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Introduction by the Organisers

The workshop Nonlinear Least Squares in Shape Identification Problems, organ-
ised by Marc Dambrine (Pau), Frank Hettlich (Karlsruhe) and Roland Potthast
(Berkshire) was held January 16th–January 22nd, 2011. This meeting was rather
well attended with over 14 participants with strong european representation since
it suffered late cancellations caused by the events in Tunisia. This workshop was a
nice blend of researchers with various backgrounds and generated fruitful scientific
discussions mixing different points of view.

The typical question addressed within the workshop is the inverse problem of
determining an inclusion frommeasurements on the boundary of a domain. To that
end, many strategies have been developed. Some approaches are based on shape
optimization: for a guessed inclusion, considered as the variable, is associated a
cost related to the measurements that has to be minimized. Some approaches are
direct like the factorization method: a criterion is defined to check if a point belongs
or not to the unknown inclusion. However, the problem is severely ill-posed:
the unknown does not depend continuously on the measurements. Hence, every
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method has to face this difficulty and requires adapted regularization methods in
order to find a numerical approximated solution.

The mini-workshop aimed at mixing people from different backgrounds using
various methods to address the question of shape identification in order to discuss
the connections between the approaches. Hence, the given talks can be grouped
in three main themes:

• iterative methods based on a shape calculus for the detection of objects,
• direct methods for the detection,
• regularization methods for this inverse problem.

The first theme was covered by the presentations of Marc Dambrine, Eric Darri-
grand, Helmut Harbrecht, Frank Hettlich, Barbara Kaltenbacher and Maria-Luisa
Rapun. Furthermore, Corinna Burkard, Thomas Fiedler, Andreas Kirsch, Gen
Nakamura and Roland Potthast were the speakers for the second theme. Finally,
Barbara Kaltenbacher, Armin Lechleiter and Andreas Rieder gave talks on the last
theme. Frédérique Le Louër gave a talk mixing both the first and third themes.

Some free discussion meetings were organized that allows the meeting partic-
ipants to gather some open questions that seem of importance to the group and
could be new research directions. For example, we discussed and selected among
others the following questions:

• of the connections between the Radon transform of characteristic functions
and the differentiation with respect to the domain,

• of recovering time-dependent objects; of shape derivatives for parabolic
problems and for transmission problems,

• of obtaining convergence theories for dynamic Tikhonov regularization and
for inexact Newton method under more reasonable assumptions,

• of the definition of resolution in electrical impedance tomography or in
inverse scattering.

The organizers and participants of the mini-workshop are grateful to the Mathe-
matisches Forschunginstitut Oberwolfach for providing a very pleasant and inspir-
ing setting for the workshop allowing us to focus on the mathematical questions
of importance.
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Abstracts

The D.O.R.T. method for electromagnetic inclusions

Corinna Burkard

(joint work with Karim Ramdani)

Based on the time-harmonic far field model for small dielectric inclusions in 3D,
we study the so-called DORT method1. The main observation is to relate the
eigenfunctions of the time-reversal operator to the location of small scattering
inclusions. For non penetrable sound-soft acoustic scatterers, this observation has
been rigorously proved for two and three dimensions by Hazard and Ramdani
in [6] for small scatterers. In this talk, we consider the case of small dielectric
inclusions with far field measurements. The main difference with the acoustic case
is related to the magnetic permeability and the related polarization tensors. We
show that in the regime kd→ ∞ (k denotes here the wavelength and d the minimal
distance between the scatterers), each inhomogeneity gives rise to -at most- 4
eigenvalues (one due to the electric contrast and three to the magnetic one) while
each corresponding eigenfunction generates an incident wave focusing selectively
on one of the scatterers. Moreover, recent results concerning both the closed and
the open time-reversal mirror are presented. The method has connections to the
MUSIC algorithm known in Signal Processing and the Factorization Method of
Kirsch ([7]).

1. Introduction

We consider a three-dimensional homogeneous electromagnetic medium de-
scribed by a dielectric permittivity ε0 > 0 and a magnetic permittivity µ0 > 0. The
time dependence is supposed to be of the form e−iωt and will therefore be implicit.
We assume that a local inhomogeneity is embedded in the above medium which
is constituted of a collection of M homogeneous small imperfections of diameter δ
and centers sp ∈ R3, p = 1, . . . ,M ,

Bδ =

M⋃

p=1

(sp + δBp),

where the reference inhomogeneity Bp ⊂ R3, p = 1, . . . ,M is a smooth and
bounded domain containing the origin. We assume that ε, µ ∈ L∞(R3), inf

x∈R3
ε(x) >

ε− > 0 and inf
x∈R3

µ(x) > µ− > 0 are respectively the real valued functions describ-

ing the dielectric permittivity and the magnetic permittivity of the perturbed
medium. We assume that there exist positive constants (εp, µp), p = 1, . . . ,M ,
such that {

εδ(x) = ε0, µδ(x) = µ0, ∀x ∈ R3 \ Bδ,

εδ(x) = εp, µδ(x) = µp, ∀x ∈ (sp + δBp).

1DORT is the French acronym for “Diagonalization of the Time Reversal Operator”
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We further assume that the minimal distance d := min1≤p<q≤M |sp − sq| is large
compared to the wavelength λ = 2π

k . We define respectively by uδ,α and vδ,α the
total and scattered fields associated to the scattering problem of the incident plane
wave uαI (x) := eikα·x, x ∈ R3, of direction α by the small imperfections Bδ,

div

(
1

µδ
∇uδ,α

)
+ ω2εδuδ,α = 0 in R3, and vδ,α := uδ,α − uαI is outgoing.

The far field asymptotics of vδ,α in the direction β ∈ S2 reads vδ,α(β|x|) = eik|x|/
|x|Aδ(α,β) +O

(
1/|x|2

)
, where Aδ(α,β) is the scattering amplitude.

2. Selective focusing for closed time reversal mirrors

The results of this section are based on the far field asymptotics for the dielectric
scattering problem, see the following Theorem (compare [1, Theorem 2]).

Theorem 2.1. For all p ∈ {1, . . . ,M}, we set µ̃p = µ0 in R3 \Bp and µ̃p = µp in
Bp. Furthermore, let Φp,j, for all 1 ≤ j ≤ 3, be the unique solution of

div (µ̃p(x)∇Φp,j(x)) = 0 in R3, lim
|x|→∞

Φp,j(x)− xj = 0.

Let Mp = (Mp
i,j)1≤i,j≤3 be the polarization tensor associated to the inhomogeneity

Bp given by Mp
i,j =

(
µ0

µp

) ∫
Bp

∂Φp,j

∂xi
dx, ∀1 ≤ i, j ≤ 3. Then, as δ → 0, the scatter-

ing amplitude Aδ(·, ·) admits the asymptotics Aδ(α,β) =
(
k2

4π

)
δ3A0(α,β)+o(δ3),

where

(1) A0(α,β) =

M∑

p=1

eik(α−β)·sp

[(
µp
µ0

− 1

)
(β ·Mpα)−

(
εp
ε0

− 1

)
|Bp|

]
.

The asymptotics holds uniformly for all α,β ∈ S2.

By F 0 : L2(S2) −→ L2(S2) we denote the integral operator corresponding
to A0, i.e. F 0f(β) =

∫
S2 A

0(α,β) f(α) dα. By the representation formula

of A0 we obtain that F 0 is normal and thus the eigenfunctions of the time-
reversal operator T 0 = (F 0)∗F 0 = F 0(F 0)∗ and F 0 are identical. Due to for-
mula (1), F 0 has at most 4M eigenvalues since its range satisfies RanF 0 ⊂⊕M

p=1 Span
{
ep,β 7→ (β · Cjp) ep, j = 1, 2, 3

}
, in which ep(β) = e−ikβ·sp and Cjp ,

j = 1, 2, 3, denotes the column j of Mp. We are now able to derive an expression
for eigenfunctions of T in the regime kd→ ∞.

Theorem 2.2. For all p = 1, . . . ,M , let ep ∈ L2(S2) be defined by ep(α) =
e−ikα·sp , and let gp ∈ L2(S2) be defined by gp,ℓ(α) = hp,ℓ(α)ep(α), ℓ = 1, 2, 3,
where the function hp,ℓ is an eigenfunction (with eigenvalue ζp,ℓ) of the self-adjoint
integral operator Mp ∈ L(L2(S2)) given by

Mph(β) :=

∫

S2

(β ·Mpα)h(α) dα.

We have the following two results.
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(i) As kd→ ∞, the functions ep satisfy T 0ep = (λεp)
2ep+O

(
(kd)−N

)
, ∀N ∈

N, with λεp = −4π (εp/ε0 − 1) |Bp|.

(ii) As kd → ∞. the functions gp,ℓ satisfy T
0gp,ℓ = (λµp,ℓ)

2gp,ℓ +O
(
(kd)−N

)
,

∀N ∈ N with λµp,ℓ = (µp/µ0 − 1) ζp,ℓ.

Given a fixed p in {1, . . . ,M}, let us consider the incident Herglotz associated
with a density ep, then

uI,p(x) =

∫

S2

eikα·(x−sp) dα = 4πj0(k|x− sp|).

Since j0(s) = sin(s)/s, s ∈ R+, the incident field uI,p decreases like 1/dist(x,Bp).
Regarding the eigenfunctions gp,ℓ, the incident Herglotz wave is of the form

uI,p,ℓ(x) =

∫

S2

eikα·(x−sp)hp,ℓ(α) dα,

which is an oscillatory integral with function hp,ℓ. From the stationary phase
theorem, it follows that for kd→ ∞, uI,p,ℓ = O((kd)−N ), ∀N ∈ N. Thus, in both
cases, the eigenfunctions corresponding to the scatterer p focus on sp in the sense
that the corresponding incident field decreases like O((kd)−1) as kd→ ∞.

3. Remarks on selective focusing for open time reversal mirrors

The talk finishes with some observations concerning the open time reversal mir-
ror (open TRM). First, we observe that the above theory is still valid for particular
shapes of the TRM. Furthermore, shapes for the open TRM which can be used for
selectively focussing properties seems to be connected to the polarization tensors.

Acknowledgements Support for this work was provided by the ANRMicroWave2

and the FRAE (Fondation de Recherche pour l’Aéronautique et l’Espace)3.
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Stable and unstable problems in shape optimization

Marc Dambrine

The numerical procedures in shape optimization require a certain stability of the
problem set at the continuous level. In order to establish that a minimizer is a local
strict minimum of an objective function, the second order calculus is the natural
tool. However, usually it turns out that its non negativeness is not sufficient to
insure the stability. In classical optimization, the second order condition are stated
as follows . If f : E → R is C2 and x ∈ E a minimizer of f , then Taylor-Young’s
formula at x provides

f(x+ h) = f(x) +
1

2
D2f(x).[h, h] + O(‖h‖2)

If D2f(x).[h, h] dominates O(‖h‖2) , then f has a local strict minimum in x.
This can be achieved by assuming that the hessian at the critical point D2f(x)
is coercive. In shape optimisation the parameter h is a vector field generating
a deformation of a domain. In this talk, I present the object shape hessian and
explain on some examples how its sprectral properties affect the stability issue.

A first case encountered in eigenvalue optimization, magnetic shaping of liquid
metal or optimal design for a mechanical structures is when the hessian is coercive.
A significant example is the minimization of Dirichlet energy under a volume
constraint. The problem can be written as : Find Ω∗ = argmin J(Ω) with

J(Ω) =
1

2

∫

Ω

|∇uΩ|
2 −

∫

Ω

kuΩ,

under the constraints supp k ⊂ Ω, |Ω| = v and uΩ solves the BVP

−∆u = k in Ω, u = 0 on ∂Ω.

At a critical shape of that problem, the hessian is

D2J(Ω).[h.n,h.n] = 2λ

∫

∂Ω

h.n Λ(h.n) +H(h.n)2;

where λ is the Lagrange multiplier of the volume constraint, H is the mean curva-
ture of ∂Ω and Λ is the Dirichlet-to-Neumann operator H1/2(∂Ω) → H−1/2(∂Ω).
When Ω convex for instance, it holds

D2J(Ω).[h.n,h.n] ≥ C‖h.n‖2H1/2(∂Ω)

but, in Taylor’s formula O(‖h.n‖2

C2(∂Ω)
) occurs. A two norm discrepancy problem

appears: the hessian in coercive for a weak norm (‖.‖H1/2(∂Ω)) with respect the

norm of differentiability (‖.‖C2(∂Ω)) . In this particular case, it can be overcome
thanks to the continuty result for the shape hessian proved in [1]. There are η0 > 0
and a modulus of continuity ω : (0, η0] → (0,+∞) such that ∀η ∈ (0, η0] and
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∀Θ ∈ C2,α with ‖Θ− Id‖2,α ≤ η diffeomorphism Rd → Rd, there is a deformation
field h[Θ] such that

|e′′Θ(t)− e′′Θ(0)| ≤ ω(η)‖bfh[Θ].n‖2H1/2(∂Ω)

with e(t) = E(ΦΘ,t(Ω0)). Then, a weakly coercive hessian insures stability and K.
Eppler, H. Harbrecht and R. Schneider have shown a corresponding result for the
associated numerical scheme([2]).

A worst case appears when using least squares type (or Kohn-Vogelius like)
objective functions to recover inclusion(s) ω inside a domain Ω from measurements
made on the boundary ∂Ω. For example, if a perfectly insulating inclusion is to
be detected, the problem can be written as: Find ω such that the overdetermined
boundary value problem

−∆u = 0 in Ω \ ω,

u = f on ∂Ω,

∂nu = g on ∂Ω,

∂nu = 0 on ∂ω,

has a solution. A Least Squares formulation is to find ω that minimizes

JLS(ω) =
1

2

∫

∂Ω

|uN − f |2;

where the state uN is harmonic in Ω \ ω with the boundary conditions ∂nuN = g
on ∂Ω, ∂nuN = 0 on ∂ω and a normalization condition is imposed. When ([3])
one computes the hessian at a critical shape ω∗, one gets

D2JLS(ω
∗).[h,h] =

∫

∂Ω

(u′N )2.

This is a square, it is non negative so we could expect stability but the dependency
in the right parameter h, the deformation field, is not explicit. Once it is explicited,
one checks that the Riesz representative H1/2(∂ω∗) → H−1/2(∂ω∗) of the hessian
D2JLS(ω

∗) is compact. In particular, the hessian is not coercive.
To understand what compactness means here, let us take the example of a

starshaped domain ω in dimension two. Assume that ∂ω is parametrized by

∂ω =
{(

g0
g1

)
+

(
g2 +

∞∑

k=1

(g2k+1cos(k t) + g2k+2sin(k t))

)(
cos(t)
sin(t)

)

=

∞∑

k=0

gkhk(t); t ∈ (0, 2π)
}
,

Then, for all n ∈ N, ∃Cn > 0

∀h ∈ Span(hk)0≤k≤2n+2, D
2J(ω∗) · (h,h) ≥ Cn |h|

2,

but Cn → 0 which explains the numerical need for regularization and for the
methods developed by the inverse problem community. Such a situation is generic
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in geometrical inverse problem and can also be encountered in some optimal design
problem in mechanical engineering [4].
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Surface and Volume Integral Equations for the library Mélina++

Eric Darrigrand

(joint work with Corinna Burkard, Marion Darbas, El-Hadji Koné,
Frédérique Le Louër, Daniel Martin, Rania Rais)

Inverse scattering problems and antennas design are fields that also require the
consideration of the related direct problem which is in our case wave propagation in
exterior domains. This subject has been solved using many different strategies like
finite elements using an artificial boundary or integral equations or combinations
of both volume finite elements and integral representations.

The library Mélina++ ([1]) has been developed mainly by Daniel Martin at
the university of Rennes 1. Mélina++ is a free Finite Element library organized
such that the user only needs to write a main function that describes the variational
formulation of the problem to be solved. The library can be extended to almost
any equation that admits a Galerkin discretization. In particular, the usual surface
and volume integral operators were integrated in Mélina++ in order to enable
one to deal with any of the following strategies for the resolution of scattering
direct problems:

· Coupling of volume finite elements and integral representation.
· Surface integral equations.
· Volume integral equations.

In the following, we then describe three techniques that were implemented or
that are under implementation using the library Mélina++ for the resolution of
the direct problem related to acoustic or electromagnetic wave propagation. A
first example explains the coupling of volume finite elements and integral repre-
sentation. A second one shows a preconditioning strategy for the surface integral
equation based on On Surface Radiation Conditions (OSRC). The last example
concerns a volume integral equation considered within lens-antenna design.
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As a first example, we consider the Helmholtz equation in exterior domain Ω
delimited by the boundary Γ of an obstacle and an artificial boundary Σ.

Γ Σ
Ω

With k the wavenumber, uinc the incident wave andG(x, y) = eik|x−y|

4π|x−y| the Helmholtz

fundamental solution, we solve the following problem with f = −∂nu
inc|Γ:





∆u+ k2u = 0 in Ω,

∂nu = f on Γ,

(∂n − ik)u(x) = (∂n − ik)

∫

Γ

(
u(y)∂nyG(x, y)− f(y)G(x, y)

)
ds(y) on Σ.

by using a combination of Finite Elements on the volume Ω and an integral rep-
resentation based on Jami and Lenoir work ([2]). The integral representation
expresses the unknown on Σ from itself on Γ and gives an exact condition on the
artificial boundary. A current work with N. Gmati, D. Martin and R. Rais, con-
sists in studing the resolution of this problem as a Schwarz algorithm ([3]) and
establishing the impact of the Fast Multipole Method applied to this configuration.
This example involves the libraryMélina++ which provides with integrands like:

ik

∫

Σ

∫

Γ

u(y)∂nyG(x, y)ds(y)v(x)ds(x)

defined thanks to Mélina++ command:
NVTermMatrix nDyGF(Gamma,u_h,Sigma,u_h, ngrady(GF),"nDyGF");

Here u_h defines the unknown discretization and GF is the Green function.

A second example is the Brakhage-Werner integral formulation
(
1

2
−K − ηD

)
ϕ = −∂nu

inc|Γ on Γ

where

Kϕ(x) =

∫

Γ

∂nyG(x, y)ϕ(y)ds(y) and Dϕ(x) = −

∫

Γ

∂nx∂nyG(x, y)ϕ(y)ds(y) .

This formulation is used for the resolution of the exterior Helmholtz equation
around the obstacle Ω− of boundary Γ defined in the following picture

Γ

Ω+

Ω−
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and where the incident field is denoted by uinc. A preconditioned version was
established by X. Antoine and M. Darbas ([4]) using OSRC techniques:

(
1

2
−K −DṼ

)
ϕ = −∂nu

inc|Γ on Γ

where Ṽ is a local approximation to the Neumann-to-Dirichlet operator. The
technique leads to an efficient preconditioning of the integral equation and gives
impressive numerical results. It can be interpreted as a generalization of the choice
of an optimal parameter for the Brakhage-Werner integral formulation due to R.

Kress: Ṽ = ηopt = −i/k. A work in progress with M. Darbas will involve the li-
brary Mélina++ in order to investigate the impact of the Fast Multipole Method
when it is applied to this context and make sure that it does not reduce the pre-
conditioning. Mélina++ is used with the following objects:
IEMTermMatrix K(Gamma, u_h, u_h, ngrady(GF));

IEMTermMatrix Dnn(Gamma, nx(u_h), nx(u_h), GF);

IEMTermMatrix Dcc(Gamma, curlS(u_h), curlS(u_h), GF);

In the third example, we deal with lens-antenna design using a volume integral
formulation of Maxwell equations.

Γ
Ω+

Ω−

The subject has been widely considered in the physicist community but the math-
ematical results are not so numerous and most of them are very recent (e.g. [5],
[6], [7]). With M. Costabel and E.-H. Koné, we investigated some mathematical
results ([8]) and implemented the volume integral operators in Mélina++ with
the contribution of D. Martin. The example involves the following integrands:
IEMTermMatrix IG(Omega, e_h, e_h, id(GF), "IdG");

∫

Ω−

∫

Ω−

ηu(y)G(x, y) dy v(x) dx

and IEMTermMatrix D2G(Omega, E_h, E_h, gradxgrady(GF), "D2G");

∫

Ω−

v(x)∇x

∫

Ω−

ηu(y) · ∇yG(x, y) dy dx

Here e_h defines a scalar unknown and E_h defines a vectorial unknown. For
lens-antenna design, alternatively, surface integral equation methods can be used
which had been developed by F. Le Louër ([9]). This approach further reduces
the number of unknowns and the numerical realization is considered together with
C. Burkard and has been implemented in Mélina++.
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Shape Reconstruction based on Integral Invariants: An Inverse

Problem

Thomas Fidler

(joint work with Markus Grasmair and Otmar Scherzer)

In many applications, among them object recognition and shape optimisation, ob-
jects and shapes are involved and one faces the problem of describing the geometry
of the object in a mathematical terminology. A common approach to tackle this
problem is to use the well investigated framework of differential invariants. For
instance, if one considers a two-dimensional object bounded by a sufficiently reg-
ular curve, the associated curvature function can be used to describe the object.
In particular, features of the object like protrusions, corners or inflection points
can be characterised by their curvature, and are, as a consequence, still present
as features in the encoding. In addition, the curvature function is invariant with
respect to rigid body motions applied to the object. However, since curvature,
and also all other differential invariants, are based on differentiation, all of them
are inherently sensitive to noisy data.

Integral invariants have been introduced by Manay et al. [6] as a tool for shape
matching and classification. They enjoy similar invariance properties as their
differential counterparts, but are more robust in the presence of noisy data. Apart
from that, integral invariants still carry geometrical information about the object
(cf. [1, 7]) and allow for a natural scale space of features, as they are capable
to distinguish between features of small size and noise. Integral invariants have
been used in many applications as a stable object encoding and, in addition, have
proven to be successful for many tasks, among them object classification [4] and
geometry processing [2], but also for segmentation with a prior [5].
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In this talk we focus on two specific integral invariants — the cone and the
circle area invariant —, which both have a simple geometrical interpretation as
an intersection of the encoded object and a regular domain. We define the circle
area integral invariant Ircircle as the intersection of the object Ω ⊂ Rn with a ball
of radius r > 0 centred at the object’s boundary ∂Ω. More precisely,

IrCircle[Ω](x) := Ln
(
Ω ∩Br(x)

)
, x ∈ ∂Ω.

The cone area integral invariant is introduced for a special class of objects that
can be parametrised by a radial function. Let Ωγ ⊂ Rn be the domain generated
by a non-negative continuous radial function γ mapping from Sn−1 to the positive
real numbers, i.e., for γ > 0 we define

Ωγ := {tτ ∈ Rn : 0 ≤ t < γ(τ ), τ ∈ Sn−1}.

The generated domain Ωγ is open, star-shaped with respect to the point x = 0,
and its boundary curve has no self-intersections and admits a unique interior and
exterior. We define the cone area integral invariant IεCone as the intersection of
such an object Ωγ with a cone Cε of aperture ε > 0 and apex equal to zero. More
precisely,

IεCone(σ) := Ln
(
Ω ∩Cε(σ)

)
, σ ∈ Sn−1,

where Cε(σ) := {tτ ∈ Rn : τ ∈ Sn−1, 〈τ ,σ〉 ≥ cos(ε/2), t ≥ 0}.
We briefly discuss the advantages of both integral invariants over other object

encodings, as well as their limitations. In particular, we address the question
whether the presented integral invariants are injective mappings allowing for a
unique identification of an object with its invariant. In addition, we present some
numerical results related to object recovery based on integral invariants. In par-
ticular, we investigate the ill-posed problem of reconstructing a star-shaped object
from its Radon transform with only limited data available, and use the frame-
work of integral invariants to stabilise the inversion. First, we rewrite the Radon
transform of an object in terms of a generating radial function, which results in a
non-linear operator. Then, we reformulate the ill-posed non-linear operator equa-
tion as a minimisation problem in terms of a Tikhonov like functional, where the
penalty term is based on the difference of integral invariants. We show existence
of minimisers and present a smooth approximation of the Tikhonov like functional
for the numerical implementation. The advantages of this approach are discussed
on the basis of the presented numerical results.
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Shape Optimization for Free Boundary Problems

Helmut Harbrecht

(joint work with Karsten Eppler)

The present talk is dedicated to the solution of a generalized Bernoulli exterior
free boundary problem which serves as a prototype for many shape optimization
problems. Let T ⊂ Rn denote a bounded domain with free boundary ∂T = Γ.
Inside the domain T we assume the existence of a simply connected subdomain
S ⊂ T with fixed boundary ∂S = Σ. The resulting annular domain T \S is denoted
by Ω.

The exterior free boundary problem under consideration might be formulated
as follows: For given data f, g, h, seek the domain Ω and the associated function
u such that the overdetermined boundary value problem

(1) −∆u = f in Ω, −
∂u

∂n
= h, u = 0 on Γ, u = g on Σ

is satisfied. Here, g, h > 0 and f ≥ 0 are sufficiently smooth functions on Rn such
that u provides enough regularity for a second order shape calculus. We like to
stress that the positivity of the Dirichlet data implies that u is positive on Ω and
thus it holds in fact ∂u/∂n < 0.

In order to numerically solve (1) by means of shape optimization we shall in-
troduce two different state functions, namely

(2)

−∆v = f in Ω, v = g on Σ, v = 0 on Γ,

−∆w = f in Ω, −
∂w

∂n
= h on Σ, w = 0 on Γ.

Here, the state v solves the pure Dirichlet problem whereas the state w solves a
mixed boundary value problem.

We will consider the following four formulations, where the infimum has always
to be taken over all sufficiently smooth domains which include the domain S.

(i) An energy variational formulation is derived by using the Dirichlet energy.
The solution

(
(Ω, u(Ω)

)
of (1) is the minimizer (cf. [3]) of the Dirichlet

energy functional

(3) J1(Ω) =

∫

Ω

{
‖∇v‖2 − 2fv + h2

}
dx → inf .
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(ii) A variational least-squares cost function, firstly proposed by Kohn and
Vogelius [10] in the context of the inverse conductivity problem, is consider
as second formulation:

(4) J2(Ω) =

∫

Ω

‖∇(v − w)‖2dx = −

∫

Γ

v

(
h+

∂w

∂n

)
dσ → inf .

This functional seems to be very attractive since, due to

J2(Ω) ∼ ‖w‖H1/2(Γ)

∥∥∥∥h+
∂v

∂n

∥∥∥∥
H−1/2(Γ)

,

the Dirichlet and Neumann data are both tracked in their natural trace
spaces.

(iii) One can also consider the solution v of the pure Dirchlet problem and
track the Neumann data in a least-squares sense relative to L2(Γ), that is

(5) J3(Ω) =
1

2

∫

Γ

(
h+

∂v

∂n

)2

dσ → inf .

(iv) Correspondingly, if the Neumann datum h is assumed to be prescribed,
the L2-least square tracking of the Dirichlet boundary condition at Γ reads
as

(6) J4(Ω) =
1

2

∫

Γ

w2dσ → inf .

Based on a shape calculus via boundary variations, developed in [1, 2], we com-
puted the boundary integral representations of the shape gradients and Hessians
of the four formulations in [3, 4, 5, 6], see also [8, 9]. With the shape Hessian at
hand we are able to investigate the stability of the global minimizer Ω⋆.

Due to the two-norm discrepency (see [7]), the shape Hessian defines a con-
tinuous bilinear form not in the strong Banach space X but in a weaker space
Hs(Γ) ) X

d2J(Ω) : Hs(Γ)×Hs(Γ) → R,

i.e., there holds the estimate

|d2J(Ω)[dr1, dr2]| ≤ cS‖dr1‖Hs(Γ)‖dr2‖Hs(Γ).

This space is refered to as the energy space of the underlying functional. For the
shape functionals (3)–(6) the energy spaces are H1/2(Γ) in case of J1 and H1(Γ)
in case of J2, J3, and J4.

Accordingly, the second order Taylor remainder R2

(
J(Ω), dr

)
satisfies

∣∣R2

(
J(Ω), dr

)∣∣ = o(‖dr‖X)‖dr‖2Hs(Γ).

Therefore, a local minimum Ω⋆ is stable if the shape Hessian d2J(Ω⋆) is strictly
coercive in its energy space Hs(Γ⋆)

d2J(Ω⋆)[dr, dr] ≥ cE‖dr‖
2
Hs(Γ⋆), cE > 0.
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functional energy space positivity space posedness

J1 H1/2 H1/2 well-posed

J2 H1 H1/2 algebraically ill-posed
J3 H1 H1 well-posed
J4 H1 L2 algebraically ill-posed

Table 1. The energy spaces and the positivity spaces of the
shape Hessians.

The shape problem under consideration is then well-posed and a nonlinear Ritz-
Galerkin method produces approximate shapes that converge quasi-optimal with
respect to the energy norm, see [7] for the details.

At the optimal domain, even though the shape gradients look quite different,
the shape Hessians of the functionals (3)–(6) surprisingly consist of the same in-
gredients. Namely, in [3, 4, 5, 6], the following expressions have been proven for
the shape Hessian at the optimal domain:

d2J1(Ω
⋆)[dr1, dr2] =

(
(Λ +A)Mdr1,Mdr2

)
L2(Γ⋆)

,

d2J2(Ω
⋆)[dr1, dr2] =

(
(Λ +A)Mdr1,Λ

−1(Λ +A)Mdr2
)
L2(Γ⋆)

,

d2J3(Ω
⋆)[dr1, dr2] =

(
(Λ +A)Mdr1, (Λ +A)Mdr2

)
L2(Γ⋆)

,

d2J4(Ω
⋆)[dr1, dr2] =

(
Λ−1(Λ +A)Mdr1,Λ

−1(Λ +A)Mdr2
)
L2(Γ⋆)

,

where M : L2(Γ⋆) → L2(Γ⋆) is a bijective multiplication operator, Λ : H1/2(Γ⋆) →
H−1/2(Γ⋆) is the Dirichlet-to-Neumann map (associated with the pure Dirichlet
problem in (2)) and

A := H+

[
∂h

∂n
− f

]/
g : L2(Γ⋆) → L2(Γ⋆)

is a multiplication operator. Notice that Λ−1 : H−1/2(Γ⋆) → H1/2(Γ⋆) is the
inverse of Λ, which has to be understood as the Neumann-to-Dirichlet map in the
sense of the mixed boundary value problem in (2).

Consequently, in case of the functional J1 and J3 the positiveness is given
with respect to the energy space Hs(Γ⋆) which implies the well-posedness of these
formulations of the free boundary problem. Whereas in case of the functionals
J2 and J4 the positivity holds only in the weaker spaces H1/2(Γ⋆) and L2(Γ⋆),
respectively, that is

d2J2(Ω
⋆)[dr, dr] ≥ cE‖dr‖

2
H1/2(Γ⋆), d2J4(Ω

⋆)[dr, dr] ≥ cE‖dr‖
2
L2(Γ⋆), cE > 0.

This implies the algebraically ill-posedness of the underlying formulations. In
particular, tracking the Dirichlet data in the L2-norm is not sufficient. We strongly
assume that they have to be tracked relative to H1. Our results are summarized
in Table 1.
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The Domain Derivative of Time-Harmonic Electromagnetic Waves at

Interfaces

Frank Hettlich

In shape optimization as well as in inverse obstacle identification problems the do-
main derivative is a common approach. Usually based on integral representations
or weak formulations of a boundary value problem it can be shown that there ex-
ists a derivative of functionals, which include the solution of the partial differential
equation, with respect to variations of the underlying geometry (see for instance
[4, 3, 7]). Additionally in view of further analytic and numerical investigations a
representation of these derivatives again by a boundary value problem is of vital
importance (see [2]).

In case of scalar valued functions for second order linear partial differential
equations for many functionals and boundary conditions such representations are
known. But in case of Maxwell’s equation only a few results based on the integral
equation approach are available (see [7, 5, 1]). The paper discusses the substantial
problem for a weak approach to the domain derivative and succeeds in overcoming
the difficulties.

We consider the scattering of electromagnetic waves at a domain given by dif-
ferent electric parameters. For the derivative with respect to variations of the
interface, which is characterized by discontinuity of the coefficients of the Maxwell
equations, we have to consider the difference of the solution of the perturbed and
of the unperturbed boundary value problem. This requires a transformation of
the field solving the perturbed problem such that the discontinuity occurs on the
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unperturbed boundary. But in case of Maxwell’s equations such a change of vari-
ables in general leads to functions which are not in the natural Sobolev space,
H(curl,Ω) (see [6]). The loss of regularity causes the main problem in showing
existence of the domain derivative for Maxwell’s equations.

The paper presents a new idea which solves for this problem. Applying a
curl invariant transformation to the electromagnetic field leads to functions in
the correct function space. Thus instead of considering Eh ◦ ϕ, where Eh is the
electric field of the perturbed problem with diffeomorphism ϕ(x) = x + h(x) and
variation field h, we consider the transformed field JϕEh ◦ϕ, where Jϕ denotes the
Jacobian matrix of ϕ. After a change of variables this function is in H(curl,Ω).
Discontinuities of its traces only occur on the original boundary. Computing first
order terms of the difference of these vector fields leads to a proof of existence of
the so called material derivative for Maxwell’s equations.

By splitting the material derivative into certain part we show next that outside a
neighborhood of the discontinuities of coefficients the derivative can be represented
by the domain derivative, which is a radiating solution of Maxwell’s equations
satisfying certain transmission boundary conditions at the interface. Still some
work has to be done in extracting representations of these boundary conditions
in such a way that the symmetric structure of the electric and the magnetic field
can be observed and such that a numerical implementation of this boundary value
problem can be achieved.
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Shape sensitivities for a two problems in lithotripsy

Barbara Kaltenbacher

Motivated by the application of high intensity focused ultrasound (HIFU) in
lithotripsy, we consider two shape optimization problems, both being concerned
with an optimal focusing of the ultrasound waves in order to concentrate the
sound pressure peak to the kidney stones and avoid lesions of the surrounding
tissue. They consist of optimizing the shape of

(a) a piezomosaic (“self-focusing”) or
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(b) an acoustic silicone lens.

The underlying model contains the equations of nonlinear acoustics, which are the
Kuznetsov

(1) ψtt − c2∆ψ − b∆ψt =

(
1

c2
B

2A
(ψt)

2 + |∇ψ|2
)

t

or the Westervelt

(2) ψtt − c2∆ψ − b∆ψt =

(
1

c2
(1 +

B

2A
)(ψt)

2

)

t

equation, the latter being a simplification by neglecting local nonlinear effects (in
the sense that the expression c2|∇ψ|2 − (ψt)

2 is sufficiently small). Here φ is the
acoustic velocity potential, c > 0 is the speed of sound, b ≥ 0 the diffusivity of
sound, and B/A the parameter of nonlinearity. In case (b) we additionally have
a coupling to the equation of elasticity within the lens via appropriate interface
conditions (see below).

In order to compute shape gradients we make use of a general approach [2]
which can be extended to the time dependent setting in a straightforward manner
provided the cost function constains an integral over time: Consider minimization

min J(U,Ω,Γ) ≡

∫ T

0

(∫

Ω

j1(U) dx +

∫

Γ

j2(U) ds+

∫

∂Ω\Γ

j3(U) ds
)
dσ

under a partial differential equation (PDE) constraint

E(U,Ω) = 0

where E(·,Ω) : V → Ṽ∗, V , Ṽ are Banach spaces, and Ṽ∗ is the dual of Ṽ . The
manifold Γ to be optimized is supposed to be the boundary Γ = ∂D of some
domain D being contained in a hold-all U ⊆ Rd such that D ⊆ U , and for the
domain Ω where the PDE is supposed to hold there are three possible cases:

(i) Ω = D or (ii) Ω = U or (iii) Ω = U \ D ;

The domain transformations are carried out via families of mappings {Fτ | τ ∈
(−τ0, τ0)} as follows:

Fτ : U → Rd , Fτ = id + τh , Ωτ = Fτ (Ω) , Γτ = Fτ (Γ)

where the vector field h ∈ C1,1(U ,Rd), h|∂U = 0.
Applying extension of the result on the Eulerian derivative

dJ(U,Ω,Γ) = limτ→0
1
τ (J(Uτ ,Ωτ ,Γτ )−J(U,Ω,Γ)) from [2] first of all to the shape

optimization (a), we consider the setting Ω = Ωf = U \ D , Γ = ΓNeum U = ψ

(3) j1(U,Ω) = |ρfψt − yd|2 , j2 = 0 , j3 = 0 ,

(note that ρfψt is the acoustic pressure and yd is the desired acoustic pressure),
E(U,Ω) corresponds to the Westervelt equation (2) in the fluid region Ωf with

∂Ω = Γabs ∪ ΓNeum, absorbing boundary conditions 1
cψt +

∂ψ
∂n = 0 on Γabs ,

boundary excitation ∂ψ
∂n = 0 on ΓNeum , as well as homogeneous initial conditions:

ψ(0) = ψt(0) = 0 .
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The strong form of the adoint PDE reads as

(1− 2kψt)pt)t − c2∆p+ b∆pt = j1,ψ(U) in (0, T )× Ωf
1
cpt −

∂p
∂n = 0 on (0, T )× Γabs

∂p
∂n = 0 on (0, T )× ΓNeum

with the end conditions

~p(T ) = 0 , ~pt(T ) = 0 in Ωs p(T ) = 0 , pt(T ) = 0 in Ωf ,

and the additional initial boundary conditions (due to the strong damping term
with coefficient b > 0) p(0) = 0 on Γabs. Therewith, formally we arrive at the
following expession for the shape gradient

dJ(U,Ω) =

∫

ΓNeum

∫ T

0

{
−(1− kψt)ψtpt + (c2∇ψ + b∇ψt)∇p

+j1(ψ) +
∂(c2g + bgt)p

∂n
+ κ(c2g + bgt)p

}
hTn dσ ds

Verification of the (time integrated) assumptions from [2] is expected to be doable
by combining techniques from [2], [3], [1].

We mention in passing that an advantageous formulation might be obtained
via the alternative setting Ω = Ωf = U \ D by putting h to zero on the absorbing
boundary.

To deal with the shape optimization problem (b) in the framework of the ex-
tension of [2], we set Ω = U = Ωf ∪ Ωs, D = Ωs , Γ = Γi , U = (~u, ψ) (3), and
E(U,Ω) corresponds to the Westervelt equation (2) in the fluid region Ωf , together
with the equation of linear elasticity in the solid region Ωs:

ρs~utt − BT (cB~u) = 0

via interface conditions on Γi:

~ut · ns =
∂ψ
∂nf

(continuity of normal velocity)

σns = ρfψtnf (surface force acts as pressure load) ,

absorbing boundary conditions on Γabs, Neumann boundary excitation on ΓNeum,
and homogeneous initial conditions. This time, the strong form of the adjoint
problem is as follows:

ρs~ptt − BT cTB~p = 0 in (0, T )× Ωs

(1 − 2kψt)pt)t − c2∆p+ b∆pt = j1,ψ(U) in (0, T )× Ωf
1
cpt −

∂p
∂n = 0 on (0, T )× Γabs

∂p
∂n = 0 on (0, T )× ΓNeum

~u · ns =
∂ψ̃
∂nf

on (0, T )× Γi where σ̃ = (cTB~p)

σ̃ns = ρf ψ̃tnf on (0, T )× Γi and ψ̃ =
1

ρf
(c2p− bpt)
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with the end conditions

~p(T ) = 0 , ~pt(T ) = 0 in Ωs p(T ) = 0 , pt(T ) = 0 in Ωf ,

and the additional initial boundary conditions p(0) = 0 on Γi , p(0) = 0 on Γabs .
Therewith, the shape gradient can be formally derived to be

dJ(U,Ω) =

∫

Γi

∫ T

0

{(
ρs(~ut)

T ~pt − (B~u)T c(B~p)

−(1− kψt)ψtpt + (c2∇ψ + b∇ψt)∇p

−
∂ρfψt~p

Tn
∂n − κρfψt~p

Tn+ ∂(c2~ut+b~utt)
Tnp

∂n + κ(c2~ut + b~utt)
Tnp

−j1|Ωf
(U)
}
hTn dσ ds .

Again, the assumptions from [2] can probably be verified, provided we have well-
posedness of the coupled elastic-nonlinearly acoustic system. The latter is an still
an open problem and subject of ongoing research, though.

Acknowledgment We wish to thank Gunter Peichl for fruitful discussions on [2]
in the context of the applications considered here.
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The Factorization Method for a Conductive Boundary Condition

Andreas Kirsch

(joint work with Andreas Kleefeld)

In this talk we consider a simple inverse scattering problem for the Helmholtz
equation ∆u + k2u = 0 in R3 where the scattering object consists of a bounded
domain D covered by a thin layer of high conductivity. Mathematically, this leads
to a transmission problem with a conductive transmission condition

u+ − u− = 0 on ∂D and
∂u+
∂ν

−
∂u−
∂ν

+ i λ u = 0 on ∂D ,

where ± denotes the limit from the exterior or interior of D, respectively. We
show briefly how to apply the boundary integral equation method for treating the
direct problem analytically and numerically by a collocation method. Then we
study the inverse problem to determine the shape of the domain from the far field
operator F : L2(S2) → L2(S2), defined by

(Fp)(x̂) =

∫

S2

p(θ̂)u∞(x̂; θ̂) ds(θ̂) , x̂ ∈ S2 .
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Here, u∞(x̂; θ̂) denotes the far field pattern of the scattered field at observation

direction x̂ and direction θ̂ of the incident plane wave. We use the Factorization
method to express the characteristic function of the domain by a series which can
easily computed from the scattering data.

We consider two cases. In the first case all of the boundary is covered by the layer;
that is, λ > 0 on all of ∂D. Then we can prove that a given point z ∈ R3 belongs
to D if, and only if, the series

(∗)
∑

j∈N

|〈φz , ψj〉L2(S2)|
2

λj

converges. Here, φz(x̂) = exp(−ik z · x̂), and {λj , ψj : j ∈ N} is an orthonormal
eigen system of the compact and positive operator ImF = (F −F ∗)/(2i) which is
known from the data.

In the second case the boundary is only partially covered by the layer; that is, the
function λ vanishes on a part of ∂D. Then the scattering problem reduces to a
scattering problem for an open surface, and we have to test the space with small
surfaces S ⊂ R3 rather than points z ∈ R3. Then we show that the test surface S
belongs to ∂D if, and only if the series (∗) converges where now φz is replaced by
the single layer on S with constant density.

Some three-dimensional numerical experiments demonstrate the usefullness of the
method.

Newton Regularizations for EIT: The Complete Electrode Model

and Convergence by Local Injectivity

Armin Lechleiter

(joint work with Andreas Rieder)

The impedance tomography problem is certainly among the most important in-
verse problems, inspiring both important theoretical identification results and pow-
erful computational techniques, see, e.g., [1] for an overview. Among the classi-
cal numerical methods for this ill-posed and non-linear problem are Newton-type
methods based on local linearization. However, there exist few theoretical conver-
gence results for such methods. In [3] we considered the complete electrode model
of impedance tomography and proved that the Fréchet derivative of the underlying
non-linear forward operator (mapping the conductivity to the current-to-voltage
map) is, under suitable assumptions, injective. Since the complete electrode model
is intrinsically finite-dimensional this implies that the forward operator satisfies a
non-linearity condition that allows to prove convergence results for (inexact) New-
ton schemes applied to the inverse problem.



224 Oberwolfach Report 05/2011

1. Impedance Tomography and the Complete Electrode Model

The impedance tomography problem is to reconstruct a conductivity γ ∈ L∞(B)
in some Lipschitz domain B ⊂ R2 from boundary measurements. For the com-
plete electrode model these measurements are given by a finite-dimensional linear
operator. We assume that γ is strictly bounded from below away from zero, and
we introduce p ∈ N disjoint, open, and non-empty electrodes E1, . . . , Ep ⊂ ∂B.
See Figure 1(a) for a sketch. Denote by χE1 , . . . , χEp the indicator functions of
the electrodes and by

Ep = span{χEj , j = 1, . . . , p} ∩ L2
⋄(∂B)

the space of piecewise constant functions that vanish on the gaps in between the
electrodes, and that additionally belong to L2

⋄(∂B) = {f ∈ L2(∂B),
∫
∂B

f ds = 0}.
The current-to-voltagemap Λp : Ep → Ep maps a current I to the electrode voltages
U , part of the solution (u, U) ∈ H1(B) ⊕ Ep of the problem

∇ · (γ∇u) = 0 in B,

u+ zj(γ∇u).ν = U on ∪pj=1 Ej ,

(γ∇u).ν = 0 on ∂B \ ∪pj=1Ej ,∫

Ej

(γ∇u).ν ds = I|Ej
for j = 1, . . . , p.

(1)

The latter complete electrode model is a standard model for impedance tomog-
raphy in the context of medical applications, compare [6]. Obviously, since the
current-to-voltage map Λp is a linear operator between finite-dimensional spaces,
it is impossible to reconstruct conductivities γ in infinite-dimensional function
spaces. Hence, we propose to restrict ourselves to γ ∈ V +

T , the restrictions to B
of piecewise polynomial functions on a mesh T of some domain D containing Ω.
See Figure 1(b) for a sketch of B, D, and the mesh T . Additionally, functions in
V +
T need to be bounded from below away from zero by some constant c > 0.

Omega1

Omega2

B

E1

E2
E3

E4

E5

E6 E7

+
−

(a) (b)

Figure 1. (a) Electrodes attached to the boundary of a conduct-
ing object under investigation. (b) The domain B (blue curve) is
contained in a (rectangular) domain D with triangulation T .
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2. Main Results

Our main results show that if the electrodes on the boundary ofB are sufficiently
“dense”, then the Fréchet derivative of Fp mapping γ ∈ V +

T to Λp is injective,
see Theorem 4.3 in [3]. This result is asymptotic: We consider a sequence of
electrode configurations {Epj }

p
j=1 for p ∈ N where the pth configuration consists

of p electrodes. For each electrode configuration we associate the configurations
of the gaps {Gpj}

p
j=1 in between the electrodes. We moreover need to assume

that limp→∞

∑p
j=1 |G

p
j |
θ = 0 for some θ ∈ (0, 1). Under these assumptions, the

statement of [3, Theorem 4.3] is that for p large enough the Fréchet derivative of
Fp is injective. An important ingredient of the proof are the localized potentials
from [2].

Using this result, Theorem 5.4 in [3] establishes that Fp satisfies the so-called
tangential cone condition. This condition in turn implies a convergence and regu-
larization theory for inexact Newton schemes applied to the equation Fp(γ) = Λp,
compare [4]. Note that all the above results carry over to the fully-discrete case
where the variational formulation corresponding to problem (1) is discrete using
finite elements with a sufficiently small mesh width.

References

[1] A. Adler, R. Gaburro, and W. Lionheart, EIT, in: Handbook of Mathematical Methods in
Imaging, Springer, 2010.

[2] B. Gebauer, Localized potentials in electrical impedance tomography, Inverse Problems and
Imaging 2 (2008), 251–269.

[3] A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: convergence
by local injectivity, Inverse Problems 24 (2008), 065009.

[4] A. Rieder, Keine Probleme mit Inversen Problemen, Vieweg, 2003.
[5] O. Scherzer, The use of Morozov’s discrepancy principle for Tikhonov regularization for

solving nonlinear ill-posed problems, Computing 51 (1993), 45–60.
[6] E. Somersalo, M. Cheney and D. Isaacson, Existence and Uniqueness for Electrode Models

for Electric Current Computed Tomography, SIAM J. Appl. Math. 52 (1992), 1023–1040.

Regularized Newton methods for electromagnetic inverse obstacle

scattering problems

Frédérique Le Louër

(joint work with Thorsten Hohage)

We analyze the inverse problem to reconstruct the shape of a three dimensional
perfectly conducting obstacle from electromagnetic noisy far field measurements.

Let Ω denote a bounded domain in R3 and let Ωc denote the exterior domain
R3\Ω. We assume that the boundary Γ of Ω is a simply connected closed surface,
so that Ω is diffeomorphic to a ball. The outer unit normal vector on the boundary
Γ is denoted by n. Consider the perfect conductor problem : Given an incident
electric wave E

inc ∈ H loc(curl,R
3) that satisfies curl curlEinc − κ2eE

inc = 0 in
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a neighborhood of Ω , find the electric scattered wave E
s ∈ H loc(curl,Ωc) which

solves :

curl curlEs − κ2Es = 0 in Ωc,(1)

n× (Es + E
inc) = 0 on Γ,(2)

lim
|x|→+∞

|x|

∣∣∣∣curlE
s(x)×

x

|x|
− iκEs(x)

∣∣∣∣ = 0.(3)

It is well known that the above boundary value problem admits a unique solution
for any positive real values of the exterior wave number κ (see [7] for a proof via
boundary integral equation method). The radiation condition implies that the
solution has an asymptotic behavior of the form

E
s(x) =

eiκ|x|

|x|
E
∞(x̂) +O

(
1

|x|

)
, |x| → ∞,

uniformly in all directions x̂ =
x

|x|
. The far field E

∞ is defined on the unit sphere

S2 and E
∞ ∈ L2

t (S
2) = {h ∈ L2(S2); h(x̂) · x̂ = 0}.

For a fixed incident plave wave E
inc = ~p eiκx·d with ~p · d = 0 and a fixed

wavenumber κ, we consider the boundary to far field operator

F : Γ 7→ E
∞ ∈ L2

t (S
2)

which maps the boundary of the scatterer Ω onto the far field pattern E
∞ of the

scattered field E
s. The inverse problem of interest is : Given noisy far field data

E
∞
∗,δ obtained from the scattering of one or several incident plane waves, solve

F (Γ) = E
∞
∗,δ.

Although such an inverse problem is theoretically difficult to solve since it is ill-
posed and nonlinear, one can apply numerical methods to recover an approximate
solution. The use of regularized iterative scheme to solve numerically this equation
require the study of the dependence of the operator F on the shape of the boundary
of the scatterer. To this end, as usual, we choose a fixed reference domain Ωref
with boundary Γref and we consider variations generated by transformations of
the form x 7→ x+ r(x) of point x in the space R3. The functions r are assumed to
be sufficiently small elements of the Banach space C 2(Γ,R3) in order that (I + r)
is a diffeomorphism from Γref to Γr = (I+ r)Γref = {x+ r(x); x ∈ Γref} , so that
the surface Γr is the boundary of a domain Ωr diffeomorphic to the unit ball of
R3. We define the set of admissible variations

Vad = {r ∈ C
2(Γref ,R

3); Γr is diffeomorphic to S2}.

The mapping F : r ∈ Vad 7→ F (Γr) ∈ L2
t (S

2) is well defined. We distinguish the
quantities related to the exterior Dirichlet scattering problem for the domain Ωr
through the subscript r. The following theorem is a rewriting, for the electric field
only, of the characterization established in [6] by Kress and in [8] by Potthast.
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Theorem. The mapping F : Vad → L2
t (S

2) is Fréchet differentiable with the
Fréchet derivative at r in the direction ξ ∈ C 2(Γref ,R

3) given by

F ′[r]ξ = E
∞
r,ξ,

where E∞
r,ξ is the far field of the solution E

s
r,ξ to the Maxwell equation (1) in Ωcr that

satisfies the Silver-Müller radiation condition and the Dirichlet boundary condition

nr × E
s
r,ξ =− (ξ◦(I + r)−1 · nr)

(
nr × curl(Esr + E

inc)
)
× nr

+
1

κ2
curlΓr

(
(ξ◦(I + r)−1 · nr) curlΓr

((
nr × curl(Esr + E

inc)
)
× nr

))
.

on Γr where E
s
r is the solution of the scattering problem (1)-(3) satisfying the

Dirichlet boundary condition

nr ×
(
E
s
r + E

inc
)
= 0 on Γr.

(We refer to [7] for the definition of the tangential vector curl curlΓ and surface
scalar curl curlΓ).

We can then apply the iteratively regularized Gauss-Newton method to the equation
F ′[r]∗F ′[r]ξ = F ′[r]∗

(
E
∞
∗,δ −F [r]

)
(see [1, 3, 4]). We start with an initial guess rδ0

and we update : rδn+1 = rδn + ξδn where ξδn solves

ξδn := argmin
ξ

||F ′[rδn]ξ + F [rδn]− E
∞
∗,δ||L2(S2) + αn||ξ + rδn − r0||

and is given by

ξδn =
(
αnI + F ′[rδn]

∗F ′[rδn]
)−1 (

F ′[rδn]
∗
(
E
∞
∗,δ −F [rδn]

)
+ αn

(
r0 − rδn

))
.

We compute numerically ξn by applying the CGNE method and the regularization
parameters αn are chosen of the form αn = α0 · γ

n with 0 < γ < 1 (see [4]). At
each iteration the far field F [r] and the Fréchet derivative F [r]′ξ are computed
with the help of two different boundary integral equation methods via the spectral
algorithm of Ganesh and Graham [2] which ensures superalgebraic convergence.
The library developped by Ivanyshyn [5] and based on MATLAB programming
code which enables the numerical resolution and the graphical representation of
three dimensional acoustic inverse obstacle scattering problems was used.
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(a) (b)

(c) (d)

(a) original shape; reconstruction obtained at iteration 10 (b) with 1 incident
plane wave, 1% noise, Ø ∼

λ

2
, (c) with 1 incident plane wave, 1% noise, Ø ∼ λ

and (d) with 3 incident plane waves, 5% noise, Ø ∼ λ, starting from the unit
sphere as an initial guess.
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Inverse spectral problem for identifying damage in steel concrete

composite beam; Active thermography and the dynamical probe

method

Gen Nakamura

The content of the talk consisted of two parts. The one was on the damage de-
tection of a steel and concrete composite beam which is a fundamental unit of usual
bridges of span of 60 to 80 meters long using 3 to 5 eigenvalues and the transversal
components of the corresponding eigenfunctions. Usually a typical damage occurs
in the connectors which connect the steel beam and concrete beam. This can be
described as a decrease in the value of axial stiffness µ and shear stiffness k of
the governing system of equations which models the deformation of the composite
beam.. The scheme to identify the damage is the least square method. The mini-
mization of the least square functional was done by using the projected conjugate
gradient method. Due to the self-adjoint nature of the initial and boundary value
problem for the governing system, by assuming that the eigenvalues are all simple,
which is really the case we have for real measurements, we could compute the
Frechet derivatives with respect to µ and k of the least square functional. We had
a very good recovery of µ and k for synthetic data even if there are some noise. But
recovery of µ is much better than k. This can be understood, because the transver-
sal components of eigenfunctions give a good control on µ. For the experimental
data we have when there is one single damage in the right end connector of the
composite beam in different damage stages. They are stage I to stage IV, which
are 25%, 40%, 70% and 100% cut of the connector, respectively. We obtained a
practically acceptable recovery for µ, while the recovered k had some oscillation.
Looking at the modulus of the derivative of the least square functional, we noticed
that the modulus of the partial derivative with respect to µ becomes zero at 61
step of iteration of the projected gradient method. However even at this step the
derivative of the least square function with respect to k is not zero and it started
to grow as we proceed further steps. This study would be the first attempt to
apply the variations of eigenvalues and eigenfunctions to an inverse problem with
finite eigen-data. The same kind of argument can be applied to detect unknown
boundaries such as cracks, cavities and inclusions from finite eigen-data. Overall
the results show that the proposed scheme is already practically effective but it
needs further study to improve the results. The second part of the talk was de-
voted to a mathematical analysis for the active thermography which could be its
mathematical foundation. The active thermography is a non-destructive testing
which is to detect unknown cracks, cavities and inclusions inside a heat conductor
by injective heat fluxes by a flush lamp or heater and measuring the corresponding
temperature distributions on the boundary of the conductor by a infrared camera.
This measurement is a non-contact and very fast measurement, and the resolution
of measuring the temperature distribution is 0.02 K. If there is a cooling part at
some part of the boundary, the temperature distribution inside the conductor de-
cays exponentially to 0 after switching off injecting heat flux. So, we can repeat the
measurement many times and we can even superposed the measured data. As a



230 Oberwolfach Report 05/2011

mathematical idealization of this data acquisition, we took the so called Neumann
to Dirichlet map as our measured data. We gave the scheme called dynamical
probe method to identify for instance unknown separated inclusions inside the
conductors from the Neumann to Dirichlet map. The scheme is mathematically
rigorous. The ingredients of the schemes are the fundamental solutions, Runges
approximation, reflected solution and indicator function. It is an open problem
to identify unknown non-separated inclusions. The scheme has to be tested with
real data. For that what kind of injected heat flux is available and how robust the
scheme is would be major problems.

References

[1] S. Jimbo, A. Morassi, G. Nakamura and K. Shirota, A Non Destructive Method for Damage
Detection in Steel-Concrete Structures Based on Finite Eigendata, submitted to Inverse
Problems in Science and Engineering (2010).

[2] V. Isakov, K. Kim and G. Nakamura, Reconstruction of an unknown inclusion by thermog-
raphy, Vol. IX, issue 4 (2010) pp. 34.

Mathematics and Application of Data Assimilation Algorithms

Roland W.E. Potthast

We survey approaches to solve atmospherical data assimilation problems and raise
basic analytical questions to investigate the convergence analysis of data assimila-
tion (DA) algorithms.

Data assimilation uses a large variety of measurements to determine the current
state of some dynamical system, for atmospherical problems that is the current
state of the Atmosphere. Data include in-situ measurements, data from moving
devices (like planes) and remote sensing data from ground stations, planes and
satellites. There are variational approaches as 3dVar, 4dVar and various versions
of stochastical filters. We describe the key convergence questions and put them into
a framework usually used to study iterative algorithms for inverse problems. For
example, the standard update formula for 3dVar or the Kalman Filter, respectively,
is given by

(1) ϕ(a) = ϕ(b) + (αI +A∗A)−1A∗(f −Aϕ(b)),

where f are measured data, ϕ(b) is some first guess, A is the operator mapping
the system state into the measurements. The updated state ϕ(a) incorporates the
knowledge which is gained from both the measurements and the first guess. The
parameter α > 0 reflects knowledge about the trust in the measurements and
the first guess. The structure of this equation is very close to for example the
regularized Newton scheme for inverse shape reconstruction, which searches the
unknown shape ϕ by solving

(2) ϕk+1 − ϕk = (αI +A′∗A′)−1A′∗(f −Aϕk), k = 0, 1, 2, 3, ...,

where now A maps the shape into some scattered field measurements and A′

denotes the derivative of the mapping A.
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In the last part of the presentation we describe the general framework in which
DA takes place in large operational centers like Deutscher Wetterdienst in contrast
to a research environment at universities or companies. We picture development
strategies, networking in Europe and beyond and the different research and de-
velopment layers which need to be included into the process of numerical weather
prediction.
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An Iterative Approach to Probe Methods

Roland W.E. Potthast

Probe methods reconstruct some unknown shape from remote measurements by
reconstructing some indicator function which has a special behaviour which char-
acterizes the unknown shape. Such direct methods have been extremely popular
over past years, compare [1]-[17]. For many methods the reconstruction of the
indicator function needs some approximation domain which includes the unknown
shape.

Here, we discuss three strategies to choose and update the approximation do-
main, i.e. the needle approach, domain sampling and as novel idea the LASSO
scheme. It defines an iterative update which stopping rule to identify the unkonwn
shape, for more details we refer to [10]. We discuss the algorithmical realization
and the convergence analysis of the scheme. Numerical examples to prove its fea-
sibility will be provided. The contraction of a curve in 2d which reconstructs four
separate objects is shown in Figure 1.
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Figure 1. We show reconstruction steps 10, 50, 100, 150, 200,
250 when reconstructing an unknown object which has four sep-
arate components.
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Topological derivatives for inverse scattering problems

Maŕıa-Luisa Rapún

(joint work with A. Carpio)

Numerical methods based on topological derivatives are powerful tools for inverse
scattering problems associated with shape reconstruction and non–destructive test-
ing. Recent work on topological derivatives focuses on problems where the nature
of the scatterers is known [1, 5, 6]. We address here the full problem, developing
strategies to reconstruct objects buried in a medium and their physical properties
[3, 7]. The medium and the objects are illuminated by an incident radiation (elec-
tromagnetic, thermal, acoustic). The total field, composed of incident, scattered
and transmitted waves, solves a transmission problem in the whole space. The in-
verse problem consists in reconstructing the objects and their material parameters
from measurements of the total field at different locations.

For numerical purposes, inverse scattering problems are often reformulated as
constrained optimization problems. One seeks domains and parameters minimiz-
ing the difference between the data measured at the detector locations and the
total field associated to a given set of scatterers. Our strategy consists in gener-
ating a sequence of approximations for the domains and their parameters along
which the cost functional decreases. Guesses of the objects are updated by adding
regions in which the topological derivative of the cost functional is negative. This
procedure provides good initial guesses of the scatterers without any a priori infor-
mation about their shape or location. Each correction of the domains is followed
by corrections of their parameters. Analytic expressions for such corrections are
found computing the variations of the cost functional along particular directions.
Formulae for the required topological derivatives and the parameter corrections
were obtained in [3].

Reasonable reconstructions of the objects and their parameters are obtained in
a few steps. Even if the predicted values of the parameters may deviate a bit from
the exact ones due to noisy data, rough approximations are often useful to dif-
ferentiate between different materials (in geophysics) or tissues (in biomedicine).
Our techniques may be useful in digital image elasto–tomography for tumor de-
tection [7, 8], for instance: healthy tissue, benign tumors and malignant tumors
are known to have different stiffness constants.

We also explore the performance of the iterative method for the reconstruction
of multiple sound–soft obstacles. In this case the reconstruction can be achieved
(at least theoretically) by just a single incident wave [2]. Our numerical results
show that accurate reconstructions of the number of obstacles and of their shapes
can be obtained with one or a few incident waves.

Finally, we propose a new approach that combines the use of topological deriva-
tives and Laplace transforms for shape reconstruction problems by thermal mea-
surements in a time–dependent setting [4]. Numerical experiments show that
thermal measurements allow for reasonable reconstructions of objects when they
are placed near the surface and measurements are made on that surface during a
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well chosen time interval. A small number of sampling points or incident fields
allow for good reconstructions if we measure the temperature many times: we ob-
tain precise information on both the illuminated and shadow parts of the objects
while considering the scattering of time–harmonic fields produce poorer results,
specially in the shadow parts.
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K-REGINN: An inexact Newton regularization of Kaczmarz type

Andreas Rieder

(joint work with Antonio Leitão)

We like to solve the nonlinear ill-posed problem

(1) F (x) = yδ

where F : D(F ) ⊂ X → Y operates between the real Hilbert spacesX and Y . Here,
D(F ) denotes the domain of definition of F . We further assume that problem (1)
splits into p ∈ N ’smaller’ subproblems, that is, Y factorizes into Hilbert spaces
Y0, . . . , Yp−1: Y = Y0 × Y1 × · · · × Yp−1. Accordingly, F = (F0, F1, . . . , Fp−1)

t,

Fi : D(F ) ⊂ X → Yi, and y
δ = (yδ00 , y

δ1
2 , . . . , y

δp−1

p−1 )
t.

Thus, (1) can be written as: find x ∈ D(F ) such that

(2) Fi(x) = yδii , i = 0, . . . , p− 1.

The right hand sides yδii are noisy versions of the exact but unknown data yi =
Fi(x

+) satisfying

‖yi − yδii ‖Yi ≤ δi.

The nonnegative noise levels δi are assumed to be known. Algorithm REGINN [3]
for solving (1) is a Newton-type algorithm which updates the actual iterate xn by
adding a correction step sNn obtained from solving a linearization of (2):

(3) xn+1 = xn + sNn , n ∈ N0,
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with an initial guess x0. For obvious reasons we like to have sNn as close as possible
to the exact Newton step

sen = x+ − xn.

Assuming F to be continuously Fréchet differentiable with derivative F ′
i : D(F ) →

L(X,Yi) the exact Newton step satisfies the linear equation

F ′
i (xn)s

e
n = yi − Fi(xn)− Ei(x

+, xn) =: bi,n, i = 0, . . . , p− 1,

where

Ei(v, w) := Fi(v)− Fi(w) − F ′
i (w)(v − w)

is the linearization error. In the sequel we will use the notation

Ai,n = F ′
i (xn).

Unfortunately, the above right hand sides bi,n are not available, however, we know
perturbed versions

bεi,n := yδii − Fi(xn) with ‖bi,n − bεi,n‖Yi ≤ δi + ‖Ei(x
+, xn)‖Yi .

Therefore, we determine the correction step sNn as a stable approximate solution
of

(4) A[n],ns = bε[n],n

where [n] := n mod p denotes the remainder of integer division. Stable approxi-
mate solutions of (4) are obtained by applying an iterative regularization scheme,
called inner iteration, which can be written in the form

s[n],n,m = s[n],n,m−1 +A∗
[n],nz[n],n,m−1, m = 1, 2 . . . , s[n],n,0 = 0,

where zi,n,m ∈ Yi determines the specific method. For instance, with ri,n,m =
bεi,n −Ai,nsi,n,m being the residual we have that

• Landweber: zi,n,m = ωri,n,m, ω ∈ ]0, ‖Ai,n‖
−2[,

• steepest decent: zi,n,m = λmri,n,m, λm =
‖A∗

i,nri,n,m‖2X
‖Ai,nA∗

i,nri,n,m‖2Y
,

• implicit iteration: zi,n,m = (αmI + Ai,nA
∗
i,n)

−1ri,n,m, αm ∈ [αmin, αmax],
0 < αmin ≤ αmax, and

• conjugate gradients: zi,n,m = wm+1(Ai,nA
∗
i,n, g)g for a polynomial

wm+1(·, g) of degree m+ 1.

Next we explain how to select the Newton step sNn from the regularizing sequence
{s[n],n,m}m. Choose R > 1 and set

sNn :=

{
s[n],n,mn

: ‖bε[n],n‖Y[n]
> Rδ[n],

s[n],n,0 : otherwise,

where

mn = min
{
m ∈ N : ‖A[n],ns[n],n,m − bε[n],n‖Y[n]

< µn‖b
ε
[n],n‖Y[n]

}

for a picked tolerance µn ∈ ]0, 1].
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Finally, we stop the Newton iteration (3) as soon as it is constant over a full
cycle, i.e., the iterate xN(δ) is accepted as approximation to x+ if

xN(δ) = xN(δ)+1 = · · · = xN(δ)+p.

Written differently we have

N(δ) = min
{
n ∈ N : xn = xn+1 = · · · = xn+p

}
.

Hence, the final iterate satisfies the discrepancy principal for all subproblems:

(5)
∥∥yδii − Fi(xN(δ))

∥∥
Yi

≤ Rδi, i = 0, . . . , p− 1.

We call the resulting procedure K-REGINN (Kaczmarz-type REGINN), see, e.g.,
[1, 2] for other Kaczmarz-type iterations.

For our convergence analysis we assume the tangential cone condition: there is
a positive L < 1 such that, for all v, w ∈ Br(x

+) ⊂ D(F ) and i = 0, . . . , p− 1,,

‖Ei(v, w)‖Y ≤ L‖F ′
i (w)(v − w)‖Y .

Theorem: Let F : D(F ) ⊂ X → Y be completely continuous. Assume one of the
four inner iterations from above is used in K-REGINN. Further, let R be sufficiently
large, L sufficiently small and choose the tolerances {µn} within a certain closed
interval in ]0, 1[.

If x0 ∈ Br(x
+) then there exists an N(δ) such that all iterates {x1, . . . , xN(δ)} of

K-REGINN are well defined and stay in Br(x
+). We even have a strictly monotone

error and residual reduction: if xn 6= xn+1 then

(6) ‖x+ − xn+1‖X < ‖x+ − xn‖X

and there is a Λ < 1 independent of n such that
∥∥yδ[n]

[n] − F[n](xn+1)
∥∥
Y[n]

< Λ
∥∥yδ[n]

[n] − F[n](xn)
∥∥
Y[n]

.

Moreover, only the final iterate satisfies the discrepancy principle (5).

Corollary: Let the assumptions of above theorem hold true. Moreover, given a
sequence {δj}j∈N ⊂ R

p
+ with limj→∞ δj = 0, let {xN(δj)}j∈N be the corresponding

elements generated by K-REGINN.
Then, any subsequence of {xN(δj)}j∈N contains a subsequence which converges

weakly to a solution of the system Fi(x) = yi, i = 0, . . . , p− 1. Moreover, if x+ is
the only solution in Br(x

+) then the whole sequence {xN(δj)}j∈N converges weakly

to x+.

In the remainder we discuss shortly our approach to prove strong convergence.
Subsequently, we need to differ clearly between the noisy (δ > 0) and the noiseless
(δ = 0) situations: Iterates with a superscript δ refer to the noisy setting (yδ 6= y),

those without superscript refer to exact data y. To prove limj→∞ ‖x+−xδ
j

N(δj)‖X =

0 if x+ is the unique solution in Br(x
+) we try to follow an established modus

operandi, see, e.g., [1, 2]:

(1) Show convergence for unperturbed data: limn→∞ xn = x+.
(2) Show stability: limδ→0 x

δ
n = xn.



Mini-Workshop: Nonlinear Least Squares in Shape Identification Problems 237

(3) Employ triangle inequality: for m ≤ N(δ), by (6) we have that

‖x+ − xδN(δ)‖X ≤ ‖x+ − xδm‖X ≤ ‖x+ − xm‖X + ‖xm − xδm‖X .

At the moment we investigate convergence for unperturbed data utilizing square
summability of the nonlinear residuals, that is,

∞∑

i=0

‖y[i] − F[i](xi)‖
2
Y[i]

. ‖x+ − x0‖
2
X .
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