thermal conductivity of carbon nanotubes
below the random isotope limit, Phys. Rev. B 80 (2009) 113408



2934 Oberwolfach Report 50/2010

Numerical methods for free energy calculations

Tony Lelièvre

(joint work with M. Rousset and G. Stoltz)

The sampling of multimodal measures is a central problem in Monte Carlo
approaches, in many contexts like in Bayesian statistics or in molecular dynamics.
In molecular dynamics, the question is how to efficiently sample a Boltzmann-
Gibbs probability measure of the form

dµ(x) = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx, β is proportional to the inverse of the temperature,
and V : R3N → R associates to a given position of N particles, an energy. To
sample µ, ergodic dynamics with respect to µ are used, typically of the form

dXt = −∇V (Xt) dt+
√

2β−1dWt.

The multimodality of the measure µ comes from the fact that the potential V
exhibits many wells which are separated by energy barriers. This means that Xt

is typically a metastable process, and that using trajectorial averages along Xt

to sample µ may be difficult in practice. The main question is: how to cure this
difficulty ?

The main assumption which is behind most of the methods used in molecular
dynamics is that most of the metastability of the processXt is actually ”contained”
in very few degrees of freedom. A precise mathematical meaning in terms of
logarithmic Sobolev inequality constants is given in [10, 7]. More precisely, one
introduces a so-called reaction coordinate (or order parameter)

ξ : R3N → T

where T denotes the one-dimensional torus, which is typically such that ξ(Xt) is
metastable. The range of ξ is here the torus for simplicity, but the techniques apply
as soon as it is a low-dimensional manifold. One quantity of particular interest
for applications in molecular dynamics, and that will be useful to circumvent the
difficulties due to the metastability of Xt, is the free energy which is defined as

A(z) = −β−1 ln

∫

Σ(z)

exp(−βV )δξ(x)−z(dx),

where Σ(z) = {x, ξ(x) = z} and δξ(x)−z(dx) is a measure with support Σ(z) defined
by the conditioning formula dx = δξ(x)−z(dx) dz. Otherwise stated, exp(−βA(z))dz
is the image of the measure µ by ξ. The free energy may be seen as an ”effective
energy” along ξ.

Computing the free energy (or more precisely free energy differences, since this
is a quantity defined up to an additive constant) is a fundamental problem in
molecular dynamics [3]. In particular, using the naive algorithm which would
consist in using ξ(Xt) to sample exp(−βA(z)) dz does not work in practice due to
the metastability of ξ(Xt).
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Traditional methods to compute free energy differences may be divided into
four classes:

• Perturbation and histogram methods (based on classical sampling tech-
niques),

• Thermodynamic integration (based on homogeneous constrained Markov
processes to sample conditional probability measures),

• Out-of-equilibrium dynamics and fluctuation identities (based on Feynman-
Kac formulae and non-homogeneous Markov processes),

• Adaptive methods (based on adaptive importance sampling techniques,
and non-homogeneous and non-linear Markov processes).

Let us focus on adaptive methods. We refer to [11] for a general introduction to
all these techniques.

The bottom line of adaptive methods is the following: for a well-chosen function
ξ, the dynamics associated to the biased potential V −A◦ξ is less metastable than
the original dynamics, associated to the potential V . This is intuitively sensible,
since the image of the measure exp(−β(V −A ◦ ξ)) by ξ is the uniform law on the
torus, which is of course very easy to sample, and not multimodal. The technique
will thus work if the essential metastability of Xt is along ξ.

Of course, A is not known in general, so that using the biased potential V −A◦ξ
is not feasible in practice. The idea is then to use a dynamics associated to a time-
dependent biased potential V −At ◦ ξ, where At is at time t an approximation of
A. One idea to update At is to start from the formula (which is a consequence of
the co-area formula):

A′(z) =

∫

f exp(−βV )δξ(x)−z(dx)
∫

exp(−βV )δξ(x)−z(dx)

where f = ∇V ·∇ξ
|∇ξ|2 − β−1div

(

∇ξ
|∇ξ|2

)

. An equivalent formulation in terms of con-

ditional expectation is

A′(z) = Eµ(f(Y )|ξ(Y ) = z).

Then, a natural Adaptive Biasing Force method [5, 6] is the following:
{

dYt = −∇(V −At ◦ ξ)(Yt) dt+
√

2β−1dWt,

A′
t(z) = E(f(Yt)|ξ(Yt) = z).

Notice in particular that, if a stationary state is reached, then necessarilyA′
∞ = A′:

the free energy is recovered in the longtime limit. Of course, the natural question
is then: what did we gain compared to the original dynamics on Xt ?

We have shown in a series of work [10, 7, 2, 8] that the dynamics on Yt goes to
equilibrium essentially as fast as the dynamics using the biased potential V −A◦ξ.
In other words, the adaptive potential method is as efficient as a biasing by the free
energy. This technique can be used in other contexts than molecular dynamics to
enhance the sampling of multimodal measure [4], and admits various refinements
and extensions [9, 2].
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Let us conclude by two current research directions which are interesting in
molecular dynamics. First, there is a lack of efficient techniques to sample non-
equilibrium steady-states, namely probability distributions which are defined as the
stationary measure of a stochastic dynamics. In such a context, classical techniques
such as those mentioned above (constrained sampling, importance sampling) are
not applicable. How to efficiently deal with metastability in such a context is
mostly an open problem. This is related to theoretical questions on the rate of
convergence to equilibrium for Fokker-Planck equation with a non-gradient drift.
Second, a very important question concerns the sampling of metastable dynamics
(and not only multimodal measures). Here, the question is how to generate effi-
ciently equilibrium trajectories which leave one well of the potential V to reach
another well. Techniques exist [1], but the situation is not so clear as for the sam-
pling of multimodal measures. Mathematics should help to classify the methods,
and improve them.
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Effective dynamics using conditional expectations

Frédéric Legoll

(joint work with Tony Lelièvre)

Consider the overdamped Langevin dynamics

(1) dXt = −∇V (Xt) dt+
√

2β−1 dWt,

where Xt ∈ RN represents the state of the system at time t, V : RN → R is a given
potential energy and Wt is a N -dimensional brownian motion. This dynamics is
often used in molecular simulation to sample the Gibbs measure

(2) dµ = Z−1 exp(−βV (x)) dx.

Consider now a coarse-grained variable (supposed in this work to be scalar),

ξ : RN → R,

which represents a quantity of interest (for instance, X describes the position of all
atoms of a molecule, while ξ(X) is a particular angle between three atoms of the
molecule). The question we consider is to build a process t 7→ zt that approximates
the process t 7→ ξ(Xt).

We proceed as follows [2, 3]. First, from the dynamics on Xt, we obtain

d [ξ(Xt)] =
(

−∇V · ∇ξ + β−1∆ξ
)

(Xt) dt+
√

2β−1 |∇ξ|(Xt) dBt,

where Bt is a one-dimensional brownian motion. We then take conditional expec-
tations of the drift and diffusion coefficients with respect to the Gibbs equilibrium
measure (2):

b(z) := EGibbs

[(

−∇V · ∇ξ + β−1∆ξ
)

(X) | ξ(X) = z
]

,

σ2(z) := EGibbs

[

|∇ξ|2(X) | ξ(X) = z
]

,

and consider the effective dynamics

(3) dzt = b(zt) dt+
√

2β−1 σ(zt) dBt, z0 = ξ(X0).

This dynamics is ergodic (and reversible) for the measure ξ ⋆ µ, which is the
equilibrium law of ξ(X) when X is distributed according to (2).

We have assessed the accuracy of the effective dynamics (3) in a two-fold man-
ner:

• we have analytically derived an upper-bound on the relative entropy

E(t) = H(ψexact|φeff) =
∫

R

ln

(

ψexact(t, z)

φeff(t, z)

)

φeff(t, z) dz

where ψexact is the law of ξ(Xt) and φeff is the law of zt.
This bound is not an asymptotic result (valid in the limit of a small

parameter going to 0). In the case when an appropriate time-scale sep-
aration is present (an assumption that we formalize in the language of
logarithmic Sobolev inequalities), we infer from this bound that E(t) is
small, and thus the effective dynamics (3) is accurate.
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• a quantity of paramount importance in molecular simulation is the average
residence time that a system spends in a potential energy well (that is,
close to a specific conformation) before hopping to another one, when its
dynamics is given by (1). Most often, conformations can be characterized
by the value of ξ(X), that is the system is in a given conformation if
and only if ξ(X) is in a given interval. Knowing the evolution of ξ(Xt)
(or an approximation of it) is thus sufficient to compute residence times.
On several test cases, we numerically checked that our effective dynamics
provides accurate residence times, in comparison to the reference ones.

We have recently extended the numerical strategy to the case of the Langevin
equation

dXt = pt dt,

dpt = −∇V (Xt) dt− γpt dt+
√

2γβ−1 dWt,

where γ > 0 is a parameter. In this case, we again numerically observe that
the obtained effective dynamics accurately reproduces the residence times in the
metastable domains [1].
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Rigorous scaling law for the heat current in a disordered harmonic
chain

François Huveneers

(joint work with Oskari Ajanki)

In this talk, I present a new result about the energy current in a model of
heat conduction, first considered in detail by Casher and Lebowitz [4]. The
model consists of a one-dimensional disordered harmonic chain of n i.i.d. random
masses, connected to their nearest neighbors via identical springs, and coupled at
the boundaries to Langevin heat baths, with respective temperatures T1 and Tn.
Let E(Jn) be the steady-state energy current across the chain, averaged over the
masses. We prove that E(Jn) ∼ (T1 − Tn)n

−3/2 in the limit n → ∞, as has been
conjectured by various authors over the time. Our proof relies on a new explicit
representation for the elements of the product of associated transfer matrices.

Let us see this in some more details. In a bulk of material, Fourier’s law is said
to hold if the flux of energy J is proportional to the gradient of temperature, i.e.,

(1) J = −κ∇T ,
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where κ is called the conductivity of the material. This phenomenological law has
been widely verified in practice. Nevertheless, the mathematical understanding
of thermal conductivity starting from a microscopic model is still a challenging
question [3] [6] (see also [9] for a historical perspective).

Since the work of Peierls [13], it has been understood that anharmonic interac-
tions between atoms should play a crucial role in the derivation of Fourier’s law
for perfect crystals. It has been known for a long time that the conductivity of
perfect harmonic crystals is infinite. Indeed, in this case, phonons travel ballisti-
cally without any interaction. This yields a wave like transport of energy across
the system, which is qualitatively different than the diffusion predicted by the
Fourier’s law (1). For example, in [14], it is shown that the energy current in a
one-dimensional perfect harmonic crystal, connected at each end to heat baths, is
proportional to the difference of temperature between these baths, and not to the
temperature gradient.

In addition to the non-linear interactions, also the presence of impurities causes
scattering of phonons and may therefore strongly affect the thermal conductivity
of the crystal. Thus, while avoiding formidable technical difficulties associated
to anharmonic potentials, by studying disordered harmonic systems one can learn
about the role of disorder in the heat conduction. Moreover, many problems arising
with harmonic systems can be stated in terms of random matrix theory, or can be
reinterpreted in the context of disordered quantum systems.

Indeed, in [5], Dhar considered a one-dimensional harmonic chain of n oscilla-
tors connected to their nearest neighbors via identical springs and coupled at the
boundaries to rather general heat baths parametrized by a function µ : R → C

and the temperatures T1 and Tn of the left and right bath, respectively. Dhar ex-

pressed the steady state heat current J
(µ)
n as the integral over oscillation frequency

w of the modes:

(2) J (µ)
n = (T1 − Tn)

∫

R

|vtµ,n(w)An(w) · · ·A1(w)vµ,1(w)|−2dw .

Here Ak(w) ∈ R2×2 is the random transfer matrix corresponding the mass of the
kth oscillator, while vµ,1(w) and vµ,n(w) are C2-vectors determined by the bath
function µ and the masses of the left and the right most oscillators, respectively.
Thanks to the work of furstenberg [7] and Matsuda and Ishii [10], it is known
that, asymptotically, the norm of Qn(w) := An(w) · · ·A1(w) grows almost surely
like eγ(w)n where the non-random function γ(w) ≥ 0 is the associated Lyapunov
exponent. In the context of heat conduction this corresponds the localization of
the eigenmodes of one-dimensional chains while in disordered quantum systems
one speaks about the one-dimensional Anderson localization [2].

However, in the absence of an external potential (pinning), the Lyapunov expo-
nent scales like w2, when w approaches zero, and this makes the scaling behavior
of (2) non-trivial as well as highly dependent on the properties of the bath. In-
deed, only those modes for which the localization length 1/γ(w) ∼ w2 [10] is of
equal or higher order than the length of the chain, n, do have a non-exponentially
vanishing contribution in (2). Thus the heat conductance of the chain depends
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crucially on how the bath vectors vµ,1(w), vµ,n(w) weight the critical frequency
range w2n = O(1). In other words, explaining the scaling of the heat current in
disordered harmonic chains reduces to understanding the limiting behavior of the
matrix product Qn(w) when w ≤ n−1/2+ǫ for some ǫ > 0.

The evolution of n 7→ Qn(w) reaches stationarity only when w2n ∼ 1 while the
components of Qn(w) oscillate in the scale wn ∼ 1 with a typical amplitude of

w−1eγ0w
2n as observed numerically in [5]. Thus the challenge when working in

this small frequencies regime is that the analysis does fall back neither to classical
asymptotic estimates for large n, nor to the estimate of the Lyapunov exponent
for small w.

Of course, the difficulty of this analysis depends also on the exact form of the
vectors uµ,k in (2), i.e., on the choice of the heat baths. Besides some rather
recent developments, most of the studies so far have concentrated on two partic-
ular models. In the first model, introduced by Rubin and Greer [15], the heat
baths themselves are semi-infinite ordered harmonic chains distributed according
to Gibbs equilibrium measures of temperatures T1 and Tn, respectively. Rubin and
Greer were able to show that EJRG

n ≥ Cn−1/2 with E(·) denoting the expectation
over the masses. Later Verheggen [16] proved that EJRG

n ∼ n−1/2.
In the second model the heat baths are modeled by adding stochastic Ornstein-

Uhlenbeck terms to the Hamiltonian equations of the chain. This model, first
analyzed by Casher and Lebowitz [4] in the context of heat conduction, was con-
jectured by Visscher (see ref. 9 in [4]) to satisfy E(JCL

n ) ∼ n−3/2. In [1], we
established this result rigorously. Moreover, our method allowed us to treat also
some other cases introduced in [5]. All our results, however, only concern the ex-
pectation of the current, and it should be highly desirable to know whether almost
sure bounds are valid as well.

References

[1] O. Ajanki, F.Huveneers, Rigorous Scaling Law for the Heat Current in Disordered Harmonic
Chain, published online in Comm. Math. Phys.

[2] P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev., 109 (5),
1492–1505, 1958.

[3] F. Bonetto, J.L. Lebowitz, L. Rey-Bellet, Fourier’s law: a challenge to theorists, pp. 128–150
in Mathematical physics 2000, Imp. Coll. Press, London, 2000.

[4] A. Casher, J. L. Lebowitz, Heat Flow in Regular and Disordered Harmonic Chains, J. Math.
Phys., 12 (8), 1701–1711, 1971.

[5] A. Dhar, Heat Conduction in the Disordered Harmonic Chain Revisited, Phys. Rev. Lett.,
86 (26), 5882–5885, 2001.

[6] A. Dhar, Heat transport in low-dimensional systems, Adv. in Phys., 57 (5), 457–537, 2008.
[7] H. Furstenberg, Noncommuting Random Products, Trans. Amer. Math. Soc., 108 (3), 377–

428, 1963.
[8] S. Lepri, R. Livi, A. Politi, Thermal conduction in classical low-dimensional lattices, Phys.

Rep., 377, 2003.
[9] S. Lepri, R. Livi, A. Politi, Anomalous heat conduction, pp. 293-322 in Anomalous Trans-

port: Foundations and Applications, edited by R. Klages, G. Radons and I. M. Sokolov,
Wiley, 2008.



Large Scale Stochastic Dynamics 2941

[10] H. Matsuda, K. Ishii, Localization of Normal Modes and Energy Transport in the Disordered
Harmonic Chain, Prog. Theor. Phys. Suppl., 45, 56–86, 1970.

[11] A.J. O’Connor, A Central Limit Theorem for the Disordered Harmonic Chain, Comm. Math.
Phys., 45 (1), 63–77, 1975.

[12] A.J. O’Connor, J. L. Lebowitz, Heat conduction and sound transmission in isotopically
disordered harmonic crystals, J. Math. Phys., 15 (6), 692–703, 1974.

[13] R.E. Peierls, Quantum Theory of Solids, Oxford University Press, London, 1955.
[14] Z. Rieder, J.L. Lebowitz, E. Lieb, Properties of Harmonic Crystal in a Stationary Nonequi-

librium State, J. Math. Phys., 8 (5), 1073–1078, 1967.
[15] R. J. Rubin, W. L. Greer, Abnormal Lattice Thermal Conductivity of a One-Dimensional,

Harmonic Isotopically Disordered Crystal, J. Math. Phys., 12, 1686–1701, 1971.
[16] T. Verheggen, Transmission Coefficient and Heat Conduction of a Harmonic Chain with

Random Masses: Asymptotic Estimates on Products of Random Matrices, Comm. Math.
Phys., 68 (3), 69–82, 1979.

Thermodynamic Limit for the Invariant Measures of Zero Range
Processes at the Critical Density

Michail Loulakis

(joint work with Inés Armendáriz, Stefan Großkinsky)

We consider zero range processes with decreasing jump rates

g(n) ∼ 1 +
b

nλ
as n→ ∞ .

For λ ∈ (0, 1), b > 0 and for λ = 1, b > 2 the following phase transition is
established: If the particle density ρ exceeds a critical value ρc, the system phase
separates into a homogeneous background with density ρc and a single randomly
located condensate that contains a macroscopic fraction of all the particles [5, 2, 4].

To understand the onset of the condensate formation at the critical density ρc,
we consider processes with N particles on L sites in the thermodynamic limit with
N/L → ρc, but where the excess mass N − ρcL tends to infinity on a scale o(L).
We identify the exact critical scale, below which the excess mass is distributed
among all lattice sites, and above which it concentrates on a single one. We also
characterize the behaviour at the critical scale, where both scenarios can occur with
positive probability. Our results provide a rather complete picture of the transition
from a homogeneous subcritical to condensed supercritical behaviour, including
the change of the extreme value statistics of the maximum. They also provide a
detailed understanding of finite-size effects, which are important in applications
[3].

Let µL,N denote the unique invariant measure of a zero range process with N
particles on L sites. These measures can be constructed as the grand-canonical
measures at the critical density νφc

conditioned on the total number of particles,

µL,N
[

·
]

= νφc

[

· |
L
∑

x=1

ηx = N
]
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We state here the results for λ = 1, b > 3, in which case νφc
have polynomial tails

and a finite variance, σ2. We refer the reader to [1] for the corresponding results
when λ ∈ (0, 1).

Theorem 1 (upside deviations). Assume that N ≥ ρcL and define γL ∈ R by

(1) N = ρcL+ σ
√

(b − 3)L logL
(

1 +
b

2(b− 3)

log logL

logL
+

γL
logL

)

.

a) If γL → −∞ the distribution under µL,N of the maximum ML is asymptotically
equivalent to its distribution under νφc

. Precisely, there exists a u > 0 such that
for all x > 0 we have

(2) lim
L→∞

µL,N

[

ML

L
1

b−1

≤ x

]

= lim
L→∞

νφc

[

ML

L
1

b−1

≤ x

]

= e−ux
1−b

.

In particular, if N − ρcL≫ L
1

b−1 then
ML

N − ρcL

µL,N−→ 0.

b) If γL → +∞ the normalized fluctuations of the maximum around the excess
mass under µL,N converge in distribution to a normal r.v.,

(3)
ML − (N − ρcL)√

Lσ2

d−→ N(0, 1) .

In particular,
ML

N − ρcL

µL,N−→ 1.

c) If γL → γ ∈ R we have convergence in distribution to a Bernoulli random
variable,

ML

N − ρcL

d−→ Be(pγ) ,

where pγ ∈ (0, 1) is an explicit constant, such that pγ → 0 (1), as γ → −∞ (+∞).

In view of (1) the critical scale above which the excess mass concentrates on the
maximum and forms a condensate is of order N − ρcL ∼ √

L logL. On that scale
the transition appears suddenly at ∆L = σ

√

(b− 3)L logL, with the condensate
forming out of particles taken from the bulk, and the correlations switch from
being entirely absorbed by the bulk (2) to being entirely absorbed by the maximum
(Theorem 1b in [2]). It is also interesting to note that the excess mass N − ρcL
is always either distributed among all sites, or concentrates on a single site only,
and that both phases can exist with positive probability at the critical point.

The following theorem together with (3), describes how the fluctuations of the
maximum switch from Gumbel at subcritical densities, to Gaussian at supercritical
densities, via Fréchet at criticality.

Theorem 2 (downside deviations). Define ωL ≥ 0 by N = ρcL− ωLσ
2L

b−2

b−1 .
a) If ωL → 0 then (2) holds, thus the distribution under µL,N of the maximum
ML is asymptotically equivalent to its distribution under νφc

.
b) If ωL → ω > 0 then there exists a positive constant A such that for all x > 0

lim
L→∞

µL,N

[

ML

L
1

b−1

≤ x

]

= exp

{

−A
∫ ∞

x

e−ωt
dt

tb

}

.
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Figure 1. The law of large numbers for the excess mass fraction
ML

N−ρcL in the condensate at the critical scale.

c) If ωL → ∞ then there exist sequences BL → ∞ and sL = ρcL−N
σ2L (1 + o(1)) with

BLsL → ∞, such that for all x ∈ R

lim
L→∞

µL,N

[

ML ≤ BL + x
1

sL

]

= exp{−e−x}.

The next result complements Corollary 3 in [2], which describes the supercriti-
cal fluctuations of the bulk.

Theorem 3 (subcritical fluctuations of the bulk). If γL → −∞ in (1), then the
distribution under µL,N of the bulk fluctuation process, converges to a Brownian
Bridge conditioned to return to the origin at time 1, that is

XL
t =

1

σ
√
L

[tL]
∑

x=1

(ηx −
N

L
)
µL,N

=⇒ BBt .

When λ ∈ (0, 1) (the tails of νφc
are stretched exponential) the results are anal-

ogous, with one notable exception. The critical scale above which the excess mass

forms a condensate is of order N−ρcL ∼ L
1

1+λ . On that scale a transition appears

at ∆L = cλ(σ
2L)

1
1+λ , for some explicitly known cλ > 0, when the maximum jumps

to a positive fraction of N − ρcL. However, the excess mass is shared between the
maximum and the bulk at this scale, as Figure 1 illustrates.
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[1] I. Armendáriz, S. Großkinsky, M. Loulakis, Zero Range Condensation at Criticality,
arXiv:0912.1793
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[5] S. Großkinsky, G.M. Schütz, H. Spohn, Condensation in the zero range process: stationary
and dynamical properties. J. Stat. Phys., 113 (2003), 389–410

Finite size effects and condensation in zero-range processes

Stefan Grosskinsky

(joint work with Paul Chleboun)

We study zero-range processes with jump rates

g(n) =

{

1 + b
nγ if n > 0

0 if n = 0
(1)

with γ ∈ (0, 1) and b > 0, which are known to exhibit a condensation transition [1].
If the particle density exceeds a finite critical value ρc, a non-zero fraction of all
particles accumulates on a single lattice site. This phenomenon has been a subject
of major research interest in theoretical physics and applied probability, where
most results focus on the thermodynamic limit. The system also exhibits large
finite size effects, which have been addressed in several recent studies [2, 3, 4, 5]. We
observe a switching between metastable fluid and condensed phases and establish
a rigorous scaling limit explaining this discontinuous behaviour near criticality.
Our results are published in [6] and constitute an interesting example where the
thermodynamic limit fails to capture essential parts of the dynamics. This is
particularly relevant in applications with moderate system sizes such as traffic
flow [7] or granular clustering (see [8] and references therein).

Consider a one dimensional lattice ΛL = Z/LZ of size L with periodic boundary
conditions and denote configurations by η = (ηx)x∈ΛL

, where ηx ≥ 0 is the number
of particles on site x ∈ ΛL. The zero-range process is given by the generator

(Lf)(η) =
L
∑

x=1

g(ηx)
(

f(ηx,x+1)− f(η)
)

,(2)

where ηx,x+1
z = ηz − δ(z, x) + δ(z, x+1) denotes the configuration change due to

a particle hopping. For simplicity of presentation we focus on totally asymmetric
nearest neighbour jumps in one dimension, but our results hold in a more general
setting (see [6] for details). The stationary measures are known to be of product
form, and for a fixed number N of particles they are given by

πL,N [η] =
1

Z(L,N)

∏

x∈ΛL

w(ηx) δ
(

∑

x

ηx, N
)

,(3)
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Figure 1. Finite size effects for γ = 0.5 and b = 4. Left: Current
overshoot for various system sizes. Right: Scaling limit for the rate
function of the excess mass distribution for various values of δρ.

with weights w(n) =
n
∏

k=1

1

g(k)
∼ e−

b
1−γ

n1−γ

asymptotically decaying as a stretched

exponential. The normalizing partition function Z(L,N) determines the station-
ary particle current by

jL,N := EπL,N
g(ηx) =

Z(L,N − 1)

Z(L,N)
,(4)

which can be computed numerically by making use of the recursion

Z(L,N) =

N
∑

k=0

w(k)Z(L − 1, N − k) .(5)

The current as a function of density ρ = N/L shows a large overshoot compared
to the thermodynamic limit behaviour (see Fig. 1). For large L a sudden drop in
the current occurs at ρtrans(L) > ρc, and near that density Monte-Carlo simula-
tions show a metastable switching between a condensed phase, where the excess
mass concentrates on a single lattice site, and a fluid phase, where it is distributed
homogeneously (see also [4]). These metastable phases correspond to the upper
and lower branch of the current curve which can be extended and characterized
using a current matching argument and the grand-canonical distributions under a
change of measure with cut-off [6]. To describe the switching, we rigorously derive
an effective double-well potential as a large-deviation rate function for the maxi-
mal occupation number ML = maxx∈ΛL

ηx. In a particular scaling limit around
the critical point we parameterise the excess density of particles by δρ > 0 and
the part of δρ that is outside the maximum by δρbg ∈ (0, δρ) .
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Theorem 1. Let σ2
c < ∞ be the variance of ηx at the critical point. In the limit

L,N,m→ ∞ with N = ρcL+ δρL
1

1+γ and m = (δρ− δρbg)L
1

1+γ we have

I
(2)
δρ (δρbg) := lim

L→∞
L− 1−γ

1+γ log πL,N [ML = m]

=
δρ2bg
2σ2

c

+
b

1− γ
(δρ− δρbg)

1−γ − inf
r∈(0,δρ)

{

r2

2σ2
c

+
b

1− γ
(δρ− r)1−γ

}

provided 1
σ2
c
δρbg <

b
(1−γ)(δρ−δρbg)γ .

The double-well structure of I
(2)
δρ is illustrated in Fig. 1 (right), where the right

boundary minimum corresponds to the fluid phase and the left minimum to the
condensed phase, which exists only for large enough excess mass δρ. From the
explicit form of the rate function we can derive ρtrans(L) and the typical size of
the maximum in accordance with [4], and further get predictions for the lifetimes
of the metastable phases which are supported by simulation results.
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Multitype Contact Process on Z: Extinction and Interface

Daniel Valesin

This talk covers the contents of the following works:
[9] Multitype Contact Process on Z: Extinction and Interface,
Daniel Valesin,
[2] Tightness for the Interface of One-Dimensional Contact Process,
Enrique Andjel, Thomas Mountford, Leandro P. R. Pimentel, Daniel Valesin.

The Contact Process is a model for the spread of an infection in a population
and has been extensively studied since its introduction in 1974 ([7]). In my pre-
sentation, I talked about modified versions of the Contact Process that allow for
more than one type of occupant. They are the Multitype Contact Process and the
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Grass-Bushes-Trees model, both models for the competition between different bio-
logical species. Each vertex, or site, of the underlying graph is a geographic region,
and its state at a given time indicates the type of its occupant (or the absence
of an occupant) at that time. The transitions of the dynamics are interpreted as
natural deaths of individuals and generation of descendants.

1. Multitype Contact Process

The Multitype Contact Process was introduced in [8]. Its definition depends on
a symmetric probability kernel p(·) in Zd and infection rates λ1, λ2 ∈ (0,∞). The

state space is {0, 1, 2}Zd

; given a configuration ξ, the transitions at a site x ∈ Z

are, for each i ∈ {1, 2},
i→ 0 with rate 1;

0 → i with rate λi
∑

y I{ξ(y)=i} · p(x− y);

I denotes the indicator function. Let us describe the dynamics in words. An
individual of type i occupying a site waits an exponential time of parameter 1,
after which he dies, but also waits an exponential time of parameter λi, after
which he chooses a site to which he tries to send a descendant. The choice is
made according to the kernel p, and the new birth is forbidden if the chosen site is
already occupied. Given an initial configuration ξ0, ξt will denote the configuration
at time t ≥ 0 obtained from the above dynamics.
In [9], we have taken d = 1, p to be the uniform measure on {−R, . . . ,−1, 1, . . . , R}
(R is the range of the process) and λ1 = λ2 > λc, where λc is the critical infection
rate for the original, one-type Contact Process. The first theorem of [9] gives
necessary and sufficient conditions for one of the two types becoming extinct. It
is a generalization of Theorem 1.1 in [1].

Theorem 1. Assume at least one site is occupied by a 1 in ξ0. The 1’s become
extinct with probability one if and only if there exists L > 0 such that
(A) ξ0(x) 6= 1 ∀x /∈ [−L,L] and
(B) #{x ∈ (−∞,−L] : ξ0(x) = 2} = #{x ∈ [L,∞) : ξ0(x) = 2} = ∞.

Another result, a “coexistence theorem”, adds some information to the above
theorem:

Theorem 2. Assume that 0 < #{x : ξ0(x) = 1},#{x : ξ0(x) = 2} < ∞. Then,
with positive probability, for all t ≥ 0 there exist x, y ∈ Z such that ξt(x) =
1, ξt(y) = 2.

Now consider ξh = I(−∞,0] + 2 · I(0,∞), the configuration containing 1’s to the

left and 2’s to the right of the origin. Let ξht be the process started from ξh0 = ξh.
For time t ≥ 0, let rt = sup{x : ξht (x) = 1}, lt = inf{x : ξht (x) = 2}. The interval
delimited by lt and rt is called the interface area at time t, and |rt − lt| is called
the interface size at time t. We now ask: if t is large, is it reasonable to expect a
large interface? A negative answer is given by
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Theorem 3. The stochastic process (|rt − lt|)t≥0 is tight; that is, for any ǫ > 0,
there exists L > 0 such that P(|rt − lt| > L) < ǫ for every t ≥ 0.

2. Grass-Bushes-Trees

This model was first studied in [5] and [6]. It is also a modification of the

Contact Process and has state space {0, 1, 2}Zd

. Fix a symmetric kernel p and
infection rates λ1, λ2 ∈ (0,∞). Given a configuration η, transitions at a site x ∈ Z

are
i→ 0 with rate 1, for i = 1, 2;

0 → i with rate λi
∑

y I{η(y)=i} · p(x− y);

2 → 1 with rate λ1
∑

y I{η(y)=1} · p(x− y).

Here, in contrast with the previous model, the 1’s, interpreted as trees, are allowed
to displace the 2’s, interpreted as bushes. The empty state 0 is interpreted as grass.

A convenient feature of the Grass-Bushes-Trees model is that, from the point
of view of the 1’s, the presence of the 2’s is irrelevant, so the set of 1’s evolves as
an ordinary one-type Contact Process with rate λ1. The dynamics from the point
of view of the 2’s is also interesting. Letting (ηt) denote the process started from a
deterministic initial configuration η0, define Π1 = {(x, t) ∈ Z× [0,∞) : ηt(x) = 1}.
Conditioned on Π1, the set occupied by the 2’s behaves as a one-type Contact
Process with rate λ2 that is not allowed to enter space-time points in Π1. This
can be seen as a Contact Process in a random environment given by the area not
corroded by the evolution of another Contact Process.

In [2], we have considered the Grass-Bushes-Trees model in dimension 1 with
p equal to uniform measure on {−R, . . . ,−1, 1, . . . , R} (again, R is the range),
and λ1 = λ2 > λc. Define ηh, rt and lt and the interface size |rt − lt| as in the
previous section. It was a conjecture from Cox and Durrett ([3]) that the process
(|rt − lt|)t≥0 is tight, and we have obtained this result in [2]:

Theorem 4. The stochastic process (|rt − lt|)t≥0 is tight.

As explained above, the evolution of the 1’s is simply the evolution of a one-
type Contact Process started from the configuration where only sites in (−∞, 0]
are infected. We then see the 2’s, which initially occupy (0,∞), as attempting to
invade the area that is left vacant by the 1’s. The above theorem shows that this
attempt is unsuccessful, since their conquered space does not grow in distribution
as time passes.
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Quasi-polynomial mixing of the 2D stochastic Ising model with +
boundary up to criticality

Fabio Martinelli

(joint work with E. Lubetzky, A. Sly, F. L. Toninelli)

We consider the heat bah dynamics of the Ising model at low temperature β >
βc in a two-dimensional box ΛL of side L, with uniform “+” boundary conditions,
or random but “mostly +” boundary conditions. Each spin is updated with rate
one, by sampling its value from the equilibrium distribution conditional on the
instantaneous value of its neighboring spins. A celebrated conjecture [1] states
that the equilibration time Tmix is of order L2: if the system is started from the
all “−” initial condition, the bubble of “minus” phase should shrink via a suitable
version of motion by mean curvature. Until recently, the best known upper bound
for Tmix was Tmix ≤ exp(c(β, ǫ)L1/2+ǫ) for each ǫ > 0 and for large enough β [3].
In [4] we considerably improve such result by showing that, always for β large and
ǫ > 0, Tmix ≤ exp(c(β, ǫ)Lǫ). Finally, in [2] we extend the result to all β > βc
and we improve the bound to a quasi-polynomial one: Tmix ≤ Lc(β) logL. The key
ingredients of our method are i) an iterative procedure where the equilibration time
in a rectangle of sides L and L1/2+ǫ and boundary conditions which are − on three
sides and + on one side is estimated via the same quantity for a similar rectangle
where L is replaced by L/2 ii) the so-called “censoring inequalities” proved by Y.
Peres and P. Winkler [5]. The major progress in [2] with respect to [4] is given
by a refinement of the recursive procedure and to the use of duality/random line
representation tools (instead of cluster expansion techniques) to prove some key
equilibrium estimates for Peierls contours.
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Zero temperature 3D Ising dynamics and dimer covering fluctuations

Fabio Toninelli

(joint work with P. Caputo, F. Martinelli, F. Simenhaus)

We consider the zero-temperature heat bath dynamics of the three-dimensional
Ising model with homogeneous, say +, boundary conditions. At each site i ∈ Z3

there is a spin σi = ±1. Spins outside a cube CL of side L are fixed to the value
+1 for all times, while spins inside CL are given at time t = 0 the value −1. The
dynamics is defined as follows: to each i ∈ CL is associated an i.i.d. exponential
clock of mean 1. When the clock at site i rings, then: a) if the spin σi has a
majority of neighboring + (resp. −) spins, then we set σi = + (resp. σi = −)
b) if there are three + and three − neighbors, then we set σi = ±1 with equal
probabilities. We are interested in the first random time τ+ at which all spins take
the value +. It is immediate to see that τ+ is almost surely finite as long as L is
finite. Our main result in [1] is that

P

(

L2

c logL
≤ τ+ ≤ L2(logL)c

)

= 1− o(1)(1)

when L → ∞, for a suitable constant c, where P is the law of the dynamics.
This is to be compared with the previously known bound cL ≤ τ+ ≤ c′L3, proven
in [2]. The conjectured correct behavior is τ+ ∼ cL2 (based on a “motion by
mean curvature heuristics” [4]), i.e. both our upper and lower bounds are off by
logarithmic factors. The proof of our upper bound τ+ ≤ L2(logL)c involves the
analysis of equilibration time and of equilibrium fluctuations of discrete monotone
interfaces (i.e. 3D Young diagrams, i.e. dimer coverings of finite domains of the
honeycomb lattice, see [3]). In few words, we show that the domain of “−” spins
is contained with high probability in a domain which evolves via a deterministic
motion by mean curvature.
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Asymmetric exclusion process with long-range interaction

Gunter M. Schütz

(joint work with V. Popkov and D. Simon)

We consider a totally asymmetric exclusion process with N particles on a pe-
riodic chain of L sites where each site can be occupied by at most one particle.
A configuration η ∈ {0, 1}L changes to a configuration η′ only due to nearest
neighbour hopping. Jumps occur independently after an exponentially distributed
random time. The hopping rate for a particle jump depends on the position of all
other particles on the chain. For a jump of particle k at site rk to rk + 1 (modulo
L) the rate is given by

(1) Wη′η =
∏

l 6=k

sin(π(rk + 1− rl)/L)

sin(π(rk − rl)/L)

where the product is over all particles l 6= k. The generator of this process can be
written in quantum Hamiltonian form as

(2) H = ∆−1Hff∆− E0.

The quantity E0 is the lowest eigenvalue of the non-hermitian quantum Hamilton-
ian

(3) Hff = −
L
∑

k=1

s+k s
−
k+1.

with the spin-1/2 lowering and raising operators s±k of the Lie algebra SU(2) act-
ing on sites k of the chain. The matrix ∆ is diagonal and has the components
of the lowest left eigenvector of Hff on its diagonal. Remarkably, from a prob-
abilistic perspective, all eigenvectors and eigenvalues of Hff can be computed in
explicit form using the Jordan Wigner transformation [1], which turns Hff into a
bilinear Hamiltonian for non-interacting fermions hopping on a lattice. A Fourier
transformation then diagonalizes the free fermion Hamiltonian.

The symmetric version of this model was first considered by Spohn [2]. Its asym-
metric counterpart (3) has recently emerged independently as describing the evo-
lution of the usual ASEP (without long-range interaction) in the quasi-stationary
regime of very large current [3]. In such a conditioned ensemble all histories up
to time T have a weight exp (sJ(T )) where J(T ) is the integrated particle current
along this history. By conditioning on an atypical, very large positive current the
histories with jumps to the left do not contribute to the ensemble. Hence only the
left hopping part of the generator of the ASEP appears in (3). The appearance
of the matrix ∆ and of the lowest eigenvalue E0 come from requiring the large
deviation to persist for a very long time interval. It has been observed [4] that
such extreme-current histories are realized by reaching from any given initial con-
figuration an ensemble of configurations which allow for a large current to flow,
staying there for a long time t2 − t1 ∝ T (thus described by a quasi stationary
ensemble) and ultimately leaving such a regime to a more typical final state at
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time T . The diagonal similarity transformation encodes this observation by pro-
jectiing the initial configuration onto the quasistationary distribution given by the
lowest eigenvector |∆〉 and then projecting from the quasistationary distribution
onto the final configuration. Our rigorous analysis of this exclusion process with
long range interaction yields the following results [3, 5].

(i) Invariant measure: The invariant measure can be expressed by an explicit
formula for the stationary probability of the particle configuration η with particles
located at coordinates rk given by

(4) PL(η) =
2N(N−1)

LN

∏

k,l
1≤k<l≤N

sin2
(

π
rk − rl
L

)

From this one can recover the well-known expression [1] for the static two-point
density correlation for the particle occupation numbers ηr ∈ {0, 1}

(5) S(n, 0) := 〈ηr+nηr〉 − ρ2 = − sin2 nπρ

n2π2
.

For the stationary current we find

(6) j = −E0/L = sin (πρ)/(L sin (π/L))

Notice that finite-size corrections are of order 1/L2 rather than of order 1/L which
is expected from systems with short-range interactions.

(ii) Spectral gap: Using the free fermion structure of the process the complete
relaxation spectrum can be computed. The real part of the spectral gap, i.e., the
inverse of the longest relaxation time τL in a finite system of size L is given by

1/τL = 2 sin
(π

L

)

sinπρ(7)

where ρ = N/L is the particle density. We see that for large L the gap is inversely
proportional to the system size. Note that in the unconstrained ASEP the real
part of the spectrum gap scales as O(1/L3/2). We conclude that the long-range
interaction of the effective process leads to a marked reduction of the longest relax-
ation time (which is the inverse spectral gap). The long range interaction brings
about a change of the dynamical universality class.

(iii) Transition probabilities: We pick two arbitrary configurations η0 and η
of our system containing N particles at the positions ni and mi respectively, i.e.,
|η0〉 = |n1n2....nN 〉 , |η〉 = |m1m2....mN 〉. We assume both sets to be ordered,
ni < ni+1 and mi < mi+1. The probability to find the system in configuration η
at time t, provided it has been in configuration η0 at time t = 0 is given by

(8) PL(η, t; η0, 0) = eE0t

√

PL(η)

PL(η0)
det[gL(mj − ni, t)]
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Here

(9) gL(d, t) =

∞
∑

κ=0

[(−1)κsign(d)]
N+1 tdL+κL

(dL + κL)!
,

where d is an integer ranging from −L + 1 to L − 1 and dL = d for d > 0 and
dL = d + L for d < 0. The function sign(d) = 1 for d ≥ 0 and sign(d) = −1
for d < 0. As pointed out by Spohn [2] the symmetric case can be interpreted as
a system of non-intersecting random walks. The determinantal structure of (8)
with the the stationary prefactors and the propagator of the totally asymmetric
random walk (9) suggest an interpretation of the long-range TASEP as a totally
asymmetric Dyson random walk, i.e., a lattice model for Dyson’s Brownian mo-
tion (DBM) driven by an external field. This is in agreement also with the form
of the hopping rates (1) which can be understood as deriving from an interaction
potential that is a discrete version of the interaction in DBM.

(iv) Dynamic Structure factor: The dynamic structure factor is defined as the
Fourier transform of the time-dependent stationary correlation function hL(n, t) =
〈ηr+n(t)ηr(0)〉−ρ2. Taking the thermodynamic limit we find for the Fourier modes
p ∈ [−π, π] in the range ρ ≤ 1/2

(10) Ŝ(p, t) =



































1

2π

∫ ρπ+p

ρπ

dx et(1−eip)e−ix

p ∈ [0, 2ρπ]

1

2π

∫ ρπ+p

−ρπ+p
dx et(1−eip)e−ix

p ∈ [−π,−2ρπ] ∪ [2ρπ, π]

1

2π

∫ −ρπ

−ρπ+p
dx et(1−eip)e−ix

p ∈ [−2ρπ, 0]

This, along with the symmetry relations Ŝ(1 − ρ, p, t) = Ŝ(ρ,−p, t) and Ŝ(p, t) =
Ŝ(p + 2π, t) provides an exact integral presentation valid for all densities ρ, mo-
menta p and times t.

We are particularly interested in the large scale behaviour as expressed in the
scaling limit of small p and large t of the form pzt = u where z is the dynamical
exponent and u is the scaling variable. From (10) we conclude that there is non-
trivial scaling behaviour for z = 1. In this scaling we have t(1 − eip) = −iut and
therefore

(11) Ŝ(u) =
|u|
2πt

e−iu cos ρπ−|u| sin ρπ

which is valid for all ρ ∈ [0, 1]. We read off the collective velocity vc = cos ρπ of
the lattice gas.
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Universality in one dimensional hierarchical coalescence processes

Alessandra Faggionato

(joint work with Fabio Martinelli, Cyril Roberto, Cristina Toninelli)

There are several situations arising in one dimensional physics in which the
non-equilibrium evolution of the system is dominated by the coalescence of certain
domains or droplets, which leads to interesting coarsening phenomena. Examples
are given by the coalescence of large vapor droplets in breath figures and of ordered
domains in Ising and Potts models at zero temperature. Computer simulations
have revealed the existence of scaling limits and, assuming the convergence to a
limiting state, physicists have derived some non trivial limiting distributions for
the relevant quantities in basic stochastic models (see e.g. [1], [2], [3], [6] and [7]).
Surprisingly very different models present the same limiting distributions. Two
questions arise naturally: How can one explain the existence of scaling limits?
Why do very different models exhibit the same limiting distributions?

Motivated by the above questions we consider a large class of “hierarchical coa-
lescence processes” (HCP). An HCP consists of an infinite sequence of coalescence
processes {ξ(n)(·)}n≥1: each process occurs in a different “epoch” (indexed by
n) and evolves for an infinite time, while the evolution in subsequent epochs are
linked in such a way that the initial distribution of ξ(n+1) coincides with the final
distribution of ξ(n). The dynamics is characterized by a diverging sequence of
positive numbers d(1) < d(2) < · · · such that 2d(n) ≥ d(n+1), and by a sequence of

function λ
(n)
ℓ , λ

(n)
r : [d(n), d(n+1)) → [0, 1], n ≥ 1. Inside each epoch the process,

described by a suitable simple point process representing the boundaries between
adjacent intervals (domains), evolves as follows. Only domains whose length be-
longs to the interval [d(n), d(n+1)) are active, i.e. they can incorporate their left

or right neighboring domain. This happens with probability rate λ
(n)
ℓ (d), λ

(n)
r (d)

respectively, where d denotes the length of the incorporating domain. Inactive
domains cannot incorporate their neighbors and can increase their length only if
they are incorporated by active neighbors. Due to the assumption 2d(n) ≥ d(n+1),
after a merging step the newly produced domain always becomes inactive for that
epoch but active for some future epoch. Moreover, starting at the first epoch with
domains of length at least d(1) (as we always assume), at the end of the nth–epoch,
and therefore also at the beginning of the (n+1)th–epoch, only domains of length
at least d(n+1) are present.

In [4] we show that: (i) if the initial distribution describes a renewal process
then such a property is preserved at all later times and all future epochs; (ii) the
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distribution of certain rescaled variables, e.g. the domain length, has a well defined
and universal limiting behavior as n→ ∞ independent of the details of the process

(i.e. from the parameters d(n), λ
(n)
ℓ (d), λ

(n)
r (d)). This last result explains the

universality in the limiting behavior of several very different physical systems (e.g.
the East model of glassy dynamics or the Past-all-model) which was observed in
several simulations and analyzed in many physical papers. More precisely, calling
g(s) the Laplace transform of the domain length in the initial distribution, we
prove that if the limit c0 := lims↓0

[

−sg′(s)/(1− g(s))
]

exists, then c0 ∈ [0, 1] and

moreover the domain length at the beginning of the nth epoch, rescaled by d(n),

weakly converges to a random variable X
(c0)
∞ with Laplace transform

g(c0)∞ (s) = 1− exp
{

− c0

∫ ∞

1

e−sx

x
dx

}

.

In addition, we give very simple and general conditions assuring the existence of
the limit c0: (i) if the domain length in the initial distribution has finite mean, then
the limit c0 exists and equals 1, (ii) if the domain length in the initial distribution
belongs to the domain of attraction of an α–stable law (0 < α < 1), then the limit
c0 exists and equals α. As explained in [4], the above results can be extended to
the case that the initial distribution is exchangeable, i.e. it is left invariant by any
finite permutation of the domains.

Although not explicitly stated, several coalescing systems present a hierarchical
structure. Let us consider for example the Past–all-model, whose dynamics is
described in [3] as follows: at each step one searches for the shortest domain which
is pasted as a whole to either one of its neighbors, with equal probability. When
working with infinite domains, the above procedure is not well defined since there
can be infinite domains with shortest length. A rigorous definition, in the case
of domains having integer length, can be obtained by means of the HCP taking

d(n) = n, λ
(n)
ℓ = λ

(n)
r = 1/2 on [n, n+1), n ≥ 1. In the first epoch only domains of

length 1 (the smallest length) are active and incorporate left and right neighbors
with equal probability. The same happens at the 2nd epoch, in which the active
domains are the domains of length 2 (the smallest one in that epoch). And so on.

An interesting and highly non trivial example of HCP is represented by the high
density (or low temperature) non-equilibrium dynamics of the East model after
a deep quench from a normal density state (see also the abstract of C. Toninelli
on this same volume concerning [5]). The East model is a well known example of
kinetically constrained stochastic particle system with site exclusion which evolves
according to a Glauber dynamics submitted to the following constraint: the 0/1
occupancy variable at a given site x ∈ Z can change only if the site x+1 is empty.
In this case, if a domain represents a maximal sequence of consecutive occupied
sites and if the particle density is very high, then the characteristic range of the
length of active domains for the nth-epoch is [2n−1, 2n) and active domains can
only merge with their left neighbor. As already mentioned, the East model and
the Paste–all–model present the same limiting distributions, despite the fact that
their dynamics are very different.
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Kinetically constrained models: non-equilibrium coarsening dynamics

Cristina Toninelli

(joint work with Alessandra Faggionato, Fabio Martinelli, Cyril Roberto)

We consider the non-equilibrium dynamics of the East model, a special example
of unidimensional kinetically constrained spin model which has been introduced
in physics literature in [1] and much analyzed in the context of the study of the
liquid/glass transition and more generally of glassy dynamics [2, 3, 4].

The East model can be informally described as follows. A configuration is
defined by assigning to each site of the lattice, x ∈ Z, its occupation variable
ηx ∈ {0, 1} corresponding to an empty and occupied site respectively. Each site
x waits an independent, mean one, exponential time and then, provided its right
nearest neighbor is empty (i.e. iff ηx+1 = 0), it refreshes its occupation variable
to a filled or empty state with probability 1− q or q respectively.

Since the constraint required to perform the elementary move on x does not
involve ηx it can be easily verified that the Bernoulli(1− q) product measure is an
invariant reversible measure for the process. Furthermore the model is known to
be ergodic for any q 6= 0, 1 with a positive spectral gap [5, 6] and relaxation to the
equilibrium reversible measure occurs exponentially fast when evolution is started
from e.g. any non-trivial product measure [7]. However, as q ↓ 0, the relaxation
time Trelax(q) diverges very fast as O

(

exp(λ log(1/q)2)
)

with a sharp constant
λ (see [6]). A key issue, both from the mathematical and the physical point of
view, is therefore that of describing accurately the evolution at q ≪ 1 when the
initial distribution is different from the reversible one and for time scales which
are large but still much smaller than Trelax(q) (when the exponential relaxation to
the reversible measure takes over). This setting is usually referred to in physics
literature as ”performing a quench to low temperature” and it is relevant to analyze
the slow dynamics which follows a sudden quench from the liquid to the glass phase.
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A rough picture of the non-equilibrium dynamics after the temperature quench
to q ↓ 0 is the following. Since the equilibrium vacancy density is q ≪ 1, most of
the non-equilibrium evolution will try to remove the excess of vacancies present in
the initial distribution and will thus be dominated by the coalescence of domains
corresponding to the intervals separating two consecutive vacancies. Of course this
process must necessarily occur in a kind of cooperative way since, because of the
constraint, in order to remove a vacancy other vacancies must be created nearby
to its right. Since the creation of vacancies requires the overcoming of an energy
barrier, in a first approximation the non-equilibrium dynamics of the East model
for q ≪ 1 is driven by a non-trivial energy landscape. In order to better explain
the structure of this landscape suppose that we start from a configuration with
only two vacancies located at the sites a and a + ℓ, with ℓ ∈ [2n−1 + 1, . . . , 2n].
Then, a nice combinatorial argument (see [8] and also [4]) shows that, in order
to remove the vacancy at a within time t, there must exists s ≤ t such that the
number of vacancies inside the interval (a, a + ℓ) at time s is at least n. It is
rather easy to show that at any given time s the probability of observing n va-
cancies in (a, a+ ℓ) is O(qn) so that, in order to have a non negligible probability
of observing the disappearance of the vacancy at a, we need to wait an activation
time tn = O(1/qn). In a more physical language the energy barrier which the
system must overcome is n = O(log2 ℓ). Moreover one can also show that, once
the system decides to overcome the barrier and kill the vacancy, it does it in a
time scale tn−1 ≪ tn. These arguments indicates the following heuristic picture.
(i) A hierarchical structure of the activation times tn = 1/qn (and of the energy
landscape) well separated one from the other for q ≪ 1.
(ii) A kind of metastable behavior of the dynamics which removes vacancies in a
hierarchical fashion.
(iii) Since the characteristic time scales tn are well separated one from the other,
the evolution should show active and stalling periods. During the nth-active pe-
riod, identified with e.g. the interval [t1−ǫn , t1+ǫn ], ǫ ≪ 1, only the vacancies with
another vacancy to their right at distance less than 2n can be removed. At the
end of an active period no vacancies with distance less than 2n + 1 are present
anymore as well as no extra (i.e. not present at time t = 0) vacancies. During the
nth-stalling period [t1+ǫn , t1−ǫn+1] nothing interesting happens in the sense that none
of the vacancies present at the beginning of the period are destroyed and no new
vacancies are created at the end of the period.
(iv) Because of the presence of active and stalling periods one time quantities like
the vacancy density or the persistence function (i.e. the probability that a site has
been always vacant up to the chosen time) should exhibit a staircase behavior.
Furthermore two-time quantities like the density-density autocorrelation function
should exhibit aging, namely the autocorrelation should not be asymptotically
a function of the difference of the two observation times, at variance with what
occurs for the equilibrium dynamics.
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Such a general picture was suggested in two interesting physics papers [3, 4]
and some of the conclusions (properties (iv) above) were indeed observed in nu-
merical simulations. Furthermore the true East dynamics was replaced with that
of a certain hierarchical coalescence process (HCP) mimicking the features (i)–(iii)
described above. In turn, under the assumption that the interval (domain) be-
tween two consecutive vacancies in the n-th stalling period rescaled by 2n has a
well defined limiting distribution as n→ ∞, the form of this limiting distribution
when the initial distribution is a Bernoulli product measure has been computed
for the coalescence model thus implying the knowledge of the limiting distribution
for the East domains provided the above scaling assumption for HCP holds and
provided the East dynamics can indeed be approximated by HCP. Partly moti-
vated by this work and partly by other coalescence models which are relevant in
statistical physics, the present authors introduced in [9] (see also the abstract by
A.Faggionato on this same volume) a large class of HCP which includes the one
considered in [3, 4] and: (1) proved the existence of a scaling limit under very gen-
eral assumptions, (2) proved the universality of the scaling limit depending only
on general features of the initial distribution and not on the details of the model.

Concerning the East model our main result is the mathematical derivation
of the above mentioned heuristic picture for the non-equilibrium dynamics, in
particular of the aging and staircase behavior. Furthermore we prove that, with
probability tending to one as q ↓ 0, when the initial distribution is such that the
vacancies form a renewal process the dynamics is well approximated (in variation
distance) by an HCP with rates depending on suitable large deviation probabilities
of the East model. As a consequence, via the asymptotic results in [9], we prove
a scaling limit for: i) the inter-vacancy distance and ii) the position of the first
vacancy for the model on the positive half line. In particular we prove that this
scaling limit is universal if the initial renewal process has finite mean and coincides
with the scaling limit which had been conjectured in [3, 4]. If instead the initial
distribution is the domain of attraction of an α-stable law, α ∈ (0, 1), the scaling
limit is different and falls in another universality class depending on α.
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Tunneling of reversible condensed zero range processes on a finite set

Johel Beltrán

(joint work with Claudio Landim)

A zero range process is an interacting particle system in which particles leave
any given site at a rate g(k) that only depends on the number k of particles
present at the site. When the rate g(·) decreases with the number of particles, a
mechanism of effective attraction between the particles is observed. Under some
additional conditions, this can lead to a phenomenon called condensation in the
physics literature.

Let us set the following specific sequence of zero range processes. Fix a real
number α > 1. Let g : N → R be given by

g(0) = 0 , g(1) = 1 , and g(n) =
( n

n− 1

)α

, n ≥ 2 ,

so that
∏n
i=1 g(i) = nα, n ≥ 1. Consider the zero range process on S = {1, 2, . . . , κ},

κ ≥ 2 in which a particle jumps from a site x, occupied by k particles, to a site y
at rate g(k)r(x, y). The total number of particles is conserved by the dynamics,
and for each fixed integer N ≥ 1 the process restricted to the set of configurations
with N particles, denoted by EN , is irreducible. Let µN be the unique stationary
probability measure on EN . This measure exhibits a structure of condensation in
the following sense. Fix a sequence ǫN ↓ 0. The majority of particles is said to
be at site x ∈ S if the number of particles at this site is larger than N(1 − ǫN).
Let us denote by ∆N the set of configurations for which such site does not exist.
Then, provided NǫN → ∞, we observe that

µN (∆N ) → 0 , as N ↑ ∞.

In other words, the stationary measure concentrates on configurations which have
the majority of particles located at one single site.

Several aspects of the condensation phenomenon for zero range dynamics have
been examined. Let the condensate be the site with the maximal occupancy.
Precise estimates on the number of particles at the condensated, as well as its
fluctuations, have been obtained in [6, 5, 3]. The equivalence of ensembles has
been proved by Großkinsky, Schütz and Spohn [5]. Ferrari, Landim and Sisko [4]
proved that if the number of sites is kept fixed, as the total number of particles
N ↑ ∞, the distribution of particles outside the condensated converges to the
grand canonical distribution with critical density. Armendariz and Loulakis [1]
generalized this result showing that if the number of sites κ grows with the number
of particles N in such a way that the density N/κ converges to a value greater
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than the critical density, the distribution of the particles outside the condensate
converges to the grand canonical distribution with critical density.

In this talk we discuss the dynamical aspects of the condensation phenomenon.
Fix an initial configuration in ∆c

N . Now, denote byXN
t the position of the majority

of particles at time t ≥ 0. In case at time t the process is located in ∆N , XN
t

remains in the last position. The process {XN
t : t ≥ 0} then evolves randomly

on S according to some non-Markovian dynamics. The main result of our work
states that if the sequence ǫN is suitably chosen then, in the time scale N1+α, the
process {XN

t : t ≥ 0} evolves asymptotically according to a Markov process.
In order to give a more precise information about this Markov process limit, le

us recall the notion of capacity. Fix an irreducible continuous time Markov process
on S which jumps from x to y at some rate r(x, y). Assume that this dynamics
is reversible with respect to some probability measure m on S: m(x)r(x, y) =
m(y)r(y, x), x, y ∈ S. Denote by capS the capacity associated to this Markov
process: For two disjoint proper subsets A, B of S,

capS(A,B) = inf
f∈B(A,B)

1

2

∑

x,y∈S
m(x) r(x, y) {f(y) − f(x)}2 ,

where B(A,B) stands for the set of functions f : S → R equal to 1 at A and equal
to 0 at B. When A = {x}, B = {y}, we represent capS(A,B) by capS(x, y).

LetM⋆ be the maximum value of the probability measurem: M⋆ = max{m(x) :
x ∈ S} and denote by S⋆ the sites where m attains its maximum value: S⋆ = {x ∈
S : m(x) = M⋆}. Of course, in the symmetric, nearest–neighbor case, where
r(x, y) = 1 if y = x ± 1, modulo κ, and r(x, y) = 0 otherwise, m is constant and
S⋆ and S coincide.

Then, our main result states that, in the time scale N1+α, the process {XN
t :

t ≥ 0} converges in law to the Markov process {Xt : t ≥ 0} on S⋆ which jumps
from x to y at a rate proportional to the capacity capS(x, y). In the terminology
of [2], we are proving that the condensate exhibits a tunneling behavior in the
time scale N1+α.
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Harmonic deformation of Delaunay triangulations

Pablo Augusto Ferrari

(joint work with Rafael Grisi and Pablo Groisman)

Let S̃ be a homogeneous intensity-1 Poisson process on Rd and let S = S̃ ∪ {0}
its Palm version. Call P and E the probability and expectation associated to S.
The Voronoi cell of a point s in S is the set of sites in Rd that are closer to s than
to any other point in S. Two points are neighbors if the intersection of the closure
of the respective Voronoi cells has dimension d − 1. The graph G with vertices
S and edges given by pairs of neighbors is called the Delaunay triangulation of
S. Our main result is the construction of a function H : S → Rd such that the
graph with vertices H(S) and edges {(H(s), H(s′)), s and s′ are neighbors} has
the following properties: (a) each vertex H(s) is in the barycenter of its neighbors
and (b) sublinearity along lines, that is, |H(s) − s|/|s| vanishes as |s| grows to
infinity along any straight line. If such an H exists, the resulting graph H is called
a harmonic deformation of the Delaunay triangulation of S. This problem has
been solved in the graph induced by the supercritical percolation cluster in Zd by
Biskup and Berger [3] and Matthieu and Piatnitski [10]. The function H(s)− s is
called corrector. The motivation of those works is to show a quenched invariance
principle for the random walk in the percolation cluster. The general strategy is
to use the fact that the random walk in the graph H is a martingale and then
use the sublinearity of H to export the invariant principle to the original graph G.
Related works on the quenched invariance principle in Zd are Biskup and Prescott
[4], Barlow [1] and Barlow and Deuschel [2]. Caputo, Faggionato and Prescott [5]
worked on a percolation-type graph in point processes on Rd.

Figure 1. Delaunay triangulation of a Poisson process and its
harmonic deformation in a finite box with fixed boundary points
(not shown).
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The coordinates h1, . . . , hd of H are harmonic functions from S to R; that is
hi(s) is the mean of {hi(s′), s′ neighbor of s}, i = 1, . . . , d. A function f : Rd → R

has inclination α in the direction u (a unit vector) if (f(Ku)−Kα)/K converges
to zero as K goes to infinity. The corrector is sublinear if and only if each hi has
inclination 1 in the direction of the i-th canonical vector.

Fixing a direction u, we construct a harmonic function h : S → R with incli-
nation one in the direction u as the limit and a fixed point of a noiseless harness
process, a dynamics introduced by Hammersley [9, 7]. The process is easily de-
scribed by associating to each point s of S a one-dimensional homogeneous Poisson
process of rate 1. Fix an initial surface η0 : S → R and at the epochs τ of the Pois-
son process associated to s update ητ (s) to the average of the heights {ητ−(s′), s′
neighbor of s}. It is clear that if h is harmonic, then h is invariant for this dynam-
ics. We start the harness process with the plane η0(s) = s1, where si is the i-th
coordinate of s and show that ηt(·)− ηt(0) converges to h in L2(P× P ), where P

is the law of the point configuration S and P is the law of the dynamics.
We prove that the inclination is invariant for the harness process for each t

and in the limit when t → ∞. In a finite graph the average of the square of
the height differences of neighbors is decreasing with time for the harness process.
Since essentially the same happens in infinite volume, the gradients of the surface
converge under the harness dynamics. To conclude we show that (1) the limit of
the gradients is a gradient field and (2) the limit is harmonic. Both statements
follow from almost sure convergence along subsequences.

A key ingredient of the approach is the expression of the inclination of a surface
as the inner product of the gradient of the surface with a specific field. This
together with the time-invariance of the inclination imply that the limiting surface
has the same inclination as the initial one.

A paper with these results has been uploaded to ArXiv [6]. Part of this work
and the applications to random walk in the Delaunay triangulation of a Poisson
process can be found in the Phd Thesis of Rafael Grisi [8].

We thank Marek Biskup for motivating us to pursue this approach.
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Large deviations for the current and a tagged particle in 1D
symmetric simple exclusion

Sunder Sethuraman

(joint work with SRS Varadhan)

Informally, the one dimensional symmetric simple exclusion process follows
a collection of continuous time symmetric nearest-neighbor random walks on Z

whose jumps to occupied vertices are suppressed. Recently, laws of large numbers,
starting from certain nonequilibrium configuration measures, have been shown
recently for the integrated current of particles across a bond, and a tagged, or
distinguished particle in this system (Jara-Landim [3]). In this talk, we discuss
corresponding large deviation principles, and evaluate the rate functions, showing
different growth behaviors near and far from their zeroes which connect with work
of Derrida-Gerschenfeld.

Specifically, (1) we show that the current and tagged particle large deviation
principles can be written as a certain contraction of the bulk empirical density
large deviations given in Kipnis-Olla-Varadhan [4]. Next, (2) we compute that the
rate functions near their zeroes are quadratic (as should be expected given that
central limit theorems should hold), and also evaluate the diffusivity coefficient
when the initial measure corresponds to a flat profile. Finally, (3) we show that
the rates for large exceedences are third order which, with respect to the current,
in part echoes results in Derrida-Gerschenfeld [1], [2].
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Stationary behavior of interacting stochastic systems

Márton Balázs

Modelling flocks and prices: jumping particles with an attractive inter-
action (work in progress). With Miklós Zoltán Rácz we investigated a model of
finitely many particles which form a continuous-time Markov jump process. We
have heard about this model from Bálint Tóth. Particles move on R, and the
evolution of their positions is governed by

• their jump rates that depend on their positions relative to the center of
mass of the particles,

• an independent random variable drawn from a jump-length distribution.

Denoting the positions of the n particles by x1, x2, . . . , xn, the center of mass is
located at

mn =
1

n

n
∑

i=1

xi.

Given the positions xi of the particles, each particle waits an exponential time
of parameter w(xi −mn), and then adds a random variable, independent of ev-
erything, of distribution ϕ to its position xi (that is, jumps a random length).
Attraction of particles is ensured by choosing a positive decreasing rate function
w. It is also natural to pick a ϕ that is concentrated on positive reals, and is not
heavy-tailed. The effect of these choices is that those particles left behind (relative
to the center of mass) have higher jump rates while those in front move slower.
This effect acts as an attraction between the particles, and the system as seen
from the center of mass has a stationary distribution.

We addressed the following questions.

• The two-particle case is, of course, tractable. We computed the stationary
distribution of the gap between the two particles for several choices of ϕ.
However, we could not handle the situation even for n = 3 particles (the
process is not reversible).

• If the number of particles n→ ∞, we expect that the motion of the center
of mass converges to a deterministic one. This motion, together with the
distribution of the particles, satisfy a deterministic differential equation
in this so-called fluid limit. We call the resulting equation the mean field
equation. We wrote up this equation by heuristic arguments and, in some
cases, we solved it for a travelling wave form, i.e. the stationary solution
as seen by the center of mass. Even finding the travelling wave in this
mean field equation is non trivial.

• Some travelling wave solutions lead us to Gumbel distributions, which
naturally posed the question whether extreme value interpretation can be
given to the process. We could find such connections (an idea by Attila
Rákos) in some examples.

• Under restrictive assumptions on the rates w, we prove that indeed the
evolution of the process in the fluid limit n→ ∞ satisfies the deterministic
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differential equation we formulated by heuristic arguments, this is work in
progress. We use weak convergence methods and uniqueness results on the
differential equation. Since mn is not a bounded function of the particle
positions, standard weak convergence techniques need to be extended to
our situation.

Random walking shocks with second class particles. With György Farkas,
Péter Kovács and Attila Rákos we connected two types of results, shown for both
asymmetric exclusion and the exponential bricklayers process:

• Derrida, Lebowitz and Speer [6], and Balázs [1] showed that some partic-
ular shock-distributions are stationary as seen by a second class particle
in the two aforementioned models.

• Belitsky and Schütz [5], and Balázs [2] showed that exactly the above
shock-distributions “perform simple random walks” that is, the shock
measures evolve into linear combinations of the same structure, with coef-
ficients given as random walk transitions. In case of multiple shocks, the
walkers attract and, in the exclusion case, also exclude each other.

The natural question emerges, whether the second class particle itself, in an an-
nealed sense, behaves as a random walker in the middle of the shock measure. We
give an affirmative answer [3], and show a result of similar flavor in a branching-
coalescing random walk model.

t1/3 order current fluctuations. With Júlia Komjáthy and Timo Seppäläinen
we built up a general framework for proving t1/3 scaling of current fluctuations
through the characteristics and t2/3 scaling for the fluctuations of the second class
particle in the stationary evolution of a family of one dimensional nearest neighbor
interacting systems [4]. The assumption we need is the validity of a complicated
coupling construction we call microscopic concavity/convexity. We have verified
all the requirements for asymmetric exclusion, the constant rate zero range pro-
cess, a zero range process with bounded and concave enough jump rates. We are
typing up the argument for the exponential bricklayers process. Interestingly, its
convex jump rates make it necessary to use random walking shock results of the
previous paragraph. With Júlia Komjáthy we started to investigate whether we
can make the arguments work for an extended exclusion process with product
binomial stationary distribution.

Irreversible Markov chains and electric networks (work in progress). With

Áron Folly we looked at the well-known analogy between reversible Markov chains
and electric networks (see e.g. [7]). The electric network is built up of simple
resistors with which the arguments only work for reversible Markov chains. We
found the electric component the network of which extends the analogy from re-
versible Markov chains to the case of irreversible ones. The new part we use is an
amplifier with a rather simple characteristic. Currently we investigate how much
monotonicity arguments generalize from resistor networks to ones built of the new
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amplifiers, and whether some of the recurrence/transience results for reversible
chains that use the electric network analogy can be saved for irreversible chains.
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On the fragmentation of a torus by random walk

Augusto Teixeira

We discussed in this talk some problems on the geometry of the set of sites
not visited by a random walk on a discrete torus. More precisely, we consider a
simple random walk on the discrete torus Td = (Z/NZ)d run up to time uNd,
where u is a fixed positive constant. In this talk we discuss the components of
the set Vu = Td \ {X0, X1, . . . , XuNd}. As we showed, this set undergoes a phase
transition in the following sense: if u is small enouth, then for any dimensions
d ≥ 3 then Vu contains a giant component with volume of order Nd. On the other
hand, if u is chosen large, then the set Vu is composed solely of small components
of volume no larger than logλN . This talk is based in a recent article joint with
David Windisch. Let us give a more precise description of this work.

Consider a simple random walk on the d-dimensional torus TN = (Z/NZ)d with
large side length N and fixed dimension d ≥ 3. The aim of this talk is to discuss
the percolative properties of the set of vertices not visited by the random walk
until time uNd, where the parameter u > 0 remains fixed and N tends to infinity.
We refer to this set as the vacant set. The vacant set occupies a proportion of
vertices bounded away from 0 and 1 as N tends to infinity, so it is natural to study
the sizes of its components. At this point, the main results on the vacant set are
the ones of Benjamini and Sznitman [1], showing that for high dimensions d and
small parameters u > 0, there is a component of the vacant set with cardinality of
order Nd with high probability. As is pointed out in [1], this result raises several
questions, such as:

(1) Do similar results hold for any dimension d ≥ 3?
(2) For small parameters u > 0, does the second largest component have a

volume of order less than Nd?
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(3) Provided u > 0 is chosen large enough, do all components of the vacant
set have volumes of order less than Nd?

The results presented in this talk give positive answers to these questions, and
thereby confirm observations made in computer simulations (see Figure 1). We
thus prove the existence of distinct regimes for the vacant set as u varies, similar to
the ones exhibited by Bernoulli percolation on the torus and other random graph
models.

Figure 1. A computer simulation of the largest component (light
gray) and second largest component (dark gray) of the vacant set
left by a random walk on (Z/NZ)3 after [uN3] steps, for N = 200.
The picture on the left-hand side corresponds to u = 2.5, the
right-hand side to u = 3.5.

Our answers are closely linked to Sznitman’s model of random interlacements.
This relation was already established in [3], and all the results presented here come
from an improvement of this results in the following sense. In [3], David Windisch
proved that random interlacements appear as the local picture of the vacant set
Vu as N grows in the sense of weak convergence. In this talk we discussed a
new technique, which was able to prove this relation between the local picture of
Vu and random interlacements in a quantitative point of view. We establish a
domination of the vacant set both from above and from below by interlacements,
also providing a good estimate on the error made in this approximation.
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Mixing of the environment viewed by the particle, with applications

Jean-Christophe Mourrat

Let us say that two points in Z
d are neighbours when the distance from one to

the other is equal to 1. This turns Zd into a graph, and we write B for its set of
(non-oriented) edges. We call environment a family ω = (ωe)e∈B, and we refer to
ωe > 0 as the conductance of the edge e. For a given environment ω, let (Zt)t≥0 be
the continuous-time Markov chain such that the jump rate from x to a neighbour
y is given by ωx,y. We write Pω0 for the law of Zt starting from 0, and Eω0 for the
associated expectation.

A crucial property of this random walk is the symmetry of its jump rates:
ωx,y = ωy,x. It makes the counting measure on Z

d reversible.
The environment itself is chosen at random. We assume that the (ωe)e∈B are

independent and identically distributed random variables, whose law we write P

(expectation E). We also assume that the conductances are uniformly bounded
from below, say ωe ≥ 1.

The first natural question one can ask concerns the scaling limit of the random
walk.

Theorem 1. There exists σ > 0 such that for almost every environment, the law
of

√
εZε−1t under Pω0 converges, as ε tends to 0, to the law of a Brownian motion

of variance σ2.

Under our present assumption that ωe ≥ 1, this result is due to [BD10]. Many
people contributed to this result under different assumptions, and we refer to J.-D.
Deuschel’s abstract in this volume for more precision.

The proof of this theorem relies on the ergodicity of an auxiliary process, called
“the environment viewed by the particle”. Naturally, the ergodic theorem only
provides with asymptotic statements, without any indication about the speed of
convergence, and we would like to know more about this aspect.

Let (θx)x∈Zd be the translations acting on the set of environments. The envi-
ronment viewed by the particle is defined to be

ω(t) = θZt
ω.

It is a Markov process, and has P as a reversible and ergodic measure. We would
like to be able to say in some quantitative way that, for large t,

ft(ω) := Eω0 [f(ω(t))] ≃ E[f ].

More precisely, we would like to show that the following holds

(∗) Var(ft) ≤
V (f)

tα
,

for some functional V and some exponent α > 0 as large as possible. Here is a
partial result I obtained in [Mo10].

Theorem 2. Inequality (∗) is true for α = 1/2 in dimension 1, α = 1∨(d/2−2) in
larger dimension, and some functional V that is finite on bounded local functions.
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One may suspect however that the correct exponent is α = d/2, a simple heuris-
tic being that at time t, the random walk should be more or less uniformly spread
in a ball of size

√
t. The proof of Theorem 2 goes through the establishment of a

Nash inequality with exponent d/2. Unfortunately, the semi-norm that appears in
the Nash inequality obtained is not contractive, and the method used to overcome
this problem is not sufficient to lead to the expected exponent.

I find it very worthwhile to try to improve Theorem 2, and in order to justify
this view, I now present two cases were such a result have proved useful.

For the first instance, detailed in [GM10], we assume furthermore that the
conductances are uniformly bounded from above. The (positive) generator L of
the environment viewed by the particle is self-adjoint on L2(P). Assume that
E[f ] = 0 for simplicity, and let ef be the spectral measure of L projected on the
function f . From the observation that

Var(ft) = E[(ft)
2] =

∫

e−2λt def (λ),

one can easily see that

(1) (∗) ⇔ ∃C > 0 :

∫ µ

0

def (λ) ≤ Cµα.

We would like to find a numerical method to compute the asymptotic variance
σ2 appearing in Theorem 1. One convenient way to express this parameter is to
introduce the function g(ω) = ω0,e1 − ω0,−e1 , where e1 is the first vector of the
canonical basis of Zd. One can construct the so-called corrector φ, which is such
that Lφ = g, and enables to write the identity

σ2

2
= E[ωe]− 〈Lφ, φ〉,

where 〈·, ·〉 is the scalar product in L2(P). The problem is that it is not possible
to compute φ in practice, so one could instead introduce a small parameter µ > 0,
and solve (µ+ L)φµ = g (which one can do in a box of size µ−1/2). The problem
is then to evaluate the difference between the desired 〈Lφ, φ〉 and the computable
〈Lφµ, φµ〉. A spectral computation yields

(2) 〈Lφµ, φµ〉 =
∫

λ

(µ+ λ)2
deg(λ),

while 〈Lφ, φ〉 =
∫

λ−1 deg(λ). From these observations, it is easy to relate the dif-
ference between 〈Lφ, φ〉 and 〈Lφµ, φµ〉 with the behaviour of the spectral measure
close to 0. This behaviour is in turn related to inequality (∗) for the function g,
as we see from the equivalence (1). In [GM10], we obtain the following result.

Theorem 3. For the function g, the inequality (∗) is valid with α = (d/2+1)∧4.

Although we have seen before that one should expect a decay of order d/2 in
general, the particular form of the function g, that can be written as a gradient,
enables to obtain a stronger exponent. For this function, we expect that the
correct exponent is d/2 + 1 in any dimension, but the method we use cannot go
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beyond exponent 4. Note that Theorem 2 still ensures that the exponent can also
be taken to be equal to d/2− 2, which is a better exponent than the one given by
Theorem 3 when d > 12.

In fact, the use of spectral representations of the form of (2) enables us to devise
new methods for the computation of σ2, for which we can estimate the error using
Theorem 3.

For the second instance where Theorem 2 have been useful, we drop the as-
sumption that the conductances are bounded from above. Let (Xt)t≥0 be the
random walk that follows the path of (Zt)t≥0, but waits a random exponential
time of mean 1 before making each jump. When the random walk meets an edge
with a very large conductance, it will perform a large number of jumps accross it,
and thus can act as a trap for the walk X . Let n(ω) be the total jump rate for Z
at the origin: n(ω) =

∑

|z|=1 ω0,z, and

A(t) =

∫ t

0

n(ω(s)) ds.

One can see that XA(t) = Zt, and as a consequence, if one whishes to understand
the scaling limit of X , it seems reasonable to focus on the asymptotic behaviour
of A(t) as t goes to infinity. When n(ω) is integrable, the ergodicity of (ω(s))
ensures that A(t) grows linearly with t, a fact which, together with Theorem 1,
ensures convergence to a Brownian motion for X after a diffusive scaling. The
question is less clear when n becomes non-integrable. Assume that there exists
some a ∈ (0, 1) such that P[ωe ≥ y] ∼ y−a. Under this assumption and for
d ≥ 3, the subdiffusive scaling limit has been identified in [BČ10]. They prove in
particular that ε1/aA(ε−1t) converges in distribution to an a-stable subordinator.
The proof uses delicate estimates on the transition probabilities of the walk Z, in
a coarse-graining procedure. For d ≥ 5, I proposed in [Mo10] an alternative proof
! of this result, that is based instead on the mixing properties of the environment
viewed by the particle given by Theorem 2.
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