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Introduction by the Organisers

The international conference Representation Theory and Harmonic Analysis, orga-
nized by Toshiyuki Kobayashi (Tokyo) and Bernhard Krötz (Hannover) was held
November 14th – November 20th, 2010. The general theme was representation
theory of real and p-adic reductive Lie groups, also in connection to automorphic
forms. Further talks included relations to other fields such as lattice counting,
infinite symmetric groups or quantum ergodicity.

The format of the workshop consisted of 2–hour lectures by leading specialists
supplemented by shorter presentations, many of which were given by younger
participants. In between the talks the schedule reserved plenty of time for informal
discussions. Thursday was reserved for a joint session with the parallel workshop
on infinite–dimensional representation theory.

Topics covered in the presentations included unitarity questions and globaliza-
tions for Harish–Chandra modules, Fourier and Radon transforms on symmetric
spaces or p–adic groups, affine Hecke algebras or the spectral theory of automor-
phic forms and trace formulas.
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More specifically, as major topics of the workshop Schmid proposed Hodge–
theory as an ingredient to understand the unitary dual of a real reductive Lie
group in terms of its Harish–Chandra modules, and Bernstein gave an alternative
approach to Casselman–Wallach’s theorem about the unique smooth globalization
of Harish–Chandra modules. The latter was supplemented by Gimperlein’s talk
for the analytic case.
Questions from classical harmonic analysis and Fourier transformation were treated
in Delorme’s presentation of a Plancherel theorem for p–adic reductive groups, in
the shorter contributions by van den Ban and Kuit for symmetric spaces as well
as by Sayag and Vargas.
The spectral theory of automorphic forms and trace formulas were surveyed by
Müller. The number theoretic issues were followed up on by Offen’s application of
a relative trace formula to period integrals. Aizenbud generalized Jaquet’s smooth
transfer of Kloosterman integrals to the Archimedean case. Also of relevance to
local trace formulas, Opdam employed techniques for affine Hecke algebras to gen-
eralize a formula by Arthur for an Euler–Poincaré pairing to fields of arbitrary
characteristic.
Among the further topics, Sahi outlined a detailed analysis of Whittaker function-
als and associated varieties for irreducible unitary representations of GL(n,R). In
a shorter presentation, Möllers exhibited explicit L2–models for minimal repre-
sentations. Connections to the infinite–dimensional theory featured in the parallel
workshop were present in Neretin’s talk on the permutation group S∞. Hilgert dis-
cussed quantum ergodicity on Riemannian symmetric spaces of noncompact type.
Finally, the desingularization of deformation spaces associated to discontinuous
group actions was considered by Yoshino.
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Abstracts

Smooth transfer of Kloosterman integrals

Avraham Aizenbud

Fix a local field F and it’s quadratic extension E. We consider an integral of
a Schwartz function on GLn(F ) along the orbits of the two sided action of the
groups of upper unipotent matrices twisted by a non-degenerate character. This
gives a smooth function on the torus. We prove that the space of all functions
obtained in such a way coincides with the space that is constructed analogously
when GLn(F ) is replaced with the variety of non-degenerate hermitian forms.

The non-Archimedean case is done by Jaquet and the Archimedean case is done
by Gourevitch and myself. In the talk we discussed the main ingredients of the
proof, the difficulties that occur in the Archimedean case and the methods we used
to overcome them.

Polynomial estimates for c-functions on semisimple symmetric spaces

Erik van den Ban

(joint work with Henrik Schlichtkrull)

In the talk I reported on estimates for c-functions associated to semisimple sym-
metric spaces. The c-functions determine the top order asymptotic behavior of
Eisenstein integrals for such spaces. The estimates are of importance for the com-
parison of different formulations of the Paley-Wiener theorem, see [3].

Let G be a real semisimple Lie group with finite center, let σ be an involution
of G, and let H be an open subgroup of the group Gσ of fixed points. Then G/H
is a semisimple symmetric space.

There exists a maximal compact subgroup K of G which is stable under σ
and let θ be the associated Cartan involution. Let (τ, Vτ ) be a finite dimensional
unitary representation of K and let C∞(G/H : τ) denote the space of smooth
functions G/H → Vτ that are τ -spherical, i.e.,

f(kx) = τ(k)f(x), (x ∈ G/H, k ∈ K).

Then there exists a most continuous Fourier transform on the subspace of
C∞
c (G/H : τ) of compactly supported spherical functions. This transform is

defined in terms of normalized Eisenstein integrals

E◦(λ) ∈ C∞
c (G/H : τ)⊗A2

which are defined as spherical matrix coefficients of the minimal principal series
for G/H. Here A2 is a certain finite dimensional Hilbert space, and the Eisen-
stein integral depends meromorphically on the parameter λ, which ranges over the
complex dual a∗qC

of aq, a maximal abelian subspace of ker(I+dθ(e)∩ker(I+dσ(e)).
The generic directions to infinity in the symmetric space G/H are described

in terms of a positive Weyl chamber A+
q and a quotient W = W/WK∩H , where
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W = NK(aq)/ZK(aq) and where WK∩H = NK∩H(aq)/ZK∩H(aq). In fact, the
following union is disjoint and gives an open dense subset of G/H :

⋃

v∈W

KA+
q vH.

Let M denote the centralizer of aq in G, let τM denote the restriction of τ to
K ∩M. Then the space A2 mentioned above equals the following direct sum of
Hilbert spaces

A2 =
⊕

v∈W

L2(M/M ∩ vHv−1 : τM ).

Moreover, the top order asymptotic behavior of the Eisenstein integral is described
by

E◦(λ : mav)ψ ∼
∑

s∈W

asλ−ρ[prvC
◦(s : λ)ψ](m), (A+

q ∋ a→∞),

for λ ∈ ia∗q, v ∈ W and m ∈ M/M ∩ vHv−1. Here the C◦(s : λ) are End(A2)-
valued meromorphic functions of λ ∈ a∗qC

. The estimates mentioned in the title
take the following form.

Theorem. For every R > 0 there exists a polynomial functions q : a∗qC
→ C

and constants C > 0, N ∈ N such that

‖q(λ)C◦(s : λ)‖ ≤ C(1 + |λ|)N ,
for all λ ∈ a∗qC

with |Reλ| ≤ R.
Moreover, for the above polynomial q one may take a product of linear factors

of the form 〈λ , α 〉 − c, with α an aq-root, and c ∈ R.

The proof of this result is based on application of the following results:

(a) the Vogan-Wallach functional equation for standard intertwining operators
(cf. [1]);

(b) the functional equation for H-fixed distribution vectors of the minimal
principal series of G/H (cf. [2]);

(c) estimates for the evaluation of the above mentioned H-fixed distribution
vectors at points of W .
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Understanding Casselman–Wallach’s globalization theorem

Joseph Bernstein

(joint work with Bernhard Krötz)

In this talk I describe a new approach to the proof of the Casselman–Wallach
theorem, which shows that the category of Harish-Chandra modules for a real
reductive group G is naturally equivalent to the category of smooth admissible
F–representations (i.e. Fréchet representations of moderate growth). This ap-
proach was developed by B. Krötz and myself. It describes the globalization of
Harish-Chandra modules uniformly in their parameters. This fact has important
applications in the theory of Eisenstein series.

References

[1] J. Bernstein and B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules,
preprint available at http://service.ifam.uni-hannover.de/∼kroetz.

Plancherel formula for Whittaker functions on a p-adic reductive
group

Patrick Delorme

Let G be the group of F - points of a connected reductive group defined over F ,
where F is a non archimedian local field.
Let (P0, P

−
0 ) be a pair of opposite parabolic subgroups of G and let M0 be their

common Levi subgroup.
Let U0 be the unipotent radical of P0 and A0 be the maximal split torus M0. Let
K be an A0-good maximal compact subgroup of G.
Let ψ be non degenerate smooth unitary character of U0.
Let C∞(U0\G,ψ) be the space of smooth Whittaker functions on G i.e. functions
f on G which are right invariant by a compact open subgroup of G and such that:

f(u0g) = ψ(u0)f(g), g ∈ G, u0 ∈ U0.

One defines a Schwartz space C(U0\G,ψ) ⊂ C∞(U0\G,ψ) (analogue of Harish-
Chandra Schwartz space for functions on G), endowed with a natural topology.
One defines a Fourier transform for C(U0\G,ψ), called Whittaker-Fourier (WFT)
transform.
The main result is the determination of the image of this transform and an inver-
sion formula. Moreover C(U0\G,ψ) is a subspace of L2(U0\G,ψ) and one deter-
mines also how the scalar product behaves under WFT.
This is an unpublished work of Harish-Chandra, as said by Clozel.
For the real case there is a proof by Wallach in his book.
Here, it is a different type of proof. It follows closely Waldspurger redaction of the
Harish-Chandra Plancherel formula for functions on the group.
Apart the results, this work introduce a setting with B-matrices and wave packets
which should work also for p-adic symmetric spaces.
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Analytic globalizations of Harish-Chandra modules

Heiko Gimperlein

(joint work with Bernhard Krötz, Henrik Schlichtkrull)

Let G be a real reductive Lie group and K < G a maximal compact subgroup.
We consider representations (π,E) of G on a locally convex Hausdorff space E.
A vector v ∈ E is said to be analytic provided that the orbit map γv : G → E,
x 7→ π(x)v, extends to a holomorphic function on a left–G–invariant neighborhood
in GC. The space E

ω of analytic vectors is endowed with a natural inductive limit
topology Eω = limn→∞ En,

En = {v ∈ E | γv extends to a holomorphic map GVn → E} ,
indexed by a neighborhood basis {Vn}n∈N of the identity in GC, and (π,E) is said
to be analytic provided that E = Eω as topological vector spaces. No completeness
assumptions on E are imposed, so that the quotient of an analytic representation
by a closed invariant subspace is again analytic.

Moderately growing analytic representations allow for an additional action by
an algebra of superexponentially decaying functions. To be specific, consider a
Banach representation (π,E). Fix a left–invariant Riemannian metric on G and
let d be the associated distance function. The continuous functions on G decaying
faster than e−nd(·,1) for all n ∈ N form a convolution algebra R(G), which is a
G–module under the left regular representation. If we denote the space of analytic
vectors of R(G) by A(G), the map

(1) Π : A(G)→ End(Eω), Π(f)v =

∫

G

f(x) π(x)v dx ,

gives rise to a continuous algebra action on Eω. More general representations
on a sequentially complete space will be called A(G)–tempered provided that the
integral in (1) converges strongly and defines a continuous action of A(G).

Recall that to an admissible G-representation (π,E) of finite length one can
associate the Harish-Chandra module EK of its K-finite vectors and that EK ⊂
Eω e.g. if E is a Banach space. Conversely, a globalization of a given Harish–
Chandra module V is an admissible representation of G with V = EK . Our
main result is an independent approach to aspects of Schmid’s and Kashiwara’s
theory of globalizations, which asserts in particular that every Harish-Chandra
module admits a unique minimal globalization, equivalent to Eω for all Banach
globalizations E.

Theorem ([3]). Let G be a real reductive group. Then every Harish-Chandra mod-
ule V for G admits a unique A(G)–tempered analytic globalization V mg. Moreover,
V mg has the property V mg = Π(A(G))V.

Corollary. a) Eω ≃ V mg for every A(G)-tempered globalization E of V .
b) For an irreducible admissible Banach representation, Eω is an algebraically
simple A(G)-module.
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Schmid constructs his minimal globalization from a realization of V as smooth
functions on G using matrix coefficients. His and Kashiwara’s results employ the
convolution algebra of test functions instead of A(G) and apply to any complete
globalization without temperedness assumptions. In our language they obtain a
factorization Eω = Π(C∞

c (G))EK for every complete globalization E.
Our more explicit approach defines V mg as the quotient of A(G)k with its

diagonal G-action by the kernel of the G-equivariant continuous map

A(G)k → E, (f1, . . . , fk) 7→
k∑

j=1

Π(fj)vj ,

where V is considered as a subspace generated by v1, . . . , vk in an arbitrary A(G)–
tempered globalization. V mg is independent of the choice of the globalization and
(up to equivalence) of the set of generators and satisfies V mg = Π(A(G))V . It is
minimal in the sense that it injects into the space of analytic vectors of any other
A(G)–tempered globalization, and its functorial properties are readily deduced
from the construction. Topologically V mg turns out to be a reflexive DNF space
and is, in particular, complete.

General arguments and the functorial properties reduce the proof of the theorem
to the case where the Harish-Chandra module V is the space of K–finite vectors
of a spherical principal series representation. The main step is to show that in this
situation V mg coincides with the analytic functions on M\K as analytic represen-
tations, where M = ZK(A) for some Iwasawa decomposition G = KAN .

The key ingredient in the proof are some recent lower bounds for matrix coeffi-
cients obtained in [1]. The techniques developed by Bernstein and Krötz in their
article in the context of smooth globalizations can be adapted to yield an explicit
factorization of v ∈ Cω(M\K) as v = Π(F )ξ for a suitable K-finite ξ ∈ V . The
main new difficulty is to show F ∈ A(G). To do so, the coincidence of analytic and
∆–analytic vectors for Fréchet representations of moderate growth [2] turns out
to be convenient. Both the theorem and the assertion in part b) of the Corollary
follow from the thus obtained factorization Cω(M\K) = Π(A(G))V = V mg.

References
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Patterson–Sullivan distributions on locally symmetric spaces

Joachim Hilgert

(joint work with Sönke Hansen, Michael Schröder)

Let X = G/K denote a Riemannian symmetric space of noncompact type,
where G is a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G. Let G = KAN be a corresponding Iwasawa decomposi-
tion of G and let M denote the centralizer of A in K. The Furstenberg boundary
of X can be identified with the flag manifold B := K/M . Let o := K ∈ G/K
denote the origin of the symmetric space X . Further, let ∆, resp. ∆Γ, denote the
Laplace operator of X , resp. XΓ.

For each joint eigenfunction ϕ (with exponential growth) of the invariant dif-
ferential operators there is a unique distribution boundary value Tϕ ∈ D′(B) such
that

ϕ(x) =

∫

B

e(iλ+ρ)〈x,b〉Tϕ(db),

where λ ∈ a∗ is a suitable spectral parameter. Here 〈x, b〉 denotes the horocycle
bracket. Given a ∈ C∞

c (T ∗X), the Wigner distribution associated with two such
eigenfunctions ϕ and ψ is defined by

Wϕ,ψ(a) := 〈Op(a)ϕ, ψ〉L2(XΓ).

The goal is to describe weak limits of Wigner distributions as the spectral pa-
rameters of the eigenfunctions tend to infinity. To this end one introduces new
distributions, called Patterson–Sullivan distributions as a weighted Radon trans-
form of the boundary values Tϕ(db) ⊗ Tψ(db′). The weight function is basically
defined by its invariance properties. The construction generalizes a construction
of Anantharaman and Zelditch for hyperbolic surfaces (cf. [1]). The two types of
distributions can be related by an integral operator and analyzing this operator
by stationary phase methods one proves that for functions a supported in an open
Weyl chamber Wigner and Patterson-Sullivan distributions asymptotically agree.
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Radon transformation on reductive symmetric spaces: support
theorems

Job Kuit

Let G be a connected semisimple Lie group with finite center, let G = KAN be an
Iwasawa decomposition of G and letM be the centralizer of A in K. A horosphere
in the Riemannian symmetric spaceX = G/K is a submanifold of the form gN ·K,
with g ∈ G. The set of horospheres is in bijection with the manifold Ξ = G/MN
via the map

E : g ·MN 7→ gN ·K.
The horospherical transform on X is the Radon transformR mapping a compactly
supported smooth function φ on X to the function

Rφ : g ·MN 7→
∫

N

φ(gn ·K)

on Ξ. In [1, Lemma 8.1] S. Helgason proved the following support theorem for this
transform.

Let φ be a compactly supported smooth function and let V be a closed ball in X.
Assume that

Rφ(ξ) = 0 whenever E(ξ) ∩ V = ∅.
Then

φ(x) = 0 for x /∈ V.

Note that this theorem implies that the horospherical transform is injective on the
space of compactly supported smooth functions.

In this talk we present a generalization of Helgason’s result to a support theorem
for a class of Radon transforms (including the horospherical transforms) on a
reductive symmetric space X = G/H with G a real reductive Lie group of the
Harish-Chandra class and H an essentially connected open subgroup of the fixed-
point subgroup Gσ of an involution σ on G.

Let θ be a Cartan involution of G commuting with σ. For each σ ◦ θ-stable
parabolic subgroup P with Langlands decomposition MPAPNP we consider the
Radon transform RP mapping a function φ on X to the function on ΞP =
G/(MPAP ∩H)NP given by

RPφ(g · ξP ) =
∫

NP

φ(gn ·H) dn.

Here ξP denotes the coset e · (MPAP ∩ H)NP containing the unit element e.
This Radon transform, which is initially defined for compactly supported smooth
functions, can be extended to a large class of distributions on X .

If P0 is a minimal σ ◦θ-stable parabolic subgroup of G contained in P , then AP
is contained in AP0

. The Lie algebra aP0
of AP0

is σ-stable and decomposes as the
direct sum of the +1 and −1 eigenspace for σ. The latter space is denoted by aq.
The connected abelian Lie subgroup of G with Lie algebra aq is denoted by Aq.



3054 Oberwolfach Report 52/2010

The maps

K ×Aq → X ; (k, a) 7→ ka ·H
and

K ×Aq → ΞP ; (k, a) 7→ ka · ξP
are surjective, just as in the Riemannian case. For a subset B of aq, we define

X(B) = K exp(B) ·H and ΞP (B) = K exp(B) · ξP .
The support of a transformed function or distribution turns out to be non-

compact in general. In fact, if the support of a distribution µ is contained in
X(B) for some compact convex subset B of aq that is invariant under the action of
the quotient WK∩H = NK∩H(aq)/ZK∩H(aq) of the normalizer NK∩H(aq) and the
centralizer ZK∩H(aq) of aq in K ∩H , then the support of the Radon transformed
function RPµ is contained in ΞP (B+ΓP ), where ΓP is the cone in aq spanned by
the root vectors corresponding to roots that are positive with respect to P . The
support theorem that we prove in this article is a partial converse to this statement
for distributions µ in a suitable class of distributions, containing the compactly
supported ones:

Theorem Let B be a WK∩H-invariant convex compact subset of aq. If

supp(RPµ) ⊆ ΞP (B + ΓP ),

then

supp(µ) ⊆ X(C),

where C is the maximal subset of B + ΓP that is invariant under the action of
WK∩H .

If K = H and P is a minimal parabolic subgroup of G, then C equals B. Our
theorem reduces then to the support theorem of Helgason for the horospherical
transform on a Riemannian symmetric space. Just as in the Riemannian case, the
support theorem implies injectivity of the Radon transform.

References

[1] Helgason, S., The surjectivity of invariant differential operators on symmetric spaces. I,
Ann. of Math. (2) 98 (1973), 451–479.

Minimal representations and special functions

Jan Möllers

(joint work with Joachim Hilgert, Toshiyuki Kobayashi)

We establish a relation between solutions of a certain fourth order ordinary differ-
ential operator and K-finite vectors in L2-models of minimal representations. The
L2-theory of the fourth order operator is studied using unitarity of the minimal
representations.
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1. Special functions associated to a certain fourth order

differential operator

For µ, ν ∈ C consider the fourth order differential operator

Dµ,ν :=
1

x2
(
(θ + µ+ ν)(θ + µ)− x2

) (
θ(θ + ν)− x2

)
, θ = x

d

dx
.

It is easy to see that for µ, ν ∈ R the operator Dµ,ν is symmetric on
L2(R+, x

µ+ν+1 dx). For certain parameters µ and ν representation theory can
be used to prove the following result:

Theorem. Suppose µ, ν ∈ R such that




ν = −1 and µ ∈ 1
2N0 or

ν = 0 and µ ∈ N0 or

µ, ν ∈ N0, µ ≥ ν and µ+ ν is even.

(*)

Then Dµ,ν extends to a self-adjoint operator on L2(R+, x
µ+ν+1 dx) with discrete

spectrum. Moreover, the L2-eigenvalues are given by

λµ,νj := 4j(j + µ+ 1), j ∈ N0,

and the corresponding eigenspaces are one-dimensional.

We then ask the following question:

Question. What are the L2-eigenfunctions of Dµ,ν?
To obtain explicit L2-eigenfunctions, we define a generating function Gµ,ν(t, x)

by

Gµ,ν2 (t, x) :=
1

(1− t)µ+ν+2

2

Ĩµ
2

(
tx

1− t

)
K̃ ν

2

(
x

1− t

)
,

where Ĩα(z) = ( z2 )
−αIα(z) and K̃α(z) = ( z2 )

−αKα(z) denote the normalized I-
and K-Bessel functions. Gµ,ν(t, x) is analytic near t = 0 and we define a series
(Λµ,νj (x))j∈N0

of functions on R+ by

Gµ,ν(t, x) =

∞∑

j=0

Λµ,νj (x)tj .

Theorem. For µ+ ν, µ− ν > −2 the function Λµ,νj (x) is an L2-eigenfunction of

Dµ,ν for the eigenvalue λµ,νj . In particular, if µ and ν satisfy (*), then the system

(Λµ,νj (x))j∈N0
forms an orthogonal basis of L2(R+, x

µ+ν+1 dx) with norms

‖Λµ,νj ‖2L2(R+,xµ+ν+1 dx) =
2µ+ν−1Γ(j + µ+ν+2

2 )Γ(j + µ−ν+2
2 )

j!(2j + µ+ 1)Γ(j + µ+ 1)
.

A detailed study of the operator Dµ,ν and the functions Λµ,νj (x) can be found

in [2, 3, 5].
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2. L2-models for minimal representations

Minimal representations are the smallest infinite-dimensional unitary represen-
tations. They are thought to correspond to the minimal non-zero nilpotent coad-
joint orbit. We explain how the operator Dµ,ν and the functions Λµ,νj (x) arise in
minimal representations.

Let V be a simple real reduced Jordan algebra V and denote by Co(V ) its
conformal group which is a simple real Lie group. There is a unified way to
construct all minimal representations of a finite cover G of Co(V ) on an explicit
Hilbert space L2(O) (excluding G = SO(3, q), q even). (For a detailed outline
of this construction see [6].) Here O ⊆ (Omin

C
∩ g∗) 6= ∅ is a certain Lagrangian

submanifold, where Omin
C
⊆ g∗

C
denotes the minimal non-zero nilpotent coadjoint

orbit and g the Lie algebra of G.

Example. (1) For the group G = Mp(n,R) we have L2(O) ∼= L2
even(R

n) and
one minimal representations is isomorphic to the even part of the meta-
plectic representation.

(2) All cases except G = SO(p, q)0 were first treated by A. Dvorsky and S.
Sahi in [1, 7].

(3) For G = SO(p, q)0, p, q ≥ 3, p + q even, the Lagrangian O is isomorphic
to the isotropic cone

O ∼= {x ∈ Rp+q−2 \ {0} : x21 + . . .+ x2p−1 − x2p − . . .− x2p+q−2 = 0}
and the L2-model of the minimal representation was first constructed by
T. Kobayashi and B. Ørsted in [4].

Properties. • O is too small to carry a non-trivial G-action. Therefore, g
does not act by vectorfields, but by differential operators of degree ≤ 2.
Hence, the Casimir operator of a maximal compact subgroup K ⊆ G is a
differential operator of order 4.
• The uniform description of the Lie algebra action in terms of Jordan al-
gebras allows to calculate the Casimir action explicitly (at least on the
space L2(O)rad ⊆ L2(O) of ‘radial’ functions). This leads to the differen-
tial operator Dµ,ν with constants µ and ν written in terms of the Jordan
algebra.
• Minimal representations are ladder representations, i.e. restriction to K
yields the multiplicity-free decomposition

L2(O) ∼=
∞̂⊕

j=0

W j ,

into K-types W j of highest weight α0 + jγ. The Casimir operator of K
acts as a scalar on each K-type W j and the subspace of radial functions
in each K-type W j is one-dimensional:

W j ∩ L2(O)rad = Cψj .

Theorem. ψj(x) = Λµ,νj (|x|), x ∈ O.
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This observation implies all L2-statements for the operator Dµ,ν .

3. Open questions

The proof of the L2-statements for the operator Dµ,ν uses representation theory
in a crucial way. This puts the restriction (*) on the parameters µ and ν. However,
it is likely, that the L2-statements still hold for a more general set of parameters.
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Spectral theory of automorphic forms and the Arthur-Selberg trace
formula

Werner Müller

The purpose of this talk is to discuss the trace formulas of Selberg and Arthur and
some of their applications to spectral theory of automorphic forms.

The basic set up is as follows. Let G be a real semi-simple Lie group with
finitely many connected components, with finite center and of the non-compact
type. We fix a maximal compact subgroup K of G. Let Γ ⊂ G be a lattice, i.e., a
discrete subgroup such that vol(Γ\G) < ∞, where the volume is taken with any
Haar measure on G. Of particular importance are arithmetic subgroups Γ. In this
case we consider a semi-simple (or reductive) algebraic group G defined over Q
and G is the group of real points of G. We fix an embedding ρ : G →֒ GL(n) for
some n. Then Γ ⊂ G(Q) is an arithmetic subgroup, if ρ(Γ) is commensurable with
GL(n,Z).

Let

RΓ : G→ Aut(L2(Γ\G))
be the right regular representation which is defined by

(RΓ(g)f) (g
′) = f(g′g).
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One of the fundamental problems in the theory of automorphic forms is to de-
scribe explicitely the spectral resolution of (RΓ, L

2(Γ\G)). By Langlands’ theory
of Eisenstein series [9] there is a decomposition

L2(Γ\G) = L2
d(Γ\G)⊕ L2

c(Γ\G)
into invariant subspaces of RΓ. L

2
d(Γ\G) is the subspace spanned by all irreducible

subspaces of L2(Γ\G) and L2
c(Γ\G) is described in terms of Eisenstein series. The

restriction RdΓ of RΓ to L2
d(Γ\G) decomposes discretely

(1) RdΓ =
⊕

π∈Ĝ

mΓ(π)π

with finite multiplicities mΓ(π). L2
d(Γ\G) contains the subspace of cusp forms

which is defined as follows. Let P ⊂ G be a parabolic subgroup with Levi de-
composition P = LPNP . P is called Γ-cuspidal if (Γ ∩ NP )\NP is compact. A
function f ∈ L2(Γ\G) is called cusp form, if f is right K-finite, Z(g)-finite, and

(2)

∫

(Γ∩NP )\NP

f(ng) dn = 0

for all proper Γ-cuspidal parabolic subgroups P . Let L2
cusp(Γ\G) be the subspace

of L2(Γ\G), spanned by all cusp forms. Then L2
cusp(Γ\G) is contained in L2

d(Γ\G).
Let L2

res(Γ\G) be the orthogonal complement of L2
cusp(Γ\G) in L2

d(Γ\G). Thus

L2
d(Γ\G) = L2

cusp(Γ\G)⊕ L2
res(Γ\G).

It follows from [9] that L2
res(Γ\G) is spanned by iterated residues of Eisenstein

series. By the theory of Eisenstein series it follows that cusp forms are the building
blocks of the theory of automorphic forms and one of the main issues is to study

the multiplicities mΓ(π) with which π ∈ Ĝ occurs in the space of cusps forms
L2
cusp(Γ\G).
For applications to number theory arithmetic groups Γ are significant. To use

the arithmetic structure one has to pass to the adelic framework, i.e., replace
Γ\G by the adelic quotient G(Q)\G(A) where G is the algebraic group such that
Γ ⊂ G(A). The corresponding problem is then to describe the spectral decom-
position of the regular representation of G(A) in L2(G(Q)\G(A)). The cuspidal
subspace L2

cusp(G(Q)\G(A)) is defined in a similar manner. An irreducible uni-
tary representation of G(A) that occurs in the space of cusp forms is called an
automorphic cuspidal representation of G(A).

Finally we note that the original approach by Selberg [18], [19] was not group
theoretic. Selberg studied the spectrum of the Laplace operator on hyperbolic
surfaces of finite area. In general, let S = G/K be the Riemannian symmetric
space associated to G and K. Assume that Γ is torsion free. Then X = Γ\S is
a locally symmetric manifold of finite volume. Let D(S) be the algebra of invari-
ant differential operators on S. Then D(S) is a finitely generated, commutative
algebra. The problem studied by Selberg is the spectral resolution of D(S) acting
in L2(Γ\S). Since ∆ ∈ D(S), this concerns in particular the spectral resolution
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of the Laplace operator. The connection with the group theoretic point of view is
given by L2(Γ\G)K ∼= L2(Γ\S). Especially we have

L2
d(Γ\G)K ∼=

⊕

χ

Cφχ,

where χ runs over the additive characters of D(S) and φχ is square integrable
and satisfies Dφχ = χ(D)φχ, D ∈ D(S). A joint eigenfunction of D(S) which
satisfies the cuspidal condition (2) is called a Maass cusp form. In the case of
a non-compact hyperbolic surface Γ\H of finite area, a Maass cusp form is just
a square integrable eigenfunction f of the hyperbolic Laplace operator ∆ with
vanishing zeroth Fourier coefficients in all cusps. The continuous spectrum of
∆ equals [1/4,∞). Therefore all eigenvalues λ ≥ 1/4 of Maass cusp forms are
embedded into the continuous spectrum. It is known from mathematical physics
that embedded eigenvalues are unstable with respect to perturbations. This is
why the study of cups forms is so difficult and their existence highly non-trivial.
In this respect there is the conjecture of Phillips and Sarnak which states that for
a generic non-compact hyperbolic surface of finite area (where generic refers to a
point in the moduli space) the Laplacian has no embedded eigenvalues.

The trace formula is one of the most important tools to study the cuspidal
spectrum. It was introduced by Selberg in [18], who developed the trace formula
for quotients of the hyperbolic plane by Fuchsian groups of the first kind. His
original motivation and application was to show the existence of Maass forms for
Γ = SL(2,Z). The trace formula was then vastly generalized by Arthur in the
context of adelic quotients G(Q)\G(A). Arthur’s main motivation was to attack
the Langlands functoriality conjectures.

For a hyperbolic surface Γ\H of finite area, the trace formula is the following
statement. Let 0 = λ0 < λ1 ≤ λ2 ≤ · · · be the point spectrum, i.e., the eigenvalues
of ∆. Each eigenvalue occurs with finite multiplicity. Write the eigenvalues as
λj = 1/4 + r2j , where rj ∈ R ∪ i[−1/2, 1/2]. Let f ∈ C∞

c (R) and let h be the
Fourier transform of f . Let C(s) be the “scattering matrix” derived from the
constant terms of Eisenstein series and put φ(s) = detC(s). Then the following
equality holds.

∑

j≥0

h(rj)−
1

4

∫

R

h(r)
φ′

φ
(1/2 + ir) dr − m− φ(1/2)

2
h(0)

=
Area(Γ\H)

2π

∫

R

h(r)r tanh(πr) dr

+
∞∑

k=1

∑

[γ] 6=e
prime

ℓ(γ)

sinh

(
kℓ(γ)

2

)f(kℓ(γ))

− m

2

∫

R

h(r)
Γ′

Γ
(1 + ir) dr − 2m ln(2)f(0),

(3)
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where [γ] runs over the hyperbolic conjugacy classes of Γ, ℓ(γ) is the length of the
corresponding closed geodesic, Γ(s) is the Gamma function, and m is number of
cusps of Γ\H. Let

(4) NΓ(λ) := #{i : λi ≤ λ2}
be counting function of the eigenvalues. Selberg used the trace formula to prove
the following Weyl law

(5) NΓ(λ) −
1

4π

∫ λ

−λ

φ′

φ
(1/2 + it) dt ∼ Area(Γ\H)

4π
λ2

as λ → ∞. To prove (4) one can proceed as in the compact case. First one
applies the trace formula to the heat operator e−t∆ and determines the asymptotic
behavior of the spectral side as t→∞. Then a Tauberian theorem gives (4). If one
uses the trace formula combined with Hörmander’s method to estimate the spectral
function on a compact manifold, one can estimate the remainder term by O(λ log λ)
(see [14]). In general one can not separate the eigenvalue counting function and the
winding number. However, for congruence subgroups of SL(2,Z) one can express
the determinant of the scattering matrix in terms of known functions of analytic
number theory. For example, for Γ = SL(2,Z) one has

(6) φ(s) =
√
π

Γ(s− 1/2)ζ(2s− 1)

Γ(s)ζ(2s)

where ζ(s) is the Riemann zeta function. Using standard estimates for the loga-
rithmic derivatives of ζ(s) and Γ(s), it follows that the winding number in (5) is
of order O(λ log λ). A similar result holds for congruence subgroups of SL(2,Z).
Hence for congruence subgroups Γ, the eigenvalue counting function NΓ(λ) sat-
isfies Weyl’s law which implies that for such lattices Maass cups forms exist in
abundance. Reznikov has extended this to other rank one cases [16].

The trace formula has been generalized by Arthur to arbitrary reductive groups.
For this however one has to pass to the adelic setting. Let G be a semi-simple
algebraic group overQ. Then Arthur’s trace formula in its original form, developed
in the 70’ and 80’, is an identity of sums of distributions on G(A) of the form

(7)
∑

χ

Jχ(f) =
∑

o

Jo(f), f ∈ C∞
c (G(A)),

where χ ranges over spectral data and o ranges over semi-simple conjugacy classes
of G(Q) (see [1] for more details). The left hand side is the spectral side. One
contribution is the sum over the cuspidal spectrum. The other terms are distribu-
tions derived from Eisenstein series. The main ingredients are multidimensional
logarithmic derivatives of Intertwining operators, generalizing the corresponding
terms on the left hand side of (3). The sum-integral in Arthur’s formula was known
to converge conditionally. The absolute convergence has recently been established
in [7], [8]. This is important for the potential applications of the trace formula to
spectral theory. The right hand side of (7) is the geometric side. The distributions
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Jo are given in terms of weighted orbital integrals. At the real place they are of
the form

(8)

∫

Gγ\G

f(g−1γg)w(g) dg

with some weight function w(g). The trace formula has been used to prove Weyl’s
law for the cuspidal spectrum of the Laplacian in various higher rank cases. S.
Miller [12] proved it for Maass forms for SL(3,Z). In [15] it was proved for vector
valued forms for congruence subgroups of SL(n,Z). Lindenstrauss and Venkatesh
[11] proved it for all quotients Γ\G/K, where Γ is a congruence subgroup of G
and G is of the adjoint type.

In the higher rank case, we are not only dealing with the Laplace operator, but
with the whole algebra D(S) of invariant differential operators, whose spectrum is
multidimensional. Let A be maximal split torus of G = G(R) and let a be its Lie
algebra. Let W be the Weyl group. Then the spectrum of D(S) is a W -invariant
subset of a∗

C
. Given λ ∈ a∗

C
let m(λ) be the multiplicity of the λ-eigenspace of

D(S) in L2(Γ\G). The tempered spectrum is contained in ia∗. Let β(λ) denote
the Plancherel measure. In [10] we have proved the following theorem.

Theorem Let S = SL(n,R)/ SO(n) and d = dimS. Let Γ(N) ⊂ SL(n,Z) be the
principal congruence subgroup of level N ∈ N. Assume that N ≥ 3. Suppose that
Ω ⊂ ia∗ is a W -invariant bounded domain with piecewise C2-boundary. Then

∑

λ∈tΩ

m(λ) =
vol(Γ(N)\S)
|W |

∫

tΩ

β(λ) dλ+O(td−1(log t)n).

For a co-compact lattice this is due to Duistermaat, Kolk, and Varadarajan
[6]. The proof of the theorem relies on various results which are currently only
known for GL(n). One important fact that enters the proof is the description of
the intertwining operators in terms of Rankin-Selberg L-functions. This is the
generalization of (6). Another result that is used is the description of the residual
spectrum by Moeglin and Waldspurger [13]. It implies that, compared to the
cuspidal spectrum, the residual spectrum is of lower order growth. For classical
groups these results are only partially known.

The Weyl law is only the first example of the possible applications of the trace
formula to spectral theory. Further applications will include, for example, the
study of the cuspidal spectrum, if Γ varies. This is the problem of limit multiplic-
ities first studied by De George and Wallach [3], [4]. It means that we consider
a tower of normal subgroups of finite index Γ ⊃ Γ1 ⊃ · · · ⊃ Γn ⊃ · · · such that

∩Γn = {e}. We define measures µn on the tempered dual Ĝtemp as follows. For

every bounded Jordan measurable set Ω ⊂ Ĝtemp put

µn(Ω) =

∑
π∈ΩmΓ(π)

vol(Γn\G)
.
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Then the conjecture is that for regular Ω (which means that the Plancherel measure
µpl(∂Ω) of the boundary ∂Ω vanishes) we have

lim
n→∞

µn(Ω) = µpl(Ω).

For a co-compact lattice this problem was studied in [3], [4], [5]. For the discrete
series the answer is affirmative [17]. Another goal is to include Hecke operators.

One of the most important applications of the trace formula is the comparison of
the traces on different groups aiming at the functoriality conjectures of Langlands
[2]. This was the driving force for Arthur to develop the trace formula.
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Infinite symmetric group and categories of simplicial bordisms

Yury Neretin

We consider a product of three copies of infinite symmetric group and its represen-
tations spherical with respect to the diagonal subgroup. We show that such repre-
sentations generate functors from a certain category of simplicial two-dimensional
surfaces (bordisms) to the category of Hilbert spaces and bounded linear operators.

1. Infinite symmetric groups. By Sfin∞ ⊂ S∞ we denote the group of fi-
nite permutations of N (i.e., substitutions g satisfying the condition gj = j for
sufficiently large j ∈ N). Denote by S∞ the group of all permutations of the set
N = {1, 2, 3, . . .}. By S∞(α) ⊂ S∞ we denote the stabilizer of points 1, 2, . . . ,
α ∈ N. We assume S∞(0) := S∞. The standard topology on the group S∞ is
defined by the condition: subgroups S∞(α) are open and cosets gS∞(α) ⊂ S∞

form a basis of topology.

2. Thoma theorem. In 1964 E. Thoma obtained the classification of all
characters of Sfin∞ . According his definition, a character is an extreme point of the
set of all functions F on Sfin∞ satisfying the conditions:

(1) F is central, i.e., F (hgh−1) = F (g);
(2) F is positive definite;
(3) F (1) = 1.

Theorem. (Thoma, [4]) All characters of Sfin∞ have the form

(1) χ(g) =
∏

k≥2

(∑

j

αkj −
∑

j

(−βj)k
)rk(g)

,

where rk(g) is the number of cycles of length k in g, and the parameters α, β
satisfy

(2) α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∑

αj +
∑

βj ≤ 1.

3. Double of symmetric group. First, let G be a group, K ⊂ G a subgroup.
Let ρ be an irreducible unitary representation of G. We say that a representation
ρ is K-spherical if there exists a unique vector v such that ρ(h)v = v for all h ∈ K.
A spherical function is a function on G given by

φ(g) = 〈ρ(g)v, v〉.
We say that a pair (G,K) is spherical if each unitary irreducible unitary represen-
tation of G has ≤ 1 fixed vectors.

Now set G = Sfin∞ × Sfin∞ and K = Sfin∞ is the diagonal of G.

Theorem. ([3]). a) The pair (G,K) = (Sfin∞ × Sfin∞ , Sfin∞ ) is spherical.
b) There is a canonical one-to-one correspondence between Thoma characters and
spherical representations of the (G,K).
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c) Moreover, for a character χ(g) the corresponding spherical function is given by

Φ(g1, g2) = χ(g1g
−1
2 ).

4. Sphericity.

Theorem. Let G = Sfin∞ × · · · × Sfin∞ be the product of n copies of Sfin∞ . Let
K = Sfin∞ be the diagonal subgroup. Then the pair (G,K) is spherical.

5. n-symmetric groups. Consider the product G[n] := S∞ × · · · × S∞ of
n copies of the complete symmetric group. We define the n-symmetric group
G = G[n] as the subgroup of G[n] consisting of collections (g1, . . . , gn) such that

gig
−1
j ∈ Sfin∞ for all i, j ≤ n.

In other words, G[n] consists of all collections

(gh1, gh2, . . . , ghn) such that g ∈ S∞, hj ∈ Sfin∞ .

Denote by K(α) the image of S∞(α) under the diagonal embedding K 7→ G[n].
We define the topology on G[n] from the condition: the subgroups K(α) are open
in G[n] and form a fundamental system of neighborhoods of 1. In other words, the
topology of K ≃ S∞ is the same as above, the quotient-space G[n]/K is countable
and equipped with the discrete topology.

The existing representation theory of infinite symmetric groups is mainly the
representation theory of the bi-symmetric group G[2], see Thoma [4], Vershik,
Kerov [5], Olshanski [3], Okounkov [2], Kerov, Olshanski, Vershik [1]. The situa-
tion was explained by Olshanski in [3].

Proposition. Any Sfin∞ -spherical representation of Sfin∞ × · · · × Sfin∞ admits a
continuous extension to the group G[n].

6. Construction of simplicial complexes. Take 3 copies of the set N, say
red, yellow, and blue. An element of g ∈ G[3] is a triple of permutations of N,
denote it by

g = (gred, gyellow, gblue).

We draw a collection of disjoint oriented black triangles Aj , where j ranges in
N, and paint their sides in red, yellow, and blue anti-clockwise. We assign labels
1, 2, . . .n to black (resp. white) triangles. We also draw a collection of oriented
white triangles Bj and paint sides in red, yellow, and blue clockwise.

Next, we glue a simplicial complex from these triangles. If gred sends i to j,
then we identify the red side of the black triangle Ai with the red side of the white
triangle Bj . We repeat the same operation for gyellow and gblue. In this way, we get
a disjoint countable union of 2-dimensional compact closed triangulated surfaces.

All components except finite number consist of two triangles (black and white,
glued along the corresponding sides).

Next, we forget white labels > α and black labels > β and black labels > α.
Thus for aech double coset ∈ K(α) \ G[3]/K(β) we have assigned a simplicial

two-dimensional surface with labels and coloring.
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We define product of double cosets

K(α) \G[3]/K(β)×K(β) \G[3]/K(γ)→ K(α) \G[3]/K(γ)

as a product of simplicial bordisms. Thus we get a category whose objects are 0,
1, 2, . . . and morphisms are double cosets.

7. Main construction Let ρ be a unitary representation of G[3] in a Hilbert
space H . Denote by H(α) the space of K(α)-fixed vectors. Denote by P (α) the
operator of orthogonal projection to the space H(α).

Fix α, β. For p ∈ G[3], consider the operator

H(β)→ H(α)

given by

ρ(g) := P (α)ρ(p) = P (α)ρ(p)P (β).

For r1 ∈ K(α), r2 ∈ K(β) we have

(3) ρ(r1gr2) = ρ(g).

Thus ρ is a function on double cosets K(α) \G[3]/K(β).

Theorem. For any unitary representation ρ of G[3] for each α, β, γ ∈ Z+, for
each

(4) a ∈ K(α) \G[3]/K(β), b ∈ K(β) \G[3]/K(γ),

we have

ρ(a)ρ(b) = ρ(a ◦ b).

Supported by grants FWF, projects P19064, P22122.
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Unitary periods

Omer Offen

(joint work with Brooke Feigon, Erez Lapid)

Let E/F be a quadratic extension of number fields. For a cusp form φ on GLn(AE)
and for a unitary subgroup H associated with E/F we consider the unitary period
integral

PH(φ) =

∫

H(F )\H(A)

φ(h) dh.

A cuspidal automorphic representation π of GLn(AE) is called H-distinguished if
the restriction of PH to π is non-zero.

Based on Jacquet’s relative trace formula we show that the unitary period is
factorizable on any cuspidal π. Furthermore, we provide a criteria for distinction
of π by any unitary group H .

To obtain these global results we apply the relative trace formula to carefully
study the local components of unitary periods. This study further yields local
results on multiplicities of linear forms invariant by a unitary group. In partic-
ular, locally we prove that a generic irreducible representation is in the image
of quadratic base change if and only if it is distinguished by a quasi-split unitary
group. This is a local analog of a similar result of Jacquet for cuspidal automorphic
representations.

A formula of Arthur for the Euler-Poincaré pairing

Eric Opdam

(joint work with Maarten Solleveld)

1. The Euler-Poincaré pairing

Let C be a C-linear abelian category with finite homological dimension. The
Euler-Poincaré pairing [17] of two finite length objects π, π′ of C is defined by

(1) EPC(π, π
′) =

∑

i≥0

(−1)idimExtiC(π, π
′).

Let KC(C) denote the Grothendieck group (tensored by C) of finite length objects
in C. The Euler-Poincaré pairing extends to a sesquilinear form (conjugate linear
in the first variable) on KC(C), also denoted by EPC . The theme of this talk is
the comparison of three instances of the Euler-Poincaré pairing:

(i) The Euler-Poincaré pairing is well defined for the category CL of smooth
representations of the group L = L(F ) of rational points of a reductive group L
defined over a non-archimedean local field F [17]. The Euler-Poincaré pairing on
GC(L) := KC(CL) is denoted by EPL. In this case EPL is Hermitian [17] and plays
a fundamental role in the local trace formula and in the study of orbital integrals
on the regular elliptic set of L [1, 17, 3, 16].
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(ii) The Euler-Poincaré pairing is also naturally defined for the category CH of
finitely generated modules of an affine Hecke algebra H with positive parameters,
since CH has finite cohomological dimension [12]. The form EPH thus obtained
on GC(H) := KC(CH) is Hermitian ([12, Theorem 3.5 a)]).

(iii) Let Γ be a finite group acting linearly on a lattice X . Put S = Γ ⋉ X ,
and GC(S) := KC(CS) with CS the category of finitely generated S-modules. We
denote the Euler-Poincaré pairing in this case by EPS . Again EPS can be shown
to be Hermitian [12].

In all three cases, properly parabolically induced representations (in the sense
of [16] in case (iii)) are in the radical of the Euler-Poincaré pairing.

The goal of this talk is the explicit computation of EPC in these three cases.
Some preliminary remarks are in order. It is clear that EPC behaves well with

respect to block decompositions: If C = C1×C2 thenKC(C) = KC(C1)⊕KC(C2) and
EPC is the direct sum of the sesquilinear forms EPCi

. Second, if λ : C → C′ is an
equivalence of categories then λ yields an isometry with respect to the respective
Euler-Poincaré pairings. Combining these two general remarks, we see that if a
Bernstein block [2] B of CL (case (i)) is Morita equivalent to the module category
of an affine Hecke algebra H, then EPL restricted to GC(B)×GC(B) is computed
by EPH (case (ii)). This is known in many cases [6], [10], [15]. Next we remark
that case (iii) is in some sense trivial; here EPS can be computed completely
explicitly [16], [12] in terms of the elliptic pairings defined by Reeder [16] on the
Grothendieck groups of the representations of the finite isotropy groups of Γ acting
on the torus T of complex characters of X . Finally we note that in case (ii) there
is a natural limiting procedure sending the base q of the Hecke parameters to 1. It
is easy to see that this induces a linear isometry with respect to the Euler-Poincaré
pairings EPH (case (ii)) and EPW (case (iii)) where W = W0 ⋉ X denotes the
(extended) affine Weyl group underlying H.

This last remark is useful to some extend, and reduces the computation of EPH

to the problem of computing the limit for q → 1 of an irreducible representation
of H. In general this is an open problem, but in the special case of equal Hecke
parameters this was used to compute EPH explicitly by Reeder [16, Main Theorem,
Theorem 5.10.1] for the standard modules in the Kazhdan-Lusztig classification [8],
using properties of the Springer correspondence, a formula of Arthur [1] for case
(i), and the comparison of geometric and analytic R-groups. We will generalize
these results of Reeder to arbitrary positive Hecke parameters, using analytic R-
groups and structure theory of the Schwartz completion S of H instead. More
precisely, for tempered irreducible characters we will prove an analog of Arthur’s
formula by reducing the computation of Euler-Poincaré pairings in the cases (i)
and (ii) to the trivial case (iii) in a completely different fashion.

In case (i) the original formula of Arthur [1] is a formula expressing the so-
called elliptic pairing of tempered characters of L in terms of the elliptic pairing
of the corresponding (twisted) characters of an analytic R-group. The formula
of Arthur for the Euler-Poincaré pairing to which we referred above is in fact an
aggregation of this result for elliptic pairings with another deep result in harmonic
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analysis on L, namely Kazhdan’s conjecture [7] (proved in [17] and in [3]). This
result states that, provided F has characteristic 0, the pairing EPL for tempered
representations of L is equal to the elliptic pairing of their characters. Arthur’s
formula for Euler-Poincaré pairings makes sense in the context of case (ii) as well,
using the analytic R-groups introduced in [5]. In the next section we will discuss
some ingredients of the proof of this formula in the case (ii).

2. Arthur’s formula for the Euler-Poincaré pairing

Let H be an affine Hecke algebra in the sense of [11], [4], and let π, π′ be finite
dimensional tempered modules for H. Let S be the Schwartz completion [4] of
H (a Fréchet algebra). The first main step in the computation of EPH(π, π′) is
based on the following theorem:

Theorem. (cf. [13]) For all i ∈ Z we have ExtiH(π, π′) ≃ ExtiS(π, π
′).

This is the main result of [13], and it is the analog in case (ii) of a deep result
of Meyer [9] for reductive groups (case (i)). It shows immediately that

(2) EPH(π, π′) = EPS(π, π
′)

This result is already quite powerful. For example, let π be an irreducible discrete
series module for H. The Fourier isomorphism [4] for the Schwartz completion S
shows that π is a projective S module. Hence it follows that EPH(π, π′) = 1 if π′

is equivalent to π, and EPH(π, π′) = 0 if π′ is a tempered irreducible H-module
inequivalent to π. In particular, the isomorphism classes of the irreducible discrete
series characters of H form an orthonormal set with respect to EPH.

The formula of Arthur extends this result for discrete series characters to arbi-
trary irreducible tempered characters. By [4] the category of tempered H-modules
of finite length falls into blocks which are parameterized by the setW\Ξu of orbits
of tempered standard induction data ξ ∈ Ξu for H under the action of the Weyl
groupoid W for H. The block BWξ of tempered modules associated with Wξ is
the block generated by the standard induced module π(ξ). By [5] we have the
analog in case (ii) of the Knapp-Stein Dimension Theorem:

Theorem. A tempered standard induced module π(ξ) is a unitary tempered H-
module and the commutant of π(ξ)(H) is isomorphic to the twisted group algebra
γξC[Rξ], where Rξ is the so-called analytic R-group associated to ξ, and γξ is a
certain 2-cocycle of Rξ.

The groupRξ is a finite group acting faithfully on the the tangent space aξ of the
space of tempered standard induction data. It follows that the set of equivalence
classes of irreducible objects in BWξ is in bijection with the set of irreducible γξ-
twisted characters of Rξ. Given an irreducible γξ-twisted character χ of Rξ let
π(Wξ, χ) be an irreducible tempered H-module in the corresponding equivalence
class. We summarize the above results of [4], [5] by:

Theorem. The H-modules π(Wξ, χ) (with Wξ ∈ W\Ξu and χ running over the
set of irreducible γξ-twisted characters of Rξ) form a complete set of representatives
of the equivalence classes of tempered irreducible characters of H.
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Now we have everything in place to formulate the formula of Arthur:

Theorem.

EPH(π(Wξ, χ), π(Wξ′, χ′)) = δWξ,Wξ′ |Rξ|−1
∑

r∈Rξ

detaξ
(1− r)χ(r)χ′(r)

By the Langlands parameterization of irreducible characters of H (which is
available in this generality, see e.g. [20]) it follows that GC(H) has a linear bases
provided by the classes of the standard induced modules π(λ) where λ = (HP , σ, t)
with HP a standard “Levi-subalgebra” of H, σ a tempered irreducible module of
HP , and t a positive induction parameter (in the face of the positive Weyl chamber
defined by the simple roots of HP ). Theorem 2.4 therefore yields the computation
of EPH on GC(H) × GC(H) in terms of the bases provided by the classes of the
standard modules π(λ). The computation of EPH(π, π′) for arbitrary irreducible
H-modules π, π′ is clearly a problem of a different nature on which our methods
do not provide any information.

The proof (reported on in [14]) is based on a direct computation of ExtiS(π, π
′)

using the Fourier isomorphism [4] for S. The proof is thus based on the Fourier
isomorphism for S, Theorem 2.1, and Theorem 2.2. In particular the proof goes
through for case (i) for arbitrary F (cf. [9], [18], [21]). In particular this remark
proves Arthur’s formula for EPL for F of arbitrary characteristic and also yields
another proof of Kazhdan’s conjecture when combined with Arthur’s original for-
mula for elliptic pairing [1].
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Associated varieties, derivatives, Whittaker functionals, and rank for
GL(n,R)

Siddhartha Sahi

(joint work with Dmitry Gourevitch)

Let G = Gn = GL (n,R), let N be the subgroup of strictly upper triangular
matrices, and let g, n denote their respective complexified Lie algebras. Characters
of N correspond bijectively to elements of n∗ vanishing on [n, n], i.e. to elements
of X = (n/[n, n])∗. By the Killing form on g, we can idenitfy g∗ with g and obtain
thereby an imbedding n∗ ⊂ g∗, allowing us to regard X as a subset of g∗.

First suppose π is an irreducible admissible representation of G on a Banach
space, and let πK and π∞ denote the spaces of K-finite and smooth vectors,
respectively. For ψ ∈ X we define the spaces of Whittaker functionals:

Wh∗ψ (πK) = Homn (πK , ψ) , Wh∗ψ (π∞) = HomN (π∞, ψ)

where in the latter space we require the morphism to be continuous with repect
to the Frechet topology of π∞. We also denote by Vπ ⊂ g∗ the associated variety
of the annhilator of π.

Our first main result is as follows:

Theorem. Let π be an irreducible admissible representation of GL (n,R), and let
ψ ∈ X be as above, then the following are equivalent:

(1) ψ ∈ Vπ
(2) Wh∗ψ (πK) 6= 0

(3) Wh∗ψ (π∞) 6= 0
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Now suppose π is an irreducible unitary representation of Gn = GL (n,R), i.e.

π ∈ Ĝn then we define the depth d of π, and the highest derivative Aπ ∈ Ĝn−d
as follows: First of all we know by a result of Baruch that π restricts irreducibly
to the mirabolic subgroup Pn ⊂ Gn consisting of invertible matrices with last row
(0, · · · , 0, 1). The group Pn is a semidirect product Gn ⋉Rn−1, and analysing its
unitary dual iteratively by Mackey theory we obtain

P̂n ≈ Ĝn−1

∐
P̂n−1 ≈

n∐

d=1

Ĝn−d

We define d and Aπ by restricting π to Pn and using the above isomorphism. We
also define iterated highest derivatives by A0π = π and Aiπ = A

(
Ai−1π

)
, and

define the depth sequence of π to be

δ (π) = (d1, d2, . . .) where di = depth
(
Ai−1π

)

We recall next the notion of Howe rank for π ∈ Ĝn. Let m = ⌊n/2⌋ and let
Pm,n−m = (Gm ×Gn−m)⋉Nm,n−m be the “middle” maximal parabolic subgroup
of Gn, consisting of matrices with 0’s in the lower left (n−m)×m block. Nm,n−m
is an abelian group isomorphic to the space Matm×(n−m) of m × (n−m) real
matrices. By Stone’s theorem the restriction π|Nm,n−m

is given by a projection-

valued Borel measure µπ on the unitary dual N̂m,n−m. The latter space can also
be identified with Matm×(n−m) and Scarmuzzi has shown that µπ is of pure rank,
i.e. there exists some integer k, called the Howe rank of π, such that

µπ (E) = µπ (E ∩Rk) for all Borel subsets E ⊂ Matm×(n−m)

where Rk ⊂ Matm×(n−m) denotes the subset of matrices of rank k.
Our second main result is as follows:

Theorem. Let π be an irreducible unitary representation of Gn = GL (n,R).
Then

(1) The depth sequence δ (π) is decreasing, and hence defines a partition λ =
λπ

(2) The associated variety Vπ is the closure of the nilpotent coadjoint orbit
O (λ), where the latter consists of all nilpotent matrices of Jordan type λ.

(3) The Howe rank of π is min (⌊n/2⌋ , n− l (λ)), where l (λ) is the number of
nonzero parts of λ.
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Vanishing at infinity on homogeneous spaces and applications to
lattice counting

Eitan Sayag

(joint work with Bernhard Krötz, Henrik Schlichtkrull)

Let G be a real Lie group and H ⊂ G be a closed subgroup. Consider the
homogenous space Z = G/H and assume that it is unimodular, that is, it carries
a G-invariant measure µZ . Note that such a measure is unique up to a scalar
multiple.

For a Banach representation (π,E) of G let us denote by E∞ the space of
smooth vectors which is naturally a Fréchet module for G. In the special case for
the regular representation L of G on E = Lp(Z) with 1 ≤ p <∞, it follows from
the local Sobolev lemma that E∞ ⊂ C∞(Z). Let C∞

0 (Z) be the space of smooth
functions on Z that vanish at infinity. Motivated by the decay of eigenfunctions
on symmetric spaces ([9]), the following definition was taken in [5]:

Definition. We say Z has the property VAI (vanishing at infinity) if for all 1 ≤
p <∞ we have

Lp(Z)∞ ⊂ C∞
0 (Z).

By a result of [7] Z = G has the VAI property for G unimodular and H = {1}.
Furthermore, by [5] all semisimple symmetric spaces admit the VAI property. On
the other hand, if H is a non-cocompact lattice in G then Z = G/H is not VAI.

Assume that H is connected. We say that Z is of reductive type in case H is
a reductive subgroup of G, that is, if the adjoint representation of H in the Lie
algebra g of G is completely reducible. In this article we prove the following.

Theorem. Let G be a real reductive group, H ⊂ G a closed connected subgroup
such that Z = G/H is unimodular. Then VAI holds for Z if and only if it is of
reductive type.

In fact, we show that if Z is as above and not of reductive type, then there exist
unbounded functions in Lp(Z)∞ for all 1 ≤ p <∞.

If Z is of reductive type and B ⊂ G is a compact ball we provide essentially
sharp lower and upper bounds for volZ(Bgz0) where z0 ∈ Z is a base point and
g ∈ G is such that gz0 moves off to infinity. We found simple and short arguments
for these bounds. Our results generalize and simplify previous approaches in [6]
and [4]. The lower bounds in particular imply that Z has VAI.

In case Z is not of reductive type we essentially show that there is a compact
ball B ⊂ G and a sequence (gn)n∈N such that

• Bgnz0 ∩Bgmz0 = ∅ for n 6= m.
• volZ(Bgnz0) ≤ e−n for all n ∈ N.

Out of these data it is straightforward to construct a smooth Lp-function which
does not vanish at infinity.

We did not address here the cases where H is not connected or G is not re-
ductive. Without any further assumption let us assume that G is a connected Lie
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group and H ⊂ G is a closed subgroup such that Z = G/H is unimodular. In case
G is infinitesimally simple and Z is not compact one might suspect that Z has
VAI if and only if the Zariski closure of H is a proper reductive subgroup. For G
and H algebraic and G reductive, H is reductive in G if and only if it is reductive.
One might then suspect for G and H algebraic and G general, that Z has VAI if
and only if the nilradical of H is contained in the nilradical of G.

Initially we wanted to prove the converse implication in Theorem via a tem-
peredness result for invariant measures. To be more specific, assume G and H < G
to be algebraic groups and Z = G/H to be unimodular and quasi-affine. Under
these assumptions we conjecture that there is a rational G-module V , and an
embedding Z → V such that the invariant measure µZ , via pull-back, defines a
tempered distribution on V . Note that if Z is of reductive type, then there exists
a V such that the image of Z → V is closed, and hence µZ defines a tempered
distribution on V . If Z is not of reductive type, then all images Z → V are non-
closed and our conjecture would imply that VAI does not hold. Our conjecture
is supported by a result of Deligne, established in [8], which asserts that for a
reductive group G and X ∈ g := Lie(G) the invariant measure on the adjoint orbit
Z := Ad(G)(X) ⊂ g defines a tempered distribution on g. Various particular
results in the theory of prehomogeneous vector spaces provide additional support
for our conjecture (see [1]).

Finally we wish to put VAI in the context of ergodic theory. We recall that
the main ergodic theorem is implied by the fact that matrix coefficients of unitary
representations which do not contain the trivial representation vanish at infinity.
Now VAI may be interpreted as analogous to this fact. Thus it is natural expect
that VAI is related to counting problems on Z’s of reductive type. In fact this is
the case: we show that soft harmonic analysis puts the counting results of [2] and
[3] in the realm of VAI.
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Hodge theory and unitary representations of reductive Lie groups

Wilfried Schmid

(joint work with Kari Vilonen)

Let GR be a linear, reductive matrix group, KR ⊂ GR a maximal compact sub-
group, G and K the complexifications of the two groups, and UR ⊂ G a compact
real form which contains KR. The Lie algebras will be denoted by the correspond-
ing lower case German letters gR, kR, g, etc.

Recall the notion of a Harish Chandra module for GR : a finitely generated
module V over the universal enveloping algebra U(g), equipped with an algebraic
action of K with finite multiplicities, such that the two actions are compatible.
It has been understood for a long time that the problem of understanding the
irreducible unitary representations of GR can be reduced to the following three
seemingly algebraic problems:

a) classify the irreducible Harish Chandra modules for GR ;
b) determine which of these carry a non-zero gR-invariant hermitian form

(which is necessarily unique up to scaling);
c) when a nonzero gR-invariant hermitian form exists, determine whether it

is (positive or negative) definite.

Of these, a) has three equivalent, though different solutions, due to Langlands,
Vogan-Zuckerman, and Beilinson-Bernstein, and b) can be answered by an essen-
tially formal argument. Problem c) is still open. It should be mentioned that the
irreducible unitary representations of certain groups GR, and some classes of irre-
ducible unitary representations of any GR , have been determined; however, these
results do not suggest a general pattern.

More than twenty years ago, Vogan argued that the problem c) can be reduced
to the case when the Harish Chandra module V has a real infinitesimal character –
in other words, an infinitesimal character χλ in Harish Chandra’s notation, with
parameter λ in the R-linear span of the weight lattice. More recently [1], Vogan
and his coworkers observed that any irreducible Harish Chandra module V with
real infinitesimal character carries a non-zero uR-invariant hermitian form ( , )uR

.
Moreover, if V also carries a nonzero gR-invariant hermitian form, the two hermit-
ian forms are related in a direct, explicitly describable manner. Thus, if one could
solve the problem

c’) explicitly describe the non-zero uR-invariant hermitian form on an irre-
ducible Harish Chandra module V with real infinitesimal character,

one could treat the problem c).
The uR-invariant hermitian form on V can be constructed geometrically, on the

Beilinson-Bernstein realization of V , in terms of Sabbah’s notion of polarization
of a D-module. Using Morihiko Saito’s theory of mixed Hodge modules – or
more precisely, an extension of his theory – Vilonen and I have constructed two
canonical filtrations on any Harish Chandra module V , irreducible or not, with
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real infinitesimal character: an increasing “Hodge filtration”

0 ⊂ FaV ⊂ Fa+1V ⊂ . . . ⊂ FpV ⊂ . . . ⊂ ∪∞p=aFpV = V

by finite dimensional K-invariant subspaces FpV , and a finite increasing “weight
filtration”

0 ⊂W0V ⊂ . . . ⊂ WkV ⊂ Wk+1V ⊂ . . . ⊂ V

by Harish Chandra submodules WkV . These filtrations are induced by analogous
filtrations of the Beilinson-Bernstein realization of V , and are functorial on that
level, with respect to all the standard D-module morphisms.

Conjecture. If V is an irreducible Harish Chandra module with real infinitesimal
character, the non-zero uR-invariant hermitian form is nondegenerate on each
FpV , and the induced hermitian form on the quotients

FpV/Fp−1V ∼= FpV ∩ (Fp−1V )⊥

is alternatingly positive and negative definite, depending on the parity of p.

The conjecture, if proved, would not answer the question c’) directly, but it
would put c’), and thereby also c), into a functorial context, and would make c)
approachable by geometric arguments.
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Restriction of discrete series representations

Jorge Vargas

LetH denote a closed reductive subgroup of a reductive Lie groupG. Assume there
exists (π, V ) an irreducible square integrable representation for G. The work I have
done in the last few years is aimed to understand the structure of the restriction
resH(π) of (π, V ) to the subgroup H.
In joint work with Michel Duflo, we found necessary and sufficient conditions to
assure that the restriction of (π, V ) to H is an admissible restriction, extending
work of Toshiyuki Kobayashi. We also have obtained, under certain conditions,
formula for the multiplicity of each irreducible factor of resH(π) quite similar the
one obtained by Kostant for the multiplicity of a weight and as the formula of
Blattner proved by Hecht and Schmid. Some of conditions to assure admissibility
are algebraic, others are formulated in the language of coadjoint orbits and pro-
jection maps.
I have also collaborated with Bent Orsted.
A new result is the following, G = SO(2n, 1) × SO(2n, 1) and H equal to the
diagonal subgroup, K = SO(2n), (τ,W ) lowest K×K type of π. Then, the lowest
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K−type of any discrete factor of π restricted to H is contained in resK(W ) ⊗
IndKM (Trivial).
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Topological blow-up and discontinuous groups

Taro Yoshino

Let X be a non-Hausdorff space with a crack S. We introduce the concept of
”Topological blow-up” as a ‘repair’ of the crack. In general, the ‘repaired’ space

X̃ is a sequential Hausdorff space containing X \ S as its open subset. Moreover,

in many cases, X̃ is Hausdorff. The original space X can be recovered from the

pair of (X̃, S).

1. Example

Let R act on R4 linearly and unipotently by

R→ GL(4,R), t 7→
(

1 t
1
1 t
1

)
.

We consider the quotient space X := R\R4. This space naturally divides into two
parts:

R :=








x
y
z
w


 ∈ X | (y, w) 6= (0, 0)




, S :=








x
0
z
0


 ∈ X




.

The subset R (regular part ) is the set of all one-dimensional orbits. On the other
hand, S (singular part ) is the set of all zero-dimensional orbits. In the induced
topology, we have R ≃ (R3 \ R) and S ≃ R2. Roughly speaking two-dimensional
space S is in the one dimensional ‘hole’ of R. So, X is not Hausdorff. This space,
however, is not so ‘bad’. In fact, the ‘generic part’ is Hausdorff. Our method
works well for such a space.

2. Setting

Let X be a (non Hausdorff) topological space. We say a closed subset S is a
crack, if for any distinct elements x, y ∈ X ,

{x, y} 6⊂ S =⇒ x and y have disjoint neighbourhoods.

By definition, the complementary part of S is Hausdorff. We may think of S as
the ‘lack of Hausdorffness’ of X . Our construct of topological blow-up ‘repairs’ this
crack by patching another topological space L.
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To be precise, the ‘repaired’ space X̃ will be defined as:

X̃ := L ⊔R,

where R := X \ S and L ⊂ 2S (the power set of S). Here, we want to ask: What

is L? How to define a topology on X̃? But, before that, let us see a naive idea to
define topological blow-up.

3. Naive idea

Suppose that a sequence in R approaches to the singular part S. Note that the
limit points of this sequence are not necessarily unique. So, we consider the set of
all limit points, and denote it by l.

Then, l is a subset of S, and l should be a point in L. Here, recall that the ‘regular

parts’ of X and X̃ are the same space R. So we can ‘copy’ the sequence to the
right picture. Then, our naive idea is:

It is desirable if the ‘copied’ sequence convergences to the point l in the topology

on X̃.

Unfortunately this idea does not work well. We need to modify our idea. There
are three steps.

4. Filter

We need to replace the word ‘sequence’ by ‘filter’, because ‘convergence of
sequence’ does not have enough information on the topological space which is not
first countable.

5. Prime filter

For a filter F , we define

limF := {s ∈ S | F → s} .

And we put

Lall := {limF | F is a filter of R} .
In light of the naive idea, the patching space L should be Lall. However, Lall is

too large as the patching space.
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Observation. Take two elements l1, l2 ∈ Lall such that l1∩ l2 6= ∅. For simplicity,
in what follows, we use sequence instead of filter. There are sequences {xn}, {yn}
whose limit sets are l1 and l2, respectively. Define the third sequence by

zn :=

{
xn (n is odd)

yn (n is even).

Then, the limit set of {zn} is l3 := l1 ∩ l2 ∈ Lall. In the topology on X̃, while {zn}
convergences to a point l3, the subsequence {z2n} convergences to a point l1. This
must not happen. In other word, l3 should not be a point of the patching space L.

To remove such elements, we introduce:

Definition. A filter F is prime, if any finer filter F ′ has the same limit set
(limF ′ = limF).

Here, we have used the terminology “finer” which corresponds to “subsequence”
in terms of sequences. We put

Lprime := {limF | F is a primer filter of R} .
It turns out that there are enough prime filters to understand all convergent filters
of R in X . To be precise, we have:

Lemma. For any filter F , there exists a finer prime filter F ′.

Then, in fact, Lprime is good as patching space. However, it is not so easy to
tell whether a given limit set is prime or not. So we introduce

Lmax :=
{
l ∈ Lall | l is maximal in Lall

}
.

Then we have:

Observation. Maximal limit is prime. (Lmax ⊂ Lprime).

6. Analogy to algebraic geometry

There are some similarities with the elementary theory of algebraic geometry.

Lall limit set ←→ ideal
Lprime prime limit ←→ prime ideal
Lmax maximal limit ←→ maximal ideal

Moreover, in the algebraic geometry, Spec is important. It is the set of all prime
ideals with topology. In what follows, we define a topology on L := Lprime, which
is the set of all prime limits.

7. Patching map

To define a topology on X̃ , we introduce a patching map. Apart from our setting
for a while, we consider a topological space X = A ⊔B in general such that B is
open in X .

¿From the topology on X , we obtain the induced topology on A and B. On
the other hand, if we forget the topology on X , we cannot recover the original



Representation Theory and Harmonic Analysis 3079

topology from only the topology on A and B. In fact, we do not know how A and
B are connected. In other words, we need ‘+α information’ to recover.

(topology on X) ←→ (topology on A) + (topology on B) + α

Patching map is just such information.

Definition. A patching map is a map µ : OB → OA having the following
properties: (U, V ∈ OB)

(1) µ(B) = A, (2) µ(U ∩ V ) = µ(U) ∩ µ(V ), (3) U ⊂ V ⇒ µ(U) ⊂ µ(V ).

Here, we denote by OA (resp. OB) the set of all open subsets in A (resp. B).
Then, we have

Lemma. Fix topologies on A and B. Then there is a one-to-one correspondence:

(topology on X such that B is open) ←→ (patching map µ : OB → OA).

In the above lemma, the correspondence is given by:
[left to right] µ(U) := A ∩ IntX(A ⊔ U) for U ∈ OB.
[right to left] T is open inX

def⇐⇒ A∩T ∈ OA, B∩T ∈ OB, andA∩T ⊂ µ(B∩T ).
Now, return to our setting. For a prime limit l ∈ L := Lprime, we set

Ωl := {F : prime filter of R | limF = l} .

Define a map µ : OR → 2L by

µ(U) := {l ∈ L | U ∈ F for any F ∈ Ωl} .

We define a topology on L by the system of open sets generated from the image
of µ. Then µ satisfies the properties of patching map. So we obtain a topology on

X̃ = L ⊔R.

8. Example

We apply our method to the first example. The patching space L is given by

L :=
{
l ⊂ S | l is a line in S (≃ R2)

}
.

As a topological space, L is homeomorphic to the Möbius band. Let us consider
how L and R are connected. Recall that R is homeomorphic to R3 \ R, thus also
homeomorphic to R3\T , where T is a solid tube in R3. We consider an equivalence
relation on the boundary of T by:

x ∼ y def⇐⇒ x = ±y (for x, y ∈ ∂T ).

Since the quotient space ∂T/ ∼ is homeomorphic to the Möbius band, there is

a two-to-one map f : ∂T → L. This map gives a topology on X̃ = L ⊔ R. In

particular, the ‘repaired space’ X̃ is Hausdorff in this case.
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9. Motivation

The deformation space T (Γ, G,H) of discontinuous groups Γ on a non-Riemannian
homogeneous space G/H is not a Hausdorff space in general. This work was
originally motivated from the trial of understanding of such deformation space
(see [K93, KN06, BKY08]).
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