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Abstract. A mathematical analysis for peridynamics, a nonlocal elastic the-
ory, is the subject of the mini-workshop. Peridynamics is a novel multiscale
mechanical model where the canonical divergence of the stress tensor is re-
placed by an integral operator that sums forces at a finite distance. As such,
the underlying regularity assumptions are more general, for instance, allow-
ing discontinuous and non-differentiable displacement fields. Although the
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workshop proved to be a catalyst for the emerging mathematical analyses
among an international group of mathematicians.
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Introduction by the Organisers

The mini-workshop Mathematical Analysis for Peridynamics, organised by Eti-
enne Emmrich (Bielefeld), Max Gunzburger (Tallahassee), and Richard Lehoucq
(Albuquerque), was held January 16th–January 22nd, 2011. This meeting was
attended by 17 participants with broad geographic representation.

The response of materials to environments and loads occurring in practice re-
quires an understanding of mechanics at disparate spatial and temporal scales.
Such “multiscale” understanding is a fundamental challenge for next generation
materials modeling. A currently popular multiscale approach couples two or more
well-known models, for example, molecular dynamics and classical elasticity, each
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of which is useful at different scales. Although some notable successes have re-
sulted from this type of multiscale material modeling, some issues remain unre-
solved, some of which stem from the inherent difficulty encountered when coupling
local models to nonlocal ones.

An alternative approach is to develop a single multiscale material model that
remains valid and useful over a wide range of temporal and spatial scales. Peri-
dynamics [5], a nonlocal elastic theory, is a promising multiscale mechanical non-
linear model. The canonical divergence of the stress tensor is replaced by an
integral operator that sums forces at a finite distance. As such, the underlying
regularity assumptions are more general, for instance, allowing discontinuous, let
alone non-differentiable, displacement fields. For example, the recent review [1]
includes peridynamic applications to fracture and failure of composites, nanofiber
networks, and polycrystal fracture. The article [7] studies the peridynamic model
for solid mechanics. Furthermore, although peridynamics by itself is a multiscale
material model and has proved to be extremely useful for simulations of singular
phenomena such as fracture, peridynamics also can be used as bridge between
local continuum models and nonlocal atomistic models, mitigating the difficulties
one encounters when trying to directly couple the latter two types of models.

The goal of the mini-workshop is to bring together applied and computational
mathematicians, and mechanicians to further the mathematical understanding of
peridynamics. Although the theoretical mechanical formulation of peridynamics is
well understood, the mathematical and numerical analyses are in their early stages
(see [2, 3, 4, 6] for examples). Successful mathematical treatments of peridynamics
are not only interesting from the mathematics point of view, but will lead to
improved temporal and spatial multiscale discretization and solution algorithms,
and improved understanding of the range of applicability of peridynamics. Topics
of interest include:

• well posedness of the time-dependent peridynamics equation of motion;
Nonlocal vector calculus, variational formulations of peridynamic models;
homogenization; stochastic peridynamic models;

• analysis and development of a finite element and other discretization meth-
ods; development and analysis of efficient and robust solution methods for
discretized peridynamic models; coupling peridynamics to molecular dy-
namics and finite element discretizations of classical elasticity;

• relationship and convergence to classical elasticity as the nonlocality van-
ishes; relationship with other nonlocal continuum mechanical theories.
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Abstracts

Multiscale Dynamics of Heterogeneous Media in the Peridynamic
Formulation

Robert Lipton

(joint work with Bacim Alali)

A methodology is presented for investigating the dynamics of heterogeneous me-
dia using the nonlocal continuum model given by the peridynamic formulation
[2]. The approach presented here provides the ability to model the macroscopic
dynamics while at the same time resolving the dynamics at the length scales of
the microstructure. Central to the methodology is a novel two-scale evolution
equation. The rescaled solution of this equation is shown to provide a strong ap-
proximation to the actual deformation inside the peridynamic material. The two
scale evolution can be split into a microscopic component tracking the dynamics at
the length scale of the heterogeneities and a macroscopic component tracking the
volume averaged (homogenized) dynamics. The interplay between the microscopic
and macroscopic dynamics is given by a coupled system of evolution equations.
The equations show that the forces generated by the homogenized deformation
inside the medium are related to the homogenized deformation through a history
dependent constitutive relation.
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A nonlocal vector calculus and finite element methods for nonlocal
diffusion and mechanics

Max Gunzburger

(joint work with Xi Chen, Qiang Du, Richard Lehoucq, Kun Zhou)

Let x and y denote points in R
d. The nonlocal divergence operator

D
(
ν
)
(x) := −

∫

Ω

(
ν(x,y) + ν(y,x)

)
· α(x,y) dy for x ∈ Ω

where α(x,y) is a given anti-symmetric function, maps vector functions of ν(x,y)
to scalar functions of x. Likewise, we have the nonlocal gradient operator (mapping
scalars to vectors)

G
(
η
)
(x) := −

∫

Ω

(
η(x,y) + η(y,x)

)
α(x,y) dy for x ∈ Ω
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and, in R
3, the nonlocal curl operator (mapping vectors to vectors)

C
(
µ
)
(x) := −

∫

Ω

(
µ(x,y) + µ(y,x)

)
×α(x,y) dy for x ∈ Ω.

One easily obtains the nonlocal integral theorems analogous to the Gauss and
Stokes theorems of the differential calculus. For example, we have the nonlocal
Gauss theorem ∫

Ω

D
(
ν
)
dx = 0.

Adjoint operators may also be defined, e.g., the adjoint of D is given by

D∗
(
u
)
(x,y) = (u′ − u)α for x,y ∈ Ω.

One can then define nonlocal Green’s identities such as∫

Ω

uD
(
D∗(v)

)
dx−

∫

Ω

∫

Ω

D∗(u) · D∗(v) dydx = 0.

The nonlocal operators also satisfy identities such as

D
(
C∗(u)

)
= 0 and C

(
D∗(u)

)
= 0

that mimic similar identities of the differential calculus.
By dividing the domain Ω into the disjoint subdomains Ωs, Ωc1, and Ωc2,

one can define nonlocal constrained-value problems that mimic classical elliptic
boundary-value problems with Dirichlet and Neumann boundary conditions. For
example, we have the following analog of the Poisson problem:

D
(
D∗(u)

)
= f in Ω, u = g in Ωc1, N

(
D∗(u)

)
= h in Ωc2,

where N is an appropriately defined constraint operator. Nonlocal constrained-
value problems have application to nonlocal diffusion and to nonlocal mechanics
through the peridynamics model.

The nonlocal operators may be related, in a distributional sense to the analogous
differential operators, e.g., if we set α(x,y) = ∇yδ(y−x) or |α(x,y)|2 = 1

2∆yδ(y−
x), where ∆ denotes the differential Laplace operator, we respectively have that

D
(
ν
)
(x) = ∇ · ν(x,x) or D

(
D∗u(x)

)
= −∆u(x).

One can also define weighted averages of the nonlocal operators, e.g., for a
weight function ω(x,y), we have the weighted nonlocal divergence operator

Dω(u)(x) := D
(
ω(x,y)u(x)

)
(x) for x ∈ Ω.

If we choose α(x,y) = (y− x)/|y− x| for x 6= y and

ω(|x− y|) =
{
|y− x|φ(|y− x|) y ∈ Bε(x)

0 otherwise

where, for ε > 0, Bε(x) := {y ∈ R
d : |y − x| < ε}, one can show that Dω is a

bounded linear operators fromHt(Rd) toHt−s(Rd) for 0 ≤ s ≤ 1, where s depends
on the particular choice for φ. Moreover, if u ∈ [H1(Rd)]d, then Dω(u) → ∇ · u,
where the convergence as ε→ 0 is with respect to L2(Rd).
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We have focused on just the nonlocal divergence operator; similar results hold
for the nonlocal gradient and curl operators. See [2, 3, 4, 5] for details.

Variational formulations of nonlocal constrained-value problems can be used to
define finite element approximations; see, e.g., [2] for one-dimensional examples.
One important feature of nonlocal constrained-value problems is that, with ap-
propriate choices for kernels, solutions operators effect less smoothing than elliptic
differential operators. In fact, one can choose a kernel such that no smoothing
occurs, i.e., the nonlocal operator maps L(Rd) to L(Rd). As a result, solutions
with jump discontinuities are admissible to the variational formulation. As a con-
sequence, discontinuous finite element approximating spaces are conforming and
can be used to advantage to approximate solutions containing jump discontinu-
ities. Several observations are made in [2] based on computational experimenta-
tion. First, the use of continuous finite element spaces yields optimally accurate
approximations for the case of smooth solutions of the constrained-value problems,
but are not appropriated for solutions with jump discontinuities. Piecewise con-
stant approximations are not robust in the sense that whenever the cutoff radius ε
is greater than the grid size, approximations fail to converge. However, discontin-
uous piecewise linear approximations are robust with respect the relative sizes of ε
and the grid. Moreover, abrupt refinement in the neighborhood of discontinuities
can be used to obtain optimally accurate approximations. A key conclusion is that
finite element discretizations can be to define multiscale computational models for
nonlocal diffusion and mechanics problems. Indeed, by refining the grid so that
h < ε, where h denotes a measure of the grid size, in regions where solution singu-
larities occur and coarsening the grid so that ε≪ h in regions where the solution
is smooth, one defines a single model that can resolve phenomena occurring at
disparate scales; see [1] for details.
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The Cauchy problem for a non-linear peridynamic equation

Albert Erkip

(joint work with Husnu A. Erbay, Gulcin M. Muslu)

We consider the one-dimensional nonlinear nonlocal partial differential equation,
arising in the peridynamic modelling of an elastic bar,

(1) utt =

∫

R

α(y − x)w(u(y, t) − u(x, t))dy, x ∈ R, t > 0.

Our motivation is to understand the effect of nonlinearity in this model so that
the ideas can be carried over to more general peridynamic problems. This work
extends some ideas in [1, 2, 3] to the nonlinear case.

We assume that α ∈ L1(R) and that w is a sufficiently smooth function. These
assumptions yield estimates for the operator

(Kv)(x) =

∫

R

α(y − x)w(v(y) − v(x))dy,

which in turn yield the local well posedness of the Cauchy problem with solution
in the spaces C2([0, T ], X) where X is any of the spaces Cb(R) (continuous and
bounded functions), C1

b (R), L
p(R), or W 1,p(R) with 1 ≤ p ≤ ∞.

As an example of how our results can be modified to more general peridynamic
problems, we prove:
Theorem Consider the Cauchy problem for the equation

utt =

∫

R

f(u(y, t)− u(x, t), y − x)dy.

Assume that f(0, η) = 0 and f(ξ, η) is measurable in η for each ξ and continuously

differentiable in ξ for almost all η. Moreover, suppose that for each R > 0, there
are integrable functions ΛR

1 , Λ
R
2 satisfying

|f(ξ, η)| ≤ ΛR
1 (η), |fξ(ξ, η| ≤ ΛR

2 (η)

for almost all η and for all |ξ| ≤ 2R. Then there is some T > 0 such that the

Cauchy problem is well posed with solution in C2([0, T ], Cb(R)) for initial data

in Cb(R).
For the maximal life of a solution, we show that the solution can be continued

as long as ‖u (t) ‖∞ does not blow up. When α ∈ L1(R) ∩L∞(R) we prove global
existence for nonlinearities of the form w(ξ) = a|ξ|ν−1ξ with ν ≤ 3 and a > 0.
We also give sufficient conditions on the nonlinearity, that ensure blow-up in finite
time.
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Viscoelastic effects in non-local elasticity

Olaf Weckner

(joint work with Nik Abdullah Nik Mohamed)

The equation of motion at time t for the material point x with density ρ in a
homogeneous, infinite1, viscoelastic, peridynamic material in one spatial dimension
is given by

ρ ü(x, t) =

∫ +∞

−∞

c(x′ − x)[u(x′, t)− u(x, t) ]dx′(1)

+

∫ +∞

−∞

d(x′ − x)[u(x′, t)− u(x, t) ]̇ dx′ + b(x, t)

u(x, t) is the displacement field, b(x, t) a given external force field, c(ξ) = c(−ξ)
is the so-called micromodulus function or stiffness distribution and d(ξ) = d(−ξ)
is the damping distribution. Additionally, we are given the initial data u0(x) =
u(x, t = 0), v0(x) = u̇(x, t = 0). In the following we will derive an integral repre-
sentation for the non-local, peridynamic solution.
1 represents an slight extension of the bond-based peridynamic material model
introduced initially in [1]. The solution method outline in the following is based
on [2].

Equation of motion in (k, t) space. Applying the Fourier-transform with
respect to the spatial coordinate x we can equivalently characterize the nonlocal
equation of motion (1) by

¨̄u(k, t) + 2D(k)ū(k, t)̇ + ω2
0(k)ū(k, t) = b̄(k, t)/ρ(2)

with

ω2
0(k) =

c̄(0)− c̄(k)

ρ

2D(k) =
d̄(0)− d̄(k)

ρ

The transformed initial conditions are

ū0(k) = F{u0(x)}
v̄0(k) = F{v0(x)}

1It is physically intuitive that as the distance between a pair of particles gets very large, the
interaction between them becomes negligible. In what follows we shall assume that this happens
fast enough to ensure the convergence of the various infinite integrals encountered.
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Equation of motion in (k, s) space. Applying the Laplace-transform with
respect to time t we obtain

s2ũ(k, s)− sū0(k)− v̄0(k) + 2D(k)(sũ(k, s)− ū0(k)) + ω2
0(k)ũ(k, s) = b̃(k, s)/ρ

which can be solved for ũ(k, s)

ũ(k, s) =
b̃(k, s)/ρ+ v̄0(k) + ū0(k)(s+ 2D(k))

s2 + 2D(k)s+ ω2
0(k)

1. Integral representation of the solution

Assuming weak damping ω2
0(k) > D2(k)∀k we find the following Laplace-

transforms

L−1{ 1

s2 + 2D(k)s+ ω2
0(k)

} =
e−D(k)t sin(ωd(k) t)

ωd(k)

ωd(k) =
√
ω2
0(k)−D2(k)

L−1{v̄0(k) + ū0(k)(s+ 2D(k))} = ∆̇(t)ū0(k) + ∆(t) (v̄0(k) + 2D(k)ū0(k))

In the undamped case D(k) = 0, ωd(k) = ω0(k). Next, we can use the convolution
theorem of Laplace-transforms to obtain the solution in Fourier (k, t) space:

ū(k, t) =

∫ t

0

e−D(k)τ sin(ωd(k) τ)

ωd(k)

b̄(k, t− τ)

ρ
dτ +

e−D(k)t[v̄0(k)
sin(ωd(k) t)

ωd(k)
+ ū0(k)

(
cos(ωd(k) t)−D

sin(ωd(k) t)

ωd(k)

)
]

Finally we use the convolution theorem of Fourier-transforms to obtain the fol-
lowing integral representation of the solution of equation (1) in (x, t) space.

u(x, t) =
1

2π

∫ +∞

−∞

∫ t

0

e−D(k)τ sin(ωd(k) τ)

ωd(k)

b̄(k, t− τ)

ρ
dτeikxdk

+
1

2π

∫ +∞

−∞

e−D(k)t[v̄0(k)
sin(ωd(k) t)

ωd(k)

+ ū0(k)

(
cos(ωd(k) t)−D(k)

sin(ωd(k) t)

ωd(k)

)
]eikxdk

2. Example

Concentrating on an impact loading with no initial data

b(x, t) = b̂∆(x− x0)∆(t− t0) ↔ b̄(k, t) = b̂e−ikx0∆(t− t0)

u0(x) = v0(x) ≡ 0

we obtain the Green’s function

u(x, t) =
b̂

2πρ

∫ +∞

−∞

e−D(k)(t−t0) sin(ωd(k) (t− t0))

ωd(k)
eik(x−x0)dk
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As an example we assume that both stiffness and damping have a Gaussian dis-
tribution

c(ξ) = ĉe−( ξ
ℓc

)2 ↔ c̄(k) = ĉℓc
√
πe−

1
4k

2ℓ2c

d(ξ) = d̂e
−( ξ

ℓd
)2 ↔ d̄(k) = d̂ℓd

√
πe−

1
4 k

2ℓ2d

Then the square of the damped oscillation frequency is given by

ω2
d(k)

ĉ ℓc/ρ
=

√
π

(
1− e−

κ2(k)
4

)
− λ

π

4

(
1− e−

1
4η

2κ2(k)
)2

κ(k) = k ℓc

η =
ℓd
ℓc

λ =
d̂ ℓ2d
ĉ ℓc ρ

The following plot showed the damped oscillation frequency for η = 1 so both
damping and stiffness distribution have the same length-scale.

-5

0

5

-2

0

2

4

κ

λ

ω2
d(k)

ĉ ℓc/ρ

Figure 1. The effect of damping and wave-number on the nor-
malized oscillation frequency
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Mathematical and numerical analysis of linear peridynamic models

Qiang Du

(joint work with Kun Zhou)

Peridynamics has been proposed by Silling as a new continuum materials theory
which incorporates the modeling of long-range forces within a continuous body
and allows a consistent atomistic to continuum coupling. In this talk, we present
some mathematical and numerical analysis of some linear peridynamic models. We
use some simple setting to illustrate a number of interesting properties associated
with the peridynamic models. Examples include:
1) Basic questions on the well-posedness of Cauchy problems [2] and nonlocal
boundary-initial value problems for time-dependent models, and nonlocal bound-
ary value problems for the steady state models [1];
2) Spectral analysis, coercivity and Poincare inequalities and elliptic smoothing
properties associated with the linear peridynamic operators and their implications;
3) Nonlocal boundary value problems for a two dimensional system that is a non-
local analog of the conventional Navier equation with greased wall boundary con-
ditions; Spectral analysis for the vector-valued peridynamic operator and related
Korn’s inequality for the special nonlocal boundary condition [1];
4) Convergence of solutions to peridynamic model to that of classical PDE models;
5) Error estimates and condition number estimates for the finite dimensional nu-
merical approximations to the linear peridynamic models [1];
6) (Jointly with Gunzburger and Lehoucq) Application of the nonlocal vector cal-
culus framework developed in [3] for the linearized peridynamic state solid model.
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A model for nonlocal advection

James Kamm

(joint work with Richard Lehoucq, Michael Parks)

This work describes an approach to nonlocal, nonlinear advection in one dimen-
sion, extending the usual pointwise concepts to account for nonlocal contributions
to the fluxes. The spatially nonlocal operators that are considered do not involve
derivatives. Instead, they involve integral operators that, in the appropriate limit,
reduce to the familiar local equations. Such nonlocal models are inherently multi-
scale. Many classical local models, e.g., the one-way wave equation or the inviscid
Burgers’ equation, do not possess a length scale and, so, are scale invariant; that is,
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for any rescaling of space, there exists a related re-scaling of the field from which
the original equation is recovered. Thus, these local models do not change their
behavior as a function of the length scale to which they are applied. In contrast,
nonlocal models can be constructed to have identifiable and controllable length
scales, allowing them to manifest different response at different length scales; see
[3] for details.

These ideas of nonlocality motivate the approach upon which peridynamics
is built. Peridynamics [4, 5] is a nonlocal continuum theory developed for and
successfully applied to elastic material response, including phenomena such as
material failure. Instead of the usual peridynamics equations corresponding to
elastic waves, here we consider a nonlocal, nonlinear advection equation. We focus
on model equations that capture the fundamental character of nonlocal advection
phenomena. Our ultimate goal is to develop an approach to nonlocal advection
that is compatible with the peridynamics framework. As a first step, we develop
a nonlocal, inviscid Burgers equation as an nonlinear example of these ideas.

The fundamental representation of advection in one dimension is given by

(1) ut + f(u)x = 0 or ut + f ′(u)ux = 0 ,

where the second equality holds for f differentiable in u and u differentiable in x.
The simplest nonlinear case is given by a flux function quadratic in u, f(u) = u2/2,
yielding the well-known inviscid Burgers equation,

(2) ut +
(
u2/2

)
x
= 0 or ut + u ux = 0 ,

where, again, the second form holds for u differentiable in x. This equation is a
simple yet powerful model for shock phenomena, as it leads to the development of
shocks in finite time for smooth-but-nontrivial initial conditions and forms a basis
for exploring fundamental shock wave concepts, such as the entropy.

The literature contains several instances of what can be broadly termed “nonlo-
cal advection.” None of these approaches, however, couches the advection operator
in a manner consistent with peridynamic theory. Instead, we consider a general-
ization of the flux term and posit the following integro-differential equation:

(3)
ut(x, t) +

∫

R

ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) dy = 0 , (x, t) ∈ R× (0,∞) ,

u(x, 0) = g(x) , x ∈ R ,

where the kernel φ(y, x) (called the micromodulus in peridynamics) is antisymmet-
ric in its arguments: φa(y, x) = −φa(x, y). This equation represents a nonlocal,
nonlinear conservation law for advection. Setting the kernel to the derivative of
the Dirac delta distribution, i.e., −∂δ(y − x)/∂y, it can be shown that this non-
local equation is equivalent to its local counterpart in the sense of distributions.
Moreover, for (3) on any finite interval (a, b), using the antisymmetry of the kernel
and extending the (a, b) to the entire line gives the result that d

dt

∫
R
u(x, t) dx = 0,

demonstrating that
∫
R
u(x, t) dx =

∫
R
g(x) dx is a conserved quantity.
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Regularization of inviscid advection equations plays an important role in the
associated physics and mathematics. We propose a regularization of the (invis-
cid) nonlocal advection equation (3) that is a variation of the convection-diffusion
equation introduced by Ignat and Rossi [1] of the form:

(4)
ut(x, t) +

∫

R

ψ

(
u(y, t) + u(x, t)

2

)
φa(y, x) dy = ǫLu(x, t), (x, t) ∈ R×(0,∞) ,

u(x, 0) = g(x) , x ∈ R ,

where

(5) Lu(x, t) :=
∫

R

(
u(y, t)− u(x, t)

)
φs(y, x) dy , (x, t) ∈ R× (0,∞) ,

with the kernel φs symmetric in its arguments: φs(y, x) = φs(x, y).
We obtain a conservative numerical scheme for 1-D inviscid nonlocal equations

as an analogue of classical conservative numerical schemes. Divide the spatial
domain into cells (xi−1/2, xi+1/2), each of width ∆x, and let time be divided into

discrete intervals (tn, tn+1) of extent ∆t. We propose a nonlocal Lax-Friedrichs
method of the form:

(6) un+1
i =

uni−1 + uni+1

2
− ∆t

∆x
Ψ(xi−1/2, xi+1/2, t

n) ,

where uni denotes the value of u at tn spatially averaged over the cell centered at
xi. We write an exact quadrature for this scheme as
(7)

Ψ
(
xi−1/2, xi+1/2, t

)
=

r∑

j=−r

ωjψ

(
uh(xi+j , t) + uh(xi, t)

2

)
φa(xi+j , xi)(∆x)

2 ,

with

ωj =





0 , j = 0 ,
1 , j = ±1, . . . ,±(r − 1) ,

1/2 , j = −r, r .
(8)

We apply this method to a nonlocal Burgers equation of the form

(9) ut(x, t) +
1

2

∫ π

−π

(
u(y, t) + u(x, t)

2

)2

φa(y, x) dy = 0 , x ∈ [−π, π) ,

with periodic boundary conditions and the kernel given by

(10) φa(y, x) =
1

ε2





−1 , −ε < y − x < 0 ,
0 , 0 = y − x ,
1 , 0 < y − x < ε .

We set u(x, 0) = − sinx, which leads to shock formation for the local Burgers
equation. Preliminary results for the solution of (9), with ε = 0.05, for N =
1000, 2000, 4000, 8000, and 16000 nodes, are shown in Fig. 1. The plot in Fig. 1(a)
suggests that the dissipation of this numerical method strongly damps the solution
structure, while Fig. 1(b) shows that the method is indeed conservative.
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(a) u(x, 2) for various ∆x, ε ≈ 5×10−2 (b)
∫
π

−π
u(x, t) dx for various ∆x, ε ≈ 5×

10−2

Figure 1. For the initial conditions and mesh refinements de-
scribed in the text, Fig. (a) shows the computed results at t = 2,
and Fig. (b) shows the time-dependent value of

∫ π

−π
u(x, t) dx.

The development described here comprises the first steps toward a mathematical
approach for nonlocal advective phenomena consistent with peridynamics theory.
Further details can be found in the report of Parks et al. [2]
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Computational peridynamics

Michael L. Parks

Peridynamics is a nonlocal extension of classical continuum mechanics suitable
for modeling discontinuous phenomena, especially fracture [2, 3]. Whereas clas-
sical continuum mechanics is governed by familiar partial differential equations,
peridynamics is governed by an integro-differential equation. A specific class of
peridynamic models takes the form d2u/dt2 = L(u), along with boundary condi-
tions, where

(1) L(u) := −
∫

Ω∪BΩ

C(x,x′) [u(x′)− u(x)] dx′,
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with Ω ⊂ Rd a bounded domain and BΩ its nonlocal boundary, and C a symmet-
ric kernel function supported only over spherical regions of radius δ about x. We
discuss the impact of this nonlocal formulation upon the computational structure
of the problem, reviewing discretization techniques and solution methods. We
also survey the state-of-the-art in computational peridynamics, discussing avail-
able codes and showing demonstration problems, as well as highlighting current
research directions.

We highlight several peridynamic numerical simulations, including fracture in
fiber-reinforced composites, Taylor impact tests in aluminum, failure in nanofiber
networks, hard sphere impact on a brittle disk, and dynamic brittle fracture in
glass, and fragmentation of a cylinder. These simulation results were produced by
a family of peridynamic codes: EMU, PDLAMMPS, and Peridigm. All of these
codes utilize the so-called “EMU” numerical method: a discretization of the strong
form of the operator utilizing a midpoint quadrature rule in space combined with
a central difference in time [4].

We then discuss development and discretization of the weak form of the peri-
dynamic operator (1). The weak form of (1) takes the form

a(u,v) =
1

2

∫

Ω∪BΩ

∫

Ω∪BΩ

C(x,x′) [u(x′)− u(x)] [v(x′)− v(x)] dx′ dx.

Our main purpose is to investigate the conditioning of the peridynamic oper-
ator as a function of the horizon δ as a first step to developing preconditioning
strategies useful for computational peridynamics at extreme scales. We report a
spectral equivalence result [1] bounding the condition number of the discrete non-
local operator K as κ(K) ≤ O(δ−2). Computational results in the h ≪ δ regime
(where h is the mesh spacing) demonstrate this bound is descriptive, and that
there is at most weak h-dependance.
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Global existence and blow-up results for some problems in nonlinear
nonlocal elasticity

Husnu A. Erbay

(joint work with Nilay Duruk, Saadet Erbay, Albert Erkip)

We study the initial-value problem for a general class of nonlinear nonlocal wave
equations arising in nonlocal elasticity. The model involves a convolution integral
operator with a general kernel function whose Fourier transform is nonnegative.
We show that some well-known examples of nonlinear wave equations, such as
Boussinesq-type equations, follow from the present model for suitable choices of the
kernel function. We establish global existence of solutions of the model assuming
enough smoothness on the initial data together with some positivity conditions on
the nonlinear term. Furthermore, conditions for finite time blow-up are provided.

This presentation summarizes the results obtained in [1, 2, 3]. In those studies
three different problems which model longitudinal, transverse and anti-plane shear
motions, respectively, were considered. The equations are of the form

utt = (β ∗ (u+ g(u)))xx, x ∈ R, t > 0

for longitudinal motion,

u1tt = (β ∗ (u1 + g1(u1, u2)))xx, x ∈ R, t > 0

u2tt = (β ∗ (u2 + g2(u1, u2)))xx, x ∈ R, t > 0

for transverse motion and

wtt =

(
β ∗ ∂F

∂wx

)

x

+

(
β ∗ ∂F

∂wy

)

y

, (x, y) ∈ R
2, t > 0

for anti-plane shear motion. Note that, in the first two equations, u, u1 and
u2 represent strains and the functions g(u) and gi(u1, u2) (i = 1, 2) represent
the nonlinear parts of the strain energy functions. Also the functions gi(u1, u2)
(i = 1, 2) satisfy the exactness condition

∂g1
∂u2

=
∂g2
∂u1

.

In the third equation w is the out-of-plane displacement and the nonlinear function
F is the strain energy function corresponding to the anti-plane motion with F (0) =
0. For isotropic solids F = F (w2

x+w
2
y). The kernel β is assumed to be an integrable

function whose Fourier transform, β̂(ξ), satisfies

0 ≤ β̂(ξ) ≤ C(1 + |ξ|2)−r/2 for all ξ,

where C is a positive constant and r ≥ 2. The number r is closely related to the
smoothness of β and, consequently, as the decay rate r gets larger the regularizing
effect of the nonlocal behavior increases.
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A non-local p-laplacian

Julio D. Rossi

(joint work with Fuensanta Andreu, José M. Mazón, Julián Toledo)

We report the results in [1]. We have two main goals. As a first goal, we study
the following nonlocal nonlinear diffusion problem with homogeneous Neumann
boundary condition



ut(t, x) =

∫

Ω

J(x− y)g

(
x+ y

2

)
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy,

u(x, 0) = u0(x),

where g ∈ L∞(RN ), g ≥ 0 a.e. in R
N , 1 ≤ p < +∞, Ω ⊂ R

N is a bounded smooth
domain and the kernel J satisfies

(HJ) J : RN → R is a nonnegative continuous radial function with compact
support, J(0) > 0 and

∫
RN J(z)dz = 1.

As a second goal, we also study the local counterpart, that is, the following
local diffusion equation with homogeneous Neumann boundary condition




ut = div
(
g|∇u|p−2∇u

)
, in ]0, T [×Ω,

g|∇u|p−2∇u · η = 0, on ]0, T [×∂Ω,
u(x, 0) = u0(x), in Ω,

where η is the unit outward normal on ∂Ω.
We prove that these two problems are related in the following way: solutions

of the nonlocal problem converge to solutions of the local one when the kernel J
is rescaled in a suitable way.

In these two problems we deal with a non-homogeneous diffusion coefficient,
given by the function g, that we assume to be bounded and nonnegative, but we
include here the case in which g vanishes in a subset of Ω that can even have
positive measure. In this case we face new technical difficulties since we lost the
coercivity of the associated functional in the usual Sobolev or Lebesgue spaces.
These difficulties are overcome using weighted Sobolev or Lebesgue spaces with
appropriate hypothesis on g that involve weights in Muckenhoupt’s Ap classes.

Observe that for homogeneous diffusion, g = 1, the operator in the local problem
is given by div

(
g|∇u|p−2∇u

)
= div(|∇u|p−2∇u) = ∆pu, that is, the well-known

p-Laplacian of u. Also note that when p = 2 both problems become linear. In
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the case g = 1 the study of such problems has been done in [2] for the nonlocal
problem while the local problem is a well known classical problem. Moreover, in
this case, it is proved in [2] that under an appropriate rescaling of the kernel J ,
the solutions of the rescaled nonlocal problems, when the scale parameter (that
measure the size of the support of J) tends to zero, converge to the solutions of
the local problem.

One of the main results of [1] is to prove a similar convergence result where
g can vanish in a subset of Ω of positive measure. This fact turns the whole
issue more involved since the nonlocal problem, in contrast with what happens
in general for the local one, takes into account the part of the domain where the
diffusion coefficient g is null, that is, this part of the domain plays a role in the
nonlocal diffusion case.

The case p = 1 is somehow different from the case p > 1. In fact, for p = 1 we
need to work in weighted BV spaces (that is, weighted bounded variation spaces),
an issue that forces us to introduce some delicate results from measure theory.
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Dirichlet’s principle and wellposedness of steady state solutions in
peridynamics

Petronela Radu

(joint work with Brittney Hinds)

This talk is concerned with Dirichlet’s principle in the nonlocal setting of a peri-
dynamic model with boundary conditions imposed on a nonzero volume collar
surrounding the domain. The integration by parts technique used is adapted from
the classical case and is based on nonlocal versions of the Green and Gauss identi-
ties available in [3]. The nonlocal energy functional associated with this “elliptic”
type system exhibits a weakly singular kernel and its coercivity is shown by em-
ploying a nonlocal Poincare’s inequality. The well-posedness of this steady state
diffusion system follows from the existence and uniqueness of minimizers for the
energy.

Consider the following nonlocal “elliptic” boundary value problem

(1)

{
L(u)(x) = b(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ,
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where

(2) L(u)(x) := 2

∫

Ω∪Γ

(u(x′)− u(x))µ(x, x′) dx′,

Ω denotes an open bounded subset of R
n, and Γ ⊂ R

n\Ω denotes a “collar”
domain surrounding Ω which has nonzero volume. The kernel µ(x, x′) denotes a
positive, symmetric function of its arguments, with a singularity around x = x′

which records the interaction of x ∈ Ω with its neighboring points x′ from the
horizon of x. To account for the interaction of x with points outside the domain
Ω, as in the case when x ∈ ∂Ω, we allow x′ to belong to the collar domain Γ which
contains the horizons Hx as x moves along ∂Ω.

The prototype kernel µ(x, x′) encountered in peridynamics models has the form

(3) µ(x, x′) =

{
1

|x−x′|β , for |x− x′| < δ,

0, for |x− x′| ≥ δ,

where β > 0. With this form for µ the natural framework to study regularity
properties of the operator L for β > n is that provided by fractional Sobolev
spaces (see [1]). For β < n the kernel is weakly singular and the derivation of
classical regularity results can not be done following standard techniques. An
important factor in this analysis is played by the Poincaré’s inequality where L2

bounds of the nonlocal gradient do not imply higher integrability for the function,
as they do in the classical case.

We show that the minimizers of the energy functional associated with the above
problem

(4) F [u] =
1

2

∫

Ω∪Γ

∫

Ω∪Γ

(u(x′)− u(x))2µ(x, x′)dx′dx+

∫

Ω

b(x)u(x)dx,

satisfy (1) and conversely, any solution of (1) is a minimizer for F . This result
then enables us to prove the wellposedness of the system (1) by showing existence
and uniqueness of minimizers with direct methods of Calculus of Variations. As in
the classical setting the existence of minimizers relies on convexity and coercivity
properties of the integrand. For our functional, the convexity is immediate since
the integrand is quadratic, and this ensures the necessary weakly lower semicon-
tinuity. The coercivity property requires the use of the aforementioned nonlocal
Poincaré type inequality which is proven in [2].

From discussions with other participants in the workshop several problems sur-
faced regarding future directions in the mathematical theory of peridynamics. Es-
tablishing elliptic-type properties (such as maximum principle, Harnack inequal-
ity) is one immediate goal of the authors; also, the derivation of regularity results
is yet another important direction as these results will provide a valuable contri-
bution in numerical computations of peridynamic models.
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A probabilistic interpretation of nonlocal diffusion

Nathanial Burch

(joint work with Richard B. Lehoucq)

We present the nonlocal diffusion equation,

ut(x, t) =
1

λ

∫

R

(
u(y, t)− u(x, t)

)
φ(x − y) dy,(1)

as the master equation for a Markovian continuous time random walk (CTRW),
i.e., a compound Poisson process

Yt =

Nt∑

k=1

Rk.(2)

In (1) and (2), φ is a symmetric probability density function, λ > 0 is the mean

wait-time, Nt is a Poisson process with intensity 1/λ, and Rk
iid∼ φ are independent

of Nt. We review the results of [1], which demonstrates a relationship of (1) with
the fractional diffusion equation

vt(x, t) = −(−∆)α/2v(x, t),(3)

under suitable assumptions on φ. In turn, we show that the underlying process of
(1) converges in distribution to that of (3), i.e.,

Yt
d→ Sα

t ,

where Sα
t is a α-stable process.

Following [1, 5], we augment (1) with volume constraints so to restrict the
nonlocal diffusion to a bounded domain. In [2], we explore the relationship of
these so-called nonlocal boundary value problems to fractional diffusion restricted
to a bounded domain. The work in [3] demonstrates that the nonlocal boundary
value problems are the master equations for Markovian CTRWs restricted to a
bounded domain (and with appropriate boundary conditions). This is achieved
by comparing numerical solutions of the former to kernel density estimates from
simulations of the latter.

We then incorporate non-Markovian effects via the memory kernel Λ in

ut(x, t) =

∫ t

0

Λ(t− t′)

∫

R

(
u(y, t′)− u(x, t′)

)
φ(x − y) dy dt′.(4)

The master equation (4) includes (1) and the nonlocal Cattaneo-Vernotte equation

ut(x, t) +
τ

2
utt(x, t) =

1

β

∫

R

(
u(y, t)− u(x, t)

)
φ(x− y) dy,(5)
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as special cases. Augmenting (4), in particular (5), with volume constraints, as
expected, are shown in [3] to be the master equations for non-Markovian CTRWs
on bounded domains.

The equation (1) also arises from a special case of the Lévy-Khintchine decom-
position of an infinitely divisible distribution.
Theorem: Let b = 0, c = 0, and ν be such that

ν(−x) = ν(x) and

∫

R

(1 ∧ |x|2)ν(x) dx <∞.

Then, there is a Lévy process Lt (compound Poisson and square-integrable mar-
tingale processes) such that the characteristic function of Lt satisfies

ϕLt
(ξ) = exp

(
t

(∫

|x|≥δ

(
eiξx − 1

)
ν(x) dx+

∫

|x|<δ

(
eiξx − 1

)
ν(x) dx

))

and, hence, the master equation is

ut(x, t) =

∫

R

(
u(y, t)− u(x, t)

)
ν(x− y) dy.

We split into the following cases:

(a)
∫
R
ν(x) dx < ∞, a.s. a finite number of steps on every compact interval,

the process has finite activity, no smoothing;
(b)

∫
R
ν(x) dx = ∞, a.s. an infinite number of steps on every compact interval,

the process has infinite activity, (fractional) smoothing;
(i)
∫
R
|x|ν(x) dx <∞, sample paths have finite variation;

(ii)
∫
R
|x|ν(x) dx = ∞, sample paths have infinite variation.

Thus, we have established a relationship between the smoothing of the operator
in [4] and the activity of the underlying stochastic process.
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Coarse-graining atomistic models at finite temperature

Frédéric Legoll

(joint work with X. Blanc, C. Le Bris, C. Patz)

We consider atomistic systems at finite temperature, modelled within the frame-
work of statistical mechanics. Macroscopic quantities are defined as averages of
some functions, the so-called observables, that depend on all the variables in the
system, over the Boltzmann measure:

(1) 〈Φ〉 =

∫

RN

Φ(X) exp(−βV (X)) dX
∫

RN

exp(−βV (X)) dX

,

where Φ is the observable of interest, β is proportional to the inverse of the tem-
perature, and V (X) is the potential energy of the system, depending on the vector
X ∈ R

N , that represents all the atom positions.
For simple one-dimensional chains of atoms, we first show how to compute the

average length of the system when we impose an external force, in the thermo-
dynamic limit. The observable Φ(X) is thus proportional to XN − X0, and we
compute the limit of (1) when N → ∞. Conversely, we also show how to compute
the internal force, when the elongation of the system is prescribed. See [1, 3] for
more details. These results are obtained using standard tools of probability theory,
such as the law of large numbers and large deviation principles, that characterize
the behaviour of a sum of independent identically distributed random variables
1
N

∑N
i=1 Yi, when N → ∞.

It turns out that, in the bulk limit N → ∞, the two relations we have ob-
tained (elongation as a function of the force and vice-versa) are inverse one to
each other, and thus represent the macroscopic constitutive law, parameterized by
the temperature.

We next turn to dynamics, when the evolution of the system is modelled by the
overdamped Langevin equation:

dXt = −∇V (Xt) dt+
√
2β−1 dWt,

where Wt is a standard N -dimensional Brownian motion. In addition, the last
atom of the chain is submitted to an external, time dependent, force. Upon as-
suming that this force varies on a slow time scale compared to the intrinsic time-
scale of the system (i.e. time to return to thermal equilibrium), we show that, at
the macroscopic scale, the system evolves quasi-statically. This result is obtained
using approximation tools developed in [2].

Numerical results illustrate the obtained results.
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Connecting peridynamic models and coupling local and nonlocal
systems

Pablo Seleson

(joint work with Max Gunzburger and Michael L. Parks)

The peridynamics (PD) theory was proposed as a reformulation of classical
continuum mechanics in [1] where a model for pairwise interactions called bond-

based PD was presented. However, the bond-based PD model can only represent
materials having a Poisson’s ratio of ν = 1/4. As an approach for generalizing
PD to the representation of materials with a general Poisson’s ratio, a PD model
with similar structure to the embedded-atom model (EAM) in molecular dynamics
was proposed also in [1]; we refer to it as the EAM-like PD model. Another
PD model of interest is the so called prototype microelastic brittle (PMB) which
was presented in [2] for the purpose of simulating fracture dynamics in brittle
materials. However, a framework for general deformations in PD was first proposed
in [3] under the state-base PD formulation; a model called linear peridynamic solid

(LPS) is introduced in [3] as well. We derive relations between state-based and
bond-based PD constitutive models, i.e., EAM-like, PMB, and LPS, and present
a hierarchy of models as illustrated in Figure 1.

The connections established in this work between PD models are possible by
using nonstandard influence functions in state-based PD; influence functions are
nonnegative scalar-valued functions ω〈·〉 : Rd → R, defined over some neighbor-
hood, mapping PD bonds to scalar values. This motivates to study of the role of
influence functions in PD. We can describe some of the properties that influence
functions may have as follows:

- Allow for a bond-breaking mechanism.
- Impose a cutoff radius for the nonlocal model.
- Modulate the strength of nonlocal interactions.

Generally speaking, the smaller the support of the influence function, the more
local the PD model, so that even for a fixed horizon we can obtain local and
nearly local interactions. An illustration of this effect is shown in Figure 2 for one-
dimensional wave propagation using p-dependent influence functions for which the
interactions between further particles become weaker for larger values of p, with p
a parameter. For p = 20, the results are effectively those obtained for a classical
local model.

In addition to establishing connections between PD models and generalizing the
role of influence functions in state-based PD, we investigate a domain decomposi-
tion approach for nonlocal multimaterial systems with variable interaction ranges,
for the case of static problems involving scalar fields. We study analytically and
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PMB bond-based PD 

Bond-based PD 

State-based PD 

EAM-like PD 

LPS state-based PD 
Silling & Askari 

Silling et. al 

Figure 1. Relationships between peridynamics (PD) models. In
Silling et al. [3], it was shown that bond-based PD is a special case
of the state-based PD model. We demonstrate that the EAM-like
PD model is an instance of the state-based PD model. Further-
more, we derive the LPS model [3] from the EAM-like PD model
(cf. [5]), and the PMB model, presented in Silling & Askari [2],
from the LPS model (cf. [4]). This establishes a partial taxonomy
of PD constitutive models.

(a) p = 0 (b) p = 3 (c) p = 20

Figure 2. Density evolution of one-dimensional peridynamic
models, for the evolution of an initial pulse, using a p-dependent
influence function. The x-axis represents the reference configura-
tion and the y-axis time (from top to bottom); the colors represent
density. We observe less dispersion for higher values of p, where
dispersion is numerically manifested as broadening of the lines.

numerically differences between local and nonlocal systems and show convergence
of the nonlocal model to its local counterpart, in the limit where the horizons cor-
responding to the nonlocal interactions become very small. Particularly, we focus
on the coupling of local and nonlocal models and derive appropriate transmission
conditions.
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Variational theory for nonlocal boundary value problems

Tadele Mengesha

(joint work with Burak Aksoylu)

Motivated by the scalar peridynamics equations, we develop a variational theory
for the nonlocal linear boundary value problem Lu = b on Ω, where L is the
nonlocal operator given by

L(u)(x) := −
∫

Ω

C(x − x′) (u(x′)− u(x)) dx′

and u satisfying some volume constraints. The domain Ω ⊂ R
d is assumed to

be bounded with nonlocal boundary, BΩ ⊂ R
d \ Ω, and Ω = Ω ∪ BΩ. The varia-

tional theory will enable us prove well-posedness results for the weak formulation
of nonlocal boundary value problems with Dirichlet and Neumann boundary con-
ditions. Our results are applicable when C is radial, locally integrable, compactly
supported and C(r) > 0 on [0, δ).

The linear operator L : L2(Ω) → L2(Ω), being of convolution type, is bounded

and self adjoint. Thus given a closed subspace V of L2(Ω), proving a nonlocal
Poincaré type inequality of the form

(Lu, u)
L2(Ω)

≥ λ‖u‖2
L2(Ω)

, for all u ∈ V ,

for some λ > 0, is sufficient for the equation Lu = b to have a unique variational
solution in V corresponding to b ∈ L2(Ω). Indeed in this case the solution is the
minimizer of the quadratic functional E(u) = (Lu, u)L2 − (b, u)L2 over V .

Clearly stated our achievements are the following.

Theorem 1: Given the closed subspace VD := {v ∈ L2(Ω) : v = 0 on BΩ}
where |BΩ| > 0 and Ω is connected, the variational problem: given b ∈ L2(Ω)
find u ∈ VD such that (Lu, v) = (b, v) for all v ∈ VD has a unique solution which
satisfies the inequality

‖u‖L2 ≤ Λ‖b‖L2,

for some constant Λ = Λ(δ) > 0.
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The nonlocal Poincaré’s inequality corresponding to VD follows from a slightly
modified argument of [4].

Similarly, using a nonlocal Poincaré’s inequality proved in [3] a well posedness

for the variational problem corresponding to the closed space VN := {v ∈ L2(Ω) :∫
Ω
vdx = 0} can be established. The kernel C will be taken from a restricted class,

namely C(r) = γ(r/δ) where γ is a nonnegative, radial and compactly supported
such that γ(r)rd−1 ∈ L1

loc([0,∞)) and satisfying the moment condition
∫ ∞

0

γ(r)rd+1 dr = 1.

Theorem 2: For C in the above class, the variational problem: given b ∈ L2(Ω)
find u ∈ VN such that (Lu, v) = (b, v) for all v ∈ VN has a unique solution which
satisfies the inequality

‖u‖L2 ≤ Λ‖b‖L2,

for some constant Λ = Λ(δ) > 0.
Finally we can quantify (asymptotically) the smallest and largest eigenvalues

of the operator L in terms δ.
Corollary [Spectral equivalence]: For C in the above class, there exist δ0 > 0,

λ = λ(Ω, δ0) and λ = λ(γ, d) such that for all 0 < δ < δ0 and u ∈ VD or u ∈ VN ,
we have

(1) λ δd+2 ‖u‖2
L2(Ω)

≤ a(u, u) ≤ λδd‖u‖2
L2(Ω)

.

The spectral equivalence (1) leads to a remarkable conditioning result, namely
that the condition number of the discretized operator can be bounded indepen-
dently from the mesh size; κ(K) ≤ cδ−2, where K is a stiffness matrix. See [2] for
a special case and see [5] for an estimate involving the mesh size.
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