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Introduction by the Organisers

In the early 1980’s, two groups independently laid the groundwork for much ac-
tivity in (solid state) physics and mathematics (spectral theory) in the decades
since then. Shechtman et al. discovered new structures, nowadays called quasi-
crystals, that have unexpected and intriguing behavior. Namely, these structures
have a diffraction pattern resembling that of crystals but also displaying rotational
symmetries that are impossible for crystals. Kohmoto et al. on the other hand pro-
posed a simple quasi-periodic Schrödinger operator, the Fibonacci Hamiltonian,
with critical behavior for all non-zero values of the coupling parameter. That
is, the eigenfunctions are neither localized nor extended, the spectral measures
are purely singular continuous, and quantum transport is anomalous. All these
properties are by now rigorously established.

The mathematical models of quasi-crystals have a number of features, such as
being constructed by a cut-and-project method (projection of a part of a higher-
dimensional lattice along incommensurate directions), displaying self-similarity
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(resulting from a construction based on inflation), and of course the desired diffrac-
tion behavior. The model proposed by Kohmoto et al. has all these features and
it has consequently become the standard one-dimensional quasi-crystal model.

The mathematics involved in the analysis of such models has many facets.
Naturally, it involves discrete geometry, spectral theory, and harmonic analysis. In
addition, dynamical systems play an important role. As shown by Kohmoto et al.,
the self-similarity gives rise in a natural way to a renormalization procedure which
results in a direct correspondence between the desired spectral properties and the
dynamics of a three-dimensional polynomial map, T (x, y, z) = (2xy−z, x, y). Since
the variables correspond to traces of transfer matrices, the map T is called the
trace map. In fact, any self-similar model gives rise to a corresponding polynomial
map and hence there is a rich class of trace maps whose dynamics are directly
related to a certain class of Schrödinger operators. Moreover, since the spectra of
these Schrödinger operators are zero-measure Cantor sets, methods from geometric
measure theory have also been applied successfully to study the scaling properties
of these Cantor sets.

Trace maps have been studied with a view towards spectral theory in many
works. Most of them regard T as a real dynamical system, that is, as T : R3 →
R3. This is in some sense natural since due to self-adjointness of the Schrödinger
operators, spectra and spectral measure live on R and for real energies, all traces
are real. However, some recent works have challenged this picture and instead
studied T : C3 → C3. This innocent-looking change of perspective has opened
up a new tool-box, that of complex analysis and complex dynamics, and in fact
allowed one to prove spectral results that had been completely out of reach.

Another promising new fusion of ideas involves the application of uniformly and
normally hyperbolic dynamics to trace maps and has led to a multitude of new
results for the weakly coupled Fibonacci Hamiltonian. Among these results are
estimates of the fractal dimension of the spectrum and complete gap labeling in
the sense of Bellissard.

The aim of the workshop was to pursue these new points of view vigorously.
The structure of the workshop was the following. The meeting was attended

by 17 participants, with each presenting their results and/or a historical overview
of the subject. We started off with several overview lectures (by Kohmoto, Sütő,
Bellissard, Grimm, Damanik), and continued with presentations of particular re-
sults. One of the talks (by Lifshitz) provided an exposition of physical point of
view, which was quite inspiring for mathematicians. In the very last talk Embree
presented numerical results on spectral properties of Fibonacci Hamiltonian, which
also suggest numerous new conjectures. One night Grimm presented a beautiful
general-audience talk, entitled “A hexagonal monotile for the Euclidean plane,”
which many participants from the other mini-workshops also attended.

We have the feeling that bringing together people from dynamical systems,
spectral theory, mathematical physics, and physics of quasicrystals turned out to
be amazingly productive, provided deeper understanding of the subject by all the
participants, and will eventually lead to new exciting results.



Mini-Workshop: Dynamics of Trace Maps 143

Mini-Workshop: Dynamics of Trace Maps and Applications to
Spectral Theory

Table of Contents

Mahito Kohmoto
TKNN and KKT: topological theory of QHE and the dynamical system
for the quasiperiodic operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

András Sütő
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Abstracts

TKNN and KKT: topological theory of QHE and the dynamical
system for the quasiperiodic operator

Mahito Kohmoto

2D Bolch electrons in a magnetic field are considered, and it is shown that Hall
conductance is given by integers, Chern number. Then it is related to 1D quasiperi-
odic problem. Matrix iteration is considered as a renormalization group procedure,
and the trace map is derived for the Fibonacci lattice. Several properties of the
systems are presented, i.e., Cantor set spectrum, critical wave functions etc.

References

[1] M. Kohmoto, L. P. Kadanoff, C. Tang, Localization problem in one dimension: mapping
and escape. Phys. Rev. Lett. 50:23 (1983),1870–1872.

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conduc-
tance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49:6 (1982), 405–408.

[3] M. Kohmoto, Y. Oono, Cantor spectrum for an almost periodic Schr?dinger equation and
a dynamical map. Phys. Lett. A 102:4 (1984), 145–148.

[4] M. Kohmoto, Topological invariant and the quantization of the Hall conductance. Ann.
Physics 160:2 (1985), 343–354.

[5] M. Kohmoto, B. Sutherland, C. Tang, Critical wave functions and a Cantor-set spectrum
of a one-dimensional quasicrystal model. Phys. Rev. B (3), 35:3(1987), 1020–1033.

The Fibonacci Hamiltonian

András Sütő

This is an account of my two papers [1, 2] on the difference equation

(1) (Hψ)n = ψn−1 + ψn+1 + λ(⌊(n+ 1)α⌋ − ⌊nα⌋)ψn
where α = (

√
5−1)/2. Earlier nonrigorous work by physicists [3, 4, 5] arrived at the

conclusion that the spectrum ofH is a Cantor set of zero Lebesgue measure and the
spectral measures are singular continuous. The mathematical study of the problem
started with Casdagli’s paper [6] in which it was proven that the so-called dynam-
ical spectrum is a Cantor set of zero Lebesgue measure for |λ| ≥ 16. In the proof
and in all subsequent papers the best approximants of α, αn = Fn−1/Fn, (Fn is
the sequence of Fibonacci numbers with initial conditions F0 = F1 = 1) and the as-
sociated Fn-periodic approximations Hn of H play a crucial role. The well-known
method of solution of (1) is the use of transfer matrices. If ΨN = (ψN+1 ψN )T

and Mn is the transfer matrix over the sites 1, 2, . . . , Fn, then ΨFn
=MnΨ0. Due

to the quasi-periodicity of the sequence ⌊(n+ 1)α⌋ − ⌊nα⌋, both Mn and its trace
2xn satisfy recurrence relations. There is also an invariant I associated with the
sequence xn. The spectrum of Hn is σn = {E ∈ R : |xn(E)| ≤ 1}. The following
theorem can be proven using basic spectral theory.

Theorem σn ∪ σn+1 is a decreasing sequence, and σ(H) =
⋂∞
n=1(σn ∪ σn+1).
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The spectrum of H is purely continuous.

In the context of trace maps the Lyapunov exponent is defined as

γ(E) = lim
N→±∞

(1/N) ln ‖TN‖,

provided that the limit exists. Here TN is the transfer matrix over the sites
1, 2, . . . , N .

Proposition For E ∈ σ(H), γ(E) = 0.

Confronting two theorems of Kotani [7, 8] on the set {E : γ(E) = 0} and us-
ing the continuity of the spectrum one arrives at the the following result.

Theorem For any nonzero λ, H has a purely singular continuous spectrum on a
Cantor set of zero Lebesgue measure.
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1D-Quantum systems, 1983-1990: a review.

Jean V. Bellissard

This talk presents a review of the problems and results obtained during the eighties
for one dimensional Schrödinger operators with aperiodic potentials, either on the
continuum or on the lattice.

The first part starts with a description of the formalism of transfer matrix.
Then the examples of potentials that were already under scrutiny in 1979, the
Anderson model in one-dimension, quasi periodic potentials, and a model with
singular continuous spectrum. The Harper model is part of this program, and the
known (non-rigorous) results on this model were provided.
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The second part concerns the formalism used by the author and his collaborators
in the eighties [4, 3] to describe such systems: (i) the tight binding representation
(called at the time the French connection), (ii) the Hull, its transversal and the
corresponding groupoids, (iii) the C∗-algebra of the Hull, (iv) the use of this
algebra to compute the Integrated Density of States (IDS) and the Gap labeling
Theorem.

The third part concerns the results obtained by various authors concerning the
existence of a Cantor spectrum. The first existence theorem by Moser [5], the
results obtained on the almost Mathieu and Harper models between 1982 and
2009, the study of one-dimensional quasicrystals using the trace map [1, 2], the
case of substitution sequences like the Thue-Morse one.

The last part concludes with a series of open problems, such as the gap opening,
the properties of potentials with positive configurational entropy, the study of
transport exponents.
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Trace maps, invariants and applications

Uwe Grimm

Trace maps emerged in physics in 1983 [2, 4] in the study of non-periodic 1D
quantum systems; they appeared before in a mathematical context in [5]. As
trace maps apply to any system of (2 × 2)-matrices derived from a two-letter
substitution rule, they have numerous applications [1].

In the most general setting, a two-letter subsitution can be regarded as an
endomorphism ̺ of the free group F2 = 〈a, b〉 generated by two letters a and b.
The invertible substitutions are the automorphisms of F2, which form the group
Aut(F2). Let A,B ∈ SL(2,C) denote unimodular 2× 2 matrices, and consider the
corresponding matrix system, where a sequence of letters a and b is replaced by a
product of matrices A and B. Due to the Cayley-Hamilton theorem, the trace of
the product can be expressed in terms of the traces of A, B and AB. In particular,
if x = 1

2 tr(A), y = 1
2 tr(B) and z = 1

2 tr(AB), then any substitution ̺ gives rise to

an associated trace map F̺ ∈ Z[x, y, z]3, with fixed point (1, 1, 1).
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Any trace map that stems from an automorphism leaves the Fricke-Vogt char-
acter I(x, y, z) = x2+y2+z2−2xyz−1 invariant, while for a general ̺ ∈ End(F2)
it transforms as F̺(I(x, y, z)) = P̺(x, y, z)I(x, y, z), with P̺ ∈ Z[x, y, z]. The
level set {(x, y, z) ∈ C3 | I(x, y, z) = 0} is then invariant for any such trace map;
compare the other contributions to this workshop.

The Fricke-Vogt character is not the only possible invariant. For instance, the
trace map for the generalised Fibonacci substitution ̺(k) which map a 7→ b and
b 7→ bk−1ak, with k ∈ Z, preserves the function

H(x, y, z) = yUk(x) − zUk−1(x) ,

where Uk, with U−k = −Uk−2, denote the Chebyshev polynomials of the second
kind [1].

Trace maps can also be applied to systems with non-unimodular matrices. An
example for one-dimensional classical Ising chains with modulated interactions and
fields is discussed in [1]. Here, one considers the determinants separately, which are
easily computed from the number of letters a and b in the substitution sequence.
Another possible application of trace maps is to kicked two-level systems, where
the sequence corresponds to a periodic kicking of a system with two different
strength and direction of kicks [1].

For some applications, the trace alone may not contain the information that is
required. An example is transmission through aperiodic multilayers [3], where the
transmission coefficient is the sum of the four entries of the transfer matrix. An
approach using an ‘anti-trace’ map was proposed in [6]. As an example, for the
Fibonacci case Tn+1 = Tn−1Tn, the traces xn = 1

2 tr(Tn) and the anti-traces an
(here defined as half the difference between the off-diagonal elements of Tn) satisfy
the coupled set of equations

xn+1 = 2xnxn−1 − xn−2 and an+1 = 2xnan−1 + an−2 .

Some generalisations and applications are discussed in [6].
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Some developments in 1D quantum systems (1998–2010)

David Damanik

In this talk we surveyed some results for Schrödinger operators in ℓ2(Z) with
low-complexity potentials obtained between 1998 and 2010. The presentation was
centered around the class of Schrödinger operators with Sturmian potentials, that
is,

[Hψ](n) = ψ(n+ 1) + ψ(n− 1) + λχ[1−α,1)(nα+ θ mod 1)ψ(n)

with λ > 0, α ∈ [0, 1) \Q, and θ ∈ [0, 1).
The results were grouped as follows:
(i) Using partitions and Gordon-type criteria, absence of eigenvalues was shown

for all Sturmian potentials and many related models (see, e.g., [7, 8]).
(ii) Using a quantitative version of subordinacy theory and a mass-reproduction

technique to prove the required solution estimates, absolute continuity with respect
to suitable Hausdorff measures was shown for the spectral measures associated with
some Sturmian potentials (see, e.g., [1, 7, 17, 18]).

(iii) Uniform convergence to the Lyapunov exponents for all energies was shown
for all Sturmian models and many related ones. This provides an elegant and
simple proof of zero-measure spectrum; compare [9, 10, 20, 21].

(iv) Time-averaged quantum dynamics was studied with the help of the
Plancherel theorem (resp., the Dunford functional calculus) and Green function
estimates via transfer matrix bounds; compare [2, 11, 12, 13, 14, 15, 19, 24].

(v) The fractal dimension of the spectrum was studied in the papers [3, 4, 5, 6,
16, 22, 23].
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Dynamical properties of the trace map and spectrum of the weakly
coupled Fibonacci Hamiltonian

Anton Gorodetski

(joint work with David Damanik)

We consider the spectrum of the Fibonacci Hamiltonian for small values of the
coupling constant, and study the limit, as the value of the coupling constant
approaches zero, of its thickness and its Hausdorff dimension. We prove that
the thickness tends to infinity and, consequently, the Hausdorff dimension of the
spectrum tends to one. We also show that at small coupling, all gaps allowed by the
gap labeling theorem are open and the length of every gap tends to zero linearly.
Moreover, for sufficiently small coupling, the sum of the spectrum with itself is an
interval. This last result provides a rigorous explanation of a phenomenon for the
Fibonacci square lattice discovered numerically by Even-Dar Mandel and Lifshitz
[6, 7]. Finally, we show that the density of states is exact-dimensional, and its
dimension also tends to one as coupling constant tends to zero. The proofs of
these results [4, 5] are based on hyperbolicity of the trace map associated with
Fibonacci Hamiltonian [1, 2, 3].
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(Reversing) symmetries of trace maps

Michael Baake

The trace maps discovered in the study of 1D discrete Schrödinger operators (see
[1] and the other contributions of this workshop for references) occurred earlier
in the context of algebraic geometry and group theory; compare [10, 3, 11] and
references therein. Indeed, given the Fricke-Vogt invariant [6]

I(x, y, z) = x2 + y2 + z2 − 2xyz − 1 ,

one can define two sets of polynomial mappings, namely

A = {A ∈ C[x, y, z]3 | I ◦A = I } and

G = {G ∈ Z[x, y, z]3 | G ∈ A with G(1, 1, 1) = (1, 1, 1)} .
It is a surprising (but well-known) fact [7, 11, 1] that A and G are groups, with
A = Σ⋊G (where Σ ≃ C2 ×C2) and G ≃ PGL(2,Z). The latter are the invertible
trace maps that also emerge from elements of the automorphism group Aut(F2)
of the free group F2 with two generators; see [1] and references therein for more.
Note that this also implies A ⊂ Z[x, y, z]3.

This algebraic setting allows the classification of (reversing) symmetries of (in-
vertible) trace maps in a group theoretic setting; see [5] for general results and
[9, 2, 3] for the case of trace maps. Given F ∈ G, one defines

S(F ) = centG(F ) and R(F ) = {H ∈ G | HFH−1 = F±1} ,
which are subgroups of G. Note that S(F ) is a normal subgroup of R(F ), with the
corresponding factor group being either trivial or C2. The possibilities for trace
maps are classified in [3, Thms. 1 and 2], while [3, Thm. 3] gives the extension to the
larger group A. The proof can either be based on the isomorphism PSL(2,Z) ≃
C2 ∗ C3 and standard results from combinatorial group theory [8, 6], or on the
known structure of GL(2,Z) and the symmetries of ‘cat maps’ [2, 4]. More detailed
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consequences for the dynamics of trace maps are discussed in [9, 8]; see also the
other contributions of this workshop.

Various generalisations are possible from here, such as mappings of a similar
structure (with an invariant) in higher dimensions [9, Sec. 7], or (non-invertible)
trace maps derived from the monoid Hom(F2). They lead to I ◦ F = PF · I with
a polynomial PF ∈ Z[x, y, z]; see [11, 1] for details. None of them seem to have
been pursued systematically so far.
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Some observations on the trace map related to period doubling
potential

Yanhui Qu

In this talk we study the trace map related to the Period doubling potential.
Base on the work of [1], we give some observations on it.

Consider the substitution σ over two letter alphabet {a, b} defined as

σ(a) = ab, σ(b) = aa.

The fixed point of σ is

σ∞(a) = abaaabababaaabaa · · · := ζ1ζ2ζ3 · · ·
Define a two-sided sequence β as

βn = β−n = ζn, (n ≥ 1); β0 = a or b.
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β is called the period doubling sequence.
For any E ∈ R define

Aa :=

[

E − V −1
1 0

]

Ab :=

[

E + V −1
1 0

]

For w = w1 · · ·wn ∈ {a, b}n define Aw := Awn
· · ·Aw1

. Define

xn := tr(Aσn(a)) and yn := tr(Aσn(b)).

It is known (see for example [1]) that

xn+1 = xnyn − 2; yn+1 = x2n − 2.

Thus the computation of these quantities is realized by the following dynamic
F : R2 → R2

F (x, y) = (xy − 2, x2 − 2).

F is called the trace map related to the period doubling potential.
The two observations are that: at first we give sufficient condition for the points

which have bounded orbits; then we give the following asymptotic expansion for
the function g (whose graph Γ(g) form the upper boundary of the stable set of F ):

g(x) =
2 +

√
2

x
+

2 +
√
2

4x3
+O(

1

x5
), (x→ ∞).
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On the spectrum of the 1D quantum quasiperiodic Ising model

William Yessen

We consider the Hamiltonian, the 1D quantum quasiperiodic Ising model, given by

H = −
∑

n

σ(z)
n −

∑

n

Jnσ
(x)
n σ

(x)
n+1

acting on the one-dimensional array of spins, ⊗nC2, where σ
(x),(z)
n are the spin-

1/2 operators and h > 0 is the magnetic field in the direction transversal to the
spin lattice, and {Jn} is generated from J0, J1 > 0 by Fibonacci substitution [1].
The spin variables can be transformed into Fermi variables and diagonalized [1],
resulting in

P =
∑

k

Λkη
†
kηk

where ηk, η
†
k are noninteracting Fermi fields. Let f : R3 → R3 be the Fibonacci

trace map: f(x, y, z) = (2xy− z, x, y). It was shown in [1] that the eigenvalues Λk
lie on the curve

γ(Λ) =

(

Λ2 − (h2 + J2
0/4)

2hJ0
,
Λ2 − (h2 + J2

1 /4)

2hJ1
,

(

J0
J1

+
J1
J0

)

/2

)
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and {fn (γ(Λk))}n∈N is bounded. This leads to the definition of the dynamical
spectrum: B∞ = {Λ ∈ R : {fn (γ(Λ))}n∈N is bounded}. We prove

Theorem [2] For any J0, h > 0 there exists r0 ∈ (0, 1) such that for all J1 satis-
fying J0/J1 ∈ (1− r0, 1 + r0), the dynamical spectrum B∞ is a Cantor set of zero
Lebesgue measure, whose local Hausdorff dimension is nonconstant, continuous,
and lies strictly between zero and one.
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Separable models of Fibonacci quasicrystals - numerical results

Shahar Even-Dar Mandel

(joint work with Ron Lifshitz)

This works uses two-dimensional and three-dimensional models of quasicrystals
based on the one-dimensional Fibonacci quasicrystal[1]. The process by which
these models are constructed yields a separable Schrödinger equation and hence
allows us to use the one-dimensional results to calculate the physical properties of
the higher-dimensional models[3].

The electronic energy spectra in these quasicrystals are studied. The one-
dimensional spectrum is known to be a Cantor-like set of zero Lebesgue mea-
sure for any choice of physical parameters. The higher-dimensional models have
spectra which can consist of continuous energy intervals, similar to the spectra of
periodic crystals, for weak quasiperiodicity. For strong quasiperiodicity the higher-
dimensional models yield nowhere-dense spectra similar to the one-dimensional
model. In the intermediate range we encounter spectra with mixed structure. Es-
timates on the critical values of the physical parameters of the model in which the
transitions between regimes occur are obtained numerically[2, 4, 5]. Analytical re-
sults by Damanik and Gorodetski, motivated by these numerical results confirmed
their vailidity[6, 7].

The dynamics of electronic wave-packets that are initially localized at a single
site of the crystals is also studied. Transitions between regimes in the dynamics of
wave-packets are associated with the transitions between regimes in the structure
of the spectra. Estimates for the transitional values are obtained numerically. The
power-law decay of the survival probability and the inverse participation ratio is
observed to be also modulated by log-periodic oscillations[8].

Hypothesizing a relation between the spectra and the nature of the electronic
eigenfunctions of these quasicrystals, we use linear combinations of degenerate (or
nearly-degenerate) eigenfunctions, and by utilizing an efficient search algorithm we
succeed in generating extended eigenfunctions. This is in contrast to the known
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nature of the one-dimensional eigenfunctions which are characterized by polyno-
mial spatial decay. The extended eigenfunctions obtained by the search algorithm
display a long-range order reflecting the quasiperiodicity of the underlying poten-
tial, and indicate the possible existence of a quasiperiodic version of the Bloch
theorem [9].
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Scaling properties of Sturmian potential based Schrödinger operator:
some useful tools

Laurent Raymond

We consider a class of one-dimensional discrete quasiperiodic Schrödinger operator
Hα, with two valued potential arranged along a sturmian sequence associated to
the slope α ∈ [0, 1). These operators act on CZ in the following way:

(HΨ)n = Ψn+1 +Ψn−1 + ([(n+ 1)α]− [nα])VΨn ∀n ∈ Z .

The spectrum of such an operator is the set of energies E such that HΨ = EΨ
for some non exponentially growing Ψ. Given an energy value E, the pseudo-
eigenvector Ψ is entirely determined by the transfer matrix and two successive
values.

When α is a rational number p/q, the potential is q-periodic and by the Bloch-
Floquet theorem, the spectrum is the set of energiesE for whichME(q) the transfer
matrix over a period is a unitary matrix. Namely, Tr(ME(q)) ∈ [−2, 2]. When
α is not rational, one can use the sequence pk

qk
of best periodic approximations

constructed using the continued fraction expansion α = [a1, a2, . . . , ak, . . . ]. The
sequence of transfer matrices over qk sites is Mk(E).The evolution of their trace
values for a given energy E is the trace map. The spectrum is view as the set of
bounded orbits. As far as the spectrum as a set is concerned, the trace map is
the main tool to be used. By the characterization of escaping orbits, it has been
shown that it is a Cantor set of zero Lebesgue measure [1, 2, 3].

In order to get more information on the generalized eigenvectors, the traces are
not sufficient, and the transfer matrix evolution has to be studied. The matrices
M(k,p)(E) =Mk−1M

p
k are computed recursively by

M0 =

(

E −1
1 0

)

, M−1 =

(

1 −V
0 1

)

, Mk+1 =M(k,ak+1+1) .
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This evolution leaves invariant the [Mk−1,M(k,p)]
2 whose value can be computed

for the initial conditions and is given by V 2I2 for this particular model.
Using the Chebyshev polynomials of the second kind and the Cayleigh-Hamilton

theorem, it is possible to compute the evolution of the transfer matrices in a
linearized form. The two matrices Mk+1 =M(k+2,0) and Zk+1 = M(k+1,1) can be
expressed as a linear combination of Mk =M(k+1,0), Mk−1 =M(k,0), Zk =M(k,1)

and I2. The coefficients are polynomial expressions in the trace of Mk. This can
be used to prove a polynomial upper bound for the matrix norm [4, 5]. This could
also be useful to characterize the time evolution of a distribution under the time
evolution associated to this Schrödinger operator. It is related to the asymptotic
behavior of the generalized eigenvectors.

When the on-site potential strength is greater than a critical value (V > 4), we
can describe the spectrum by putting it in one-to-one correspondence with a set
of sequences of symbols, this construction is related to the symbolic dynamics of
the trace-map [6] that is confined to an hyperbolic invariant set.

In the present case, a decreasing sequence of covering of the spectrum is con-
structed. It is composed by disjoint intervals, which are bands of the periodic
approximations of H . Namely, for given k and p, we call σ(k,p) the spectrum of a
periodic operator described by the transfer matrix M(k,p) over a period. We know
that a covering is obtained by σ(k,0)

⋃

σ(k+1,0). We can identify 3 different types
of intervals in this covering:

type I gap: an interval in a a gap of σ(k+1,0), which is a band of σ(k,1) included
in a band of σ(k,0),

type II band: a band of σ(k+1,0) included in a band of σ(k,−1) and in a gap of
σ(k,0),

type III band: a band of σ(k+1,0) included in a band of σ(k,0) and in a gap of
σ(k,1).

The covering is hierarchically arranged in the following way: at a given level
k, a type I gap contains a unique band of σ(k+2,0) denoted by II. It is a type II
band at level k+1. A type II band contains (ak+1 +1) bands of σ(k+1,1) denoted

by
(

I(j)
)

j=1···ak+1+1
, they are all type I gaps at level k + 1. They are alternated

with ak+1 bands of σ(k+2,0) denoted by
(

III(j)
)

j=1···ak+1
, they are all type III

bands at level k + 1.

I(1) < III(1) < I(2) · · · < I(ak+1) < III(ak+1) < I(ak+1+1).

A type III band contains (ak+1) bands of σ(k+1,1) denoted by
(

I(j)
)

j=1···ak+1
,

they are all type I gaps at level k+ 1. They are alternated with (ak+1 − 1) bands
of σ(k+2,0) denoted by

(

III(j)
)

j=1···ak+1−1
, they are all type III bands at level

k + 1.

I(1) < III(1) < I(2) · · · < I(ak+1−1) < III(ak+1−1) < I(ak+1).

We can show that at level 0, [−2, 2] is of type III, and [V − 2, V + 2] of type I,
and that this covers the spectrum.
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We now have a set of rules to construct an infinite length code which is asso-
ciated to one and only one energy of the spectrum. This coding is an increasing
function if the set of codes is ordered lexicographically. This allows a compu-
tation of the integrated density of states N for all energies of the spectrum by
counting the number of codes less than the considered energy code. This allows a
constructive version of the gap labeling of the operator (a labeling of the allowed
gaps can be obtained in a more general setting using the Shubin formula and K-
theory of C∗-algebras). Namely, the set of gaps of the spectrum is in one-to-one
correspondence with the set of relative integers, by the relation:

N (E) ∈ {(lα)mod 1, l ∈ Z}
⋃

{1}
The description of the spectrum is sufficiently detailed to allow an estimation of
the scaling of a decreasing sequence of its covering [7, 8], by the control of the
derivatives of the traces with respect to the energy E.
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Gibbs-like measure for spectrum of 1D Schrödinger operator with
Sturm potentials

Zhi Ying Wen

(joint work with Fan Shen, Liu Qinghui)

The discrete Schrödinger operator acting on l2(Z) is defined as follows: for any
ψ = {ψn}n∈Z ∈ l2(Z),

(1) (Hψ)n := ψn−1 + ψn+1 + vnψn, ∀n ∈ Z.

with the Sturm potential

(2) vn = V χ[1−α,1)(nα+ φ mod 1), ∀n ∈ Z,

where α ∈ (0, 1) is an irrational. We denote the Schrödinger operator with Sturm
potential as Hα,V . For some related previous results, see [1, 2, 5, 4] and references
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therein. Based on dimensional theory of Cookie-cutter sets and Cookie-cutter-like
sets (see [6]), we proved in [3] the following result.

Let V > 20 and α = [0; a1, a2, a3, · · · ] with (an)n≥1 bounded. Then

dimH σ(Hα,V ) = s∗, dimB σ(Hα,V ) = s∗.

And in the case of (an)n≥1 be ultimate periodic, s∗ = s∗.
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Uniform convergence of Schrödinger cocycles over simple Toeplitz
subshift

Qing Hui Liu

(joint work with Qu Yan Hui)

For locally constant cocycles defined on an aperiodic subshift, Lenz ([1]) proved
that if the subshift satisfies positive weight, then the cocycle is uniform. Damanik
and Lenz([2]) proved that if the subshift satisfies a certain condition (B), then
the cocycle is uniform. In [3], we study simple Toeplitz subshifts. We prove the
following results.

Let (Ωβ , T ) be a simple Toeplitz subshift. Let ME be defined as above. Then
the function ME is uniform for every E ∈ R..

Let (Ωβ , T ) be a simple Toeplitz subshift. Then there exists a compact set
Σ ⊂ R of Lebesgue measure 0 such that σ(Hω) = Σ for any ω ∈ Ωβ .

Let β be a simple Toeplitz word with coding (ak, nk, lk)k≥1. If nk ≥ 4 for any
k > 0, then for any ω ∈ Ωβ , Hω has purely singular continuous spectrum.

Given {(ak, nk)}k≥1 with #Ã ≥ 3

• Case 1. limk→∞ nk = ∞.

• Case 2. (nk)k≥1 bounded, but

lim
k→∞

max
c∈Ã\{ak}

pc,k − k = ∞,
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where pc,k := min{i > k | ai = c}. For example, we can take

a1a2a3 · · · = (ab)c(ab)2d(ab)3c(ab)4d · · · .
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Trace map hyperbolicity for a large coupling Schrödinger operator

Laurent Marin

(joint work with Emiliano De Simone)

We consider the trace map associated with the silver ratio Schrdinger operator as a
diffeomorphism on the invariant surface associated with a given coupling constant
and prove that the non-wandering set of this map is hyperbolic if the coupling
is sufficiently large. As a consequence, for this values of the coupling constant,
the local and global Hausdorff dimension and the local and global box counting
dimension of the spectrum of this operator all coincide and are smooth functions
of the coupling constant.

We also derive dynamical upper bound for the propagation of the wavepacket.
The method is to bound the outside probabilties with the inverse power of transfer
matrix norms using complex analysis and Weyl Theory. Our bound is valid for a
set of parameter of Lebegue measure 1.

We study the fractal dimension of the spectrum of a quasiperiodical Schrodinger
operator associated to a sturmian potential. We consider potential defined with
irrationnal number verifying a generic diophantine condition. We recall how shape
and box dimension of the spectrum is linked to the irrational number properties.
We give general lower bound of the box dimension of the spectrum, true for all ir-
rational numbers. Finally we recall dynamical implication of the bound on spectra
dimension.
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Mesoscopic quasicrystals: can we observe the dynamics directly?

Ron Lifshitz

In recent years we have witnessed a surge of scientific interest in experimental sys-
tems, exhibiting quasiperiodic long-range order on a scale much greater than that
of atomic quasicrystals—typically from tens of nanometers to tens of microns—
collectively referred to as mesoscopic quasicrystals. Depending on the particular
physical realization, mesoscopic quasicrystals might be artificially fabricated at
the level of individual structural elements [1, 2]; they may form dynamically as a
result of trapping or manipulation by external forces or fields [4, 5, 3]; or may self-
assemble spontaneously [6, 7, 8, 9, 10], as observed to date in close to half a dozen
soft matter systems. These newly-realized mesoscopic quasicrystals not only pro-
vide exciting platforms for the fundamental study of the physics of quasicrystals,
with the experimental ability of tracking the trajectories of individual particles,
and viewing the dynamics of spreading wave-packets [4, 11]. They also hold the
promise for new applications based on artificial or self-assembled nanomaterials
with unique physical properties that take advantage of the quasiperiodicity, such
as novel photonic metamaterials [1, 2, 12, 13].
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Dynamical analysis of one-dimensional quantum systems

Serguei Tcheremchantsev

Let H be a complex separable Hilbert space, H a bounded self-adjoint operator
in H and ψ ∈ H, ‖ψ‖ = 1. The time evolution of the state ψ is given by ψ(t) =
exp(−itH). Let B = {en} be some orthonormal basis of H, labeled by n ∈ Z+ or
by n ∈ Z. We are interested in the spreading in time of ψ(t) over the basis B. To
describe it, consider the moments of the position operator associated to B:

|X |p(t) =
∑

n

(|n|p + 1)| < ψ(t), en > |2, p > 0.

Define also the time-averaged moments

< |X |p > (T ) =
1

T

∫ T

0

|X |p(t)dt.

Define the growing exponents

β+(p) = lim sup
t→+∞

log|X |p(t)
plogt

, β−(p) = lim inf
t→+∞

log|X |p(t)
plogt

,

and similar quantities β̃±(p) for the time-averaged moments.
Let µψ be the spectral measure associated to the state ψ and the operator H .

We discuss the links between various dimensions of µψ and the growth exponents

β̃±(p). In particular, under some condition on µψ,

lim
p→+∞

β̃±(p) ≥ dim±
B(suppµψ),

where dimB denotes the box-counting dimension of a set. We discuss applications
of these general results to the case of the one-dimensional Fibonacci hamiltonian.
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Hofstadter butterfly, critical wave functions, phase transition, and
multifractal

Mahito Kohmoto

2D Bloch electrons in a magnetic field is again considered. 1D Harper equation
describing this 2D problem is derived. The energy spectrum as a function of flux
per plaquette shows the intricate Hofstadter. The existence of the phase transition
is shown from the total band widths computations following the scaling-system-
size. Hofstadter for both subcritical and supercritical are shown and the Aubry
duality is indicated. In fact, it is shown that the Aubry duality is a consequence
of the gauge invariance of the original 2D problem.
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The multifractal method is applied to both the energy spectra and the wave
functions. The critical behavior is well described, and the exact multifractal spec-
trum is presented for the wave function at the center of the energy spectrum of
the Fibonacci model.
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A hexagonal monotile for the Euclidean plane

Uwe Grimm

(joint work with Michael Baake)

In his seminal paper [2], Berger proved the undecidability of the domino prob-
lem by constructing an aperiodic set of 20,426 Wang tiles (marked squares). An
aperiodic set of prototiles can tile space without gaps or overlaps, but does not
admit any periodic tilings, which means tilings that are invariant under any non-
trivial translation. The number of tiles that are required to enforce aperiodicity
has subsequently been reduced, with the Penrose tiling [6] requiring just two dif-
ferent prototiles (up to Euclidean motions). The smallest set of Wang tiles (up to
translations) known at present contains 13 tiles [5, 3].

It has been a long-standing problem whether a single prototile (which is usually
meant to be a topological disk) exists such that it tiles the plane only aperiodically.
In three dimensions, the Schmitt-Conway-Danzer (SCD) ‘einstein’ is an example
of a single tile that does not admit tilings with translational symmetry; however,
it does allow for a screw symmetry (a combination of a translation and a rotation
by an irrational multiple of π). Until recently, the closest contender in the plane
was Penrose’s 1 + ε+ ε2 tiling [7], which comprises a hexagonal prototile and two
‘key’ prototiles which encode the local matching rules. While the corner key tile
(ε2) can be made arbitrarily small, the edge key tile (ε) transports information
along an edge of a hexagon, and hence can only be made arbitrarily thin in one
direction, which means that the information cannot be encoded in the shape of
the corresponding edge of the hexagon alone.

In a recent preprint [9], a single hexagonal prototile with local matching rules
was announced. Its discovery is due to Joan Taylor from Burnie, Tasmania, an
amateur mathematician who has been fascinated by tilings for many years; see
[11] for her original argument based on the composition-decomposition method
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[4]. While the matching rules of the marked hexagon (which occurs in rotated
and reflected versions as well) are local, they act on next-nearest neighbours, and
thus cannot be encoded in the shape of the prototile, unless one allows for a
disconnected tile [9] or ‘thickens’ the tile into the third dimension [10]; see also [1]
for an artistic variant, and [12] for the pseudo-inflation rule based on 7 hexagons.

The resulting inflation tilings are limit periodic. They have a 2-adic structure
which is apparent from a hierarchy of triangular structures, and thus resemble
Robinson’s tilings [8]. It turns out that there is a close relation to Penrose’s
1 + ε + ε2 tiling; the ensemble of 1 + ε + ε2 tilings forms a 3-fold cover of the
(minimal) hull of the Taylor inflation tiling, where the elements of the latter can
be obtained from the former by a local derivation rule.

There is a subtle difference between the Taylor tilings of [11] and the Socolar-
Taylor tilings of [9]. Taylor’s matching rules [11] determine a single local isomor-
phism (LI) class of the corresponding inflation tiling, so they constitute perfect
matching rules. In contrast, the matching rules given in [9] allow for non-repetitive
tilings, which contain a singular vertex.
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Spectral calculations for Fibonacci Hamiltonians

Mark Embree

(joint work with David Damanik, Anton Gorodetski, Serguei Tcheremchantsev)

What insights can careful computations give into the spectral structure of Fi-
bonacci Hamiltonians? This talk addressed that question in three parts.

First, we described various strategies for computing the spectrum σλ,k of Sütő’s
periodic approximations Hλ,k [4] to the Fibonacci Hamiltonian Hλ with coupling
constant λ: here Hλ operates on ψ ∈ ℓ2(Z) as

(Hλψ)(n) = ψ(n+ 1) + ψ(n− 1) + Vλ(n)ψ(n)

for
Vλ(n) =

{

λ, (n/φ mod 1) ≥ 1− 1/φ;
0, otherwise.

The spectrum of σk,λ comprises Fk intervals whose calculation becomes sensitive
as k increases. (Fk denotes the kth Fibonacci number.) We illustrated the pitfalls
of computing these bands via polynomial root finding, and argued that iterations
of the trace map also fail to give a robust procedure for computing the entire
spectrum. Most of calculations derive the bands via two symmetric eigenvalue
problems involving Fk × Fk matrices (see, e.g., [5, Ch. 7]). With this approach
we routinely compute σk,λ for values of k up to around k = 17. (The same
computational approach is used by Even-Dar Mandel and Lifshitz.)

Next, we outlined the determination of the rate at which the dimension of
the spectrum scales in the large-coupling limit, as reported in [1]. We explained
how combinatorial computations counting band types between successive periodic
approximations allowed us to compute that the dimension of the spectrum Σλ of
the Fibonacci Hamiltonian scales like log(1 +

√
2) logλ as λ→ ∞.

Finally, we consider the spectrum of the Fibonacci Hamiltonian on a two-
dimensional lattice, described by the set Σλ + Σλ. (For similar calculations in-
volving the off-diagonal Fibonacci model, see [3].) Using accurate computations
of the periodic approximation Σλ,k = σλ,k ∪σλ,k+1 and inspired by recent work of
Damanik and Gorodetski [2], we presented estimates of the thickness of Σλ. From
these computations we conjecture that the thickness is a monotone decreasing
function of λ that behaves like 1/λ as λ→ 0.
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