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Introduction by the Organisers

The workshop Combinatorics organised by Jeff Kahn (Piscataway), Angelika Ste-
ger (Zürich), and Benny Sudakov (Los Angeles) was held January 2nd - January
8th, 2011. Despite the early point in the year the meeting was extremely well at-
tended with 52 participants from the US, Canada, Brazil, UK, Israel, and various
European countries. The program consisted of 13 plenary lectures, accompanied
by 19 shorter contributions and a vivid problem session led by Vera T. Sós. The
plenary lectures were intended to provide overviews of the state of the art in various
combinatorial areas and/or in-depth treatments of major new results. The short
talks ranged over a wide variety of topics including in graph theory, coding theory,
discrete geometry, extremal combinatorics, Ramsey theory, theoretical computer
science, and probabilistic combinatorics. Special attention was paid throughout
to providing a platform for younger researchers to present themselves and their
results.
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This report contains extended abstracts of the talks and the statements of the
problems that were posed during the problem session. This was a particularly
successful edition of the meeting Combinatorics, in large part because of the ex-
ceptional strength and range of the results discussed. Here we mention just a few of
these, each of which involved spectacular progress on some well-known, longstand-
ing conjecture. These few snapshots also provide a nice, if small, sample of the
large variety of topics and methodologies that were presented during a fascinating
week in Oberwolfach.

A family of graphs F is triangle-intersecting if for every G,H ∈ F , the in-
tersection G ∩ H contains a triangle. A celebrated conjecture of Simonovits and
Sós from 1976 states that the largest triangle-intersecting families of graphs on a
fixed set of n vertices are those obtained by fixing a specific triangle and taking
all graphs containing it. This conjecture was recently proved by Ellis, Filmus, and
Friedgut using spectral methods and discrete Fourier analysis; see the abstract of
Ehud Friedgut’s talk.

For a graph G, write Φ(G) for the number of perfect matchings of G. The
Lovász-Plummer Conjecture (proposed in the 1970’s) says that for bridgeless, cubic
graphs G, Φ(G) grows exponentially in the number (say n) of vertices of G —
this despite the fact that until two years ago it was not even known that the
number must be more than linear in n. Not long before the Oberwolfach meeting,
the Lovász-Plummer Conjecture was proved in full by Esperet, Kardoš, King,
Král, and Norine, using a combination of ideas from graph theory and linear
programming; see the Daniel Král’s abstract.

A tournament is an orientation of a complete graph. Sumner’s Universal Tour-
nament Conjecture of 1971 says that any tournament on 2n− 2 vertices contains
every directed n-vertex tree. Following a long history of partial results, Sum-
ner’s conjecture has now been proved in full, assuming only that n is large, by
Kühn, Mycroft and Osthus, using, inter alia, probabilistic ideas and a variant of
Szemerédi’s Regularity Lemma; see the abstract of Deryk Osthus.

A subject that’s received a great deal of attention over the last decade or two
concerns questions of the type: given a (large) finite set Γ and family F of subsets
of Γ that can be shown to exhibit some structural property of interest, about
how large a random subset of Γ will (probably) continue to exhibit said property?
The last few years have seen breakthrough progress on such questions by Mathias
Schacht (see his abstract) and (independently and using very different methods)
Conlon and Gowers. These results provide very general information on questions of
the above type, including, to give just two examples, the threshold for Szemerédi’s
(arithmetic progressions) Theorem to hold in random subsets of the integers, and
verification of a much-studied conjecture of Kohayakawa,  Luczak, and Rödl (1997)
on Turán-type problems in random graphs.

On behalf of all participants, the organisers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for providing
such a stimulating and inspiring atmosphere.



Combinatorics 7

Workshop: Combinatorics

Table of Contents
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The Local Lemma is tight for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Po-Shen Loh (joint with Alan Frieze and Michael Krivelevich)
Packing tight Hamilton cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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Abstracts

General questions about extremal graphs

László Lovász

Many questions in extremal graph theory can be phrased like this: what is the
maximum of a certain linear combination of densities of given graphs F1, . . . , Fk

in any graph G? Perhaps we have contraints on G, also in the form of fixing
certain linear combinations of densities of F1, . . . , Fk in G. Over 60-70 years, a
lot of questions of this type have been posed and many have been answered. The
answers are often quite difficult. For example, the minimum density of triangles,
subject to fixing the edge density, was only rather recently determined by Razborov
[13], and even more recently extended from triangles to K4-s by Nikiforov [12] and
to all complete graphs by Reiher.

It is now possible to pose and in some cases answer some general questions
about extremal graphs. In a previous talk in Oberwolfach, I posed some of these
questions. I will add a new one, and report about substantial progress concerning
them.

Besides the wealth of previous results, these general studies in extremal graph
theory were made possible by the theory of graph limits. For two simple graphs
F and G, let t(F,G) denote the density of F is G, defined as the probability that
a random map V (F ) → V (G) preserves edges. A sequence G1, G2, . . . of simple
graphs is called convergent, if |V (Gn)| → ∞ and t(F,Gn) has a limit for every
fixed F as n→ ∞ (see [1, 2]).

It was proved in [7] that every convergent sequence has a limit object in the
form of a symmetric measurable function W : [0, 1]2 → [0, 1]. This represents the
limit in the sense that

t(F,Gn) → t(F,W ) :=

∫

[0,1]V

∏

ij∈E

W (xi, xj)
∏

i∈V

dxi (n→ ∞).

These limit functions are called graphons.
Here are some general questions about extremal graphs.

1. Which inequalities between subgraph densities are valid? To formalize this
question, we consider an inequality

n∑

i=1

ait(Fi, G) ≥ 0

between subgraph densities, where F1, . . . , Fn are fixed graphs, and the ai are
arbitrary real (or, in an algorithmic setting, rational) coefficients, and ask: is it
valid for all graphs G? Hatami and Norine [4] very recently proved that this
question is undecidable. A key ingredient in their proof is the complexity of the
triangle density vs. edge density problem mentioned above. On the other hand, it
follows from the results of Lovász and Szegedy [10] that if we allow an arbitrarily
small “slack”, then it becomes decidable.
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2. Can all valid inequalities be proved using just Cauchy-Schwarz? Many proofs
in extremal graph theory uses the Cauchy–Schwarz inequality (often repeatedly
and in nontrivial ways). How general a tool is the Cauchy–Schwarz inequality in
this context? Using the notions of graphons and graph algebras one can give an
exact formulation of this question, which turns out to be analogous to Hilbert’s
17th Problem about representing nonnegative polynomials as sums of squares. It
turns out that the answer is negative (Hatami and Norine [4]), but it becomes
positive if we allow an arbitrarily small error (Lovász and Szegedy [10]).

3. Is there always an extremal graph? Let us consider an optimization problem
of the type:

maximize
n∑

i=1

cit(Fi, G)

subject to

n∑

i=1

ait(Fi, G) ≥ 0.

If we maximize over graphs G with a fixed number of nodes, then of course there
is an extremal graph. But if we don’t fix the number of nodes, then this does
not follow. For example, there is no graph G minimizing t(C4, G) subject to
t(K2, G) = 1/2.

However, one can prove that there is always an extremal graphon, which then
gives a “template” for asymptotically extremal graphs. This follows from the fact
that the space of graphons is compact in an appropriate metric (the “cut metric”),
which in turn is closely related to the Regularity Lemma, a fundamental tool in
extremal graph theory [8, 11].

The existence of extremal graphons suggest new approaches to some old prob-
lems. For example, the Simonovits–Sidorenko Conjecture says in this language
that for every bipartite graph F , the functional t(F,W ) − t(K2,W )|E(F )| is min-
imized by constant functions W . (In finite terms, this means that asymptotic
minimizers are random graphs.) Now this suggests to prove that constant func-
tions are at least local minimizers, and this in fact can be proved [5] by methods
from analysis (studying a series expansion around the conjectured minimizer).

4. Which graphs are extremal? In other words, what is the pohssible structure
of extremal graphs? Balázs Szegedy and I conjecture that every extremal problem
has an extremal graphon that is finite forcible in the sense that they are determined
by a finite number of prescribed subgraph densities; this corresponds to a unique
asymptotic structure in finite graphs forced by finitely many subgraph densities.

Constant graphons (which are limits of random graphs) can be forced by the
densities of edges and 4-cycles, by a result of Graham, Chung and Wilson [3].
This can be generalized to stepfunctions (limits of generalized random graphs) [6].
There are further nontrivial and quite interesting families, for example threshold
graphons. A complete charaterization is an exciting but difficult open problem.
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Maximum union-free subfamilies

Jacob Fox

(joint work with Choongbum Lee and Benny Sudakov)

A set A of integers is sum-free if there are no x, y, z ∈ A such that x+y = z. Erdős
[8] in 1965 proved that every set of n nonzero integers contains a sum-free subset of
size at least n/3. The proof is an influential application of the probabilistic method
in extremal number theory. This result was rediscovered by Alon and Kleitman
[3], who showed how to find a sum-free subset of size at least (n + 1)/3. Finally,
Bourgain [5] using harmonic analysis improved the lower bound to (n+2)/3. This
result is the current state of the art for this problem. It is not even known if the
constant factor 1/3 is best possible.

The analogous problem in extremal set theory has also been studied for a long
time. A family of sets is called union-free if there are no three distinct sets X,Y, Z
in the family such that X ∪ Y = Z. An old problem of Moser asks: how large of
a union-free subfamily does every family of m sets have? Denote this number by
f(m). The study of f(m) has attracted considerable interest. Riddell observed
that f(m) ≥ √

m (this follows immediately from Dilworth’s theorem, see below).
Erdős and Komlós [9] determined the correct order of magnitude of f(m) by
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proving that f(m) ≤ 2
√

2m + 4. They conjectured that f(m) = (c − o(1))
√
m

for some constant c, without specifying the right value of c. In 1972, Erdős and
Shelah [10] improved both the upper and lower bound by showing that

√
2m−1 <

f(m) < 2
√
m+1 (the lower bound was also obtained independently by Kleitman).

Erdős and Shelah conjectured that their upper bound is asymptotically tight.

Conjecture 1. f(m) = (2 − o(1))
√
m.

We verify this conjecture and solve Moser’s problem.

Theorem 2. For all m, we have

f(m) = ⌊
√

4m+ 1⌋ − 1.

Let a ≥ 2 be an integer. A family of sets is called a-union-free if there are no
a+1 distinct sets X1, · · · , Xa+1 such that X1∪· · ·∪Xa = Xa+1. Let g(m, a) be the
minimum over all families of m sets of the size of the largest a-union-free subfamily.
In particular, g(m, 2) = f(m). The same proof which shows f(m) >

√
2m− 1 also

shows that g(m, a) >
√

2m− 1. Recently, Barat, Füredi, Kantor, Kim and Patkos
[4] proved that g(m, a) ≤ c(a + a1/4

√
m) for some absolute constant c and made

the following conjecture on the growth of g(m, a).

Conjecture 3. lima→∞ lim infm→∞
g(m,a)√

m
= ∞.

We prove this conjecture in the following strong form, which further gives the
correct order of magnitude for g(m, a).

Theorem 4. For all m ≥ a ≥ 2, we have g(m, a) ≥ max{a, a1/4√m/3}.
The lower bound in Theorem 4 is tight apart from an absolute multiplicative

constant factor by the above mentioned upper bound from [4]. Of course, if m ≤ a,
we have trivially g(m, a) = m.

For the proofs of these theorems, it is helpful to study the structure of the partial
order on sets given by inclusion. Recall that a chain (antichain) in a poset is a
collection of pairwise comparable (incomparable) elements. Dilworth’s theorem
[6] implies that any poset with m elements contains a chain or antichain of size
at least

√
m. Notice that a chain or antichain of sets is a-union-free for all a, but

the lower bound g(m, a) ≥ √
m we get from this simple argument is not strong

enough. For the proof of Theorem 4, we find considerably larger structures in
posets which imply that the subfamily is a-union-free. The existence of such large
structures in posets may be of independent interest.

References

[1] H. L. Abbott and D. Hanson, A problem of Schur and its generalizations, Acta Arith. 20
(1972), 172–185.

[2] M. Aigner, D. Duffus, and D. Kleitman, Partitioning a power set into union-free classes,
Discrete Math. 88 (1991), 113–119.

[3] N. Alon and D. Kleitman, Sum-free subsets, in: A tribute to Paul Erdős, Cambridge Univ.
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[4] J. Barat, Z. Füredi, I. Kantor, Y. Kim, and B.Patkos, Large Bd-free subfamilies, in prepa-
ration.

[5] J. Bourgain, Estimates related to sumfree subsets of sets of integers, Israel J. Math. 97
(1997), 71–92.

[6] R. P. Dilworth, A decomposition theorem for partially ordered sets, Annals of Math. 51
(1950), 161–166.
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The Local Lemma is tight for SAT

Tibor Szabó

(joint work with Heidi Gebauer and Gábor Tardos)

We define a k-CNF formula as the conjunction of clauses that are the disjunction
of exactly k distinct literals. A k-CNF formula is called a (k, s)-CNF formula
if every variable appears in at most s clauses. The problem of satisfiability of
(k, s)-CNF formulas is denoted by (k, s)-SAT.

Tovey [13] proved that while every (3, 3)-CNF formula is satisfiable (due to
Hall’s theorem), the problem of deciding whether a (3, 4)-CNF formula is satisfiable
is already NP-hard. Dubois [2] showed that (4, 6)-SAT and (5, 11)-SAT are also
NP-complete. Kratochv́ıl, Savický, and Tuza [9] defined the value f(k) to be the
largest integer s such that every (k, s)-CNF is satisfiable. They also generalized
Tovey’s result by showing that for every k ≥ 3 (k, f(k) + 1)-SAT is already NP-
complete. In other words, for every k ≥ 3 the (k, s)-SAT problem goes through
a kind of “complexity phase transition” at the value s = f(k). On the one hand
the (k, f(k))-SAT problem is trivial by definition in the sense that every instance
of the problem is a “YES”-instance. On the other hand the (k, f(k) + 1)-SAT
problem is already NP-hard, so the problem becomes hard from being trivial just
by allowing one more occurrence of each variable. In fact, the complexity hardness
jump is even greater: the problem of (k, s)-SAT is also MAX-SNP-complete for
every s > f(k) as was shown by Berman, Karpinski, and Scott [1] (generalizing
a result of Feige [4] who showed that (3, 5)-SAT is hard to approximate within a
certain constant factor).
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A straightforward consequence of the Local Lemma is the following: if every
clause of a k-CNF formula has a common variable with at most 2k/e − 1 other
clauses, then the formula is satisfiable [9]. This immediately implies the lower
bound

f(k) ≥
⌊

2k

ek

⌋
.

From the other side Savický and Sgall [11] showed that f(k) = O
(
k0.74 · 2k

k

)
.

This was improved by Hoory and Szeider [8] who came within a logarithmic factor:

f(k) = O
(

log k · 2k

k

)
. Recently, Gebauer [6] showed that the order of magnitude

of the lower bound is correct and f(k) = Θ(2
k

k ).

More precisely, the construction of [6] gave f(k) ≤ 63
64 · 2k

k for infinitely many

k. The constant factor 63
64 was clearly an artefact of the proof and there was no

clear consensus (see [5]) where the asymptotic value of f(k) should fall between
the constants 1/e of [9] and 63/64 of [6]. The goal of our investigation was to
understand the limitations of the method of [6] and as it luckily turned out this
was sufficient to determine the correct asymptotics.

Theorem 1.

f(k) =

(
2

e
+O

(
1√
k

))
2k

k
.

For the upper bound we use the fundamental binary tree approach of [6]. We
define a suitable continuous setting for the construction of the appropriate binary
trees, which allows us to study the problem via a differential equation. The solution
of this differential equation corresponds to our construction of the binary trees,
which then can be given completely discretely.
The lower bound is achieved via the lopsided version of the Lovász Local Lemma.
The key of the proof is to assign the random values of the variables counter-
intuitively: each variable is more probable to satisfy those clauses where it appears
as a literal with its less frequent sign. The lower bound can also be derived from
a theorem of Berman, Karpinski and Scott [1] tailored to give good lower bounds
on f(k) for small values of k.

Since the lopsided Lovász Local Lemma was fully algorithmized by Moser
and Tardos [10] we now have that not only every (k, s)-CNF formula for s =
⌊2k+1/(e(k + 1))⌋ has a satisfying assignment but there is also an algorithm that
finds such an assignment in probabilistic polynomial time. Moreover, for just a
little bit larger value of the parameter s one cannot find a satisfying assignment
efficiently simply because already the decision problem is NP-hard.

Our upper bound construction also settles a couple of other related open ques-
tions from the survey paper of of Gebauer, Moser, Scheder, and Welzl [5]. The
integer l(k) is defined to be the largest integer number satisfying that whenever
all clauses of a k-CNF formula intersect at most l(k) other clauses the formula
is satisfiable. Our construction shows that the lower bound on l(k) given by the
Local Lemma is asymptotically tight.
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Theorem 2.

l(k) =

(
1

e
+O

(
1√
k

))
2k.

Theorem 1 and Theorem 2 are another instances which show the tightness of
the Lovász Local Lemma. The first such example was given by Shearer [12].

Finally, our construction also improves the constant factor in the best known
upper bound in the Neighborhood Conjecture of Beck in the theory of positional
games. However, the importance of this improvement is far less then the impor-
tance of Theorems 1 and 2 as in the Neighborhood Conjecture there is still an
exponential gap between the known upper and lower bounds.
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Packing tight Hamilton cycles

Po-Shen Loh

(joint work with Alan Frieze and Michael Krivelevich)

Introduction. Hamilton cycles occupy a position of central importance in graph
theory, and are the subject of countless results, from Dirac’s Theorem [4] to many
more modern investigations in graphs, digraphs, hypergraphs, and random and
pseudo-random instances of these objects. See, e.g., any of [1, 8, 9, 12, 13, 14].

There has also been a long history of research concerning conditions for the
existence of multiple edge-disjoint Hamilton cycles. Indeed, Nash-Williams dis-
covered that the Dirac condition already guarantees not just one, but at least⌊

5
224n

⌋
edge-disjoint Hamilton cycles. His questions in [15, 16, 17] started a line of

investigation, leading to recent work by Christofides, Kühn, and Osthus [3], who
answered one of his conjectures asymptotically by proving that minimum degree(
1
2 + o(1)

)
n is already enough to guarantee n

8 edge-disjoint Hamilton cycles.
For random graphs, these “packings” with Hamilton cycles are even more com-

plete. Bollobás and Frieze [2] showed that for every fixed r, one can typically find r
edge-disjoint Hamilton cycles in the random graph process as soon as the minimum
degree reaches 2r. Kim and Wormald [10] established a similar result for random
r-regular graphs, proving that such graphs typically contain ⌊r/2⌋ edge-disjoint
Hamilton cycles. The previous statements are of course best possible, but invite
the natural question of what happens when r is allowed to grow. Along these
lines, Frieze and Krivelevich showed in [5] that one can pack

⌊
δ
2

⌋
Hamilton cycles

in Gn,p, up to p ≤ (1+o(1)) logn
n , where δ is the minimum degree of the graph. For

large p, they discovered in [6] that one can pack almost all edges into Hamilton
cycles. This was later improved to essentially the full range of p by Knox, Kühn,
and Osthus [11].

In the hypergraph setting, the study of this Hamilton cycle packing problem
was initiated by Frieze and Krivelevich in [7]. Although the notion of a Hamilton
cycle in an ordinary graph is clear, there are several ways to generalize the notion
to hypergraphs. Indeed, for any 1 ≤ ℓ ≤ k, we may define a k-uniform hypergraph
C to be a Hamilton cycle of type ℓ if there is a cyclic ordering of the vertices of C
so that every edge consists of k consecutive vertices, and every pair of consecutive
edges Ei−1, Ei in C (according to the natural ordering of the edges) has |Ei−1 \
Ei| = ℓ. The extreme cases ℓ = 1 and ℓ = k−1 are the most obvious generalizations
of graph Hamiltonicity, and cycles of those types are often called tight and loose,
respectively. In [7], the first two authors studied the problem of covering almost
all the edges of a random k-uniform hypergraph with disjoint Hamilton cycles of
a fixed type ℓ. They considered ℓ on the looser end of the spectrum, determining
sufficient conditions for the cases ℓ ≥ k/2. However, their methods did not extend
to the regime ℓ < k/2, which seemed more difficult.

Our contribution. In this work, we introduce several new techniques which en-
able us to prove the first results for packing tight Hamilton cycles, i.e., with ℓ = 1.
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We show that under certain natural pseudo-random conditions, almost all edges
of a 3-uniform hypergraph on n vertices can be covered by edge-disjoint tight
Hamilton cycles, for n divisible by 4. This implies the following main result. Here,
Hn,p;3 denotes the random 3-uniform hypergraph obtained by taking each triple
independently with probability p.

Theorem 1. Suppose that ǫ, n, p satisfy ǫ45np16 ≫ log21 n. Then whenever n is a
multiple of four, Hn,p;3 can have all but at most ǫ1/15-fraction of its edges covered
by a disjoint union of tight Hamilton cycles whp.

In other words, for p ≫ logΘ(1) n
n1/16 , we can pack all but o(1)-fraction of the

edges into tight Hamilton cycles. It appears very likely that our approach can
be naturally extended to the general k-uniform case, but the analysis necessarily
becomes more involved. Also, although both results are stated for n divisible
by 4, we expect that they are true in general. Note, however, that a divisibility
condition is unavoidable in the general case of packing Hamilton cycles of type ℓ
in k-uniform hypergraphs, since ℓ must divide n.

Main techniques. The key insight in our proof is the following connection be-
tween tight Hamilton cycles in H and Hamilton cycles in an associated digraph.
For a random permutation v1, v2, . . . , vn of the vertices of H , define an n

2 -vertex
digraph D with vertex set {(v1, v2), (v3, v4), . . . , (vn−1, vn)}. Note that each vertex
of D corresponds to an ordered pair of vertices of H , so D will have an even number
of vertices, since the number of vertices of H is a multiple of 4. Place a directed
edge from (vi, vi+1) to (vj , vj+1) if and only if both hyperedges {vi, vi+1, vj} and
{vi+1, vj , vj+1} are present in H . In this construction, Hamilton cycles in D give
rise to tight Hamilton cycles in H .

To extract edge disjoint Hamilton cycles from a digraph D with an even number
of vertices, we use an approach similar to that taken in [7]. Let w1, w2, . . . , w2m

be a random permutation of the vertices of D with m = n/4, and define A =
{w1, w2, . . . , wm} and B = {wm+1, . . . , w2m}. Define a bipartite graph Γ with
bipartition (A,B), and place an edge between wi ∈ A and wj ∈ B whenever −−−→wiwj

and −−−−→wjwi+1 are both edges of D. Now perfect matchings in Γ give rise to Hamilton
cycles in D, and previous approaches in [7] show how to pack perfect matchings
in pseudo-random bipartite graphs.

However, not all Hamilton cycles in D arise from perfect matchings in one
particular Γ. Similarly, not all Hamilton cycles in H arise from Hamilton cycles in
a single D. We overcome both obstacles with the same iterative approach, which
we illustrate for the hypergraph packing. Roughly speaking, instead of stopping
after generating a single D, we sequentially generate digraphs D1, D2, . . . , Dr in
the above manner, extracting a large set of edge disjoint directed Hamilton cycles
from each, and deleting the corresponding edge-disjoint Hamilton cycles from H .
At each step, we verify that the pseudo-random properties are maintained. We
repeat the process until we have packed the required number of cycles.
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Cycle-saturated graphs with minimum number of edges

Zoltán Füredi

(joint work with Younjin Kim)

A graph G is said to be H-saturated if
— it does not contain H as a subgraph, but
— the addition of any new edge (from E(G)) creates a copy of H .
Let sat(n,H) denote the minimum size of an H-saturated graph on n vertices.
Given H , it is difficult to determine sat(n,H) because this function is not neces-
sarily monotone in n, neither in H . Recent surveys are by J. Faudree, Gould, and
Schmitt [10] (2010+), and by Pikhurko [18] (2004). It is known [16] that

sat(n,H) < cHn.
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However, the limn→∞ sat(n,H)/n does not necessarily exists, Pikhurko (2009).
The classical theorem of Erdős, Hajnal, and Moon [8] (1964) states that

sat(n,Kt) =

(
t− 2

2

)
+ (t− 2)(n− t+ 2).

A similar statement holds for hypergraphs, see Bollobás [5] (1965) and its gen-
eralizations by Kalai [15], Frankl [13], Alon [1], using Lovász’ algebraic method.
Remarkable asymptotics were given by Alon, Erdős, Holzman, and Krivelevich [2]
(1996) (saturation and degrees). For multiple copies of Kp Faudree, Ferrara,
Gould, and Jacobson [11] (2009) determined sat(tKp, n) for n > n0(p, t).

What is the saturation number for the cycle, Ck? Most cases are unsolved.

Theorem 1 (ZF and Y. Kim, 2010+). For n ≥ k ≥ 5,

sat(n,Ck) = n+
n

k
+O(

n

k2
+ k2).
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Our construction for a k-cycle saturated graph for n = t(k − 4) + k − 1 can be
read from the picture below. For other n, one can add r < k − 4 pendant edges.

The case of C4 was established by Ollmann [17] (1972) and by Y. Chen [6]
(2009) proved a conjecture of Fisher, Fraughnaugh, Langley [12].

sat(n,C4) = ⌊3n− 5

2
⌋ for n ≥ 5.(1)

sat(n,C5) = ⌈10(n− 1)

7
⌉ for n ≥ 21.(2)
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The best previous general bounds were due to Barefoot, Clark, Entringer, Porter,
Székely, and Tuza [3] (1996) and Gould,  Luczak, and Schmitt [14]

(
1 +

1

2k + 8

)
n ≤sat(n,Ck)≤ (1 +

2

k − ǫ(k)
)n+O(k2)

where ǫ(k) = 2 for k even ≥ 10, ǫ(k) = 3 for k odd ≥ 17.

A graph G is H-semisaturated (formerly called strongly saturated) if G + e
contains more copies of H than G does for ∀e ∈ E(G). Let ssat(n,H) be the
minimum size of an H-semisaturated graph. Obviously, ssat(n,H) ≤ sat(n,H).

It is known that ssat(n,Kp) = sat(n,Kp) (it follows from Frankl/Alon/Kalai
generalizations of Bollobás theorem) and ssat(n,C4) = sat(n,C4) (Tuza, 1989).
Below we have a C5-semisaturated graph (every vertex can be reached by a path
of length 2 from y). The picture on the right is the extremal C5-saturated graph.

2

y

y

       Figure  1. Figure 2.
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Conjecture 2. ssat(n,C5) = 11
8 n+O(1).

Theorem 3 (ZF and Y. Kim, 2010+). For n ≥ k ≥ 5,

ssat(n,Ck) = n+
n

2k
+O(

n

k2
+ k2).

These cycle-semisaturated graphs have paths of length k − 4 with spikes.

Conjecture 4. Both of our constructions for sat(n,Ck) and ssat(n,Ck) are opti-
mal whenever n > n0(k).
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The Lipschitz constant of the RSK correspondence

Nati Linial

(joint work with Nayantara Bhatnagar)

The Robinson-Schensted-Knuth (RSK) correspondence maps an arbitrary permu-
tation π ∈ Sn bijectively to an ordered pair of Young tableaux of the same shape
λ = λ(π). How much can λ(π) change as we mildly vary π? Specifically, if we
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pre-multiply π by t transpositions, to what extent can λ change? We begin with
the case when t = 1 and show that the resulting Young diagram can differ from
λ on at most

√
n/2 cells. We show that this bound is tight by giving explicit

constructions of permutations π for which this bound is attained where the dia-
grams differ in at least (1 − o(1))

√
n/2 cells. We then turn to consider the same

question for larger t and show that the corresponding diagram changes in at most
O(

√
nt ln t) cells. The best constructions we know nearly match this bound and

yield, e.g., (1 − o(1))
√
nt/2 changes for t = o(n).

A standard Young tableau (SYT or tableau) of size n with entries from [n] is
a diagram whose cells are filled with the elements of [n] in such a way that the
entries are strictly increasing from left to right along a row as well as from top to
bottom down a column. The shape of a tableau T , denoted sh(T ) is the partition
corresponding to the diagram of T .

The RSK correspondence discovered by Robinson and further extended by
Knuth is a bijection between the set of permutations Sn and pairs of tableaux
of size n of the same shape. This bijection is intimately related to the represen-
tation theory of the symmetric group, the theory of symmetric functions, and the
theory of partitions.

We ask to what extent λ changes as π changes slightly. In order to make our
question concrete, we need to specify two measures of distance: One between
permutations and the other between diagrams. For permutations we use pre-
multiplication by transpositions. An adjacent transposition is a permutation of
the form (i, i + 1). We denote the least number of adjacent transpositions that
transform the permutation π to τ by d(π, τ). Recall that d(·, ·) is the graph metric
in the Cayley graph of Sn w.r.t. the generating set of adjacent transpositions
(1, 2), (2, 3), · · · , (n, n − 1). We will say that two permutations π and τ are at
distance t if d(π, τ) = t. If λ and µ are two diagrams, define their distance to
be ∆(λ, µ) := 1

2

∑n
i=1 |λi − µi|. Let π and τ be any two permutations. We are

interested in the Lipschitz constant of this mapping, i.e., we wish to determine

max ∆(λ(π), λ(τ))

over all π, τ ∈ Sn with d(π, τ) = t.
Here are our main results:

• Let π and τ be permutations in Sn with respective Young diagrams λ and
µ, and suppose that d(π, τ) = 1. Then ∆(λ, µ) ≤

√
n
2 . The bound is tight.

• More generally, if d(π, τ) = t, then ∆(λ, µ) ≤ O(
√
nt ln t). For t < n/2

this bound is tight up to the logarithmic term.
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Computing the partition function for perfect matchings in a
hypergraph

Alexander Barvinok

(joint work with Alex Samorodnitsky)

Let us fix an integer k > 1 and let V be a finite ground set, |V | = km for a

positive integer m. Let
(
V
k

)
denote the family of all k-subsets S ⊂ V . A family

W =
{
wS : S ∈

(
V
k

)}
of non-negative numbers wS attached to the k-subsets S of

V is called a weight on
(
V
k

)
. We say that weight W is positive if wS > 0 for all

S ∈
(
V
k

)
.

Given a weight W =
{
wS : S ∈

(
V
k

)}
, we consider the partition function

(3) P (W ) =
∑

S1,...,Sm

wS1 · · ·wSm ,

where the sum is taken over all sets {S1, . . . , Sm} of pairwise disjoint k-sets
S1, . . . , Sm ⊂ V such that S1 ∪ . . . ∪ Sm = V . For k = 2 one can think of W
as of a symmetric 2m × 2m matrix with rows and columns indexed by the ele-
ments of V (the diagonal entries of W are defined arbitrarily), in which case the
expression P (W ) is known as the hafnian of W .

We say that a weight W is k-stochastic if
∑

S: v∈S

wS = 1 for all v ∈ V.

For an α ≥ 1, we say that a positive weight W is α-balanced if

wS1

wS2

≤ α for all S1, S2 ∈
(
V

k

)
.

Theorem 1. Let us fix an integer k > 1 and a real α ≥ 1. Then there exists a
γ = γ(k, α) > 0 such that for any α-balanced k-stochastic weight W on

(
V
k

)
we

have

e−(k−1)mm−γ ≤ P (W ) ≤ e−(k−1)mmγ

where |V | = km for m > 1.

For a positive weight W on
(
V
k

)
, let us define a function

fW (X) =
∑

S∈(V
k)

xS ln
wS

xS

on weights X = {xS} on
(
V
k

)
. Let Ωk be the set of all k-stochastic weights on

(
V
k

)
.

The set Ωk is a polytope defined by
(
km
k

)
inequalities and km equations and fW

is a strictly concave function of X ∈ Ωk. In particular, the maximum

(4) ζ = max
X∈Ωk

fW (X)

is attained at a unique point and can be computed in polynomial time.
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Theorem 2. Let us fix an integer k > 1 and a real α ≥ 1. Then there exists a
γ = γ(k, α) > 0 such that for any α-balanced weight W on

(
V
k

)
we have

eζ−(k−1)mm−γ ≤ P (W ) ≤ eζ−(k−1)mmγ

where |V | = km for m > 1 and ζ is the solution of the optimization problem (4).

In particular, for any fixed α ≥ 1 and k > 1, the value of the partition function
P (W ) on an α-balanced weight W on

(
V
k

)
can be computed in polynomial time

within an mO(1) factor, where |V | = km.
Recall that a k-uniform hypergraph with the set V of vertices is a collection H

of k-subsets S ⊂ V , called edges of H . A family {S1, . . . , Sn} of pairwise disjoint
edges of H is called a matching of H of size n. A matching {S1, . . . , Sm} is called
perfect if V = S1 ∪ . . . ∪ Sm, in which case |V | = km.

As is known, for any k ≥ 3 it is an NP-complete problem to determine whether a
given k-uniform hypergraph has a perfect matching, whereas for k = 2 the problem
admits a polynomial time algorithm. To count the perfect matchings in a given
k-uniform hypergraph H is a #P -hard problem for any k ≥ 2.

Given a k-uniform hypergraph H with the set V of vertices, let us define a
weight W on

(
V
k

)
by

wS =

{
1 if S ∈ H

0 if S /∈ H.

Then P (W ) is the number of perfect matchings in H .

Let us fix an ǫ > 0 and define a weight Ŵ by

(5) ŵS =

{
1 if S ∈ H

ǫ if S /∈ H.

Theorem 2 then guarantees that the value of P (Ŵ ) can be computed in polynomial
time within an mO(1) factor.

Let us fix 0 < β < 1 and 0 < δ < 1 (for example, β = 0.99 and δ = 0.01). Let

Φk(m) =
(km)!

(m!)kk!

be the number of perfect matchings in the complete k-uniform hypergraph
(
V
k

)

with |V | = km. It turns out that we can distinguish in polynomial time the hy-
perpgraphs with km vertices that do not have a nearly perfect matching, namely a
matching of size n ≥ βm, from the hypergraphs with km of vertices that have suffi-

ciently many, namely at least δmΦk(m), perfect matchings. Defining the weight Ŵ

by (5) we obtain P (Ŵ ) ≤ ǫ(1−β)mΦk(m) in the former case and P (Ŵ ) ≥ δmΦk(m)
in the latter case. Choosing a sufficiently small ǫ = ǫ(β, δ) > 0 we can distinguish

between the two cases by computing P (Ŵ ) within an mO(1) factor.
Theorems 1 and 2 remain true if the definition of the partition function P (W )

is modified as follows. Suppose that the set of vertices V is partitioned into a
pairwise disjoint union V = V1 ∪ . . . ∪ Vk, where |V1| = . . . = |Vk| = m. We take
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the sum in (3) over all partitions V = S1 ∪ . . . ∪ Sm, where |Si ∩ Vj | = 1 for all
i and j. For k = 2 the weight W is interpreted as an m ×m matrix W = (wij)
with rows indexed by the vertices of V1 and columns indexed by the vertices of
V2. The corresponding expression P (W ) is known as the permanent of matrix W .
In that case, the van der Waerden and Bregman-Minc inequalities for permanents
imply that Theorems 1 and 2 can be somewhat strengthened: instead of requiring
that W is α-balanced, we may require that maxi,j wij = O

(
m−1

)
. However, in

the case of k ≥ 3 and in the case of hafnians the condition that W is α-balanced
seems to be unavoidable.

Proofs and some other applications can be found in [1].
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Hypergraph packing

Peter Keevash

(joint work with Richard Mycroft)

We show that if G is a 3-graph on n vertices with n divisible by 4 such that every
pair of vertices is contained in at least 3n/4 + o(n) edges then G has a perfect
tetrahedron packing, i.e. n/4 vertex-disjoint tetrahedra.

We also show that if G is an r-partite graph with n vertices in each part such
that every vertex has at least (r−1)n/r+o(n) neighbours in each part other than
its own then G has a perfect packing by complete graphs of size r.

Both results are asymptotically best possible.
We prove them as part of a general framework for finding perfect matchings in

an object we call an r-system. This consists of j-graphs for each 0 ≤ j ≤ r on
the same set of vertices, related by a minimum degree condition on the number
of (j + 1)-edges containing any j-edge. We obtain an asymptotically best possible
result for the minimum degree sequence that guarantees a perfect matching in an
r-system with no ‘divisibility barrier’ based on a ‘lattice construction’.

Colouring tournaments

Paul Seymour

(joint work with Eli Berger, Krzysztof Choromanski, Maria Chudnovsky,
Jacob Fox, Martin Loebl, Alex Scott, and Stephan Thomassé)

A tournament is a finite digraph such that for every two distinct vertices u, v there
is exactly one edge with ends {u, v} (so, either the edge uv or vu but not both).
If G is a tournament, X ⊆ V (G) is transitive if the subtournament G|X induced
on X has no directed cycle. If k ≥ 0, a k-colouring of a tournament G means a
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partition of V (G) into at most k transitive subsets. The chromatic number χ(G)
of a tournament G is the minimum k such that G admits a k-colouring.

If G,H are tournaments, we say G contains H if H is isomorphic to a subtour-
nament of G, and otherwise G is H-free. For 0 ≤ ǫ ≤ 1, let us say a tournament
H is ǫ-timid if there exists c such that χ(G) ≤ c|V (G)|ǫ for every H-free tourna-
ment G. There is a famous open question about induced subgraphs of graphs, the
Erdős-Hajnal conjecture [3], and it can be reformulated [1] in terms of colouring
tournaments as follows.

1. Conjecture. For every tournament H, there exists ǫ < 1 such that H is
ǫ-timid.

This remains open; indeed, it is open for the five-vertex tournament H in which
every vertex has out-degree two. (Maria Chudnovsky and I have checked it for
all other tournaments with at most five vertices.) Working on this conjecture, we
observed that many small tournaments are 0-timid, and this led us to ask for a
complete characterization of the 0-timid tournaments, which is the subject of this
talk. Full details are given in [2].

Let us call the 0-timid tournaments “heroes”. Thus, a tournament H is a hero if
there exists c (depending on H) such that every H-free tournament has chromatic
number at most c. For instance, the tournament with three vertices forming a
cyclic triangle is a hero; every tournament not containing it is 1-colourable. In
fact there are infinitely many heroes, because of the following easy observation:

2. Let H be a hero, and let J be the tournament obtained from H by adding a new
vertex v adjacent from every vertex of H. Then J is a hero.

Proof. Let c ≥ 0 such that every tournament not containing H has chromatic
number at most c. Now let G be a tournament not containing J . We claim its
chromatic number is at most c|V (H)|. For we may assume that G|X is isomorphic
to H for some choice of X . (G|X denotes the subtournament of G induced on X .)
For each x ∈ X , let Yx be the set of vertices in G adjacent to x. Then G|Yx does
not contain H (because G does not contain J), and so G|Yx has chromatic number
at most c, and therefore so does G|(Yx ∪ {x}). Hence the union of these |X | sets
induces a tournament with chromatic number at most c|X |. But the union of
these sets is V (G), since G does not contain J . This proves 2.

In fact a much more general statement is true, the following, but its proof is
much more complicated.

3. Let H1, H2 be heroes, and let H be obtained from the disjoint union of H1 and
H2 by making every vertex of H2 adjacent from every vertex of H1. Then H is a
hero.

We would like to list all heroes. Statement 2 above shows that there are infinitely
many; and statement 3 shows that it suffices to list all strongly-connected heroes,
because a tournament is a hero if and only if all its strong components are heroes.
Let us see that not all tournament are heroes. If A,B ⊆ V (H), we write A ⇒
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B if every vertex in B is adjacent from every vertex in A. A trisection of a
tournament H is a partition (A,B,C) of V (H), such that A,B,C are all nonempty
and A⇒ B ⇒ C ⇒ A. If H |A,H |B,H |C are isomorphic to tournaments P,Q,R
respectively, we write H = ∆(P,Q,R). Tk denotes the transitive tournament with
k vertices.

4. If H is a strongly-connected hero with |V (H)| > 1, then H admits a trisection
(A,B,C) such that |C| = 1; and one of A,B is transitive.

Proof. Define a sequence Si (i ≥ 1) of tournaments as follows. S1 is the one-
vertex tournament. Inductively, for i ≥ 2, let Si = ∆(Si−1, Si−1, T1). It is easy
to check that χ(Si) ≥ i, and so there exists i such that Si contains H . Choose
i minimum. Now i ≥ 2, and Si = ∆(Si−1, Si−1, T1); and V (H) meets at least
two sets of the corresponding trisection of Si (because Si−1 does not contain H)
and hence meets all three sets (because H is strongly-connected). This induces a
trisection (A,B,C) of V (H) with |C| = 1, and so proves the first part of statement
4. The second, that one of A,B is transitive, needs a different argument that we
omit.

Statement 4 turns out to be best possible, because of the following converse.

5. If H is a hero, then for k ≥ 1 so are ∆(H,Tk, T1) and ∆(H,T1, Tk).

Again, the proof cannot be given here, but in combination with statement 4,
this yields a complete characterization of heroes.

One could also ask for a weaker property; let us say a tournament H is a
celebrity if there exists c > 0 such that every H-free tournament G has a transitive
subset of cardinality at least c|V (G)|. Evidently every hero is a celebrity, but in
fact the converse holds. Thus we have:

6. A tournament is a celebrity if and only if it is a hero.

Proof. We need to show that if H is a celebrity then it is a hero, and we prove
this by induction on |V (H)|. By statement 3 above, we may assume that H is
strongly-connected. By adapting the proof of statement 4 to apply to celebrities
(define Si = ∆(Si−1, Si−1, Si−1)), it follows that H admits a trisection (A,B,C).
If A,B,C all have more than one element, then H contains ∆(T2, T2, T2), which
therefore is also a celebrity; and we prove it is not, by a probabilistic construction
that is perhaps the technically most complicated part of the paper. Thus we may
assume that |C| = 1. But then the same argument as before (that we omitted)
shows that one of A,B is transitive, and the result follows by applying statement
5 and the inductive hypothesis.

In conclusion, let us mention two open questions; are the following two state-
ments true?

7. For all k ≥ 0 there exists c such that, if G is a tournament in which the set of
out-neighbours of each vertex has chromatic number at most k, then χ(G) ≤ c.
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8. Let H = ∆(T2, T2, T2). For all ǫ > 0 there exists c > 0 such that every H-free
tournament G has a transitive subset of cardinality at least c|V (G)|1−ǫ.

We were unable to prove statement 7 even when k = 3. We observe that
statement 8 is false when ǫ = 0.
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Lower bounds for geometric ǫ-nets

Gábor Tardos

(joint work with János Pach)

Let R be a set system (range space). A set S is said to be shattered by R if
every subset H ⊆ S can be obtained as H = S ∩ R for a suitable R ∈ R. The
VC-dimension of R (named after Vapnik and Chervonenkis) is the maximum size
of a set shattered by R. An ǫ-net (also called strong ǫ-net) for the finite set S
with respect to R is a set H ⊆ S satisfying that if R ∈ R has |R ∩ S| ≥ ǫ|S|, then
we have R ∩H 6= ∅.

According to a well known theorem of Haussler and Welzl [6], with respect to a
range space of bounded VC-dimension, any set admits an ǫ-net of size O(1ǫ log 1

ǫ ).
Using probabilistic techniques, Pach and Woeginger (1990) showed that there exist
range spaces of VC-dimension 2, with respect to which the smallest size of an ǫ-net
required by some sets is Ω(1ǫ log 1

ǫ ).
Geometric range spaces consisting of ranges of constant description complex-

ity (e.g., balls, boxes, half-spaces, etc. in a Euclidean space) have bounded VC-
dimension, so the Haussler Welzl theorem applies to them. However, in many
instances there are smaller ǫ-nets than the ones whose existence guaranteed by
this general result. In fact, it was widely believed that, with respect to geometric
range spaces, there always exist linear size ǫ-nets (that is, ǫ-nets of size O(1ǫ )).
This conjecture was confirmed is several special cases, for instance, for half-spaces
in dimensions 2 and 3, [7]. In a recent paper, Aronov Ezra and Sharir [2] proved
that, with respect to axis-parallel boxes in dimensions 2 and 3, O(1ǫ log log 1

ǫ ) size
ǫ-nets exist.

The linear ǫ-net conjecture had to be revised after Alon [1] discovered some
geometric range spaces of small VC-dimension, in which the ranges are straight
lines, rectangles, or infinite strips in the plane, and which do not admit linear
size ǫ-nets. Alon’s construction is based on the density version of the Hales-
Jewett theorem, due to Furstenberg and Katznelson [5], and recently improved in
[9]. However, his lower bound is only barely superlinear: Ω(1ǫ g(1ǫ )), where g is
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an extremely slowly growing function, closely related to the inverse Ackermann
function.

We showed that the results in both [7] and [2] are best possible in the sense
that (1) neither of them generalizes to dimension 4 or higher; (2) the log log factor
in the second bound cannot be removed. More precisely, we have the following.

Theorem 1. There exist point sets in the 4-dimensional Euclidean space, for
which every ǫ-net with respect to axis-parallel boxes is of size Ω(1ǫ log 1

ǫ ). The
same result holds for ǫ-nets with respect to half-spaces in dimension 4.

Theorem 2. There exist point sets in the plane, for which every ǫ-net with respect
to axis-parallel rectangles is of size Ω(1ǫ log log 1

ǫ ).

For the proof of Theorem 2, it is sufficient to consider random point sets of
a certain size in the unit square. The proof of Theorem 1 relies on dualizing an
explicit construction of a collection of axis-parallel rectangles in the plane that
have no small “dual ǫ-nets”. For Theorem 1, our starting point is a result in [8]
for hypergraph coloring. For Theorem 2, we strengthen [3].

Alon’s lower bounds in [1] can be extended to weak ǫ-nets, i.e., to the case when
the points of a net do not necessarily belong to the original point set. Our results
do not generalize to this case. In fact, according to a result of Ezra [4], Theorem 1
cannot be extended to weak ǫ-nets, but it is possible that Theorem 2 can.
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Probabilistic and deterministic vertex-coloring games

Reto Spöhel

(joint work with Torsten Mütze and Thomas Rast)

Introduction. Consider the following probabilistic online problem: The vertices
of an initially hidden random graph Gn,p are revealed one by one in increasing or-
der, and at each step of the process only the edges induced by the vertices revealed
so far are visible. Each vertex has to be colored immediately and irrevocably with
one of r available colors as soon as it is revealed, and the goal is to color all n
vertices without creating a monochromatic copy of some given fixed graph F in
the process.

It follows from standard arguments that this problem has a threshold p0(F, r, n)
in the following sense: For any function p(n) = o(p0) there is an online strategy
that succeeds with probabiliy 1−o(1) in coloring Gn,p as desired, and for any func-
tion p(n) = ω(p0) the success probability of any online strategy is o(1). The main
goal when studying this and similar online problems is to determine p0(F, r, n)
explicitly.

Related online problems have been studied by various authors, most notably
for the so-called Achlioptas process [1, 2, 3, 6]. In the work presented here, we
establish a one-to-one correspondence between the above probabilistic problem
and a fairly natural deterministic variant of the same problem. To the best of our
knowledge, this is the first time that such a correspondence has been observed.

Our result. Our main result characterizes the threshold for the online coloring
problem described above in terms of the following deterministic two-player game
played by two players called Builder and Painter. The board is a graph that grows
in each step of the game. Starting with an empty board, in each step Builder
presents a new vertex and a number of edges leading from previous vertices to
this new vertex. Painter has to color the new vertex with one of r available colors
immediately, and as before her goal is to avoid monochromatic copies of some
given graph F . Note that so far this is the same setting as before, except that
we replaced ‘randomness’ by the second player Builder. However, we additionally
impose the restriction that Builder is not allowed to present an edge that would
create a (not necessarily monochromatic) subgraph H with e(H)/v(H) > d on
the board, for some fixed real number d known to both players. We will refer
to this game as the deterministic F -avoidance game with r colors and density
restriction d.

We say that Builder has a winning strategy in this game (for a fixed graph F , a
fixed number of colors r, and a fixed density restriction d) if he can force Painter to
create a monochromatic copy of F within a finite number of steps. For any graph F
and any integer r ≥ 2 we define the online vertex-Ramsey density m∗

1(F, r) as

(6) m∗
1(F, r) := inf

{
d ∈ R

∣∣∣∣∣
Builder has a winning strategy in the
deterministic F -avoidance game with r
colors and density restriction d

}
.
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It is not hard to see that m∗
1(F, r) is indeed well-defined for any F and r. With

these definitions in hand, our results can be stated as follows.

Theorem 1. For any graph F with at least one edge and any integer r ≥ 2, the
online vertex-Ramsey density m∗

1(F, r) is a computable rational number, and the
infimum in (6) is attained as a minimum.

Theorem 2. For any fixed graph F with at least one edge and any fixed integer
r ≥ 2, the threshold for finding an r-coloring of Gn,p that does not contain a
monochromatic copy of F in the online setting is

p0(F, r, n) = n−1/m∗

1(F,r) ,

where m∗
1(F, r) is defined in (6).

Theorem 2 reduces the problem of determining the threshold of the probabilistic
problem to the purely deterministic combinatorial problem of determining m∗

1(F, r)
or, informally speaking, of ‘solving’ the deterministic two-player game. According
to Theorem 1, the latter is possible by a finite computation.

The proof of the upper bound in Theorem 2 is fairly elementary, and generic
in the sense that it does not require any real understanding of what happens in
the deterministic game. In contrast, our proof of the lower bound in Theorem 2 is
deeply intertwined with the proof of Theorem 1 and relies very much on structural
properties of Painter’s and Builder’s optimal strategies in the deterministic game.

The online vertex-Ramsey density m∗
1(F, r) and the corresponding optimal

Builder and Painter strategies show a surprisingly complex (only partially un-
derstood) behaviour even for the innocent-looking case where F is a long path [4].
In view of this, we see little hope of replacing the abstract definition (6) by a more
explicit formula.

An open question. The obvious question raised by our results is whether ana-
logues of Theorem 1 and Theorem 2 hold in other similar settings, in particular
for the edge-coloring setting first studied by Friedgut et al. [2]. The methods used
in this work do not suffice to answer this question, as they are based on struc-
tural properties of the deterministic vertex-coloring game that do no hold for its
edge-coloring counterpart.

We mention that such analogues are indeed true for the problem of avoiding
small subgraphs in the Achlioptas process, which was first studied by Krivelevich
et al. [3] and solved completely in our earlier work [5].
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Disjoint paths in tournaments

Maria Chudnovsky

(joint work with Alex Scott and Paul Seymour)

The question of linking pairs of terminals by disjoint paths is a standard and
well-studied question in graph theory. The setup is: given a graph G and vertices
s1, . . . , sk and t1, . . . , tk, is there a set of disjoint path P1, . . . , Pk in G such that
Pi is a path from si to ti for every i ∈ {1, . . . , k}? This question makes sense in
both directed and undirected graphs, and the paths may be required to be edge-
or vertex-disjoint.

For undirected graphs, a polynomial-time algorithm for solving both the edge-
disjoint and the vertex-disjoint version of the problem (where the number k of
terminals is fixed) was first found by Robertson and Seymour [6], and is a part
of their well-known Graph Minors project. For directed graphs, both problems
are NP -complete, even when k = 2 (by a result of Fortune, Hopcroft and Wyllie
[4]). However, if we restrict our attention to tournaments (these are directed
graphs with exactly one arc between every two vertices), the situation improves.
Polynomial time algorithms for solving the edge-disjoint and the vertex-disjoint
paths problems when k = 2 have been known for a while (these are results of
Bang-Jensen [1], and Bang-Jensen and Thomassen [2], respectively).

Last year, Fradkin and Seymour [5] were able to design a polynomial-time algo-
rithm to solve the edge-disjoint paths problem in tournaments for general (fixed)
k, using a new parameter for tournaments, developed by Chudnovsky and Sey-
mour, called “cut-width” [3]. However, the vertex-disjoint paths problem seemed
to be resistant to similar methods.

The goal of this talk was to describe a polynomial-time algorithm to solve
the vertex-disjoint paths problem in tournaments for general (fixed) k. We can
actually solve a more general question, as follows (a digraph is semicomplete if for
all distinct u, v, at least one of uv, vu is an edge):

Theorem 1. For all k, there is a polynomial-time algorithm as follows:

• Input: A semicomplete digraph G, vertices s1, t1 . . . sk, tk of G, and inte-
gers x1 . . . xk ≥ 0.

• Output: Decides whether there exist pairwise vertex-disjoint directed paths
P1 . . . Pk of G such that for 1 ≤ i ≤ k, Pi is from si to ti and has at most
xi vertices.

A linkage in a digraph G is a family (Pi : 1 ≤ i ≤ k) of vertex-disjoint
directed paths, and it is a linkage for (G, s1, t1 . . . sk, tk) if Pi is from si to ti for
each i. Let us say that a 2k + 1-tuple (G, s1, t1 . . . sk, tk) is critical if there exists
a linkage for (G, s1, t1 . . . sk, tk), but for every v ∈ V (G) there is no linkage for
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(G\v, s1, t1 . . . sk, tk) (where G\v is the graph obtained from G by deleting v). The
first subroutine of our algorithm uses dynamic programming to find a linkage given
a critical 2k+1-tuple (G′, s′1, t

′
1 . . . s

′
k, t

′
k) (this subroutine has two possible outputs:

a linkage, or a determination that the 2k + 1-tuple is not critical). Simplifying a
few technical steps, the main algorithm uses the this subroutine to construct an
auxiliary directed graph A, so that there is a linkage for (G, s1, t1 . . . sk, tk) if and
only if there is a path between two specified vertices of A.
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Edge-isoperimetric inequalities in the discrete cube

Alex Samorodnitsky

The edge-isoperimetric inequality for the Hamming cube {0, 1}n [6] states that for
any subset A of the cube holds

(7) |E (A,Ac) | ≥ |A| log2

(
2n

|A|

)

Here |E (A,Ac) | counts the edges between A and its complement.
Non-uniform versions of edge-isoperimetry were considered in [2], who introduced
the notion of influence of variables on boolean functions. For 1 ≤ i ≤ n, let Ii(A)
count the number of edges in direction i between A and its complement. (Then
|E (A,Ac) | =

∑n
i=1 Ii.) Ben-Or and Linial conjectured that any set A, with |A| ≤

2n−1, has a variable with large influence, more precisely maxi Ii ≥ Ω
(

logn
n

)
· |A|.

Note that a straightforward application of the edge-isoperimetric inequality (7)
gives only maxi Ii ≥ Ω

(
1
n

)
· |A|.

This conjecture was proved in [7] using Fourier analysis and the hypercontractive
inequality of [1, 3, 5]. In fact, Kahn, Kalai, and Linial proved more, namely, for
|A| ≤ 2n−1:

(8)

n∑

i=1

I2i ≥ Ω

(
log2(n)

n

)
· |A|2
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An even stronger inequality was proved by Talagrand [9]. A special case of this
inequality states (for |A| ≤ 2n−1):

(9)

n∑

i=1

Ii

ln
(

2n

Ii

) ≥ Ω(|A|)

In [4] we observed that (8) can be derived from a functional version of (7). Let
f : {0, 1}n → R be a real-valued function on the cube, and let E(f, f) =∑

x∼y(f(x) − f(y))2 be the Dirichlet quadratic form on the cube (the summa-

tion is over pairs of connected vertices). Then

(10) E(f, f) ≥ 2 ln(2) ·
∑

x

f2(x) · log2

(
2n ·∑x f

2(x)

(
∑

x |f(x)|)2

)

This inequality was independently proved in [10]. Let us also mention that it can
be derived from the logarithmic Sobolev inequality [5]:

(11) E(f, f) ≥ 2 ·
(∑

x

f2(x) ln
(
f2(x)

)
−
∑

x

f2(x) · ln

(
1

2n
·
∑

x

f2(x)

))

Substituting f = 1A in (10) or in (11) recovers (7), up to a constant. This dis-
parity in constants is the main point we address in this work. We are looking for
functional inequalities on the cube, which reduce to (7) when substituting f = 1A.
In particular, we conjecture the following inequality to hold for any subset A ⊆
{0, 1}n and for any function f : {0, 1}n → R:

(12) E(f, f) + 4
∑

x

f2(x) ≥ 2 ·




log2

(
2n

|A|

)

|A| ·
(∑

x∈A

|f(x)|
)2



This conjectured inequality is a slightly modified dual form of a special case of
an inequality in [9], which was used to prove (9). It is possible to prove with
2 ln 2 replacing 2 on the RHS, deriving it from (11). However, we require a tight
constant, which, we conjecture, should be 2. If this holds, then it would imply a
tight version of (9):

n∑

i=1

Ii

ln
(

2n−1

Ii

) ≥ 2 · |A|

and of (8)
n∑

i=1

I2i ≥ 4 ·
(

log22(n)

n

)
· |A|2

We can only prove a special case of (12), in which f is required to be supported
on A. In this case, a slightly stronger statement is true [8]:

(13) E(f, f) ≥ 2 ·




log2

(
2n

|A|

)

|A| ·
(∑

x∈A

|f(x)|
)2


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Substituting f = 1A recovers (7).
We note that (13) is an inequality between quadratic forms. This allows a random
walk interpretation. Let Y be a random variable defined as follows: choose a
uniformly random point a ∈ A and consider the random walk in {0, 1}n starting
from a. Then Y measures the time it takes the walk to exit A for the first time.
We refer to EY as the expected exit time of A. This is a parameter of a subset A
of the cube.
The following claim is equivalent to (13): Subcubes maximize the expected exit
time among all subsets of the cube of the same cardinality.
More precisely, for any subset A of {0, 1}n,

EY ≤ n

log2

(
2n

|A|

)

If A is a subcube, this is an equality.
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Exponentially many perfect matchings in cubic graphs

Daniel Král’

(joint work with Louis Esperet, Frantǐsek Kardoš, Andrew D. King, and Serguei
Norine)

Given a graph G, let M(G) denote the set of perfect matchings in G. A classical
theorem of Petersen [10] states that every cubic bridgeless graph has at least one
perfect matching, i.e. M(G) 6= ∅. Indeed, it can be proven that any edge in a
cubic bridgeless graph is contained in some perfect matching [11], which implies
that |M(G)| ≥ 3.

In the 1970s, Lovász and Plummer conjectured that the number of perfect
matchings of a cubic bridgeless graph G should grow exponentially with its order
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(see [8, Conjecture 8.1.8]). It is a simple exercise to prove that G contains at most
2|V (G)| perfect matchings, so we can state the conjecture as follows:

Conjecture 1. There exists a universal constant ǫ > 0 such that for any cubic
bridgeless graph G,

2ǫ|V (G)| ≤ |M(G)| ≤ 2|V (G)|.

The problem of computing |M(G)| is connected to problems in molecular chem-
istry and statistical physics (see e.g. [8, Section 8.7]). In general graphs, this prob-
lem is ♯P -complete [13]. Thus we are interested in finding good bounds on the
number of perfect matchings for various classes of graphs such as the bounds in
the conjecture above.

For bipartite graphs, |M(G)| is precisely the permanent of the graph biadja-
cency matrix. Voorhoeve proved the conjecture for cubic bipartite graphs in 1979
[14]; Schrijver later extended this result to all regular bipartite graphs [12]. We
refer the reader to [7] for an exposition of this connection and of an elegant proof
of Gurvits generalizing Schrijver’s result. For fullerene graphs, a class of planar
cubic graphs for which the conjecture relates to molecular stability and aromatic-
ity of fullerene molecules, the problem was settled by Kardoš, Král’, Mǐskuf and
Sereni [5]. Chudnovsky and Seymour recently proved the conjecture for all cubic
bridgeless planar graphs [1].

The general case has until now remained open. Edmonds, Lovász and Pulley-
blank [2] proved that any cubic bridgeless G contains at least 1

4 |V (G)| + 2 perfect

matchings (see also [9]); this bound was later improved to 1
2 |V (G)| [6] and then

3
4 |V (G)| − 10 [4]. The order of the lower bound was not improved until Esperet,
Kardoš, and Král’ proved a superlinear bound in 2009 [3]. The first bound, proved
in 1982, is a direct consequence of a lower bound on the dimension of the perfect
matching polytope, while the more recent bounds combine polyhedral arguments
with analysis of brick and brace decompositions.

We solve the general case. To avoid technical difficulties when contracting sets
of vertices, we henceforth allow graphs to have multiple edges, but not loops. Let
m(G) denote |M(G)|, and letm⋆(G) denote the minimum, over all edges e ∈ E(G),
of the number of perfect matchings containing e. Our result is the following:

Theorem 2. For every cubic bridgeless graph G we have m(G) ≥ 2|V (G)|/3656.

We actually prove that at least one of two sufficient conditions applies:

Theorem 3. For every cubic bridgeless graph G, at least one of the following
holds:

[S1] m⋆(G) ≥ 2|V (G)|/3656, or
[S2] there exist M,M ′ ∈ M(G) such that M△M ′ has at least |V (G)|/3656

components.

To see that Theorem 3 implies Theorem 2, we can clearly assume that [S2]
holds since m⋆(G) ≤ m(G). Choose M,M ′ ∈ M(G) such that the set C of
components of M△M ′ has cardinality at least |V (G)|/3656, and note that each
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of these components is an even cycle alternating between M and M ′. Thus for
any subset C′ ⊆ C, we can construct a perfect matching MC′ from M by flipping
the edges on the cycles in C′, i.e. MC′ = M△⋃C∈C′ C. The 2|C| perfect matchings
MC′ are
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A proof of the Simonovits-Sós conjecture on triangle-intersecting
families of graphs

Ehud Friedgut

(joint work with David Ellis, Yuval Filmus)

A family of graphs F is triangle-intersecting if for every G,H ∈ F , G∩H contains
a triangle. A conjecture of Simonovits and Sós from 1976 states that the largest
triangle-intersecting families of graphs on a fixed set of n vertices are those obtained
by fixing a specific triangle and taking all graphs containing it, resulting in a family

of size 1
82(n

2). We prove this conjecture and some generalizations.
The generalizations include the following features:

• One may replace the assumption of intersecting in a triangle with ”agree-
ing” on a triangle, i.e. for every G,H in the family the complement of
their symmetric difference contains a triangle.
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• One may replace the assumption of agreeing on a triangle to agreeing on
a non-bipartite graph (any two graphs in the family agree on some odd
cycle).

• One may replace graphs by not-necessarily-uniform hypergraphs. The
precise formulation may be found in the paper which is now available
online.

• One may replace the counting measure (the uniform measure) with which
the size of the family is measured by the product measure G(n, p), for any
p ≤ 1/2, and obtain a bound of p3 instead of 1/8.

In addition we prove a stability version of all these generalizations. In other words,
if a triangle-intersecting family is close enough in size to the size of a maximal one,
then it is also close in structure to a maximal one.

The methods we use are spectral methods, and discrete Fourier analysis. We

define a Cayley graph on the group Z(n
2) which translates the notion of a triangle-

intersecting family to that of an independent set. We then wish to use eigenvalue
bounds in order to bound the size of the largest independent sets, and characterize
them - however, for this to be useful we need to define an appropriate weighting
on the edges of the graph. This enables us not only to obtain the bound of 1/8,
but also to characterize the Fourier transform of the maximal families, and use
this knowledge to characterize them as desired.

Asymptotic enumeration of sparse 2-connected graphs and strongly
connected digraphs

Nicholas Wormald

(joint work with Graeme Kemkes, Cristiane Sato, and Xavier Pérez-Giménez)

This talk reports joint work with Graeme Kemkes and Cristiane Sato on graphs,
and with Xavier-Pérez Giménez on digraphs.

Firstly, we determine an asymptotic formula for the number of labelled 2-
connected (simple) graphs on n vertices and m edges, provided that m− n → ∞
and m = O(n log n) as n → ∞. This is the entire range of m not covered by pre-
vious results. The proof involves determining properties of the core and kernel of
random graphs with minimum degree at least 2. The case of 2-edge-connectedness
is treated similarly. We also obtain formulae for the number of 2-connected graphs
with given degree sequence for most (‘typical’) sequences.

Secondly, we derive an asymptotic formula for the number of strongly connected
digraphs with n vertices and m arcs (directed edges), valid for m − n → ∞ as
n → ∞ provided m = O(n log n). This fills the gap between other results of
Wright’s, which apply to m = n + O(1), and the long-known threshold for m,
above which a random digraph with n vertices and m arcs is likely to be strongly
connected.
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Call a (simple) graph on the vertex set [n] = {1, . . . , n} with m edges an (n,m)-
graph (and similarly for digraphs). A number of authors have addressed the prob-
lem of counting connected (n,m)-graphs. After results by various authors for
various ranges of m with various degrees of approximation, Bender, Canfield and
McKay [1] provided an asymptotic formula for the number whenever m−n→ ∞ as
n→ ∞. They obtained this formula by studying a differential equation related to
a recurrence relation for the number of connected graphs. Pittel and Wormald [6]
provided a somewhat simpler proof for this formula, with an improved error term
for some ranges of m.

A natural next step would be to count k-connected (n,m)-graphs. This prob-
lems turns out to be essentially already solved for k ≥ 3.  Luczak [3] showed that
a random graph with given degree sequence, all degrees between 3 and d, a.a.s.
(asymptotically almost surely) has connectivity equal to minimum degree. As ob-
served in the introduction of [5], this implies that, for m = O(n logn), a random
(n,m)-graph with minimum degree k ≥ 3 is a.a.s. k-connected. (To deduce this,
one needs to know that such a random (n,m)-graph has no large degree vertices,
which can be deduced from the results of [5], or alternatively by a more direct
argument if m/n is bounded.) Thus, using the above-mentioned result from [5],
one immediately obtains an asymptotic formula for k-connected (n,m)-graphs.
However, this argument does not apply for 2-connected graphs.

The new result is an asymptotic formula for the number T (n,m) of 2-connected
(n,m)-graphs when m− n → ∞ with m = O(n log n). Above this range, for any
fixed k, it is well known that almost all graphs are k-connected. This follows by
the classic result of Erdős and Rényi [2], that for fixed k ≥ 0 and m = m(n) =
1
2n(logn+ k log logn+ x+ o(1)),

P(G(n,m) is k-connected) → 1 − e−e−x/k!,

where G(n,m) denotes an (n,m)-graph chosen uniformly at random.
For the statement of our results we define the odd falling factorial (2m− 1)!! =

(2m − 1)(2m− 3) · · · 1, and the average degree c = 2m/n. Define g(λ) = λ(eλ −
1)/(eλ − 1 − λ). Then g is an increasing function with g(λ) → 2 as λ → 0. Since
c > 2, we may let λc be the (unique) positive root of

g(λ) =
λ(eλ − 1)

eλ − 1 − λ
= c,

and we set

η̄c =
λce

λc

eλc − 1
and pc =

λ2c
2 (eλc − 1 − λc)

.

Our main result (with Kemkes and Sato) is the following. Suppose m =
O(n log n) and m− n→ ∞. Then

T (n,m) ∼ (2m− 1)!!
(exp(λc) − 1 − λc)

n

λ2mc
√

2πnc(1 + η̄c − c)

√
c− 2pc

c
exp

(
− c

2
− λ2c

4

)
.
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We prove this using different arguments for various ranges of m. In particular if
m = O(n) we use the kernel configuration model of [6] to find the probability that
a random graph with given degree sequence is 2-connected.

Wright [8] found an asymptotic formula for the case m − n = o(
√
n) with

m − n → ∞, and it was noted that the problem of finding a formula for m − n
growing faster than

√
n seems difficult. His formula was

T (n,m) = a
√

6πnn+3k−1/2e2k−n(18k2)−k(1 +O(k−1) +O(k2/n)),

where a is a constant. Wright gave a method of estimating a, and computed it to
be 0.058549831 . . .. From our result above it is straightforward to determine a to
be 1/(2eπ).

Palásti [4] determined the threshold of strong connectivity of digraphs, as fol-
lows. Let α be fixed and define m(α, n) = ⌊n logn + αn⌋. Then, for a random
directed graph having n vertices and m arcs (with loops permitted but no multiple

arcs), so that each of the
(
n2

N

)
possible choices is equiprobable, the probability that

the digraph is strongly connected tends to exp(−2e−α) as n → ∞. Multiplying

this probability by
(
n2

N

)
consequently gives an asymptotic formula for the number

S(n,m) of strongly connected digraphs with n vertices and m arcs, for such m.

This also easily implies that S(n,m) ∼
(
n2

N

)
if m = m(αn, n) with αn → ∞. On

the other hand, Wright [7] obtained recurrences for the exact value of S(n,m)
when m = n+ O(1). (We must require m ≥ n to avoid the failure to be strongly
connected for trivial reasons.) In this paper, we fill the entire gap between these
results, deriving an asymptotic formula for S(n,m), valid for m − n → ∞ as
n → ∞ provided m = O(n log n). Our main result, with Pérez-Giménez, is as
follows. Uniformly for m = O(n logn) and m − n → ∞, the number of strongly
connected digraphs with n vertices and m arcs is asymptotic to

(14)
(m− 1)!(eλ − 1)2n

2π(1 + λ− c)λ2m
exp(−λ2/2)

eλ(eλ − 1 − λ)2

(e2λ − eλ − λ)(eλ − 1)
,

where c = m/n > 1 and λ is determined by the equation c = λeλ/(eλ − 1). We
use different arguments for various ranges of m. In particular, for m − n = o(n),
we use an analogue of the kernel configuration model mentioned above.
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An approximate version of Sidorenko’s conjecture

David Conlon

(joint work with Jacob Fox and Benny Sudakov)

A fundamental problem in extremal graph theory is to determine or estimate the
minimum number of copies of a graphH which must be contained in another graph
G of a certain order and size. The special case where one wishes to determine the
minimum number of edges in a graph on N vertices which guarantee a single copy
of H has received particular attention. The case where H is a triangle was solved
by Mantel more than a century ago. This was generalized to cliques by Turán and
the Erdős-Stone-Simonovits theorem determines the answer asymptotically if H is
not bipartite. For bipartite graphs H , a classical result of Kővári, Sós, and Turán
implies that O(N2−ǫH ) edges are sufficient for some ǫH > 0, but, despite much
effort by researchers, the asymptotics, and even good estimates for the largest
possible ǫH , are understood for relatively few bipartite graphs.

The general problem can be naturally stated in terms of subgraph densities.
The edge density of a graph G with N vertices and M edges is M/

(
N
2

)
. More

generally, the H-density of a graph G is the fraction of all one-to-one mappings
from the vertices of H to the vertices of G which map edges of H to edges of G.
The general extremal problem asks for the minimum possible H-density over all
graphs on N vertices with edge density p. For fixed H , the asymptotic answer as
N → ∞ is a function of p. Determining this function is a classical problem and
notoriously difficult even in the case where H is the complete graph of order r.
Early results in this case were obtained by Erdős, Goodman, Lovász, Simonovits,
Bollobás, and Fisher. Recently, Razborov [4] using flag algebras and Nikiforov [3]
using a combination of combinatorial and analytic arguments gave an asymptotic
answer in the cases r = 3 and r = 4, respectively.

There is a simple upper bound on the minimum H-density in terms of the edge
density. Suppose that H has m edges. By taking G to be a random graph with
edge density p, it is easy to see that the minimum possible H-density is at most pm.
The beautiful conjectures of Erdős and Simonovits [6] and Sidorenko [5] suggest
that this bound is sharp for bipartite graphs. That is, for any bipartite H there is
a γ(H) > 0 such that the number of copies of H in any graph G on N vertices with
edge density p > N−γ(H) is asymptotically at least the same as in the N -vertex
random graph with edge density p. This is known to be true in a few very special
cases, e.g., for complete bipartite graphs, trees, even cycles (see [5]) and, recently,
for cubes [2].
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The original formulation of the conjecture by Sidorenko is in terms of graph
homomorphisms. A homomorphism from a graph H to a graph G is a mapping
f : V (H) → V (G) such that, for each edge (u, v) of H , (f(u), f(v)) is an edge
of G. Let hH(G) denote the number of homomorphisms from H to G. We also
consider the normalized function tH(G) = hH(G)/|G||H|, which is the fraction of
mappings f : V (H) → V (G) which are homomorphisms.

Conjecture 1 (Sidorenko). For every bipartite graph H with m edges and every
graph G,

tH(G) ≥ tK2(G)m.

We extend the class of graphs for which Sidorenko’s conjecture is true, as follows.

Theorem 2. Sidorenko’s conjecture holds for every bipartite graph H which has
a vertex complete to the other part.

From Theorem 2, we may easily deduce an approximate version of Sidorenko’s
conjecture for all graphs. For a connected bipartite graph H with parts V1, V2,
define the bipartite graph H̄ with parts V1, V2 such that (v1, v2) ∈ V1 × V2 is an
edge of H̄ if and only if it is not an edge of H . Define the width of H to be the
minimum degree of H̄ . If H is not connected, the width of H is the sum of the
widths of the connected components of H . Note that the width of a connected
bipartite graph is 0 if and only if it has a vertex that is complete to the other part.
Also, the width of a bipartite graph with n vertices is at most n/2.

Corollary 3. If H is a bipartite graph with m edges and width w, then tH(G) ≥
tK2(G)m+w holds for every graph G.

Our methods also allow us to contribute to the theory of quasirandomness. A
sequence (Gn : n = 1, 2, . . .) of graphs is called quasirandom with density p (where
0 < p < 1) if, for every graph H ,

(15) tH(Gn) = (1 + o(1))p|E(H)|.

Note that (15) is equivalent to saying that the H-density of Gn is (1+o(1))p|E(H)|,
since the proportion of mappings from V (H) to V (Gn) which are not one-to-one
tends to 0 as |V (Gn)| → ∞. This property is equivalent to many other properties
shared by random graphs. One such property is that the edge density between
any two vertex subsets of Gn of linear cardinality is (1 + o(1))p. A surprising fact,
proved in [1], is that it is enough that (15) holds for H = K2 and H = C4 for a
graph to be quasirandom. That is, a graph with edge density p is quasirandom with
density p if the C4-density is approximately p4. A question of Chung, Graham,
and Wilson [1] which has received considerable attention asks for which graphs H
is it true that if (15) holds for K2 and H , then the sequence is quasi-random with
density p. Such a graph H is called p-forcing. We call H forcing if it is p-forcing
for all p. Chung, Graham, and Wilson prove that even cycles C2t and complete
bipartite graphs K2,t with t ≥ 2 are forcing. Skokan and Thoma [7] generalize this
result to all complete bipartite graphs Ka,b with a, b ≥ 2.
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There are two simple obstacles to a graph being forcing. It is easy to show that
a forcing graph must be bipartite. Further, for any forest H , (15) is satisfied for
any sequence of nearly regular graphs of edge density tending to p. The property of
being nearly regular is not as strong as being quasirandom. Hence, a forcing graph
must be bipartite and have at least one cycle. Skokan and Thoma [7] ask whether
these properties characterize the forcing graphs. We conjecture the answer is yes
and refer to it as the forcing conjecture.

Conjecture 4. A graph H is forcing if and only if it is bipartite and contains a
cycle.

It is not hard to see that the forcing conjecture is stronger than Sidorenko’s
conjecture, and it further gives a stability result for Sidorenko’s conjecture. A
stability result not only characterizes the extremal graphs for an extremal problem,
but also shows that if a graph is close to being optimal for the extremal problem,
then it is close in a certain appropriate metric to an extremal graph. In recent
years, there has been a great amount of research done toward proving stability
results in extremal combinatorics. The forcing conjecture implies that if H is
bipartite with m edges and contains a cycle, then G satisfies tH(G) is close to
tK2(G)m if and only if it is quasirandom with density tK2(G).

By extending our methods, we prove the forcing conjecture in the following
particular case.

Theorem 5. The forcing conjecture holds for every bipartite graph H which has
two vertices in one part complete to the other part, which has at least two vertices.
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Higher-order tournaments

Imre Leader

(joint work with Ta Sheng Tan)

A tournament is a complete graph in which each edge is assigned a direction. It is
well known (see e.g. [5]) that there are at most 1

4

(
n
3

)
+O(n2) directed triangles in

a tournament on n vertices. The constant 1
4 is easily seen to be best possible, since

for example the random tournament (where the direction of each edge is assigned
randomly and independently with probability 1

2 ) has expected number of directed

triangles precisely 1
4

(
n
3

)
. Actually, any tournament in which all degrees are close

to n
2 will have about this number of directed triangles (see e.g. [5]).
Our aim in this talk is to investigate some ‘higher order’ analogues of this

result. Before we make our definitions, we give some geometric background, to
explain how the question arose. However, our question is natural even without
any motivation.

Let T ⊂ Rd be a set of n points in general position. What is the greatest possible
number of d-simplices of T that contain (say in their interior) a given point of Rd?
In two dimensions, this question was asked by Kárteszi [4] and answered by Boros
and Füredi [2, 3], who showed that for any set T of n points in the plane in
general position and any point x the number of triangles of T containing x is at
most 1

4

(
n
3

)
+ O(n2). (Note that this can be attained, for example by taking T to

be a regular n-gon and x its centre). Their elegant proof was to note that there
is a natural way to make T into a tournament: given a and b in T , direct the
edge ab from a to b (respectively from b to a) in such a way that the triple abx
(respectively bax) is clockwise. Then the triangles of T containing x correspond
precisely to the directed triangles of this tournament.

In this talk we are usually interested in asymptotic bounds, but we remark in
passing that Boros and Füredi actually proved the exact best possible bound on
the number of triangles, because the exact tournament bound (namely 1

24 (n3 −n)

if n is odd and 1
24 (n3 − 4n) if n is even) can in fact be realised geometrically.

Indeed, the above construction, with x moved slightly so as not to be collinear
with any pair from T , achieves this value.

The general question (in d dimensions) was asked by Boros and Füredi, and
answered by Bárány [1]. He showed that if T ⊂ Rd is a set of n points in general
position and x is any point then the number of d-simplices of T containing x is at
most 1

2d

(
n

d+1

)
+O(nd). The constant 1

2d
is best possible, as may be seen in [1].

Now, Bárány’s result uses the Upper Bound Theorem [6] (about facet counts
in polytopes). In other words, it uses a geometric theorem, as opposed to the
abstract tournament theorem used by Boros and Füredi. But what would the
corresponding abstract result be? Just as in the case d = 2, for a general d we
would give an orientation to each d-set ((d − 1)-simplex) in T , according to ‘on
which side of it’ the point x lies. And then the d-simplices containing x would
correspond exactly to the (d+1)-sets in T whose d-sets were ‘oriented compatibly’
(in other words, whose d-sets had orientations that could be induced from a fixed
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orientation of the (d+1)-set – this will be made more precise in a moment). Hence
our abstract question is as follows: suppose that we orient (in some sense) every
d-set of an n-set; what is the greatest number of directed (d + 1)-sets that arise?
In particular, do we get as small a bound as 1

2d

(
n

d+1

)
+O(nd)?

We now give the precise (and non-geometric) definitions. We define an orien-
tation of a d-set inductively. An orientation of a 1-set {x} is just an assignment of
±1 to x, and an orientation of a 2-set {a, b} is a directed edge from a to b or vice
versa. (We may, if we wish, think of a directed edge from a to b as assigning +1 to
b and −1 to a). And for d ≥ 3, an orientation of a d-set consists of an orientation
for each of its (d− 1)-subsets in such a way that these orientations are compatible,
meaning that any two give different orientations to their common (d− 2)-subset.
Then, for d ≥ 2, a tournament of order d, or d-tournament, consists of a set
together with an orientation of each of its d-sets. Finally, in a d-tournament a
d-simplex is a (d+1)-set, and we say that it is directed if its d-subsets are pairwise
compatible.

For example, a 2-tournament is just a tournament, and its directed 3-sets are
precisely its directed triples in the usual sense. And a 3-tournament is specified
by giving each 3-set (from a given set) a cyclic ordering: then a 4-set is directed if
any two of its 3-sets have cyclic orderings that go in opposite directions on their
common 2-set.

Our question is then: what is the greatest number of directed (d+ 1)-sets for a
d-tournament on n vertices? For d = 2 this is 1

4

(
n
3

)
+ O(n2); what can we say in

general? And how does this bound compare with the ‘geometric’ version (when the
d-tournament is induced from a set T in Rd), where the bound is 1

2d

(
n

d+1

)
+O(nd)?

To put it another way, define the constant cd to be the limit, as n → ∞, of
this greatest number as a fraction of

(
n

d+1

)
– an easy averaging argument shows

that the limit does exist. In this language, the d = 2 result is that c2 = 1
4 , and

the geometric construction shows that cd ≥ 1
2d . In fact, another reason why it

is obvious that cd ≥ 1
2d is that a random d-tournament has expected number of

directed (d + 1)-sets exactly 1
2d

(
n

d+1

)
. How does cd behave, for fixed small d and

also as d gets large?
The plan of the talk is as follows. We start by considering the case d = 3. Here

it turns out that 1
8 is not the right answer. We give an upper bound of 1

4 , by

a simple counting argument. And then we show that that in fact c3 = 1
4 , by a

slightly unexpected random argument.
Then we turn our attention to general d. Here we do not know what the

exact value of cd is. We give an upper bound of 1
d+1 , again by a simple counting

argument. For the lower bound, the method for d = 3 seems unfortunately not to
generalise, and indeed we do not know how to use any random methods to improve
significantly on 1

2d . However, we give an explicit construction to show that cd ≥ 1
d2 .

Thus the abstract version of the problem exhibits genuinely different behaviour to
the geometric version.

Finally, we give further results and open questions.
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Right-convergence of sparse random graphs

David Gamarnik

Recently there was a lot of research devoted to the development of the theory of
graph limits [2],[1],[7],[10]. The theory is in a very mature state for the case of
dense graphs G = (V,E) = (V (G), E(G)), namely graphs where the number of
edges |E| = Θ(|V |2). A certain limiting object Graphon was constructed in [2],
which is a measure on [0, 1]2. This object in some loose sense captures the notion of
limiting density of edges between different parts of graphs Gn. It was established
that a sequence of dense graphs converges to such a limiting object if and only if left
and right convergence of homomorphisms from and into test graphs takes place,
and also if and only if the graph sequence converges with respect to a so-called cut
metric. Also, a random dense graph G(n, p) with a constant edges probability p
trivially converges to a Lebesgue measure, according to this definition. Many parts
of the theory extend to the case when the graph is sparse, but with superlinear
number of edges |E| = ω(|V |).

The situation with very sparse graphs, namely |E| = O(|V |), appears to be more
problematic. Before we summarize the state of the art, let us formally introduce
some definitions. The notion of a left convergence was introduced first in the form
of local convergence by Benjamini and Schramm [6] for bounded degree sparse
graphs. In the form of left convergence the definition can be stated as follows.
Given two graphs H and F , let h(H,F ) denote the number of homomorphisms
from H to F .

Definition 1. A sequence of graphs Gn is said to be left-converging if for every
graph H, the limit limn |V (Gn)|−1h(H,Gn) exists.

For the case of right-convergence, we would like to extend the notion of homo-
morphisms to the case of weighted graphs. Consider a weighted graph H = H(w)
with a symmetric non-negative weight matrix w = (wi,j , 1 ≤ i, j ≤ m = |V (H)|).
We think of H is a weighted graph in the sense that (i, j) is an edge if wi,j > 0,
and is not an edge if wi,j = 0. Given an (unweighted) graph G = (V (G), E(G))
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and any mapping σ : V (G) → V (H), let

w(σ) =
∏

(u,v)∈E(G)

wσ(u),σ(v),

and let h(G, H) =
∑

σ w(σ), where the sum is over all mappings σ : V (G) →
V (H). Observe that when w is a zero-one matrix, h(G, H) is the number of
homomorphisms from G to H (hence the same notation). The object h(G, H) is
also known in statistical physics as the partition function associated with potentials
given by w = w(H).

Definition 2. A sequence of graphs Gn is said to be right-converging if for every
graph H, the limit limn |V (Gn)|−1 log h(Gn, H) exists.

The use of log function in the definition turns out to be necessary for ”correct”
scaling. For example, suppose w is 2 × 2 given by w11 = w12 = w21 = 1, w22 = 0.
Then h(G, H) is the number of independent sets in G. For bounded degree graphs,
this quantity is exponentially in |V (G)| large, hence the log-scaling is justified.

A simple example was demonstrated in the paper by Borgs, Chayes, Kahn and
Lovasz [3], which shows that left convergence does not imply the right-convergence:
consider cycles Cn on n nodes. They are trivially left converging, according to
the Benjamini-Schramm definition, but not right-converging, since Cn is (not) bi-
partite for even (odd) n. Namely for H which is complete graph without loops
on 2 nodes, h(Cn, H) ≥ 2 for even n and h(Cn, H) = 0 for odd n, implying non-
convergence of the sequence Cn. The same paper shows that right-convergence
implies left-convergence and establishes that left-converging graph sequences are
also right-converging but with respect to a restricted class of test graphs H , which
satisfy some density condition. A limiting object for a sequence of sparse graphs
was constructed by Bollobas and Riordan [5]. The limiting object is a sequence
indexed by m = 1, 2, . . . , of measures on the space of m×m matrices. They also
defined a so-called partition metric with respect to which the converging sequence
of sparse graphs has to converge.

A natural question to ask in the context of convergence of sparse graphs is
when does a random graph converge with respect to either left/right convergence
or the partition metric considered by Bollobas and Riordan? For example, does
a sparse Erdös-Rényirandom graph G(n, c/n) converge with respect to the either
of the definition, w.h.p.? The random graph G(n, c/n) is left-converging w.h.p.,
since its local structure is described by a branching process with a Poisson out-
degree distribution. The situation with right-convergence is, however, far more
problematic, and this is where the main contribution of the current work is. We
establish the right-convergence of the graph sequence G(n, c/n) with respect to a
certain subclass of weighted graphs H . Specifically,

Theorem 3. Suppose a symmetric matrix w = (wi,j , 1 ≤ i, j ≤ m = |V (H)|) is
such that (wmax − wi,j , 1 ≤ i, j ≤ m) is positive semi-definite, where
wmax = maxi,j wi,j , and suppose maxi minj wi,j > 0. Then for every c > 0, the se-
quence h(G(n, c/n), H) is right-converging w.h.p. Namely the limit
limn n

−1 log h(G(n, c/n), H) exists in the high probability sense.
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This result extends and unifies several earlier specialized results obtained by
Bayati, Gamarnik and Tetali [4], which uses the interpolation method as the main
technique. The interpolation method originated in the statistical physics literature
by Guerra and Toninelli [8], as a method of proving the existence of the scaling
limits for some thermodynamic quantities, such as the logarithm of the partition
function. Franz and Leone [9] used this method to show the existence of such a
scaling limit for the partition function associated with the random K-SAT problem.
Panchenko and Talagrand [11] extended and unified this further. The paper by
Bayati, Gamarnik [4] proved the existence of scaling limits for several counting
objects, such as the number of independent sets and weighted partial colorings
of G(n, c/n). Theorem 3 unifies most of these results and also establishes the
relevance to the problem of sparse graph limits convergence. The proof is based
on the expansion of log h(G(n, c/n), H) into a power series and using the fact
that the tensor product of symmetric positive semidefinite matrices is also positive
semidefinite. This can be used to show the following relation: for every n = n1+n2

E[log h(G(n, c/n), H)] ≥ E[log h(G(n1, c/n1), H)]

+ E[log h(G(n2, c/n2), H)] −O(
√
n).

Namely, the sequence E[log h(G(n, c/n), H)] is nearly super-additive, from which
its convergence follows. The convergence with high probability follows from stan-
dard concentration arguments.
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A full derandomization of Schöning’s k-SAT algorithm

Robin A. Moser

(joint work with Dominik Scheder)

Let a set V := {x1, x2, . . . , xn} of n propositional variables be given. A literal is a
variable xi or its negation x̄i. A clause is a finite set of literals such that no literal
appears together with its negation. A CNF formula is a finite set of clauses. If
x ∈ V is a variable, we write F [x 7→0] (or F [x 7→1]) to denote the formula arising from
deleting all clauses that feature x̄ (or x) and deleting all literals x (or x̄) from the
remaining ones. A k-CNF formula is a CNF formula where each clause contains
exactly k literals. The k-SAT problem is to decide, for a given k-CNF formula F ,
whether there exists an assignment α : V → {0, 1} that satisfies at least one literal
in every clause (where xi is satisfied if xi 7→ 1 and x̄i is satisfied if xi 7→ 0).

This problem is well-known to be NP-complete, so barring a major break-
through in theory, we will have to accept that any algorithm solving it in full
generality will have a running time of λn+o(n) for some λ > 1. While achieving
λ = 2 is trivial, considerable effort has gone into finding faster methods. An ex-
ceptionally easy algorithm has been proposed by Uwe Schöning in [5]: select an
assignment α0 : V → {0, 1} uniformly at random and then for i = 1, 2, . . ., itera-
tively try to improve by selecting any clause Ci ∈ F violated by αi−1, randomly
choosing a literal within Ci and flipping the value of the underlying variable to
produce αi. Schöning has delivered a beautifully simple analysis for the procedure.
We suppose F is satisfiable (otherwise the algorithm must fail) and fix a satisfying
assignment α∗. We then measure the progress of the algorithm in terms of the
distances Di := |{ x ∈ V | αi(x) 6= α∗(x) }|. Clearly, D0 ∼ Bin(n, 1/2) and for any
subsequent i, Di ∈ {Di−1 ± 1} and since α∗ and αi differ in at least one of the k
variables that Ci features, Pr[Di = Di−1−1] ≥ 1/k. Juxtaposing an idealized pro-
cess {D′

t}t≥0 with D′
0 ∼ Bin(n, 1/2), D′

i ∈ {D′
i−1±1} and Pr[D′

i = D′
i−1−1] = 1/k

for all i and coupling the two experiments, it is not hard to deduce that the prob-
ability of reaching a state with DT ≤ D′

T = 0 within T = O(n) steps is at least

(k/(2(k − 1)))n+o(n). If we abort in case success in not forthcoming within lin-
early many steps and then repeat the procedure, a randomized algorithm with
λ = 2(k − 1)/k results.

The key to finding a determinstic analogue of this algorithm is to make more
specific observations concerning the behavior of the random process {D′

t}t≥0. In
fact, one can show the following facts quite easily. Let a := n/k, b := n/(k − 2),
c := ⌈log logn⌉, d := b/c, e := a/d and f := (e + c)/2. If we condition on the
event {∃t : D′

t = 0}, then with probability at least 2−o(n), we will start at D′
0 ≈ a,

we will reach D′
T = 0 within T ≈ b steps and the progress we make in between

is regularly distributed over time, that is D′
jc ≈ a − je for 0 ≤ j < d. In other

words, every c steps we have to get e positions closer to the solution, meaning that
approximately f steps must have selected a correct and just c − f steps a wrong
literal. These are hence the ‘typical paths’ that lead to success of the algorithm
and all other paths contribute only negligibly to the total success probability.
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The task is thus first to find a starting assignment α0 at distance at most a from
some satisfying assignment and then to make roughly d sequences of c correction
steps each, making at least f good and at most c−f bad corrections per sequence.

It has been known ever since Dantsin et. al. [2] presented the first derandom-
ization of Schöning’s algorithm that α0 can be found easily using a covering code.
Indeed, there is a code C ⊆ {0, 1}V containing approximately 2n/

(
n
a

)
assignments

such that for all α∗ ∈ {0, 1}V , there exists α0 ∈ C at distance at most a from
α∗. Moreover, C can be constructed efficiently, i.e. there is a polynomial-time
algorithm producing the i-th assignment of C given i. If we try all assignments in
C, we will be successful in one of the attempts, given that the rest of the algorithm
goes through. And the number of starting assignments we try is only negligibly
larger than the expected number of times we try in the randomized version.

From here, Dantsin et. al. [2] proceeded by simply branching on all possibilities
of flipping a literal in a violated clause, i.e. if Ci violates αi, branch k times into

the assignments α
(1)
i through α

(k)
i that arise from flipping one of the k literals

in Ci. One of those assignments must be one position closer to α∗ than αi−1.
This way, we spend at most ka time (per starting assignment) until a solution is
discovered. In comparison, the randomized version spends only (k − 1)a time for
the same task.

The reason for this gap is that the strategy of branching into all possible literals
undermines the actual strength of Schöning’s algorithm which bases on the fact
that it allows for mistakes being made on the way to success and as we have
illustrated above, the making of a specific constant fraction of erroneous steps
is crucial to achieving optimal success probability. The loss in performance that
results in this way has been tried to compensate for by a series of quite involved
improvements first by Dantsin et. al. themselves [2], later by Brueggemann and
Kern [1], then by Scheder [4] and most recently by Kutzkov and Scheder [3]. A
significant gap always remained.

Our contribution is to use the idea of covering codes a second time when it comes
to the iterative correction process. Generalizing the codes from [2], it is easy to
see that there is a code D ⊆ {1..k}c containing approximately kc/((k − 1)c−f

(
c
f

)
)

codewords such that for all w∗ ∈ {1..k}c, there is w ∈ D such that w∗ and w
agree in at least f positions. Now suppose we currently look at assignment αi−1

and suppose there are c independent clauses (i.e. over pairwise disjoint sets of

variables) C
(1)
i through C

(c)
i , all of which are violated by αi−1. We know that α∗

satisfies all these clauses, so αi and α∗ disagree in at least one variable in each
clause. Instead of making these c correction steps one after the other (as the
randomized variant does), we can as well make them at once. We must choose one
out of the k literals in every clause for flipping, which corresponds to choosing a
string from {1..k}c. Instead of doing this randomly, we try each word from the

code D, resulting in |D| assignments α
(1)
i through α

(|D|)
i , at least one of which is

guaranteed to flip a good literal in at least f of the c clauses, resulting in a distance
that is at least e positions smaller than the one of αi−1. On each possibility, we
branch. Correctly combining the numbers, this results in an algorithm of exactly
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the performance desired, namely one that needs roughly (k − 1)a time to walk
from a good starting assignment to a solution.

The algorithm might still get stuck, however, if the assignment αi−1 currently
under consideration does not admit any set of c independent clauses that are all
violated by αi−1. But this situation turns out to be even easier to handle. Instead
of going on evolving the assignment, we freeze α := αi−1. From now on, we
substitute values directly into the formula F . Choose a maximal set M ⊆ F of
independent clauses violated by α. We know |M | < c in the present case. Try all
l < 7|M| admissible assignments β1, β2, . . . , βl over the variables that occur in M ,
producing formulas Fi = F [βi], i = 1..l. As M was maximal, these formulas have
the property that all clauses that are violated by α have at most k−1 literals, and
we know that one of them must have preserved satisfiability. Starting from any
such formula Fj , we pick any such violated clause and branch on the at most k−1

literals, producing formulas F
(1)
j through F

(k−1)
j , one of which is still satisfiable.

All formulas produced in this manner preserve the property that all clauses violated
by α have at most k−1 literals, so we can continue recursively. Correctly combining
the numbers, this mode of the algorithm has the same performance as the other
one, such that we have now covered all the cases. This way, we have reached a
deterministic algorithm for k-SAT with λ = 2(k − 1)/k.

In the randomized setting, Schöning is not anymore the fastest algorithm for
k-SAT known. Depending on k, either the DPLL-based procedure by Paturi,
Pudlák, Saks and Zane (PPSZ) from [6] or an amalgamation of it with Schöning
beat pure Schöning. The main open question in the field would be to determine
whether these faster algorithms admit deterministic versions which best the one
we presented. However, the corresponding analyses being several orders of magni-
tude more complicated than Schöning’s, derandomizing them could prove far more
intricate.
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On a conjecture of Erdős and Simonovits on bipartite Turán numbers

Jacques Verstraëte

(joint work with Peter Keevash and Benny Sudakov)

Let F be a family of graphs. A graph is F-free if it contains no copy of a graph
in F as a subgraph. A cornerstone of extremal graph theory is the study of the
Turán number ex(n,F), the maximum number of edges in an F -free graph on n
vertices. The Zarankiewicz number z(n,F) is the maximum number of edges in
an F -free bipartite graph on n vertices. Let Ck denote a cycle of length k, and let
Ck denote the set of cycles Cℓ, where 3 ≤ ℓ ≤ k and ℓ and k have the same parity.
Erdős and Simonovits conjectured that for any family F consisting of bipartite
graphs there exists an odd integer k such that

ex(n,F ∪ Ck) ∼ z(n,F).

While this conjecture remains open in general, Erdős and Simonovits proved the
conjecture when F = {C4} by showing that ex(n, {C4, C5}) ∼ z(n,C4). In this
talk we will outline the proof of the conjecture for various other families F , in
particular, we will show for any odd k ≥ 5 that

ex(n, {C4, Ck}) = z(n, {C4})

for infinitely many n, and that extremal {C4, Ck}-free graphs are bipartite. In
contrast, it is an open conjecture of Erdős as to the value of ex(n, {C3, C4}) relative
to z(n, {C4}). We will show in this direction that for there is a constant δ > 1
such that for large enough n,

ex(n, {C3,K2,3}) > δex(n, {C3,K2,3})

which may indicate that the same might be true with K2,3 replaced by C4. The
proofs make use of pseudorandomness properties of nearly extremal graphs that are
of independent interest, and a general approach to the Erdős-Simonovits conjecture
for F -free graphs is currently work in progress.

Sumner’s universal tournament conjecture

Deryk Osthus

(joint work with Daniela Kühn and Richard Mycroft)

A tournament is an orientation of a complete graph. Obviously one cannot guar-
antee any substructures which contain a cycle within an arbitrary tournament. On
the other hand, Sumner’s universal tournament conjecture (made in 1971) states
that one can find any directed tree T within an arbitrary tournament G, even if
the order of T is rather large compared to that of G. More precisely, the conjec-
ture states that any tournament on 2n− 2 vertices contains any directed tree on
n vertices. Many partial results towards this conjecture have been proved – some
of them are described below. We proved this conjecture for all large n [9].
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Theorem 1. There exists n0 such that the following holds. Let T be a directed
tree on n ≥ n0 vertices, and G a tournament on 2n− 2 vertices. Then G contains
a copy of T .

To see that the bound is best possible, let T be a star with all edges directed
inwards, and let G be a regular tournament on 2n− 3 vertices. Then every vertex
of G has n− 2 inneighbours and n− 2 outneighbours, and so G does not contain
a copy of T , whose central vertex has n − 1 inneighbours. There are also ‘near-
extremal’ examples which have a different structure to the one given above.

In [8], we used a randomised embedding algorithm to prove an approximate
version of Sumner’s universal tournament conjecture, and also a stronger result
for directed trees of bounded degree. Both of these results are important tools in
the proof of Theorem 1.

Theorem 2. Let α > 0. Then the following properties hold.

(i) There exists n0 such that for any n ≥ n0, any tournament G on 2(1 +α)n
vertices contains any directed tree T on n vertices.

(ii) Let ∆ be any positive integer. Then there exists n0 such that for any
n ≥ n0, any tournament G on (1 +α)n vertices contains any directed tree
T on n vertices with ∆(T ) ≤ ∆.

Let f(n) denote the smallest integer such that any tournament on f(n) vertices
contains any directed tree on n vertices. So Sumner’s conjecture states that f(n) =
2n−2. Chung (see [13]) observed that f(n) ≤ n1+o(1), and Wormald [13] improved
this to f(n) ≤ O(n log n). The first linear bound on f(n) was established by
Häggkvist and Thomason [6]. Havet [2] then showed that f(n) ≤ 38n/5, and later
Havet and Thomassé [4] used their notion of median orders to improve this to
f(n) ≤ 7n/2. Finally El Sahili used the same notion to prove the best known for
general n, namely that f(n) ≤ 3n− 3.

Sumner’s conjecture is also known to hold for special classes of trees. In par-
ticular, Havet and Thomassé [4] proved it for ‘outbranchings’, again using median
orders. Here an outbranching is a directed tree T in which we may choose a root
vertex t ∈ T so that for any vertex t′ ∈ T , the path between t and t′ in T is
directed from t to t′. (Outbranchings are also known as arborescences.)

For many types of trees, Sumner’s conjecture holds with room to spare. (For
instance, Theorem 2 implies that it holds with room to spare for bounded degree
trees.) A classical result of this type is Redei’s theorem [11], which states that
every tournament contains a spanning directed path (where all edges are directed
consistently). This was generalised considerably by Thomason [12] who showed
that whenever n is sufficiently large, every tournament on n vertices contains every
orientation of the path on n vertices (this was a conjecture of Rosenfeld). Havet
and Thomassé [5] proved that this even holds for all n 6= 3, 5, 7. They also proposed
the following generalisation of Sumner’s conjecture (see [3]):

Conjecture 3. Let T be a directed tree on n vertices with k leaves. Then every
tournament on n+ k − 1 vertices contains a copy of T .
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Some special cases are known (see e.g. [7]). It would be interesting to know
whether our methods can be used to prove this conjecture.

Our proof of Theorem 1 relies on many of the theorems mentioned above as
well as a directed version of Szemerédi’s regularity lemma and several structural
results proved in [8]. In turn, the proofs in [8] rely on a recent result by Kühn,
Osthus and Treglown [10] on the existence of Hamilton cycles in so-called ‘robust
expander digraphs’.
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On Gromov’s method of selecting heavily covered points

Jiř́ıMatoušek

(joint work with Uli Wagner)

Let P ⊂ R2 be a set of n points in general position (i.e., no three points collinear).
Boros and Füredi [2] showed that there always exists a point a ∈ R2 contained
in a positive fraction of all the

(
n
3

)
triangles spanned by P , namely, in at least

2
9

(
n
3

)
− O(n2) triangles. (Generally we cannot assume a ∈ P , as the example of

points in convex position shows.)
This result was generalized by Bárány [1] to point sets in arbitrary fixed dimen-

sion: For every n-point set P in general position in Rd there exists a point in Rd

that is contained in at least cd ·
(

n
d+1

)
−O(nd) d-dimensional simplices spanned by
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the points in P , where the constant cd > 0, as well as the constant implicit in the
O-notation, depend only on d.

From now on, let cd be the largest constant for which this statement holds.
The value of cd has been the subject of ongoing research. The best current upper
bound, due to Bukh et al. [3], is

(16) cd ≤ (d+1)!
(d+1)(d+1) ∼

√
2πd
ed

= e−Θ(d);

for d = 2, this yields c2 ≤ 2
9 , which is tight. For general d, Bárány’s proof yields

cd ≥ 1
(d+1)d , which is smaller than (16) by a factor of d!. Wagner [10] improved

the lower bound by a factor of roughly d to cd ≥ d2+1
(d+1)d+1 ; then [3] showed that

his method in [10] cannot be pushed farther. An improvement of the lower bound
for c3 by a clever elementary geometric argument was recently achieved by Basit
et al. [4].

Recently, Gromov [5] introduced a new, topological proof method, which im-
proves on the previous lower bounds considerably and which, moreover, applies to
a more general setting, described next.

An n-point set P ⊆ Rd determines an affine map T from the (n−1)-dimensional
simplex ∆n−1 ⊆ Rn−1 to Rd as follows. Label the vertices of ∆n−1 by V =
{v1, . . . , vn}, and the points as P = {p1, . . . , pn}. Then T is given by mapping vi
to pi, 1 ≤ i ≤ n, and by interpolating linearly on the faces ∆n−1. Thus, Bárány’s
result can be restated by saying that for any affine map T : ∆n−1 → R

d, there
exists a point in Rd that is contained in the ψ-images of at least cd ·

(
n

d+1

)
−O(nd)

many d-dimensional faces of ∆n−1. Gromov proved an analogous statement for
an arbitrary continuous map T : ∆n−1 → Rd, with some constant ctopd > 0. His

method gives cd ≥ ctopd ≥ 2d
(d+1)!(d+1) . For d = 2, this yields the tight bound

ctop2 = c2 = 2
9 . For general d, it improves on the earlier bounds by a factor

exponential in d, but it is still of order e−Θ(d log d) and thus far from the upper
bound.

In [9] we provide an exposition of the combinatorial component of Gromov’s
approach, in terms accessible to combinatorialists and discrete geometers. Here we
give the basic definitions, state our results, and formulate a combinatorial problem
(the “pagoda problem”) whose solution might possibly lead to determining the best
possible value of cd.

After our paper was written, Karasev [6] found a two-page proof of the Gromov
bound for cd, which is inspired by Gromov’s method but uses only quite elementary
topological considerations. It applies only to the affine case. We believe that our
improvements to Gromov’s bound can also be implanted into Karasev’s proof and
they yield the correspoding improvements for the values of the cd, but the details
are yet to be checked.

Let V be a fixed set of n elements, w.l.o.g., V = [n] := {1, 2, . . . , n}. Let

E ⊆
(
V
d

)
be a system of (unordered) d-tuples. We write ‖E‖ := |E|/

(
n
d

)
for the

normalized size of E; one can also interpret ‖E‖ as the probability that a random
d-tuple lies in E.



56 Oberwolfach Report 01/2011

The coboundary δE is the system of those (d + 1)-tuples in f ∈
(

V
d+1

)
that

contain an odd number of e ∈ E.1

Many different E’s may have the same coboundary. We call E minimal if
‖E‖ ≤ ‖E′‖ for every E′ with δE′ = δE. We define the cofilling profiles as
follows:

ϕd(α) := lim inf
|V |=n→∞

min{‖δE‖ : E ∈
(
V
d

)
minimal, ‖E‖ ≥ α}.

We remark that there is no minimal E with ‖E‖ > 1/2, so formally, ϕd(α) = ∞
for α > 1/2.

It is easily shown that ϕ1(α) = 2α(1 − α), 0 ≤ α ≤ 1
2 . Indeed, we can view

an S ∈
(
V
1

)
as a subset of S ⊆ V , and δS is the edge cut determined by S in the

complete graph on V (and the minimality of S means |S| ≤ n/2).
Gromov’s argument yields the following general lower bound:

(17) ctopd ≥ ϕd(12ϕd−1(13ϕd−2(. . . 1dϕ1( 1
d+1 ) . . .))).

A simple argument, observed by Gromov, and independently by Linial, Meshu-
lam, and Wallach [7, 8], yields the lower bound ϕd(α) ≥ α. Substituting this in
(17), except for ϕ1 where we use the tight bound mentioned above, yields Gromov’s

lower bound for ctopd .
One possible way of improving that bound is by improving the basic lower

bound on (some of) the ϕd in appropriate ranges. However, a simple example (a
suitable complete d-partite system) shows that ϕd(α) ≤ d+1

d α (for all α ≤ 1
d+1).

Thus, the bound on ctopd cannot be improved by more than a factor of roughly d
using (17) alone. Still, we consider determining the value of the ϕd a fascinating
combinatorial problem. We have the following lower bounds for small values of α:

Theorem 1. For d = 2 and all α ≤ 1
4 , we have ϕ2(α) ≥ 3

4

(
1 −

√
1 − 4α

)
(1 −

4α) = 3
2α−O(α2). For d = 3 and α sufficiently small, ϕ3(α) ≥ 4

3α−O(α2) (with
constants that could be made explicit).

We believe that a suitable extension of the proof of this theorem should provide
a bound of the form ϕd(α) ≥ d+1

d α− o(α) as α→ 0 for all d. At present it seems
that such an extension would be highly technical and complicated.

These new lower bounds do not improve on Gromov’s lower bounds for c3, for
example, since they do not beat the basic bound for the values of α needed in (17)
for d small. However, they do apply if we take d sufficiently large, and so they at
least show that Gromov’s lower bound on ctopd is not tight for large d.

We conjecture that the upper bound example mentioned above, which yields
ϕd(α) ≤ d+1

d α, is actually optimal, and that it is essentially the only possible
extremal example. However, a proof may be challenging even for the d = 2 case
(where we have an extremal question about graphs).

Next, we formulate a combinatorial extremal problem whose solution might
perhaps lead to a tight lower bound for the ctopd . At present we can obtain only a

1For d = 2, this notion and some of the following considerations are related to Seidel switching
and two-graphs, which are notions studied in combinatorics.
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slightly improved lower bound for ctop3 from it (namely, ctop3 ≥ 0.06332 as opposed

to Gromov’s ctop3 ≥ 0.0625), but this at least shows that one can go beyond (17).
To formulate the problem, we introduce the notation X ≈ Y for sets X,Y of

k-tuples, meaning that |X + Y | = o(nk). The problem deals with a structure
called a pagoda; for concreteness, we define it only for the first case of interest,
with d = 3. A (3-dimensional) pagoda over a vertex set V consists of vertex

sets V1, V2, V3, V4 ⊆ V , edge sets E12, E13, . . . , E34 ⊆
(
V
2

)
, sets F123, F124, F134,

F234 ⊆
(
V
3

)
of triples, and a set G = G1234 ⊆

(
V
4

)
of 4-tuples (the top of the

pagoda). The sets Vi, Eij and Fijk are minimal (in the sense introduced above
the definition of ϕd), and they satisfy the following relations (here i, j, k denote
mutually distinct indices):

V1 + V2 + V3 + V4 ≈ V, δVi ≈
∑

j

Eij , δEij ≈
∑

k

Fijk , δFijk ≈ G.

It can be deduced from Gromov’s argument that c3 ≥ ctop3 ≥ lim inf |V |→∞ min ‖G‖,
where the minimum is over tops G of pagodas over V . We know of no example of
a pagoda whose top is smaller than the best known upper bound for c3, i.e., 3

32 .
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Random planar graphs (and more)

Konstantinos Panagiotou

Let Pn be the class of simple labeled planar graphs with n vertices, and denote
by Pn a graph drawn uniformly at random from this set. Basic properties of Pn

were first investigated by Denise, Vasconcellos, and Welsh [3]. Since then, the
random planar graph has attracted considerable attention, and is nowadays an
important and challenging model for evaluating methods that are developed to
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study properties of random graphs from classes with structural side constraints.
In particular, the planarity condition (or any other global structural condition)
makes almost all tools and methods that have been used in the past decades for
the analysis of classical random graphs models fail in this context. Consequently,
the development of new approaches is necessary and essential.

One attempt to resolve this issue was taken by the author and Steger in [6] and
by the author in [8]. The precise setting considered there is as follows. Let C be a
class of labeled connected graphs, and let Cn be a uniform random graph from C
with n vertices. We assume that a graph belongs to C if and only if all its blocks
(i.e., its maximal biconnected subgraphs) also belong to C. Here as well as in the
rest of this note, we will be calling a graph biconnected, if it is either 2-connected
or a single edge. The main idea in their work is to consider the blocks of Cn. In
this context, they showed, among other results, that under certain assumptions Cn

belongs a.a.s.2 to exactly one of the following categories:

(i) There is a unique giant block in Cn. More precisely, there is a 0 < c =
c(C) < 1 such that the largest block contains ∼ cn vertices, while every
other block contains o(n) vertices.

(ii) All blocks contain O(log n) vertices.

Additionally, in [6] it was shown that random planar graphs belong to the former
category, whereas e.g. random outerplanar graphs belong to the latter. Observe
that for graphs that belong to category (ii), almost all pairs of vertices lie in
different blocks, while this is not the case for graphs from the first category. A
consequence of these facts is the following important observation. Random graphs
from classes that belong to category (ii) “contain”, in a well-defined sense, plenty
of independence. In particular, any such graph can be generated by choosing
independently every one of its blocks, and gluing them together at the cut-vertices.
As the blocks contain few vertices, and as they intersect each other only at single
vertices, the impact of each block to the whole graph is small. Such graphs resemble
in a certain way the behavior of classical random graphs, where each edge is
included independently with a specified probability, with the difference that here
we choose the blocks independently of each other. However, random graphs from
classes that belong to category (i) do not have this property: a lot of structure
that we cannot control is “hidden” in the giant block, which contains a constant
fraction of the vertices.

Using the above observation, Bernasconi, the author, and Steger gave in [1]
and [2] an almost complete characterization of the degree distribution of random
graphs that are drawn from any class that belongs to the second category. More-
over, by applying the result to special classes, like labeled trees, cacti, outerplanar
graphs, and series-parallel graphs, they obtained exponential tail estimates for the
probability that the number of vertices of degree k deviates significantly from its
expectation, where k can be essentially as large as the maximum degree.

2asymptotically almost surely, i.e. with probability tending to 1 when n → ∞
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The above mentioned results left open the case of graph classes belonging to
the first category, and in particular planar graphs. This motivates a finer anal-
ysis regarding the typical structure of large random biconnected graphs. In [4],
which is joint work with N. Fountoulakis, we investigated how and under which
conditions a biconnected graph can be decomposed into building blocks of higher
complexity. Such a decomposition in the so-called 3-connected cores is well-known
and goes back to the pioneering work of Tutte [9]. We showed that again a funda-
mental dichotomy is encountered: depending on some critical condition, which was
determined explicitly, we proved that large biconnected graphs have either only
“small” cores, or a constant fraction of the vertices is contained in a single such
core. Hence, we discovered a picture that is completely analogous to the distri-
bution of the sizes of the blocks in random connected graphs. Moreover, random
planar graphs belong to the case in which there exists a giant core.

With the above results at hand, it seems that it is necessary to study the typical
structure of large random 3-connected graphs that are drawn from the class in
question. In this context, together with D. Johannsen, we studied in [5] the degree
sequence of random 3-connected planar graphs, and showed sharp concentration
results for the number of vertices of a given degree. In the subsequent paper [7],
which is joint work with A. Steger, we addressed the problem of obtaining bounds
on the degree sequence of a random member from a class that contains a large
3-connected core. We described a general framework for obtaining the degree-
sequence for random connected objects from that of a random 2-connected object,
and, similarly, for a random 2-connected object from that of a random 3-connected
object. Applied to the class of planar graphs, this finally allowed us to obtain the
bounds on the degree sequence of a random planar graph.
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The chromatic threshold of graphs

Julia Böttcher

(joint work with Peter Allen, Simon Griffiths, Yoshiharu Kohayakawa, and
Robert Morris)

A classic theorem of Andrásfai, Erdős and Sós states that Kr-free graphs with
high minimum degree resemble in structure extremal Kr-free graphs.

Theorem 1 (Andrásfai, Erdős & Sós [1]). Any Kr-free graph G with minimum
degree δ(G) > 3r−7

3r−4n satisfies χ(G) ≤ r − 1.

More generally one can ask, given a graph H and a positive d ≤ 1,

(1) is there a natural number χ
(2) what is the smallest χ

such that all H-free graphs G with δ(G) > dn satisfy χ(G) ≤ χ. To our knowledge
the only non-trivial graph H for which the answer to the second question is known
in full generality is the triangle (see, e.g., [2]). In this work we address the first
question. More precisely, we consider the following graph parameter.

Let H be any graph with χ(H) = r ≥ 2. Let δχ(H) be the infimum of the
numbers δ such that there is a constant C = C(H, δ) such that every H-free
graph G on n vertices with δ(G) ≥ δn satisfies χ(G) ≤ C. That is, for δ < δχ(H)
the chromatic number of H-free graphs with minimum degree δn is unbounded,
while for δ > δχ(H) it is bounded. We call δχ(H) the chromatic threshold of H .
Clearly, we have 0 ≤ δχ(H) ≤ π(H), where π(H) := ex(n,H)/

(
n
2

)
= r−2

r−1 is the

Turán density π(H) of H .
Recently, the question of determining chromatic thresholds received increased

attention. In particular, rather general results for 3-chromatic graphs H were
obtained by Lyle [4] and by  Luczak and Thomassé [3].

The decomposition family H ofH is the set of 2-chromatic induced subgraphsH ′

of H such that the vertices of H which are not in H ′ induce an (r − 2)-chromatic
subgraph of H . In other words, H contains exactly those graphs H ′ which are
obtained from H by deleting r − 2 arbitrary colour classes in some r-colouring
of H .

Theorem 2 (Lyle [4]). For a 3-chromatic graph H we have δχ(H) < 1
2 iff the

decomposition family of H contains a forest.

Let H be a 3-chromatic graph. We say that H is a near acyclic graph, if
there is a forest F in the decomposition family of H , such that the independent
set S := H − F has the following property. Every odd cycle of H meets S in
at least two vertices. Equivalently, for each tree T in F with bipartition classes
V1∪̇V2 we have that the neighbourhood sets of V1 and V2 in S, that is, the sets⋃

v1∈V1
NH(v1, S) and

⋃
v∈V2

NH(v2, S) are disjoint.
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A construction of  Luczak and Thomassé [3, Section 8] shows that graphs H
which are not near acyclic have chromatic threshold at least 1

3 .

Theorem 3 ( Luczak & Thomassé [3]). For all integers h and C and all γ > 0
there is an n-vertex graph G with δ(G) ≥ (13 − γ)n and χ(G) ≥ C such that all
induced subgraphs of G on at most h vertices are near acyclic.

 Luczak and Thomassé [3, Conjecture 1] conjecture that near acyclic graphs on
the other hand have chromatic threshold 0. They prove that this is true in the
case that the forest F in the definition of near acyclic graphs above is a matching.

We generalise the results of Lyle and of  Luczak and Thomassé and determine
the chromatic threshold of each graph H .

Theorem 4. If H is an r-chromatic graph with r > 2 then

δχ(H) ∈
{r − 3

r − 2
,

2r − 5

2r − 3
,
r − 2

r − 1

}
.

The graphs H with δχ(H) ≤ 2r−5
2r−3 are exactly those which have a forest in the

decomposition family. The graphs H with δχ(H) = r−3
r−2 are exactly those which

have an r-colouring such that by deleting r − 3 colour classes we obtain a near
acyclic graph.

In order to prove this result we combine the approach of Lyle, which uses
Szemerédi’s regularity lemma, and techniques developed by  Luczak and Thomassé,
who introduce a concept called paired VC-dimension, with new ideas.
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The quasi-randomness of hypergraph cut properties

Asaf Shapira

(joint work with Raphy Yuster)

We study quasi-random hypergraphs (and graphs), that is, hypergraphs which
have the properties one would expect to find in “truly” random hypergraphs. We
focus on k-uniform hypergraphs H = (V,E) in which every edge contains precisely
k distinct vertices of V . Quasi-random graphs were first explicitly studied by
Thomason [6, 7] and then followed by Chung, Graham, and Wilson [3]. We start
with discussing quasi-random graphs. One of the most natural questions that
arise when studying quasi-random objects, is which properties “force” an object
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to behave like a truly-random one. The cornerstone result of this type is the
theorem of quasi-random graphs due to Chung, Graham and Wilson [3]. We
start with some notation. For a subset of vertices U in a graph G we denote
by e(U) the number of edges spanned by U in G. For a pair of sets U,U ′ we
denote by e(U,U ′) the number of edges with one vertex in U and the other in
U ′. Note that in a random graph G(n, p) we expect every U ⊆ V to satisfy
1
2p|U |2 − o(n2) ≤ e(U) ≤ 1

2p|U |2 + o(n2). We say that a graph G is p-quasi-

random if e(U) = 1
2p|U |2 ± o(n2) for all U ⊆ V (G). We say that a graph property

P is quasi-random if any graph satisfying P must be quasi-random.
Our main focus is on the quasi-randomness of graph (and hypergraph) prop-

erties that involve the number of edges in certain cuts in a graph (hypergraph).
Namely, for an 0 < a < 1, we say that a graph satisfies property Pa if for any
U ⊆ V (G) of size |U | = an we have e(U, V \ U) = pa(1 − a)n2 + o(n2). These
properties were first studied by Chung and Graham [1, 2]. The main result of [2, 1]
was a precise characterization of the cut properties Pa which are quasi-random.
The somewhat surprising characterization states that Pa is quasi-random if and
only if a 6= 1/2. To see that P1/2 is not quasi-random, Chung and Graham [1]
observed that the graph obtained by taking a random graph G(n/2, 2p) on n/2
of the vertices, an independent set on the other n/2 vertices and then connecting
these two graphs with a random bipartite graph with edge probability p gives a
non-quasi-random graph that satisfies P1/2. For later reference, we call this graph
C2(n, p).

One of the open problems raised by Chung and Graham in their paper on
quasi-random hypergraphs [1], was if one can obtain a hypergraph analog of their
characterization of the cut properties of graphs which are quasi-random. Our
first result in this paper answers this question positively by obtaining a precise
characterization of the hypergraph cut properties that are quasi-random. Our
second result in this paper will show that one can “describe” the graphs (and
hypergraphs) that satisfy the cut properties Pa which are not quasi-random. In
particular, it will turn out that the example of Chung-Graham [1] (the graph
C2(n, p) described above) showing that P1/2 is not quasi-random is (essentially)
the only graph that satisfies Pa and is not quasi-random.

Let us first define a property of k-uniform hypergraphs which is analogous to
property P1. We say that a k-uniform hypergraph H = (V,E) satisfies D1 if
e(U) = p

k! |U |k ± o(nk) for every U ⊆ V (H). So property D1 is perhaps the
most intuitive notion of what it means for a hypergraph to be quasi-random. Let
us briefly mention that D1 is sometimes called weak quasi-randomness. We now
define the appropriate generalization of the graph properties studied by Chung and
Graham. Let α = (α1, . . . , αk) be a vector of positive reals satisfying

∑
i αi = 1.

We say that a k-uniform hypergraph on n vertices satisfies Pα if for any partition
of its vertices into k-sets V1, . . . , Vk, where |Vi| = αin, we have e(V1, . . . , Vk) =
(p + o(1))nk

∏
i∈S αi. Here e(V1, . . . , Vk) denotes the number of edges that cross

the cut (V1, . . . , Vk) (that is, the number of edges that intersect each Vi in at most
one point). Chung and Graham [1] asked whether one can find a characterization
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of the properties Pα which are quasi-random, that is, equivalent to D1. Our first
result in this paper answers this question by proving that property Pα is equivalent
to D1 if and only if α 6= (1/r, . . . , 1/r).

Given the graph C2(n, p) which shows that P1/2 is not quasi-random, it seems
natural to try and show that when α = (1/r, . . . , 1/r) property Pα is not quasi-
random for k-uniform hypergraph by defining an appropriate k-partite k-uniform
hypergraph. This approach does not seem to work. Instead, we define the follow-
ing k-uniform hypergraph. Let Ck(n, p) be the n-vertex hypergraph constructed
randomly as follows. We partition the vertex set into two sets A,B of size n/2
each. Each set of k vertices {vi1 , . . . , vik} is put in Ck(n, p) with probability 2pj/k
where j = |{vi1 , . . . , vik} ∩ A|.

Observe that when k = 2 the graph Ck(n, p) defined above is (indeed) equivalent
to the (randomly constructed) graph C2(n, p) we described earlier. As we show in
the paper, this random hypergraph satisfies Pα (for α = (1/r, . . . , 1/r)) with high
probability but is not quasi-random, that is, does not satisfy D1 defined above.
This will establish that Pα is not quasi-random. Our second result in this paper
shows that the hypergraphs Ck(n, p) are essentially the only non quasi-random
hypergraphs satisfying Pα.

Let’s consider first the case of graphs. In this case the non-quasi-random cut
property is P1/2 which corresponds to counting the number of edges in balanced
(n/2, n/2)-cuts. To describe our structure result about the graphs satisfying P1/2

it will be more convenient to consider the following non-discrete version of P1/2

which we denote P ∗
1/2; in this problem we are asked to assign arbitrary real weights

to the edges of the complete graph on n vertices in a way that for any partition of
its vertices into two sets of equal size n/2, the total weight of edges crossing the
cut is p(n/2)2. Note that since P ∗

1/2 allows for non-integer weights, we require the

total weight crossing the cuts to be exactly p(n/2)2, while in P1/2 the requirement

is only up to an error of o(n2).
Considering the fractional property P ∗

1/2 we now ask which weight assignments

satisfy P ∗
1/2? Observe that this problem can be stated as trying to solve a set of

linear equations, where for every i < j we have an unknown xi,j and where for
every partition of the n vertices into two sets of equal size n/2, we have a linear
equation ℓA,B which checks whether

∑
i∈A,j∈B xi,j = p(n/2)2. So this set has

(
n
2

)

unknowns and
(

n−1
n/2−1

)
equations. One solution to this set of equations is the one

corresponding to the random graph G(n, p) in which all xi,j = p. Another solution
corresponds to the graph C2(n, p) define above. In this case, we obtain a solution
by partitioning the vertices into two sets A and B of size n/2 each, and setting
xi,j = 2p if i, j ∈ A, setting xi,j = 0 if i, j ∈ B and setting xi,j = p otherwise.

Note that we thus obtain
(

n−1
n/2−1

)
solutions which correspond to the possible ways

of picking the sets A,B. However, observe that all these solutions are isomorphic
to C2(n, p), if we consider them as weighted complete graphs.

So we can restate our question and ask if there are any other solutions to P ∗
1/2

besides the above 1 +
(

n−1
n/2−1

)
solutions? Since we are trying to solve a set of
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linear equations, then one can trivially obtain other solutions by taking affine
combinations of the above solutions. That is, if one considers each of the above
solutions as an

(
n
2

)
dimensional vector, then any affine combination of these vectors

is also a solution. Our second result in this paper is that the only solutions to
P ∗
1/2 are the affine combinations of G(n, p) and C2(n, p). We then show that given

this theorem one can show (via the regularity lemma) that any graph satisfying
P1/2 can be approximated by an affine combination of G(n, p) and C2(n, p), thus
supplying a structural characterization of the graphs satisfying P1/2.

When considering the hypergraph cut properties Pα, we can of course define
P ∗
α to be their non-discrete analog. That is, we now try to assign weights to

the edges of the complete k-uniform hypergraph. We also prove the that when
α = (1/k, . . . , 1/k), the only solutions to P ∗

α are the affine combinations of Gk(n, p)
and Ck(n, p), whereGk(n, p) is the random k-uniform hypergraph. This is the most
challnegin part of the paper. This result was recently used by Huang and Lee [5]
in order to resolve a conjecture raised in a preliminary version of this paper, and
which was also raised independently by Janson [4].
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Primality of trees

Oleg Pikhurko

(joint work with Penny Haxell and Anusch Taraz)

The coprime graph Sn has vertex set [n] := {1, . . . , n} in which two vertices are
adjacent if and only if they are coprime (as numbers). For example, S5 is iso-
morphic to K5 minus one edge. Various questions and results about combinato-
rial properties of Sn can be found in Erdős [6, 7, 8], Erdős, Sárközy, and Sze-
merédi [9, 11], Szabó and Tóth [24], Erdős and Sárközy [10, 12], Ahlswede and
Khachatrian [1, 2, 3], Sárközy [22], and others.

A graph G of order n is called prime if it is a subgraph of Sn, that is, if there
is a bijection f : V (G) → [n] such that any two adjacent vertices of G are as-
signed coprime numbers. This notion was introduced by Entringer who, according
to [14], conjectured around 1980 that every tree is prime. The earliest statement
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of this conjecture that we could find in the literature comes from the 1982 paper
of Tout, Dabbouchy, and Howalla [27], where its formulation is preceded by the
names of Entringer and Tout. Therefore we shall refer to it as the Entringer–Tout
Conjecture.

One popular direction of research was to verify this conjecture for some very
special classes of trees (small trees, caterpillars, spiders, complete binary trees,
olive trees, palm trees, banana trees, twigs, binomial trees, bistars, etc). We refer
the reader to the dynamic survey by Gallian [14, Section 7.2] for references to
these and related results.

Here we prove this conjecture for all large n.

Theorem 1. There exists n′ such that every tree with n ≥ n′ vertices is prime.

In fact, we can show a more general result, extending Theorem 1 to a larger
class of bipartite graphs. In order to state it, we have to present some definitions
first. We say that a graph G is d-degenerate if every non-empty subgraph of G
has a vertex of degree at most d. For example, a graph is 1-degenerate if and only
if it is acyclic. Let us a call a graph G s-separable if for every subgraph G′ ⊆ G
there is a set S ⊆ V (G′) such that |S| ≤ s and each component of G′ − S has at
most |V (G′)|/2 vertices. The choice of the constant 1/2 is rather arbitrary; we
choose it for the convenience of calculations and because of the well-known fact
that trees are 1-separable. Also, in order to make our results stronger, we use a
weaker version of separability where the upper bound s depends only on |V (G)|
and not on |V (G′)|.

Lipton and Tarjan [18] showed that every order-n planar graph G contains a

set X with |X | ≤ 2
√

2n such that no component of G − X has more than 2n/3
vertices. Clearly, by applying this theorem twice to any given subgraph G′ ⊆ G,
we can eliminate all components of order larger than |V (G′)|/2. Thus G is 4

√
2n-

separable. Likewise, the result of Alon, Seymour, and Thomas [4] implies that any
order-n graph without a Kh-minor is 2h3/2n1/2-separable.

Given an integer d ≥ 1, define a function s = s(n) by

s(n) := n1− 106·d
ln lnn .

Here is the main result of this paper.

Theorem 2. For every d ≥ 1 there exists n′′ such that every s(n)-separable
bipartite d-degenerate graph F of order n ≥ n′′ is prime.

Mader [19] showed that everyKh-minor free graph F has average degree at most
f(h), with more precise estimates on the function f(h) given by Kostochka [15]
and Thomason [25, 26]. Since not containing a Kh-minor is a hereditary property,
such a graph F is necessarily f(h)-degenerate. This and the above-mentioned
result of Alon, Seymour, and Thomas [4] allow us to deduce that for every h, all
sufficiently large bipartite graphs without a Kh-minor are prime.

Based on an earlier version of this manuscript that had a slightly simpler proof
just for trees and using the results of Dusart [5] on the distribution of primes,

Spiess [23] estimated that taking n′ = 1010
100

in Theorem 1 is a suitable choice.
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Although the Entringer–Tout Conjecture for trees of small order n seems quite
amenable (see [13, 20, 21, 17] with the current record n ≤ 206 claimed in a re-
cent manuscript of Kuo and Fu [16]), closing this gap is beyond any small-order
approaches.

Two main difficulties in proving Theorem 2 are that we have to use every
element of [n] as a label (that is, we look for spanning subgraphs in Sn) and that
Sn has a large independent set {2, 4, 6, . . .}. On the other hand, every vertex in
the set

P1 := {p ∈ [n] | p > n/2 and p is prime}
is universal, that is, it is adjacent to all other vertices of Sn. Likewise, every vertex
2p in the set

P0 := {2p ∈ [n] | p > n/3 and p is prime}
is adjacent to all vertices in Sn with odd labels, except p. The existence of these
two sets, each of order Θ(n/ lnn), crucially helps in our proof.

Our proof consists of three parts. First, we split the given graph F satisfying
the assumptions of Theorem 2 into tiny components by removing a small set M
of vertices using the separability property. It also arranges these components into
groups in order to balance more evenly the distribution of vertices among groups.
Then we specify where each group is to be mapped inside [n]. Since we do not
have much control over the vertices in M , they are mapped into P0 ∪ P1. As we
have already mentioned, one has to be careful to ensure that every group has a
sufficiently large independent set to host all even labels that are assigned to it.
Apart from the Prime Number Theorem, we use only very basic results about
divisibility and primality of integers. Finally, we show how to embed each group
into its assigned part of Sn; this is the point when we need the d-degeneracy
property.
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Extremal results for random discrete structures

Mathias Schacht

Introduction. Extremal problems are widely studied in discrete mathematics.
Given a finite set Γ and a family F of subsets of Γ an extremal result asserts
that any sufficiently large (or dense) subset G ⊆ Γ must contain an element from

F . Often all elements of F have the same size, i.e., F ⊆
(
Γ
k

)
for some integer

k, where
(
Γ
k

)
denotes the family of all k-element subsets of Γ. For example, if

Γn = [n] = {1, . . . , n} and Fn consists of all k-element subsets of [n] which form an
arithmetic progression, then Szemerédi’s celebrated theorem [7] asserts that every
subset Y ⊆ [n] with |Y | = Ω(n) contains an arithmetic progression of length k.

A well known result from graph theory, which fits this framework, is Turán’s
theorem [8] and its generalization due to Erdős and Stone [5] (see also [4]). Here
Γn = E(Kn) is the edge set of the complete graph with n vertices and Fn consists
of the edge sets of copies of some fixed graph F (say with k edges) in Kn. Here
the Erdős-Stone theorem implies that every subgraph H ⊆ Kn which contains at
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least
(

1 + 1
χ(F )−1 + o(1)

) (
n
2

)
edges must contain a copy of F , where χ(F ) denotes

the chromatic number of F (see, e.g. [1]).
We are interested in “random versions” of such extremal results. We study the

binomial model of random substructures. For a finite set Γn and a probability
p ∈ [0, 1] we denote by Γn,p the random subset where every x ∈ Γn is included in
Γn,p independently with probability p. For example, if Γn is the edge set of the
complete graph on n vertices, then Γn,p denotes the usual binomial random graph
G(n, p) (see, e.g., [2, 6]).

The deterministic extremal results mentioned earlier can be viewed as state-
ments which hold with probability 1 for p = 1 and it is natural to investigate
the asymptotic of the smallest probabilities for which those results hold. In the
context of Szemerédi’s theorem for every k ≥ 3 and ε > 0 we are interested in the
smallest sequence p = (pn)n∈N of probabilities such that the binomial random sub-
set [n]pn has asymptotically almost surely (a.a.s., i.e. with probability tending to
1 as n → ∞) the following property: Every subset Y ⊆ [n]pn with |Y | ≥ ε|[n]pn |
contains an arithmetic progression of length k. Similarly, in the context of the
Erdős-Stone theorem, for every graph F and ε > 0 we are interested in the asymp-
totic of the smallest sequence p = (pn)n∈N such that the random graph G(n, pn)
a.a.s. satisfies: every H ⊆ G(n, p) with

e(H) ≥
(

1 − 1

χ(F ) − 1
+ ε

)
e(G(n, pn)) ,

contains a copy of F .
We determine the asymptotic growth of the smallest such sequence p of proba-

bilities for those and some related extremal properties including multidimensional
versions of Szemerédi’s theorem, for extremal problems for hypergraphs, and sev-
eral other extremal results from combinatorics. In other words, we determine
the threshold for those properties. Similar results were obtained by Conlon and
Gowers [3].

The new results follow from a general result (Theorem 3), which allows us to
transfer certain extremal results from the classical deterministic setting to the
probabilistic setting.

Main result. The main result will be phrased in the language of hypergraphs.
An ℓ-uniform hypergraph H is a pair (V,E), where the vertex set V is some finite

set and the edge set E ⊆
(
V
ℓ

)
is a subfamily of the ℓ-element subsets of V . As usual

we call 2-uniform hypergraphs simply graphs. For some hypergraph H we denote
by V (H) and E(H) its vertex set and its edge set and we denote by v(H) and e(H)

the cardinalities of those sets. For an integer n we denote by K
(ℓ)
n the complete

ℓ-uniform hypergraph on n vertices, i.e., v(K
(ℓ)
n ) = n and e(K

(ℓ)
n ) =

(
n
ℓ

)
. An ℓ-

uniform hypergraph H ′ is a sub-hypergraph of H , if V (H ′) ⊆ V (H) and E(H ′) ⊆
E(H) and we write H ′ ⊆ H to denote that. For a subset U ⊆ V (H) we denote
by E(U) the edges of H contained in U and we set e(U) = |E(U)|. Moreover, we
write H [U ] for the sub-hypergraph induced on U , i.e., H [U ] = (U,E(U)).
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We will study sequences of hypergraphs H = (Hn = (Vn, En))n∈N. In the
context of Szemerédi’s theorem one may think of Vn = [n] and En being the
arithmetic progressions of length k. and for the Erdős–Stone theorem one should

think of Vn = E(K
(ℓ)
n ) being the edge set of the complete hypergraph K

(ℓ)
n and

edges of En correspond to copies of F in K
(ℓ)
n .

An ℓ-uniform hypergraph H ′ is a sub-hypergraph of H , if V (H ′) ⊆ V (H) and
E(H ′) ⊆ E(H) and we write H ′ ⊆ H to denote that. For a subset U ⊆ V (H)
we denote by E(U) the edges of H contained in U and we set e(U) = |E(U)|.
Moreover, we write H [U ] for the sub-hypergraph induced on U , i.e., H [U ] =
(U,E(U)).

In order to transfer an extremal result from the classical, deterministic setting
to the probabilistic setting we will require that a stronger quantitative version
of the extremal result holds (see Definition 1 below). Roughly speaking, we will
require that a sufficiently dense sub-structure not only contains one copy of the
special configuration (not only one arithmetic progression or not only one copy of
F ), but instead the number of those configurations should be of the same order as
the total number of those configurations in the given underlying ground set.

Definition 1. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs and
α ≥ 0. We say H is α-dense if the following is true.

For every ε > 0 there exist ζ > 0 and n0 such that for every n ≥ n0 and every
U ⊆ V (Hn) with |U | ≥ (α+ ε)|V (Hn)| we have |E(Hn[U ])| ≥ ζ|E(Hn)|.

The second condition in Theorem 3 imposes a lower bound on the smallest
probability for which we can transfer the extremal result to the probabilistic setting
(see Definition 2). For a k-uniform hypergraph H = (V,E), i ∈ [k − 1], v ∈ V ,
and U ⊆ V we denote by degi(v, U) the number of edges of H containing v and
having at least i vertices in U \ {v}. More precisely,

degi(v, U) = |{e ∈ E : |e ∩ (U \ {v})| ≥ i and v ∈ e}| .
For q ∈ (0, 1) we let µi(H, q) denote the expected value of the sum over all such
degrees squared with U = Vq being the binomial random subset of V

µi(H, q) = E

[∑

v∈V

deg2
i (v, Vq)

]
.

Definition 2. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs, let
p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities, and let K ≥ 1. We say H is
(K,p)-bounded if the following is true.

For every i ∈ [k − 1] there exists n0 such that for every n ≥ n0 and q ≥ pn we
have µi(Hn, q) ≤ Kq2i|E(Hn)|2/|V (Hn)| .

With those definitions at hand, we can state the main result.

Theorem 3. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform hy-
pergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities satisfying
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pkn|En| → ∞ as n → ∞, and let α ≥ 0 and K ≥ 1. If H is α-dense and
(K,p)-bounded, then the following holds.

For every δ > 0 and (ωn)n∈N with ωn → ∞ as n → ∞ there exists C ≥ 1 such
that for every qn ≥ Cpn the following holds a.a.s. for Vn,qn : If W ⊆ Vn,qn with
|W | ≥ (α+ δ)|Vn,qn |, then E(Hn[W ]) 6= ∅.

Several 1-statements of the thresholds for extremal problems in combinatorics
follow from Theorem 3. In particular, Theorem 3 can used to obtain the threshold
for the probabilistic versions of Szemerédi’s theorem,its multidimensional general-
izations, and for the Erdős–Stone theorem.
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Hypergraph list coloring and Euclidean Ramsey theory

Noga Alon

(joint work with Alexandr Kostochka)

The list chromatic number (or choice number) χℓ(G) of a graph G = (V,E) is the
minimum integer s such that for every assignment of a list Lv of s colors to each
vertex v of G, there is a proper vertex coloring of G in which the color of each
vertex is in its list. This notion was introduced independently by Vizing and by
Erdős, Rubin and Taylor. In both papers the authors realized that this is a variant
of usual coloring that exhibits several new properties, and that in general χℓ(G),
which is always at least as large as the chromatic number of G, may be arbitrarily
large even for graphs G of chromatic number 2.

It is natural to extend the notion of list coloring to hypergraphs. The list
chromatic number χℓ(H) of a hypergraph H is the minimum integer s such that
for every assignment of a list of s colors to each vertex of H , there is a vertex
coloring of H assigning to each vertex a color from its list, with no monochromatic
edges.

An intriguing property of list coloring of graphs, which is not shared by ordinary
vertex coloring, is the result proved in [1] that the list chromatic number of any
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(simple) graph with a large average degree is large. Indeed, it is shown in [1]
that the list chromatic number of any graph with average degree d is at least
(12−o(1)) log2 d, where the o(1)-term tends to zero as d tends to infinity. Our main
combinatorial result is an extension of this fact to simple uniform hypergraphs.

Recall that a hypergraph is called simple if every two of its distinct edges share
at most one vertex. We prove that the result of [1] can be extended to simple
r-graphs. This is stated in the following theorem.

Theorem 1. For every fixed r ≥ 2 and s ≥ 6r, there is d = d(r, s), such that
the list chromatic number of any simple r-graph with n vertices and nd edges is
greater than s.

A similar result for the special case of d-regular 3-uniform simple hypergraphs
has been obtained independently by Haxell and Verstraete [2].

It is worth noting that the theorem provides a linear time algorithm for com-
puting, for a given input simple r-graph, a number s such that its list chromatic
number is at least s and at most f(s) for some explicit function f . There is no
such known result for ordinary coloring, and it is known that there cannot be one
under some plausible hardness assumptions in Complexity Theory.

The above result has an intriguing geometric application. A well known problem
of Hadwiger and Nelson is that of determining the minimum number of colors
required to color the points of the Euclidean plane so that no two points at distance
1 have the same color. Hadwiger showed already in 1945 that 7 colors suffice, and
L. Moser and W. Moser noted that 3 colors do not suffice. These bounds have not
been improved, despite a considerable amount of effort by various researchers.

A more general problem has been considered by Erdős, Graham, Montgomery,
Rothschild, Spencer and Straus under the name Euclidean Ramsey Theory. The
main question is the investigation of finite point sets K in the Euclidean space
for which any coloring of an Euclidean space of a sufficiently high dimension
d ≥ d0(K, r) by r colors must contain a monochromatic copy of K. The main
conjecture is that this holds for any set K that can be embedded in a sphere.

The situation is different for list coloring. Indeed, as a corollary of our results
here, we prove the following.

Theorem 2. For any finite set X in the Euclidean plane and for any positive
integer s, there is an assignment of a list of size s to every point of the plane,
such that whenever we color the points of the plane from their lists, there is a
monochromatic isometric copy of X.
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Convexity spaces and extremal set theory

Boris Bukh

Radon’s lemma [Rad21] states that every set P of d + 2 points in Rd can be
partitioned into two classes P = P1 ∪ P2 so that the convex hulls of P1 and P2

intersect. Birch [Bir59] (for d = 2) and Tverberg [Tve66] (for general d) extended
Radon’s theorem to the analogous statement for partitions of a set into more than
two parts: For a set P ⊂ Rd of |P | ≥ (k − 1)(d+ 1) + 1 points there is a partition
P = P1 ∪ · · · ∪ Pk into k parts, such that the intersection of the convex hulls
convP1 ∩ · · · ∩ convPk is non-empty. The bound of (k − 1)(d+ 1) + 1 is sharp, as
witnessed by any set of points in sufficiently general position.

Calder [Cal71] conjectured and Eckhoff [Eck79] speculated that Tverberg’s the-
orem is a consequence of Radon’s theorem in the context of abstract convexity
spaces. The conjecture, which we now present, is commonly referred as “Eckhoff’s
conjecture”, and we will maintain this tradition to avoid additional confusion. If
true, the conjecture would have provided a purely combinatorial proof of Tver-
berg’s theorem. However, we will show that the conjecture is false.

A convexity space on the ground set X is a family F ⊂ 2X of subsets of X ,
called convex sets, such as both ∅ and X are convex, and intersection of any
collection of convex sets is convex. For example, the familiar convex sets in Rd

form a convexity space on Rd. Among the other examples are axis-parallel boxes
in Rd, finite subsets on any ground set, closed sets in any topological space (see
the book [vdV93] for a through overview of convexity spaces). If the ground set
X in the convexity space (X,F) is clear from the context, we will speak simply
of a convexity space F . The convex hull of a set P ⊂ X , denoted convP , is the
intersection of all the convex sets containing P . We write convF P if the convexity
space is not clear from the context. The k-th Radon number of (X,F) is the
minimum natural number rk, if it exists, so that every set P ⊂ X of at least rk
points admits a partition P = P1 ∪ · · · ∪ Pk into k parts whose convex hulls have
an element in common. It is not hard to show3 that if r2 is finite, then so is rk.
Eckhoff’s conjecture states that rk ≤ (k− 1)(r2 − 1) + 1 in every convexity space.
The conjecture has been proved for r2 = 3 by Jamison [JW81], and for convexity
space with at most 2r2 points by Sierksma and Boland [SB83].

The best bounds on rk are

rk1k2 ≤ rk1rk2 (due to Jamison [JW81]),

r2k+1 ≤ (r2 − 1)(rk+1 − 1) + rk + 1 (due to Eckhoff [Eck00]).

In particular,

(18) rk ≤ k⌈log2 r2⌉.

We present a new bound that improves on (18).

3According to [Eck00] it was first shown by R.E.Jamison (1976). The first published proofs
appear to be in [DRS81] and [JW81].
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Theorem 1. Let (X,F) be a convexity space, and assume that r2 is finite. Then

rk ≤ c(r2)k2 log2 k,

where c(r2) is a constant that depends only on r2.

Though this bound is not far from Eckhoff’s conjecture, the conjecture itself is
false.

Theorem 2. For each k ≥ 3 there is a convexity space (X,F) such that r2 = 4,
but rk ≥ 3(k − 1) + 2.

Informally, the idea behind these results is to study the nerve of a family
of a convex sets rather than the sets themselves. The nerve associate to a set
[n] = {1, 2, . . . , n} in a convexity space is the collection consisting of all set fam-
ilies F ⊂ 2[n] such that convS∈F conv(S) is non-empty. It can be shown that
there is a correspondence between such collections, and the convexity spaces. The
advantage of viewing the problem from this angle is that one can apply results
from extremal set theory. For example, the main ingridient in the Theorem 1 is
a multidimensional generalization of a Kruskal–Katona theorem [Kru63, Kat68],
which we now describe.

A d-dimensional r-uniform family is a collection of d-tuples of r-element sets.
In other words, if we denote by

(
X
r

)
the family of all r-element subsets of X , then

d-dimensional r-uniform family is a subset of
(
X
r

)d
. A shadow of such a family

F ⊂
(
X
r

)d
is defined to be

∂F def

= {(S1 \ {xi}, . . . , Sd \ {xd}) : (S1, . . . , Sd) ∈ F , and xi ∈ Si for i = 1, . . . , d}.
Note that in the case d = 1, the definition reduces to the familiar definition of a
shadow of a set family. The following is thus a generalization of Lovász’s version
[Lov79, Ex. 13.31(b)] of Kruskal–Katona theorem.

Theorem 3. Suppose F ⊂
(
X
r

)d
is a d-dimensional r-uniform family of size

|F| =

(
x

r

)d

,

where x ≥ r is a real number. Then

|∂F| ≥
(

x

r − 1

)d

.

Moreover, the equality holds only if F is of the form
(
Y1

r

)
× · · · ×

(
Yd

r

)
for some

sets Y1, . . . , Yd ⊂ X.
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Problem session

Among others, the following problems were presented.

Noga Alon: Call a directed graph D = (V,E) s-dominating if for any subset U
of at most s vertices of V there is a vertex v such that (v, u) is a directed edge for
every u ∈ U . Is it true that any 100-dominating finite directed graph contains a
directed cycle of length at most 100?

Anders Björner: Consider the following graph Gq,d.

- Vertices: The maximal chains S0 ⊂ S1 ⊂ · · · ⊂ Sd+1 in the subspace
lattice of all linear subspaces of a (d + 1)-dimensional vector space over
the finite field GFq ordered by inclusion.

- Edges: Pairs of such chains that are identical in all dimensions except one.

For instance, Gq,2 is the line graph of the point-line incidence graph of a projective
plane.

Question: What is the chromatic number χ(Gq,d)?

It is known that q + 1 ≤ χ(Gq,d) ≤ dq, where the lower bound comes from the
clique size and the upper bound from Brooks’ theorem.

Remarks: 1. The question arose in connection with chamber graphs of Tits build-
ings. In recent work with Kathrin Vorwerk [2] we determined the degree of con-
nectivity of such graphs. It is natural in this connection to inquire about other
important graph parameters for chamber graphs, such as chromatic number. The
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graphs Gq,d are the chamber graphs of buildings of type A, so this is a reasonable
starting point.

2. Note the structural similarity with the graphs figuring in the Erdös-Faber-
Lovász conjecture. Namely, Gq,d consists of a collection of (q + 1)-cliques that
pairwise intersect in at most one vertex. In addition, here every vertex belongs to
exactly d such cliques.

3. Gábor Kun has shown that χ(Gq,d) ≤ (q+ 1)2 (private communication the day
after the problem session).

Maria Chudnovsky: For a graphG, denote by ω(G) the size of the largest clique
in G, and by χ(G) the chromatic number of G. A wheel in a graphG is a pair (C, v)
where C is an induced cycle of length at least 4 in G, and v ∈ V (G) \V (C) has at
least three neighbors in V (C). Let C be the class of graphs that do not contains
a wheel. Does there exist a function f : N → N such that χ(G) ≤ f(ω(G)) for
every G ∈ C? This problem was shown to me by Nicolas Trotignon.

Michael Krivelevich: Prove that for any p = p(n), if G is distributed as the ran-
dom graph G(n, p), then with high probability G contains ⌊δ(G)/2⌋ edge disjoint
Hamilton cycles.

Comments: posed explicitly by Frieze and Krivelevich [5]. Known to be true for
p = (1 + o(1) lnn/n (Bollobás and Frieze [3], Frieze and Krivelevich [6]). Known
to hold asymptotically for p ≫ logn/n (Frieze and Krivelevich [5], Knox, Kühn
and Osthus [7]).

Imre Leader: In the following problem, we think of elements of Sn (the sym-
metric group of order n) as words that are rearrangements of the symbols 1, ..., n,
and we write xy to denote the concatenation of words x and y. Thus for example
if x is the word 1345 and y is the word 26 then xy is the word 134526, which is a
member of S6.

Question: Given k, does there exist an n such that whenever Sn is k-coloured
there exist words x, y, z such that all of the words xyz, xzy, yxz, yzx, zxy, zyx
(are in Sn and) have the same colour? One could view this as a ‘monochromatic
copy of S3’. Similarly, one would like a monochromatic copy of Sm, for each value
of m.

Nati Linial: Let f : {0, 1}n → {0, 1} be a boolean function and let S ⊆ {1, . . . , n}.
Let us conduct the following experiment: Set all variables xj for j 6∈ S to 0 or 1
independently at random. This partial assignment of values to the variables may
or may not determine the value of f . The probability that f remains undetermined
is called the influence of S on f . This notion was defined by Ben-Or and Linial.
A well-known result of Kahn Kalai and Linial says that if the expectation of f is
around 1/2 (In fact, it’s enough that it’s bounded away from both zero and one.),
then there is a set S of cardinality o(n) and influence 1 − o(1). We ask: Is it true
that under the same conditions there is a set S of cardinality ≤ n/3 and influence
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≥ 1 − cn for some absolute 1 > c > 0? We note that the constant 1/3 was chosen
arbitrarily and any coefficient < 1/2 should work just as well.

László Lovász: Let H be a hypergraph with Vapnik–Červonenkis dimension k.
We set H(△)H = {A△B : A,B ∈ H}.

Question: How large can be the VC-dimension of H(△)H? It is not hard to prove
that dimV C(H(△)H) ≤ 10k [8], and (at least for an even k) one can construct an
example with dimV C(H(△)H) = 3k.

Jaroslav Nešetřil: The efforts to extend the characterizations of Nowhere Dense
Classes in logical terms put some of the old problems in new light. For example
the following was isolated recently by Nešetřil and Ossona de Mendez [9] in the
context of characterization of bounded expansion classes by means of First Order
Logic definability.

Question: Is it true that for any two positive integers k, ℓ there exist f(k, ℓ) and
s(g) such that every graphG with chromatic number ≥ f(k, g) contains a subgraph
G′ such that one of the following two conditions holds:

- either χ(G′) ≥ k and G′ contains no odd cycle of length ≤ ℓ,
- or G′ contains as a subgraph complete graph Kk with every edge being

subdivided by at most s(k) vertices.

Without the second alternative and with girth instead of odd-girth, this is a
famous old problem of Erdős and Hajnal [4]. This has been proved for ℓ = 3
by Rödl [10] and this remains presently the only known case for this conjecture.
Shallow topological minors may shed some light here.

Oleg Pikhurko: Let F be a 3-graph. Its saturation function sat(n, F ) is the
smallest size of a maximal F -free 3-graph on n vertices. Suppose that F has an
edge D such that any other edge intersects D in at most one vertex. Prove that
sat(n, F ) = O(n). This is the first open case of a conjecture of Tuza [11].

If the above statement is true, then we would know the order of magnitude of
sat(n, F ) for every 3-graph F ; it will be Θ(n2), Θ(n), or eventually constant.

József Solymosi: (C4 Removal Lemma for sparse graphs.) Is it true that for any
ǫ > 0 there is a threshold, n0 = n0(ǫ) such that the following holds? If a graph on
n ≥ n0 vertices is the edge-disjoint union of at least ǫn3/2 quadrilaterals, then it
contains another quadrilateral.

Comments: It was noticed by Maria Axenovich that a positive answer would
contradict a conjecture of Felix Lazebnik and Jacques Verstraëte about generalized
Sidon sets.

I conjecture that the following stronger version holds: For any ǫ > 0 there is a
δ > 0 so that if a graph on n vertices is the edge-disjoint union of at least ǫn3/2

quadrilaterals, then it contains at least δn2 quadrilaterals.
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Benny Sudakov: Let G be an n-vertex graph with minimum degree larger than
3n/4. Is it true that the largest triangle-free subgraph of G is bipartite? If yes,
then this is tight, see example in [1].

Tibor Szabó: A (k, d)-tree is a binary tree, where each vertex has either two or
zero children, the depth of each leaf is at least k, and every vertex has at most d
leaf-descendants of distance at most k. Let

f2(k) = max{d : there exists no (k, d)-tree}.
A (k, d)-MU(1)-system is a binary tree T = (V,E) where each vertex has either

two or zero children, together with a family F = {Fl ⊆ V : l is a leaf of T} such
that each set Fl contains exactly k non-leaf vertices on the path from l to the root
of T and every vertex is in at most d sets of the family. Let

f1(k) = max{d : there exists no (k, d)-MU(1)-system}.

Question: Is f1(k) = f2(k)?

Motivation: A (k, s)-CNF formula is one with exactly k distinct variables in each
clause, such that every variable appears in at most s clauses. The function

f(k) = max{s : every (k, s)-CNF is satisfiable}
is not known to be computable, while f1(k) and f2(k) are computable. It is not
hard to see that f(k) ≤ f1(k) ≤ f2(k), and we know that all three functions are

asymptotically
(
2
e + o(1)

)
2k

k . It would be very intersting to decide whether any
two of them are equal.

Gábor Tardos: Is either of the following two conflicting statements true?

Statement 1: For any finite set S of points in the plane one can find another set
H of cardinality at most |S|/2 such that any axis-parallel rectangle R contains a
point of H or contains at most 1000 points of S.

Statement 2: Question 1 fails badly for almost all S. More concretely, for a uniform
random set S of n points in the unit square with high probability the following
holds. For any set H of at most n/2 points there exists an axis parallel rectangle
R containing no points from H and Ω(log logn) points of S.

Robin Thomas: Is there a polynomial-time algorithm to test membership in
the linear hull of xxT over GF (2), where x ranges over all incidence vectors of
perfect matchings of a graph G? A positive answer would give a polynomial-time
algorithm to test whether an input graph has a Pfaffian orientation.
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ETH Zürich
ETH Zentrum
CH-8092 Zürich
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Max-Planck-Institut für Informatik
Algorithms and Complexity Group
Campus E1 4
66123 Saarbrücken

Prof. Dr. Angelika Steger

Institut für Theoretische Informatik
ETH Zürich
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