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Introduction by the Organisers

The mini workshop was attended by 17 participants, including a post doc from
the USA funded by the “US Junior Oberwolfach Fellows” program of the US
National Science Foundation.

The mini workshop brought together researchers from various areas of algebra
and analysis who work on topics related to polynomial vector fields, and was in-
terdisciplinary in that sense. Many of the participants did not personally know
each other prior to the workshop and were also not familiar with all the research
areas. Every participant was asked to give a survey talk about their specialty and
its relation to the workshop subject. The participants took great care in preparing
their talks and made an effort to keep them at a level accessible to a rather general
audience while at the same time mentioning interesting recent developments. Dur-
ing each talk and afterwards, there was ample time for questions and a discussion.
Additionally, there were several informal problem sessions throughout the week.
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Even during the workshop one could see successful interaction as participants
were suggesting new approaches or applications for the methods and results pre-
sented in the talks. As an example, the existence criterion for algebraically inde-
pendent first integrals presented in Derksen’s talk suggests a way to strengthen
a result (due to Pereira) on the extactic of a polynomial vector field as well as
additional results in that direction. The relationship of differential Galois theory
to the center focus problem was also very interesting. The organisers are confi-
dent that the discussions started during the workshop will be continued and lead
to fruitful collaborations. Many of the abstracts will be extended to survey arti-
cles in a special issue of the journal “Qualitative Theory of Dynamical Systems”
and thus become available to a wider audience. To summarize, the workshop has
broadened the view and the range of available tools for all participants.
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Abstracts

Computations with d-dimensional fast-slow Hopf bifurcations; d=2,3

Jean-Pierre Francoise

The center-focus problem for polynomial vector-fields relates closely to the ex-
tensions of the Hopf bifurcation (also called the Hopf-Takens bifurcation). It
yielded several algebraic developements around the symbolic computation of the
center set equations (Groebner basis, invariant theory,...). In the existing liter-
ature on degenerate Hopf bifurcation, we can identify seven different methods
for finding periodic solutions. The method of Poincaré-Dulac normal form; the
method of Lyapunov constants; the method of averaging; the method of intrinsic
balancing; the Lyapunov-Schmidt method; the method of the succession function
and the method of relative cohomology of forms derived by the author in 1996
and since then named the algorithm of the successive derivatives. It has been used
in several other contexts (local Hilbert’s 16th problem, zeros of Abelian integrals,
perturbation of planar Hamiltonian systems, perturbation of elliptic sectors, see
[M. Gentes, 2009]) and more recently was also used in Hamiltonian Dynamics
([Angoshtari, Jalali, 2007], [Francoise-Garrido-Gallavotti, 2010]).

The local Hilbert’s problem asks for finding a bound to the number of limit
cycles. It is related to the center-focus problem but it requires more analytic
methods. The first notable contribution to the problem was due to N. N. Bautin
in 1944. Since then, a complex-analytic version of Bautin’s theory was developed
by Y.Yomdin and the author [Francoise-Yomdin,1997] based on the computation
of the so-called Bautin’s ideal, computation of a Groebner basis, and Hironaka’s
division by an ideal.

The comparison between the averaging method and the Lyapunov-Schmidt
method was discussed recently by [Buica-Francoise-Llibre, 2007].

It is natural in this subject to begin studying the degeneracies of 3-dimensional
Hopf bifurcations. This seems to be a rather complicated task, taking into account
the emergence of complicated dynamical systems phenomena like period-doubling
bifurcation, tori bifurcations and their degeneracies as explained for instance at
the end of the classical book of Guckenheimer-Holmes. One attempt is to start to
investigate fast-slow systems. Even there some new phenomena occur like bursting
and mixed-mode periodic solutions.

1. The fast-slow 2-dimensional case

We first give a short summary of the phenomena which can occur with one fast
and one slow variable. We only consider one special cases which is representative
of the general situation.

(1)
ǫ dxdt = −y + f(x),
dy
dt = x− c,
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We assume that this system (for c = 0) displays a stationary point at the origin
and hence f(0) = 0 and that the eigenvalues of the Jacobian of the vector fields
are purely imaginary at the point 0. The eigenvalues at point x are

(2) λ± =
f ′(x)

2ǫ
± 1

2

√
f ′(x)2

ǫ2
− 4

ǫ
.

So that the eigenvalues become purely immaginary at 0 if and only if is the origin
if a critical point of f . If this critical point is isolated, then the first condition
for having a Hopf bifurcation is fullfilled. There exists then a normal form. The
condition of regular Hopf bifurcation is that the first coefficient of this normal
form is non zero. After some rescaling of time and variable: t 7→ √

ǫt, x 7→ x/
√
ǫ,

the equation reads

(3)
dx
dt = −y + f(x/

√
ǫ),

dy
dt = x

Using the relative cohomology method, the first coefficient of the normal form is
easily seen, in complex coordinates x = 1

2 (z + z) y = 1
2i(z − z), as the coefficient

in zz of the 2-form

(4) ω =
1

i
f ′(

1
2 (z + z)

2
√
ǫ

)dz∧dz.

It is then readily seen that if f(x) = ax2, it will not contribute to the normal
form. The first case is the cubic case f(x) = ax3 and it will give a regular Hopf
bifurcation. If instead we choose f(x) = ax5 it will produce a degenerated Hopf
bifurcation of order 2, also named Bautin bifurcation.

On top of it, the presence of the small term ǫ yields special effects. The scaling
we made shows that the time characteristic of the Hopf bifurcation is t/

√
ǫ and

the domain of existence is also reduced by a factor of
√
ǫ. This justifies the ter-

minology of singular Hopf bifurcation. We have indeed to distinguish between the
“regular singular”’ Hopf bifurcation and the degenerated singular Hopf bifurca-
tion. A further study shows that this local situation is often mixed with a “global
explosion of canards” where the local small limit cycle born near the Hopf bifur-
cation becomes very large for an exponentially small difference of the parameter
c.

2. The Three-dimensional case

With the three-dimensional case of two fast variables and one slow, another
remarkable effect can be observed in a slow crossing of a regular Hopf bifurcation.
The following example is paradigmatic:

(5)

dx
dt = x(z − x2 − y2) + y,
dy
dt = y(z − x2 − y2)− x,
dz
dt = ǫ.

In this system, the Hopf bifurcation is delayed and does not appear where “ex-
pected”.
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In a recent article [Guckenheimer, 2008], J. Guckenheimer discussed the case of
3-dimensional Hopf bifurcation with one fast variable and two slow. This is also
called the singular Hopf bifurcation with two slow variables. The Hopf bifurcation
appears close to a pseudo-stationary point of saddle-node type of type II. There
is possibility in that case of mixed-mode oscillations where the small oscillations
are related to the canards (generic and robust) discovered by E. Benoit.

Recently, we have focussed our study on the case of a 3-dimensional Hopf bifur-
cation with 3 time scales. There is the possibility of a slow crossing of a singular
Hopf bifurcation where the delayed bifurcation is followed by an explosion of ca-
nards which relates to a model introduced in [Clement-Francoise, 2007].
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Center problem for Abel equations

Anna Cima

1. Motivation of the paper: Center Problem for planar systems

Consider the planar system of differential equations

(1)
ẋ = −y + P (x, y),
ẏ = x+Q(x, y),

where P (x, y) and Q(x, y) are polynomials starting with terms of degree 2 and
maximum degree n. The classical problem of determine necessary and sufficient
conditions on P (x, y) and Q(x, y) for system (1) to have a center at the origin is
known as the Center-Focus Problem. It is known that equation (1) has a center
at the origin when P (x, y) and Q(x, y) satisfy an infinite sequence of recursive
conditions.
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We focuse our attention to the case that P (x, y) := Pn(x, y) and Q(x, y) :=
Qn(x, y) are homogeneous polynomials of degree n. When n = 2 or n = 3 this
problem is absolutely solved from the works of Bautin, Kaptein and Sibirskii. In
polar coordinates (ρ, θ), system (1) writes as

(2)
ρ̇ = ρn f(θ),

θ̇ = 1 + g(θ),

with

f(θ) = cos(θ)Pn(r cos(θ), r sin(θ)) + sin(θ)Qn(r cos(θ), r sin(θ)),

and
g(θ) = cos(θ)Qn(r cos(θ), r sin(θ)) − sin(θ)Pn(r cos(θ), r sin(θ)).

Applying now the change introduced by Cherkas (see [14])

r =
ρn−1

1 + g(θ) ρn−1

we get

(3) ṙ = A(θ)r3 +B(θ)r2,

where ṙ is the derivative in respect to θ and

A(θ) = −(n− 1)f(θ)g(θ) , B(θ = g′(θ)− (n− 1)f(θ).

We notice that A(θ) and B(θ) are homogeneous trigonometric polynomials of
degree 2(n+ 1) and n+ 1 respectively.

Equation (3) is known as Abel equation. Now the Center-Focus problem of
equation (1) has a translation in equation (3), that is, given r0 small enough we
look for necessary and sufficient conditions on A(θ) and B(θ) in order to assure
that the solution of equation (3) with the initial condition r(0) = r0 has the
property that r(0) = r(2π). We observe that this condition implies the periodicity
of this solution.

Abel equation with polynomial coefficients is called the Polynomial Abel equa-
tion. The Center-Focus problem can be stated as in the trigonometric case. That
is, to give necessary and sufficient conditions on p(z) and q(z) in order to have
that the solutions of equation ẏ = q(z)y2+p(z)y2 satisfy y(a) = y(b) for a certains
a and b for any solution with y(0) = y0 small enough. Notice that now such con-
dition does not imply the periodicity of y(z). Nevertheless, in the last years the
Center-Focus problem for the Polynomial Abel equation has done a big progress
(see [4],[5], [6], [8], [15], [16], [19], for instance).

In this talk we consider the more general equation

(4) ṙ = A(θ)rn +B(θ)rm, with n > m

assuming that A(θ) and B(θ) are trigonometric polynomials. The easiest case is
when m = 1 and n = 2, that is the Riccati equation. Riccati equation can be
solved explicitely and it turns out that (4) has a center if and only if two definite
integrals depending on A(θ) and B(θ) vanishes. On the other hand when m = 1
and n > 2 the equation is reducible to one with m = 1 and n = 2.
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2. Persistent Centers, Moment Conditions and the Composition

Condition

In several papers the authors give the following sufficient condition for a center,
named the Composition Condition (CC).

Let us denote by Ã(θ) =
∫ θ

0
A(t)dt and B̃(θ)) =

∫ θ

0
B(t)dt.

Definition 1. The functions A(θ) and B(θ) satisfy the Composition Condition
(CC) if there exist a periodic function u(θ) such that

(5) Ã(θ) = A1(u(θ)) and B̃(θ) = B1(u(θ))

for a certains functions A1 and B1.
The Composition Conjecture for the Abel differential equation states that (CC)

is also a necessary condition to have a center. This Conjecture is false, see [2].
The polynomial version of the conjecture gave rise to several articles, trying to

prove the conjecture or a weaker version of it (see....). Concerning this Conjecture,
Briskin, Françoise and Yomdin proposed a simplified version of it. They asked for
conditions that the center lies in a one parametric family of centers. Precisely, the
question is to give conditions on A(θ) and B(θ) so that

(6) ṙ = ǫA(θ)rn +B(θ)rm, with n > m,

has a centre for all ǫ small enough. For the Abel equation it is known that such a
condition implies that

(7)

∫ 2π

0

A(θ)B̃k(θ)dθ = 0 , k ≥ 0.

For each k ∈ N, the expression
∫ 2π

0 A(θ) B̃(θ)k dθ is known as the moment of
A in respect to B of order k. The question which arises is the converse, i. e., if
we have a center with the vanishing of all the moments of A in respect to B, is it
true that equation (6) has a centre for all ǫ small enough? It is known that this
question has a negative answer, see [1], also [17] for the polynomial case. In the
polynomial case, also in [17], a characterization of the pairs of polynomials p, q
which satisfy the vanishing of all the moments of q in respect to p, is given.

What we prove is that equation (6) has a center for all ǫ if and only if equation

(8) ṙ = λA(θ)rn + µB(θ)rm, with n > m and λ, µ ∈ R

has a center for all λ, µ ∈ R. This motivates the following definition.
Definition 2. We say that equation (4) has a persistent center if

ṙ = λA(θ)rn + µB(θ)rm,

has a center for all λ, µ ∈ R.
We also prove that if the center is persistent, then not only the moments of A

in respect to B are zero, but the moments of B in respect to A must be also zero.
From these results it is natural to formulate two questions. Assume that a

center of equation (4) satisfies the vanishing of all the moments, the moments of
A in respect to B and the moments of B in respect to A.
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Question 1. Is the Center persistent?
Question 2. Does it satisfy the Composition Condition?

In the talk I’ll give examples which answer negatively both questions. We also
will see that the vanishing of all the moments does not imply, en general, the
existence of a centre.

We notice that the counterexample given in [17] satisfies that the moments of
q in respect to p, vanishes, but the moments of p in respect to q, do not do it.

We introduce now the following definition.
Definition 3. We say that equation (4) has a multipersistent center if

ṙ = (αA(θ) + β B(θ)rn + (γ A(θ) + δ B(θ)rm,

has a center for all α, β, γ, δ ∈ R. In a similar way to the case of persistent centers,
we see that multipersistent centers satisfy ”multimoments” equal to zero, precisely:

(9)

∫ 2π

0

Ãp(θ)B̃q(θ)A(θ)dθ = 0 and

∫ 2π

0

Ãp(θ)B̃q(θ)B(θ)dθ = 0

for all p, q ∈ N. Results of Brudnyi let us to say that if the above equalities hold
then the center satisfies the Composition Condition which in fact implies that the
center is persistent.

The precise statements and the proofs of the mentioned results can be found in
a preprint done jointly with Armengol Gasull and Francesc Mañosas.
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Linear and nonlinear control theory: a survey

Eva Zerz

The first contributions to mathematical systems and control theory date back as
far as J. C. Maxwell’s 1868 paper “On Governors”. Still, it took another 100 years
for systems theory to be recognized as a mathematical discipline in its own right.
This is especially due to the pioneering work of R. E. Kalman, who introduced
state space ideas into control theory. These models superseded the frequency
domain approach that had been used by engineers up to then.

In the state space setting, a control system (for the purpose of this talk, we
restrict to the time-invariant and input-affine case) takes the form

ẋ(t) = f(x(t)) + g(x(t))u(t),

where x is the state function, u is the input function, and f and g are given
functions which are assumed to be smooth, in this talk. One says that an input
function u controls the system from state x0 to state xf in time tf ≥ 0 if the
solution of the initial value problem with x(0) = x0 satisfies x(tf ) = xf . A
system is called globally controllable if there exists, for any x0, xf in the state
set X ⊆ Rn, an input function u ∈ U that controls the system from x0 to xf in
some finite time. Here, U denotes a set of admissible input functions. Sufficient
conditions for several local versions of this concept can be formulated in terms of
the smallest f -invariant Lie algebra that contains the columns of g [1, 2].

One is particularly interested in achieving such control goals by feedback laws

u(t) = α(x(t)) + β(x(t))v(t),

which are used, for instance, to stabilize the system, or to make certain subsets
of X invariant under f + gα [7]. This transformation of the input (combined with
a transformation of the state) leads to the concept of feedback equivalence. For
polynomial systems, feedback equivalence to a linear system (also known as exact
linearization) can be decided by computing syzygies and checking integrability
conditions [2, 3]. However, it turns out that this depends crucially on the choice
of state and input variables of the system.
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An alternative approach to modeling systems was proposed by J. C. Willems [4]
in the 1980s. The system variables are treated on an equal footing. In this context,
it clearly makes no sense to restrict to explicit first order differential equations.
In the linear case, these systems admit a nice algebraic structure theory. Several
specific problems in this area have been addressed:

• Structural properties of linear PDE and their algebraic characterization [5, 6]:
LetD be a left Noetherian ring, F a left D-module, and q a positive integer. To any
subset M ⊆ D1×q one associates B(M) = {w ∈ F q | mw = 0 for all m ∈ M}, and
to any subsetB ⊆ F q one associatesM(B) = {m ∈ D1×q |mw = 0 for all w ∈ B}.
This yields a Galois correspondence between the submodules of D1×q and the
Abelian subgroups of F q. The image of B consists of all linear systems, that is,
B = {w ∈ F q | Rw = 0} for some R ∈ Dg×q. We have B ∼= HomD(M, F ), where
M = D1×q/D1×gR is the so-called system module. If HomD(·, F ) is faithful, then
we obtain order-reversing bijections between the submodules of D1×q and linear
systems in F q. If this functor is additionally exact, a linear system B is parametriz-
able (that is, B = {Lv | v ∈ F r} for some L ∈ Dq×r) if and only if the system
module M is torsionless. For several relevant choices of D and F , parametrizabil-
ity amounts to controllability. In particular, this holds for D = R[∂1, . . . , ∂n] and
F = C∞(Rn), i.e., for smooth solutions of linear partial differential equations with
constant coefficients [5].

• Modeling from data – given observed trajectories, find a system of linear
differential equations that describes them best [4]: Given a subset B ⊆ F q, the
goal is to construct M(B). For polynomial trajectories, this has been solved for
the cases where D is the ring of linear partial differential or difference equations
with constant coefficients in a field [8, 9]. The case where D is the Weyl algebra
has recently been addressed in [10], and it was shown that BM(B) coincides with
the linear span of B over the base field.
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Algorithmic Invariant Theory

Gregor Kemper

This talk gives an overview of algorithmic invariant theory.
The following is the standard situation of invariant theory: G is a linear al-

gebraic group over an algebraically closed field K, and V is a finite-dimensional
K-vector space with a linear G-action, given by a morphism G × V → V . This
means that the action can be described by polynomial functions. A natural ex-
tension is to consider an affine K-variety X instead of V , which is then called a
G-variety. The invariant ring

K[V ]G := {f ∈ K[V ] | f ◦ σ = f for all σ ∈ G}
is the set of all polynomial functions f : V → K that are constant on every G-orbit.
More generally, K[X ]G is the set of all G-invariant regular functions on X . The
following questions are central in invariant theory:

• Hilbert’s 14th Problem: Is K[V ]G (or, more generally, K[X ]G) finitely
generated as a K-algebra?

• If so, how can we find generators?
• Which G-orbits can be separated by invariants, i.e., for which x, y ∈ V
does there exist f ∈ K[V ]G with f(x) 6= f(y)?

Invariant theory has gone a long way towards answering Hilbert’s 14th Problem.
In fact, it has been shown by Hilbert, Nagata, Haboush and Popov that K[X ]G is
finitely generated for all G-varieties X if and only if G is reductive. Notice that
the class of reductive groups includes all finite groups and all classical groups.
However, there are instances of nonreductive groups G and linear representations
V such that the invariant ring K[V ]G is finitely generated. So the problem to
classify all pairs (G, V ) or (G,X) such that the invariant ring is finitely generated
is still open.

The algorithmic side of the problem has been trailing behind the theoretical
progress, but has by now almost caught up. In fact, we have an algorithm for
computing generators of K[X ]G in the case that G is reductive and X is a G-
variety. A major step towards this algorithm is Derksen’s algorithm (see [1]),
which solves the problem for linearly reductive groups. In Derksen’s algorithm,
the ideal D ⊆ K[V × V ] corresponding to the set

{(v, w) ∈ V × V | there exists σ ∈ G with w = σ(v)}
plays a central role. This ideal has come to be known as the Derksen ideal. It
has an algebraic description, and it can be computed by Gröbner basis techniques.

Apart from Derksen’s algorithm, the Derksen ideal can also be used for com-
puting invariant fields, i.e., the set K(X)G of invariants in the function field
K(X) = Quot(K[X ]) (provided that X is irreducible). In fact, we have a re-
markably simple algorithm that computes the invariant field for any linear alge-
braic group (see [5]). By an observation of Tobias Kamke [4], we can modify
this algorithm in such a way that it computes a localization K[X ]Gf of the in-

variant ring with f ∈ K[X ]G nonzero. (This works under the hypothesis that
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K(X)G = Quot(K[X ]G), which is always satisfied if the connected component of
G is unipotent.)

Once a localization K[X ]Gf of the invariant ring is known, we have a pseudo-

algorithm for computing K[X ]G from this (see [3]). This procedure terminates
after finitely many steps if and only if K[X ]G is finitely generated, but we have
no a priory upper bound for the running time. A further direction one can follow
is to try to write the invariant ring as the ring of regular functions on a quasi-
affine variety. By a result of Nagata and Winkelmann, there always exists such a
quasi-affine variety, even if the invariant ring is not finitely generated (see [7, 8]).

A fairly recent trend in invariant theory has been the study of separating in-
variants. By definition, a subset S ⊆ K[X ]G is called separating if for all pairs of
points x, y ∈ X the existence of f ∈ K[X ]G with f(x) 6= f(y) implies the existence
of f ∈ S with f(x) 6= f(y). In other words, S has the same capabilities of separat-
ing orbits as K[X ]G. Since every generating subset is automatically separating,
the concept of a separating subset is a weakening of the concept of a generating
subset. But separating subsets have better properties than generating ones. For
example,

• there always exists a finite separating subset (even if K[X ]G is not finitely
generated), and

• for G finite, there exists a separating set of homogeneous invariants in
K[V ]G of degree ≤ |G|, even in the modular case. So Noether’s bound
always holds for separating invariants.

Separating invariants are also useful for computational purposes: In fact, there
is an algorithms for computing separating invariants in the case that G is reduc-
tive (see [6]). Again, this algorithm uses the Derksen ideal. Since we also have
algorithms for extending a separating subset into a generating subset, we obtain
the above-mentioned algorithm for computing K[X ]G for G reductive.

The following problems are still open:

• Find an algorithm for computing invariant rings of reductive groups acting
on nonreduced algebras.

• Find an algorithm for computing a separating subset for G nonreductive.
• Find a test for finite generation of K[X ]G.
• Compute K[X ]G as the ring of regular functions of a quasi-affine variety.
• Implement the known algorithms (i.e., beyond Derksen’s algorithm and
the finite groups case).

More information on invariant theory and its computational aspects can be
found in [2].
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Algorithms for Polynomial Differential Equations

Harm Derksen

Let R = C[X1, . . . , Xn] be the polynomial ring in n variables, and K = Q(R) =
C(X1, . . . , Xn) be its quotient field. To a derivation D =

∑n
i=1 Pi

∂
∂Xi

∈ DerC(R)
we can associate a polynomial autonomous system of differential equations:

(1) ˙x(t) = P (x(t))

where

x(t) =



x1(t)
...

xn(t)


 and P =



P1

...
Pn


 .

Given an intitial condition x(0) = a, the system (1) has a unique formal power
series solution xa(t) ∈ C[[t]]n. These power series converges for an open neighbor-
hood of 0.

A function f ∈ K is a rational first integral if f(xa(t)) is constant for all a ∈ Cn

for which f(a) is defined. One can show that f is a first integral if and only if
Df = 0. Let

KD = {f ∈ K | Df = 0}
be the subfield of rational first integrals.

For f ∈ K and a positive integer r we define

D(r)f =




f
Df
...

Dr−1f




If f1, . . . , fr ∈ K then we define the Wronski matrix by

W (f1, . . . , fr) =
(
D(r)f1 D(r)f2 · · · D(r)fr

)
.
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Suppose that detW (f1, . . . , fr) 6= 0 and detW (f1, . . . , fr+1) = 0. Then there exist
unique elements g1, . . . , gk ∈ K such that

D(r)fr+1 =

r∑

i=1

giD
(r)fi.

Lemma 1. We have g1, . . . , gr ∈ KD.

Lemma can be used to find elements in KD by looking at Wronskians
detW (m1,m2, . . . ,mr) wherem1,m2, . . . ,mr are monomials. Done systematically
one can obtain a set of generators for KD. If the transcendence degree trdeg(KD :
C) is known a priori, then this knowledge can be used as a termination criterion
for an algorithm to compute generators of the field KD.

For a ∈ Cn, let Za be the Zariski closure of {xa(t) | −ε < t < ε}. The definition
of Za is independent of the choice of ε. Let us call a ∈ Cn generic if

detW (m1, . . . ,mr) 6= 0 ⇔ detW (m1, . . . ,mr)(a) 6= 0

for all positive integers r and all monomials m1, . . . ,mr. Such generic vectors
exist, because the set of non-generic vectors is a countable union of hypersurfaces,
and hence a set of measure 0.

Theorem 2. For every a ∈ Cn we have

dimZa ≤ trdeg(K : KD) = n− trdeg(KD : C).

If a is generic, we have equality.

Corollary 3. A system (1) has a Zariski dense trajectory if and only if KD = C.

Suppose that we have a system

(2) ẋ(t) = P (x(t), β)

where β ∈ C is a parameter, and P ∈ C[X1, . . . , Xn, Y ]n.

Corollary 4. If (2) has r algebraically independent first integrals for uncountably
many values of β, then (2) has r algebraically independent first integrals for all
values of β.

Corollary (4) follows from (3).

Example 5. Consider the system

(3)

{
ẋ = x2 + yQ(x, y)
ẏ = y + y2R(x, y)

where Q and R are polynomials. Suppose that (3) has a rational first integral. If
we substitute y = εy, then we have

(4)

{
ẋ = x2 + εyQ(x, y)
ẏ = y + εy2R(x, y)
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For ε 6= 0, (3) and (4) are equivalent, so (4) has a rational invariant. For ε = 0
we get

(5)

{
ẋ = x2

ẏ = y

By Corollary 4, (5) should have a rational first integral, but one can verify that it
does not. This shows that (3) does not have a rational first integral.

A subset a ⊆ DerC(K) is said to be algebraically integrable if

a = DerKa(K)

where
Ka = {f ∈ K | ∀D ∈ a Df = 0}.

There is a Galois correspondence between integrable subalgebras of DerC(K) and
subfields of K (containing C) that are algebraically closed within K.

Theorem 6. If a1, a2 ⊆ DerC(K) are algebraically integrable, then the Lie algebra
a generated by a1 and a2 is algebraically integrable, and Ka = Ka1 ∩Ka2 .

This theorem gives us an algorithm for computing the intersection of two fields.
Suppose that L1 and L2 are subfields of K which are algebraically closed within
K. The subspaces of a1 = DerL1

(K) and a2 = DerL2
(K) are easily computed

using linear algebra over K. With some more linear algebra, one finds the Lie
algebra a generated by a1 and a2. We have

dimK a = trdeg(K : KD)

so the transcendence degree trdeg(KD : C) is known. With a generalization of the
algorithm mentioned earlier, one can compute generators of Ka = Ka1 ∩Ka2 =
L1 ∩ L2.

Lie algebras of vector fields, a survey

Jan Draisma

This survey talk concerns finite-dimensional Lie subalgebras of the Lie algebra
DerC[[x1, . . . , xn]] of derivations of the formal power series algebra C[[x1, . . . , xn]].
The study of such Lie algebras was initiated by Sophus Lie at the end of the
19th century. Motivated by his insight that symmetries of differential equations
can help in finding their solutions, he set out to classify such Lie algebras up to
the group Aut(C[[x1, . . . , xn]]) of formal coordinate changes (though of course his
terminology was different). He spent special attention to transitive subalgebras,
which are those that contain an element of the form ∂

∂xi
+ higher-order terms for

every i = 1, . . . , n. For example, in n = 1 variable, there are exactly three classes of
such Lie algebras, namely, 〈p〉C, 〈p, xp〉C, and 〈p, xp, x2p〉C, where p stands for ∂

∂x .
Lie classified (transitive) Lie subalgebras up to three variables. Fragment 1 shows
part of his classification in two variables. He did not publish the entire classification
in three variables, because it involved too many straightforward calculations; he
refers to this in the first sentence of Fragment 2.
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Figure 1. Fragment from [6, Page 71] (there the statement of
the theorem continues).

A transitive Lie algebra g has a natural subalgebra h, consisting of all derivations
that stabilise the maximal ideal. The pair (g, h) serves as a (very) local algebraic
model for the action of a finite-dimensional Lie group on a manifold. For example,
the first Lie algebra listed under A in Fragment 1 corresponds, via the translation
p → ∂

∂x , q → ∂
∂y , to the action of the projective general linear group on the

projective plane. In higher dimensions, classifying all transitive Lie algebras is
a daunting task, so that one has to redefine one’s goals. A beautiful result says
that roughly any pair (g ⊆ h) of abstract Lie algebras with h of codimension
n in g can be realised as a transitive Lie algebra in n variables [5, 1]. I sketch
Blattner’s coordinate-free proof of this fact: he defines a commutative, associative
multiplication on A := HomU(h)(U(g),C) and shows that g acts naturally on this
algebra by derivations. Then he shows that A is isomorphic to the algebra of
formal power series, which gives the desired realisation.

In another direction, pairs (g, h) where h is maximal among all subalgebras of g
are called primitive. These have been classified: First, when g is not simple, Moro-
zov classifies the possibilities in [7]. Second, maximal-dimensional subalgebras of
simple Lie algebras are classified by Dynkin in [3, 4]. I review both classifications.

At the end of the talk, I describe a beautiful question of Lie’s as to whether
one can realise transitive pairs by vector fields with more modest functions as
coefficients, such as polynomials and exponentials; see Fragment 2. I explain how
Blattner’s proof gives an answer to Lie’s question in some cases (see [2]), and
speculate about the general case.
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Figure 2. Fragment from [6, Page 177].

[2] Jan Draisma. On a conjecture of Sophus Lie. In Differential Equations and the Stokes Phe-
nomenon, Singapore, 2002. World Scientific Publishing Company, Incorporated. Proceedings
of a workshop held at Groningen University from May 28–30, 2001.

[3] Eugene B. Dynkin. Maximal subgroups of the classical groups. Am. Math. Soc. Transl., II.
Ser. 6:245–378, 1957.

[4] Eugene B. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc.
Transl., II. Ser. 6:111–244, 1957.

[5] Victor W. Guillemin and Shlomo Sternberg. An algebraic model of transitive differential
geometry. Bull. Am. Math. Soc., 70:16–47, 1964.

[6] Sophus Lie and Friedrich Engel. Transformationsgruppen. B.G. Teubner, Leipzig, 1893.
[7] V.V. Morozov. Sur les groupes primitifs. Rec. Math. Moscou n. Ser., 5:355–390, 1939.

The author is supported by an NWO Vidi grant.

Jet groupoids and the invariance of geometric structures

Mohamed Barakat

One of the original motivations behind Sophus Lie’s work was the desire to
develop a symmetry and solvability theory for ordinary and partial differential
equations analogous to Galois’ theory for univariate polynomial equations. In
this analogy the solvability of a univariate polynomial equation by a tower of
radical extensions should correspond to the solvability of ODEs by a cascade of
integrations.

0.1. Galois’ setup. Let K be a field, f ∈ K[x] a monic irreducible separable
polynomial over K, and V (f) the vanishing locus of f , i.e. the set of roots of f in
the separable closure K̄.

To describe the Galois group of f as the symmetry group of V (f) we first
consider the set-stabilizer subgroup

GV (f) := {σ ∈ Aut(K̄) | σ(V (f)) = V (f)}
of the full automorphism group G := Aut(K̄). In words, GV (f) is the biggest

subgroup of Aut(K̄) which acts on V (f). This action1 is described by a homo-
morphism α : GV (f) → Sn where n = |V (f)|.

1Since f is irreducible the action is transitive on the n roots and since f is separable n = deg f .
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The Galois group of f can now be defined2 as the coimage of α

Gal(f) := GV (f)/ kerα.

By definition, the Galois group Gal(f) acts effectively and transitively on V (f)
and is isomorphic to the image of α in Sn.

0.2. Lie’s setup. Let us now describe Lie’s setup starting with a system

∆ = ∆(x, uµ) = 0

of (ordinary or parital) differential equations. A solution u = f(x) is a locally

defined analytic function f : O ⊂ Rn → Rm such that ∆(x, ∂|µ|f
∂xµ (x)) = 0.

Lie made several attempts to mimic Galois’ setup. The first step was to find a
substitute for the group G = Aut(K̄) mapping the class of locally defined analytic
functions into itself. It was natural for him to consider geometric local actions
on the space of such functions, i.e. those induced by local transformations on the
total space E = Rn × Rm. Each such local transformation maps the graph of one
function into the graph of another. This led him to consider what we now call Lie
pseudo-groups of point and contact transformations and their associated Lie

algebras of vector fields [Lie60]. The subgroup GV (f) then corresponds to the
sub-pseudo-group G∆ = GSol(∆) mapping the set of solutions of ∆ onto itself. So
the second step was to describe G∆ without referring to the unknown solutions of
∆ for which he introduced the notion of prolongation of diffeomorphisms (and
of vector fields) as another incarnation of the chain rule. The partial differential
equations defining such sub-pseudo-groups are nowadays called Lie equations

[KS72]. Tresse showed in [Tre94] that Lie equations can be transformed into a
so-called Lie form

Φ(yµ) = ω(x),

where Φ(yµ) are differential invariants of an action of the higher order general
linear group GLq(R

ℓ) (cf. [Kob95]). Vessiot proved in [Ves03] that the integra-
bility conditions of Lie equations of transitive pseudo-groups are given by a set of
equations

Ik[ω(y)] = ck ω(x)

with some constants ck and showed how to use these constants in the classification
of transitive pseudo-groups.

In the talk I will try to relate all these things to the modern language of natural
bundles, Lie derivates, jet groupoids, and jet algebroids. I will also give exam-
ples showing how the above mentioned integrability conditions cover all classical
integrability conditions in differential geometry [KN63, KN69, Pom78].

2It is more common to start with the subgroup GK := AutK(K̄) = {σ ∈ Aut(K̄) | σ|K =

idK} ≤ GV (f), the so-called absolute Galois group of K, which automatically acts on V (f)

and then to define the Galois group as Gal(f,K) := GK/ kerα|GK
. This is equivalent to the

above definition since f is irreducible over K. The drawback of this latter definition is that it
has no obvious counterpart in Lie’s setup.
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Linear ODEs with reductive Galois group

Camilo Sanabria Malagón

Set n ∈ N, with n > 1. Let Γ be a compact Riemann surface, k := C(Γ) the field
of meromorphic functions over Γ and v ∈ DerC(k) \ {0} a nontrivial derivation of
k. Let

L(y) := anv
n(y) + an−1v

n−1(y) + . . .+ a1v(y) + a0y

be a differential operator with ai ∈ k, i ∈ {0, 1, . . . , n}. In this case, we say that
the linear ODE L(y) = 0 is defined over Γ.

1. Background

1.1. Projective equivalence and pullbacks. Let π : Γ → Γ0 be a finite rami-
fied covering of Riemann surfaces and L0(y0) = 0 a linear ODE defined over Γ0,
i.e.

L0(y0) := bnv
n
0 (y0) + bn−1v

n−1
0 (y0) + . . .+ b1v0(y0) + b0y0

where bi ∈ k0 := C(Γ0), i ∈ {0, 1, . . . , n}, and v0 ∈ DerC(k0) \ {0}. We say that
L(y) = 0 is a pullback of L0(y0) = 0 if y = y0◦π is a solution of L(y) = 0 whenever
y0 is a solution of L0(y0) = 0.

Let L1(y1) = 0 be another linear ODE defined over Γ. We say that L(y) = 0 is
projectively equivalent to L1(y1) = 0 if, for some analytic function f over U ⊆ Γ
with v(f)/f ∈ k, y = f · y1 is a solution of L(y) = 0 whenever y1 is a solution of
L1(y1) = 0.
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1.2. A theorem by F. Klein and Standard equations. A classical theorem
due to F.Klein states that, up to pullback and up to projective equivalence, any
irreducible second order linear ODE defined over P1(C) with algebraic solutions is
a hypergeometric equation.

Theorem 1 (Klein, 1877 [7, 8]). If L(y) = y′′ + a1(z)y
′ + a0(z)y (a1, a0 ∈ C(z))

is irreducible and L(y) = 0 has algebraic solutions then the solutions are of the
form

y = f · 2F1 (a,b,c) (P (z))

where P (z), f ′/f ∈ C(z) and 2F1 (a,b,c) is a hypergeometric function.

This result was extended to arbitrary compact Riemann surfaces by B. Dwork
and F. Baldassarri [1, 2]. An algorithmic implementation for Klein’s result has
been crafted in a joint work of M. Berkenbosch, M. van Hoeij and J-A. Weil [3].
The algorithm relies on the fact that the hypergeometric functions appearing in
the theorem correspond to Galois coverings of P1(C) by P1(C), therefore these can
be listed using Schwarz triples.

By introducing the concept of standard equation M. Berkenbosch managed to
extend Klein’s Theorem to order three [3]: up to pullback and up to projective
equivalence, all third order irreducible linear ODE defined over P1(C) with alge-
braic solutions is a standard equations.

Standard equations can be defined as follow. Let y1, . . . , yn be a full-system of
solutions of L(y) = 0, we say that L(y) = 0 is standard if

k ⊆ C
(
vi−1(yj)

)
i,j∈{1,...,n}

and w := det
(
vi−1(yj)

)
∈ C.

An algorithmic implementation for an extension of Klein’s theorem would re-
quire a solution to the problem of listing or classifying standard equations. To
solve this problem we can use ruled surfaces. Before explaining the solution, we
need two more concepts.

1.3. Galois correspondence and a theorem of E. Compoint. Let S ⊂ Γ be
the collection of singular points of L(y) = 0. Given a p ∈ Γ \ S, there is an open
neighborhood U ⊆ Γ of p over which there is a full system of analytic solutions
yi : U → C, i ∈ {1, . . . , n}, for L(y) = 0.

Denote by HΓ(U) the collection of analytic functions over U and by Φ the
evaluative k-morphism

Φ : k[X i
j,

1

det
] −→ HΓ(U)

X i
j 7−→ vi−1(yj)

where k[X i
j ,

1
det ] is the ring of polynomials in n×n variables with coefficients in k

and det, the determinant polynomial det(X i
j), is inverted. Denote by I the kernel

of Φ.
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We define a right-action of GLn(C) on k[X i
j ,

1
det ] as follow. To g = (gij) ∈

GLn(C) we assign the k-morphisms

g : X i
j 7−→

∑

l

X i
l g

l
j.

The Galois group G of L(y) = 0 is

G := {g ∈ GLn(C)
∣∣ g(I) ⊆ I}.

In particular, the restriction to G of the right GLn(C)-action induces a right G-
action by k-morphisms on

k[vi−1(yj),
1

w
] ≃ k[X i

j ,
1

det
]/I.

Explicitly, to g = (gij) ∈ G we assign the k-morphism g : vi−1(yj) 7→
∑

l v
i−1(yl)g

l
j .

The Galois correspondence [9, Theorem 1.27] implies that if P (X i
j) ∈ k[X i

j ,
1
det ]

is G-invariant then P (vi−1(yj)) ∈ k.

Theorem 2 (Compoint, 1998 [5, 4]). Assume G is reductive and unimodular. Let
P1, . . . , Pr ∈ C[X i

j] be homogeneous generators of the C-algebra of G-invariants

and fl ∈ k such that Pl(v
i−1(yj)) = fl, l ∈ {1, . . . , r}. Then the ideal I is generated

by the polynomials P1 − f1, . . . , Pr − fr.

2. Ruled Surfaces

From now on we assume G is reductive, unimodular and non-connected (e.g.
G ⊂ SLn(C) is finite and non-trivial). The right G-action on C[X i

j ] defines a

left G-action on Cn×n. Let Π : Cn×n → Cn×n/G be the canonical projection
assigning to each point its G-orbit. We fix the coordinate systems (X i

j) for C
n×n

and (P1, . . . , Pr) for C
n×n/G.

The solution functions y1, . . . , yn induce an analytic map

Ψ : U −→ C
n×n

q 7−→
(
vi−1(yj)(q)

)
.

The composition with Π, ΨG := Π ◦Ψ, induces an algebraic map

ΨG : U −→ C
n×n/G

q 7−→ (f1(q), . . . , fr(q)) .

Since the map ΨG is algebraic, we can extended it to a map over Γ\S. Abusing
notation, we will also denote the extension by ΨG. The image

V := ΨG(Γ \ S) ⊂ C
n×n/G

is an algebraic curve. The curve V gives a cone C(V ) ⊂ Cn×n/G with vertex at
the origin.

Finally, blowing-up C(V ) at the vertex we obtain a ruled surface S [6, Example
V.2.11.4]. This ruled surfaces S, obtained starting from L(y) = 0, is isomorphic
to the ruled surface that we would obtain starting from L0(y0) = 0 and from
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L1(y1) = 0 if L(y) = 0 is the pullback of L0(y0) = 0 or L(y) = 0 is projectively
equivalent to L1(y1) = 0.

We conclude that S is invariant up to pullback and up to projective equivalence
and so ruled surfaces can be used to list standard equations.
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Hilbert’s sixteenth problem for Liénard equations

Magdalena Caubergh

Polynomial Liénard equations are planar differential equations associated to the
second order scalar differential equations

(1) x′′ + f (x) x′ + g (x) = 0,

where the functions f and g are polynomials of degree n and m respectively. They
occur as models or at least as simplifications of models in many domains of science.
In this survey talk attention goes to isolated periodic orbits or so-called limit cycles
of (1) as a contribution to Hilbert’s 16th Problem.

Recall that Hilbert’s 16th Problem essentially asks for a uniform bound H (n)
for the maximum number of limit cycles of a planar polynomial vector field

x′ =
n∑

i,j=0

aijx
iyj−i and y′ =

n∑

i,j=0

bijx
iyj−i where aij , bij ∈ R, 0 ≤ i, j ≤ n,

uniformly in terms of the degree n. This problem is more than 100 years old and
its investigation has produced many papers contributing to the wide development
of the theory of Dynamical Systems. It is not known whether a uniform upper
bound only depending on the degree of the vector field might exist, not even when
the degree is two. Even Dulac’s theorem to prove that for individual vector fields
the number of limit cycles is finite was far from trivial, see e.g. [10].
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Solution programmes for Hilbert’s 16th Problem mostly consist in its reduction
to several subproblems, based on either considering local cyclicity problems [13]
or restricting the class of vector fields to a particular simpler class, see e.g. [10]
for an overview.

In the following we denote by N (m,n) the maximum number of limit cycles of
(1). Part of the 13th Problem that S. Smale put on his list of problems for the 21st
century deals with Hilbert’s 16th Problem restricted to the classical (polynomial)
Liénard equations, i.e. the case g (x) = x in the differential equations (1) (see
[15]). Moreover Smale suggests that the maximal number of limit cycles N (1, n)
for classical Liénard equations grows at most by an algebraic law of type nd where
d is a universal constant.

The problem for classical Liénard equations when the degree of f is equal to 2
is solved; the result in [12] shows that N (1, 2) = 1. Besides there is the so-called
Lins, de Melo and Pugh Conjecture, stating that the maximal number of limit
cycles is equal to l if g(x) = x and the degree of f is 2l or 2l+ 1.

Of course there is the recent counter-example to that conjecture, for limit cycles
in singular perturbations, due to Dumortier, Panazzolo and Roussarie (see [7]), but
it does not contradict the possibility for the growth of the number of limit cycles
to be linear. In [7] classical Liénard equations are presented with degree of f
equal to 2l and having at least l+ 1 limit cycles; hence one limit cycle more than
conjectured by Lins, de Melo and Pugh.

In fact, in [12], they prove that, under these assumptions, there are at most
l small amplitude limit cycles. Lloyd and Lynch considered the similar problem
for generalized Liénard equations [11]. In most cases, they prove an upper bound
for the number of small amplitude limit cycles, that can bifurcate out of a single
non-degenerate singularity.

Later Coppel proved in [4] that N (2, 1) = 1. In [5] and [9] it is shown that
N (3, 1) = 1 and in [6] it is shown that N (2, 2) = 1. Up to now, as far as we
know, only these four cases have been completely investigated. Recently progress
has been made towards proving the finiteness part of Hilbert’s 16th Problem for
classical Liénard equations. In [2] the study of the finiteness part of Smale’s 13th
Problem is reduced to singular perturbation problems:

Theorem 1. Let K > 0. Then there exists a finite number N (n,K) such that for
‖a‖ ≤ K the classical Liénard equation Ln

a of degree n, i.e. (1) with

f (x, a) = a0 + a1x+ . . .+ an−1x
n−2 + xn−1 and g (x) = x,

has at most N (n,K) limit cycles.

In this talk we recall a basic argument to prove the exact upper boundsN (1, 2) =
N (2, 1) = N (2, 2) = 1. Next we provide some insight in the techniques underly-
ing Theorem 1 and finally discuss a programme for the general case, i.e., when
g (x) 6= x (see [3]).

To prove Theorem 1 we apply the localization method of Roussarie [14], reducing
the global Smale problem to the study of (local) cyclicity of limit periodic sets.
Limit periodic sets are subsets consisting of singularities and regular orbits, that
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can produce limit cycles by perturbation, and the cyclicity is the maximal number
of limit cycles that they can generate in a perturbation. This localization method
requires an appropriate compactification of the phase plane, as well as the chosen
space of Liénard equations itself. Besides the compactification process, due to the
fact that the ‘central system’ is too degenerate to permit a study of its unfolding
without a blow up, the method includes a desingularization.

In this way the boundary of the space of Liénard equations is made by Hamilton-
ian and singular perturbation problems. These boundary problems both exhibit
different phenomena. The study of the cyclicity problem for classical Liénard equa-
tions of odd degree (i.e. n is even) that do not belong to the boundary is easy and
well-known among specialists. In this case limit cycles stay at a uniform distance
from infinity (see [14]). For classical Liénard equations of even degree (i.e. n is
odd) this is no longer true and then the main problem consists in studying limit
cycles that come close to infinity. These limit cycles are so-called large amplitude
limit cycles of which it is shown in [2] that there are at most l.
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Centers and Limit Cycles

Colin Christopher

In this talk I will give a general background to the center-focus problem, and
then to show why the problem is interesting: both in what it tells us about the
distinctive algebraic features of polynomial vector fields, and also in the simple
concrete estimates it gives of the number of limit cycles which can exist in these
vector fields.

In more detail, we consider systems of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials with a critical point at the origin which is either
a center or a focus. Such systems can be brought to the form

(2) ẋ = −y + λx+ p(x, y), ẏ = x+ λy + q(x, y).

In general, although the linear terms of (2) give a center when λ = 0, the system
will not have a center at the origin, and a number of limit cycles will bifurcate
from the origin as λ is perturbed away from zero in a (multiple) Andronov-Hopf
bifurcation.

To see this, we choose a one-sided analytic transversal at the origin with a local
analytic parameter c, and represent the return map by an expansion

(3) c 7→ h(c) = c+

∞∑

i=1

αi c
i,

which turns out to be analytic in c and also in the parameters of the system.
The stability of the origin is clearly given by the sign of the first non-zero αi,

and we have a center if and only if all the αi are zero. Because the transversal is
crossed twice by every trajectory, the α2k must vanish as soon as the previous αi,
i < 2k vanish.

If α2k+1 is the first non-zero term, then at most k limit cycles can bifurcate
from the origin. Provided we have sufficient choice in the coefficients αi, we can
also obtain that many limit cycles in a simultaneous bifurcation from the critical
point. We call the α2i+1 the Lyapunov quantities of the critical point, and denote
them L(i).

When λ = 0, the L(i) turn out to be polynomials in the parameters of the
system. By the Hilbert basis theorem, the vanishing of all the L(i) must be
equivalent to the vanishing of the first N of them, for some integer N . Thus the
set of points where we have a center must be an algebraic set, which we call the
center variety.

Clearly, the closer that the origin is to being a center, the more limit cycles we
can obtain, and the more information we get about the general configurations of
limit cycles in polynomial systems (Hilbert’s 16th Problem).

Unfortunately, although computations of the L(i) are not difficult, analyzing
their common roots is computationally intractable except for all but the simplest
families of systems. Worse, there is no a-priori bound on the value of N we need
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to take, so that for each potential set of conditions for a center, we need to check
that these conditions do indeed give rise to a center.

The center-focus problem asks for the criteria which determine whether a critical
point whose linear parts give a center, really is a center.

In contrast to the situation above, the mechanisms which give centers seem
to fit into just two nice patterns. One is the existence of a first integral or an
integrating factor of the form

eg/h
∏

f li
i ,

where fi, f and g are polynomials, and fi = 0 and h = 0 define invariant algebraic
curves of the system (2). We call such a function a Darboux function.

The second is the existence of an algebraic symmetry, that is a map (x, y) 7→
(X(x, y), Y (x, y)), where X and Y are algebraic functions of x and y, which keeps
the system fixed but “reverses” time.

Both these mechanisms clearly have important global algebraic consequences for
the systems which exhibit them, and demonstrates the fascination of the center-
focus problem as an extreme local to global principle.

Since the center types seem to be better known, it would make sense, therefore,
to work directly from families of centers.

In this talk I will give examples of how perturbing systems from centers can
indeed push the bounds of our knowledge of limit cycle configurations, and also
will give some indications about our current state of knowledge on the center-focus
problem.

Further details can be found in [1] and the first part of the book [2]
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Abelian Integrals and Limit Cycles

Chengzhi Li

Consider the planar differential systems

ẋ = Pn(x, y), ẏ = Qn(x, y), (1)

where Pn and Qn are real polynomials of degree at most n ≥ 2. The second half
of the famous Hilbert’s 16th problem is asking for the maximum number of limit
cycles of system (1), denoted by H(n), for all Pn and Qn, and asking for possible
relative positions of the limit cycles. A limit cycle of system (1) is an isolated
closed orbit. For a given system (1) the number of limit cycles is finite (Dulac-

Ilyashenko-Écalle), but the original Hilbert’s 16th problem is still open even for
the case n = 2, and there is no answer if H(2) is finite or not. About the relative
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positions of limit cycles, J. Llibre and G.Rodŕıguez proved that any configuration
of limit cycles is realizable by a polynomial system of certain degree.

Now we consider a perturbation system XH,ε of a Hamiltonian system XH :

dx

dt
= −∂H(x, y)

∂y
+ εf(x, y),

dy

dt
=

∂H(x, y)

∂x
+ εg(x, y), (2)

whereH , f and g are polynomials of degreem, n and n, and ε is a small parameter.
Suppose that the level curves of XH contain a family of ovals {γh}, filling up

an annulus for h ∈ (a, b). Then we may define the Abelian integral

I(h) =

∮

γh

f(x, y)dy − g(x, y)dx. (3)

A natural question is: How many periodic orbits of XH keep being unbroken
and become the periodic orbits of the perturbed system (2) for small ε ?

By Poincaré-Pontryagin Theorem, we can answer this question as follows (see
Theorem 2.4 of part II in [2], for example). If I(h) is not identically zero for
h ∈ (a, b), then (i) a necessary condition of a limit cycle bifurcating from γh is
I(h) = 0; (ii) if h is a simple zero of I(h), then a hyperbolic limit cycle can bifurcate
from γh; (iii) if h ∈ (a, b) is a root of I(h) of multiplicity k, then at most k limit
cycles can bifurcate from γh; and (iv) the total number of limit cycles bifurcating
from the annulus {γh : h ∈ (a, b)} is bounded by the maximum number of isolated
zeros (taking into account their multiplicities) of I(h) for h ∈ (a, b).

In general, V. I. Arnold repeatedly proposed the following problem:
For fixed integers m and n find the maximum Z(m,n) of the numbers of isolated

zeros of the Abelian integrals (3).
If take m = n + 1, then system (2) is a special form of system (1), close to

a Hamiltonian system XH . In this sense the above problem usually is called
the weak (or tangential, infinitesimal) Hilbert’s 16th problem, and the number

Z̃(n) = Z(n+ 1, n) can be chosen as a lower bound of the Hilbert number H(n).
If the unperturbed system is integrable but non-Hamiltonian, one has to use

a integrating factor, say µ(x, y) = 1/R(x, y), and the perturbed system can be
written in the form

ẋ = −∂F (x, y)

∂y
R(x, y) + εf(x, y), ẏ =

∂F (x, y)

∂x
R(x, y) + εg(x, y), (4)

and associated to it we define the (generalized, or pseudo) Abelian integral

I(h) =

∮

γh

µ(x, y) (f(x, y)dy − g(x, y))dx, (5)

where {γh} are the family of ovals contained in the level curves {F (x, y) = h}.
Since µ(x, y), in general, is not a rational function, the study of the number of
zeros of (5) is more difficult than the study for (3).

If I(h) ≡ 0, one has to consider higher order approximation, an algorithm to
compute higher order Abelian integrals was given in 1996 by J.-P.Françoise.

A.N.Varchenko and A.G.Khovanskii proved in 1984 that for given m and n
the number Z(m,n) is uniformly bounded. But to find an explicit expression for
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Z(m,n), even to find an explicit bound to Z(m,n), is very hard, see a recent paper
by G.Binyamini, D. Novikov and S.Yakovenko [1]. There are many works dealing
with restrictions on H or on the class of f and g. We list some of them below.

• It is natural to think about to find Z̃(n) = Z(n + 1, n) for lower n, and
this was done by several authors, and succeeded only for n = 2 (1993 to
2002).

• For elliptic Hamiltonian H = y2 + Pk(x), where Pk is a polynomial of
degree k, there is a series of works to study the number of zeros of I(h)
for different classes of perturbations.

• F.Takens and V. I.Arnold proposed the 1 : q resonance problem. Except
for the case q = 4, the codimension 2 cases have been completed solved,
and codimension ≥ 3 cases are partially solved. The study is related to
Abelian integrals.

• The study of quadratic perturbation of quadratic integrable and non-
Hamiltonian systems was done for some special classes.

• Many authors studied this problem for certain H under perturbations f
and g, belonging to some function classes. H , f and g are not necessarily
polynomials.

There are some methods to study the number of zeros of Abelian integrals: the
method based on the Picard-Fuchs equation; the method based on the Argument
Principle, the averaging method, the method of using Chebyshev property, and
the method based on complexification of the Abelian integrals.

Similar to Hilbert’s 16th problem, its weak form is still far from completely
solved. Some new methods, new approaches, and new techniques need to be
developed.

All above mentioned references can be found in the second part of [2], except
the recent paper [1].
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Darboux theory of integrability

Xiang Zhang

(joint work with Jaume Llibre)

The algebraic theory of integrability is a classical one, which is related with
the first part of the Hilbert’s 16th problem. This kind of integrability is usually
called Darboux integrability, which provides a link between the integrability of
polynomial vector fields and the number of invariant algebraic hypersurfaces that
they have. In this talk we shall study the existence of a first integral for polynomial
vector fields in Rn or Cn with n ≥ 2 via the Darboux theory of integrability.
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Consider the polynomial vector fields in C
n

X =
n∑

i=1

Pi(x)
∂

∂xi
, x = (x1, . . . , xn) ∈ Cn,

where Pi = Pi(x) ∈ C[x] have no common factor for i = 1, . . . , n, and C[x] =
C[x1, . . . , xn] the ring of all complex polynomials in the variables x1, . . . , xn. The
integer d = max{degP1, . . ., degPn} is the degree of the vector field X .

Let f = f(x) ∈ C[x]. We say that {f = 0} ⊂ Cn is an invariant algebraic
hypersurface of X if there exists a polynomial Kf ∈ C[x] such that X (f) = fKf .

If f, g ∈ C[x] are coprime, we say that exp(g/f) is an exponential factor of
X if there exists a polynomial Le ∈ C[x] of degree at most d − 1 such that
X (exp(g/f)) = exp(g/f)Le.

Let Cm[x] be the C–vector space of polynomials in C[x] of degree at most m.

Then it has dimension R =

(
n+m

n

)
. Let v1, . . . , vR be a base of Cm[x]. Denote

by MR the R×R matrix

(1)




v1 v2 . . . vR
X (v1) X (v2) . . . X (vR)

...
...

. . .
...

XR−1(v1) XR−1(v2) . . . XR−1(vR)


 ,

where X k+1(vi) = X (X k(vi)). An irreducible invariant algebraic hypersurface
f = 0 of degree m has algebraic multiplicity k if detMR 6≡ 0 and k is the maxi-
mum positive integer such that fk divides detMR; and it has no defined algebraic
multiplicity if detMR ≡ 0.

A Darboux first integral is a first integral of the form
(

r∏

i=1

f li
i

)
exp(g/h),

where fi, g and h are polynomials, and the li’s are complex numbers.

The classical Darboux theory of integrability in C
n with n ≥ 2 is the following.

Theorem A Assume that the polynomial vector field X in Cn of degree d > 0
has irreducible invariant algebraic hypersurfaces fi = 0 for i = 1, . . . , p. Then the
following statements hold.

(a) If p ≥ N + 1, then the vector field X has a Darboux first integral, where

N =

(
n+ d− 1

n

)
.

(b) If p ≥ N + n, then the vector field X has a rational first integral.

Statement (a) of Theorem A is due to Darboux [3, 4]. Statement (b) of Theorem
A was proved by Jouanolou [5] using tools of algebraic geometry, and also has an
elementary proof for dimension 2 given by Christopher and Llibre [1] in 2000 and
for arbitrary dimension given by Llibre and Zhang [8] in 2010.
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The next results improve Theorem A taking into account the exponential factors
and tell us how to construct first integrals using Darboux theory of integrability.
Theorem B Suppose that a polynomial vector field X of degree d in Cn admits
p irreducible invariant algebraic hypersurfaces fi = 0 with cofactors Ki for i =
1, . . . , p and q exponential factors exp(gj/hj) with cofactors Lj for j = 1, . . . , q.

(i) There exist λi, µj ∈ C not all zero such that
p∑

i=1

λiKi +
q∑

j=1

µjLj = 0, if

and only if the (multi–valued) function

(2) fλ1

1 . . . fλp
p

(
exp

(
g1
h1

))µ1

. . .

(
exp

(
gq
hq

))µq

is a first integral of X .
(ii) If p+ q ≥ N + 1, then the vector field X has a Darboux first integral.
(iii) If p+ q ≥ N + n, then the vector field X has a rational first integral.

(iv) For n = 2, there exist λi, µj ∈ C not all zero such that
p∑

i=1

λiKi +

q∑
j=1

µjLj = −div(P,Q) if and only if function (2) is an integrating fac-

tor of X .

The following theorem improves Theorem A taking into account not only the
invariant algebraic hypersurfaces but also their algebraic multiplicities.

Theorem C Assume that the polynomial vector field X in Cn of degree d > 0 has
irreducible invariant algebraic hypersurfaces.

(i) If some of these irreducible invariant algebraic hypersurfaces has no defined
algebraic multiplicity, then the vector field X has a rational first integral.

(ii) Suppose that all the irreducible invariant algebraic hypersurfaces fi = 0
has defined algebraic multiplicity qi for i = 1, . . . , p. If X restricted to
each hypersurface fi = 0 having multiplicity larger than 1 has no rational
first integral, then the following statements hold.

(a) If
p∑

i=1

qi ≥ N +1, then the vector field X has a Darboux first integral,

where N is the number defined in Theorem A.

(b) If
p∑

i=1

qi ≥ N + n, then the vector field X has a rational first integral.

Statement (i) follows from Theorem 3 of Pereira [9] (see also Theorem 5.3 of
[2] for dimension 2). Statement (ii) was proved by Llibre and Zhang in [6], where
we showed by examples that the additional condition is necessary

The following result, due to Llibre and Zhang [7], improves Theorem A in Rn

taking into account the algebraic multiplicity of the hyperplane at infinity.
Theorem D Assume that the polynomial vector field X in Rn of degree d > 0
has irreducible invariant algebraic hypersurfaces fi = 0 for i = 1, . . . , p and the
invariant hyperplane at infinity.
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(i) If some of these irreducible invariant algebraic hypersurfaces or the in-
variant hyperplane at infinity has no defined algebraic multiplicity, then
the vector field X has a rational first integral.

(ii) Suppose that all the irreducible invariant algebraic hypersurfaces fi = 0
have defined algebraic multiplicity qi for i = 1, . . . , p and that the invari-
ant hyperplane at infinity has algebraic multiplicity k. If the vector field
restricted to each invariant hypersurface including the hyperplane at infin-
ity having algebraic multiplicity larger than 1 has no rational first integral,
then the following hold.

(a) If
p∑

i=1

qi + k ≥ N + 2, then the vector field X has a Darboux first

integral, where N is defined in Theorem A.

(b) If
p∑

i=1

qi + k ≥ N + n+ 1, then the vector field X has a rational first

integral.

The Darboux theory of integrability has been successfully applied to the study
of some physical models, of the center–focus problem and so on.
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Inverse Problems of the Darboux Theory of Integrability

Chara Pantazi

(joint work with C. Christopher, J. Llibre, S. Walcher)

Introduction. We consider the planar (complex in general) polynomial differen-
tial system

(1) ẋ = P (x, y), ẏ = Q(x, y)
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and its associated vector field X = P∂/∂x + Q∂/∂y. We are interested in the
following Problems: (1) Find all invariant algebraic curves of vector field X . (2)
Decide whether Darboux integrating factor exists. These problems are very impor-
tant because: (i) They are classical problems (Poincaré and later Darboux), (ii)
They are related to a question due to Prelle and Singer (1983) [8, 9]: For planar
ODE, does it exist an elementary (Liouville) first integral? (iii) There is a direct
connection to qualitative properties of system (1). Note that these problems are
directly connected to the famous Poincaré problem about the degree of invariant
curves, [1, 2, 12].

Since these problems are difficult [10] we deal mainly with the following In-
verse Problems: (1) Inverse problem for curves: We consider irreducible pairwise
relatively prime polynomials

f1, . . . , fr, and f := f1 · · · fr
Find all the polynomial vector fields that have all fi = 0 invariant.
(2) Inverse problem for integrating factors: We furthermore consider nonzero com-
plex constants d1, · · · , dr. Find all the polynomial vector fields with a given Dar-
boux integrating factor of the form R = f−d1

1 · · · f−dr
r . We are interested in investi-

gating these inverse problems because: (i) They provide a better understanding of
obstacles to elementary (Liouville) integrability, (ii) they are necessary for charac-
terization (classification), in particular for integrating factor case, (iii) they allow
the construction of vector fields with special properties.

The inverse problem for curves. We consider the irreducible pairwise rela-
tively prime polynomials

f1, . . . , fr, and we denote by f = f1 · · · fr.
Vector fields of type

X = X̃ · f + a ·Xf , V0

where X̃ is an arbitrary polynomial vector field and a is an arbitrary polyno-
mial. Moreover, this type of vector fields (we call them the ‘trivial’ ones), forms a
subspace of V which will be denoted by V0. Vector fields of type

X = X̃ · f +
∑

i

ai
f

fi
·Xfi , V1

where X̃ is an arbitrary polynomial vector field and ai are arbitrary polynomials,
form a subspace of V which will be denoted by V1. In general, V0 ⊆ V1 ⊆ V .
Note that for a given f the cofactors L of all vector fields admitting f = 0 form
an ideal and a necessary and sufficient condition for the existence of X = (P,Q)
is

(2) L ∈ 〈fx, fy〉 : 〈f〉 .
A polynomial vector field X satisfies equation (2) with L ∈ 〈fx, fy〉 if and only
if X ∈ V0. Additionally, the map sending vector field to cofactor induces an
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isomorphism (see also [11, 4])

V/V0 ∼= (〈fx, fy〉 : 〈f〉) / 〈fx, fy〉 .

of finite dimensional vector spaces.

We introduce two generic nondegeneracy conditions (see also [6]):
(ND1) Each fi = 0 is nonsingular.
(ND2) All singular points of f = 0 have multiplicity one (thus when two irre-
ducible components intersect, they intersect transversally, and no more than two
irreducible components intersect at one point).

Note that if conditions (ND1)and (ND2) hold then V = V1.

We also have the following result.
Theorem The dimension of Vf/V0

f ≥ # of singular points of f = 0. The equality
holds if every singular point of f = 0 has multiplicity one. In particular, if f = 0
has no singular points then Vf = V0

f .

An algorithmic approach Here we present an algorithm to find vector fields
that are not trivial [4].

• Find the Gröbner basis G of 〈fx, fy〉 with respect to some fixed monomial
ordering.

• Only finitely many monomials m1, . . . ,md are not multiples of some lead-
ing monomial in G.

• The classes mi + 〈fx, fy〉 form a basis of C[x, y]/〈fx, fy〉.
• Obtain cofactors from kernel of the map

Mf : g + 〈fx, fy〉 7→ f · g + 〈fx, fy〉 .

• Vector fields are obtained, in principle, from defining equation and Gröbner.

Inverse problem for integrating factors. Let f1, · · · , fr be irreducible and
pairwise coprime polynomials. We denote by f = f1 · · · fr, and we consider the
nonzero complex constants d1, · · · , dr.

The vector fields X having a Darboux integrating factor of the form

R =
(
fd1

1 · · · fdr
r

)−1

satisfy the relation−d1L1−· · ·−drLr+div(X) = 0. Additionally, such vector fields
form a linear space which will be denoted by F = F(d1, . . . , dr) (and obviously
F ⊆ V).

We note that for a given arbitrary polynomial g, we can consider the vector

field (in general, not polynomial) Zg = Z
(d1,...,dr)
g , see also [3]. Note that Zg is

the Hamiltonian vector field of the function g/
(
fd1−1
1 · · · fdr−1

r

)
. Since we are
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interested in polynomial vector fields we consider the vector field

fd1

1 · · · fdr
r · Zg = f ·Xg −

r∑

i=1

(di − 1)g
f

fi
·Xfi , F0

and note that such vector fields admit the integrating factor (fd1

1 · · · fdr
r )−1. Vector

fields of this type form a subspace F0 = F0(d1, · · · , dr) of F and we also call them
‘trivial’. Obviously, F0 ⊆ F ⊆ Vf .

Remark In order to investigate the structure of the quotient space

F(d1, . . . , dr)/F0
f (d1, . . . , dr)

one may replace di by 1 if di is a positive integer, and by di − ki with any positive
integer ki otherwise. In particular we may assume that each di has real part ≤ 1.

Additionally, we may use the concept of morphisms in order to ‘break’ some
singularities and to obtain the following result of finiteness dimension, [7].
Theorem One always has

dim
(
F(d1, . . . , dr)/F0(d1, . . . , dr)

)
< ∞.
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