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Abstract. The topic of this meeting were non-linear partial differential
and integro-differential equations (in particular kinetic equations and their
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such equations. A highlight of this meeting was a mini-course on the recent
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Introduction by the Organisers

The Oberwolfach meeting described here aimed at presenting the latest mathe-
matical results in the field of kinetic theory (both related to classical mechanics
and quantum mechanics). There were 50 participants, among which 14 young par-
ticipants (PhD students, post-docs or young assistant professors). Three of them
(G. Raoul, E. Dolera, G. Aki) were partially sponsored by the program “Oberwol-
fach Leibnitz Graduate Student”, and two others (C. Sparber and R. Strain) were
invited within the program “US Junior Oberwolfach Fellows”: they are promising
young researchers working in the US.

About half of the participants gave a presentation, where the length of talks
were either 30 or 45 minutes. The longer talks included an expository introduction
to the subject and the shorter talks were rather on specialized results. One of the
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highlights of the meeting was the presentation by C. Mouhot (in three one-hour
lectures) of the remarkable theorem obtained by C. Villani and himself about
the Landau damping (one of two works which were considered for awarding to
C. Villani the Fields medal): the main steps of the proof were presented at this
occasion, together with many important technical aspects.

Two talks (S. Mischler on one side, and F. Salvarani on the other side) are
directly related to hypocoercivity, the other concept which was celebrated when
the Fields medal was awarded to C. Villani.

New results on long-standing problems were reported in the talks on the deriva-
tion of kinetic equations (two on the Lorentz gas model, by E. Caglioti and B.
Wennberg, still another one by M. Pulvirenti on nonlinear kinetic equations), and
in the talk by R. Strain on perturbative solutions of the singular Boltzmann equa-
tion. Dolera presented his work with Regazzini in which it is proved for Maxwellian
molecules under only a fourth moment hypothesis and a very mild smoothness con-
dition that solutions of the spatially homogenous Boltzmann equation converge to
equilibrium exponentially fast at a rate given by the spectral gap, even for large
initial data. This had been proved earlier for interactions harder than Maxwellian
by Mouhot, but his analytic proof did not extend to the Maxwellian case. Dolera
and Regazini use probabilistic methods.

Non-traditional applications of kinetic theory were visited, in particular in the
talks by M. Bisi (application to chemistry), J. A. Carrillo (application to the col-
lective motion of animals), M. Herty (application to supply chain models), D.
Matthes (application to socio-economics), G. Raoul (application to biomechanics
and chemotaxis models). E. Sonnendrücker presented a recent numerical approach
(semi-Lagrangian) to the gyrokinetic model for plasmas. It shall be used to sim-
ulate the turbulent evolution in a fusion reactor, as in the ITER project. Finally,
C. Schmeiser presented a proof of existence and uniqueness for traveling waves in
a chemical reaction model. Those various fields show that kinetic theory (consid-
ered in a broad sense) remains, 150 years after its discovery, a powerful tool for
exploring various aspects of the reality.

The quantum mechanical talks presented here covered a broad spectrum of
topics: the semi-classical limit (in particular the relation of Bohmian and Wigner
measures for the linear Schröedinger equation discussed by C. Sparber, and the
asymptotic dynamics for nonlinear Schrödinger equations as presented by R. Car-
les), macroscopic quantum models (in particular global-in-time existence results
for higher order, nonlinear quantum-diffusion equations, which exploit new en-
tropy estimates obtained by A. Jüngel and D. Matthes). Relativistic and non-
relativistic gravitational Hartree models for boson stars were analyzed in the talks
of A. Michelangeli and G. Aki. M. Escobedo und X. Lu discussed the quantum
Boltzmann equation for bosons. The latter author found a dichotomy betweeen an
oscillatory solution and (Bose-Einstein) condensation, i.e. a singular solution. C.
Negulescu presented an efficient, WKB-based numerical scheme for the stationary
Schrödinger equation in the highly oscillatory classical limit.
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Another emerging development stems from the interplay of entropy methods
for (classical) kinetic equations on the one hand and the dissipative behavior of
open quantum systems on the other hand, as presented by F. Fagnola. This seems
to pave the way for a “quantum entropy method” and a better understanding of
quantum hypercontractivity.

A highlight involving entropy in particle systems was the talk of F. Otto, on joint
work with G. Menz that solves a long-standing problem in hydrodynamic limits.
The problem is to prove a logarithmic Sobolev inequality for a Gibbs measure
for N non-interacting spins, coupled only by a constraint on the total spin, and
to obtain a constant that is independent of N and the value of the total spin.
This had been done earlier only for the case in which the single particle energy is
exactly quadratic outside a compact set. Otto and Menz introduce an interesting
asymmetric variant of the Brascamp-Lieb inequality, and use it to treat a much
wider range of energy functions, including the standard quartic double well.

Y. Brenier described recent work on a novel variational approach to the dynam-
ics of a system of self-gravitating particles with sticky collisions, and J. Dolbeault
also discussed variational problems relating to gravitational systems, presenting
a recent result obtained with Campos and Del Pino on the existence of distinct
equilibrium solutions in a stellar dynamics model. Another interesting develop-
ment in particle models was presented by Y. Guo who described his work with
B. Pausander giving the construction of global smooth irrotational solutions for
ion dynamics in a two–fluid plasma model. Finally, J.-A. Canizo presented his
results (in collaboration with L. Desvillettes and K. Fellner) about non-gelation
in diffusive coagulation breakup systems.
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Abstracts

Thermal effects in gravitational Hartree systems

Gonca L. Aki

(joint work with Jean Dolbeault, Christof Sparber)

In this work we investigate the non-relativistic gravitational Hartree system. This
model can be seen as a mean-field description of a system of self-gravitating quan-
tum particles. It is used in astrophysics to describe so-called Boson stars. In the
present work, we are particularly interested in thermal effects, i.e. (qualitative)
differences to the zero temperature case.

A physical state of the system will be represented by a density matrix operator
ρ ∈ S1(L

2(R3)), i.e. a positive self-adjoint trace class operator acting on L2(R3;C).
Such an operator ρ can be decomposed as

(1) ρ =
∑

j∈N

λj |ψj〉〈ψj |

with an associated sequence of eigenvalues (λj)j∈N ∈ ℓ1, λj ≥ 0, usually called oc-
cupation numbers, and a corresponding sequence of eigenfunction (ψj)j∈N, forming
a complete orthonormal basis of L2(R3), cf. [15]. By evaluating the kernel ρ(x, y)
on its diagonal, we obtain the corresponding particle density

nρ(x) =
∑

j∈N

λj |ψj(x)|2 ∈ L1
+(R

3) .

In the following we shall assume that

(2)

∫

R3

nρ(x) dx =M ,

for a given total mass M > 0. We assume that the particles interact solely via
gravitational forces. The corresponding Hartree energy of the system is then given
by

EH [ρ] := Ekin[ρ]− Epot[ρ] = tr(−∆ ρ)− 1

2
tr(Vρ ρ) ,

where Vρ denotes the self-consistent potential

Vρ = nρ ∗
1

| · |
and ‘∗’ is the usual convolution w.r.t. x ∈ R3. Using the decomposition (1) for ρ,
the Hartree energy can be rewritten as

EH [ρ] =
∑

j∈N

λj

∫

R3

|∇ψj(x)|2 dx− 1

2

∫∫

R3×R3

nρ(x)nρ(y)

|x− y| dxdy .

To take into account thermal effects, we consider the associated free energy func-
tional

(3) FT [ρ] := EH [ρ]− T S[ρ]
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where T ≥ 0 denotes the temperature and S[ρ] is the entropy functional

S[ρ] := −trβ(ρ) .

The entropy generating function β is assumed to be convex, of class C1 and will
satisfy some additional properties to be prescribed later on. The purpose of this
paper is to investigate the existence of minimizers for FT with fixed mass M > 0
and temperature T ≥ 0 and study their qualitative properties. These minimizers,
often called ground states, can be interpreted as stationary states for the time-
dependent system

(4) i
d

dt
ρ(t) = [Hρ(t), ρ(t)] , ρ(0) = ρin .

Here [A,B] = AB −BA denotes the usual commutator and Hρ is the mean-field
Hamiltonian operator

(5) Hρ := −∆− nρ ∗
1

| · | .

Using again the decomposition (1), this can equivalently be rewritten as a system
of (at most) countably many Schrödinger equations coupled through the mean
field potential Vρ:

(6)

{
i ∂tψj +∆ψj + V (t, x)ψj = 0 , j ∈ N ,

−∆Vρ = 4π
∑

j∈N
λj |ψj(t, x)|2 .

This system is a generalization of the gravitational Hartree equation (also known
as the Schrödinger-Newton model, see [1]) to the case of mixed states. Notice that
it reduces to a finite system as soon as only a finite number of λj are non-zero. In
such a case, ρ is a finite rank operator.

Establishing the existence of stationary solutions to nonlinear Schrödinger mod-
els by means of variational methods is a classical idea, cf. for instance [6]. A
particular advantage of such an approach is that in most cases one can directly
deduce orbital stability of the stationary solution w.r.t. the dynamics of (4) or,
equivalently, (6). In the case of repulsive self-consistent interactions, describing
e.g. electrons, this has been successfully carried out in [2, 3, 4, 11]. In addi-
tion, existence of stationary solutions in the repulsive case has been obtained in
[10, 12, 13, 14] using convexity properties of the corresponding energy functional.

In sharp contrast to the repulsive case, the gravitational Hartree system of stel-
lar dynamics, does not admit a convex energy and thus a more detailed study of
minimizing sequences is required. To this end, we first note that at zero tempera-
ture, i.e. T = 0, the free energy FT [ρ] reduces to the gravitational Hartree energy
EH [ρ]. For this model, existence of the corresponding zero temperature ground
states has been studied in [5, 7, 9] and, more recently, in [1]. Most of these works
rely on the so-called concentration-compactness method introduced by Lions in [8].
According to [5], it is known that for T = 0 the minimum of the Hartree energy
is uniquely achieved by an appropriately normalized pure state, i.e. a rank one
density matrix ρ0 =M |ψ0〉〈ψ0|.
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The results of this work can be summarized as follows: First, we shall prove the
existence of minimizers for FT , extending the results of [5, 7, 9, 1] to the case of
non-zero temperature. As we shall see, a threshold in temperature arises due to the
competition between the Hartree energy and the entropy term and we find that
minimizers of FT exist only below a certain maximal temperature T ∗ > 0, which
depends on the specific form of the entropy generating function β. Moreover,
depending on the choice of β, it could happen that T ∗ = +∞, in which case
minimizers of FT would exist even if the temperature is taken arbitrarily large. In
a second step, we shall also study the qualitative properties of the ground states
with respect to the temperature T ∈ [0, T ∗). In particular, we will prove that there
exists a certain critical temperature Tc > 0, above which minimizers correspond to
mixed quantum states, i.e. density matrix operators with rank higher than one. If
T < Tc, minimizers are pure states, as in the zero temperature model.

References

[1] P. Choquard and J. Stubbe, The one-dimensional Schrödinger-Newton Equations, Lett.
Math. Phys. 81 (2007), no. 2, 177–184.

[2] J. Dolbeault, P. Felmer, and M. Lewin, Orbitally stable states in generalized Hartree-Fock
theory, Math. Mod. Meth. Appl. Sci. 19 (2009), 347–367.

[3] J. Dolbeault, P. Felmer, M. Loss, and E. Paturel, Lieb-Thirring type inequalities and
Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal. 238 (2006), 193–220.

[4] J. Dolbeault, P. Felmer, and J. Mayorga-Zambrano, Compactness properties for trace-class
operators and applications to quantum mechanics, Monatsh. Math. 155 (2008), no. 1, 43–66.

[5] E. H. Lieb, Existence and uniqueness of the minimizing solutions of Choquard’s nonlinear
equation, Stud. Appl. Math. 57 (1977), 93–105.

[6] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics vol 14, American
Mathematical Society, Providence, RI, second edition, 2001.

[7] P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal. T.M.A. 4 (1980),
1063–1073.

[8] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The
locally compact case. Part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.
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BGK models and hydrodynamic limits for chemically

reacting mixtures

Marzia Bisi

Chemically reacting mixtures have been extensively dealt with from a kinetic point
of view in recent scientific literature. The most usual physical frame is given by
a mixture of four gases As, s = 1, . . . , 4, whose particles, besides elastic collisions,
are subject to the reversible bimolecular chemical reaction

(1) A1 +A2 ⇋ A3 +A4.

The evolution of the four distribution functions f s, s = 1, . . . , 4, may be described
by nonlinear integro–differential Boltzmann–like equations, but relaxation-time-
approximations of the cumbersome Boltzmann collision operators (the so called
BGK models) may be adopted for practical purposes. In particular, the consistent
BGK strategy proposed in [1] has been extended to the much more complicated
chemical frame [7], taking into account exchange of mass and of energy of chem-
ical link in the reactive encounters. More recently we have built up a different
relaxation model which, unlike previous approximations of the reactive Boltz-
mann equations, is not affected by the constraint that the chemical characteristic
time should be large compared to the mechanical one, and therefore it can be ap-
plied also to situations with fast chemical reactions [3]. Specifically, model kinetic
equations read as

(2)
∂f s

∂t
+ v · ∂f

s

∂x
= νs

(
Ms − f s

)
s = 1, . . . , 4,

where Ms are the family of local Maxwellians

(3) Ms(v) = ñs
(

ms

2πKT̃

) 3
2

exp

[
− ms

2KT̃
(v − ũ)2

]
s = 1, . . . , 4

with seven disposable scalar parameters, provided by ñs, ũ, T̃ , bound together by
the mass action law

(4)
ñ1ñ2

ñ3ñ4
=

(
m1m2

m3m4

)3/2

exp

(
∆E

KT̃

)
.

Here ms denote particle masses of species s, while ∆E = E3 +E4 −E1 −E2 > 0,
with Es standing for the energy of chemical link of gas As. The auxiliary fields
ñs, ũ, T̃ in (3)–(4) are determined in terms of the actual species number densi-
ties ns, mass velocities us, and temperatures T s by requiring that the present
approximation and the actual Boltzmann description share the same collision in-
variants. In (2) the factor νs is the inverse of the s–th relaxation time, possibly
depending on macroscopic fields, but independent of v.

This model preserves the main features of the correct kinetic approach, includ-
ing the mass action law of chemical equilibrium, and it allows an analytical proof
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of the H–theorem in terms of the actual reactive Boltzmann H–functional

(5) H [f ] =

4∑

s=1

∫
f s(v) log

[ f s(v)
(ms)3

]
d3v .

Owing to a suitable Chapman–Enskog asymptotic procedure, hydrodynamic equa-
tions, at Euler or Navier–Stokes accuracy, have been consistently derived from
both the “slow” and the “fast” reacting BGK models [5, 4]. The performance of
such kinetic relaxation models has been numerically tested, to verify their adher-
ence to physical expectations, both in space–homogeneous problems (relaxation to
equilibrium) [2], and also in the space–dependent setting (profiles of macroscopic
quantities) [6]. The application of our models to other meaningful physical prob-
lems would be a challenging future work. Another interesting research line, still
unexploited to our knowledge, could be the derivation of a consistent BGK model
for a reacting gas mixture diffusing in a host medium.
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A modified least action principle for systems of self-gravitating

particles with sticky collisions

Yann Brenier

1. A geometric description of systems of self-gravitating particles

Let H be an euclidean space with norm denoted || · || and inner product by
((·, ·)). Given a closed bounded subset S of H , we consider the dynamical system

(1)
d2X

dt2
= (∇HΦ)[X ],

Φ[X ] = inf{ ||X − s||2
2

; s ∈ S} =
||X ||2
2

−K[X ],

K[X ] = sup{((X, s))− ||s||2
2

; s ∈ S}.
(2)
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Our main application is the description of the motion ofN self-gravitating particles
moving on the real line with a neutralizing background (which makes sense in the
framework of cosmology)

d2Xi

dt2
= Xi −

1

N

∑

j

(1{Xi > Xj} − 1/2)(3)

Indeed, this exactly corresponds to (1), with H = RN and
S = {(Iσi , · · ·, IσN ), σ ∈ ΣN}, where ΣN is the group of all permutations of the
N first integers and Ij = j/N − 1/2, as can be easily checked. (This can be
extended to higher dimensions in the framework of “Monge-Ampère gravitation”.)
Let us now return to the general framework. Notice that K is a Lipschitz convex
function and is differentiable on a large set D (whose complement is both Lebesgue
negligible and contained in a countable union of nowhere dense closed sets). On
D, ∇HΦ[X ] is well defined and takes value X−π[X ], where π[X ] is just the unique
closest point to X in the set S. In particular Φ is solution to the Hamilton-Jacobi
equation

Φ[X ] =
||∇HΦ[X ]||2

2
, ∀X ∈ D.(4)

The Cauchy problem for (1) admits unique global C1 solutions for almost every
initial condition (X0,

dX0

dt ), according to the theory of Bouchut (and Ambrosio) [1].
As expected, for large systems of particles, in the continuous limit N → +∞, the
Bouchut-Ambrosio solutions will correspond to solutions f(t, x, ξ) of the Vlasov
model

∂tf + ∂x(ξf)− ∂ξ(∂xφf) = 0,

ρ(t, x) =

∫
f(t, x, ξ)dξ = 1 + ∂xxφ(t, x).

(5)

2. A modified least action principle

Alternately, the dynamical equation (1) can be seen as the optimality equation
obtained by minimizing the action, defined for all pairs of times t1 > t0 by

(6) A[t0,t1][t→ X(t)] =

∫ t1

t0

1

2
||dX
dt

||2 +Φ[X(t)] dt,

as the end points (t0, X(t0)) and (t1, X(t1)) are fixed. We observe, using (4) in a
crucial way, that for all curves t → X(t) valued in D for a.e. t, the action can be
as well written as

∫ t1

t0

1

2
||dX
dt

−∇HΦ[X ]||2 dt+Φ[X(t1)]− Φ[X(t0)].(7)

This immediately implies that all solutions of the first order equation

dX

dt
= (∇HΦ)[X ] = x− (∇HK)[X ],(8)
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automatically are action minimizers, provided they take values in D for a.e. t.
(This phenomenon occurs in a similar way in Yang-Mills theory, and in Ghous-
soub’s theory of self-dual lagrangians [6].) However, according to maximal mono-
tone theory [5], the first order equation (8), for every initial condition X0, ad-
mits a unique global Lipschitz generalized solution, which is everywhere right-
differentiable with

dX(t+ 0)

dt
= X(t)− d0K[X(t)], ∀t(9)

where d0K[X ] denotes the element in the subdifferential ∂K[X ] with minimal
H−norm. Usually, such a solution takes values outside of D for a non-negligible
amount of time and is not C1. In particular, it cannot be solution of (1) in the
Bouchut-Ambrosio sense. We get a different type of solutions. For systems of
particles on the real line, this exactly corresponds to sticky collisions (which do
not occur for Bouchut-Ambrosio solutions, in which case particles just cross each
other without dissipation of kinetic energy). This suggests the introduction of the
modified action∫ t1

t0

1

2
||dX
dt

− d0Φ[X ]||2 dt+Φ[X(t1)]− Φ[X(t0)].(10)

where d0Φ[X ] stands for X − d0K[X ], to get solutions of (1) including sticky
collisions. A possible application of this idea is the resolution of the Early Universe
reconstruction problem, introduced by Peebles and studied by Frisch and co [4, 2],
which precisely amounts to minimizing a similar action (integrated from the big
bang up to now!). A numerical scheme is proposed in [2] for this purpose.

3. The Cauchy problem for sticky collisions

In the one dimensional setting, a very simple approach can be used to include
sticky collisions, following the ideas of [3] (and recently revisited by and collab-
orators, as in [7]). Instead of the positions Xi, we look at the uniquely defined
sequence in increasing order Yi so that Xi = Yσi , for some permutation σ. We
denote by K the closed convex cone of all sequences of real numbers in increasing
order and by 1K the corresponding indicator function, with value 0 in K and +∞
outside. Then, the 1d gravitational model (3), with sticky collisions, reduces to a
simple sub-differential system in H = RN :

−dY
dt

+ V ∈ ∂1K [Y ],

dV

dt
= Y − I.

(11)

It turns out that the macroscopical limit is well described by the Navier-Stokes-
Poisson system, in the limit of both vanishing pressure and viscosity

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + ǫρ) = ǫ∂x(ρ∂xv)− ρ∂xφ,

ρ = 1 + ∂xxφ,

(12)
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as ǫ → 0. In spite of its simplicity, formulation (11) seems limited to the 1d
setting and we think that the modified least action principle is more suitable for
multidimensional extensions.
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The Boltzmann Grad Limit for the 2D Periodic Lorentz Gas

Emanuele Caglioti

(joint work with Francois Golse)

The Lorentz gas is the dynamical system corresponding to the free motion of a
single point particle in a periodic system of fixed spherical obstacles, assuming
that collisions between the particle and any of the obstacles are elastic.

In the case of random (Poisson) obstacles G. Gallavotti (see [1]) proved that in
the Boltzmann-Gad limit the particle distribution f(t, x, v) evolves according to
the linear Boltzmann Equation.

We consider here the 2D periodic Lorentz gas: the obstacles are disks of radius
r centered in the points of Z2. Moreover the particles are assumed to have velocity
1.

In the Boltzmann Grad limit: that is r → 0 and position and time scaled by
1
r , we show that the particles distribution can be described by a kinetic equation
in an extended phase space x, v, h, τ, where h ∈ [−1, 1] is the (suitably scaled)
impact parameter of the next collision and τ ∈ R+ is the time to the next collision,
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O

h

Denoting v = (cos θ, sin θ), the governing equation for f is

(∂t + v · ∇x)f(t, x, θ, h, τ) = ∂τf(t, x, θ, h, τ) +

∫ 1

−1

p(h, τ |h′)f(t, x, θ′[h], h′, 0)dh′

where p(h, τ |h′) is the probability of a reflection with impact parameter h′ creating
a particle with next impact parameter h and life expectancy τ > 0, and where
θ′[h] is the outgoing angle which is a function of h and θ.

The scattering kernel p(h, τ |h′) can be computed by means of Farey fractions.
This equation has been derived in [2]] as a conjecture; see also [4] for similar

results.
The same equation has been also derived, by means of completely different

techniques in [5], and the existence of the limit in any space dimension has been
proved in [6]).

For the solutions of the above equation it is possibile to prove an H theorem
and the convergence to the unique equilibrium (see [3]).
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Regularity and mass conservation for discrete

coagulation-fragmentation equations with diffusion

José A. Cañizo

(joint work with Laurent Desvillettes, Klemens Fellner)

We present a new a priori estimates for discrete coagulation-fragmentation systems
with size-dependent diffusion within an open, bounded, regular domain Ω confined
by homogeneous Neumann boundary conditions [5, 6]. The initial-boundary prob-
lem for the concentrations ci = ci(t, x) ≥ 0 of clusters with integer size i ≥ 1 at
position x ∈ Ω and time t ≥ 0 is given by the following system:

∂tci − di∆xci = Qi + Fi for x ∈ Ω, t ≥ 0, i ∈ N
∗,(1a)

∇xci · n = 0 for x ∈ ∂Ω, t ≥ 0, i ∈ N
∗,(1b)

ci(0, x) = c0i (x) for x ∈ Ω, i ∈ N
∗,(1c)

where n = n(x) represents a unit normal vector at a point x ∈ ∂Ω, di is the
diffusion constant for clusters of size i, and

Qi ≡ Qi[c] := Q+
i −Q−

i :=
1

2

i−1∑

j=1

ai−j,j ci−j cj −
∞∑

j=1

ai,j ci cj ,

Fi ≡ Fi[c] := F+
i − F−

i :=

∞∑

j=1

Bi+j βi+j,i ci+j −Bi ci.

(2)

The parameters Bi, βi,j and ai,j , for integers i, j ≥ 0, represent the total rate Bi
of fragmentation of clusters of size i, the average number βi,j of clusters of size
j produced due to fragmentation of a cluster of size i, and the coagulation rate
ai,j of clusters of size i with clusters of size j. We refer to these parameters as
the coefficients of the system of equations. We assume the following conditions on
them:

ai,j = aj,i ≥ 0, βi,j ≥ 0, (i, j ∈ N
∗),(3a)

B1 = 0, Bi ≥ 0, (i ∈ N
∗),(3b)

i =

i−1∑

j=1

j βi,j , (i ∈ N, i ≥ 2).(3c)

We always work with the global weak solutions constructed in [17] under the
assumption

(4) lim
j→+∞

ai,j
j

= lim
j→+∞

Bi+j βi+j,i
i+ j

= 0, (for fixed i ≥ 1).
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Under the extra assumptions on the diffusion constants and the initial data

0 < inf
i
{di} =: d, D := sup

i
{di} < +∞,(5)

∞∑

i=1

ic0i ∈ L2(Ω),(6)

we are in fact able to prove the following L2 bound on the mass density ρ(t, x) :=∑∞
i=1 i ci(t, x): Denoting by ΩT the cylinder [0, T ]× Ω, we have the

Proposition 1. Assume that (3), (4), (5) and (6) hold. Then, for all T > 0 the
mass ρ of a weak solution to system (1) – (2) lies in L2(ΩT ) and the following
estimate holds:

(7) ‖ρ‖L2(ΩT ) ≤
(
1 +

supi{di}
infi{di}

)
T ‖ρ(0, ·)‖L2(Ω).

This kind of estimates have been previously used, for instance, in the context
of reaction-diffusion equations [11, 18, 19].

We give two lines of applications for such an estimate: on the one hand, it
enables to simplify parts of the known existence theory and allows to show ex-
istence of solutions for generalised models involving collision-induced, quadratic
fragmentation terms for which the previous existence theory seems difficult to ap-
ply. On the other hand and most prominently, it proves mass conservation (and
thus the absence of gelation) for almost all the coagulation coefficients for which
mass conservation is known to hold true in the space homogeneous case:

Theorem 1. Assume that (3), (4) and (6) hold. Assume also that the following
extra relationship between the coefficients of coagulation and diffusion holds:

(8) di ≥ Cst i−γ , ai,j ≤ Cst
(
iα jβ + iβ jα

)
,

with α+ β+ γ ≤ 1, α, β ∈ [0, 1), γ ∈ [0, 1]. Then, all weak solutions to the system
(1) conserve mass:

(9)

∫

Ω

ρ0(x) dx =

∫

Ω

ρ(t, x) dx for all t ≥ 0.

If we assume also that (5) holds (the case γ = 0 in the theorem), then the proof
of this can be obtained as a consequence of Proposition 1. In fact, in [6] we give
slightly more relaxed conditions on ai,j for which the theorem still holds. When
γ > 0 (and hence di may decay as i → +∞), the proof involves also a weaker
estimate instead of (7) (see [5]).
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[6] J. A. Cañizo, L. Desvillettes, and K. Fellner. Regularity and mass conservation for discrete
coagulation-fragmentation equations with diffusion. Annales de l’Institut Henri Poincaré
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[15] F. Guiaş. Convergence properties of a stochastic model for coagulation-fragmentation pro-

cesses with diffusion. Stochastic Analysis and Applications, 19(2):245–278, 2001.
[16] A. Hammond and F. Rezakhanlou. Moment bounds for the smoluchowski equation and their

consequences. Communications in Mathematical Physics, 276(3):645–670, December 2007.
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Concentration in space and velocity: Swarming models

José Antonio Carrillo

The talk presented in this Oberwolfach meeting was devoted to discuss several
concentration phenomena in nonlocal PDEs of macroscopic and kinetic type arising
in some applications such as swarming modelling. More precisely, we discussed the
methods to deal with measure solutions to the nonlocal aggregation equation with
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non-smooth interaction potential as the typical Morse potential. A variational
scheme based on optimal transport tools allows to show global well-posedness of
the problem for measure initial data. Moreover, the stability with respect to the
initial data allows to show a total collapse result for this problem, i.e., all the mass
of the solution arrives to the center of mass of the solution in finite time for all
initial data. This part corresponds to the work in [2].

In the second part of this talk, a similar strategy was used to deal with some ki-
netic models of swarming incorporating effects such as local repulsion, long-range
attraction, and alignment. These models can be treated by using optimal trans-
port tools to pass from particle models to kinetic models. For the example of
the Cucker-Smale model a concentration in velocity result was shown by taking
advantage again of the well-posedness for measures initial data together with par-
ticle approximations. Some simulation were shown to point out the complexity
of the patterns obtained from these seemingly simple models. These results are a
summary of the works [1, 3, 5, 4].
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Nonlinear coherent states and Ehrenfest time for Schrödinger equation

Rémi Carles

(joint work with Clotilde Fermanian-Kammerer)

We consider the semi-classical limit ε → 0 for the nonlinear Schrödinger equa-
tion

(1) iε∂tψ
ε+

ε2

2
∆ψε = V (x)ψε +λ|ψε|2σψε, (t, x) ∈ R+ ×Rd ; ψε|t=0 = ψε0,

with λ ∈ R, d ≥ 1. The external potential V is smooth, real-valued, and at most
quadratic:

V ∈ C∞(Rd;R) and ∂γxV ∈ L∞ (Rd
)
, ∀|γ| ≥ 2.

We assume that the initial data ψε0 is a localized wave packet of the form

(2) ψε0(x) = εβ × ε−d/4a

(
x− x0√

ε

)
ei(x−x0)·ξ0/ε, a ∈ S(Rd), x0, ξ0 ∈ Rd.
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Such data, which are called semi-classical wave packets (or coherent states), have
been extensively studied in the linear case (see e.g. [2, 4, 5, 10, 11]). In particular,
Gaussian wave packets are used in numerical simulation of quantum chemistry
like Initial Value Representations methods (see [12, 13, 14] and references therein).
These methods rely on the fact that if the data is a wave packet, then the solution
of the linear equation (λ = 0) associated with (1) still is a wave packet at leading
order up to times of order C log

(
1
ε

)
: such a large (as ε→ 0) time is called Ehrenfest

time, see e.g. [1, 7, 8]. Our aim here is to investigate what remains of these facts in
the nonlinear case (λ 6= 0), since typically (1) appears as a model for Bose–Einstein
Condensation, where, for instance, V may be exactly a harmonic potential, or a
truncated harmonic potential (hence not exactly quadratic); see e.g. [6, 9].

In the present nonlinear setting, a new parameter has to be considered: the size
of the initial data, hence the factor εβ in (2). There exists a notion of criticality
for β: for β > βc := 1/(2σ) + d/4, the initial data are too small to ignite the
nonlinearity at leading order, and the leading order behavior of ψε as ε → 0 is
the same as in the linear case λ = 0, up to Ehrenfest time. On the other hand, if
β = βc, the function ψε is given at leading order by a wave packet whose envelope
satisfies a nonlinear equation, up to a nonlinear analogue of the Ehrenfest time.
We show moreover a nonlinear superposition principle: when the initial data is the
sum of two wave packets of the form (2), then ψε is approximated at leading order
by the sum of the approximations obtained in the case of a single initial coherent
state.

Up to changing ψε to ε−βψε, we may assume that the initial data are of order
O(1) in L2(Rd), and we consider

(3)





iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + λεα|ψε|2σψε, (t, x) ∈ R+ ×Rd,

ψε(0, x) = ε−d/4a

(
x− x0√

ε

)
ei(x−x0)·ξ0/ε,

where α = 2βσ.

Consider the classical trajectories associated with the Hamiltonian |ξ|2
2 +V (x):

(4) ẋ(t) = ξ(t), ξ̇(t) = −∇V (x(t)); x(0) = x0, ξ(0) = ξ0.

We associate with these trajectories the classical action

(5) S(t) =

∫ t

0

(
1

2
|ξ(s)|2 − V (x(s))

)
ds.

We observe that if we change the unknown function ψε to uε by

ψε(t, x) = ε−d/4uε
(
t,
x− x(t)√

ε

)
ei(S(t)+ξ(t)·(x−x(t)))/ε,

then, in terms of uε = uε(t, y), (3) is equivalent

i∂tu
ε +

1

2
∆uε = V ε(t, y)uε + λεα−αc |uε|2σuε ; uε(0, y) = a(y),



Classical and Quantum Mechanical Models of Many-Particle Systems 3179

where the external time-dependent potential V ε is given by

(6) V ε(t, y) =
1

ε

(
V (x(t) +

√
εy)− V (x(t)) −√

ε 〈∇V (x(t)), y〉
)
,

and αc = 1 +
dσ

2
. The real number αc appears as a critical exponent. The

expression (6) reveals the first terms of the Taylor expansion of V about the
point x(t). Passing formally to the limit, V ε converges to the Hessian of V at x(t)
evaluated at (y, y). One does not even need to pass to the limit if V is a polynomial
of degree at most two: in that case, we see that the solution ψε remains exactly a
coherent state for all time. Let us denote by Q(t) the symmetric matrix

Q(t) = HessV (x(t)).

If λ = 0 or α > αc, then ψ
ε is approximated by ϕεlin, up to time of order C log 1

ε ,
where

ϕεlin(t, x) = ε−d/4v

(
t,
x− x(t)√

ε

)
ei(S(t)+ξ(t)·(x−x(t)))/ε,

and v is given by

i∂tv +
1

2
∆v =

1

2
〈Q(t)y, y〉 v ; v(0, y) = a(y).

In the critical nonlinear case λ 6= 0 and α = αc, we have typically the following
result. Consider the solution to

(7) i∂tu+
1

2
∆u =

1

2
〈Q(t)y, y〉u+ λ|u|2σu ; u(0, y) = a(y),

and let

(8) ϕε(t, x) = ε−d/4u

(
t,
x− x(t)√

ε

)
ei(S(t)+ξ(t)·(x−x(t)))/ε.

Theorem 2. Assume d = σ = 1, and let a ∈ S(R). There exist C,C0 > 0
independent of ε, and ε0 > 0 such that for all ε ∈]0, ε0],

‖ψε(t)− ϕε(t)‖L2(R) .
√
ε exp(C0t), 0 ≤ t ≤ C log

1

ε
.

Consider now initial data corresponding to the superposition of two wave pack-
ets:

ψε(0, x) = ε−d/4a1

(
x− x1√

ε

)
ei(x−x1)·ξ1/ε + ε−d/4a2

(
x− x2√

ε

)
ei(x−x2)·ξ2/ε,

with a1, a2 ∈ S(R), (x1, ξ1), (x2, ξ2) ∈ R2, and (x1, ξ1) 6= (x2, ξ2). For j ∈ {1, 2},
(xj(t), ξj(t)) are the classical trajectories solutions to (4) with initial data (xj , ξj).
We denote by Sj the action associated with (xj(t), ξj(t)) by (5) and by uj the
solution of (7) for the curve xj(t) and with initial data aj . We consider ϕεj asso-

ciated by (8) with uj , xj , ξj , Sj , and ψ
ε solution to (3) with α = αc and the above

data.
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Theorem 3. Assume d = σ = 1, and let a1, a2 ∈ S(R). Suppose E1 6= E2, where

Ej =
ξ2j
2

+ V (xj) .

There exist C,C1 > 0 independent of ε, and ε0 > 0 such that for all ε ∈]0, ε0],

‖ψε(t)− ϕ1(t)
ε − ϕε2(t)‖L2(R) . εγeC1t, 0 ≤ t ≤ C log

1

ε
, with γ =

k − 2

2k − 2
.

Even though the profiles are nonlinear, the superposition principle, which is
a property of linear equations, still holds. The assumption E1 6= E2 is probably
only technical, but we cannot conclude without it, unless we consider time intervals
which do not depend upon ε. Detailed proofs can be found in [3].
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Relative equilibria in continuous stellar dynamics

Jean Dolbeault

(joint work with Juan Campos and Manuel del Pino)

Consider the gravitational Vlasov-Poisson system

(1)





∂tf + v · ∇xf −∇xφ · ∇vf = 0 ,

φ = − 1
4π |·| ∗ ρ , ρ =

∫

R3

f dv .

We look for time-periodic solutions which are in rotation at constant angular
velocity ω. Replacing x = (x′, x3) and v = (v′, v3) respectively by (ei ω t x′, x3)
and (i ω x′ + ei ω t v′, v3) and using complex notations so that x′, v′ ∈ R2 ≈ C,
Problem (1) becomes

(2)





∂tf + v · ∇xf −∇xφ · ∇vf − ω2 x′ · ∇v′f + 2ω i v′ · ∇v′f = 0 ,

φ = − 1
4π |·| ∗ ρ , ρ =

∫

R3

f dv ,

where we have abusively used the same notations for the potential φ and the
distribution function f , for sake of simplicity. A relative equilibrium of (1) is a
stationary solution of (2) and can be obtained by considering critical points of the
free energy functional

F [f ] =

∫∫

R3×R3

β(f) dx dv +
1

2

∫∫

R3×R3

(
|v|2 − ω2 |x′|2

)
f dx dv − 1

2

∫

R3

|∇φ|2 dx

for some arbitrary convex function β, under a mass constraint
∫∫

R3×R3 f dx dv=M.
Notice that as soon as ω 6= 0, F is not bounded from below anymore. A typical
example of a function β, corresponding to the polytropic gas model , is β(f) =
1
q κ

q−1
q f q for some q ∈ (9/7,∞) and some positive constant κq. Any relative

equilibrium takes the form f(x, v) = γ
(
λ+ 1

2 |v|2+φ(x)− 1
2 ω

2 |x′|2
)
where γ(s) =

κ−1
q (−s)1/(q−1)

+ and λ is constant on each component of the support of f . The
problem is now reduced to solve a nonlinear Poisson equation, namely

∆φ = g
(
λ+ φ(x) − 1

2 ω
2 |x′|2

)
if x ∈ supp(ρ)

and ∆φ = 0 otherwise, with g(µ) = (−µ)p+ and p = 1
q−1 +

3
2 , if κq is appropriately

chosen. Assuming that the solution has N disjoint connected components Ki,
denoting by λi the value of λ on Ki and by χi the characteristic function of Ki,
we end up looking for a positive solution u = −φ of

−∆u =

N∑

i=1

ρωi in R
3 , ρωi =

(
u− λi +

1
2 ω

2 |x′|2
)p
+
χi

under the asymptotic boundary condition lim|x|→∞ u(x) = 0. We define the mass

and the center of mass associated to each component by mi =
∫
R3 ρ

ω
i dx and

ξωi = 1
mi

∫
R3 x ρ

ω
i dx respectively. The main result in [1] goes as follows.
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Theorem 4. Let N ≥ 2 and p ∈ (3/2, 3) ∪ (3, 5). For almost any masses mi,
i = 1, . . .N , and for any sufficiently small ω > 0, there exist at least [2N−1(N −
2) + 1] (N − 2) ! distinct stationary solutions fω of (2) which are such that

∫

R3

fω dv =

N∑

i=1

ρωi + o(1)

where o(1) means that the remainder term uniformly converges to 0 as ω → 0+ and
identically vanishes away from ∪Ni=1BR(ξ

ω
i ), for some R > 0, independent of ω.

With the above notations, for all i = 1, . . .N , we have that

ρωi (x− ξωi ) = λpi ρ∗
(
λ
(p−1)/2
i x

)
+ o(1)

where ρ∗ is non-negative, radially symmetric, non-increasing, compactly supported

function, depending only on p, and λi is such that mi = λ
(3−p)/2
i

∫
R3 ρ∗ dx+ o(1).

The points ξωi are such that ξωi = ω−2/3 (ζωi , 0) where, for any i = 1, . . .N ,
ζωi ∈ R2 converges as ω → 0 to a critical point of

V(ζ1, . . . ζN ) =
1

8π

N∑

i6=j=1

mimj

|ζi − ζj |
+

1

2

N∑

i=1

mi |ζi|2 .

This theorem relies on a classification of relative equilibria for the N -body
problems which has been established mostly by J.I. Palmore. See [1, Theorem 4]
for a summary of these results. Here distinct solutions means that one solution
cannot be deduced from another one by a simple scaling or by a rotation. The
strategy is to find critical points of

J [u] =
1

2

∫

R3

|∇u|2 dx − 1

p+ 1

N∑

i=1

∫

R3

(
u− λi +

1
2 ω

2 |x′|2
)p+1

+
χi dx ,

by using the solution of

−∆w∗ = (w∗ − 1)p+ =: ρ∗ in R
3

as “building brick” on each of the connected components. With Wξ :=
∑N

i=1 wi,

wi(x) = λi w∗
(
λ
(p−1)/2
i (x− ξi)

)
and ξ = (ξ1, . . . ξN ), we want to solve the problem

∆φ+

N∑

i=1

p
(
Wξ − λi +

1
2 ω

2 |x′|2
)p−1

+
χi φ = −E− N[φ]

with lim|x|→∞ φ(x) = 0, where E = ∆Wξ +
∑N

i=1

(
Wξ − λi +

1
2 ω

2 |x′|2
)p
+
χi and

N[φ] is a nonlinear correction. A lengthy computation shows that

J [Wξ] =

N∑

i=1

λ
(5−p)/2
i e∗ − ω2/3 V(ζ1, . . . ζN ) + O(ω4/3)

where e∗ = 1
2

∫
R3 |∇w|2 − 1

p+1

∫
R3 (w − 1)p+1

+ dx and ζi = ω2/3 ξ′i if the points ξi

are such that, for a large, fixed µ > 0, and all small ω > 0, we have |ξi| < µω−2/3
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and |ξi − ξj | > µ−1 ω−2/3. To localize each Ki in a neighborhood of ξi, we impose
the orthogonality conditions

(3)

∫

R3

φ∂xjwi χi dx = 0 ∀ i = 1, 2 . . .N, j = 1, 2, 3 ,

to the price of Lagrange multipliers. Fixed point methods allow to find a con-
strained solution φ. Since ξ 7→ J [Wξ] is a finite dimensional function, if ξi = (ζi, 0)
is such that (ζ1, . . . ζN ) is in a neighborhood of a non-degenerate critical point
of V , we can find a critical point φ for which the Lagrange multipliers associated
to (3) are all equal to zero. This completes the scheme of the proof, up to a last
technicality. All above computations have been done in terms of fixed Lagrange
multipliers (corresponding to the mass constraints associated to each Ki). These
constraints still need to be inverted (in order to fix the masses), thus introducing
an additional restriction, namely p 6= 3.

In this approach, relative equilibria have been obtained in an asymptotic regime
in which each component of the distribution function behaves like a minimizer of
the free energy when ω = 0, slightly perturbed by the other components, and
can be seen at large scale like pseudo-particles. These pseudo-particles are located
close to the relative equilibria of the N -body problem which are obtained when
the centrifugal force in the rotating frame equilibrates the force of gravitation. In
the rotating frame, the centrifugal force gives rise to an harmonic potential in the
variable x′, with negative sign, which competes with the nonlinearity. The non-
linearity indeed tends to aggregate the mass into spherically symmetric functions.

Such symmetry breaking phenomena due to rotation effects have been investi-
gated in [2] in the so-called flat case, which is slightly simpler (no x3 variable) to
the price of a nonlocal interaction. In such a case, a different branch of solutions
has been considered, which originates from the radial solution corresponding to
ω = 0 and gets deformed as |ω| increases. These solutions can be defined as min-
imizers, provided their support is restricted to a well chosen ball. It is probably
not very difficult to find similar solutions in the full three-dimensional setting,
although they will certainly be harder to compute numerically. It would then be
of interest to understand if such solutions can co-exists with the ones found in
Theorem 4 and to extend them as ω increases as a branch of solutions depend-
ing on ω. If solutions co-exist, and after restricting the support of the solutions
to a large but finite ball, comparing their energy would definitely provide a new
insight into the physics of gravitating systems. This is also a very nice problem
of symmetry breaking, for which almost nothing is known in case of a nonlocal
nonlinearity such as the one corresponding to the Newtonian potential found by
solving the attractive Poisson equation.
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New probabilistic methods for spatially homogeneous Maxwellian

molecules

Emmanuele Dolera

The talk deals with the spatially homogeneous Boltzmann equation for Maxwellian
molecules, namely

∂

∂t
f(v, t) =

∫

R3

∫

S2

[f(v∗, t)f(w∗, t) − f(v, t)f(w, t)] ×

× b

(
w − v

|w − v| · ω
)
uS2(dω)dw(1)

with (v, t) in R3 × (0,+∞). The post-collisional velocities are given by v∗ =
v+ [(w−v) ·ω] ω and w∗ = w− [(w−v) ·ω] ω. The angular collision kernel
b : (−1, 1) → [0,+∞) meets the symmetry condition

(2) b(x) = b(
√
1− x2)

|x|√
1− x2

= b(−x)

and, at least in the first part of the talk, the Grad cutoff assumption, here written
as

(3)

∫ 1

0

b(x)dx = 1 .

The first new result concerns a new probabilistic representation for measure solu-
tions µ(·, t) of (1). In fact, recalling that µ(·, t) is a probability measure (p.m., in
short) for every t ≥ 0, one can construct a measurable space (Ω,F) and a family
of p.m.s (Pt)t≥0 on (Ω,F) in such a way that

(4) µ(B, t) = Et[M(B)]

for every Borel set B of R3 and t ≥ 0, where Et denotes the expectation w.r.t. Pt
and M : Ω → P(R3) is a random probability measure depending only on the initial
datum µ0 and not on b. This construction, based on some seminal ideas by McK-
ean [4], is carefully described in [2]. Then, one can establish a link between M and
certain sums of independent random variables, in such a way that the techniques
related to the central limit theorem can be exploited to obtain some new results.
First, in the Grad cutoff setting, one can use the Rosenthal inequalities to improve
some estimations, due to Elmroth, on the global boundedness of the moments
of µ(·, t) (assuming that they are initially bounded), by showing that the upper
bounds can be chosen independently of b. But the most important conclusion
drawn from (4) is the validation of a conjecture by McKean on the rapidity of con-
vergence of µ(·, t) – assuming the normalizations

∫
R3 vdµ0 = 0 and

∫
R3 |v|2dµ0 = 3

– to the standard Maxwellian equilibrium γ(dv) =
(

1
2π

)3/2
exp{− 1

2 |v|2}dv in the
total variation distance dTV. More precisely, let b satisfy (2)-(3) and suppose that

m4 :=

∫

R3

|x|4µ0(dx) < +∞

|µ̂0(ξ)| = o(|ξ|−p) (|ξ| → +∞)
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for some strictly positive p,ˆdenoting the Fourier transform. Then,

(5) dTV(µ(·, t); γ) ≤ C(µ0)e
Λbt

for every t ≥ 0, where Λb is the spectral gap of the linearized Boltzmann collision

operator (given by Λb = −2
∫ 1

0 x
2(1−x2)b(x)dx) and C(µ0) is a constant depending

only on µ0. The proof of (5) is contained in [2]. Moreover, the bound (5) is optimal
in the sense that it cannot be improved in general: Indeed, for an entire class of
initial data the lower bound

dTV(µ(·, t); γ) ≥ C∗(µ0; b)e
Λbt

also holds for every t ≥ 0, with some constant C∗(µ0; b). This statement is proved
in [3].

Inequality (5) was firstly proved Grad only for initial data very close to the
equilibrium, and the problem of its extension to the general case remained open.
The best attempt in this direction was achieved by Carlen, Gabetta and Toscani
[1], who proved, always in the Grad cutoff setting, that

(6) dTV(µ(·, t); γ) ≤ Cε(µ0, b)e
(Λb+ε)t

holds true, provided that µ0 has a density f0 such that: i) all its moments are
finite; ii) f0 belongs to all the Sobolev spaces Hk(R3); the Linnik functional I[f0]
is finite. Lastly, one can note that limε↓0 Cε(µ0, b) = +∞. Hence, the probabilistic
approach shows that ε in (6) can be removed, together with many of the regu-
larity hypotheses on the initial datum. Finally, inequality (5) proves to be stable
when passing from the Grad cutoff setting to the weak cutoff, according to which

b satisfies
∫ 1

0
x2b(x)dx < +∞. In fact, the validity of (5) is preserved, unlike (6),

when b is replaced by b∧l∫
1
0
b∧l(x)dx and t by t ·

∫ 1

0 b ∧ l(x)dx, with l ∈ N and hence

in the limit l → ∞, according to a strategy described in [5].
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Linearised quantum Boltzmann equations for bosons

Miguel Escobedo

(joint work with F. Pezzotti, M. A. Valle)

We consider the linearisation of the quantum Boltzmann equation for bosons
around a thermodynamic equilibrium. The first stage of the evolution of a ho-
mogeneous gas of Bosons is described by the equation:

∂f

∂t
(t, p) = Q(f)(t, p), t > 0, p ∈ R

3.

Q(f)(t, p) =

∫ ∫ ∫

R9

W (p, p2, p3, p4) q(f)dp2dp3dp4

q (f) = f3f4(1 + f)(1 + f2)− f f2(1 + f3)(1 + f4)

W (p, p2, p3, p4) = δ(p+ p2 − p3 − p4) δ (ω(p) + ω(p2)− ω(p3)− ω(p4))

where fi ≡ f(pi, t) is the density function of particles with momentum pi at time
t and ω(p) is the energy of the particle with momentum p.

The equlibria with zero momentum (P = 0) are as follows. For any N anf E
such that:

N ≤
(

3ζ(5/2)

2 πζ(3/2)
E

)3/5

there exists an equilibria:

FN,E(p) =
1

eβ |p|2−µ − 1
, β > 0, µ ≤ 0

such that:
∫

R3

FN,E(p)dp = N,

∫

R3

FN,E(p) p dp = 0,

∫

R3

FN,E(p) |p|2 dp = E

If on the other hand N and E are such that

N >

(
3ζ(5/2)

2 πζ(3/2)
E

)3/5

the distribution:

FN,E(p) =
1

eβω(p) − 1
+ ρ δ0, β > 0, ρ > 0

is an equilibria with zero momentum such that:
∫

R3

dFN,E(p) = N,

∫

R3

|p|2 dFN,E(p) = E

For non zero momentum: F (p− p0) for some p0 ∈ R3
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1. The small p limit of the linearised equation above the critical

temperature with zero chemical potential

In the limit p → 0 the equilibrium with zero chemical potential is
1

eβ|p|2 − 1
∼ 1

β|p|2 ≡ Fβ we obtain the linear equation.

N =

∫

R9

dp2 dp3 dp4W (· · · ) (Fβ(p2)(Fβ(p3) + Fβ(p4))− Fβ(p3)Fβ(p4)) ≡ cst.

L[g] =

∫

R9

dp2 dp3 dp4W (· · · ) (−Fβ(p3)Fβ(p4)g(p2, t) + 2Fβ(p2)Fβ(p4)g(p3, t))

W (· · · ) = δ(p+ p2 − p3 − p4) δ
(
|p|2 + |p2|2 − |p3|2 − |p4|2

)

If we restrict to spherically symmetric solutions

g(t, p) = g(t, |p|), |p| = x

we may perform the angular integrations and the equation reduces to:

∂g

∂t
(t, x) = −νN g(t, x) +

∫ ∞

0

V

(
x

y

)
g(y, t)

d y

y

νN =

∫ ∞

0

Q(x) dx ≈ 4, 71

V (x) = R(x) + S(x); Q(x) = xR(x)

with R and S explicitly know functions.
Theorem. (With M. Valle P. R. E ’09) Consider β = 1, denote Fβ = F ≡ |p|−2.

For any radially symmetric initial data gin ∈ C∞
0 (R3):

There exists a unique global, bounded, radial, classical solution to the linearised
equation

∂g

∂t
= −N g + L[g]

For all t > 0: : d
dt

∫
R3 F (p) g(t, p) dp = 0 (Conservation of number of particles.)

Moreover

lim
t→+∞

F (p) g(t, p) =M δ0, with : M =

∫

R3

F (p) gin(p) dp.

(Concentration of particles).

2. The small p limit of the linearised equation below but close to

the critical temperature

We perturb now a thermodynamic equilibrium FN,E = 1

eβ|p|2−1
+ ρ δ0 that lies

below the curve E = 2πζ(3/2)
3ζ(5/2) N

5/3 The system describing the homogeneous set of
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particles after the condensation is:

∂tf(t) = Q(f) + Q2(f ;n),

d

dt
n(t) = −

∫

R3

Q2(f ;n)(t, p) dp,

where n ≡ n(t) is the condensate density and

Q2(f ;n)(p, t) =

∫

R9

dp1dp2dp3 |A(p1, p2, p3;n)|2δ(p1 − p2 − p3)δ(ω1 − ω2 − ω3)

×[δ(p− p1)− δ(p− p2)− δ(p− p3)] [f2f3 − f1f2 − f1f3 − f1] .

Q2 preserves the energy but not the number of particles.
M. Imamovic-Tomasovic, A. Griffin (PRA 1999), H. T. C. Stoof (J. Low. Temp.

Phys. 1999), R. Baier, T. Stockkamp (hep-ph/0412310).
At temperature below but of the same order than the critical temperature one

has ω(p) ≈ |p|2 and |A(p1, p2, p3;n)|2 ≈ C n. While, at very low temperature,

ω(p) ≈ c |p| and |A(p1, p2, p3;n)|2 ≈ C
p1p2p3
n

. It is expected that in both cases

Q(f) << Q2(f ;n). We consider the simplified system at “low temperature”:

∂tf(t) = Q2(f), ∂tn0(t) = −
∫

R3

Q2(f)(t, p) dp

We linearise as follows

f(t, p) = F0(p) + F0(p)(1 + F0(p))|p|2 g(t, p)

F0(p) =
1

eβ|p|2 − 1
n(t) = n0 +m(t)

and consider the small |p| limit and radially symmetric case.

∂g

∂t
(t, x) = C n0 x

−1

∫ ∞

0

H
(
x

y

)
g(t, y)

dy

y

for some explicit kernel H(x) singular at x = 1. Notice the presence of the singular
factor x−1 and the absence of any function ν(p) nor constant νN .

Classical asymptotic methods give then:

g(t, x) =
2G(0, 3)

W ′(0)W (1)W ′(2)
t−3 + o(t−3) as x→ 0, t→ +∞

m(t) = C n0G(0, 3) t
−3 + o(t−3) as t→ +∞.

(Algebraic convergence to zero).
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Quantum Fokker-Planck models: an Open System Approach

Franco Fagnola

(joint work with A. Arnold, L. Neumann)

Quantum Fokker–Planck (QFP) models are special types of Open Quantum Sys-
tems arising in the study of quantum mechanical charge-transport including diffu-
sive effects, in the description of quantum Brownian motions, quantum optics and
semiconductor device simulations [1].

The state of an open quantum system, interacting with an external environment,
is given by a density matrix, namely a positive operator on a Hilbert space h with
unit trace.

In the quantum kinetic picture of QFP models, the state at time t is described
by its Wigner function w(x, v, t), where (x, v) ∈ R2 (we choose the one-dimensional
case for simplicity), and its evolution, in a harmonic confinement potential V0(x) =

ω2 x2

2 with ω > 0 is given by (see [1] and the references therein)

∂tw = ω2x∂vw − v∂xw +Qw ,(1)

Qw = 2γ∂v(vw) +Dpp∆vw +Dqq∆xw + 2Dpq∂v∂xw +Θ(V ) .

The real valued diffusion constants Dpp, Dpq, Dqq and the friction γ > 0 satisfy

(2) ∆ := DppDqq −D2
pq − γ2/4 ≥ 0 ,

Dpp, Dqq ≥ 0, V is a perturbation of the external harmonic oscillator potential and

Θ(V )w(x, v) =
i

(2π)1/2

∫

R2

dṽ dη
(
V (x+

η

2
)− V (x − η

2
)
)
w(x, ṽ)ei(v−ṽ)η.

In the theory of Markovian Open Quantum Systems, the evolution of a state is
described by a strongly continuous semigroup of completely positive normal maps
on the Banach space of trace-class operators on h. The dual semigroup on the von
Neumann algebra B(h) of all bounded operators on h is called a quantum Markov
semigroup, or quantum dynamical semigroup following the physical terminology,
and its generator L has the typcal structure

(3) L(x) = i[H,x] +
1

2

∑

ℓ

(−L∗
ℓLℓx+ 2L∗

ℓxLℓ − xL∗
ℓLℓ) ,

for x in the domain of L, where H , Lℓ are operators on h with H self-adjoint
and i[H,x] = i(Hx − xH). All bounded generators of norm-continuous quan-
tum Markov semigroups have this structure, called GKSL (Gorini-Kossakowski-
Sudarshan-Lindblad) ([10]), with bounded operators H and Lℓ. Moreover, several
generators of weakly∗-continuous quantum Markov semigroups have the same al-
gebraic structure.

This is the case for quantum Markov semigroups describing the evolution in
QFP models (1). Here h = L2(R,C) and, letting p and q denote the momentum
and position operator on h, it is not difficult to show that considering

H =
1

2

(
p2 + ω2q2 + γ(pq + qp)

)
+ V (q) ,
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and the operators L1 and L2 given by

L1 =
−2Dpq + iγ√

2Dpp

p+
√
2Dpp q , L2 =

2
√
∆√

2Dpp

p ,

the Wigner function w(·, ·, t) of the state ρt satisfying the quantum master equation

(4)
d

dt
ρt = L∗(ρt)

where L∗ is the pre-dual generator of L (3) with the above H,L1, L2 solves (1).
In this model w(·, ·, t) is explicitly given by

w(x, v, t) =

(
1

2π

)2 ∫

R2

ei(ξx+ηv)trace(ρte
−i(ξq+ηp)dξdη .

Applying the methods developed by the author and R. Rebolledo ([8, 9, 6]
and the references therein) for the study of the asymptotic behaviour of quantum
Markov semigroups, we show the existence and uniqueness of a solution to (1) as
Wigner transforms of density matrices (ρt)t≥0 solving the master equation (4) with
the above H,L1, L2, when V is a twice differentiable potential with strictly sub-
linearly growing first derivative. Moreover, we show that ρt converges to a steady
state ρ∞ as time goes to infinity via a compactness argument in the Banach space
of trace class operators.

The existence of a unique stationary solution to (1) in a weighted Sobolev space,
for “small” (bounded, in particular) and smooth potentials V , was also proved in
[3] where, in addition, it was shown that the steady state corresponds to a positive
density matrix operator with unit trace and solutions converge towards the steady
state with an exponential rate.

The Open System approach, working in the natural space of trace-class oper-
ators, has the advantage of leading directly to solutions that are already density
matrices of quantum states. Moreover, it allows us to prove existence of a unique
steady state and convergence towards this state in trace-norm for a bigger class of
potentials V . However, only few results are available on convergence rates and hy-
percontractivity ([5, 4, 11] and the references therein) in a fully non-commutative
framework, namely, in spaces of operators instead of space of functions.

Quantum mechanical effects are now becoming more and more relevant in the
mathematical modeling of nano-scale devices; therefore further investigation in
this direction would be interesting and useful. We would like to explore deeper
properties of Quantum Fokker-Planck models with a genuinely non-commutative
approach.

References

[1] A. Arnold, Mathematical Properties of Quantum Evolution Equations, In: “Quantum trans-
port. Modelling, analysis and asymptotics”. Lectures from the C.I.M.E. Summer School on
Modelling, Analysis and Asymptotics, held in Cetraro, September 1116, 2006. Lecture Notes
in Mathematics, 1946. Springer-Verlag, Berlin 2008.



Classical and Quantum Mechanical Models of Many-Particle Systems 3191

[2] A. Arnold, F. Fagnola and L. Neumann, Quantum Fokker-Planck models: the Lindblad and
Wigner approaches. In: “Quantum Probability and Infinite Dimensional Analysis” Pro-
ceedings of the 28-th Conference CIMAT-Guanajuato, México, September 2-8, 2007. World
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Global Smooth Ion Dynamics in hte Euler-Poisson System

Yan Guo

(joint work with Benoit Pausader)

A fundamental two-fluid model for describing dynamics of a plasma in the Euler-
Poisson system, in which compressible ion and electron fluids interact with their
self-consistent electrostatic force. Global smooth electron dynamics were con-
structed in 1998 due to dispersive effect of the electric field. We are able to
construct global smooth irrotational solutions with small amplitude for the ion
dynamics equations, derived as the electron mass tend to zero from the Euler-
Poisson system.

Kinetic Equations on Networks with Applications in Traffic Flow and

Supply Chains

Michael Herty

We are interested in transport problems on networks as arising for example in the
theory of gas transportation, water flow in open canals or traffic and production
system dynamics. Such problems are typically described by conservation laws or
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kinetic equations. In recent years there has been a progress in the theoretical
investigations of such problems and among the many references we refer to [8]
for a study of scalar equations on a network and to [5] for general 2 × 2-systems.
Using classical solutions additional results are available for example in [11, 6, 9].
Here, we review recent results obtained in collaboration with R. M. Colombo, P.
Degond, S. Göttlich, G. Guerra, A. Klar, M. Rascle and V. Schleper.

First, we introduce some notation. A network is considered as finite directed
graph consisting of arcs i = 1, . . . ,K and vertices. Each arc is parameterized
by an interval [ai, bi] where ai or bi might be −∞ and ∞, respectively. In the
following we consider for simplicity a single vertex. We denote by x0 either ai or
bi depending on whether the arc is incoming i ∈ I ⊂ K or outgoing i ∈ J ⊂ K
to the vertex with J ∩ I = ∅. Note that the direction of flow is independent of
the parameterization. In the following paragraphs we discuss results where the
dynamics on each arc is governed by either a general 2× 2 hyperbolic balance law
[5], the Aw–Rascle [2] traffic flow model or a kinetic supply chain model [1, 7]. In
order to present and discuss the results we give in all cases not the full statement
but highlight a few important assumptions and properties.

We consider the general problem consisting of the 2×2 systems of balance laws
where yi ∈: [ai, bi]× [0,∞] → R2.

(1) ∂tyi (t, x) + ∂xfl (yi (t, x)) = g (t, x, yi (t, x))

and where the dynamics is coupled at x = x0 by

(2) Ψ (y1 (t, x0) , . . . , yn (t, x0)) = U (t) .

The system has to be accompanied by initial conditions and some given function
U : R+ → Rn. Applications fitting into the previous context are gas flow in
pipelines, where typically the isothermal Euler equations are considered, or open
canals where the dynamics is given by the shallow–water equations. For the ho-
mogenous Cauchy problem we consider weak solutions y1,2i ∈ C0,1(0, T ;L1[ai, bi])∩
C(0, T ;BV (ai, bi)) to (1). Those solutions are constructed for example by wave–
front tracking [4]. The main step in the construction are suitable solutions at the
vertex satisfying Ψ = 0. This is achieved by extending the standard Riemann
solver: Consider the case of constant data on each connected arc. The local in-
vertibility of Ψ along the Lax–wave curves yields existence of new constant states
at the vertex satifying the condition and leading to simple wave solutions of (1).
Estimates on the total variation of the arising waves and Helly’s theorem then
yields also existence for a problem with non–constant data [5]. Extensions to
source terms and functions U of small total variation are possible. We discuss
some crucial assumptions in the general result [5, Theorem 3.8]. First, there is
an assumption on the determinant of derivatives of Ψ which is satisfied by con-
ditions taking from the engineering literature. Second, the obtained result is a
local result in the following sense: Existence of solutions is proven for initial data
(yi, U) ∈ (ȳi, Ū)+L

1([ai, bi])×L1(0, T ) and TV (yi)+TV (U) ≤ δ for some (possibly
small) value of δ. Here, we need to assume that Ψ(ȳ) = Ū and additionally Df(ȳ)
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has a striclty negative and a strictly positive eigenvalue. The latter condition
implies no transition between sub- and supercritical situations at the vertex.

A different approach towards coupled dynamics on networks has been discussed
in [10] for traffic flow on road networks described by the Aw–Rascle–Zhang model
[2]

(3) ∂t(ρiui) + ∂x(ρiui) = 0, ∂t(ρiwi) + ∂x(ρiuiwi) = 0, wi = ui + p(ρi).

Here, ρi and ui are density and velocity of the cars and p measures the deviation
of the cars from the average velocity. Instead of prescribing a fixed function Ψ a
microscopic approach is used. It can be shown that the microscopic description
corresponds to a semi–discretization of the equations (3) in Lagragian coordinates.
The key point is the observation that wi is a Lagrangian property: On a micro-
scopic level we therefore observe on any outgoing arc j ∈ J a mixture of cars
(wi) arriving from different incoming roads i ∈ I. In order to obtain a macro-
scopic description we use homogenization [3] in the w−variable on each arc j ∈ J .
For constant initial data the homogenziation procedure yields a new homogenized
pressure p∗i on (x, t) : x ≤ uj,0t for an outgoing road j. The precise formulation of
p∗ depends on a flow distribution rate. The rate is assumed to be known. Then,
it has been shown [10] that the total flow

∑
i∈I(ρiui)(t, x0) =

∑
j∈J (ρjuj)(t, x0)

and similarly, the homogenized ’momentum’ ρiwi is conserved for weak solutions
to (3).

Jet a different procedure to couple dynamics on arcs has been discussed in the
context of a kinetic supply chain model [7]. Here, the dynamics of the particle
density fi with priority y is given by

(4) ∂tfi + ∂xΦi[f ] + ∂yE fi = 0, Φi[f ] = v H(µi −
∫ v

−∞
fidv

′)f,

where fi : R
+ × [ai, bi] × R → R, H is the heavi-side function, E the decay rate

of the priority, µi the capacity of arc i and v ≥ 0 the transport velocity. The
exceeding parts entering in an outgoing road j ∈ J will be stored in a buffer Qj if
the total incoming flow exceeds the capacitiy, i.e.,

∑
i∈I Φi > µj ,

(5) ∂tQj(y, t) =
∑

i∈I
Φi − Φj .

Additionally, boundary conditions fj(y, x0, t), j ∈ J are prescribed. Using mo-
ments ml

i =
∫
ylfidy and an equilbrium closure relation

fe =
∑K

k=1 ρk(x, t)δ (y − Yk(x, t)) a system of conservation laws

∂tm
l
i + ∂x

∫
ylΦi[f ]dy, f = fe

is derived. The corresponding conditions Ψ at the vertex x = x0 for this system
are obtained by applying the same closure procedure to the queue and the (kinetic)
boundary conditions [7].

Summarizing, different approaches to coupling conditions depending on model
and type of equation have been presented. Results on different conditions are
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available but except for general 2 × 2-systems a complete theory is still absent.
Open questions include the transition from sub- to supersonic in the gas of general
2× 2−systems, global existence in time for the Aw–Rascle model under the given
conditions and long–term behavior for the supply chain model at the vertex.
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Diffusion in macroscopic quantum models: drift-diffusion and

Navier-Stokes approximations

Ansgar Jüngel

Diffusive quantum fluid models are used in superfluidity modeling and quantum
semiconductor theory, for instance, to investigate the interplay between quantum
dispersion and dissipative phenomena. In this work, we review some analytical
results for three types of dissipative quantum fluid models.

Fourth-order quantum diffusion model. Nonlocal quantum drift-diffusion
equations have been derived from a Wigner-BGK equation, in the diffusive scaling,
by Degond et al. [3]. In the O(~4) approximation, where ~ is the reduced Planck
constant, local quantum drift-diffusion equations have been derived. In a simplified
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setting, we can write the nonlinear parabolic equation as

(1) nt + div

(
n∇
(∆√

n√
n

))
= 0, n(·, 0) = n0 ≥ 0 in T

d, t > 0,

where Td is the d-dimensional torus and n(x, t) is the particle density.
Global existence results for the multidimensional equations have been achieved

only recently [4, 7]. Whereas the framework of the first approach in [4] is that of
mass transportation theory, the second approach in [7] is based on two tools. The
first tool is the entropy estimate

d

dt

∫

Td

n(logn− 1)dx+ c

∫

Td

n|∇2 logn|2dx ≤ 0,

where c > 0 is some constant and |∇2 logn| is the eulidean norm of the Hessian
of logn. Lacking a lower bound on n, the above inequality does not yield an H2

estimate for logn. However, it is possible to prove that

(2)

∫

Td

n|∇2 logn|2dx ≥ κ

∫

Td

|∇2√n|2dx,

where κ = 4(4d − 1)/(d(d + 2)) [7]. The proof of this inequality is based on the
method of systematic integration by parts developed in [6]. The second tool is
the exponential variable transformation n = exp y, motivated by the equivalent
formulation of (1), nt +

1
2∇2 : (n∇2 logn) = 0, where the double points signify

summation over both indices of the Hessian matrix ∇2. Indeed, if y is bounded,
the particle density n = exp y becomes positive, circumventing the maximum
principle.

Open problem: Is the solution strictly positive for all t > 0, even if the nonneg-
ative initial datum vanishes at some point?

Sixth-order quantum diffusion model. When expanding the nonlocal
quantum diffusion model of [3] up to order O(~6), we obtain the sixth-order par-
abolic equation

nt = div

(
n∇
(1
2
|∇2 logn|2 + 1

n
∇2 : (n∇2 log n)

))
, x ∈ T

d, t > 0,(3)

n(·, 0) = n0 ≥ 0, x ∈ T
d.(4)

As for the fourth-order equation (1), the mathematical challenges are the non-
negativity of the particle density n and the proof of suitable a priori estimates.
Interestingly, these difficulties can be overcome by similar tools employed for (1).
Indeed, motivated by the equivalent formulation of (3),

nt = ∇3 : (n∇3 logn) + 2∇2 : (n(∇2 log)2),

where ∇3 logn is the tensor of all third-order derivatives of logn, we introduce the
exponential variable n = exp y. The second tool are the entropy estimates

d

dt

∫

Td

n(logn− 1)dx+ c

∫

Td

(
|∇3

√
n|2 + |∇2 4

√
n∇ 4

√
n|2 + |∇ 6

√
n|6
)
dx ≤ 0,
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which are proved by using systematic integration by parts. With these techniques,
the global-in-time existence of weak solutions to (3)-(4) is proved in [8] for the
one-dimensional equation and in [2] for the multidimensional case.

Open problems: Do there exist (special) weak solutions to (3) which vanish at
some points? Is there uniqueness of weak solutions?

Quantum Navier-Stokes equations. Brull and Méhats [1] derived from the
Wigner-BGK equation in the hydrodynamic scaling a Chapman-Enskog correction
to the moment equations, leading to the quantum Navier-Stokes equations for the
particle density n(x, t) and the mean velocity u(x, t),

nt + div(nu) = 0, x ∈ T
d, t > 0,(5)

(nu)t + div(nu⊗ u) +∇p(n)− ε2

6
n∇

(
∆
√
n√
n

)
− nf = 2α div(nD(u)),(6)

n(·, 0) = n0, (nu)(·, 0) = n0u0 in T
d,(7)

where ε > 0 is the scaled Planck constant, f is a force field, D(u) = 1
2 (∇u+∇u⊤),

and α > 0 is the mean-free path coming from the Enskog-Chapman expansion.
We have allowed for a barotropic pressure function p(n) = nβ with β > 1. Besides
the lack of a maximum principle due to the third-order differential term, another
problem is the density-dependent viscosity ν(n) = αn which degenerates at vac-
uum and does not allow for H1 estimates on u. A third problem is the lack of
suitable a priori estimates. Indeed, let us define the energy by

Eε(n, u) =

∫

Td

(n
2
|u|2 +H(n) +

ε2

6
|∇√

n|2
)
dx,

where H(n) = nβ/(β − 1) if β > 1 and H(n) = n(logn − 1) if β = 1. A formal
computation shows that, without force field f = 0,

dEε
dt

(n, u) + α

∫

Td

n|D(u)|2dx = 0,

which provides an H1 estimate for
√
n only.

Our main idea to solve these problems is to transform the quantum Navier-
Stokes system by means of the “osmotic velocity” w = u+α∇ logn. Then (5)-(7)
can be equivalently written as the viscous quantum hydrodynamic equations [5]

nt + div(nw) = α∆n,(8)

(nw)t + div(nw ⊗ w) +∇p(n)− ε20
6
n∇

(
∆
√
n√
n

)
− n∇V = α∆(nw),(9)

with initial conditions n(·, 0) = n0 and (nw)(·, 0) = n0u0 + α∇n0, where ε
2
0 =

ε2 − 12α2. This formulation has two advantages. The first advantage is that it
allows for the additional energy estimate (if ε2 > 12α2 and f = 0)

dEε0
dt

(n,w) + α

∫

Td

(
n|∇w|2 +H ′(n)|∇n|2 + ε20

12
n|∇2 logn|2

)
dx = 0,
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and hence, (2) provides an H2 bound for
√
n. The second advantage is that we can

apply the maximum principle to (8) to deduce strict positivity of the density n if
n0 is strictly positive and the velocity w is smooth. Employing a Faedo-Galerkin
method and assuming that β > 3, the global-in-time existence of weak solutions
to (8)-(9) and hence to (5)-(7) was shown in [5].

Open problems: Prove global existence of solutions to (5)-(6) for β ≤ 3. Develop
an existence theory for the quantum Navier-Stokes system including the energy
equation (see [9] for the model).
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[4] U. Gianazza, G. Savaré, and G. Toscani, The Wasserstein gradient flow of the Fisher in-
formation and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal. 194 (2009),
33–220.
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The Boltzmann equation for Bose-Einstein particles: Concentration or

oscillation in finite time

Xuguang Lu

The Boltzmann equation for Bose-Einstein particles (also called Uehling-Uhlenbeck
equation) can be used to study the formation of Bose-Einstein condensation of Bose
gases. For spatially homogeneous and isotropic solutions with the hard sphere
model, the equation can be written as

∂

∂t
f(x, t) =

1√
x

∫

R2
+

q(f(·, t))(x, y, z)min{√x,√x∗,
√
y,
√
z}dydz, (1)

t ∈ (0, T ), x > 0, R+ = [0,∞), 0 < T ≤ ∞, x∗ = (y + z − x)+,

q(f)(x, y, z) = f(y)f(z)[1 + f(x) + f(x∗)]− f(x)f(x∗)[1 + f(y) + f(z)].
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A measure solution of Eq.(1) on R+ × [0, T ) is a family {Ft}t∈[0,T ) of positive

Borel measures on R+ with sup
t∈[0,T )

∫
R+

(1 + x)dFt(x) <∞, such that the equation

d

dt

∫

R+

ϕdFt =

∫

R2
+

J [ϕ]d(Ft ⊗ Ft) +

∫

R3
+

K[ϕ]d(Ft ⊗ Ft ⊗ Ft)

holds for all t ∈ [0, T ) and all ϕ ∈ C2
b (R+), where J [ϕ],K[ϕ] are explicit linear

operators of ϕ. The existence of mass-energy conserved measure solutions is known
[2]. Let f(x, t) ≥ 0 and µt ≥ 0 be the L1(

√
xdx) part and the singular part of Ft

in terms of the Lebesgue decomposition, i.e. dFt(x) = f(x, t)
√
xdx+ dµt(x). We

are interested in the case where the initial datum F0 = Ft|t=0 has no singular part,
i.e. dF0(x) = f0(x)

√
xdx, and f0 is large near the origin x = 0 (the zero energy

of particles) so as to include some cases of low temperatures. Although physical
experiments show that the Bose-Einstein condensation occurs in finite time, this
has not been clear for the present quantum Boltzmann model:

Does there exist a measure solution Ft and a time t0 ∈ (0, T ), such that
Ft0({0}) = µt0({0}) > 0 ? or in a weaker version, lim

ε→0+
sup

0≤t≤t0
Ft([0, ε]) > 0 ?

To this problem we obtain an alternative result:
Theorem 1. Suppose the initial datum F0 of a measure solution Ft of Eq.(1)

on R+ × [0, T ) satisfies lim inf
ε→0+

F0([0, ε])

ε1/3
> 0. Then for almost every t ∈ (0, T ), one

of the following (a), (b) holds:
(a) ∀ 0 < η < 1

lim inf
ε→0+

1

ε1/3

∫ ε

ηε

f(x, t)
√
xdx = 0, lim sup

ε→0+

1

ε1/3

∫ ε

0

f(x, t)
√
x dx = +∞.

(b)

lim sup
ε→0+

µt([0, ε])

ε1/3
= +∞ .

Theorem 1 implies in particular that if the singular part µt has no contribution
near the origin for all t ∈ (0, T ), then x7/6f(x, t) will be always oscillating near
the origin: lim inf

x→0+
x7/6f(x, t) = 0 and lim sup

x→0+
x7/6f(x, t) = +∞ a.e. t ∈ (0, T ).

However if the restriction of conservation of mass is removed, the situation will
be very different:

Theorem 2. Let f(x, t) ≥ 0 be a weak solution of Eq.(1) on R+ × [0, T ) with
respect to the subspace C2

b (R+)0 = {ϕ ∈ C2
b (R+) |ϕ(0) = 0} of test functions.

Suppose

lim inf
x→0+

x7/6f0(x) > 0, sup
(x,t)∈(0,∞)×[0,T )

x7/6f(x, t) <∞.
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Then f(x, t) cannot be the L1(
√
x dx) part of any measure solution of Eq.(1) on

R+ × [0, T ). Moreover the mass t 7→ N(t) =
∫
R+

f(x, t)
√
xdx is not conserved:

N(t) = N(0)−B

∫ t

0

[a(s)]3ds,

∫ t

0

[a(s)]3ds > 0 ∀ t ∈ (0, T ) (2)

where B > 0 is a universal constant, a∗(t) ≤ a(t) ≤ a∗(t), and

a∗(t) = lim inf
x→0+

x7/6f(x, t), a∗(t) = lim sup
x→0+

x7/6f(x, t).

The authors of [1] constructed a classical solution f(x, t) (we call it the EMV
solution) of Eq.(1) that satisfies all conditions in Theorem 2 with a∗(t) = a∗(t),
and f(x, t) conserves the energy. Spohn [3] then proved the mass equality in (2).
These together with the strict positivity in (2) and the first conclusion of Theorem
2 show that the EMV solution f(x, t) gives a process of increasing temperature,
and for any function n(t) ≥ 0 on [0, T ), the measure Ft defined by

dFt(x) = f(x, t)
√
xdx+ n(t)δ(x)dx (3)

is not a mass-conserved weak solution of Eq.(1), where δ(x) is the delta func-
tion. Recall that to study the concentration in finite time physicists use splitting
method: Hope to solve the couple (f(x, t), n(t)) in (3) as a solution of an equation
system of the following form :

∂

∂t
f(x, t) = Q(f)(x, t) + n(t)Q̃(f)(x, t) , f(x, 0) = f0(x),

d

dt
n(t) = −n(t)

∫ ∞

0+

Q̃(f)(x, t)
√
xdx , n(0) = 0

where Q(f)(x, t) is defined by the right hand side of Eq.(1). From Theorems 1 &
2 and the properties of the EMV solution above we feel that either this splitting
method is oversimplified, or the problem of concentration in finite time is more
difficult than what we thought (maybe need very sharp estimates for proving
n(t) > 0 for t > tc > 0 ?). See [3] for relevant results and discussions.
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Kinetic models with non-strict conservations

Daniel Matthes

(joint work with Federico Bassetti, Lucia Ladelli, and Giuseppe Toscani)

In his seminal works from the 60s, McKean introduced the idea of applying proba-
bilistic methods to study the long time behavior of solutions to the Kac equation.
Surprisingly, it was much later [2] that the powerful machinery of the central
limit theorem has been employed in this spirit to derive estimates on the rate of
equilibration, which eventually [7] lead to the confirmation of McKean’s original
conjecture. This talk is concerned with yet another application of the probabilistic
ideas to study the long time behavior of Maxwell-type equations.

Specifically, we consider the spatially homogeneous Boltzmann equation ∂tf +
f = Q+[f, f ] for the velocity distribution f = f(t; v) in a d-dimensional gas, whose
collision mechanism turns the pre-collisional velocities v, v∗ of the two interacting
molecules into the post collisional velocities

(1) v′ = Av +Bv∗, v′∗ = A∗v∗ +B∗v,

with random matrices A,B,A∗, B∗. We generalize the classical theory for Maxwell
molecules (which fits in by choosing A = 1− ωωT and B = ωωT , with a random
vector ω uniformly distributed on Sd−1) by not requiring strict energy conservation
but only conservation in the ensemble average. I.e., although it will no longer be
true that |v′|2 + |v′∗|2 = |v|2 + |v∗|2 holds almost surely, one still has that the
statistical expectation of the left-hand side equals the right-hand side, so the total
kinetic energy of the system remains constant. The original motivation to study
such models arose in applications of kinetic theory to economics [5].

Under the relaxed hypothesis of conservation in the mean, the possibilities for
the long time behavior of solutions is much richer than for Maxwell molecules.
Breaking the strict conservation of energy also breaks the H-Theorem, and neither
Boltzmann’s entropy functional nor the Fisher information are time-monotone
anymore. Typically, there is still a (unique up to rescaling) stationary state f∞,
but f∞ is not a Gaussian in general; in fact, f∞ is a Gaussian if and only if the
collisions (1) are strictly energy conservative. In the general situation, we prove
[1] that f∞ is a scale mixture of Gaussians instead,

(2) f∞(v) =

∫

Σ≥0

1

det
√
2πΣ

exp
(
− 1

2
vTΣ−1v

)
dν(Σ),

where ν is a probability measure on the set of non-negative symmetric matrices Σ.
We find that, depending on the particular choice of the rules (1), f∞ might have a
concentration in v = 0 and/or might possess a fat (Pareto) tail, f∞(v) ∝ |v|−(1+β).
Moreover, f∞ is weakly attractive for all transient solutions of finite kinetic energy.

These results are derived in application of the central limit theorem. The key
ingredient is the probabilistic representation [3] of the transient solution,

f(t) = e−t
∞∑

n=1

(1 − e−t)n−1 Law

( n∑

j=1

CnjXj

)
,
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with i.i.d. random variables X1, X2, . . . representing the initial distribution, and
random matrix weights Cnj that are obtained by “taking a random walk in the
McKean forrest”. More precisely, first pick a binary tree of order n at random
according to McKean’s construction. Then assign i.i.d. copies (Ak, Bk) of the
random matrix pair (A,B) to each interior node, with Ak being associated to the
node’s left branching, and Bk to its right branching. Now the matrix Cnj is the
product of all Aℓ’s and Bℓ’s along the route from the jth leaf to the tree’s root.
The applicability of the central limit theorem then rests on suitable estimates on
the convergence of the summed covariance matrices

Θn :=
n∑

j=1

Cnj Cov[Xj ]C
T
nj

towards a limiting random matrix Θ as n → ∞. It follows that ν in (2) is the
law of Θ. All qualitative information of f∞ are thus encoded in Θ, which we

characterize as solution of the fixed point equation Θ
D
= AΘAT +BΘBT .

In d = 1 spatial dimension, and under mild conditions on the random matrices
in (1), the weak convergence of transient solutions to the stationary state can
be improved to strong convergence [8], provided that the initial condition f0 is
a genuine density function with a bit of Sobolev regularity, namely f0 ∈ Hǫ(R)
and

√
f0 ∈ Hǫ(R) for an arbitrarily small ǫ > 0. The proof combines the classical

strategy from [4] with direct estimates a la [6] to compensate for the lack of entropy
control. Unless f0 has just barely finite energy (i.e., all of its moments above the
second diverge), the convergence f(t) → f∞ is even exponentially fast in the L1-
norm, with a rate that depends sensitively on growth of f0’s moments.
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Dynamical collapse of boson stars

Alessandro Michelangeli

(joint work with B. Schlein)

We consider systems of gravitating bosons known as boson stars. Assuming
the particles to have a relativistic dispersion, but the interaction to be treated
classically (Newtonian gravity), we arrive at the N -particle Hamiltonian

(1) HN =

N∑

j=1

√
1−∆xj −

G

N

N∑

i<j

1

|xi − xj |

acting on the Hilbert space L2
s(R

3N ), the subspace of L2(R3N ) containing all
functions symmetric with respect to arbitrary permutations (here we use units
with ~ = 1, c = 1, and m = 1, where m denotes the mass of the bosons).

The mean-field type scaling in front of the interaction is dictated by the emer-
gence of an effective theory in the limit of infinitely many particles [5, 6]. More
precisely, as long as G is smaller that a certain critical value Gcrit (Gcrit > 0), then
1
N inf σ(HN ) stays finite as N → ∞ and its asymptotics is captured by the Hartree
energy. In this case the Schrödinger dynamics governed by HN is well-posed and
it makes sense to study the “propagation of chaos”-like phenomenon described by
the following diagram

(2)

ΨN
partial trace−−−−−−−−→ γ

(k)
N

N→∞−−−−→ |ϕ⊗k〉〈ϕ⊗k|
many-body

linear dynamics

y
y

y non linear

Hartree

ΨN,t−−−−−−−−−→ γ
(k)
N,t

N→∞−−−−→ |ϕ⊗k
t 〉〈ϕ⊗k

t |
Here the underlying effective non-linear Schrödinger equation for the one-body

orbital ϕt is the semi-relativistic Hartree-equation

(3) i∂tϕt =
√
1−∆ϕt −G

(
1

| · | ∗ |ϕt|
2

)
ϕt .

Eqn. (3) is known to be globally well-posed for G < Gcrit [4], and to undergo
blow-up in finite time as G > Gcrit [3]. In this sub-critical regime, diagram (2)
was closed first in [1] and later in [7], the general result reading

(4) Tr
∣∣∣γ(1)N,t − |ϕt〉〈ϕt|

∣∣∣ 6
C√
N

uniformly in t ∈ [0, T ] (T being fixed, arbitrary) and ∀N > 1. Analogous results
were proved in the non-relativistic version of our model (1), [2, 8].

The generally believed scenario in the super-critical regime G > Gcrit is that
(3) still describes the effective dynamics of the boson star and that the one-body
blow-up describes the occurrence in time of the many-body collapse.

Our work substantiates this picture as follows. We monitor the loss of regularity
of the many-body wave function along the time evolution, as the time approaches
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the one-body blow-up time. To this aim, we control the evolution of the fluctua-
tions around the limiting Hartree dynamics. Our control being for the first time in
the energy sense, and with a quantitative rate of convergence, we can deduce from
the blow-up of the Hartree dynamics the loss of regularity along the many-body
quantum dynamics.

Theorem. Fix G ∈ R, ϕ ∈ H2(R3) with ‖ϕ‖2 = 1 and set ΨN = ϕ⊗N . Let αN =

N−k for an arbitrary positive integer k. Let ΨN,t = e−iH
(α)
N tΨN be the evolution

of the the initial wave function ΨN with respect to the regularised Hamiltonian

(5) H
(α)
N =

N∑

j=1

√
1−∆xj −

G

N

N∑

i<j

1

|xi − xj |+ αN

and let γ
(1)
N,t be the one-particle reduced density matrix associated with ΨN,t.

(Note that the regularisation is removed as N → ∞.) Denote by ϕt the solution
to the non-linear Hartree equation (3) with initial data ϕt=0 = ϕ. Suppose that
Tblow-up is the first time of blow-up for ϕt. In other words, assume that κ(t) :=
sups∈(0,t) ‖ϕs‖H1/2 < ∞ for all t ∈ [0, Tblow-up), and ‖ϕt‖H1/2 → ∞ as t →
T−
blow-up. Then, for t ∈ [0, Tblow-up), there exists N(t) ∈ N, such that N(t) → ∞,

as t→ T−
blow-up, and

(6) ‖(1−∆x1)
1/4 ΨN(t),t‖2 = Tr (1 −∆)1/2γ

(1)
N(t),t → ∞ as t→ T−

blow-up .

In other words, the kinetic energy per particle diverges in the limit t → T−
blow-up,

if at the same time, the number of particles tends to infinity appropriately.
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Hypocoercivity of non-symetric operators on large functional space

Stéphane Mischler

(joint work with Maria Pia Gualdani, Clément Mouhot)

Consider a Hilbert space H , an (unbounded integro-differential) operator L on H
and the associated semigroup et L or equivalently the linear evolution PDE

∂tf = Lf on H.

We assume that L is hypocoercive in the sense that the following “spectral gap
like” information holds:

(i) Σ(L) ∩∆a = {0}, a < 0, and H1 := null(L) is finite dimensional,
(ii) ∃Ca ∀ f0 ∈ H ‖etL f0 −Π1f0‖H ≤ Ca e

a t ‖f0‖H ,

where Σ(L) is the spectrum set of L, ∆a := {z ∈ C, ℜe z > a} is the complex
half plane and Π1 is the projection operator on the eigenspace H1 associated to
the first eigenvalue 0. It is clear that (i) ⇐ (ii) and that (ii) is a kind of partial
spectral mapping theorem in the sense that Σ(etL) ∩∆ea t = etΣ(L)∩∆a.

Considering now a larger Banach space E ⊃ H and an extension operator L on
E , in the sense that L|H = L, we ask whether the same spectral analysis holds for
L on E . We give a positive answer by exhibiting some conditions on L, namely
and roughly speaking that L splits as

L = A+ B, A : E → E, Σ(B) ∩∆a = ∅,
under which L is still an hypocoercive operator on E . Our proof is based on a
factorization trick from which we may estimate the resolvent of L thanks to A and
the resolvents of B and L as well as a representation formula of etL thanks to a
complex path integral of its resolvent (inverse Laplace formula).

The above abstract result is motivated and applied to the (possibly torus space
inhomogeneous) Fokker-Planck operator

Lf = ∆v f + divv(v f) + v · ∇xf, v ∈ R
d, x ∈ T

d,

and the (possibly torus space inhomogeneous) linear Boltzmann

Lf =

∫

Rd

k(v, v′) f(x, v′) dv′ −K(v) f + v · ∇xf v ∈ R
d, x ∈ T

d.

For such operators it is known that the centered and normalized GaussianM is an
equilibrium and that they are coercive in L2(Rd;M−1(v) dv) (space homogeneous
case) and hypocoercive in L2(Td×Rd;M−1(v) dvdx) (space inhomogeneous case).

Thanks to the above mentioned abstract result, we establish that the associated
extended operators L are also hypocoercive in Lp(Td×Rd;m(v) dvdx) for p = 1, 2
and for some weight polynomial function m(v) = (1 + |v|)α, α > d, or stretch
exponential function m(v) = ea |v|

s

, a > 0, s ∈ (0, 2]. Some applications to
nonlinear related problems are stated.
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Landau damping

Clément Mouhot

(joint work with Cédric Villani)

We report on the mini-course the first author of this joint work has given in
the Oberwolfach workshop “Classical and Quantum Mechanical Models of Many-
Particle Systems” 5-11 december 2010. This work is concerned with the phenome-
non of “collisionless relaxation” in plasma physics, the so-called “Landau damping
effect” and provides the first mathematical proof of this damping effect in the
framework of the non-linear Vlasov-Poisson equation.

The “standard model” of classical plasma physics (in the non-relativistic and
non-magnetic case) is the Vlasov–Poisson equation [9, 5], here written with peri-
odic boundary conditions and in adimensional units:

(1)
∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = 0,

where f = f(t, x, v) is the electron distribution function (t ≥ 0, v ∈ R3, x ∈ T3 =
R3/Z3),

(2) F [f ](t, x) = −
∫∫

∇W (x − y) f(t, y, w) dw dy

is the self-induced force, W (x) = 1/|x| is the Coulomb interaction potential.
On very large time scales, collisional dissipative phenomena play a non-negligible

role, the equation has to be complemented with a collision operator, and the en-
tropy increase is supposed to force the (slow) convergence to a maxwellian (gauss-
ian) velocity distribution.

Ten years after devising this collisional scenario, Landau [5] formulated a much
more subtle prediction: the stability of homogeneous equilibria satisfying certain
conditions — for instance any function of |v|, not necessarily Gaussian — on
much shorter time scales, by means of purely conservative mechanisms. This
phenomenon, called Landau damping, is a property of the (collisionless) Vlasov
equation. This is a theoretical cornerstone of the classical plasma physics (among
a large number of references let us mention [1]). Similar damping phenomena also
occur in other domains of physics.

The Landau damping has been since long understood at the linearized level
[3, 6, 8], but the study of the full (nonlinear) equation poses important conceptual
and technical problems. As a consequence, up to now the only existing results were
proving existence of some damped solutions with prescribed behavior as t→ ±∞
[2, 4]. We fill this gap in the the recent work [7], whose main result we shall now
describe.
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If f is a function defined on T
d × R

d, we note, for any k ∈ Z
d and η ∈ R

d,

f̂(k, v) =

∫

Td

f(x, v) e−2iπk·x dx, f̃(k, η) =

∫∫

Td×Rd

f(x, v) e−2iπk·x e−2iπη·v dv dx.

We also set, for λ, µ, β > 0,

(3) ‖f‖λ,µ,β = sup
k,η

(
|f̃(k, η)| e2πλ|η| e2πµ|k|

)
+

∫∫

Td×Rd

|f(x, v)| e2πβ|v| dv dx.

Theorem 5. Let d ≥ 1, and f0 : R
d → R+ an analytic velocity profile. Let

W : Td → R be an interaction potential. For any k ∈ Zd, ξ ∈ C, we set

L(k, ξ) = −4π2 Ŵ (k)

∫ ∞

0

e2π|k|ξ
∗t |f̃0(kt)| |k|2 t dt.

We assume that there is λ > 0 such that, for ǫ small enough,

sup
η∈Rd

|f̃0(η)| e2πλ|η| ≤ C0,
∑

n∈Nd

λn

n!
‖∇n

vf
0‖L1(dv) ≤ C0,

inf
k∈Zd

inf
0≤ℜ ξ <λ

∣∣L(k, ξ)− 1
∣∣ ≥ κ > 0

∃ γ ≥ 1; ∀ k ∈ Z
d; |Ŵ (k)| ≤ CW

|k|1+γ .

Then as soon as 0 < λ′ < λ, 0 < µ′ < µ, β > 0, r ∈ N, there are ε > 0 and C > 0,
depending on d, γ, λ, λ′, µ, µ′, C0, κ, CW , β, r, such that if fi ≥ 0 satisfies

δ := ‖fi − f0‖λ,µ,β ≤ ε,

then the unique solution of the nonlinear Vlasov equation (1-2). Futhermore, there
are analytic profiles f+∞(v), f−∞(v) such that

f(t, · ) t→±∞−−−−→ f±∞ weakly

∫
f(t, x, · ) dx t→±∞−−−−→ f±∞ strongly (in Cr(Rdv)),

these convergences being also O(δ e−2πλ′|t|).

The conditions on f0 are satisfied for instance by any analytic radially sym-
metric velocity profile in dimension 3. This theorem is entirely constructive and
almost optimal in many aspects. The mini-course given at MFO first described
the linearized stability theory, second sketched the general scheme of the proof in
the nonlinear case, and third outlined the main difficulties and new ideas from the
proof. More details as well as more comments, both from the mathematical and
the physical sides, can be found in [7].
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WKB-based scheme for the highly oscillatory Schrödinger equation

Claudia Negulescu

(joint work with Anton Arnold, Naoufel Ben Abdallah)

Multi-scale phenomena and high frequency problems are common in nature and
their study is rather challenging from a mathematical and numerical point of view.
Substantial effort is done currently to solve these problems in a precise manner
and with affordable numerical costs. The used techniques are based either on
mathematical or numerical approaches.

The present paper deals with an asymptotic scheme for the numerical solution of
highly oscillating differential equations of the type

(1) ε2ϕ′′(x) + a(x)ϕ(x) = 0 ,

where 0 < ε≪ 1 is a very small parameter and a(x) ≥ a0 > 0 a sufficiently smooth
function. For very small ε > 0, the wave length λ = 2πε√

a(x)
is very small, such

that the solution ϕ becomes highly oscillating. In a classical ODE–scheme such a
situation requires a very fine mesh in order to accurately resolve the oscillations,
typically at least 10 grid points per oscillation. Hence, standard numerical meth-
ods would be very costly and inefficient here. The goal of this paper is to present
a new method, based on a mathematical reformulation and which uses a coarse
spatial grid with step size h > λ (see Figure 1). The detailed study of this scheme
is presented in [1].
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Figure 1. In standard numerical methods highly oscillating solutions re-

quire a very fine mesh to capture the oscillations. However, with the analytic

pre-processing of our method an accurate solution can be obtained on a coarse

grid (dots). Plotted is the solution ℜϕ(x) of (1) with ε = 0.01, h = 0.125,

and a = (x+ 1

2
)2.

Our method is closely related to the well-known WKB-approximation (cf. [2])
for the singularly perturbed ODE (1). The WKB-ansatz

(2) ϕ(x) = exp

(
1

ε

∞∑

p=0

εpφp(x)

)
,

inserted in (1), leads after comparison of the εp-terms to

φ0(x) = ±ı

∫ x

0

√
a(τ) dτ+const. ,(3)

φ1(x) = ln a(x)−1/4 + const. ,(4)

φ2(x) = ∓ı

∫ x

0

β(τ) dτ+const. , β :=
a′′

8a3/2
− 5(a′)2

32a5/2
.(5)

Based on these ideas, we shall sketch now briefly the strategy of the construction of
our “asymptotically correct” scheme, devided into three steps. It is closely related
to the procedure in [3], but yields a refinement to higher ε–order:

(1) Analytic pre-processing of (1) by a second order WKB-transformation of
the form (3)-(5). The equation (1) is transformed into a smoother problem
that can be solved accurately and efficiently on a coarse grid (see Fig. 1),
i.e.

(6)





dZ

dx
= εNεZ , 0 < x < 1 ,

Z(0) = ZI ,



Classical and Quantum Mechanical Models of Many-Particle Systems 3209

where Nε is bounded independently on ε. The transformation from the
“smooth” unknown Z to the oscillatory unknown U is given by

(7) U(x) = P−1e
i
εΦ

ε(x)Z(x) , U(x) :=




a1/4ϕ(x)

ε(a1/4ϕ)′(x)√
a(x)


 ,

and

P :=
1√
2

(
i 1
1 i

)
, Φε(x) =

∫ x

0

(√
a(τ) − ε2β(τ)

)
dτ

(
1 0
0 −1

)
.

(2) ε–uniform discretization of the oscillatory integral
∫
β(y) exp

(
2i
ε φ(y)

)
dy

(and multiple iterates of it) appearing in the numerical scheme for the
transformed, smoother problem (6).

(3) Numerical integration of the phase Φ(x)ε in (7). Here, numerical errors
of order O(hγ) in the phase-computation will typically induce O(hγ/ε)
errors in the oscillatory integral. However, this phase integral can be
computed explicitly in several relevant examples (e.g. RTDs). But even
then, machine precision round-off errors will also introduce “small”O(1/ε)
errors.

Following this procedure, first and second order schemes were constructed and a
detailed numerical analysis permits to show that the global errors of the first order
scheme satisfy

(8) ||Z(xn)− Zn|| ≤ Cε2 min(ε, h) , 1 ≤ n ≤ N ,

(9) ||U(xn)− Un|| ≤ C
hγ

ε
+ Cε2 min(ε, h) , 1 ≤ n ≤ N .

whereas for the second order scheme one has the estimates

(10) ||Z(xn)− Zn|| ≤ Cε3h2 , ||U(xn)− Un|| ≤ C
hγ

ε
+ Cε3h2 , 1 ≤ n ≤ N ,

with C independent of n, h, and ε. Here, γ > 0 is the order of the chosen numerical
integration method for computing of the phase integral Φε.
The errors obtained via the here introduced “asymptotically correct” numerical
scheme are plotted in Figure 2. This asymptotic correctness w.r.t. ε is an additional
novel feature of our scheme: RTD-models typically have piecewise linear potentials.
Hence, the phase function Φε can be integrated exactly. As a consequence, the
numerical error decreases to zero as ε→ 0, even when using a fixed step size h > 0.
Hence, the scheme with e.g. just 2 grid points on [0, 1] becomes asymptotically
correct in the highly oscillatory limit, which was a-priori the most difficult scenario.
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Figure 2. Absolute error (in the L2(0, 1)–norm and log− log scale)

between the computed solution Znum and a reference solution Zref as a

function of h and for several ε-values. Left: first order scheme. Right: second

order scheme.
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Logarithmic Sobolev Inequality for a conservative spin system with

single-site potentials of arbitrary super-quadratic growth

Felix Otto

(joint work with Georg Menz)

We consider an Ising model on a lattice of N ≫ 1 sites, with unbounded spin
space, say R, and conservation of the mean spin m. Hence the configuration space

is given by XN,m := {(x1, · · · , xN ) ∈ RN | 1N
∑N

n=1 xn = m}. We consider a
Hamiltonian with no interaction and thus determined by the single-site potential
ψ(x). Such an ensemble

(1) dµN,m =
1

Z
exp(−

N∑

n=1

ψ(xn)) dx1 · · · dxN |XN,m

is natural for the continuous version of spin-exchange dynamics (Kawasaki dynam-
ics), that conserve the mean spin.

We are interested in the Logarithmic Sobolev Inequality (LSI). A measure µ on
a Euclidean space XN,m is said to satisfy LSI with constant ρ > 0, provided

(2) ∀ f(x) ≥ 0 s. t.

∫
f dµ = 1 :

∫
f ln f dµ ≤ 2

ρ

∫
1

f
|∇f |2 dµ.

LSI is a nonlinear version of the Spectral Gap (SG) estimate

∀ f(x) s. t.
∫
f dµ = 0 :

∫
f2 dµ ≤ 1

ρ

∫
|∇f |2 dµ,
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that bounds the spectral gap of the generator of the corresponding reversible
dynamics on X . One of the advantages of LSI over SG becomes apparent when
dealing with hydrodynamic limits: The entropy

∫
f0 ln f0 dµ of the initial data f0

is an extensive quantity in the number N of sites, so that it makes sense to assume
that the initial specific entropy 1

N

∫
f0 ln f0 dµ is bounded for N ↑ ∞, whereas

such a statement would be meaningless for
∫
f2
0 dµ. For the system dµN,m at

hand, the fact that LSI holds uniformly in N and m has been used in [2] to
reprove a hydrodynamic limit by Guo & Papanicolaou & Varadhan.

Landim & Panzio & Yau [1] proved that µN,m satisfies LSI uniformly in the
number of sites N and the prescribed mean m, provided that the single site-
potential ψ(x) is perturbed quadratic, i. e.

(3) ψ(x) =
1

2
x2 + δψ(x) with |δψ|+ |δψ′|+ |δψ′′| . 1.

Note that the standard criteria for LSI do not apply to µN,m: Because the mean
spin is constrained to m, the tensorization principle of Gross does not apply;
because the single-site potential is non convex, the Bakry-Emery criterion does
not apply; the Holley-Stroock criterion would not give uniformity in N .

Caputo [3] proved that µN,m satisfies SG uniformly in N and m provided that
ψ is perturbed strictly convex, i. e.

(4) ψ = ψ0 + δψ with ψ′′
0 & 1 and |δψ|+ |δψ′| . 1.

We establish

Theorem 6. The measure µN,m, c. f. (1), satisfies LSI, c. f. (2), uniformly in N
and m provided that ψ satisfies (4).

Note that (4) (as opposed to (3)) includes the standard potential ψ(x) = 1
4 (x

2−
1)2; the statement was unknown even for the convex ψ(x) = x4.

For the proof of Theorem 1, we adapt the coarse-graining argument used in the
perturbed quadratic case [2]. More precisely, we coarse grain via block spins, and
carry out a finite number of coarse-graining steps, where at each step, a block is
formed by two sites. The first new ingredient is an asymmetric Brascamp-Lieb
inequality. It is needed to transfer LSI from a coarse-grained level to the next
finer level.

Proposition 2. Let ψ be perturbed strictly convex, cf. (4). The covariance
covµ[f ; g] of two functions f and g w. r. t. the measure dµ = 1

Z exp(−ψ(x))dx
satisfies

(5) |covµ[f ; g]| ≤ exp(6 osc|δψ|)
∫

|f ′| dµ sup
|g′|
ψ′′
0

.

Recall that the traditional Brascamp-Lieb inequality states that in case of
δψ ≡ 0, one has |covµ[f ; g]|2 ≤

∫
1
ψ′′

0
|f ′|2 dµ

∫
1
ψ′′

0
|g′| dµ. The merit of (5) is

the asymmetric distribution of the weight 1
ψ′′

0
over the two factors.
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The second new ingredient is the following quantitative version of the Central
Limit Theorem. Via Cramèr’s transform, it is used to derive strict convexity of
the coarse-grained Hamiltonian after N = 2K coarse-graining steps.

Proposition 3. Let ψ be perturbed strictly convex, cf. (4). For any σ consider the
measure dµσ = 1

Z exp(σx − ψ(x))dx. Consider N independent random variables
X1, · · · , XN identically distributed according to µσ. Let gN denote the Lebesgue

density of the distribution of the normalized sum 1√
N

∑N
n=1

Xn−m
s , where m and

s2 denote the mean and variance of µσ. Then gN (0) converges for N ↑ ∞ to the
corresponding value for the normalized Gaussian:

(6) |gN (0)− 1√
2π

|+ |1
s

d

dσ
gN(0)|+ |(1

s

d

dσ
)2gN (0)| .

1√
N
.

The merit of (6) is the uniformity in the “field strength” σ up to second deriva-
tives.
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Two scaling limits: from particles to kinetic equations

Mario Pulvirenti

The physical system of interest is a thin layer (the vertical dimension is much
smaller than the orizontal one) of a rarefied gas described by an hard sphere
system. We want to derive (in term of the underlying particle system) for such a
system, a two-dimensional Boltzmann equation

(∂t + v · ∇y)g(y, v; t) = Q(g, g)(y, v; t)

where Q(g, g)(y, v; t) is the usual collision operator and (y, v) ∈ R2 × R3. Note
that the space variable is two-dimensional while the velocity variable lives in the
three-dimensional space.

The particle system consists of N hard spheres of diameter ε > 0. The one-
particle phase space is

{x.v|x = (y, q) ∈ R2 × Tε, v ∈ R3}

Tε = (−ε
γ

2
,
εγ

2
]

with periodic boundary conditions.
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The low density regime means that the density (in macroscopic unities) is
O(ε−2). In the usual Boltzmann-Grad limit N = density × vol=O(ε−2). Here
N = density × vol=O(ε−2+γ).

This ensures that each particle has a finite number of collissions in a unitary
time. Hence the Boltzmann-Grad limit in this context is

ε→ 0, N → ∞, Nε2−γ = 1.

We denote by f εj (t) the j− particle marginals of the particle system and by

gj(t) = g(t)⊗ products of solution to the Boltzmann eqaution.
Under suitable assumptions on the initial state for the particle system, we can

prove:
Theorem There exist t0 > 0 such that, for t < t0,

lim
ε→0

∫

Tε

dq[ gεj (t)− f εj (t)]

a.e.. In particular we have propagation of chaos.
The main difference with the classical Lanford’s result is that here we need an

explicit estimate of the recollisions. By geometrical and mechanical considerations
one can prove that they can be estimated by

Cµε
µε−γ

for any µ < 1. Hence it must be γ < 1. It is actually necessary as it is ahown by
an explicit counterexample.

This result has been obtained in collaboration with R. Esposito (see [1]).
The second example of particle approximation I am going to discuss, is a set

of interacting Brownian motions. There is only the velocity variable v ∈ R3. The
time evolution for a probability distributions WN =WN (v1 . . . vN ) is given by

∂tW
N = L̃NWN

where

L̃N = divVNB · ∇VNW
N ,

B : R3N → R3N×3N

is the matrix

Bi,j(VN ) = −a(vi − vj)

N
, i 6= j,

Bi,i(VN ) =
1

N

∑

j

a(vi − vj),

where the 3× 3 matrix a is given by

a(w) =
1

|w| (1− ŵ ⊗ ŵ) =
1

|w|P (w), w ∈ R3,

and ŵ = w
|w| , with P (w) the orthogonal projection on the plane orthogonal to w.

This model is obtained as the grazing collision limit of the Kac mean-field model
for the Boltzmann equation.
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Unfortunately t L̃N is not uniformly elliptic and not smooth, due to the diver-
gence for |vi − vj | ≈ 0. Then we slightly modify L̃N to obtain

LN = divVN (B
N∇VN )

where BN is obtained by making the matrix B smooth and bounded from below.
This regularization vanishes when N → ∞.

We (this is a work in collaboration with E. Miot and C. Saffirio) prove that, in
the limit N → ∞, the j-particle marginals of the measure WN converge weakly
to a family of marginals which satisfy a weak form of the Landau hierarchy.

The technique of the proof (see ref. [2]), is based on a previous result due to C.
Villani [3], for the study of the Landau equation with Coulomb kernel.
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Aggregation equations: Stationary states and stability analysis

Gael Raoul

(joint work with Klemens Fellner)

We present a qualitative study (from works [3, 4, 7]) of the so-called aggregation
equation:

(1) ∂tρ(t, x) = ∇ · (∇W ∗x ρ(t, x) + V (x)) ,

where V ∈ C2,W ∈ W 1,∞,W |{0}c ∈ C2 andW is radially symmetric. This type of
equation appears in many biological or physical models, with various singularities
of W at the origin :

• W has an attractive singularity in Chemiotaxis models (see [1]),
• W is regular in cell bio-mechanical models (see [6]),
• W has a repulsive singularity in swarming models (see [5]).

We have tried to understand the dynamics of the solution ρ of (1), and how
this dynamics depends on the singularity of W at the origin. Our study is done
in dimension 1 only.

(1) is a gradient flow equation associated to the energy E(ρ) =
∫ ∫

W (x −
y) dρ(x) dρ(y) +

∫
V (x) dρ(x). This provides an existence theory for (1) (see [2]),

when W is not too singular. Moreover, E is a strict entropy, we can thus only
expect the convergence of the solution to a steady-state (or a set of steady-states).

If W is regular or attractive, we show that stable steady-states are generically
sums of Dirac masses: If a steady-state ρ̄ had an L1 part, we could find an arbi-
trarily small perturbation ρ̃ of ρ̄ with a smaller energy.
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If W has a repulsive singularity, then, we can show that for any bounded initial
data, the solution of (1) remains uniformly bounded for all times. The stable
steady-states can thus only be L∞ functions in this case.

We have then investigated the connection between those two cases. We have
considered an interaction potentialW having a repulsive singularity, and smoothed
versions W ε of W . Under some assumptions, we have shown that the steady
solutions of the smoothed problem converge weakly to the steady-state of the
initial singular problem, when the smoothing parameter ε goes to 0. In particular,
this shows that a simple double well potential can lead to steady-states consisting
of an arbitrarily large number of Dirac masses.

Finally, we have characterised stables steady solutions of (1) consisting of a
finite number of Dirac masses, for regular or attractive interaction potentials. We
have recognise two simple stability conditions, which are necessary for the linear
stability of the steady-state, and imply its local nonlinear stability.
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Asymptotic behaviour of degenerate linear transport equations

Francesco Salvarani

(joint work with Laurent Desvillettes)

In this presentation we have shown the results of our paper [1].
We consider non-homogeneous (in space) transport equations of the type

(1)
∂f

∂t
+ v · ∇xf = σ(x) (f̄ − f),

where f := f(t, x, v) is the density of particles which at time t and point x move
with velocity v. Here f̄(t, x) =

∫
V f(t, x, v) dv, where V is a bounded set (of Rd)

of velocities of measure 1. The right-hand side of Equation (1) describes a process
of isotropization of the velocities of the particles. This process has an intensity
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σ(x) ≥ 0 which is not necessarily bounded below by a strictly positive constant (in
the vocabulary of radiative transfer, the points belonging to the set {x : σ(x) = 0}
would correspond to points of transparency).

For the sake of simplicity, we shall systematically consider that the solutions
are periodic (of period 1) in all components of x, that is x ∈ Td := Rd/Zd, and
defined for all nonnegative times.

We finally introduce initial data

(2) f(0, x, v) = f0(x, v).

We shall also consider a simplified one-dimensional model of (1), in which the
velocities are v = ±1. This is a variant of the well-known Goldstein-Taylor model,
which describes the behavior of a gas composed of two kinds of particles moving
parallel to the x-axis with constant speeds, of equal modulus c = 1, one in the
positive x-direction with density u, the other in the negative x-direction with
density v. The corresponding system of equations is:

(3)





∂u

∂t
+
∂u

∂x
= σ(x)(v − u)

∂v

∂t
− ∂v

∂x
= σ(x)(u − v),

where u := u(t, x), v := v(t, x), x ∈ T = R/Z, t ≥ 0.
Such set of equations will satisfy the initial conditions

(4) u(0, x) = u0(x), v(0, x) = v0(x).

If σ were bounded from below by a strictly positive constant, then a variant
of the strategy proposed by Mouhot and Neumann in [4] would lead to prove the
exponential decay (with explicit rates) in time of the solutions of Equation (1) or
System (3) towards the unique equilibrium state of the system.

However, this result has no obvious extension in the case of a vanishing cross
section (even if such a degeneracy happens at only one point). A reasonable
conjecture is that when the equilibrium is still unique, then some explicit (non
necessarily exponential) rate should still exist.

Our goal is to prove this property under reasonable assumptions on the cross
section. More precisely, we shall suppose that it satisfies the properties given in
the following assumption:

Assumption 1: Let σ : Td → R+ be a function satisfying the following
property: there exist xi ∈ Td, i = 1, . . . , N , Cσ > 0 and λσ > 0 such that

for a.e. x ∈ T
d, σ(x) ≥ Cσ inf

i=1,...,N
|x− xi|λσ .

Our results are summarized in the following theorems:

Theorem 1: Consider the linear transport model (1)-(2) in the domain Td

(d ∈ N) with a cross section σ ∈ L∞∩H1(Td) satisfying Assumption 1 and f0 ≥ 0
a.e. such that f0 ∈ L∞(Td×V ), ∇xf̄0 ∈ L2(Td), and v⊗v : ∇x∇xf0 ∈ L2(Td×V ).



Classical and Quantum Mechanical Models of Many-Particle Systems 3217

Then there exists a unique nonnegative solution f := f(t, x, v) to this system
in C(R+;L

2(T × V )). The solution f converges when t → +∞ to its asymptotic
profile

f∞(x, v) :=

∫

Td

∫

V

f0(y, w) dwdy.

Moreover, the following estimate holds:

(5) ||f(t, ·, ·)− f∞||2L2(T×V ) ≤ C1 t
− 1

1+2 λσ

where C1 is a constant depending on Cσ, λσ, ||σ||H1(T)∩L∞(T), and f0, which can
be explicitly estimated in terms of those quantities.

Theorem 2: Consider the generalized Goldstein-Taylor model (3)-(4) in the
domain T = R/Z with a cross section σ ∈ H1(T) satisfying Assumption 1 and
with initial conditions (u0, v0) in H

2(T) ×H2(T) such that u0, v0 ≥ 0 a.e..
Then there exists a unique nonnegative solution (u, v) := (u(t, x), v(t, x)) to this

system in C(R+;L
2(T))2. This solution converges when t→ +∞ to its asymptotic

profile

(u∞, v∞) :=

(
1

2

∫
(u0 + v0) dx,

1

2

∫
(u0 + v0) dx

)
.

Moreover, the following estimate holds:

(6) ||u(t, ·)− u∞||2L2 + ||v(t, ·)− v∞||2L2 ≤ C2 t
− 1

1+λσ ,

where C2 is a constant depending on Cσ, λσ, ||σ||H1(T) and u0, v0, which can be
explicitly estimated in terms of those quantities.

Finally, if the initial data (u0, v0) belong to C∞(T) × C∞(T), and if the cross
section σ also lies in C∞(T), then estimate (6) can be replaced by

(7) ||u(t, ·)− u∞||2L2 + ||v(t, ·)− v∞||2L2 ≤ C3 t
− 3

λσ
+δ,

for any δ > 0. Here C3 is a constant which now depends on Cσ, λσ, δ, ||σ||Wk,∞

(for all k ≤ k0(δ)) and u0, v0, which can be explicitly estimated in terms of those
quantities.

Note that it is not known if exponential (or even “almost exponential”) conver-
gence holds for these models. It is also not known if the method of hypocoercivity
such as described (for example) in [4], [5], [6] can be used (though this seems
likely). The proof presented here relies on the older method introduced in [2] and
[3], based on the following proposition, that replaces Gronwall’s lemma in the con-
text of hypocoercive equations, whose proof is a direct consequence of Lemma 12
in [3]:

Proposition 1: Let z and y be two nonnegative C2 functions defined on R+

and satisfying (for all t > 0)

(8)

{
−z′(t) ≥ α1 y

1+δ(t),
y′′(t) ≥ α3 z(t)− α2y

1−ε(t),

for some constants δ ≥ 0, ε ∈]0, 1[ and α1, α2, α3 > 0.
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Then there exists a constant α4 > 0 depending only on x(0), α1, α2, α3, δ and
ε such that (for all t > 0),

z(t) ≤ α4 t
− 1−ε

δ+ε .

The different rates of convergence obtained in Theorems 1 and 2 reflect the
possibility to use interpolations which have a different power, depending on the a
priori smoothness of the solution of the equations.

The difference in the exponents appearing in (5) and (6) is due to the possibility
to use, in the case of the Goldstein-Taylor model, some a-priori estimates on ux
and vx, while no a-priori estimate is available for ∇xf in the case of the non-
homogeneous transport equation (1)-(2).

The ideas developed in this work are presented on very simple models on pur-
pose. We think that they can be used for many variants of Equation (1), changing
for example the boundary conditions, or the cross section.

There is no a-priori reason why it should not also work in nonlinear situations,
provided that uniform in time smoothness estimates are known for the solution of
the problem under study (such estimates are often difficult to obtain for general
data, but they can sometimes be proven in special regimes).

Note that the challenging problems of cross sections σ such that σ = 0 on a set
of strictly positive measure has not been treated here.
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Traveling waves of a kinetic transport model for the KPP-Fisher

equation

Christian Schmeiser

(joint work with Carlota Cuesta, Sabine Hittmeir)

This note shortly reports on the results of [1]. The KPP-Fisher equation

∂tu−D∂2xu = ρu− u2

with diffusivity D > 0 and equilibrium density ρ > 0 models the chemical reaction
A + B ↔ 2A (u = ρA ≪ ρB) and diffusion. It possesses traveling front wave
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solutions uTW (ξ) ≥ 0, ξ = x − st, with uTW (−∞) = ρ, uTW (∞) = 0, u′TW < 0,
for s ≥ s0 := 2

√
Dρ.

These waves are stable under perturbations decaying faster than the wave as
ξ → ∞ (see, e.g., Sattinger (1976) for a L∞-based result). For an L2-setting the
following can be proven:

Theorem: Let s > s0, u(x, 0) ≥ γuTW (x), γ > 0, and
∫
(u(x, 0)− uTW (x))2(1 + exs/D)dx <∞ .

Then there exist c, λ > 0, such that
∫
(u(x, t)− uTW (x− st))2(1 + e(x−st)s/D)dx ≤ ce−λt .

Replacing diffusion by collisions with a (nonmoving) background medium leads to
a kinetic model

ε2∂tf + εv ∂xf = Qc(f) + ε2Qr(f) ,

with the collision operator Qc(f)(v) = ρfM(v) − f(v), ρf =
∫
f dv, where we

assume

M even ,

∫

V

M dv = 1 ,

∫

V

v2M dv = D ,

and the reaction operator

Qr(f) =

∫ ∫
[ρ̄MM∗f ′ −M ′f∗f ] dv′dv∗ = ρf (ρ̄M − f)

Global existence and a comparison principle can be shown, where contraction in
C([0, T ]; L∞(dx dv/M)) leads to local existence:

Theorem: Let 0 ≤ f(x, v, 0) ≤ ρ̂M(v). Then there is a unique mild solution
f ∈ C([0,∞); L∞(R× V )), satisfying

0 ≤ f(x, v, t) ≤ max{ρ̂, ρ̄}M(v) .

Lemma: Let f1(x, v, 0) ≥ γf2(x, v, 0) ≥ 0, 0 ≤ γ ≤ 1, and f2(x, v, 0) ≤ (ρ̄ +
ε−2)M(v). Then

f1(x, v, t) ≥ γf2(x, v, t) for all x, v, t.

For ε≪ 1 solutions of the traveling wave problem

ε(v − εs)∂ξf = Qc(f) + ε2Qr(f)

f(−∞, v) = ρ̄M(v), f(∞, v) = 0

can be approximated by Chapman-Enskog expansion:

fas = uTWM − εu′TW vM + ε2u′′TW (v2 −D)M ,



3220 Oberwolfach Report 54/2010

where uTW is a traveling wave of the KPP-Fisher equation. The approximation
fas satisfies the far-field conditions and solves the traveling wave equation up to
an O(ε3) residual, whose v-integral vanishes.

The existence proof of traveling waves is based on three main ideas.
Step 1: The Caflisch-Nicolaenko-micro-macro decomposition of the error:

f(ξ, v)− fas(ξ, v) = ε2(z(ξ)Φ(v) + εw(ξ, v))

with

Φ(v) =

(
1 +

εs

D + ε2s2
(v − εs)

)
M(v) ,

∫
(v − εs)2w dv = 0 ,

implying
∫
(v − εs)Φ dv = 0. Appropriate projections lead to equations for the

macroscopic and microscopic solution components:

Dz′′ + sz′ + (ρ̄− 2uTW )z = εBz[z, w] + ε2Rz[z, w] + hz

ε(v − εs)∂ξw −Qc(w) = A[z] + εBw[z, w] + ε3Rw[z, w] + hw

Step 2: removal of the null space (again inspired by Caflisch-Nicolaenko (1982)):
replace Qc by

Q(w) := Qc(w) − (v − εs)2M

∫
(v − εs)2w dv .

Lemma: −Q is symmetric and coercive in L2(dv/M).

Lemma: Replacing Qc by Q leads to an equivalent problem.

Step 3: solution of the linearized problem:

Lemma The operators

z 7→
(
Dz′′ + sz′ + (ρ̄− 2uTW )z, z(0)

)

w 7→ ε(v − εs)∂ξw −Q(w)

are boundedly (uniformly in ε) invertible.

Step 4: contraction for solving the nonlinear problem

Theorem: For s ≥ s0 and ε small enough, there exists a locally unique (up
to translations) traveling wave solution fTW , satisfying fTW = fas + O(ε2) and
0 ≤ fTW (ξ, v) ≤ ρ̄M(v).

Stability of traveling waves is proven by employing the Lyapunov functional

H(t) =

∫
(f(x, v, t)− fTW (x− st, v))2(1 + αe(x−st)s/D)dx dv
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Theorem: For s > s0, ε small enough, α big enough, H(0) <∞, and f(x, v, 0) ≥
γfTW (x, v) (with 0 < γ ≤ 1), there exist c, λ > 0 such that

H(t) ≤ ce−λt

The proof uses the standard micro-macro decomposition of the deviation (see
also Liu-Yu (2004)), the H-theorem for the collision operator and the macroscopic
stability estimate.
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Gyrokinetic Modelling and Simulation

Eric Sonnendrücker

Energy can be obtained by fusion of a Deuterium and a Tritium atom, which are
two isotopes of hydrogen. For this reaction to yield a positive energy balance, the
particles need to be confined at a very high temperature of the order of a hundred
million degrees at a high enough density for a long enough time. At this range of
temperature the particles are fully ionized and in the plasma state. Hence, one
way of confining the particles is to use a very large magnetic field in a toroidal
vessel. Such a device is called a Tokamak. The international project ITER, that
started in Cadarache, in the south of France, consist of building and operating a
large Tokamak that should demonstrate the feasibility of energy production though
fusion reactions.

Magnetic plasmas are very prone to instabilities and the success of ITER de-
pends in particular on their control. One important issue is to understand the
development of turbulence in the core of the plasma and its influence on energy
confinement. Recent works in physics have emphasized that fluid models can-
not account for the energy confinement time observed in experiments and that
although more complex, kinetic models are necessary.

As the particle mean free path is very large in tokamaks, a collisionless Vlasov
equation self-consistently coupled with Maxwell’s equations is the right model to
use on the turbulence time scale. However, the very large external magnetic field
puts strong constraints on the particle dynamics, introducing in particular a very
large cyclotron frequency, which is the frequency of rotation of the particles around
the magnetic field lines. The resolution of cyclotron period would put unacceptable
constraint on the time step in a numerical simulation. Therefore a reduced model,
the so-called gyrokinetic model is used. It consists in averaging out the fast motion
of particles around the magnetic field lines by getting an equation for the guiding
centers of the trajectory an older straightforward derivation is given by Frieman
and Chen [6]. For a survey on the physics literature on the subject see [3].
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There has also been a rich mathematical literature in the last ten years on
the subject, proposing different tools for the rigorous derivation of the gyrokinetic
model or related models generally in some specific cases [1, 2, 5, 7, 8, 10, 11, 12, 13].

The gyrokinetic model takes its simplest form in slab geometry, in which the
torus is approximated by a periodic cylinder, removing all curvature effects. In
this case the confinement field can be a uniform magnetic field in the direction of
the axis of the cylinder. We obtain a 5D model describing the evolution of the
guiding center distribution f(r, θ, φ, v‖, µ)

∂f

∂t
+ vD · ∇xf + v‖ · ∇‖f +

q

m
E‖ · ∇vf = 0,

with vD = −∇J(φ)×B

B2 . Generally in regimes where the gyrokinetic model applies,
the scaled Debye length is very small and the plasma is quasi-neutral. Hence the
self consistent electric field is obtained via its potential using the quasi-neutrality
equation

−∇⊥ · (n0(r)

Bωc
∇⊥φ) +

e n0(r)

Te(r)
(φ− λ〈φ〉) =

∫
J(f) dv‖dµ− n0.

The gyroaverage operator J transforms the guiding-center distribution onto the
actual particle distribution enabling to take into account the finite Larmor radius,
which is the radius of gyration of the particles around the magnetic field lines.

The gyroaverage operator is applied to a function g depending on the guiding
center distribution. For a particle of velocity v, the Larmor radius is ~ρ = ~v⊥

ωc
=

(ρ cosα, ρ sinα) where ~v⊥ = (−vy, vx)

J(g)(~x,~v) =
1

2π

∫ 2π

0

g(x+ ρ cosα, y + ρ sinα) dα.

A Fourier transform in ~x yields

Ĵ(g)(~k,~v) =
1

2π

∫ 2π

0

ei
~k·~ρ dα ĝ(~k),

moreover denoting by ~k⊥ = (k⊥ cosβ, k⊥ sinβ),

1

2π

∫ 2π

0

ei
~k·~ρ dα =

1

2π

∫ 2π

0

eiρk⊥ cos(α−β) dα = J0(ρk⊥).

In a real torus, the gyrokinetic model takes the following form [3] that is used
in most simulation codes

∂f

∂t
+
dX

dt
· ∇xf +

dV‖
dt

∂f

∂v‖
= 0,

with

B∗ dX

dt
= b×∇J(φ) + 1

q
(mV 2

‖ ∇× b+ µb×∇B) + V‖B

B∗ dV‖
dt

= −(B+
m

q
V‖∇× b) · ( µ

m
∇B +

q

m
∇J(φ))



Classical and Quantum Mechanical Models of Many-Particle Systems 3223

and B∗ = B + m
q V‖∇× b · b.

Note that in this model is still hamiltonian. In particular, we have the relations
We have the relations

∇ · (B∗ dX

dt
) = ∇ · (b×∇J(φ)) + 1

q
∇ · (b× µ∇B)

= ∇J(φ) · ∇ × b+
µ

q
∇B · ∇ × b

On the other hand

∂

∂v‖
(B∗ dV‖

dt
) = −∇× b · (µ

q
∇B +∇J(φ)).

Hence the phase-space divergence vanishes, which leads to the conservatity. So
that the model is conservative, which is an essential point to take into account
when designing a numerical method.

The Gysela code we are developing is based on a semi-Lagrangian method
[14, 9]. We have recently introduced a conservative formalism for this method and
linked it to the classical method [4]. Specific limiters for the gyrokinetic model in
the conservative form have also been developed in this work.
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Bohmian measures and their classical limit

Christof Sparber

(joint work with Thierry Paul, Peter Markowich)

We consider the time-evolution of quantum mechanical wave functions ψε(t, ·) ∈
L2(Rd;C) governed by the Schrödinger equation:

(1) iε∂tψ
ε = −ε

2

2
∆ψε + V (x)ψε, ψε(t = 0, x) = ψε0 ∈ L2(Rd),

where x ∈ Rd, t ∈ R, and V ∈ L∞(Rd;R) a given bounded potential (satisfying
some additional regularity assumptions). In addition, we have rescaled all physical
parameters such that only one semi-classical parameter 0 < ε ≤ 1 remains. In
quantum mechanics one defines out of ψε(t, x) ∈ C real-valued observable densities
from. Possibly, the two most important such densities are the position and the
current-density, given by

(2) ρε(t, x) = |ψε(t, x)|2, Jε(t, x) = εIm
(
ψε(t, x)∇ψε(t, x)

)
.

In Bohmian mechanics [2, 3], one defines an ε-dependent flow-map Xε
t : x 7→

Xε(t, x) via the following differential equation

Ẋε(t, x) = uε(t,Xε(t, x)), Xε(0, x) = x ∈ R
d,

where the velocity field uε is (formally) given by

uε(t, x) :=
Jε(t, x)

ρε(t, x)
= εIm

(∇ψε(t, x)
ψε(t, x)

)

and the initial data is assumed to be distributed according to ρε0(x) ≡ |ψε0(x)|2. It
has been rigorously proved in [1] that Xε(t, ·) is for all t ∈ R well-defined ρε0 − a.e.
and that ρε(t, x) = Xε

t # ρε0(x), i.e. ρε(t, x) is the push-forward of the initial
density ρε0(x) under the mapping Xε

t : x 7→ Xε(t, x). This can be seen as the
Eulerian viewpoint of Bohmian mechanics.

Bohmian mechanics can be reformulated in its Lagrangian form, by using the
concept of Bohmian measures, recently introduced by the authors in [8]:

Definition 1. For ψε ∈ H1(Rd), with associated densities ρε, Jε as in (2), and
a given ε > 0, we define the corresponding Bohmian measure βε ≡ βε[ψε] ∈
M+(Rdx × Rdp) via

〈βε, ϕ〉 :=
∫

Rd

ρε(x)ϕ

(
x,
Jε(x)

ρε(x)

)
dx, ∀ϕ ∈ C0(R

d
x × R

d
p),

where C0(R
d
x × Rdp) denotes the space of continuous function vanishing at infinity

and M+(Rdx × Rdp) the set of non-negative Radon measures on phase space.
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It has been shown shown in [8] that if ψε(t, x) solves (1), then the corresponding
Bohmian βε(t, x, p) measure is the push-forward of

(3) βε[ψε0] ≡ βε0(x, p) = ρε0(x)δ(p− u0(x)),

under the ε-dependent phase space flow Φεt : (x, p) 7→ (Xε(t, x, p), P ε(t, x, p))
induced by

(4)

{
Ẋε = P ε,

Ṗ ε = −∇V (Xε)−∇V εB(t,Xε),

where V εB(t, x), denotes the so-called Bohm potential

V εB(t, x) := −ε
2

2

∆
√
ρε(t, x)√
ρε(t, x)

.

More precisely, under mild regularity assumptions on V , the flow Φεt is shown to
exists globally in time for almost all (x, p) ∈ R2d, relative to the measure βε0 and
is continuous in time on its maximal open domain, cf. [8, Lemma 2.5].

The fact that βε(t) = Φεt #βε0 makes it a natural starting point for investigations
of the classical limit ε → 0+ (of Bohmian mechanics). In [8] we were able to
establish the existence of a limiting non-negative phase space measure β(t) ∈
M+(Rdx × Rdp), such that, after extracting an appropriate sub-sequence (denoted
by the same symbol):

βε
ε→0+−→ β in Cb(Rt;M+(Rdx × R

d
p))w − ∗.

If, in addition, sup0<ε≤1(‖ψε(t)‖L2 +‖ε∇ψε(t)‖L2) < +∞, one can prove that the
limiting phase space measure β(t) incorporates the classical limit of the particle
and current density in the sense that

(5) ρε(t, x)
ε→0+−→

∫

Rd

β(t, x, dp), Jε(t, x)
ε→0+−→

∫

Rd

pβ(t, x, dp).

Hereby the limits have to be understood in M+(Rdx)w−∗, uniformly on compact
time-intervals I ⊂ Rt. In other words, the limiting Bohmian measure β(t) therefore
yields the classical limit of the quantum mechanical position and current densities,
by taking the zeroth and first moment with respect to p ∈ Rd. This is analogous to
the, by now classical, theory of Wigner measures w(t) ∈ M+(Rdx ×Rdp) developed
in [7] and [5].

Several sufficient conditions for having β = w have been established in [8]. In
addition, we show that β 6= w in general by means of several examples. Finally,
in the follow-up work [9], we were able to prove that in the case where ψε(t) is a
so-called semi-classical wave packet [4, 6], the re-scaled Bohmian trajectories

Y ε(t, y) = Xε(t, x0 +
√
εy), Zε(t, y) = P ε(t, x0 +

√
εy),

satisfy:

Y ε
ε→0+−→ X, Zε

ε→0+−→ P,
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locally in measure on Rt ×R
d
x, where (X,P ) are the classical particle trajectories

induced by the Hamiltonian system

(6)

{
Ẋ = P, X(0) = x0,

Ṗ = −∇V (X), P (0) = p0.
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Around the Boltzmann equation without angular cut-off

Robert M. Strain

(joint work with Philip T. Gressman)

In this report, we will describe briefly several recent developments [2, 3, 4, 5] for
the Boltzmann equation without the Grad angular cut-off assumption [1]:

(1)
∂F

∂t
+ v · ∇xF = Q(F, F ), F (0, x, v) = F0(x, v).

Here the unknown is F = F (t, x, v) ≥ 0 with t ≥ 0. The spatial coordinates we
consider are x ∈ Ω (Ω ∈ {Tn,Rn}), and the velocities are v ∈ Rdim with n ≥ 2.
The Boltzmann collision operator, Q, acts only on the velocity variables, v, as

(2) Q(G,F )(v)
def

=

∫

Rn

dv∗

∫

Sn−1

dσ B(v − v∗, σ)
[
G(v′∗)F (v

′)−G(v∗)F (v)
]
.

Above the velocities of a pair of particles before and after collision are connected by

v′ = v+v∗
2 + |v−v∗|

2 σ and v′∗ = v+v∗
2 − |v−v∗|

2 σ, where σ ∈ Sn−1. The collision kernel,
B(v−v∗, σ), depends upon the deviation angle θ through cos θ = (v−v∗)·σ/|v−v∗|.
Furthermore B(v − v∗, σ) can be taken to be zero for θ > π

2 .
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We suppose that B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ) where b and Φ are non-
negative. The angular function is not locally integrable; for cb > 0 it satisfies

(3)
cb

θ1+2s
≤ sinn−2 θ b(cos θ) ≤ 1

cbθ1+2s
, s ∈ (0, 1), ∀ θ ∈

(
0,
π

2

]
.

Additionally the kinetic factor satisfies for some CΦ > 0 that

(4) Φ(|v − v∗|) = CΦ|v − v∗|γ , γ > −n.

We distinguish between the cases γ ≥ −2s, which are called “hard potentials”,
and the cases −2s > γ > −n, furthermore called “soft potentials” herein.

These collision kernels are physically motivated since they can be derived from
an intermolecular repulsive potential such as φ(r) = r−(p−1) with p ∈ (2,∞) as
was shown by Maxwell in 1866. In the physical dimension (n = 3), B satisfies the
conditions above with γ = (p− 5)/(p− 1) and s = 1/(p− 1). The vast majority of
previous work requires the Grad angular cut-off assumption [1] from 1963 which
usually means either b(cos θ) ∈ L∞(Sn−1) or b(cos θ) ∈ L1(Sn−1). Neither of these
assumptions are satisfied for singular angular factors such as (3).

The Boltzmann H-theorem is a hallmark of statistical physics. Define the H-

functional by H(t)
def

= −
∫
Ω
dx
∫
Rdim dv f log f. Then the H-theorem predicts that,

for solutions of the Boltzmann equation, the entropy is increasing over time:

dH(t)

dt
=

∫

Ω

dx D(f, f) ≥ 0.

This is a demonstration of the second law of thermodynamics. The entropy pro-

duction functional is D(g, f)
def

= −
∫
Rdim dv Q(g, f) log f. This functional is zero

if and only if it is operating on a Maxwellian equilibrium. The prediction is thus
that the Boltzmann equation exhibits irreversible dynamics and should experience
convergence to Maxwellian in large time.

We will study the linearization of (1) around the Maxwellian equilibrium

(5) F (t, x, v) = µ(v) +
√
µ(v)f(t, x, v),

where the Maxwellian is given by µ(v)
def

= (2π)−n/2e−|v|2/2.We linearize the Boltz-
mann equation (1) around (5). This grants an equation for the perturbation:

∂tf + v · ∇xf + L(f) = Γ(f, f), f(0, x, v) = f0(x, v),(6)

where the bilinear operator, Γ, is given by Γ(g, h)
def

= µ−1/2Q(
√
µg,

√
µh). Then

the linearized collision operator, L, is defined as L(g)
def

= −Γ(g,
√
µ) − Γ(

√
µ, g).

The null space of L is: N(L)
def

= span
{√

µ, v
√
µ, (|v|2 − n)

√
µ
}
. Now, for fixed

(t, x), we denote the orthogonal projection from L2(Rdim
v ) into N(L) by P.

In recent works [2, 3, 4], we introduced the norm: |f |2Ns,γ

def

= |f |2
L2

γ+2s
+ |f |2

Ṅs,γ .

Here, for ℓ ∈ R, we use the norm |f |p
Lp

ℓ

def

=
∫
Rdim dv 〈v〉ℓ |f(v)|p for p = 1, 2. The
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weight is 〈v〉 def

=
√
1 + |v|2. We also use the “dotted” semi-norm

|f |2
Ṅs,γ

def

=

∫

Rdim

dv

∫

Rdim

dv′ (〈v〉 〈v′〉) γ+2s+1
2

(f(v′)− f(v))2

d(v, v′)n+2s
1d(v,v′)≤1.

The fractional differentiation effects are measured using the anisotropic metric:

d(v, v′)
def

=

√
|v − v′|2 + 1

4
(|v|2 − |v′|2)2.

Here the quadratic difference |v|2−|v′|2 is an essential component of the anisotropic
fractional differentiation effects induced by the Boltzmann collision operator, which
occur on a “lifted” paraboloid. This metric encodes the anisotropic changes in the
power of the weight, which are entangled with the fractional differentiation effects.

It is known that L ≥ 0 and Lg = 0 if and only if g = Pg. Our anisotropic space
then sharply characterizes the Dirichlet form of the linearized collision operator as

1

C
|{I−P}g|2Ns,γ ≤ 〈Lg, g〉 ≤ C|{I−P}g|2Ns,γ ,

with a constructive constant C > 0. Above 〈·, ·〉 is the standard L2(Rdim
v ) inner

product. It follows that a spectral gap exists if and only if γ+2s ≥ 0. Furthermore

Theorem 7 ([4]). The diffusive behavior of the operator (2) in L2(Rdim
v ) is

−〈Q(g, f), f〉 ≈ |f |2
Ṅs,γ + |f |2L2

γ
− l.o.t.

Furthermore, the entropy production satisfies the estimate

D(g, f) & |
√
f |2
Ṅs,γ + |f |2L1

γ
− l.o.t.

In each statement above g ≥6= 0 is a parameter function. The precise assumptions
needed are in [4]. Also the lower order terms in “l.o.t.” are non-differentiating.

Since this is a three page report, we state our results without complete precision
although we illustrate the main conclusions in detail. Otherwise we refer to the
precise statements in [2, 3, 4, 5]. In the following we use HK

ℓ to denote a weighted
L2 Sobolev space with K space-velocity derivatives and ℓ velocity weights.

Theorem 8 ([3], [5]). Fix K ≥ 2⌊n2 +1⌋ and ℓ ≥ 0. Suppose (3) and (4). Choose

initially f0(x, v) ∈ HK
ℓ (Ω×Rn) in (5). If ‖f0‖HK

ℓ
is sufficiently small, then there

exists a unique global classical solution to the Boltzmann equation (1), in the form
(5). If γ + 2s ≥ 0 then, for some fixed λ > 0, we have exponential decay as

‖f(t)‖HK
ℓ (Tn×Rdim) . e−λt‖f0‖HK

ℓ (Tn×Rdim).

When γ < −2s, if ‖f0‖HK
ℓ+m

is sufficiently small for ℓ,m ≥ 0, then we have

‖f(t)‖HK
ℓ (Tn×Rn) ≤ Cm(1 + t)−m‖f0‖HK

ℓ+m(Tn×Rn).

We also have positivity, i.e. F = µ+
√
µf ≥ 0 if F0 = µ+

√
µf0 ≥ 0.
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Theorem 8 provides a global existence theorem on Ω, and also shows rapid
time decay on the torus Tn with n ≥ 2. In the whole space, Rn with n ≥ 3,
the presence of dispersion slows down the decay rates. For r ≥ 1, we define the

mixed norm ‖g‖Zr

def

=
(∫

Rdim

(∫
Rdim |g(x, v)|rdx

)2/r
dv
)1/2

. For ℓ ≥ 0, further set

ǫK,ℓ
def

= ‖f0‖HK
ℓ
+ ‖f0‖2Z1

. We then have time decay rates in the Zr norm:

Theorem 9 ([5]). Let f(t, x, v) be the solution to the Cauchy problem, Ω = Rn,
of the Boltzmann equation from Theorem 8. Suppose ǫK,ℓ′(n) is sufficiently small,
where ℓ′(n) > 0 is fixed. Then for any 2 ≤ r ≤ ∞, we have the uniform estimate:

(7) ‖f(t)‖Zr . (1 + t)−
n
2 + n

2r .

Furthermore ‖{I−P}f(t)‖Zr . (1 + t)−
n
2 − 1

r+
n
2r . These hold for any t ≥ 0.

These time decay rates for the Zr-norms in (7) are optimal in the sense that
they are the same as those for the linearized system, which is studied using Fourier
analysis. These rates also coincide with those of the Boltzmann equation for hard-
sphere particles, and they are the same in Lr(Rdim

x ) as those for the Heat equation.
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Free path length distributions of a Lorentz gas in a quasi crystal

Bernt Wennberg

The Lorentz gas is a mathematical model for the motion of (point) particles in
e.g. a crystal, consisting of spherical, elastic scatterers of radius a with centers
at a set of points Γε ⊂ Rn. A point particle moves in straight lines between the
obstacles, on which it is specularly reflected. At least two very different point
distributions, Γε have been studied thoroughly: the standard lattice L ⊂ R

n, with
interstitial distance ε, or a random distribution, where Γε is Poisson distributed
with intensity ε−n (almost; one must assume a hard core condition, preventing
the obstacles from overlapping).

Here we are interested in the so-called Boltzmann-Grad limit, in which one lets
a→ 0 and ε→ 0 in such a way that aε−n is constant, and the question is:
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Suppose that we are given an initial distribution f0(x, v)
1, x ∈ R

n, v ∈ Sn−1,
and we let f ε(x, v, t) denote the point distribution at time t under the dynamics
described above. Does the sequence f ε converge to some f = f(x, v, t) when ε→ 0?
If so, can one identify an equation that is satisfied by f?

Gallavotti [3] proved that when n = 2, and Γε is Poisson distributed, the limit
exists, and Ψ satisfies a linear Boltzmann equation,

∂tf(x, v, t) + v · ∇xf(x, v, t) =
1

2

∫

S−

(f(x, v′, t)− f(x, v, t)) |ω · v| dv′(1)

and similar results hold e.g. when is obtained from a periodic distribution
by removing some of them, randomly, independently, provided that the correct
obstacle density is maintained [7, 5]. In the purely periodic case, the result is
false, as has been rigorously established e.g. in Caglioti,Golse [2] and in Marklof,
Strmbergsson [4]. By different means the authors prove that the limit is again a
linear transport equation, but in a larger phase space.

An important concept in these studies is themean free path, and the distribution
of free path lengths. The latter could be defined as

τ(x, v) = inf{t > 0 : x+ vt ∈ ∂Ωε},(2)

where Ωε = Rn \ (Γε +Bε(0)), and BR(0) is the closed ball of radius ε and center
at the origin. Hence τε(x, v) is the time until a particle starting at (x, v) hits an
obstacle. When Γε satisfies some kind of translation invariance, it makes sense to
define the free-path length distribution as

φε(]a, b[) = lim
R→∞

m
(
{(x, v) ∈ (Ωε ∩BR(0))× Sn−1 | τε(x, v) ∈]a, b[

)
}

m ((Ωε ∩BR(0))× Sn−1)
,(3)

where m is the Lebesgue measure in Rn. φε is a positive measure on R+, and
if the Lorentz model converges to a linear Boltzmann equation, then the limiting
path length distribution is exponentially decreasing. This is true for the random
distribution of scatters, but not for the periodic Lorentz gas, where the limiting
distribution satisfies φ(]T,∞[) ∼ T−1 (independently of the dimension n, see [1]).

In this talk I show a simulation result which indicates that the behaviour of a
quasi crystal is similar to that of a periodic lattice.

A quasi crystal is, by definition, a solid with an essentially discrete diffraction
pattern exhibiting a symmetry forbidden by the crystallographic restriction (See
e.g. the book by M. Senechal [6]). For example, periodic crystals in R3 do not
admit 5-fold symmetries. Experiments indicate that solids of this kind exist, and a
matematical construction which yields an aperiodic structures with an essentially
discrete diffraction pattern is the following: Let L be a lattice in Rk, and let E be
a n-dimensional subspace of Rk, such that E ∩L = {0} and E⊥ its orthogonal com-
plement. Let Π and Π⊥ be the orthogonal projections on E and E⊥ respectively.

1Of course, one must handle the fact that when ε is positive, there should be no particles
inside the obstacles
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If K is the Voronoi cell of the origin, let

X = L ∩
(
Π⊥(K)⊕ E

)
,(4)

and finally consider the set Π(X) ⊂ E . This will be a non-periodic, discrete set,
which is a candidate for a quasi crystal. To obtain a crystal with a five fold
symmetry in R

2, one may chose a two-dimensional subspace E of R
5. With a

construction similar to this, one may construct the famous Penrose tiling of the
plane (see [6]).

It is now natural to study a Lorentz gas in an aperiodic crystal, and to determine
whether the Boltzmann-Grad limit would yield a linear Boltzmann equation, as
in the random case, or if the limiting procedure would give a result similar to the
periodic case. The Boltzmann-Grad limit here consist of taking Γε =

√
εΠ(X).

A simple one-dimensional model, which actually corresponds exactly to the two-
dimensional periodic Lorentz gas is as follows: On the line, take Ωε = R \ (] −
ε, ε[+Z). Chose x0, q ∈]0, 1− ε[ randomly (e.g. uniformly), and let xN = x0+Nq.
The discrete free path length is then

τε(x0, q) = min {N > 0 | xN /∈ Ωε}(5)

and

φε(]a, b[) = m({(x0, q) ∈]0, 1− ε[2 | τε(x0, q) ∈ ]a/ε, b/ε[})(6)

In the corresponding one-dimensional quasi-crystal, Z is replaced by a so-called
Fibonacci sequence, in which the intervals between to points is either α or α+ β,
where α/β = γ, the golden ratio. The ordering of long and short intervals can
be determined in several ways. One can, for example, use the projection method
described above. Let then L be the regular lattice in R3, and let E ⊂ R2 be the
subset consisting of a line through the origin with slope 1/γ, and then E ′ is the
line with slope −γ.

Figure 1 shows one example of a Monte Carlo simulation, where φε(]T,∞[)
with ε = 10−5 has been estimated based on more than 1.5 107 trajectories. The
graphs show log φε(]T,∞[) as a function of log, and the the three curves represent
different obstacle distributions. The green curve shows the result for the Fibonacci
sequence, the blue curve for a periodic distribution of scatterers, and the magenta
colored curve the result for a periodic (although non-Poissonian) distribution.

Although the blue and green curves, corresponding to a periodic crystal and the
quasi crystal, do not coincide, they are both very close to a straight lines, which
means that the decay rate of the mean free path distribution decays polynomially;
φε(]T,∞[) ∼ T−1. The magenta colored curve decays exponentially as a plot of
logφε(]T,∞[)shows. But the scatterers are not Poisson distributed; instead a a
point (the obstacle center) is chosen at random, uniformly, in each integer interval.

The next step in this project will be to make a true two-dimensional simulation
of the Lorentz gas in a quasi-crystal with fivefold symmetry, as well as some other
aperiodic crystals.

The, at least in the simple case studied here, it should be possible to rigorously
establish the decay rate of the free path length distribution.
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Figure 1. A log log plot of the free path length distribution, as
described in the text

An interesting question to address is to determine all possible decay rates.
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Institut für Analysis, Technische Math.
und Versicherungsmathematik
Technische Universität Wien
Wiedner Hauptstr. 8 - 10
A-1040 Wien

Prof. Dr. Axel Klar

Fachbereich Mathematik
T.U. Kaiserslautern
Erwin-Schrödinger-Straße
67653 Kaiserslautern

Prof. Dr. Xuguang Lu

Department of Mathematical Sciences
Tsinghua University
Beijing 100084
CHINA

Rossana Marra

Dipartimento di Fisica 1t
Universita di Roma Tor Vergata
Via d. Ricerca Scientifica 1
I-00133 Roma

Prof. Dr. Daniel Matthes

Zentrum Mathematik
Technische Universität München
Boltzmannstr. 3
85747 Garching bei München

Dr. Alessandro Michelangeli

Mathematisches Institut
Ludwig-Maximilians-Universität
München
Theresienstr. 39
80333 München

Prof. Dr. Stephane Mischler

CEREMADE
Universite Paris Dauphine
Place du Marechal de Lattre de
Tassigny
F-75775 Paris Cedex 16

Dr. Clement Mouhot

DMA UMR 8553 CNRS
Ecole Normale Superieure
45 rue d’Ulm
F-75230 Paris Cedex 05

Prof. Dr. Claudia Negulescu

LATP, UMR-CNRS 6632
Centre de Mathematiques et Inform.
Universite de Provence, Aix-Mars. I
39, rue Joliot Curie
F-13453 Marseille Cedex 13

Dr. Lukas Neumann

Institut f. Mathematik u. Geometrie
Universität Innsbruck
Technikerstr. 13
A-6020 Innsbruck

Prof. Dr. Anne Nouri

Centre de Mathematiques et
d’Informatique
Universite de Provence
39, Rue Joliot-Curie
F-13453 Marseille Cedex 13

Prof. Dr. Felix Otto

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
04103 Leipzig

Prof. Dr. Lorenzo Pareschi

Dipartimento di Matematica
Universita di Ferrara
Via Machiavelli 35
I-44121 Ferrara

Prof. Dr. Mario Pulvirenti

Facolta di Scienze Matematiche
Universita di Roma
Piazza A. Moro 1
I-00185 Roma



3236 Oberwolfach Report 54/2010

Dr. Gael Raoul

Department of Applied Mathematics &
Theoretical Physics (DAMTP)
Centre for Mathematical Sciences
Wilberforce Road
GB-Cambridge CB3 OWA

Prof. Dr. Gerhard Rein

Mathematisches Institut
Universität Bayreuth
95440 Bayreuth

Prof. Dr. Francesco Salvarani

Dipartimento di Matematica
Universita di Pavia
Strada Nuova, 65
I-27100 Pavia

Prof. Dr. Christian Schmeiser

Fakultät für Mathematik
Universität Wien
Nordbergstr. 15
A-1090 Wien

Prof. Dr. Eric Sonnendrücker
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