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Introduction by the Organisers

The “Paving Conjecture” of Kadison–Singer claims that given any linear contrac-
tion whose diagonal matrix elements are zero with respect to a given basis, there is
a partition of the basis in a universal number of pieces such that the compression
of the operator to the span of each piece of the partition (or the minor matrix
generated by the piece, if one prefers) has norm bounded above by one half. Re-
cently, it became clear that this conjecture is equivalent to several others including
a conjecture generalizing the Bourgain–Tzafriri Restricted Invertibility Theorem
and the Feichtinger conjecture, which claims that every frame in a Hilbert space is
a finite union of Riesz basis sequences. In many reproducing kernels Hilbert spaces
like the Hardy space and its model subspaces, the de Branges spaces, the Smirnov
spaces, the Bergman space, the Fock space, and their weighted analogs, questions
on frames and Riesz basis sequences of reproducing kernels are reformulated as
deep problems concerning uniqueness, interpolation and sampling properties of
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analytic functions. See, for example, the work by Seip–Wallstén on the Fock space
and the 2007 paper by Borichev–Dhuez–Kellay on the weighted Fock spaces and
the references therein. Frequently, such problems are related to harmonic analysis
applications, from wavelet theory, time-frequency analysis (Gabor frames), oper-
ator theory (spectral theory of Toeplitz operators), and systems theory (via, for
example, spectral theory of Hankel operators).

Therefore, the Feichtinger conjecture was one of the main topics of the work-
shop. In the first talk of the workshop, P. Casazza described numerous equivalent
reformulations of the Kadison–Singer problem and proposed a method to con-
struct a counter-example using the Laurent operators. V. Vasyunin described his
results on trace H∞-algebras giving a negative answer to a stronger form of the
Bourgain–Tzafriri restricted invertibility conjecture. N. Lev presented his results
on the Riesz bases of exponentials with restrictions on the exponents on a finite
union of intervals.

Yu. Lyubarskii described the asymptotics of the sampling constants (the con-
dition number) for lattice families of reproducing kernels in the Fock space when
the area of the fundamental domain of the lattice approaches the critical one.
Yu. Belov discussed the systems biorthogonal to exact systems of reproducing ker-
nels in Hilbert spaces of analytic functions. In particular, he answered an old
question by Nikolski and constructed a model subspace and an exact system of
reproducing kernels there with a non-complete biorthogonal system.

The model spaces KΘ play an important role in complex analysis, harmonic
analysis and Mathematical Physics. The term was coined by N. Nikolski a long
time ago and is suggested by the Szőkefalvi-Nagy–Foiaş model theory of contrac-
tions on a Hilbert space. In the simplest (scalar) case, KΘ is the orthogonal com-
plement in the Hardy space H2 of the Beurling shift invariant subspaces ΘH2,
where Θ is an inner function. The central result of Sz. Nagy–Foiaş theory is a
theorem describing all contractions of a Hilbert space as compressions to a KΘ of
a unilateral shift operator. This theorem yields a functional model of a general,
abstract linear operator, whence the term of a model space. Model spaces play
an important role in approximation theory, too. The first results of these are due
to Douglas, Shapiro, Shields and Tumarkin. Also, they are closely related to the
phenomenon of pseudo-analytic continuation and to de Branges spaces of entire
functions. We note that a de Branges space is isometric to a model subspace
KB where B is a meromorphic Blaschke product. An interesting open question
is whether the model space KΘ possesses an unconditional basis of reproducing
kernels. This is related to a hard problem of J. B. Garnett and P. W. Jones
on whether each inner function can be uniformly approximated by interpolating
Blaschke products.

Motivated by recent work of Sarason, A. Baranov presented a variety of results
concerning the truncated Toeplitz operators PΘMφ, where PΘ is the projector
onto the model space KΘ.
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Another major topic of the meeting was the weighted approximation. J. Bren-
nan discussed the relations between uniform rational approximation and Lp-poly-
nomial approximation. H. Hedenmalm proved a uniqueness theorem for the Fourier
transforms of measures with support on a hyperbola, related to the Klein–Gordon
equation. A. Poltoratski discussed the type and the gap problems in weighted Lp

spaces and their relations to the kernels of the Toeplitz operators.
One more topic of interest during the workshop was the corona problem in

Bn. B. Wick discussed BMO estimates for this problem using the Koszul complex
technique, whereas T. Trent presented his results on the operator version of the
corona problem for some multiplier spaces on Bn.

R. Rochberg discussed in his talk geometrical (shape) structures associated with
reproducing kernel Hilbert spaces.

N. Arcozzi presented an analog of the Fefferman theorem for the Dirichlet space.
K. Dyakonov presented his results on (local) abc theorems for analytic functions.
R.Zarouf discussed analogs of the Kreiss resolvent condition for matrices with

restrictions on the spectrum.
J.-F. Olsen proved an F. and M. Riesz theorem for the Hardy space H1(T∞).
E. Saksman established the optimal estimate for the growth of the frequently

hypercylcic (with respect to the differentiation operator) entire functions. Namely,
he proved that for every c > 0 there exists an entire frequently hypercyclic function
f such that |f(z)| ≤ c|z|−1/4e|z|, |z| > 1.

E. Abakumov discussed his results on translation cyclic vectors and generating
sets in weighted ℓp(Z) and Lp(R) spaces.

A. Aleksandrov presented his results on the perturbation (Hölder) smoothness
of the functional calculus for the normal operators with respect to the (operator)
norm and to the Schatten–von Neumann norm.

A. Nicolau obtained an analog of N. Makarov’s result on the differentiability
if the Zygmund class for the case Rd, d > 1. In particular, he proved that every
function in the small Zygmund class is differentiable at a set of points of Hausdorff
dimension at least 1.

On Wednesday morning a problem session chaired by E. Saksman had been
organized. Most of the problems discussed during that session are included at the
end of this report. Further open questions were pointed out in many of the talks.

This workshop was organized by Alexander Borichev (Marseille), Raymond
Mortini (Metz), Nicolai Nikolski (Bordeaux) and Kristian Seip (Trondheim). Un-
fortunately, Raymond Mortini, Nicolai Nikolski, and Kristian Seip were unable to
participate. All the participants were grateful for the hospitality and the stimu-
lating atmosphere of the Forschungsinstitut Oberwolfach.
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Abstracts

On completeness of translates in weighted spaces

Evgeny Abakumov

(joint work with Aharon Atzmon, Sophie Grivaux)

We discuss two types of questions about the completeness of translates in certain
weighted spaces of sequences (functions).

The first problem concerns the cyclicity of the shift operator on weighted ℓp

spaces of sequences on Z.
Let ω : Z −→ (0,+∞) be a positive weight on Z such that

sup
n∈Z

ω(n+ 1)

ω(n)
< +∞.

For p ≥ 1, define

ℓpω(Z) =
{
(an)n∈Z ∈ CZ ; ||(an)||ℓpω(Z) =

(∑

n∈Z

|an|pω(n)p
) 1

p

< +∞
}
.

Clearly, the shift operator S : (an)n∈Z 7−→ (an−1)n∈Z is bounded on all spaces
ℓpω(Z), p ≥ 1.

Problem 1. Given p ≥ 1, characterize the weights ω for which there exists a
sequence x ∈ ℓpω(Z) such that the set of the right translates (Snx, n ≥ 0) is
complete in ℓpω(Z).

The above cyclicity problem goes back to works of Shields [9] and Nikolski [8],
and is still open. See also [6, 7] for an early discussion of the question and some
partial results. Problem 1 is also mentioned in [5], and later on in [10], where a
complete characterization of the supercyclic weighted shifts is given.

First, we formulate an abstract result; namely, we give some conditions which
guarantee that a bicyclic operator on a Banach space is cyclic.

Let X be a complex separable Banach space, and let T be a bounded linear
operator on X . Recall that T is said to be cyclic if there exists a cyclic vector
x0 ∈ X , that is, such that the linear span of the vectors T nx0, n ≥ 0, is dense in
X . For an invertible operator T on X , x0 ∈ X is said to be a bicyclic vector for
T if the vectors T nx0, n ∈ Z, span a dense subspace of X .

Theorem 2. Let X be a complex separable Banach space, and let T be a bounded
invertible bicyclic operator on X. Suppose that

(1) there exists a nonnegative integer k such that ||T n|| = O(nk), n→∞;
(2) log ||T−n||/√n tends to zero as n→∞.

If σp(T
∗) does not include the unit circle, then T is cyclic.
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An analogous result holds for injective (not necessarily invertible) operators.
We conjecture that condition (2) is optimal, so it cannot be replaced by the con-

dition log ||T−n|| = O(
√
n). The fact that it cannot be replaced by the condition

log ||T−n|| = O(n/ logn) follows from Volberg’s theorem [11].
To prove Theorem 2, we use a Baire Category argument for the shift operator

acting on certain regular Banach algebras of sequences; given two non-empty open
subsets U and V of X , it is possible to show that there exists a polynomial p such
that p(T )U ∩ V is non-empty.

The following statement can be easily derived from Theorem 2.

Theorem 3. Let X be a Banach space with separable dual, and let U : X → X
be a surjective isometry. If U is bicyclic, then U is cyclic.

If X is a Hilbert space, this result follows from [3].

Theorem 3 applies in particular to the shift operator S acting on the unweighted
spaces ℓp(Z), p > 1:

Corollary 4. If p > 1, then S is cyclic on ℓp(Z).

Corollary 4 was proved independently by Olevskii in 1998 by a different method
(unpublished manuscript).

Now we give a partial answer to Problem 1.

Theorem 5. Let ω be a positive weight such that the sequence (ω(n+ 1)/ω(n))n∈Z

is bounded from above. Suppose that there exist a nonnegative integer k and a
submultiplicative sequence (ρ(n))n≥0 of positive numbers with

lim
n→+∞

log+ ρ(n)√
n

= 0

such that

(1) ω(n) = O(nk), n→∞;
(2) ω(−n) = O(ρ(n)), n→∞.

If p > 1, then S is cyclic on ℓpω(Z) if and only if

∑

n∈Z

1

ω(n)p′
= +∞,

where 1/p+ 1/p′ = 1; and S is cyclic on ℓ1ω(Z) if and only if infn∈Z ω(n) = 0.

Theorem 5 is a direct corollary from the above mentioned version of Theorem
2 for injective operators.

The second type of problems is related to the completeness of translates in
function spaces on the real line.

Let X be a Banach space of functions on R which is translation-invariant; that
is, for every function f ∈ X and for every t ∈ R we have Stf ∈ X , where the
translates Stf are defined by Stf(x) = f(x− t).
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Definition 6. A subset Λ of R is called generating for X if there exists a function
f ∈ X whose Λ-translates Sλf , λ ∈ Λ, span a dense subspace of X.

Denote by R(Λ) the completeness radius of Λ, that is, the supremum of the
non-negative numbers r such that EΛ is complete in L2([−r, r]).

We mention here two theorems.

Theorem 7. If w : R→ [1,+∞) is a submultiplicative weight which satisfies
∫

R

logw(t)

1 + t2
< +∞,

then Λ is generating for L1
w(R) if and only if R(Λ) = +∞.

Theorem 7 was proved earlier by Bruna, Olevskii and Ulanovskii [4] for L1(R)
and by Blank [2] for the weighted case. We present a different proof based on a
Baire Category argument and on the regularity of the Banach algebra L1

w(R).
The following result applies to a large class of Banach spaces of functions on

the real line.

Theorem 8. Let X be a separable translation-invariant Banach space of locally
integrable functions on R. Suppose that X embeds continuously into the Fréchet
space L1

loc(R), and that the space D of all C∞-functions with compact support is
densely contained in X. For t ∈ R, let St denote the operator of translation by t
on X: Stf = f(· − t), f ∈ X. Suppose that

∫

R

log ||St||
1 + t2

< +∞.

If Λ ⊂ R is such that R(Λ) = +∞, then Λ is a generating set for X.

See [1] for the proofs of the above theorems and further results.
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Perturbations of normal operators

Alexei Aleksandrov

(joint work with Vladimir Peller, Denis Potapov, Fedor Sukochev)

1. Main results. Let ω denote a modulus of continuity. Put

ω∗(δ)
def
= δ

∫ ∞

δ

ω(t)

t2
dt, δ > 0.

We denote by Λω(C) the space of functions on C such that

‖f‖Λω(C)
def
= sup

ζ 6=ξ

|f(ζ)− f(ξ)|
ω(|ζ − ξ|) <∞.

Put Λα(C)
def
= Λω(C) with ω(δ) = δα, where 0 < α < 1. We denote by Lip(C) the

space Λω(C) with ω(δ) = δ.

Theorem 1. There exists a positive number c such that for every modulus of
continuity ω and every f ∈ Λω(C),

‖f(M)− f(N)‖ ≤ c ‖f‖Λω(C) ω∗

(
‖M −N‖

)

for arbitrary normal operators M and N .

Corollary 1. There exists a positive number c such that for every α ∈ (0, 1)
and every f ∈ Λα(C),

‖f(M)− f(N)‖ ≤ c (1− α)−1‖f‖Λα(C) ‖M −N‖α.
for arbitrary normal operators M and N .

Corollary 2. There exists a positive number c such that for every f ∈ Lip(C),

‖f(M)− f(N)‖ ≤ c ‖f‖Lip(C) ‖M −N‖
(
1 + log

‖M‖+ ‖N‖
‖M −N‖

)
.

for arbitrary normal operators M and N .

Let Sp denote the Schatten–von Neumann class.

Theorem 2. Let 0 < α < 1 and 1 < p < ∞. Then there exists a positive
number c such that for every f ∈ Λα(C) and for arbitrary normal operators M
and N with M − N ∈ Sp, the operator f(M) − f(N) belongs to Sp/α and the
following inequality holds:

∥∥f(M)− f(N)
∥∥
Sp/α

≤ c ‖f‖Λα(C)‖M −N‖αSp
.

All the results extend to the case of commutators f(M)R−Rf(M) and quasi-
commutators f(M)R−Rf(N).

For example, Theorem 1 can be reformulated for quasicommutators as follows.
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Theorem 1′. There exists a positive number c such that for every modulus of
continuity ω and every f ∈ Λω(C),

‖f(M)R−Rf(N)‖ ≤ c‖f‖Λω(C) ω∗(max(‖MR−RN‖, ‖M∗R−RN∗‖)).
for bounded operators R with ‖R‖ = 1 and arbitrary normal operators M and N .

2. The key inequality. Denote by Cb(C) the set of bounded continuous
(complex) functions on C.

Theorem 3. Let f ∈ Cb(C). Suppose that the Fourier transform of f is
supported on the disc {|ζ| ≤ σ}. Then

‖f(M)− f(N)‖ ≤ constσ ‖M −N‖
for arbitrary normal operators M and N with bounded difference.

We define the Haagerup tensor product Cb(C)⊗̂hCb(C) as the set of all functions
Φ on C× C that admit a representation

Φ(ζ, ξ) =
∑

n∈Z

ϕn(ζ)ψn(ξ), ζ, ξ ∈ C(1)

such that ϕn ∈ Cb(C), ψn ∈ Cb(C) and
(
sup
ζ∈C

∑

n∈Z

|ϕn(ζ)|2
)1/2(

sup
ξ∈C

∑

n∈Z

|ψn(ξ)|2
)1/2

<∞.(2)

For Φ ∈ Cb(C)⊗̂hCb(C), its norm in Cb(C)⊗̂hCb(C) is, by definition, the infimum
of the left-hand side of (2) over all representations (1).

The proof of Theorem 3 is based on the following statement.

Lemma. Let f satisfy the assumptions of Theorem 3. Then there exist func-
tions g, h ∈ Cb(C)⊗̂hCb(C) such that

f(ζ)− f(ξ) = (ζ − ξ)g(ζ, ξ) + (ζ − ξ)h(ζ, ξ)
and

‖g‖Cb(C)⊗̂hCb(C)
+ ‖h‖Cb(C)⊗̂hCb(C)

≤ constσ‖f‖L∞(C).

This lemma also implies the quasicommutator version of Theorem 3.

Note that the case of self-adjoint operatorsM and N was considered in [3], [4],
[5] and [6].
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Function Spaces Related to the Dirichlet Space

Nicola Arcozzi

(joint work with Richard Rochberg, Eric T. Sawyer, Brett D. Wick)

We report on recent work related with the holomorphic Dirichlet space and we
contextualize it within the general theory.

1. An old and prestigious story: the Hardy space.

Consider the Hardy space H2 in the unit disc D,

f(z) =

∞∑

n=0

anz
n =⇒ ‖f‖2H2 =

∞∑

n=0

|an|2.

The multiplier space of H2, containing all g’s holomorphic in D such that the
operator f 7→ gf is bounded on H2, isM(H2) = H∞, the space of the bounded
holomorphic functions. We also have that

H2 ·H2 :=
{
h = fg : f, g ∈ H2

}
= H1 ←֓ H2

is the product space of H2, by inner/outer factorization and Cauchy–Schwarz
inequality. It is interesting, then, to find the dual space of H1. C. Fefferman
[7] proved that, under the H2 pairing (with some care), (H2 · H2)∗ = (H1)∗ =
BMO∩H(D) is the space of the analytic functions with bounded mean oscillation.
The definition of BMO, born out of a problem in elasticity theory [9], in our
context is as follows. A complex valued function b on the torus T has bounded
mean oscillation if there is a positive constant C such that

1

|I|

∫

I

∣∣∣∣f(e
iθ)− 1

|I|

∫

I

f(eiψ)dψ

∣∣∣∣
2

dθ ≤ C

for all subarcs I of T. The BMO norm of f is the best C we can put in the
inequality (assume

∫
T
f = 0 to make it truly a norm). A different characterization

of the BMO norm for analytic function was used in establishing this and other
results. Let µ be a positive measure on the unit disc. The Carleson measure norm
of b is

[µ]CM(H2) := sup
f 6=0

∫
D
|f |2dµ
‖f‖2H2

≈ sup
I

µ(S(I))

|I| .

In the term on the far right, S(I) = {z ∈ D : z/|z| ∈ I, 1−|z| < |I|2π} is the Car-
leson box based on the arc I, and the equivalence ≈ is Carleson’s characterization
of µ’s in CM(H2) [4]. Let b an analytic function onD and let dµb = (1−|z|2)|b′|2dA
(dA is area measure on D). Then, ‖b‖BMO ≈ [µb]

1/2
CM(H2) (the measure µb is an
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important object in H2: ‖f‖2H2 ≈
∫
D
dµf ). We have then a sequence of Banach

spaces naturally arising in the Hilbertian theory of H2:

H∞ =M(H2) →֒ BMOA = (H2 ·H2)∗ →֒ H2 →֒ H1 = H2 ·H2.

The story we are telling has a chapter concerning bilinear forms. Given b analytic

in D, let TH
2

b : H2×H2 → C be the bilinear Hankel form TH
2

b (f, g) =< fg, b >H2 .
Nehari [12] proved that

‖TH2

b ‖H2×H2 := sup
|TH2

b (f, g)|
‖f‖H2‖g‖H2

= ‖b‖(H2·H2)∗ ≈ ‖b‖BMO ≈ [µb]
1/2
CM(H2)

(the two ≈’s are Fefferman’s fundamental contribution to the theory).

2. A developing story: the Dirichlet space.

Consider the Dirichlet space D, containing the functions f holomorphic in D

for which the seminorm

‖f‖D =

(∫

D

|f ′(z)|2
)1/2

is finite. We assume throughout that f(0) = 0, so to make ‖f‖D into a norm. The
multiplier spaceM(D) of D contains the functions g such that f 7→ gf is bounded
on D, and it is easily seen that it consists of those bounded functions g for which
the measure dµ = dµg = |g′|2dA satisfies

[µ]CM(D) := sup
f 6=0

∫
D
|f |2dµ
‖f‖2D

< +∞.

Measures (not necessarily arising from a function g) with this imbedding property
are called Carleson measures for D, and they were characterized by Stegenga [13]
in terms of a capacitary condition. Let E = ∪jIj be the disjoint union of closed
subarcs of the unit circle and let S(E) = ∪jS(Ij) be the union of the corresponding
Carleson boxes. The Carleson measure norm in D of a positive measure µ is

[µ]CM(D) ≈ µ(D) + sup
E

µ(S(E))

Cap(E)
,

where Cap(E) is the logarithmic capacity (the one for which Cap(I) ≈ log−1(|I|−1)
for small arcs I). In turn, ‖g‖M(D) ≈ ‖g‖H∞ +[µg]CM(D). (It is useful considering
Carleson measures for D supported on the boundary of D for studying boundary
values of Dirichlet functions, but we do not need them here). Following the lead of
the Hardy theory, we might think that the right substitute of BMOA in Dirichlet
theory might be the space χ,

‖b‖χ := [µb]CM(D) = [|b′|2dA]CM(D).

Lacking inner/outer factorization, the analog of H1 might be the weak product
space D ⊙D,

‖h‖D⊙D = inf
{∑

j

‖aj‖D‖bj‖D :
∑

j

ajbj = h
}
.
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(For weak products in general, see [5]). Note that H2⊙H2 = H2 ·H2 = H1. Since
1 ∈ D, we have the chain of inclusions

H∞ ∩ χ =M(D) →֒ χ →֒ D →֒ D ⊙D.

Theorem 1 ([1]). (D ⊙D)∗ = χ under D pairing.

Theorem 1 might be seen as an analog of Fefferman’s Theorem in Dirichlet
theory. In proving it, we found it easier passing to an equivalent formulation
in terms of Hankel type forms. Given b, holomorphic in D, define TD

b (f, g) =
< fg, b >D. Functional analytic considerations show that

‖TD
b ‖D×D := sup

|TD
b (f, g)|
‖f‖D‖g‖D

= ‖b‖(D⊙D)∗.

What one has to prove is then

Theorem 2. ‖TD
b ‖D×D ≈ ‖b‖χ.

This is done in [1], and it might be seen as a Nehari-type theorem. It is easily
seen that ‖TD

b ‖D×D . ‖b‖χ. In the other direction, we use Stegenga’s capacitary
characterization of Carleson measures of D, discrete approximation of the extremal
function for the capacity of a given set and estimates of holomorphic versions of
these discrete functions. A discussion of the context surrounding these theorems
is in [2].

Results of similar flavor have been obtained for a few other functions spaces.
Ferguson and Lacey [8] considered the Hardy space on the polydisc, while Mazya
and Verbitsky [11] have, as a consequence of a more general theory, analogous
results for some Sobolev spaces.

3. Related questions.

We end the abstract with some open questions.

• Is there a better, more geometric characterization of the functions belong-
ing to χ and D ⊙D?
• Are there versions of the John–Nirenberg inequality [10] for functions be-
longing to the space χ?
• Are there analogous results for other holomorphic function spaces? The
techniques used in [1] can not be easily transfered outside the Dirichlet
case. It would be especially interesting to have results for the weighted
Dirichlet spaces which are intermediate between Hardy and Dirichlet,

‖f‖2Da
=

∫

D

|f ′(z)|2(1− |z|2)adA(z), 0 < a < 1,

as well as results for the analytic Besov spaces [14].
• We single out the above question in the special case of the Drury–Arveson
space [6, 3], in view of its importance as the analog of the Hardy space in
multivariable operator theory.
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Truncated Toeplitz operators: existence of bounded symbols

Anton Baranov

Truncated Toeplitz operators are compressions of usual Toeplitz operators to star-
invariant (model) subspaces of the Hardy space H2 in the disc. Let Θ be an inner
function and let KΘ = H2 ⊖ ΘH2 be a model subspace (in what follows we will
also work with model subspaces of Hp defined by Kp

Θ = Hp∩zHp). For a function
φ ∈ L2(T), define the truncated Toeplitz operator Aφ by the formula

Aφf = PΘ(φf)

for functions f ∈ KΘ ∩H∞. Here PΘf = f −ΘP+(Θf) is the projector onto KΘ.
In contrast to the classical Toeplitz operators, a truncated Toeplitz operator may
be sometimes extended to a bounded operator on the whole space KΘ even for an
unbounded symbol φ.

Some important special cases of truncated Toeplitz operators (in what follows,
TTO) were extensively studied. Let us mention the following:

(i) If φ(z) = z, then Azf = PΘ(zf) is the model operator in Sz.-Nagy–Foiaş
theory. If φ ∈ H∞, then Aφ = φ(Az).

(ii) If Θ(z) = zn, then KΘ = Pn−1 is the set of polynomial of degree at
most n, and truncated Toeplitz operators correspond to finite Toeplitz matrices
{cm−k}n−1

m,k=0.
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(iii) Wiener–Hopf convolution operators on an interval (0, a) are unitarily equiv-
alent (via the Fourier transform) to truncated Toeplitz operators on the space KΘ

in the half-plane with Θ(z) = exp(iaz).

However, a systematic study of general truncated Toeplitz operators was started
recently by D. Sarason [7]. This paper laid the basis of the theory and inspired
much of the subsequent activity in the field (see, e.g., [2, 4, 5]).

The symbol of a truncated Toeplitz operator is not unique. Sarason obtained
the description of symbols which generate zero TTO: Aφ = 0 if and only if φ ∈
ΘH2 +ΘH2. Also, in [7] several characterizations of TTO by operator identities
are obtained.

On the other hand, some basic questions about TTO remained open. One of
such questions was the existence of a bounded symbol for a bounded TTO.

Question 1 (Sarason, 2007). Let A be a bounded TTO. Whether there exists
ψ ∈ L∞(T) such that A = Aψ? In other words, is any bounded TTO a restriction
of a bounded Toeplitz operator in H2?

It follows from the results of R. Rochberg [6] that if Θ(z) = exp
(
− ζ0+z

ζ0−z

)
,

ζ0 ∈ T (or Θ(z) = exp(iaz), an inner function in the upper half-plane), then any
bounded TTO has a bounded symbol.

However, the answer in general is negative. Moreover, there exists a rank one
TTO in KΘ which has no bounded symbol. The first example of a truncated
Toeplitz operator without a bounded symbol was constructed in [2].

For λ ∈ D, let kλ(z) =
1−Θ(λ)Θ(z)

1−λz
, and let k̃λ(z) =

Θ(z)−Θ(λ)
z−λ . Recall that kλ is

the reproducing kernel for the space KΘ. Sarason [7] has shown that A is a rank

one TTO if and only if (up to a constant factor) A = kλ ⊗ k̃λ or A = kλ ⊗ kλ,
λ ∈ D, or A = kζ ⊗ kζ ,where ζ ∈ T is a Carathéodory point for Θ. Here g ⊗ h is
the rank one operator, (g ⊗ h)f = (f, h)g.

Let ζ ∈ T. By the results of Ahern–Clark (for p = 2) and W.S. Cohn (1 < p <
∞) kζ belongs to Hp if and only if the zeros zn of Θ and the associated singular
measure ν satisfy

(1)
∑

n

1− |zn|2
|zn − ζ|p

+

∫
dν(τ)

|τ − ζ|p <∞.

If ζ satisfies (1) for p = 2, then ζ is said to be a Carathéodory point for Θ; in
this case |Θ(ζ)| = 1 (in the nontangential sense) and there is the nontangential

limit limz→ζ
Θ(z)−Θ(ζ)

z−ζ , the so-called nontangential derivative of Θ.

Theorem 1 ([2]). Let Θ be an inner function such that kζ ∈ H2, but kζ /∈ Hp for
some p ∈ (2,∞). Then the operator kζ ⊗ kζ has no bounded symbol (no symbol in
Lp).

A wider class of examples is given by the following

Theorem 2 ([2]). If for some p ∈ (2,∞) we have

(2) sup
λ∈D

‖kλ‖p/‖kλ‖22 =∞,
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then there exists a bounded TTO without a bounded symbol.

Though the answer to Question 1 is negative, new questions arise: For which
inner functions Θ any bounded TTO on KΘ has a bounded symbol? How to identify
TTO with bounded symbols among all bounded TTO?

A natural candidate for the first question is the class of one-component inner
functions. For ε ∈ (0, 1) put Ωε = {z : |Θ(z)| < ε}; then Θ is said to be one-
component if Ωε is connected for some ε ∈ (0, 1). By a theorem due to A.B.
Aleksandrov [1], an inner function Θ is one-component if and only if it satisfies
supλ∈D ‖kλ‖∞/‖kλ‖22 <∞ (compare with (2)).

Existence of a bounded symbol turns out to be closely connected with another
class of problems about truncated Toeplitz operators. Given Θ and p ∈ [1,∞),
denote by Cp(Θ) the class of complex Borel measures in the closed disk D such
that there is the embedding Kp

Θ ⊂ Lp(|µ|). The problem of the description of
the class Cp(Θ) was posed by W.S. Cohn in 1982; in spite of a number of partial
results, the problem is still open.

Let µ ∈ C2(Θ). Define the bounded operator Aµ on KΘ by

(Aµf, g) =

∫
fgdµ, f, g ∈ KΘ.

Sarason [7] has shown that Aµ is a bounded TTO and asked the following question:

Question 2. Is any bounded TTO of the form Aµ for some µ ∈ C2(Θ)?

An important advance in our understanding of truncated Toeplitz operators was
achieved in [3]. In particular, we give the positive answer to Question 2 and
describe the class of TTO with a bounded symbol in terms of Carleson measure
for K1

Θ2 .

Theorem 3 ([3]). (i) Any bounded TTO is of the form Aµ for some µ ∈ C2(Θ).
(ii) A bounded TTO A has a bounded symbol iff A = Aµ for some µ ∈ C1(Θ2).

Our second main theorem describes those inner functions for which any bounded
TTO has a bounded symbol. The description is either in terms of the classes Cp(Θ)
or in terms of a certain weak factorization of functions from K1

Θ2 .

Theorem 4 ([3]). The following are equivalent:
(i) any bounded truncated Toeplitz operator on KΘ admits a bounded symbol;

(ii) C1(Θ2) = C2(Θ2);

(iii) for any f ∈ H1∩z̄Θ2H1
− there exist xk, yk ∈ KΘ with

∑
k ‖xk‖2·‖yk‖2 <∞

such that f =
∑
k xkyk (one can have only 4 summands).

It was shown by Aleksandrov (see [1]) that for a one-component inner function
the class Cp(Θ) does not depend on the exponent p. Thus, we have

Corollary. If Θ is one-component, then C2(Θ) = C1(Θ2), and so any bounded
TTO has a bounded symbol.
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System of reproducing kernels and their biorthogonal: completeness
or non-completeness?

Yurii Belov

(joint work with Anton Baranov)

Let H be a separable Hilbert space. A sequence of vectors {vn} is said to be

complete if Span{vn} = H. If, moreover, the system {vn} fails to be complete
when we remove any vector, then we say that the system is exact. For every exact
system of vectors {vn} there exists a unique biorthogonal system {wm} such that
〈vn, wm〉 = δmn.

Suppose that H is a space of entire functions with reproducing kernels. Namely,
for each w ∈ C there is an element kw ∈ H such that 〈f, kw〉 = f(w) for all f ∈ H.
We are looking for an answer to the following question:

Question 1. Let {kλ} be an exact system of reproducing kernels in H. Is it true
that the biorthogonal system is also complete in H?

Of course, for an arbitrary sequence of vectors, its biorthogonal system may be
non-complete. If {en}∞n=1 is an orthonormal basis, then system {en + e1}∞n=2 is
complete, but biorthogonal system {en}∞n=2 is non-complete. On the other hand,
it is well known that if we restrict ourselves to a system of reproducing kernels,
then the answer may be positive. R.M. Young [4] proved the completeness of such
systems for the Paley–Wiener spaces; E. Fricain [3] extended this result to a class
of de Branges spaces of entire functions (see discussion below).

Our aim is to exhibit some classes of spaces for which we know the answer
(positive or negative). In particular, we answer the question posed by N.K. Nikolski
and construct an example of a model (shift-coinvariant) subspace of the Hardy
space H2 with a non-complete biorthogonal system.
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To make general problem more realistic we need some additional structure on
H, namely the existence of a Riesz basis. Recall that a system of vectors {vn}
is said to be a Riesz basis if {vn} is an image of an orthonormal basis under a
bounded and invertible operator in H. We consider the class R of spaces of entire
functions satisfying three axioms:

(A1) H has a reproducing kernel kλ at every point λ ∈ C;

(A2) If function f is in H and f(w) = 0, then function f(z)
z−w is also in H;

(A3) There exists a sequence of distinct points T = {tn} ⊂ C such that the
sequence of normalized reproducing kernels

{
ktn/‖ktn‖H

}
forms a Riesz

basis for H.
First example of such spaces is the Paley–Wiener space PWπ which is the space

of entire functions of exponential type at most π that are in L2(R). In this case

the sequence { sin(π(z−n))π(z−n) }n∈Z is an orthonormal basis of reproducing kernels and

(A3) is satisfied. Axioms (A1), (A2) follow immediately.
More interesting examples are de Branges spaces. We say that an entire function

E belongs to the Hermite–Biehler class if it has no real zeros and |E(z)| > |E(z)|
for any z in the upper half-plane C+. The de Branges space H(E) consists of all

entire functions f such that f(z)/E(z) and f(z)/E(z) belong to the Hardy space
H2 in C+. The norm in H(E) is given by

‖f‖2H(E) =

∫

R

|f(x)|2
|E(x)|2 dx.

As in the Paley–Wiener space, in the de Branges spaces there exist orthonormal
bases of reproducing kernels (see [2]). That means that de Branges spaces form a
subclass of our class R.

We will use an explicit parametrization of the classR from [1]. We can associate
with the space H ∈ R a space of meromorphic functions with prescribed poles.
Namely, given a sequence of distinct complex numbers T = {tn} and a weight
sequence b = {bn} that satisfy

∑
n

bn
1+|tn|2

< ∞, we introduce the space H(T, b)
consisting of all functions of the form

(1) f(z) =

∞∑

n=1

anb
1/2
n

z − tn
,

for which

‖f‖2H(T,b) =

∞∑

n=1

|an|2 < +∞.

The map f 7→ Ff is a unitary map from H(T, b) to H which maps reproducing
kernels to reproducing kernels. So, for our approach, we can consider the pairs
(T, b) as a parametrization of all spaces from R.

Now we are ready to state our main result.

Theorem 2. If H ∈ R and
∑

n bn < +∞, then there exists an exact system of
reproducing kernels such that its biorthogonal system is not complete.



2832 Oberwolfach Report 49/2010

A converse result says that if bn have no more than a power decay, then the
biorthogonal systems are complete.

Theorem 3. If
∑

n bn = +∞ and there exists N such that infm(bm(1+ |tm|)N ) >
0, then a system biorthogonal to an exact system of reproducing kernels is always
complete in H.

The restriction on the decay of bn in Theorem 3 is essential.

Example 4. There exists a space H ∈ R such that for any Riesz basis of reproduc-
ing kernels we have

∑
n bn = +∞, but there exists an exact system of reproducing

kernels such that its biorthogonal is not complete.

Now we turn to the question of the ”size” of the orthogonal complement of
a biorthogonal system in the case when the system is not complete. Here we
emphasize the following informal principle: The size of the orthogonal complement
of biorthogonal system depends on smallness of the sequence {bn}. The orthogonal
complement becomes bigger if bn tend to zero faster.

Nevertheless, if {bn} are extremely small, then the biorthogonal system has
finite codimension.

Theorem 5. Suppose tn = n, n ∈ Z, and bn are so small that there is no non-

trivial sequence {cn}, |cn| ≤ b
1/2
n , such that

∑∞
n=−∞ cnn

k = 0 for any k ∈ N0. If
H is the corresponding Hilbert space of the class R, then the system biorthogonal
to an exact system of reproducing kernels always has finite codimension.

We illustrate this by the following example.

Example 6. If tn = n, bn = exp(−|n|), n ∈ Z, then any biorthogonal system has
finite codimension.
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Analytic Capacity and Certain Problems in Approximation Theory

James E. Brennan

My purpose here is to discuss certain connections between uniform rational ap-
proximation, and approximation in the mean by either polynomials or rational
functions on compact nowhere dense subsets of the complex plane C. If X is com-
pact C(X) will denote the space of all continuous functions on X , and R(X) will
stand for the subspace of C(X) consisting of all functions that can be uniformly
approximated on X by rational functions whose poles lie outside of X . For each
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p, 1 ≤ p <∞, let Hp(X, dA) be the closed subspace of Lp(X, dA) that is spanned
by the polynomials, and let Rp(X, dA) be the corresponding subspace spanned by
the rational functions. Here dA denotes two-dimensional Lebesgue measure.

By definition a point x ∈ X is a peak point for R(X) if there exists a function
f ∈ R(X) such that f(x) = 1, but |f(y)| < 1 whenever y 6= x. It is a theorem of
Errett Bishop (cf. [5]) that R(X) = C(X) if and only if dA almost every point of
X is a peak point for R(X). If, on the other hand, x0 ∈ X is not a peak point for
R(X) it can be shown (cf. [3]) that

|P (x0)| ≤ Cp ‖P‖Lp(X,dA)

for every polynomial P , and some constant Cp depending only on p. In this context
x0 is said to yield a bounded point evaluation forHp(X, dA). Thus, ifR(X) 6= C(X)
then Hp(X, dA) 6= Lp(X, dA) for any p, 1 ≤ p < ∞. The proof makes essential
use of Tolsa’s theorem [13] on the semiadditivity of analytic capacity, and settles a
question from 1973 which initially arose in connection with the invariant subspace
problem for subnormal operators on a Hilbert space.

It can happen, however, that R(X) 6= C(X), but nevertheless Rp(X, dA) =
Lp(X, dA) for all p < ∞. This was initially established by Sinanjan [12] in 1966.
His argument, however, depends on earlier work of Mergeljan and is computation-
ally rather difficult. A proof that is conceptually much clearer can be found in [3],
and depends only on the fundamentally different behavior of q-capacity and ana-
lytic capacity under a contraction. In order to prove that Rp(X, dA) = Lp(X, dA)
it is sufficient to verify that if k ∈ Lq(X, dA), q = p/(p− 1), and

∫
fk dA = 0 for

all rational functions f , then the Cauchy integral

k̂(ζ) =

∫
k(z)

z − ζ dAz

vanishes almost everywhere. Since k̂ is continuous if q > 2 it follows that
Rp(X, dA) = Lp(X, dA) for 1 ≤ p < 2 whenever X is compact and has empty

interior. We may assume, therefore, that 1 < q ≤ 2. In this case k̂ belongs to
the Sobolev space W q

1 , and as such enjoys a certain residual continuity which is
best described in terms of an associated capacity Cq (cf. [2,3]). More precisely, the

Cauchy integral k̂ is q-finely continuous at almost every point x0 ∈ X in the sense
that there exists a set E that is thin or sparse in a potential theoretic sense at x0
and

lim
x→x0, x∈C\E

k̂(x) = k̂(x0).

In our case it is sufficient to know that E is thick at x0 if

(1) lim sup
r→0

Cq(E ∩Br)
r2−q

> 0,

where Br = Br(x0) is the disk with center at x0 and radius r (cf. [2], p.221).

Hence, if (1) is satisfied at almost every point of X when E = {z : k̂(z) = 0}, then
Rp(X, dA) = Lp(X, dA).
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To obtain a compact setX for which Rp(X, dA) = Lp(X, dA) butR(X) 6= C(X)
we first iterate the construction of the corner quarters Cantor set in such a way that
the resulting set E is dense in the unit square Q, the analytic capacity γ(E) = 0,
and the orthogonal projection of E ∩ Br onto the line 2y = x covers an interval
of length (3/

√
5)r for any disk Br contained in Q. The construction depends on

ideas in the papers of Garnett [7], Ivanov [10], and Vitushkin [14]. The details
can be found in [3]. Since q- capacity decreases modulo a multiplicative constant
under a contraction (cf. [1], p.140), Cq(E ∩ Br) ≥ Kr2−q for some constant K
depending only on q and all disks Br lying in Q. Because γ(E) = 0 we can choose
a compact set X0 lying inside Q whose area |X0| > 0 and X0∩E = ∅. Covering E
by countably many sufficiently small open squares Ωj , j = 1, 2, 3, ... having disjoint
closures, none of which meets X0, we arrive at a compact set X = Q \ ∪j Ωj and
X0 ⊆ X . If the Ωj ’s are chosen sufficiently small we can arrange that

(2) lim
r→0

γ(Br(x)\X)

r
= 0

at almost every point x ∈ X0. By a theorem of Vitushkin [15] (cf. also [5], p.207)
it follows from (2) that R(X) 6= C(X), and from (1) that Rp(X, dA) = Lp(X, dA)
for 1 ≤ p <∞.

If x0 is not a peak point for R(X) we have seen that H1(X, dA) has a bounded
point evaluation at x0, and so there exists a function h ∈ L∞(X, dA) so that
P (x0) =

∫
PhdA for all polynomials P . In the case of R(X) it can be shown that

there exists an absolutely continuous measure hdA with the property that

(3) f(x0) =

∫
fhdA

for all f ∈ R(X). This can be deduced from Davie’s theorem [4] on bounded
pointwise approximation, and was apparently first noticed by Brian Cole (cf. also
[6]). By our remarks in the preceding paragraph the most that can be said, in
general, is that h ∈ L1(X, dA). To establish (3) it is evidently sufficient to verify
that the evaluation functional L(f) = f(x0) is weak-∗ continuous on R(X). And,
for this it follows from an extension of the Krein–Smulian theorem first employed
by Hoffman and Rossi [9] that it is enough to show that if {fn} is a sequence of
rational functions in R(X) which converges pointwise and boundedly to 0 almost
everywhere dA on X , then L(fn) = fn(x0)→ 0. This proves that the kernel of L
is weak-∗ closed, from which it follows that L is weak-∗ continuous.

Fix r > 0, let g be a smooth function supported in Br(x0) such that 0 ≤ g ≤ 1
with g = 1 in a neighborhood of x0, and ‖∂g/∂z̄‖∞ ≤ 4/r. Set fn = 0 in a region
containing its singularities in such a way that the modified function, still denoted
fn, is analytic in a neighborhood of X and ‖fn‖∞ ≤ 2 ‖fn‖X . Next, consider the
function Fn obtained from the Vitushkin localization operator. In particular, Fn
is analytic everywhere where fn is analytic, is analytic outside Br(x0), is explicitly
expressed as

(4) Fn(ζ) = g(ζ)fn(ζ) +
1

π

∫
fn(z)

z − ζ
∂g

∂z̄
dAz,
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‖Fn‖ ≤ 16 ‖fn‖, and Fn− fn is analytic in a neighborhood of x0 (cf. [5,15]). Since
x0 is not a peak point for R(X), it follows from Mel’nikov’s peak point criterion
[11] (cf. also [8]) that

(5)

∞∑

n=1

2n γ(An(x0)\X) <∞,

where An(x0) = {z : 2−n−1 < |z − x0| ≤ 2−n}. On the other hand, |Fn(x0)| is
dominated by a constant times the portion of (5) coming from the disk Br(x0),
and so if r is sufficiently small |Fn(x0)| < ǫ for all n. Since Fn(x0) − fn(x0) → 0
as n→∞, L(fn) = fn(x0)→ 0.

By a theorem of Øksendal [16] the resulting representing measure for R(X) is
carried by the set of non-peak points, and it can be taken to be a positive measure
(cf. [5], p.33).
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The Kadison–Singer Problem in Harmonic Analysis

Peter G. Casazza

It is now known [2] that the famous, intractable 1959 Kadison–Singer Problem in
C∗-Algebras is equivalent to famous unsolved problems in a dozen areas of research
in pure mathematics, applied mathematics and engineering. We will look at the
Kadison–Singer Problem in Harmonic Analysis and the most viable approach to
producing a counter-example.

1. The Kadison–Singer Problem

A state of a Von Neumann Algebra R is a linear functional f on R for which
f(I) = 1 and f(T ) ≥ 0, whenever T ≥ 0 (i.e. whenever T is a positive operator).
The set of states of R is a convex subset of the dual space which is compact in the
w∗-topology. By the Krein–Milman Theorem, this convex set is the closed onvex
hull of its extreme points. The extremal elements in the space of states are called
the pure states. For over 50 years the Kadison–Singer Problem [3] (see also [2])
has defied the best efforts of some of the most talented mathematicians of our
time.

Kadison–Singer Problem. (KS) Does every pure state on the (abelian) von
Neumann Algebra D of bounded diagonal operators on ℓ2 have a unique exten-
sion to a (pure) state on B(ℓ2), the von Neumann Algebra of all bounded linear
operators on the Hilbert space ℓ2?

2. The Paving Conjecture

In 1979, Anderson [1] showed that the Kadison–Singer Problem is equivalent to
the Paving Conjecture.

Paving Conjecture. (PC) For ǫ > 0, there is a natural number r so that for
every natural number n and every linear operator T on ln2 whose matrix has zero
diagonal, we can find a partition (i.e. a paving) {Aj}rj=1 of {1, . . . , n}, such that

‖QAjTQAj‖ ≤ ǫ‖T ‖ for all j = 1, 2, . . . , r,

where QAj is the natural projection onto the Aj coordinates of a vector.
The important point here is that r depends only on ǫ > 0 and not on n or

T . Operators satisfying the Paving Conjecture are called pavable operators. A
projection P on Hn is (ǫ, r)-pavable if there is a partition {Aj}rj=1 of {1, 2, . . . , n}
satisfying

‖QAjPQAj‖ ≤ ǫ, for all j = 1, 2, . . . , r.

Anderson [1] showed that the Paving Conjecture is equivalent to the Kadison–
Singer Problem.
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3. The Feichtinger Conjecture

Recall that a family of vectors {fi}i∈I is a Riesz basic sequence in a Hilbert
space H if there are constants A,B > 0 so that for all families of scalars {ai}i∈I
we have:

A
∑

i∈I

|ai|2 ≤ ‖
∑

i∈I

aifi‖2 ≤ B
∑

i∈I

|ai|2.

If A = 1− ǫ and B = 1 + ǫ we call {fi}i∈I an ǫ-Riesz basic sequence. If ‖fi‖ = 1
for all i ∈ I, we call the family a unit norm family. In [2] it was shown that the
following conjecture is equivalent to the Kadison–Singer Problem.

Conjecture 1. (Rǫ-Conjecture) For every ǫ > 0, every unit norm Riesz basic
sequence is a finite union of ǫ-Riesz basic sequences.

Definition 2. A family of vectors {fi}i∈I is a frame for a Hilbert space H if
there are constants A,B > 0 so that for all f ∈ H we have

A‖f‖2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B‖f‖2.

If we only have the right hand side inequality, we call this a B-Bessel sequence.

It follows that {fi}i∈I is B-Bessel if and only if the operator T : ℓ2(I) → H
given by Tei = fi satisfies ‖T ‖2 = B, where {ei}i∈I is the natural orthonormal
basis of ℓ2(I).

Conjecture 3. (The Feichtinger Conjecture) Can every unit norm frame (or
Bessel sequence) be partitioned into a finite number of Riesz basic sequences?

In [2] it was shown that the Feichtinger Conjecture is equivalent to the Kadison–
Singer Problem.

4. The Kadison–Singer Problem in Harmonic Analysis

Definition 4. If φ ∈ L∞[0, 1], the Laurent operator Tφ is defined by:

Tφf = φ · f ∀f ∈ L2[0, 1].

Much work was done in 1980’s to solve PC for Laurent Operators by Bour-
gain/Tzafriri, and Berman/Halpern/Kaftal/Weiss (see the references in [2]). But
the problem remains open today.

Definition 5. If A ⊆ Z, let

S(A) = span {e2πint}n∈A ⊆ L2[0, 1].

Theorem 6. ( Berman, Halpern, Kaftal and Weiss) For every ǫ > 0 and for every
[a, b] ≤ [0, 1] there exists a partition of Z into arithmetic progressions (Aj)

r
j=1 so

that for all j and f ∈ S(Aj)
(1− ǫ)(b− a)‖f‖2 ≤ ‖PEf‖2 ≤ (1 + ǫ)(b − a)‖f‖2,

PEf = χE · f .
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Conjecture 7. (The Harmonic Analysis Conjecture) For every measurable E ⊆
[0, 1] and for every ǫ > 0 there exists a partition (Aj)

r
j=1 of Z such that for every

j and f ∈ S(Aj)
(1− ǫ)|E|‖f‖2 ≤ ‖PEf‖2 ≤ (1 + ǫ)|E|‖f‖2.

If we replace 1± ǫ by universal 0 < A < 1 < B <∞, we call this weak H.A..

Theorem 8. The following are equivalent:

(1) H.A. Conjecture
(2) Every Tφ is pavable
(3) There is a universal constant K such that for every measurable subset

E ⊆ [0, 1] there exists a partition (Aj)
r
j=1 of Z so that for all

f ∈ span (e2πirt)n∈Aj

‖f · χE‖2 ≤ K|E|‖f‖2.
Moreover: We may assume |E| = 1/2.

(B) Weak HA is equivalent to FC for Laurent operators.

Conjecture 9. (The Feichtinger Conjecture for Laurent operators) Given E ⊂
[0, 1] measurable with |E| = 1/2, there is a partition {Aj}rj=1 of Z so that for all
j = 1, 2, . . . , r, the family {

e2πintχE
}
n∈Aj

,

is a Riesz basic sequence.

Theorem 10. (Halpern, Kaftal, Weiss) If E ⊂ [0, 1] is measurable and χE is
Riemann integrable, then there is a partition {Aj}rj=1 of Z into arithmetic pro-
gressions so that each {

e2πintχE
}
i∈Aj

,

is a Riesz basic sequence.

To produce a counter-example to FC, we need to work with a set E ⊂ [0, 1]
satisfying:

1. |E| = 1/2.

2. Neither E nor Ec contains an interval.

At this time, for sets E as above, we do not know if a single one of them satisfies
FC.

Definition 11. A subset B ⊂ Z is called a syndetic set if there exists an M ∈ Z

so that
B ∩ [nM, (n+ 1)M ] 6= φ, for all n ∈ Z.

Lawton [4] proved an important result concerning the Feichtinger Conjecture
in harmonic analysis and syndetic sets.
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Theorem 12. (Lawton) If E ⊂ [0, 1] is measurable and
{
e2πintχE

}
n∈Z

, satisfies FC,

then there is a partition of Z into syndetic sets {Bj}Mj=1 so that
{
e2πintχE

}
n∈Bj

is a Riesz sequence for every j = 1, 2, . . . ,M.

We believe that the Lawton theorem is the best direction for a counter-example
to the Feichtinger Conjecture for Laurent operators. In particular, as we have a
classification of the measurable sets E ⊂ [0, 1] for which {e2πintχE}n∈Z can be
written as a finite union of Riesz sequences made up of arithmetic progressions in
Z, we believe there should be a similar classification of the measurable sets E for
which our family can be written as a finite union of Riesz sequences made up of
syndetic sets – and this will not contain all the measurable sets E. All the other
sets will give counter-examples to FC.
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Local ABC theorems for holomorphic functions

Konstantin M. Dyakonov

Given a polynomial p (in one complex variable), write deg p for the degree of

p and Ñ(p) = ÑC(p) for the number of its distinct zeros in C. The so-called abc
theorem, often referred to as Mason’s theorem (but essentially due to Stothers [7]),
reads as follows.

Theorem 1. Suppose a, b and c are polynomials, not all constants, having no
common zeros and satisfying a+ b = c. Then

(1) max{deg a, deg b, deg c} ≤ Ñ(abc)− 1.

Various approaches to and consequences of Theorem 1 are discussed in [3, 4, 5,
6]. One impressive – and immediate – application is a simple proof of Fermat’s Last
Theorem for polynomials, saying that there are no nontrivial polynomial solutions
to the equation Pn +Qn = Rn when n ≥ 3. Besides, it was Theorem 1 that led
(via the classical analogy between polynomials and integers) to the famous abc
conjecture in number theory; see [3, 5].

We now obtain some abc type estimates that apply to a much more general
situation. Namely, we consider a bounded simply connected domain Ω ⊂ C with
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∂Ω a rectifiable Jordan curve, and we replace the polynomial equation a + b = c
by

(2) f0 + · · ·+ fn = fn+1,

where the fj ’s are analytic functions on an open neighborhood of Ω ∪ ∂Ω.
With each fj we associate the (finite) Blaschke product Bj built from the func-

tion’s zeros in Ω. This means that Bj is given by

(3) z 7→
s∏

k=1

(
φ(z)− φ(ak)
1− φ(ak)φ(z)

)mk

, z ∈ Ω,

where ak = a
(j)
k (1 ≤ k ≤ s = sj) are the distinct zeros of fj in Ω, mk = m

(j)
k

are their respective multiplicities, and φ is a conformal map from Ω onto the unit
disk. Further, let B denote the least common multiple of the Blaschke products
B0, . . . , Bn+1 (defined in the natural way), and put

B := rad(B0B1 . . . Bn+1).

Here, we use the notation rad(B) for the radical of a Blaschke product B; this
is, by definition, the Blaschke product that arises when the zeros of B are all
converted into simple ones. In other words, given a Blaschke product of the form
(3), its radical is obtained by replacing each mk with 1.

Finally, we write W =W (f0, . . . , fn) for the Wronskian of the (analytic) func-
tions f0, . . . , fn, so that

(4) W :=

∣∣∣∣∣∣∣∣

f0 f1 . . . fn
f ′
0 f ′

1 . . . f ′
n

. . . . . . . . . . . .

f
(n)
0 f

(n)
1 . . . f

(n)
n

∣∣∣∣∣∣∣∣
.

We then introduce the quantities

κ = κ(W ) := ‖W ′‖L1(∂Ω)‖1/W‖L∞(∂Ω), λ = λ(W ) := ‖W ′‖L2(Ω)‖1/W‖L∞(∂Ω)

and

µ = µ(W ) := ‖W‖L∞(∂Ω)‖1/W‖L∞(∂Ω).

The underlying measures on Ω and ∂Ω are dA/π and ds/(2π), respectively, where
dA stands for area and ds for arc length.

Theorem 2. Suppose fj (j = 0, 1, . . . , n + 1) are analytic functions on Ω ∪ ∂Ω,
related by (2) and such that the Wronskian (4) vanishes nowhere on ∂Ω. Then

(5) NΩ(B) ≤ κ+ nµNΩ(B)
and

(6) NΩ(B) ≤ λ2 + nµ2NΩ(B),
where NΩ(·) denotes the number of the function’s zeros in Ω, counting multiplici-
ties.
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Both estimates are sharp, for any Ω, and each of them can be used to derive
(a generalization of) the original abc theorem for polynomials. In fact, (1) follows
upon applying either (5) or (6) to the three polynomials, letting Ω = {z : |z| <
R} and then passing to the limit as R → ∞. See [1, 2] for details and further
developments.
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Heisenberg uniqueness pairs and the Klein–Gordon equation

Håkan Hedenmalm

(joint work with Alfonso Montes-Rodŕıguez)

This reports on the work [2]. A Heisenberg uniqueness pair (HUP) is a pair
(Γ,Λ), where Γ is a curve in the plane and Λ is a set in the plane, with the
following property: any finite Borel measure µ in the plane supported on Γ, which
is absolutely continuous with respect to arc length, and whose Fourier transform µ̂
vanishes on Λ, must automatically be the zero measure. This is analogous to the
concept of mutually annihilating pairs [1]. We prove that when Γ is the hyperbola
x1x2 = 1, and Λ is the lattice-cross

Λ = (αZ× {0}) ∪ ({0} × βZ),

where α, β are positive reals, then (Γ,Λ) is an HUP if and only if αβ ≤ 1; in
this situation, the Fourier transform µ̂ of the measure solves the one-dimensional
Klein–Gordon equation. Phrased differently, we show that

eπiαnt, eπiβn/t, n ∈ Z,

span a weak-star dense subspace in L∞(R) if and only if αβ ≤ 1. In order to
prove this theorem, some elements of linear fractional theory and ergodic theory
are needed, such as the Birkhoff Ergodic Theorem. An idea parallel to the one
exploited by Makarov and Poltoratski [3] (in the context of model subspaces) is
also needed. As a consequence, we solve a problem on the density of algebras
generated by two inner functions raised by Matheson and Stessin [4].
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Sampling of band-limited signals and quasicrystals

Nir Lev

(joint work with Gady Kozma)

A band-limited signal is an entire function F of exponential type, square-integrable
on the real axis. By the classical Paley–Wiener theorem, F is the Fourier transform
of an L2-function supported by a bounded (measurable) set S ⊂ R, which is called
the spectrum of F . We denote by PWS the Paley–Wiener space of all functions
F ∈ L2(R) which are Fourier transforms of functions from L2(S),

F (t) =

∫

S

f(x) e−2πitx dx, f ∈ L2(S).

A discrete set Λ ⊂ R is called a set of sampling for PWS if every signal with
spectrum in S can be reconstructed in a stable way from its ‘samples’ {F (λ), λ ∈
Λ}, that is, there are positive constants A,B such that the inequalities

A‖F‖L2(R) ≤
(∑

λ∈Λ

|F (λ)|2
)1/2

≤ B‖F‖L2(R)

hold for every F ∈ PWS . Equivalently, this means that the exponential system
E(Λ) = {exp 2πiλt, λ ∈ Λ} is a frame in the space L2(S).

A necessary condition for the sampling property of Λ was given by Landau [7]
who proved that if Λ is a set of sampling for PWS then D−(Λ) ≥ mesS. Here we
denote by D−(Λ) the lower uniform density of Λ.

Olevskii and Ulanovskii [11, 12] discovered that there exist “universal” sampling
sets Λ of given uniform density D(Λ) = d, which provide a stable reconstruction
of any signal whose spectrum is a compact set of Lebesgue measure < d. An
interesting example of universal sampling sets, based on so-called “simple quasi-
crystals”, was presented by Matei and Meyer in [9, 10]. Let α be an irrational real
number, and consider the sequence of points {nα}, n ∈ Z, on the circle T = R/Z.
Given an interval I = [a, b) ⊂ T we define the set

Λ(α, I) := {n ∈ Z : a ≤ nα < b}.
It is well-known that the points {nα} are equidistributed (and moreover, they are
well-distributed) on the circle T. This implies that the set Λ(α, I) has a uniform
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density D(Λ(α, I)) = |I|, where |I| denotes the length of the interval I. It was
proved in [9, 10] that the exponential system E(Λ(α, I)) is a frame in L2(S) for
every compact set S ⊂ T of measure < |I|.

In our joint paper with Gady Kozma [5] we study the Riesz basis problem for the
exponential system E(Λ(α, I)) in L2 on a finite union of intervals. Equivalently,
does Λ(α, I) provide a stable and non-redundant sampling of signals with a ‘multi-
band’ spectrum? Our first result shows that the question admits a positive answer
provided that a certain diophantine condition, relating α and the length of the
interval I, holds:

Theorem 1. Let |I| ∈ Z+αZ. Then the exponential system E(Λ(α, I)) is a Riesz
basis in L2(S) for every set S ⊂ T, mesS = |I|, which is the union of finitely
many disjoint intervals whose lengths belong to Z+ αZ.

Remark that the condition mesS = |I| in Theorem 1 is necessary for the Riesz
basis property in L2(S), as follows from Landau’s inequalities [7]. Theorem 1
extends results from the papers [1, 8] on the existence of exponential Riesz bases
in L2 on multiband sets (that is, finite unions of intervals).

Our second result complements the picture by clarifying the role of the diophan-
tine assumption |I| ∈ Z+αZ in Theorem 1. It turns out that this condition is not
only sufficient, but also necessary, for the stable and non-redundant sampling on
multiband spectra:

Theorem 2. Suppose that |I| /∈ Z+ αZ. Then E(Λ(α, I)) is not a Riesz basis in
L2(S), for any set S ⊂ T which is the union of finitely many intervals.

Our approach to the problem above is based on its connection to the theory of
equidistribution and discrepancy for the irrational rotation of the circle. It is well-
known that if α is an irrational real number then the sequence {nα} is uniformly
distributed modulo 1. Given a finite union of intervals S on the circle T, consider
the discrepancy function defined by

D(n, S) = ν(n, S)− nmesS,

where ν(n, S) denotes the number of integers 0 ≤ k ≤ n − 1 such that kα ∈ S.
The uniform distribution of {nα} means that D(n, S) = o(n) as n→∞.

Better estimates for the discrepancy can be obtained based on diophantine
properties of the number α, for example D(n, S) = O(log n) if α is a quadratic
irrational number.

It was discovered by Hecke that if S is a single interval whose length belongs
to the group Z + αZ then the discrepancy is actually bounded, D(n, S) = O(1).
Erdös and Szüsz conjectured [2] that also the converse to Hecke’s result should be
true. This conjecture was confirmed in 1966 by Kesten [4].

In collaboration with G. Kozma [5] we study the bounded mean oscillations of
the discrepancy. Let BMO denote the space of sequences with bounded mean
oscillations (analogous to the classical John–Nirenberg BMO space of functions
on R). This space contains all bounded sequences, but, as is well-known, it also
contained unbounded ones. In [5] we extend Kesten’s theorem to this space:
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Theorem 3. Let α be an irrational number, and S ⊂ T be a finite union of
intervals. Let ν(n, S) denote the number of integers 0 ≤ k ≤ n − 1 such that
kα ∈ S. If the sequence {ν(n, S)−nmesS}, n = 1, 2, 3, . . . , belongs to BMO, then
mesS ∈ Z+ αZ.

The link between the Riesz basis problems for E(Λ(α, I)) and the theory of
discrepancy for irrational rotations is an idea due to Meyer, which we refer to as
the ‘duality principle’. Meyer’s duality principle allows us to reduce the problem
about exponential Riesz bases in L2(S) to a similar problem in L2(I), where I is a
single interval. It is then possible to invoke known results about exponential Riesz
bases in L2(I).

In order to prove Theorem 2 we combine the duality principle with a theorem
due to Pavlov [14] (see also [3]) which describes completely the exponential Riesz
bases in L2(I). Pavlov’s theorem allows us to conclude that the discrepancy must
be in BMO, and we can then apply Theorem 3.

For Theorem 1 we use the fact that if S is the union of finitely many disjoint in-
tervals whose lengths belong to Z+αZ, then the discrepancy function is bounded.
In fact this remains true under the following, somewhat more general, condition:
the indicator function 1S can be expressed as a finite linear combination of indi-
cator functions of intervals whose lengths belong to Z + αZ. It is interesting to
remark that the latter condition is not only sufficient, but also necessary, for the
boundedness of the discrepancy function (see [13]).
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Sampling near the critical density

Yurii Lyubarskii

(joint work with Alexander Borichev and Karlheinz Gröchenig)

We study the stability problem for the expansions of functions on the real line
with respect to a discrete set of phase-space shifts of a Gaussian, precisely

(1) f(x) =
∑

k,l∈Z

ckle
2πilaxe−π(x−bk)

2

.

Expansions of such form (with a = 1, b = 1) were introduced by D. Gabor in his
classical article [3]. Now expansions of type (1), so-called Gabor expansions, ap-
pear in signal processing, quantum mechanics, time-frequency analysis, the theory
of pseudodifferential operators, and other applications.

During the last decades an extensive theory of expansions (1) as well as more
general Gabor expansions has been developed (see, for instance [4, 2] and the ref-
erences therein). However, not much is known about numerical stability property
of such expansions.

In modern language, the existence of Gabor expansions is derived from frame
theory. To fix terminology and notation, take some g ∈ L2(R), it will be called a
window function, and let Λ = MZ2 ⊂ R2 be a lattice in R2, where M is a 2 × 2
invertible real-valued matrix. Given a point λ = (x, ξ) in phase-space R2, the
corresponding time-frequency shift is

πλf(t) = e2πiξtf(t− x), t ∈ R .

The set of functions G(g,Λ) = {πλg : λ ∈ Λ} is called the Gabor system generated
by g and Λ. We say that such a system is a Gabor frame or Weyl–Heisenberg
frame, whenever there exist constants A,B > 0 such that, for all f ∈ L2(R),

(2) A‖f‖2L2(R) ≤
∑

λ∈Λ

|〈f, πλg〉L2(R)|2 ≤ B‖f‖2L2(R) .

The (best possible) constants A = A(Λ, g) and B = B(Λ, g) in (2) are called the
lower and upper frame bounds for the frame G(g,Λ).

The ratio B(Λ)/A(Λ) plays the role of the condition number for the frame
G(g,Λ). We investigate behavior of this ration as the density approaches the
critical value one. We deal with Gabor frames for the Gaussian window G(g0,Λ)
for the square lattice Λ(a) = aZ × aZ, g0(t) = e−t

2

and study the behavior of
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its frame constants A(a) = A(Λ(a)) and B(a) = B(Λ(a)) near the critical density
d(Λ) = 1.

The main result of our paper [1] reads as follows
Theorem There exist constants 0 < c < C < ∞ such that for each a ∈ (1/2, 1)
the frame bounds A(a), B(a) for the frame G(g0,Λ(a)) satisfy

c(1− a2) ≤ A(a) ≤ C(1− a2)
and

c < B(a) < C.
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Differentiability of functions in the Zygmund class

Artur Nicolau

The Zygmund class Λ∗(R
d) is the class of bounded continuous functions

f : Rd → R for which

‖f‖∗ = sup{ |f(x+ h) + f(x− h)− 2f(x)|
‖h‖ : x, h ∈ Rd} <∞.

The small Zygmund class λ∗(R
d) is the subclass formed by those functions f ∈

Λ∗(R
d) which satisfy

lim
‖h‖→0

sup
x∈Rd

|f(x+ h) + f(x− h)− 2f(x)|
‖h‖ = 0.

These spaces were introduced by Zygmund in the forties when he observed that
the conjugate function of a Lipschitz function in the unit circle does not need to
be Lipschitz but it is in the Zygmund class [8]. For 0 < α ≤ 1, let Λα(R

d) be the
Holder class of bounded functions f : Rd → R for which there exists a constant
C = C(f) such that |f(x+h)−f(x)| ≤ C‖h‖α, for any x, h ∈ Rd. It is well known
that Λ1(R

d) ⊂ Λ∗(R
d) ⊂ Λα(R

d) for any 0 < α < 1 and actually the Zygmund
class Λ∗(R

d) is the natural substitute of Λ1(R
d) in many different contexts. For

instance, the Hilbert transform of a compactly supported function in Λ1(R
d) may

not be in Λ1(R
d), while standard Calderón–Zygmund operators map compactly

supported functions in Λ∗(R
d) ( respectively in Λα(R

d) for some fixed 0 < α < 1 )
into Λ∗(R

d) ( respectively into Λα(R
d) ). See [3]. The Zygmund class can also be

described in terms of harmonic extensions, Bessel potentials or best polynomial
approximation and again it is the natural substitute of the Lipschitz class Λ1(R

d)
in these contexts, see [8].
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A classical result of Rademacher says that any function in Λ1(R
d) is differ-

entiable at almost every point. However functions in the Zygmund class as the
Hardy–Weierstrass function fb given by

(1) fb(x) =

∞∑

n=0

b−n cos(2πbnx), x ∈ R, b > 1,

may not be differentiable at any point. More generally, let g be an almost periodic
function of class C2 in the real line. Then for any b > 1, the function

f(x) =
∞∑

n=0

b−ng(bnx), x ∈ R,

is in the Zygmund class Λ∗(R) and under mild assumptions on the function g,
Heurteaux has proved that f is nowhere differentiable [5].

Similarly there exist functions in the small Zygmund class which are differen-
tiable at almost no point. However it was already observed by Zygmund in [8] that
any function in λ∗(R) is differentiable at a dense set of points of the real line. Sim-
ilarly a function in the Zygmund class Λ∗(R) has bounded divided differences at
a dense set of points. In the eighties, N. Makarov proved that Zygmund functions
on the real line have bounded divided differences at sets of Hausdorff dimension
one, see [7].

Theorem 1. (Makarov)
(a) Let f ∈ Λ∗(R). Then the set

{
x ∈ R : lim sup

h→0

|f(x+ h)− f(x)|
|h| <∞

}

has Hausdorff dimension 1.
(b) Let f ∈ λ∗(R). Then the function f is differentiable at a set of points of

Hausdorff dimension 1.

The main purpose of the talk is to discuss the situation in higher dimensions
and present the results in our joint work with J. J. Donaire and J. G. Llorente [1].
Given a function f ∈ Λ∗(R

d) and a unit vector e ∈ Rd, let E(f, e) be the set of
points where the divided differences of f in the direction of e are bounded, that is,

E(f, e) =

{
x ∈ Rd : lim sup

R∋ t→0

|f(x+ te)− f(x)|
|t| <∞

}
.

There exist functions f ∈ Λ∗(R
d) such that, for any unit vector e ∈ Rd, the

set E(f, e) has Lebesgue measure zero. However the one dimensional result of
Makarov gives that for any function f ∈ Λ∗(R

d) and any fixed unit vector e ∈ Rd,
the set E(f, e) has Hausdorff dimension d. Similarly for a function f ∈ λ∗(R

d)
and a unit vector e ∈ Rd, the set

{
x ∈ Rd : lim

R∋ t→0

f(x+ te)− f(x)
t

exists

}
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may have Lebesgue measure zero but it has Hausdorff dimension d. For a
fixed direction e, the divided differences in this direction, (f(x + te) − f(x))/t,
x ∈ Rd, satisfy a certain mean value property with respect to Lebesgue measure
in Rd. This is the main point in the proof of Makarov’s result as well as in the
arguments leading to the fact that dimE(f, e) = d. In this talk we want to study
the size of the set E(f) of points where the divided differences in any direction are
simultaneously bounded, that is,

E(f) =

{
x ∈ Rd : lim sup

‖h‖→0

|f(x+ h)− f(x)|
‖h‖ <∞

}
.

Let {ei : i = 1, . . . , d} be the canonical basis of Rd. If f ∈ Λ∗(R
d) it turns out

that

E(f) =

d⋂

i=1

E(f, ei).

So, the main difficulty in the higher dimensional situation is to obtain a simulta-
neous control of the divided differences in different directions ei, i = 1, . . . , d. The
main result is the following.

Theorem 2.
(a) Let f be a function in Λ∗(R

d). Then the set E(f) has Hausdorff dimension
bigger or equal to 1.

(b) Let f be a function in λ∗(R
d). Then f is differentiable at a set of points of

Hausdorff dimension bigger or equal to 1.

The result is local in the sense that given f ∈ Λ∗(R
d) and a cube Q ⊂ Rd the set

E(f) ∩Q has Hausdorff dimension bigger or equal 1. Similarly given f ∈ λ∗(Rd)
and a cube Q ⊂ Rd, the function f is differentiable at a set of points in the cube
Q which has Hausdorff dimension bigger or equal to 1.

The proof of this result consists in constructing a Cantor type set on which
the function f has bounded divided differences. The construction of the Cantor
type set uses a stopping time argument based on a certain one dimensional mean
value property that the divided differences of f satisfy. Roughly speaking, the
divided differences distribute their values in a certain uniform way when measured
with respect to length. This is the main new idea in the proof and it allows
us to obtain a simultaneous control of the divided differences in the coordinate
directions. Moreover the result is sharp in the following sense.

Theorem 3. There exists a function f in the small Zygmund class λ∗(R
d) such

that the set E(f) has Hausdorff dimension 1.

The one dimensional case may suggest that a natural candidate for the function
f in Theorem 3 is a lacunary series. However this is not the case. Actually it turns
out that natural lacunary series f in Λ∗(R

d) satisfy dimE(f) = d ([2]). Instead,
the function f will be constructed as f =

∑
gk, where {gk} will be a sequence

of smooth functions defined recursively with
∑
‖gk‖∞ <∞. The main idea is to

construct them in such a way that ∇gk+1(x) is almost orthogonal to ∇
∑k
j=1 gj(x)
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and
∑
‖∇gk(x)‖2 =∞ for most points x ∈ Rd. Since one cannot hope to achieve

both requirements at all points x ∈ Rd, an exceptional set A appears. It turns
out that the function f is in the small Zygmund class and it is not differentiable
at any point in Rd \A. The construction provides the convenient one dimensional
estimates of the size of the set A.
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A remark on Hardy spaces in infinite variables

Jan-Fredrik Olsen

(joint work with Alexandru Aleman, Anders Olofsson)

This talk is about a work in progress. The motivation is to contribute to the theory
of Hardy spaces of ordinary Dirichlet series, i.e. functions of the type

∑
n∈N ann

−s.
The most natural of these spaces are the Dirichlet–Hardy spaces

H2 =

{
∑

n∈N

ann
−s :

∑

n∈N

|an|2 <∞
}
,

and

H∞ =

{
∑

n∈N

ann
−s : sup

ℜs>0

∣∣∣
∑

n∈N

ann
−s
∣∣∣ <∞

}
.

They were introduced by Hedenmalm, Lindqvist and Seip in [6]. In the natural
inner product, the space H2 has translates of the Riemann zeta function

ζ(s) =
∑

n∈N

n−s

as its reproducing kernel. It is a result of Hedenmalm, Lindqvist and Seip thatH∞

is the multiplier algebra of H2. This is perhaps surprising as the functions in H2

are in general only defined on the half-plane C1/2 = {ℜs > 1/2}, while functions
in H∞ are always analytic on the strictly larger half-plane C0 = {ℜs > 0}.
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The theory of the spaces H2 has had many recent contributions, some of which
also to weighted counter-parts. These include analogs to Bergman, Dirichlet and
Drury–Arveson spaces of Dirichlet series. See e.g. [4, 7, 1, 8, 10, 11, 9].

We focus on the scale Hp of Dirichlet–Hardy spaces. One way to realise these
spaces is to observe that for Dirichlet polynomials one has the identity

(1) ‖D‖2H2 = lim
T→∞

∫ T

−T

|D(it)|2dt.

(This is a special case of a theorem of F. Carlson [3].) By changing the exponent
p = 2, it is possible to verify that one has a norm.

Another, equivalent, but perhaps more illuminating way of obtaining these
spaces, is to use the observation due to H. Bohr [2] that Dirichlet series can be
identified with power series in a countably infinitely many variables. The trick is
to identify each monomial zi by the function s 7−→ p−si . In this way zν11 · · · zνkk
corresponds to n−s, where n = pν11 · · · pνkk , and one obtains the Bohr lift

∑

n∈N

ann
−s ←→

∑

n∈N

anz
ν1
1 · · · zνkk .

As this correspondence respects multiplication, the Euler product for the Riemann
zeta function yields

ζ(s+ w̄) =
∏

p prime

1

1− p−s−w̄ ←→
∏

p prime

1

1− zip−w̄i
.

In other words, the Riemann zeta function is nothing but a product of Szegő
kernels.

As the distinguished boundary T∞ of the infinite polydisk D∞ is a compact
abelian group, it has a Haar measure dµ. With this, one may define the spaces
Lp(T∞) in the natural way. Identifying χ = (z1, z2, . . .) ∈ T∞ with functionals on
the positive rational numbers Q+ by setting χ(pi) = zi, and extending multiplica-
tively, we see that each f ∈ Lp(T∞) has a Fourier series

f ∼
∑

r∈Q+

arχ(r).

We say that f is analytic and belongs to f ∈ Hp(T∞) if ar = 0 whenever r /∈ N.
In view of the Bohr correspondence, this allows us to define the space Hp as the
isometric image of a subspace of Lp(T∞). It is a consequence of the Birkhoff–
Khinchin ergodic theorem and a theorem of Kroenecker that for p ∈ [1,∞), the
corresponding relation (1) still holds (see [6, 1] and the references therein).

As a preliminary result in our current research effort, we establish an analogue
for H1(T∞) of the theorem of F. and M. Riesz which says that if a function
vanishes on a set of measure greater than zero, then this function has to be the
zero function. Given f ∈ H1(T∞), our approach is to consider the functions
fχ(s) =

∑
anχ(n)n

−s for χ ∈ T∞. As was originally shown by Helson [5], and
later proved in this setting in [6, 1], these functions are analytic on C0 and in
the Hardy space H1(dt/(1 + t2)) for almost every χ ∈ T∞. By considering such
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slice functions, it is possible to define a Hardy–Littlewood maximal operator M ,
bounded from H1(T∞) into L1(T∞). Also, it follows that we can extend the Fatou
theorem obtained by Saksman and Seip for the space H∞(T∞) to H1(T∞). With
these tools in hand, we use the subharmonicity of the slices fχ(s) inside of C0 to
prove that log |f | ∈ L1(T∞), whence the desired result follows.
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Completeness of systems of exponentials in L2-spaces

Alexei Poltoratski

Problems discussed in this talk belong to the area often called the Uncertainty
Principle in Harmonic Analysis. This name first appeared as the title of the book
[4] by Havin and Jöricke, which covers a large collection of results that could
be described by the statement ”it’s impossible for a non-zero function and its
Fourier transform to be simultaneously very small.” For example, if a function
is supported on a small interval, then the set of zeros of its Fourier transform is
sparse. Another example: a small amount of information about the potential of
a Schrödinger operator requires a large amount of information about the spectral
measure to determine the operator uniquely. Various completeness problems for
systems of exponential functions or special functions in L2-spaces also belong to
the same group.

Results I plan to discuss concern families of exponential functions in Lp-spaces.
Such questions belong to the very foundations of analysis. The natural problem
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of approximation of a general wave by combinations of elementary harmonics gave
Harmonic Analysis its present name.

Generalizations concerning other special functions, such as Airy or Bessel func-
tions, and other function spaces, can also be treated with similar methods, see
examples provided in [5].

Let µ be a finite positive Borel measure on R. Let us consider the family EΛ

of exponential functions exp(iλt) on R whose frequencies λ belong to a certain set
Λ ⊂ C:

(1) EΛ = {exp(iλt)| λ ∈ Λ}.

The classical completeness problem is to find conditions on µ and Λ that ensure
completeness of the system EΛ in Lp(µ), i.e. density of finite linear combinations
of functions from EΛ in Lp(µ).

For 1 < p the question can be restated via duality: Does there exist f ∈
Lp(µ), f ⊥ EΛ? Special cases p = 1 and p =∞ have also been studied.

Historically, the following three versions of this problem received most attention
from the analytic community.

The Beurling–Malliavin (BM) Problem: Λ = {λn} is a sequence, µ is Lebesgue
measure on an interval [0, a], p = 2: When is E{λn} complete in L2(0, a)?

The Type Problem: Λ = [0, a] is an interval, µ is any finite positive measure on
R, p = 2: When is E[0,a] complete in L2(µ)?

The Gap Problem: Λ = [0, a] is an interval, µ is any finite positive measure on
R, p = 1: Does there exist f ∈ L1(µ), f ⊥ E[0,a]?

The first problem was solved by Beurling and Malliavin in a series of papers
in the early sixties, see [1, 2]. The so-called BM-theory created in these papers
is considered to be one of the deepest parts of Harmonic Analysis. Over the past
50 years, numerous attempts to generalize BM-theory were undertaken. Some of
such results and further open problems are contained in [5, 6].

A solution to the Gap problem was recently suggested in [8]. The solution
brings up a number of related questions that will be discussed in the talk.

Perhaps the most popular of the three, the Type Problem remains open in the
general case to this day. Partial results, obtained recently in [3, 7], and further
questions will be discussed in the talk.
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Metrics From Reproducing Kernel Hilbert Spaces

Richard Rochberg

(joint work with Nicola Arcozzi, Eric T. Sawyer, Brett D. Wick)

Given H , a reproducing kernel Hilbert space, RKHS, there is an associated set,
X , such that the elements of H are realized as functions on X . There are ways to
use these functions to define a metric on X . Here we discuss the properties of one
of these metrics. Further discussion of this metric and of various related metrics
is in [3]. Both this note and that paper are exploratory and these topics await,
and in our view, invite, systematic study.

1. Introducing a Metric

Suppose H is a reproducing kernel Hilbert space on a set X. It has reproducing

kernels {kx (·)}x∈X or K(y, x) = kx(y). We denote the normalized kernels by k̂x =

kx/ ‖kx‖ . We define a metric δ on X by δ(x, y) = δH(x, y) =

√
1−

∣∣∣
〈
k̂x, k̂y

〉∣∣∣
2

.

The metric measures how close the unit vectors k̂x and k̂y are to being parallel.

If θ is the angle between the two then δ(x, y) =
√
1− cos2 θ = |sin θ| and this

observation can be used as the starting point for demonstrating that δ satisfies the
triangle inequality [1, Pg. 128]. We will give an alternative approach to the triangle
inequality in a moment. For the Hardy space, H2, δ is the pseudohyperbolic metric
ρ on the disk:

δH2(z, w) =

√
1− (1 − |z|2)(1 − |w|2)

|1− z̄w|2
=

√∣∣∣∣
z − w
1− z̄w

∣∣∣∣
2

= ρ(z, w), z, w ∈ D.

2. The Metric Occurs in Several Places

A number of quantities related to the function theory and operator theory on
H can be expressed in terms of δ. Here are several.

Proposition 1 (Coburn [6]). For x, y ∈ X let Px and Py be the self adjoint
projections onto the span of kx and ky respectively. With this notation

δ(x, y) = ‖Px − Py‖ =
1

2
‖Px − Py‖Trace .

Proof Discussion. Px−Py, is a rank two self adjoint operator with trace zero and
so it has two eigenvalues, ±λ for some λ ≥ 0. All the quantities of interest can be
expressed in terms on λ. �

Corollary 2. δ satisfies the triangle inequality.
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Straightforward computation with the skew adjoint rank two operator [Pa, Pb]
leads to the following:

Proposition 3. ‖[Pa, Pb]‖2 = δ(a, b)2
(
1− δ(a, b)2

)
.

Suppose A is a bounded linear map of H to itself. The Berezin transform of
A, Â, is a scalar function on X which is a valuable tool for studying A, see for

instance [2]. It is traditionally defined by the formula Â(x) =
〈
Ak̂x, k̂x

〉
however

it can also be described by Â(x) = Trace (PxA) . With this in hand we obtain the
sharp modulus of continuity estimates for Berezin transforms.

Proposition 4. If A is a bounded linear operator on H, x, y ∈ X then
∣∣Â(x)− Â(y)

∣∣ ≤ 2 ‖A‖ δ(x, y).
This estimate is sharp. Given H, x, and y one can select A so that equality holds.

If m is a multiplier for H and M is the corresponding multiplication operator
then M̂ = m. Hence we have the following:

Corollary 5.

|m(x) −m(y)| ≤ 2 ‖M‖ δ(x, y).

3. Invariant and Coinvariant Subspaces

Suppose we are given several RKHSs on a set X and linear maps between them.
We would like to use the associated metrics on X to study the relation between
the function spaces and to study the linear maps between them. The goal is broad
and vague. Here we just report on a particular case where some structure appears
in the answer. We suppose we are given H and are given J, a closed subspace
of H which is invariant under multiplication by all bounded multipliers of H. Set
J⊥ = H ⊖ J . We are interested in the relationship between the metrics δH , δJ ,
and δJ⊥ associated with H , J, and J⊥.

3.1. Triples of Points and the Shape Invariant. Suppose H is a RKHS on
X with kernel functions {kx} and associated distance function δ. Select distinct
x, y, z ∈ X. We consider the invariant subspace J of functions which vanish at x.
We want to compute δJ(y, z) in terms of other data.

For any α, β ∈ X we define θαβ with 0 ≤ θαβ ≤ π and φαβ with with 0 ≤ φαβ
< π by

kα (β) = 〈kα, kβ〉 = ‖kα‖ ‖kβ‖ (cos θaβ) eiφαβ .

and we set

Υ = cos θxy cos θyz cos θzx cos (φxy + φyz + φzx) .

We write δxy for δH(x, y), etc. A straightforward but slightly lengthy computation
gives the following very symmetric formula:

(1)
δJ(y, z)

δH(y, z)
=

√
δ2xy + δ2xz + δ2zy − 2 + 2Υ

δxyδxzδyz
.
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An intriguing aspect of this is the appearance of Υ. That quantity is a classical
invariant of projective and hyperbolic geometry called the shape invariant. It is
closely related to the geometry of the triangle in the projective space overH whose
vertices are the spans of the kernel functions kx, ky and kz. For more information
about the shape invariant see [4], [5], or [9].

One reason for mentioning this is that Υ was the one new term that appeared in
(1) and it is slightly complicated. The fact that this quantity has a life of its own
in geometry suggests that perhaps the computations we are doing are somewhat
natural and may lead to somewhere interesting.

3.2. Spaces with Complete Nevanlinna Pick Kernels. There are some class-
es of RKHS where there are close relations between KJ , the reproducing kernel for
the invariant subspace J and K, the kernel function of H . We give one instance
in this section and another in the next. In both cases there are consequences
for the associated metric functions that follow directly from the definitions, alge-
braic manipulation and applications of the Cauchy Schwarz inequality, details and
variations are in [3]. We will be informal about some of the technical details.

Suppose that H is a RKHS on X with a complete NP kernel K(·, ·). Suppose
also, and this is for convenience, that we have a distinguished point ω ∈ X such
that for all x in X, K(ω, x) = 1. The following information about invariant sub-
spaces of H is due to McCullough and Trent [12], further information is in [8].

Proposition 6. Suppose J is a closed multiplier invariant subspace of H. There
are multipliers {mi} so that the reproducing kernel for J is of the form

(2) KJ(x, y) =
(∑

mi(x)mi(y)
)
K(x, y).

Corollary 7. If H has a complete NP kernel and J is any closed multiplier
invariant subspace of H then for all x, y ∈ X

δJ (x, y) ≥ δH(x, y) ≥ δJ⊥(x, y).

Remark 8. The RKHS on the disk with kernel function K(x, y) = (1 − ȳx)−α,
0 < α ≤ 1 satisfy the hypotheses of the Corollary.

3.2.1. Inequalities in the Other Direction; Bergman Type Spaces. There is a class
of RKHS which share many properties of the classical Bergman space, the so-called
Bergman type spaces studied in [10] and [11]. Rather than give the full definition
we mention that the class includes the classical Bergman space as well as the
weighted Bergman spaces between the Hardy space and the classical Bergman
space; that is, it includes the spaces in the Remark below. Suppose we have
H, a Bergman type space and J, a closed subspace of H that is invariant under
all the multiplier operators on H. Suppose further that J has index 1, that is
dim J ⊖ zJ = 1. Let {kz} be the reproducing kernels for H and {jz} be those for
J.

Proposition 9 (Corollary 0.8 of [11]). There is a function G ∈ H and a positive
semidefinite sesquianalytic function A(z, w) so that for z, w ∈ D

jz(w) = G(z)G(w)(1 − z̄wA(z, w))kz(w).
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Corollary 10.

δJ (z, w) ≤ δH(z, w).

Remark 11. The RKHS on the disk with kernel function K(x, y) = (1− ȳx)−α,
1 ≤ α ≤ 2 satisfy the hypotheses of the Corollary.
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On frequently hypercyclic entire functions

Eero Saksman

(joint work with David Drasin)

Let T be a linear operator on a separable topological vector space E. The
operator T is hypercyclic if there exists x ∈ E such that the set of iterates {T nx :
n ≥} is dense in E. In this situation x is sometimes called a universal element.

Recently there has been considerable interest on a related, more stringent no-
tion. The operator T (and likewise the element x ∈ E) is called frequently hyper-
cyclic if T nx visits any given neighbourhood with a relatively constant rate. More
precisely, given any open set U ⊂ E one asks that the set A = {n ≥ 1 : T nx ∈ U}
has positive density, i.e.

lim inf
n→∞

1

n
#(A ∩ {1, . . . , n}) > 0.
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This notion was introduced by Bayart and Grivaux [2] and has been studied in
many papers devoted to operators in Hilbert, Banach, or general topological vector
spaces. [6] and [1] and the references therein contain more information.

In our talk (based on the note [5]) we considered the classical operator of differ-
entiation D : E → E , whereDf(z) := f ′(z), and the space E consists of entire func-
tions on the complex plane C, equipped with the standard compact-open topology.
The question that was studied is the following: how slowly can a frequently hyper-
cyclic entire function grow? This question was posed and first results on it were
given by Bonillla and Grosse-Erdmann in [3], [4]. Quite recently, Blasco, Bonilla
and Grosse-Erdmann proved lower and upper bounds for the minimal growth of
an frequently hypercyclic entire function: any such f satisfies

(1) lim inf
r→∞

Mf(r)

err−1/4
> 0,

where one denotes Mf(r) := supθ |f(reiθ)|. Moreover, they showed that for any
given function φ : (0,∞) → [1,∞) with limr→∞ φ(r) = ∞ there exists a D-
frequently hypercyclic f with

Mf (r) ≤ erφ(r) for r ≥ 1.

They also consider estimates of the growth in terms of the average Lp-norms, that

are stated in terms of Mf,p(r) :=
(

1
2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p
.

Our main result determines the optimal growth rate of entire D-frequently
hypercyclic functions. It turns out that the sharp result actually corresponds to
the lowest possible rate (1) allowed by [1]. In order to get the sharp result one
needs to control possible cancellations in a very precise manner, whence the proof
invokes the Rudin–Shapiro polynomials and applies a simple heat kernel estimate.
The result is the following:
Theorem. (i) For any c > 0 there is an entire frequently hypercyclic function
such that

Mf (r) ≤ c
er

r1/4
for all r ≥ 1.

This estimate is optimal by (1).
(ii) More generally, given p ∈ [1,∞] there is an entire D-frequently hypercyclic
function such that

Mf,p(r) ≤ c
er

ra(p)
for all r > 0,

where a(p) = 1/4 for p ∈ [2,∞] and a(p) = 1/(2p) for p ∈ [1, 2]. This estimate is
also optimal.
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Corona Theorems and 1-positive Square

Tavan T. Trent

Let Ω be a domain in Cn and let H(Ω) denote a reproducing kernel Hilbert space
of analytic functions on Ω. Denote the multiplier algebra on H(Ω) byM(H(Ω)).
Motivated by the classical Carleson corona theorem on H∞(D) [4], we are inter-
ested in whether the corona theorem holds forM(H(Ω)). More generally, we also
consider related corona problems. Consider the following three possible theorems:

Corona Thm forM(H(Ω)) Assume that {fj}nj=1 ⊆M(H(Ω)) and
∑ |fj(zj)|2 ≥ ǫ2 > 0 on Ω. Then there exists

{gj}nj=1 ⊆M(H(Ω)) with
∑

fjgj = 1 in Ω.

(A) H(Ω)-Corona Thm Assume that {fj}nj=1 ⊆M(H(Ω)) and
∑ |fj(zj)|2 ≥ ǫ2 > 0 on Ω. Let TF = (Tf1 , . . . , Tfn) acting on B(

∞
⊕
n=1
H(Ω),H(Ω))

denote multiplication by the f ′
js.

Then there exists a δ > 0, such that TFT
∗
F ≥ δ2IH(Ω)

(i.e. TF is onto).

(B) Operator Corona Thm forM(H(Ω)) If TFT
∗
F ≥ δ2IH(Ω) for some δ > 0,

then there exists {gj}nj=1 ⊆M(H(Ω)) s.t. TFTG = IH(Ω).

It is easy to see that the corona theorem forM(H(Ω)) holds if and only if both
theorems (A) and (B) are valid. In the following, we will concern ourself with the
question of when theorem (B) holds forM(H(Ω)).

We say that the reproducing kernel Hilbert space, H(Ω) has 1−positive square,
if its reproducing kernel, kw(z), can be written as :

1

kw(z)
= a0(z) a0(w)−

∞∑

n=1

an(z) an(w),

where {an}∞n is contained in M(H(Ω)). See Agler [1], Quiggen [9], and McCul-
lough [7] for more about such kernels, which are often referred to in the literature
as complete Nevanlinna–Pick kernels. Basic examples of H(Ω) with 1-positive
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square include, H∞(D), Dirichlet space on D, and Drury–Arveson space on Bn.
Non-examples include Bergman spaces and Hardy spaces on the unit ball and
polydisk in dimensions higher than 1.

Whenever H(Ω) has 1-positive square, then theorem (B), the operator corona
theorem for H(Ω), always holds. This follows from the commutant lifting theorem
of Ball, Trent, and Vinnikov [3]. In this case, the corona theorem for M(H(Ω))
follows, if the appropriate operators, TF , are shown to be surjective. This strategy
for proving the corona theorems first appeared in Trent [10]. The most outstanding
example of this approach to date is the remarkable work of Costea, Sawyer, and
Wick [5], which includes the corona theorem for multipliers on Drury–Arveson
spaces.

If TF and TH are analytic Toeplitz operators acting on B(
∞
⊕
n=1

H2(D)), an old

result of Leech (see [8]) says that if

TFT
∗
F ≥ THT ∗

H , (∗)

then there exists an analytic Toeplitz operator, TG ∈ B(
∞
⊕
n=1

H2(D)) with TFTG =

TH and ‖TG‖ ≤ 1. Of course, from Douglas’s lemma [6], condition (*) already

gives us some operator C ∈ B(
∞
⊕
n=1

H2(D)) with TFC = TH and ‖C‖ ≤ 1, but not

necessarily an analytic T oeplitz one.

We say that an algebra, A, of B(H(Ω)) has the Douglas property if whenever

Aij , Bij ∈ A with [Aij ], [Bij ] ∈ B(
∞
⊕
n=1
H(Ω)) with [Aij ][Aij ]

∗ ≥ [Bij ][Bij ]
∗,

then there exists Cij ∈ A with [Cij ] ∈ B(
∞
⊕
n=1
H(Ω)) satisfying

(1) [Aij ][Cij ] = [Bij ]

and (2) ‖[Cij ]‖ ≤ 1.

The commutant lifting theorem of [3] implies that if H(Ω) has 1-positive square
then M(H(Ω)) has the Douglas property. So theorem (B), the operator corona
theorem forM(H(Ω)), follows.

Recently, McCullough and I have discovered a partial converse. We say that
H(Ω) is nice if it satisfies the properties of Agler–McCarthy [2] and if the repro-
ducing kernel of H(Ω) can be written as:

1

kw(z)
=

N∑

n=1

an(z) an(w) −
M∑

n=1

bn(z) bn(w),

where N and M are finite and {an}N1 and {bn}M1 are contained in M(H(Ω)).
Examples of such nice spaces include the Bergman and Hardy spaces on the unit
ball and polydisk in all dimensions. Then

Theorem 1. (McCullough–Trent) Assume that H(Ω) is nice. H(Ω) has 1-
positive square ⇐⇒ M(H(Ω)) has the Douglas property.
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The above theorem says that the multiplier algebras on the Bergman spaces
B2(Bn) and B2(Dn) for any n ≥ 1 and for all Hardy spaces, H2(Bn) and H2(Dn)
with n > 1 do not have the Douglas property. Furthermore, in the above cases it
can be shown that a Leech-type theorem also fails.

For example, fix any n > 1. Then there exist analytic Toeplitz operators in

B(
∞
⊕
n=1

H2(Dn)) such that

TFT
∗
F ≥ THT ∗

H . (1)

But if C ∈ B(
∞
⊕
n=1

H2((D)) satisfies TFC = TH , then C is not an analytic Toeplitz

operator. Thus there is no solution to TFX = TH , with X an analytic Toeplitz
operator.

We conclude with two problems.

(a) If H(Ω) has 1-positive square, does the corona theorem hold forM(H(Ω))?

(b) Can the example of the failure of Leech’s theorem for H2((Dn)) (n > 1) be
chosen so that TH = I in (1)?
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Trace H
∞-algebras with a given critical constant

Vasily Vasyunin

(joint work with Nikolai Nikolski)

We deal with a numerical control of inverses (condition numbers) for functions
T = f(A) of large matrices in terms of the lower spectral parameter

δ = δ(T ) = min |λj(T )|.
Precisely, our problem is the following. Given a sequence σ = {λj} in the unit disk
D = {z ∈ C : |z| < 1} of the complex plain, we consider all normalized matrices A,
‖A‖ ≤ 1 (or Hilbert space operators) such that σ(A) ⊂ σ (counting multiplicities)
and look for a numerical function c(δ) = c(δ, σ) bounding the inverses

‖T−1‖ ≤ c(δ)
for all T = f(A) having δ ≤ |λj(T )| ≤ ‖T ‖ ≤ 1, where λj(T ) mean eigenvalues of
T = f(A). The best possible upper bound c(δ) is called c1(δ) = c1(δ, σ),

c1(δ, σ) =

sup
{
‖T−1‖ : T = f(A), δ ≤ |λj(T )| ≤ ‖T ‖ ≤ 1, σ(A) ⊂ σ, ‖A‖ ≤ 1

}
.

Here f can be a polynomial (if A is a finite matrix) or an H∞ function (if A is a
Hilbert space contraction). Recall that

H∞ =
{
f : f holomorphic on D and ‖f‖∞= sup

z∈D

|f(z)| <∞
}
.

Since δ 7→ c1(δ, σ), 0 < δ < 1, is a decreasing function, we can define a critical
constant (or, an invertibility threshold) δ1 = δ1(σ), 0 ≤ δ1 ≤ 1, by the following
properties

0 < δ < δ1 =⇒ c1(δ) =∞ ,

δ1 < δ ≤ 1 =⇒ c1(δ) <∞ .

The number δ1 can be considered as a threshold of bounded invertibility or as
a threshold for an operator algebra to be inverse closed : operators T from our
collection with a “scattered” spectral data (i.e., infj |λj(T )| < δ1, ‖T ‖ = 1) are, in
general, not invertible, whereas those with “flat ” spectral data δ1 < δ ≤ |λj(T )| ≤
‖T ‖ ≤ 1 are invertible.

We show that for H∞ trace algebras this critical constant δ1 can take any value
in the interval (0,1). Till now there was described only the case δ1 = 0. We present
an effective construction, namely, for an arbitrary α > 0 and ρ > 0 we take

β =

√
1 + α2 − 1√
1 + α2 + 1

,

and put

B =

∞∏

n=0

eπiβ
nρz + e−πα

1 + eπ(iβnρz−α)
.
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Theorem.

δ1(H
∞/BH∞) =

1√
1 + 2α2

.

For a more sophisticated Blaschke product B it is possible to prove the existence
of a noninvertible element in the algebra δ1(H

∞/BH∞). As an application of
this result a counterexample to a stronger form of the Bourgain–Tzafriri restricted
invertibility conjecture for bounded operators is exhibited. The classical Restricted
Invertibility Conjecture asserts that for every bounded operator T on a Hilbert

spaceH and every orthogonal basis {ej}j∈N satisfying infj
‖Tej‖
‖ej‖

> 0, there exists a

finite partition
⋃r
s=1Is = N such that all restrictions T |HIs are left invertible. This

conjecture is neither proved nor disproved till now. Using the Blaschke product
with a given constant δ1(H

∞/BH∞), it is possible to construct a counterexample
to a stronger conjecture, where an “orthogonal (or unconditional) basis” is replaced
by a “summation basis”.

BMO Estimates for the H∞(Bn) Corona Problem

Brett D. Wick

(joint work with Şerban Costea, Eric T. Sawyer)

In 1962 Lennart Carleson demonstrated in [4] the absence of a corona in the

maximal ideal space ofH∞ (D) by showing that if {gj}Nj=1 is a finite set of functions

in H∞ (D) satisfying

(1) 1 ≥
N∑

j=1

|gj (z)| ≥ δ > 0, z ∈ D,

then there are functions {fj}Nj=1 in H∞ (D) with

(2)

N∑

j=1

fj (z) gj (z) = 1, z ∈ D and

N∑

j=1

‖fj‖∞ ≤ C.

Later, Hörmander noted a connection between the Corona problem and the Koszul
complex, and in the late 1970’s Tom Wolff gave a simplified proof using the theory
of the ∂ equation and Green’s theorem. This proof has since served as a model
for proving corona type theorems for other Banach algebras. While there is a
large literature on such corona theorems in one complex dimension (see e.g. [8]),
progress in higher dimensions has been limited. Indeed, apart from the simple cases
in which the maximal ideal space of the algebra can be identified with a compact
subset of Cn, no corona theorem has been proved in higher dimensions until the
recent work of the authors [6] on the Drury–Arveson Hardy space multipliers.
Instead, partial results have been obtained, which we will discuss more below.
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We of course have the analogous question in several complex variables when
we consider H∞(Bn). The Corona problem for the Banach algebra H∞ (Bn) is to
show that if g1, . . . , gN ∈ H∞ (Bn) satisfy

1 ≥
N∑

j=1

|gj (z)| ≥ δ ∀z ∈ Bn,

then the ideal generated by {gj}Nj=1 is all of H∞ (Bn), equivalently∑N
j=1 fj(z)gj(z) = 1 for all z ∈ Bn for some f1, . . . , fN ∈ H∞ (Bn). This famous

problem has remained open for n > 1 since Lennart Carleson proved the n = 1
dimensional case in 1962, but there are some partial results.

Most notably, there is the classical result of Varopoulos where BMOA(Bn)
estimates were obtained for solutions f to the Bézout equation f1g1+f2g2 = 1 [9].
The restriction to just N = 2 generators provides some algebraic simplifications
to the problem. Note also that the more general equation

f1g1 + f2g2 = h, h ∈ H∞(Bn),

can then be solved for f ∈ H∞(Bn) ·BMOA(Bn).
Over two decades later, the case 2 ≤ N ≤ ∞ was studied by Andersson and

Carlsson [2] in 2000 who obtained H∞(Bn) ·BMOA(Bn) solutions f to the infinite
Bézout equation

∑∞
i=1 figi = 1, and hence also to the more general equation

(3)

∞∑

i=1

figi = h, h ∈ H∞(Bn).

To see that H∞(Bn) ·BMOA(Bn) is strictly larger than BMOA(Bn), recall that
the multiplier algebra of BMOA(Bn) is a proper subspace of H∞(Bn) satisfying
a vanishing Carleson condition (see e.g. Theorem 6.2 in [2]).

Our proof uses the methods of [6]. Key to these new estimates are the almost
invariant holomorphic derivatives from Arcozzi, Rochberg and Sawyer [3]. Con-
sequently our proof can be used to handle any number of generators N with no
additional difficulty and always yields BMOA(Bn) solutions f to (3). This leads
to the main result of [7] in which we obtain BMOA(Bn) solutions to the H∞(Bn)
Corona Problem (3) with infinitely many generators.

Theorem 1. There is a constant Cn,δ such that given g = (gi)
∞
i=1 ∈ H∞(Bn; ℓ

2)
satisfying

(4) 1 ≥
∞∑

j=1

|gj (z)|2 ≥ δ2 > 0, z ∈ Bn,

there is for each h ∈ H∞(Bn) a vector-valued function f ∈ BMOA
(
Bn; ℓ

2
)
satis-

fying

‖f‖BMOA(Bn;ℓ2)
≤ Cn,δ ‖h‖H∞(Bn)

,(5)

∞∑

j=1

fj (z) gj (z) = h (z) , z ∈ Bn.



2864 Oberwolfach Report 49/2010

Our method of proof uses the notation and techniques from [6]. First, we show
the well known fact that the space BMOA(Bn; ℓ

2) can be identified as the space
of Carleson measures for H2(Bn), denoted CM

(
Bn; ℓ

2
)
. Namely, we show

Lemma 2. For g ∈ H2
(
Bn; ℓ

2
)
we have

(6) c ‖g‖BMOA(Bn;ℓ2)
≤
∥∥∥∥
(
1− |z|2

)n
2
+1

g′ (z)

∥∥∥∥
CM(Bn;ℓ2)

≤ C ‖g‖BMOA(Bn;ℓ2)
.

We next use the Koszul complex to reduce the problem to estimates for certain
∂ problems. Solutions to the ∂ problem are given by Theorem I.1 on p. 127 of [5],
giving the following formula for (0, q)-forms:

Theorem 3 (Charpentier, [5]). For q ≥ 0 and all forms f (ξ) ∈ C1
(
Bn
)
of degree

(0, q + 1), we have for z ∈ Bn:

f (z) = Cq

∫

Bn

∂f (ξ) ∧ C0,q+1
n (ξ, z) + cq∂z

{∫

Bn

f (ξ) ∧ C0,qn (ξ, z)

}
.

Here one can compute explicitly that for 0 ≤ q ≤ n− 1

C0,qn (w, z) =
∑

ν∈P q
n

(−1)q Φqn (w, z) sgn (ν) (wiν − ziν )
∧

j∈Jν

dwj
∧

l∈Lν

dzl
∧
ωn (w) .

Here, Jν is a multi-index of length n− q − 1, Lν is an index of length q and Pν is
the set of permutations on {1, . . . , n}. We also have set

(7) Φqn (w, z) ≡
(1− wz)n−1−q

(
1− |w|2

)q

△ (w, z)
n , 0 ≤ q ≤ n− 1, and

△(w, z) ≡ |1− wz|2 −
(
1− |w|2

)(
1− |z|2

)
.

Using the Charpentier solution operators C0,qn on (0, q + 1)-forms we have for

Ω1
0h =

gjh

|g|2
and Γ2

0 an alternating two-tensor of functions that

f = Ω1
0h− Γ2

0(g, ·) ≡ F0 + F1 + · · ·+ Fn(8)

is analytic on Bn and that f · g = h. Here, the Fj are an iteration of certain
Charpentier solution operators arising from an application of the Koszul complex.
One then must show that the solutions arising from the Koszul complex and via
the explicit representation of the solution operators belong to BMOA(Bn; ℓ

2). To
accomplish this, one shows that positive operators preserve the class CM (Bn).

Lemma 4. Let a, b, c ∈ R. Then the operator

(9) Ta,b,ch (z) =

∫

Bn

(
1− |z|2

)a (
1− |w|2

)b (√
△ (w, z)

)c

|1− wz|n+1+a+b+c
h (w) dV (w)

is bounded on CM (Bn) if c > −2n and −2a < −n < 2 (b+ 1).
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One then concludes the proof by observing that for appropriate choices of the
parameters a, b, c it is possible to control the terms arising from the Koszul com-
plex. In particular, one shows that for Tl = Tal,bl,cl the following estimates hold

‖Fj‖CM(Bn;ℓ2)
.
∥∥T1T2 · · ·TjΩ1

0h
∥∥
CM(Bn;ℓ2)

. Cδ,n ‖h‖H∞(Bn)
.
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A resolvent estimate for operators with finite spectrum

Rachid Zarouf

Introduction

Let T : (Cn, |·|) 7→ (Cn, |·|) be an operator acting on a finite dimensional
Banach space. We suppose that T satisfies the following power boundedness con-
dition:

(PBC) P (T ) = sup
k≥0

∥∥T k
∥∥
E→E

<∞ .

We denote by σ(T ) = {λ1, ..., λn} the spectrum of T, r(T ) = maxi |λi| its spectral
radius (which satisfies r(T ) ≤ 1 since P (T ) <∞), and R(z, T ) = (zId−T )−1 the
resolvent of T at point z, for z ∈ C \ σ(T ), Id being the identity operator. Our
problem here is to study the quantity ‖R(z, T )‖ .

Having a brief look at published papers on this subject one can notice that
‖R(z, T )‖ is

1. sometimes associated with the quantity (|z| − 1) , (see for instance [2-9]) and
2. sometimes with the quantity dist (z, σ(T )) , (see for instance [1, 7]).
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As regards point 1, we are lead to the so-called Kreiss resolvent condition
(KRC). In the same spirit, point 2 leads to a strong version of the classical KRC,
see for instance [7, Section 5].

1. Kreiss resolvent conditions

1.1. Known results: the classical KRC. The classical KRC is

(KRC) ρ(T ) = sup
|z|>1

(|z| − 1) ‖R(z, T )‖ <∞.

There exists a link between the conditions (KRC) and (PBC): they are equivalent.
Indeed,

ρ(T ) ≤︸︷︷︸
(1)

P (T ) ≤︸︷︷︸
(2)

enρ(T ),

but we have to be careful: (1) is true for every power bounded operator (not
necessarily acting on a finite dimensional Banach space) and is very easy to check
(by a power series expansion of R(z, T )), whereas (2) is much more difficult to
verify and has been proved only for the Hilbert norm | · | = | · |2. In fact, the
statement

(KRC) =⇒ (PBC),

is known as Kreiss Matrix Theorem [2]. According to Tadmor, it has been shown

originally by Kreiss (1962) with the inequality P (T ) ≤ const (ρ(T ))
nn

. It is use-
ful in proofs of stability theorems for finite difference approximations to partial
differential equations. Until 1991, the inequality of Kreiss has been improved suc-
cessively by Morton, Strang, Miller, Laptev, Tadmor, Leveque and Trefethen [4]
(with the inequality P (T ) ≤ 2enρ(T )), and finally Spijker [8] with the inequality
(2) above, in which the constant en is sharp.

1.2. A possible extension of the classical KRC. In this paragraph, we focus
on the above inequality (1) and assume that α ∈ (0, 1).We notice that in this case,
(|z| − 1)

α ≫ |z|−1 as |z| → 1+. As a consequence, we ask the following question:

is it possible to find a constant Cα > 0 such that ‖R(z, T )‖ ≤ Cα
P (T )

(|z|−1)α , for all

|z| > 1 and for all T ?
The answer is “No” if r(T ) = 1 and “Yes” if r(T ) < 1 but with a constant

Cα = Cα(n, r(T )) which depends on the size n of T and on its spectral radius
r(T ).

More precisely, we define

ρα(T ) = sup
|z|>1

(|z| − 1)
α ‖R(z, T )‖ ,

and show that ρα(T ) <∞ if and only if r(T ) < 1. Moreover, we prove in this case
that we can choose

Cα (n, r(T )) = Kα
n

(1− r(T ))1−α
,
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where Kα is a constant depending only on α. As regards the asymptotic sharpness
as n → ∞ and r(T )→ 1− of the above constant Cα, we show that there exists a
contraction Ar on the Hilbert space (Cn, |·|2) of spectrum {r} such that

lim inf
r→1−

(1− r)1−α−βρα (Ar) ≥ cot
( π
4n

)
≥ P (Ar)cot

( π
4n

)
,

for all β ∈ (0, 1− α) . In this inequality, β is a “parasite” parameter which one
can probably avoid.

Finally we mention the fact that the inequality (2) of paragraph 1.1 still holds:

P (T ) ≤ enρα(T ),
for all α ∈ (0, 1].

2. A strong version of the classical KRC

What happens if we replace “(|z| − 1)” by “dist(z, σ(T ))” in Paragraph 1.1?
We define the quantity

ρstrong(T ) = sup
|z|≥1

dist (z, σ(T )) ‖R(z, T )‖ ,

which satisfies the inequality ρstrong(T ) ≥ ρ(T ), since r(T ) ≤ 1.
In this section we sharpen a result by B. Simon and E.B. Davies [1] which is

the following: if | · | = | · |2 is the Hilbert norm on Cn, then

‖R(z, T )‖ ≤
(

3n

dist(z, σ(T ))

)3/2

P (T ),

for all |z| ≥ 1, z /∈ σ(T ). They conjecture in [1] that the power 3/2 is not sharp.
In [10], we improve their result (earning a square root at the denominator of the
above inequality) and prove that

ρstrong(T ) ≤
(
5π

3
+ 2
√
2

)
n3/2P (T ).

However, we still feel that the constant n3/2 is not sharp (n being probably the
sharp one).

Remark 1. Our estimates of ρα(T ) in Paragraph 1.2 and of ρstrong(T ) in Section
2, hold for operators T acting on a Banach space (E, |·|) not necessarily of finite
dimension and not necessarily of Hilbert type, but with a finite spectrum σ(T ).
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List of open problems

Special Session

The following list contains some of the problems which were posed during the
problem session of the workshop.

1. Nicola Arcozzi: A problem

Problem. Find a geometric characterization of the multipliers and of the Car-
leson measures for the infinite dimensional Drury–Arveson space.

Discussion. The d-dimensional Drury–Arveson space is the closure of the com-
plex polynomials on the unit ball Bd of Cd with respect to the norm

∥∥∥
∑

n∈Nd

anz
n
∥∥∥
2

DAd

=
∑

n∈Nd

|an|2
n!

|n|! .

Alternatively, DAd is the Hilbert function space having reproducing kernel
K(z, w) = (1−z ·w)−1. The space DAd and its multiplier spaceM(DAd) were in-
troduced by Drury [3] in connection with the multivariable, commutative version of
von Neumann’s inequality for contractions. The combinatorial, dimensionless na-
ture of the coefficients and the applications to Nevanlinna–Pick theory [1] motivate
the interest in the infinite dimensional version of DAd. A function g is a multiplier
of DAd if f 7→Mgf = gf has finite operator norm |||Mg|||d on DAd. A measure µ
on Bd is a Carleson measure for DAd if the imbedding DAd →֒ L2(µ) has bounded

norm [µ]
1/2
CM(d). Since DAd can be viewed as a weighted Dirichlet space on Bd,

for fixed integer d one has that |||Mg|||2d ≈
[
|R(m)g(z)|2(1− |z|2)2m−ddV

]
CM(d)

if

m > (d− 1)/2 is fixed. (Here, R is the complex radial derivative in Bd). Unfortu-
nately, this estimate depends on d, hence finding dimension independent Carleson
measure and multiplier estimates are, at the current state of knowledge, two dis-
tinct problems.

Geometric characterizations of Carleson measures for DAd were found in [2],
then in [4] and [5]. All proofs make use of dyadic decompositions and the behavior
of constants with respect to dimension is certainly not the right one. Functional
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analysis, however, tells us that [µ]CM(d) is comparable (independently of d) with
the best constant C(µ) in the bilinear estimate

∫

Bd

dµ(z)

∫

Bd

dµ(w)ϕ(z)ϕ(w)ℜK(z, w) ≤ C(µ)
∫

Bd

ϕ2dµ,

restricted to measurable ϕ ≥ 0 (see [2]).
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2. James E. Brennan: Approximation by polynomials on domains of

crescent type

Let Ω be a bounded simply connected region of crescent type in the complex
plane C; that is, a region whose closure Ω is a compact set having two comple-
mentary components, a bounded component G and an unbounded component Ω∞

with ∂G ∩ ∂Ω∞ 6= ∅. We do not require that ∂G ∩ ∂Ω∞ be a singleton.
For each z ∈ ∂G let δ(z) = dist(z,Ω∞) and let ω be harmonic measure on

∂G relative to some fixed point x0 ∈ G. Denote by dA two-dimentional Lebesgue
measure and for 1 ≤ p <∞ let Hp(Ω, dA) be the closed subspace of Lp(Ω, dA) that
is spanned by the complex analytic polynomials. Thus Hp(Ω, dA) ⊆ Lpa(Ω, dA),
the apparently larger of the two spaces consisting of those functions in Lp(Ω, dA)
which are analytic in Ω. It is known that there exists a universal constant τ ,
0 < τ < 1, such that if

(1)

∫

∂G

log δ(z) dω(z) = −∞,

then Hp(Ω, dA) = Lpa(Ω, dA) whenever 1 ≤ p < 3 + τ .

Problem 1. Does the divergence of the integral in (1) imply that Hp(Ω, dA) =
Lpa(Ω, dA) for all p, 1 ≤ p <∞ ?

The completeness problem for crescent domains has been studied extensively
over the years by Keldysh, Djrbashjan, Shaginjan, Mergeljan, Havin and Maz’ja
as well as by the author. If ∂G is sufficiently smooth the answer to the question
raised here is yes. In general, Hp(Ω, dA) = Lpa(Ω, dA) for 1 ≤ p < 3 + τ whenever
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(1) is satisfied and

(2)

∫

G

|ϕ ′|3+τdA <∞,

where ϕ is a conformal map of the bounded complementary region G onto the
open unit disk. Historically, this was the motivation behind the question:

Problem 2. For which values of τ is the integral in (2) finite, independent of
G?

Evidently, in Problem 2 the correct upper bound is most likely τ < 1; that
is 3 + τ < 4. The best known exponent for which (2) is finite in all cases is
approximately 3.75, and is due to Hedenmalm and Shimorin [2]. It is not clear
that there is any finite upper bound for Problem 1. For an in-depth discussion of
the background and history of both problems see [1].
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3. Konstantin M. Dyakonov: Two problems on star-invariant

subspaces

Given an inner function θ on the unit disk D, consider the star-invariant sub-
space

Kp
θ := Hp ∩ θHp

0 , 1 ≤ p ≤ ∞,
of the Hardy space Hp.

Problem 1. Characterize the extreme points of the unit ball of K∞
θ .

Problem 2. Prove or disprove Fermat’s Last Theorem for Kp
θ : there are no

solutions f, g, h ∈ Kp
θ to the equation fn + gn = hn with n ≥ 3, unless the three

functions lie in a one-dimensional subspace of Kp
θ .

In [1], Problem 1 was solved for the simplest inner function θ(z) = zN+1, in
which case K∞

θ reduces to the space of polynomials of degree at most N . On the
other hand, a similar problem for K1

θ was solved in [2] with an arbitrary θ (and
even in greater generality).

In connection with Problem 2, we remark that Fermat’s Last Theorem is known
to be true for polynomials and (equivalently) for rational functions.
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4. Håkan Hedenmalm: A space of functions associated with the

Dirichlet space

This problem comes from [2]. It is related, e.g., to the well-known Brennan
conjecture. Let D0 be the usual Dirichlet space with orthonormal basis n−1/2zn,
for n = 1, 2, 3, . . .. Let D⊙2

0 be the space of all functions F of the form

F (z) =

+∞∑

j=1

tjfj(z)gj(z),

where tj is a bounded sequence of nonnegative reals, and fj is an orthonormal
basis for D0, and so is gj . The norm of F is the infimum of supj tj , taken over all
possible such representations of F . What can we say about the boundary behavior
of functions in D⊙2

0 ? In particular, for F of norm < 1 in D⊙2
0 , how fast is the

growth of ∫

|z|=r

exp

{ |F (z)|2
log 1

1−r2

}

as r → 1−? See the survey paper [1] for other spaces associated with the Dirichlet
space.
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5. Karim Kellay: A problem

Let f be a function in the Nevanlinna class of unit disc D, we assume that its
radial limit f∗ is in L2(∂D). Let f =

∑
n anz

n and suppose that

∑

n≥1

|an|2
ω(n)2

<∞ et
∑

n≥0

|f̂(−n)|2ω(n)2 <∞,

where ω(n) ր +∞ when n → ∞. Is it true that f̂(−n) = 0 for all n ≥ 1 implies
f ∈ H2?

In the case (ω(n))n log-concave and
∑
n

logω(n)

n3/2 = ∞ the answer is yes by
Nikolski [1]. For a large class of sequences (ω(n))n log-concave this is also true,
see [2].
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6. Artur Nicolau: Two open questions

1. For k = 1, 2, . . ., let Ik(x) be the dyadic interval of length 2−k which contains
the point x ∈ R. Let f be a locally integrable function in the real line and let fI
denote the mean of the function on the interval I. For n = 1, 2, . . ., consider the
square function given by

〈f〉2n,∞(x) =
∑

k≥n

(fIk+1(x) − fIk(x))2

Is it true that

lim sup
n→∞

|fIn(x) − f(x)|√
〈f〉2n,∞(x)| log | log〈f〉2n,∞(x)||

<∞

at almost every point x ∈ R?

2. Describe the smooth 1-periodic functions φ : R→ R for which for any λ > 1
one has that

sup
N
|
N∑

n=1

φ(λnx)| =∞,

for almost every x ∈ R.

7. Carl Sundberg: Inverting functions in the Drury–Arveson space

Recall that the Drury–Arveson space H2
d is the space of analytic functions in

the unit ball Bd of Cd such that, if f(z) =
∑
n∈Nd anz

n, then

‖f‖2H2
d
=
∑

n∈Nd

|an|2
n!

|n|! <∞,

where, for n = (n1, . . . , nd) ∈ Nd we set |n| = n1 + · · ·+ nd and n! = n1! . . . nd!.

Question. If f ∈ H2
d and |f(z)| ≥ 1 for all z ∈ Bd, is

1
f ∈ H2

d?

For d = 1, this is trivial since H2
1 = H2 is the ordinary Hardy space. For

d = 2, 3, it is also easy since

‖f‖2H2
2
≈ |f(0)|2 +

∫

Bd

|Rf(z)|2dV3(z)

and

‖f‖2H2
3
≈ |f(0)|2 +

∫

∂Bd

|Rf(z)|2dσ3(z),

where Rf(z) =
∑d

j=1 zj
∂f
∂zj

, and dV3, dσ3 are the obvious measures on B2, ∂B3.

A positive answer to our question now follows from R
(

1
f

)
= −Rff2 .

To illustrate the problem that arises when d > 3, let us consider, e.g., d = 5. It
can be shown that, for f ∈ H(B5),

(∗) ‖f‖2H2
5
≈
∫

∂B5

‖fλ‖2W 2
1
dσ5(λ),
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where for λ ∈ ∂B5, fλ ∈ H(D) is given by

fλ(z) = f(λz)

for z ∈ D(= B1), and for f ∈ H(D)

‖f‖2W 2
2
= ‖f‖2H2 + ‖f ′‖2H2 + ‖f ′′‖2H2 .

By differentiating 1/f twice, we see our problem for d = 5 reduces to proving the
inequality ∥∥∥∥

(f ′)2

f3

∥∥∥∥
H2

≤ C‖f‖W 2
2

for f ∈W 2
2 . This is a nonlinear Sobolev inequality of a type which does not seem

to have been considered before, at least not to my knowledge. It is, I believe,
unknown even in the real-valued case.

For d > 5 a formula like (*) also holds, but more derivatives get involved, which
of course makes the problem even worse.

Reporter: Alexander Borichev
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