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Introduction by the Organisers

The workshop Stochastic Analysis in Finance and Insurance, organised by Dmitry
Kramkov (Pittsburgh), Martin Schweizer (Zürich) and Nizar Touzi (Paris) was
held January 23rd – January 29th, 2011. The meeting had a total of 53 partici-
pants from all over the world with a deliberately chosen mix of more experienced
researchers and many younger participants.

During the five days, there were a total of 24 talks with many lively interactions
and discussions. In addition, there were a historical lecture and two blocks of short
communications, as will be explained below.

The topics presented in the talks covered a very wide spectrum. Major de-
velopments included a focus on new statistical problems, new mathematical and
modelling issues arising out of and in connection with the recent financial crisis,
and as always a number of foundational questions. To stimulate discussions and
maximise interactions, talks were deliberately not organised into groups by major
topics. A short overview of the talks given day by day looks as follows.
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Philip Protter in the first talk of the workshop presented ideas on how one could
discover financial bubbles in real time, combining ideas from local martingale mod-
elling with statistical tools. Marcel Nutz presented new results on G-expectations
in order to study markets with uncertainty about the volatility of assets. Jean
Jacod gave an overview of recent developments in statistical problems for finan-
cial data and highlighted the difficulties coming from jumps in prices. Christian
Bender introduced the concept of simple arbitrage with the goal of enlarging the
class of feasible models by reducing arbitrage conditions to practically realistic
assumptions. Matheus Grasselli presented a mathematical description of a model
introduced by the economist Hyman Minsky in order to explain asset price bubbles
from basic economic considerations. Finally, Sergey Nadtochiy explained the ideas
behind forward performance processes to model optimal investment behaviour and
showed in a class of examples how this leads to ill-posed Hamilton–Jacobi–Bellman
equations.

Albert Shiryaev started the second day with an example of a non-classical testing
problem for Brownian motion with drift, involving three instead of the usual two
hypotheses. Christoph Frei gave examples of multidimensional quadratic back-
ward stochastic differential equations having (in contrast to the one-dimensional
case) no solution, and explained how these equations come up and can be used
in connection with equilibrium problems in financial markets. Peter Tankov pre-
sented limit results for time-changed Lévy processes sampled at hitting times,
instead of at fixed times, and showed how these can be used in a financial context.
Christoph Czichowsky gave a new formulation for the classical Markowitz problem
to overcome the well-known time-inconsistency problems associated with that cri-
terion, and showed by relating discrete- and continuous-time theory that the new
formulation is both natural and mathematically interesting. Ronnie Sircar used
stochastic differential games and the associated Hamilton–Jacobi–Bellman equa-
tions to discuss the approaches by Bertrand and Cournot to study oligopolistic
markets. At the end of the day, Roger Lee presented an effective mechanism to
generate asymptotic expansions of arbitrarily high order for implied volatility.

On Wednesday, David Hobson presented new model-independent bounds for
variance swaps with the help of Skorokhod embedding results. Johannes Muhle-
Karbe gave new asymptotic results for portfolio optimisation with transaction costs
by exploiting the recently developed idea of shadow prices. In addition, there were
a number of short communications in a newly introduced format. Each presen-
ter had 5 minutes to explain his result, which were then followed by 5 minutes
of questions and discussion. This idea of explaining in a nutshell some current
problems or results met with enormous success; the list of volunteers for giving a
short presentation very quickly grew to a total of 17 names, and the corresponding
talks were scheduled on Wednesday morning and Thursday morning. Wednesday
afternoon was then reserved for the traditional excursion, which went to Oberwol-
fach Kirche instead of St. Roman because there was still quite a lot of snow and
many tracks on the hills were very slippery.
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Thursday started with Luciano Campi who presented a structural model for
pricing and hedging derivatives in energy markets, a topic of increasing practical
importance in recent years. Jin Ma used a system of interacting stochastic dif-
ferential equations to describe possible defaults of correlated assets, and proved a
law of large numbers for self-exciting dynamics via a fixed-point argument. A sec-
ond block of short communications followed, leading again to intense discussions
that continued into the afternoon and in the evenings. Mete Soner then gave new
existence and uniqueness results for second order backward stochastic differential
equations, a probabilistic analogue to a class of fully nonlinear partial differential
equations. Kasper Larsen showed how a number of asset pricing puzzles from fi-
nance can be explained, via a clever construction, by equilibria in Brownian-driven
but incomplete financial markets. Finally, Albert Shiryaev gave a historical talk in
memory of the recently deceased Anatoli V. Skorokhod, one of the great Russian
probabilists born in the 20th century.

On the last day, Tahir Choulli presented new ideas and results in connection
with defaultable markets; in mathematical terms, this amounts to studying the
behaviour of stochastic processes before and after a random time, and this leads to
some quite challenging new problems. Josef Teichmann discussed affine processes
and their applications in mathematical finance, focusing in particular on regular-
ity and filtering questions. Complementing an earlier talk, Peter Friz derived new
expansion results for the Heston model, one of the workhorses in practical ap-
plications of option pricing. Jan Ob loj studied the inverse problem of recovering
the preferences of financial agents from their observed actions and showed that
uniqueness as well as nonuniqueness can happen, depending on the setting. Mihai
Ŝırbu introduced a model for high-watermark fees in hedge fund investments and
explained how to fruitfully use the Skorokhod equation in that context. Finally,
Freddy Delbaen gave a new, more structural proof for the representation of the
penalty function in time-consistent monetary utilities.

Like in the workshop three years before, there were an enormous number of dis-
cussions, interactions and exchanges. Everyone felt privileged to be able to spend
a highly productive and creative week at the unique place that has been created
in Oberwolfach and to profit from the excellent infrastructure, support and scien-
tific environment. In particular, the younger participants and first-time visitors
to Oberwolfach unanimously said that the actual experience of the workshop and
the overall scientific atmosphere still exceeded their already high anticipations.

As organisers and on behalf of all participants, we want to express our gratitude
to the Mathematisches Forschungsinstitut Oberwolfach for giving us the opportu-
nity of having this very successful workshop, and we hope that we shall be able to
come back at some time in the future.

Dmitry Kramkov
Martin Schweizer

Nizar Touzi
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Abstracts

Simple arbitrage

Christian Bender

We characterize absence of arbitrage with simple trading strategies in a dis-
counted market with a constant bond and a stock. We suppose that a right-
continuous adapted process Xt, 0 ≤ t < ∞, on a filtered probability space
(Ω,F , (Ft)t∈[0,∞), P ) (satisfying the usual conditions) models a discounted stock
price. Recall that by applying a simple trading strategy, the portfolio is only
changed at finitely many stopping times, i.e. a simple strategy is a stochastic
process of the form

Φt = φ01{0}(t) +

n−1
∑

j=0

φj1(τj ,τj+1],

where n ∈ N, 0 = τ0 ≤ τ1 ≤ · · · ≤ τn are a.s. finite stopping times with respect
to (Ft) and the φj are Fτj -measurable real random variables. Φt represents the
number of stocks held by an investor at time t. Given such a strategy Φ and zero
initial endowment, the self-financing condition implies that the investor’s wealth
at time t is given by

Vt(Φ) =

n−1
∑

j=0

Φτj+1
(Xt∧τj+1

−Xt∧τj).

Φ is called a simple arbitrage if Φ is a simple strategy, V∞(Φ) := limt→∞ Vt(Φ) ≥ 0
and P (V∞(Φ) > 0) > 0. As usual, we do not impose the nds-admissibility on
simple strategies, as doubling schemes cannot be implemented with finitely many
trades only. It is well known that the existence of an equivalent local martingale
measure is neither necessary nor sufficient for absence of simple arbitrage, see e.g.
Delbaen and Schachermayer [1].

As a first result we show that existence of a simple arbitrage implies existence
of one of two particularly favorable types of arbitrage: a 0-admissible arbitrage
where the investor does not run into losses while waiting for a riskless gain, or an
obvious arbitrage which promises a minimum riskless gain of some ǫ > 0, if the
investor trades at all.

More precisely, suppose X admits simple arbitrage. Then there are two a.s. fi-
nite stopping times σ ≤ τ with P (σ < τ) > 0 such that
(i) Φt = 1(σ,τ ] or Φt = −1(σ,τ ] is an obvious arbitrage, i.e. there is an ǫ > 0 such
that

V∞(Φ) ≥ ǫ on {σ < τ}
or
(ii) Φt = 1(σ,τ ] or Φt = −1(σ,τ ] is a 0-admissible arbitrage, i.e. it is an arbitrage
and Vt(Φ) ≥ 0 for every t ≥ 0. Moreover, in case (ii), σ and τ can be chosen as
bounded stopping times.
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For stock price processes X with continuous paths, a sufficient condition for
absence of obvious arbitrage on a finite trading horizon is the well-studied property
of conditional full support of the log-prices, see e.g. [2, 3, 4]. Processes which
enjoy the conditional full support property include log-prices of many stochastic
volatility models and local volatility models, but also fractional Brownian motion
and mixed fractional Brownian motion.

Therefore we focus on the study of absence of 0-admissible simple arbitrage.
We derive the following sufficient condition: Suppose X = M + Y , where M is
a continuous (Ft)-local martingale and Y is an (Ft)-adapted processes which is
locally 1/2-Hölder continuous with respect to the quadratic variation 〈M〉 of M ,
in the following sense: For every K > 0 there is a non-negative, a.s. finite random
variable CK such that

∀0≤t≤s≤K |Ys − Yt| ≤ CK |〈M〉s − 〈M〉t|1/2.
Then X does not admit a 0-admissible simple arbitrage.

The proof can be decomposed into three steps:

(1) A continuous process X does not admit 0-admissible simple arbitrage if
and only if for every a.s. finite stopping time σ

inf{t ≥ σ | Xt > Xσ} = inf{t ≥ σ | Xt < Xσ},
i.e. whenever the stock price moves away from level Xσ, it crosses this
level ‘immediately’.

(2) The property in (1) is then proved for the case that the local martingale
is a Brownian motion, making use of the law of the iterated logarithm.

(3) The general case can finally be derived by a time change argument applying
the Dambis–Dubins–Schwarz theorem.

The results can then be combined to prove absence of simple arbitrage for many
‘mixed’ models on a finite trading horizon, i.e. some standard models (stochastic
vol such as the Heston model, local vol), whose log-prices are perturbed by adding
an independent continuous process which is 1/2-Hölder continuous on compacts.
In particular, absence of simple arbitrage on a finite trading horizon holds for a
mixed fractional Brownian motion with Hurst parameter H > 1/2, i.e. the sum
of a Brownian motion and an independent fractional Brownian motion, which is
known to be not a semimartingale if the Hurst parameter satisfies H ∈ (1/2, 3/4].

References

[1] F. Delbaen, W. Schachermayer, The existence of absolutely continuous local martingale
measures, Ann. Appl. Probab. 5 (1995), 926–945.

[2] A. Cherny, Brownian moving averages have conditional full support, Ann. Appl. Probab.
18 (2008), 1825–1830.

[3] P. Guasoni, M. Rasonyi, W. Schachermayer, Consistent price systems and face-lifting pric-
ing under transaction costs, Ann. Appl. Probab. 18 (2008), 491–520.

[4] M. S. Pakkanen, Stochastic integrals and conditional full support. J. Appl. Probab. 47

(2010), 650–667.



Stochastic Analysis in Finance and Insurance 249

A structural risk-neutral model for pricing and hedging power

derivatives

Luciano Campi

(joint work with R. Aı̈d, N. Langrené)

This talk aims to contribute to the development of an electricity price model that
can provide explicit or semi-explicit formulae for European derivatives on elec-
tricity markets. Since the beginning of the liberalization process of electricity
markets in the 90s in Europe and in the USA, there has been an important re-
search effort devoted to electricity price modelling for pricing derivatives. Due to
the non-storable nature of electricity, it was — and still is — a challenge to reach
a completely satisfying methodology that would suit the needs of trading desks: a
realistic and robust model, computational tractability of prices and Greeks, con-
sistency with market data. Two main standard approaches have usually been used
to face this problem. The first approach consists in modelling directly the forward
curve dynamics and deducing the spot price as a futures with immediate delivery.
Belonging to this approach are e.g. [12] and [7]. This approach is pragmatic in
the sense that it models the prices of the available hedging instruments. However,
it makes difficult to capture the right dependencies between fuels and electric-
ity prices (without cointegration). The second approach starts from a spot price
model to deduce futures price as the expectation of the spot under a risk-neutral
probability. The main benefit of this approach is that it provides a consistent
framework for all possible derivatives. This approach has been successfully ap-
plied to commodities in the seminal work of Schwartz [22]. Its main drawback is
that it generally leads to complex computations for prices of electricity derivatives.
Most of the authors following this approach use an exogenous dynamics for the
electricity spot price [14, 5, 9, 18, 10, 6, 8, 16] and only a few try to deduce futures
and option prices through an equilibrium model or through a model including a
price formation mechanism [20, 11, 21, 19, 2].

The main contribution of this work is to provide analytical formulae for elec-
tricity futures and semi-explicit expressions for European options in an electricity
spot price model that includes demand and capacities as well as fuel dynamics.
Modeling the dependencies between fuels and electricity is of great importance for
spread options evaluation. To our knowledge, this is the first attempt performed
in that direction.

Concerning the use of an equilibrium model or a price mechanism for pricing
electricity derivatives, the closest work to ours can be found in [20, 21, 11, 19].
It has been recognized that the mechanism leading to the electricity spot price
was too complex to allow for a complete modelling that would fit the constraints
of derivatives pricing. The simplest one is maybe Barlow’s model [3] where the
price is determined by the matching of a simple parametric offer curve and a
random demand. Many authors have then derived a reduced equilibrium model
for electricity prices in this spirit [17, 13]. In [20], electricity dependency on fuel
prices is taken into account by modelling directly the dynamic of the marginal fuel.
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The authors manage to provide the partial differential equation and its boundary
conditions for the price of an European derivative. The approach followed by [11]
and [19] is quite similar. Therein, the price is modelled as an exponential of a
linear combination of demand and capacity. In general, it is difficult to introduce
in the same framework the dependency of electricity spot price from fuels and at
the same time its dependency on demand and capacity. Dependency among fuels
is generally captured by a simple correlation among Ornstein-Uhlenbeck processes
as in [15] or by cointegration method as in [4].

Here, we start from the marginal price model developed in [2] and enrich it
substantially to take into account how the margin capacity uncertainty contributes
to futures prices. In order to include the biggest price spikes in our model, we
introduce a multiplying factor allowing the electricity spot price to deviate from
the marginal fuel price when demand gets closer to the capacity limit. Since
electricity is a non-storable commodity, this factor accounts directly for the scarcity
of production capacity. Although such an additional feature makes the model more
complex, we can still provide closed form formulae for futures prices. Under this
model, any electricity futures contract behaves almost as a portfolio of futures
contracts on fuels as long as the product is far from delivery. In contrast, near
delivery, electricity futures prices are determined by the scarcity rent, i.e. demand
and capacity uncertainties.

The talk is based on the joint work [1].
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New developments for defaultable markets

Tahir Choulli

This talk is based on works in progress, [1] and [3]. Precisely, we investigate some
stochastic structures, mean variance hedging problems, and some non-arbitrage
concepts for defaultable markets. From the large existing literature about the
mean-variance hedging problem and the local-risk minimization problem, we can
conclude that the solutions to these problems are based essentially on two main
issues. The first issue is a sort of non-arbitrage condition on the market model
and is called structure conditions, while the second issue is the Föllmer–Schweizer
decomposition (FS decomposition hereafter). This decomposition is a natural ex-
tension of the Galtchouk–Kunita–Watanabe decomposition to the semimartingale
framework. This explains our interest in these two problems (structure conditions
and the FS decomposition) for defaultable markets. We start by illustrating these
two problems on a simple market model with default for which the immersion
property fails under any equivalent probability measure. Hence, for this example,
the existing literature about the FS decomposition and/or the no free lunch with
vanishing risk (NFLVR hereafter) for defaultable markets cannot be applied. This
example motivates our investigation of the defaultable markets without assuming
the immersion property. For all the problems (i.e. the FS decomposition, structure
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conditions, and non-arbitrage) that we address in [1] and [3], we proceed by dis-
tinguishing what happens before the default time and after the default time. We
provide necessary and sufficient conditions on the default such that the structure
conditions are preserved and/or the FS decomposition exists for the progressively
enlarged filtration that makes the default time a stopping time. Furthermore, we
describe the components of the FS decomposition under the enlarged filtration in
terms of those obtained for the “public” filtration and vice versa.

We give sufficient conditions on the default such that NFLVR and/or non-
arbitrage are preserved for the defaultable market. Here, again, we distinguish the
case of before the default time and the case of after the default. The key ideas
behind these results lie in investigating the variation of a number of stochastic
tools with respect to a precise additional uncertainty represented by default time.
In fact, we describe how stopping times, optional stochastic processes, local mar-
tingales, semimartingales, and local martingale orthogonality with respect to the
enlarged filtration can be expressed in terms of the same stochastic concepts for
the “public” filtration, respectively.
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Time-consistent mean-variance portfolio selection in discrete and

continuous time

Christoph Czichowsky

Viewed as a family of conditional optimisation problems, mean-variance portfolio
selection (MVPS) is time-inconsistent in the sense that it does not satisfy Bell-
man’s optimality principle: If a strategy is optimal for the mean-variance criterion
at the initial time optimised over the entire time interval, this strategy is no longer
optimal for the conditional criterion on any remaining time interval. Therefore the
usual dynamic programming approach fails to produce a time-consistent dynamic
formulation of the optimisation problem. To overcome this, one has to use a weaker
optimality criterion which consists of optimising the strategy only locally. This
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has recently been done in Markovian settings by Basak and Chabakauri [1] for
MVPS and Björk and Murgoci [2] for generic time-inconsistent stochastic optimal
control problems including MVPS. By exploiting that particular framework, they
could characterise the local notion of optimality by a system of partial differential
equations (PDEs).

In this talk (which is based on [3]), we develop such a local notion of optimality,
called local mean-variance efficiency, for the conditional mean-variance problem
in a general semimartingale setting where alternative characterisations in terms
of PDEs are not available in general. We start in discrete time where this is
straightforward, and then obtain the natural extension to continuous time which
is similar to the notion of local risk minimisation in continuous time introduced
by Schweizer in [6]. Our formulation in discrete as well as in continuous time
embeds time-consistent mean-variance portfolio selection in a natural way into
the already existing quadratic optimisation problems in mathematical finance,
i.e. the Markowitz problem, mean-variance hedging, and local risk minimisation;
compare [4] and [5]. Moreover, we obtain an alternative characterisation of the
optimal strategy in terms of the structure condition and the Föllmer–Schweizer
decomposition of the mean-variance tradeoff, which gives necessary and sufficient
conditions for the existence of a solution. The link to the Föllmer–Schweizer
decomposition allows us to exploit known results to give a recipe to obtain the
solution in concrete models. Since the ingredients for this recipe can be obtained
directly from the canonical decomposition of the asset price process, this can be
seen as the analogue to the explicit solution in the one-period case. Additionally,
this gives an intuitive interpretation of the optimal strategy as follows. On the one
hand, the investor maximises the conditional mean-variance criterion in a myopic
way one step ahead. In the multi-period setting, this generates a risk represented
by the mean-variance tradeoff process which he then minimises on the other hand
by local risk minimisation. Finally, using the alternative characterisation of the
optimal strategy allows us to justify the continuous-time formulation by showing
that it coincides with the continuous-time limit of the discrete-time formulation.
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The representation of the penalty function for a monetary utility

function in a Brownian filtration: a functional analytic proof

Freddy Delbaen

Let u be a time consistent concave monetary utility function defined on L∞ and
based on the filtration generated by a d-dimensional Brownian motion W . The
time interval is supposed to be finite, [0, T ] with T < ∞. We assume that for
ξ ∈ L∞, the process u(ξ) is the càdlàg version. Together with u we get the
penalty function c which is defined for all probability measures that are absolutely
continuous with respect to P. We identify such a probability Q with its density
function Lt = EP

[

dQ
dP

∣

∣Ft

]

. This process can be written as a stochastic integral
L = E(q ·W ) where q is predictable. The admissibility sets are defined as follows:
if σ ≤ τ ≤ T are stopping times, then Aσ,τ = {ξ ∈ L∞(Fτ ), uσ(ξ) ≥ 0}. The
penalty function or better process is defined as

cσ,τ (Q) = ess.sup{EQ[−ξ | Fσ], uτ(ξ) ≥ 0, ξ ∈ L∞(Fτ )}.

The process (ct,T (Q)) admits a càdlàg version. We assume that c0(Q) = 0. The
time consistency is equivalent to either of the following conditions:

1) for all σ ≤ τ and all Q ≪ P: cσ,T (Q) = cσ,τ (Q) + EQ[cτ,T (Q) | Fσ], or
2) for all σ ≤ τ and all Q ≪ P: Aσ,T = Aσ,τ + Aτ,T .

These properties play a fundamental role in showing the following
Suppose that u0 is Fatou and time consistent. Suppose that the filtration F

is given by a d-dimensional Brownian motion W , defined on the bounded time
interval [0, T ]. Suppose that c0(P) = 0. Under these assumptions, there is a
function

f : Rd × [0, T ] × Ω → R+,

such that

(1) for each (t, ω) ∈ [0, T ] × Ω, the function f(., t, ω) is convex on Rd,
(2) for each (t, ω) ∈ [0, T ] × Ω, f(0, t, ω) = 0,
(3) for each x ∈ Rd, the function f(x, ., .) is predictable,
(4) the function f is measurable for B×P, where B is the Borel σ-algebra on

Rd and P is the predictable σ-algebra on [0, T ] × Ω,
(5) for each Q ≪ P we have

c0(Q) = EP

[

∫ T

0

f(qt(.), t, .) dt

]

.

The proof is done in different steps. We only need to prove it for Q ∼ P. The
first step is to show that the process (ct,T (Q)) is a Q-supermartingale of class D.
It is therefore represented by a Q-potential α. The next step is to show that the
measure dα is the supremum in the lattice of stochastic measures of the measures

qZξ dt − dAξ
t , where dut(ξ) = dAξ

t − Zξ dWt is the Doob–Meyer decomposition
of the submartingale u(ξ). From this it already follows that the measure dα is
absolutely continuous with respect to Lebesgue measure. The structure of the
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system Aσ,τ is needed to show that the pointwise supremum of the measures is
the same as the supremum calculated on the space Ω × [0, T ].

The present proof is more structural than the original proof of Delbaen, Peng
and Rosazza-Gianin. That proof was based on a truncation argument, reducing
the problem to the dominated case.

Equilibrium considerations in a financial market with interacting

investors

Christoph Frei

(joint work with Gonçalo dos Reis)

While trading on a financial market, the agents we consider take the performance
of their peers into account. In more detail, our model in [2] consists of n agents who
can trade in the same market subject to some individual restrictions. Each agent
measures her preferences by an exponential utility function and chooses a trad-
ing strategy that maximizes the expected utility of a weighted sum consisting of
three components: an individual claim, the absolute performance and the relative
performance compared to the other n − 1 agents. The question is whether there
exists a Nash equilibrium in the sense that there are individual optimal strategies
simultaneously for all agents. We make the usual assumption that the financial
market is big enough so that the trading of our investors does not affect the price
of the assets.

A model similar to ours has been recently studied in the PhD thesis of Es-
pinosa [1], but in the absence of individual claims and with assets modelled as Itô
processes with deterministic coefficients. These assumptions crucially simplify the
analysis and enable Espinosa [1] to show the existence of a Nash equilibrium. He
also studies its form, while our focus is on existence questions in a more general
setting and interpretations as well as possible alternatives in the absence of a Nash
equilibrium. We obtain existence and uniqueness in a stochastic framework if all
agents are faced with the same trading restrictions. Under different investment
constraints, however, an agent may ruin another one by solely maximizing her
individual utility. Different investment possibilities may allow an agent to follow
a risky and beneficial strategy, and thereby negatively affect another agent who
benchmarks her own strategy against the less restricted one. The bankruptcy of
the agents can be avoided if agents with more investment possibilities are showing
solidarity and willingness to waive some expected utility. This leads to the exis-
tence of an approximate equilibrium, in the sense that there exists an ǫ-equilibrium
for every ǫ > 0. In an ǫ-equilibrium, every agent uses a strategy whose outcome is
at most ǫ away from that of the individual best response. Behind this well-known
concept stands the idea that agents may not care about very small improvements.
Our setting brings up the additional aspect of solidarity: by accepting a small
deduction from the optimum, an agent can help to save the others from failure.
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This financial interpretation goes along with an interesting mathematical basis,
which is due to the correspondence between an equilibrium of the investment prob-
lem and a solution of a certain backward stochastic differential equation (BSDE).
We present an illustrative counterexample which is easy to understand and shows
that — and why — general multidimensional quadratic BSDEs do not have solu-
tions despite bounded terminal conditions and in contrast to the one-dimensional
case. This also gives a mathematical flavour for the absence of an equilibrium
in the financial model, because there is a correspondence between existence of
equilibria in our financial model and solutions to such a BSDE.
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On refined density and smile expansion in the Heston model

Peter Karl Friz

(joint work with Stefan Gerhold, Archil Gulisashvili, Stephan Sturm)

It is known that Heston’s stochastic volatility model exhibits moment explosion,
and that the critical moment can be obtained by solving (numerically) a simple
equation (e.g. [2, 8]). This yields a leading order expansion for the implied volatil-
ity at large strikes, thanks to Roger Lee’s moment formula [7]. Motivated by recent
“tail-wing” refinements [1, 6] of this moment formula, we first derive a novel tail
expansion for the Heston density, sharpening previous work of Dragulescu and
Yakovenko [3], and then show the validity of a refined expansion where all con-
stants are explicitly known as functions of the critical moment, the Heston model
parameters, spot vol and time-to-maturity. In the case of the “zero-correlation”
Heston model, such an expansion was derived by Gulisashvili and Stein [6]. Our
methods and results may prove useful beyond the Heston model; the entire quanti-
tative analysis is based on affine principles [8]. At no point do we need knowledge
of the (explicit, but cumbersome) closed form expression of the Fourier transform
of the log-price (equivalently: Mellin transform of the price); what matters is
that these transforms satisfy ordinary differential equations of Riccati type, and
our (saddle) point analysis makes essential use of higher order Euler estimates
reminiscent of rough path analysis [4, 5]. Secondly, our analysis reveals a new
parameter ( “critical slope”), defined in a model free manner, which drives the
second and higher order terms in tail- and implied volatility expansions.
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In search of the Minsky moment: credit dynamics, asset price bubbles

and financial fragility

Matheus Grasselli

(joint work with Bernardo Costa Lima and Omneia Ismail)

Hyman Minsky’s main contribution to economics – the financial instability hy-
pothesis – links the expansion of credit for funding new investment to the increase
in asset prices and the inherent fragility of an over-leveraged financial system [6].
In this talk I describe an attempt to mathematize his model.

I first briefly review the economic literature on asset price bubbles, starting
with the theory of rational bubbles in discrete time, which arise naturally in the
context of maximization of utility of consumption and satisfy

(1) Et[Bt+1] = ρ−1Bt,

where 0 < ρ < 1 is a discount factor. Among the immediate implications of the
growth condition (1) are the facts that rational bubbles are always nonnegative and
cannot be created after the first day of trade on an asset. More importantly, they
cannot exist for an asset with finite maturity or in an economy with finitely many
agents with fully dynamic rational expectations [8]. One alternative is to consider
an economy growing at a rate bigger than ρ−1, in which case rational bubbles are
not just possible, but efficient instruments of wealth allocation between overlapping
generations. Another alternative is to move beyond the rational expectations
paradigm and allow for market inefficiencies to play a role in the formation of
bubbles.

In a influential paper, Shiller [7] argued that introducing noise traders who re-
act to fads and social dynamics alongside sophisticated investors who trade on
the basis of rational expectations leads to prices that deviate from fundamentals
while still preserving the degree of unpredictability confirmed by statistical tests
on empirical data. A more detailed analysis of the effect of noise traders was
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presented in [2], where it was shown that not only prices can exhibit persistent
deviations from fundamentals, but under certain regimes noise traders can earn
higher returns than sophisticated investors and become dominant in the market.
Another mechanism to generate prices deviating from fundamentals is the intro-
duction of financial intermediation as suggested in [1], where it was shown that
investors using borrowed funds push asset prices up by bidding more than they
would if they had to use their own money.

Both noise traders and financial intermediation are essential ingredients in the
Minsky story. While the existence of noise traders can be tacitly assumed (Larry
Summers famously began a paper with the sentence “There are idiots – look around
you!”), financial intermediation needs more justification. In the second part of the
talk I describe an agent-based model for the emergence of a banking system in a
society with random liquidity preferences. This uses the fundamental model for a
bank as a provider of liquidity proposed in [3] and the adaptive learning framework
proposed in [4]. Starting from the individual liquidity preferences of agents placed
on a rectangular grid, we were able to numerically simulate the appearance of
heterogeneous banks. The next step in this computationally intensive part of the
project consists of letting the banks themselves act as agents seeking insurance
from liquidity shocks by forming an interbank loan network, which can then be
compared with existing empirical networks.

Finally in the third part of the talk, I discuss the following three-dimensional
dynamical system for wages ω, employment rate λ and debt δ proposed in [5]:

dω

dt
= ω[F (λ) − α],

dλ

dt
= λ

[

k(πn)

ν
− α− γ − β

]

,(2)

dδ

dt
= k(πn) − (1 − ω) − δ

[

k(πn)

ν
− γ

]

,

where α, γ and β are the rates of increase in productivity, capital depreciation and
population, respectively. The essence of this model is that changes in wages depend
nonlinearly on the employment rate through a Phillips curve F (λ), whereas for
a given interest rate r, new investment, which is partially financed by new debt
δ, depends nonlinearly on the net profit πn = 1 − ω − rδ. Through a series of
examples, I show that this system exhibits the cyclical behaviour associated with
booms and crashes, as well as locally stable but globally unstable equilibria.

Put together, these three ingredients, namely (i) a mechanism for bubble for-
mation depending on the availability of credit, (ii) an agent-based model for the
establishment of a banking sector in the economy and (iii) a dynamic model for
the expansion and contraction of credit, constitute a first pass at a comprehensive
model for endogenous formation and crash of asset price bubbles.
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Model independent prices for variance swaps

David Hobson

(joint work with Martin Klimmek)

If (Xt)t≥0 is a continuous stochastic process, then applying Itô’s formula to 2 logXt

yields

(1)

∫ T

0

d[X ]t
X2

t

= −2 logXT + 2 logX0 + 2

∫ T

0

dXt

Xt
.

If X is the forward price of an asset, then this has a clear interpretation in finance:
the payoff from the floating leg of a variance swap contract can be expressed,
pathwise, as the payoff of a European contract and the gains from trade from a
dynamic position in the underlying. If call options with maturity T are traded,
so that the European claim can be replicated with an option portfolio, then the
variance swap can be replicated exactly with vanilla instruments and there is a
model-independent price for the variance swap.

What if (Xt)t≥0 is not continuous? Then (1) breaks down, and there is no
perfect hedge. Moreover, the payoff of the variance swap depends on the fine
structure of the definition of the payoff, for instance whether we use squared pro-
portional returns or squared log returns to define the contract. Nonetheless we
show that there is a cheapest possible superhedge and a most expensive subhedge.
These hedges are associated with time-changed versions of Perkins’ solution to the
Skorokhod embedding problem.

The main idea is, given a bivariate function H , to find functions ψ and δ such
that H(x, y) ≥ ψ(y) − ψ(x) + δ(x)(y − x) for all x, y ≥ 0. Then, for a partition
0 = t0 < t1 < · · · < tn = T ,

(2)

n−1
∑

k=0

H(Xtk , Xtk+1
) ≥ ψ(XT ) − ψ(X0) +

n−1
∑

k=0

δ(Xtk)(Xtk+1
−Xtk)

and we have a subreplicating portfolio. The optimal choice for ψ and δ will depend
on the kernel H , e.g. H(x, y) = (y/x− 1)2 or (log(y/x))2, and also on the prices
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of calls. The model for which there is equality in (2) is related by a discontinuous
time change to Perkins’ solution of the Skorokhod problem.

The quadratic variation of an Itô semimartingale without Brownian

part

Jean Jacod

(joint work with Viktor Todorov)

In the context of high frequency data, like financial data, one of the main ob-
jects of interest is the quadratic variation. When the underlying process X is
an Itô semimartingale, one knows the rate of convergence of the “approximated”
quadratic variation when it is computed on the basis of a regular sampling with
mesh ∆n going to 0. This rate is 1/

√
∆n, and the limit of the normalized er-

ror process involves the volatility in an essential way, as well as the jumps of the
semimartingale.

When X has no Brownian part, equivalently when the volatility vanishes iden-
tically, the limit above also vanishes, meaning that the rate is not appropriate.
However, in some cases it is still possible to reach a central limit theorem:

We suppose that X is the sum of a drift term plus an integral
∫ t

0
σs−dZs, where

σ is itself an Itô semimartingale, and Z is a Lévy process whose Lévy measure
G is such that the “tail” near 0, say G([−x, x]c), is equivalent to θ/xβ for some
θ > 0 and some β ∈ (0, 2) (as x ↓ 0); this is the case of course when Z is stable
with index β, or temperate stable, or in many other examples. We then have a
contrasted behavior:

(1) When β > 1, or when β < 1 and Zt =
∑

s≤t ∆Zs is the sum of its
jumps, or if β = 1 and Z is symmetric, then the rate of convergence of the
approximate quadratic variation is 1/(∆n log(1/∆n))1/β . Moreover, the

limit is a stochastic integral
∫ t

0
σ2
s− dZ

′
s, where Z ′ is a stable process with

index β and independent of X .
(2) When β = 1 and Z is not symmetric (for example it has a drift), the rate

is 1/∆n (log(1/∆n))2 and the convergence holds in probability.
(3) When β < 1 and the drift is not vanishing, the rate becomes 1/∆n, and

the limit is a rather complicated process involving the jumps of X , its
drift, and extra independent variables.

In a sense, the situation (3) is like the case where there is a Brownian part, with the
driving Wiener process W being replaced by the “driving drift” t. The situations
(1) and (2) can be viewed, in contrast, as radically different.

Of course, the setting as described above may be viewed as rather restrictive.

Probably one can add to the “main term”
∫ t

0
σs−dZs another pure jump term

with a Blumenthal–Getoor index smaller than β. On the other hand, since the
rate depends on β in an essential way, there seems to be no way of significantly
relaxing the assumption on the tail behavior of G, except perhaps by adding a
slowly varying function.
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Asset pricing puzzles explained by incomplete Brownian equilibria

Kasper Larsen

(joint work with Peter Ove Christensen)

We present incomplete Brownian based models allowing us to explicitly quan-
tify the impact that unspanned income and preference heterogeneity can have
on the resulting equilibrium interest rate and risk premium. The finite number
of investors can trade continuously on a finite time horizon, and they maximize
expected exponential utility of intermediate consumption. We show that if the in-
vestors cannot consume continuously over time, unspanned income can lower the
risk-free rate and raise the risk premium when compared to the standard complete
Pareto efficient equilibrium. Subsequently, we consider the limiting case where in-
vestors can consume continuously over time, and in a model-free manner we show
that unspanned income can affect the equilibrium risk-free rate but can never affect
the equilibrium instantaneous risk premium relative to the complete Pareto effi-
cient equilibrium. However, if risk premia are measured over finite time-intervals
(as in empirical studies of asset pricing puzzles), our model with unspanned in-
come and stochastic volatility can raise the equilibrium risk premium (and lower
the equilibrium risk-free rate) relative to the Pareto efficient analogue.

The questions of existence and characterization of complete equilibria in con-
tinuous time and state models are well-studied. By means of the representative
agent method, the search for a complete market equilibrium can be reduced to
a finite-dimensional fixed point problem. To the best of our knowledge, only [2]
and [6] consider the abstract existence of a non-Pareto efficient equilibrium in a
continuous trading setting. We provide tractable incomplete models for which the
equilibrium price processes can be computed explicitly and, consequently, we can
quantify the impact of market incompleteness.

To obtain incompleteness effects on the equilibrium risk premium, we incor-
porate a stochastic volatility v à la Heston’s model into the equilibrium stock
price dynamics. In Heston’s original model [3], the stock’s relative volatility is v,
whereas in this paper v will be the stock’s absolute volatility. We explicitly derive
expressions for the equilibrium risk-free rate and the risk premium in terms of
the individual income dynamics as well as the absolute risk aversion coefficients.
The resulting type of equilibrium equity premium has been widely used in vari-
ous optimal investment models, see e.g. [1] and [4], whereas the resulting type of
equilibrium interest rate is similar to the celebrated CIR term structure model.

Translation invariant models (such as the exponential model we consider) allow
consumption to be negative. [5] show that this class of models is fairly tractable
even when income is unspanned. We first conjecture the equilibrium form of the
market price of risk process and then use the idea in [2] to rewrite the individual
investor’s problem as a problem with spanned income and heterogeneous beliefs.
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Asymptotics of implied volatility in extreme regimes

Roger Lee

(joint work with Kun Gao)

Asymptotic approximations of implied volatility reveal information contained in
implied volatility observations, and provide guidance for extrapolating implied
volatility to unobserved strikes and expiries. Indeed, explicit formulas for a given
model can connect, on one hand, information about the model’s parameters, and
on the other hand, key features (such as level/slope/convexity with respect to
strike/expiry) of the implied volatility skew/smile. This leads to an understand-
ing of which specific parameters influence which specific smile features, and it
facilitates numerical calibration of those parameters to implied volatility data.
Moreover, asymptotic formulas suggest the proper functional forms to use for the
purpose of parametrically extrapolating or interpolating a volatility skew.

Pursuant to these background motivations (and complementary to previous
work on asymptotic regimes of SDE parameters, such as [3] or [6]), a growing
body of research explores asymptotic regimes of strikes and expiries; a typical
result focuses on either long expiries, or short expiries, or extreme strikes. Taking
a broader view in this paper, we exploit the similarities of extreme-strike and
extreme-expiry asymptotics, to introduce a general framework that unifies all
three extreme strike/expiry regimes, including variants in which strike and expiry
vary jointly.

Our approach encompasses not only general asymptotic regimes, but also gen-
eral models. Our main results express the implied volatility V in a model-free
way, not in terms of the parameters of any particular model, but rather in terms
of L, the absolute log of the option price, and k, the log strike. This type of
model-independent formula has precedents in the literature; the leading examples
in each regime are as follows. Deferring precise definitions until the body of this
paper, let us write L− and L+ for the absolute logs of the prices of, respectively,
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an out-of-the-money call, and a covered-call position (long one share, short one
call); then the following asymptotics are known:

For short expiries with constant strike, Roper/Rutkowski [8] show that

(1) V 2 ∼ k2

2L−

For long expiries, Tehranchi [9] shows that

(2) V 2 = 8L+ − 4 logL+ + 4k − 4 log π + o(1).

For large strikes with constant expiry, Gulisashvili [5] shows that

(3) V = G−

(

k, L− − 1

2
logL−

)

+O(L
−1/2
− ),

where

G−(κ, u) :=
√

2(
√
u+ κ−

√
u),

and that (3) implies other model-free results including the moment formula (Lee
[7]) and tail-wing formula (Benaim/Friz [1]).

We sharpen all of the above formulas to arbitrarily high order of accuracy, in the
following sense: We generate, for any given J > 0, implied volatility and implied
variance formulas with rigorous error estimates of the type O(1/LJ) where L→ 0.
Low-order special cases of our theorem suffice to refine each of the formulas cited
above.

Our general results have immediate applications to specific models. Consider,
for example, the Heston model at large strikes, Lévy models at short expiries, and
Lévy models at long expiries. In all three of these cases, there exist expansions
for L (according to asymptotics in, respectively, Friz/Gerhold/Gulisashvili/Sturm
[4], Figueroa-Lopez/Forde [2], and a refined saddlepoint expansion in this pa-
per) which approximate L in terms of the model’s parameters. Inserting these
L approximations into our main theorem then produces explicit parametric im-
plied volatility formulas, again with rigorous error estimates showing that we
sharpen the sharpest previously known implied volatility formulas for those mod-
els: Friz/Gerhold/Gulisashvili/Sturm [4] in the Heston case, Figueroa-Lopez/
Forde [2] in the short-dated Lévy case, and Tehranchi [9] in the long-dated Lévy
case.
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Law of large numbers for self-exciting correlated defaults

Jin Ma

(joint work with Jakša Cvitanić, Jianfeng Zhang)

Modelling of correlation between default probabilities of multiple “names” (indi-
viduals, firms, countries, etc.) has been one of the central issues in the theory and
applications of managing and pricing credit risk in the last several years. There
have been dozens of models in the literature. While each of these models has its
own advantages and disadvantages, lax use of such models in practice could in
part affect the understanding of the risk of the credit default and consequently
contribute to the extent of a potential crisis in the market.

In this paper we propose a “bottom-up” model for correlated defaults within
the standard “reduced form” framework. In particular, we assume that in a large
collection of defaultable entities, the intensity of each individual default depends
on factors specific to the individual entity, and on a common factor. The main
novelty of our model is that we further allow a part of the common factor to
take the form of an “average loss process”, which includes the average number of
defaults to date as a special case, and thus to have a self-exciting nature. Such
a self-exciting feature allows us, in the limiting case, to analyze the impact of a
“general health” index on the individual entities.

The self-exciting structure of our model can be thought of as an example of the
so-called “contagion” feature, which has been investigated by many authors using
various approaches (see, for example, [2, 3, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17, 23],
to mention just a few). None of these models, however, contains the circular
nature presented in our model. In a recent work [13], a model similar to ours was
considered, but with a more special structure so that some large deviation type
results can be obtained, in addition to the law of large numbers type results that
we focus on. The self-exciting feature is also presented in [9], in a ”top-down”
model. For an overview of standard default risk models, one can consult, among
many others, the texts [8, 21, 22] and the references cited therein.

A more precise description of our problem is as follows. We consider n “names”,
which could be individual investors, financial firms, loans, etc. We denote their
default times by τ1, . . . , τn, as random variables defined on a filtered probability
space (Ω,F ,F,P). We associate to each name a “loss process” Li

t, t ≥ 0, so that
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the loss of the name due to default at any time t is given by Li
τ i1{τ i≤t}. We define

the “average loss” of all defaults at time t by

(1) L̄t := L̄n
t :=

1

n

n
∑

i=1

Li
τi1{τi≤t}.

Clearly, one can have various interpretations for L̄ by imposing various choices
for Li. In particular, if we set Li ≡ 1, then L̄ is the average number of defaults.
Our main purpose is to investigate the limiting behavior of L̄n as n→ ∞, namely,

(2) L̄∗
t := lim

n→∞
L̄n
t ,

whenever the limit exists, and to characterize the limit L̄∗.
Let us now assume that the probability space is rich enough to support a se-

quence of independent Brownian motions (B0, B1, . . . , Bn, . . . ) and a sequence of
exponential random variables (E1, . . . , En, . . . ), all with rate 1 and independent
of the Brownian motions. We define the following sub-filtrations of F generated
by the Brownian motions B0 and (B0, Bi), respectively:

(3) F0 := FB0

, Fi := FB0,Bi

, i = 1, 2, . . . ,

all being augmented by the P-null sets. Denote F =
∨∞

i=1

(

Fi∨σ(Ei)
)

. Then each

τ is a F-stopping time, but not necessarily an Fi-stopping time. Furthermore, for
each fixed n and the loss processes Li, i = 1, . . . , n, we define, as in reduced form
models (see e.g. [1, 8, 18])

(4) τi := inf
{

t ≥ 0 : Y i
t ≥ Ei

}

,

where, for the process L̄ defined by (1), the process Y i denotes the “hazard pro-
cess”

(5) Y i
t :=

∫ t

0

λi(s,B
0
·∧s, B

i
·∧s, X

0
s , X

i
s, L̄s)ds,

and X0, X i, i = 1, 2, . . . , are factor processes defined by

X0
t = x0 +

∫ t

0

b0(s,B0
·∧s, X

0
s , L̄s)ds+

∫ t

0

σ0(s,B0
·∧s, X

0
s , L̄s)dB

0
s ,(6)

X i
t = xi +

∫ t

0

bi(s,B
0
·∧s, B

i
·∧s, X

0
s , X

i
s, L̄s)ds(7)

+

∫ t

0

σi(s,B
0
·∧s, B

i
·∧s, X

0
s , X

i
s, L̄s)dB

i
s.

We remark here that if b0, σ0, bi, σi, λi do not depend on L̄, then our model becomes
a standard reduced form model where the defaults are conditionally independent,
conditional on the common factor X0, and it is straightforward to check that in
this case λi is the Fi-intensity of τi, in the sense that

E{τi > t|F i
t} = exp

{

−
∫ t

0

λi(s,X
0
s , X

i
s)ds

}

, t ≥ 0
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(see e.g. [1, 8]). But in the general case when λi depends on L̄, λi is obviously
no longer an Fi-adapted process (hence cannot be an “Fi-intensity” of τi in the
aforementioned sense). Due to the self-exciting nature of our model, λi has to
be understood as the conditional intensity of τ i, conditionally on all the past
defaults. We refer to [19, 20] for more on the construction of default times with
given intensities.

Our first result concerns the well-posedness of the problem, and a justification
of λ being the “intensity” in this special setting. Note that we shall omit all tech-
nical assumptions in the statements of the theorems to simplify presentation, and
refer to [4] for details.

Theorem 1 (i) Under reasonable assumptions, for each n ∈ N, the system (1),
(4)–(7) admits a unique F-adapted solution (X0, {X i, Y i}ni=1).

(ii) For each n ∈ N, let τ∗1 < · · · < τ∗n be the ordered statistics of τ1 < · · · < τn.
Moreover, for 0 ≤ k ≤ n, and i1, . . . , ik, denote

Dk := {τ∗1 = τki1 , . . . , τ
∗
k = τkik}, Gk

t :=
(

k
∨

ℓ=1

F iℓ
τ∗

k
+t

)

∨
(

∨

j 6=i1,...,ik

F j
τ∗

k

)

.

Then, for j 6= i1, . . . , ik and t ≥ 0, it holds that

P

{

τk+1
j > τ∗k + t

∣

∣

∣
Gk
t , Dk

}

= E

{

exp(Y j,k+1
τ∗

k
− Y j,k+1

τ∗

k
+t )

∣

∣

∣
Gk
t , Dk

}

P-a.s. on Dk.

(iii) For each k, conditionally on Gk
t ∨ σ(Dk), the random vectors

(Xj,k+1
τ∗

k
+t , Y

j,k+1
τ∗

k
+t ,1{τk+1

j >τ∗

k
+t}), j 6= i1, . . . , ik, are conditionally independent on

Dk, such that P-a.s. on Dk,

P

{

τ∗k+1 > τ∗k + t
∣

∣

∣
Gk
t , Dk

}

= E

{

exp
(

∑

j 6=i1,...,ik

(Y j,k+1
τ∗

k
− Y j,k+1

τ∗

k
+t )

)
∣

∣

∣
Gk
t , Dk

}

.

Our main objective is to identify the possible limit the average default loss will
converge to, in the sense of the law of large numbers, as the number of names
tends to infinity. It turns out that the limit process L̄∗ can be determined via a
fixed point problem. Since L̄∗, if it exists, should be F0-adapted, we consider the
following system for any given F0-adapted process α:

X0,α
t = x0 +

∫ t

0

b0(s,X0,α
s , αs)ds+

∫ t

0

σ0(s,X0,α
s , αs)dB

0
s ;

X i,α
t = xi +

∫ t

0

bi(s,X
0,α
s , X i,α

s , αs)ds+

∫ t

0

σi(s,X
0,α
s , X i,α

s , αs)dB
i
s,

Y i,α
t =

∫ t

0

λi(s,X
0,α
s , X i,α

s , αs)ds, ταi = inf
{

t ≥ 0 : Y i,α
t ≥ Ei

}

, i = 1, . . . , n;

L̄α
t = L̄n,α =

1

n

n
∑

i=1

Li
τα
i

1{τα
i ≤t}.
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Let us consider a simplified situation (for more general results, see [4]). Assume
that xi = x, bi = b, σi = σ, λi = λ, and Li

t = ϕ(t, B0
·∧t, B

i
·∧t), t ≥ 0, i = 1, 2, . . . ,

where ϕ : R+ × C([0,∞);R)2 → R+ is a bounded measurable function. Assume
further that b0 is decreasing in α; b is increasing in x0 and decreasing in α; λ is
decreasing in x0, xi and increasing in α; and ϕ is decreasing in t. We have the
following result.

Theorem 2 Under the assumptions of Theorem 1, for any F0-adapted process α
such that |αt| ≤ K, one has

(i) ταi are conditionally i.i.d., conditionally on F0, and

lim
n→∞

E{|L̄n,α
t − Γt(α)|} = 0,

where

Γt(α) =

∫ t

0

E

{

ϕ(s,B0
·∧s, B

1
·∧s)λ(s,B0

·∧s, B
1
·∧s, X

0,α
s , X1,α

s , αs)e
−Y 1,α

s

∣

∣

∣
F0

s

}

ds.

(ii) The process Γ(α) is continuous and increasing in t, increasing in α, and
satisfies 0 ≤ Γt(α) ≤ K, a.s.

The fixed point problem is to find an F0-adapted process α such that α = Γ(α).
Our final result is the following.

Theorem 3 Assume the assumptions of Theorem 2 are all in force. Then there
exists an F0-adapted process α such that α = Γ(α). Furthermore, for such an α
the following “law of large numbers” holds:

lim
n→∞

E

{

|L̄n
t − αt|

}

= lim
n→∞

E

{

|L̄n,α
t − αt|

}

= 0.(8)

Under appropriate conditions, we can show that for the average numbers, the
limiting process α solves an ordinary differential equation, while for the average
loss, the limiting process α solves a more general and complex equation. It is
worth remarking that these results, being of asymptotic nature, are not directly
applicable to individual credit risk derivatives, because they require a large number
of names to be involved in the limiting process. However, our results should
be useful for the risk management at the level of an institution, or a country,
with a large portfolio of defaultable claims, when the aim is to analyze potential
total losses. For example, it has been stated that the next crisis might come
from potentially numerous defaults of credit card holders. This paper provides a
theoretical model which may prove useful for addressing such issues.
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Asymptotics and duality in portfolio optimization with transaction

costs

Johannes Muhle-Karbe

(joint work with Stefan Gerhold, Paolo Guasoni, Walter Schachermayer)

We propose a tractable benchmark of portfolio choice under transaction costs. Our
analysis is based on the model of Dumas and Luciano [2], which concentrates on
long-run asymptotics to gain in tractability.

Consider a market with a safe rate r, and a risky asset, trading at ask (buying)

price S = S/(1− ε) and at bid (selling) price S = S(1− ε). S =
√

SS denotes the
(geometric) mid price, which follows geometric Brownian motion

dSt

St
= (µ+ r)dt+ σdWt,

where W is a standard Brownian motion, µ > 0 is the expected excess return, and
σ > 0 is the volatility. In this market, an investor chooses her trading strategy
(ϕ0, ϕ) so as to maximize the certainty equivalent rate

lim inf
T→∞

1

(1 − γ)T
logE

[

(ϕ0
tS

0
t + ϕ+

t St − ϕ−
t St)

1−γ
]

,

i.e., the long-run growth rate of expected power utility. Then, for small transaction
costs ε, we establish the following results:

i) (Welfare) The investor is indifferent between trading the risky asset with
transaction costs, and trading a hypothetical frictionless asset with the

same volatility σ, but with expected excess return
√

µ2 − λ2. That is,
both markets lead to the same certainty equivalent rate

β = r +
µ2 − λ2

2γσ2
,

and λ represents the liquidity premium.
ii) (Portfolio) It is optimal to keep the risky asset weight within the buy and

sell boundaries

π− =
µ− λ

γσ2
, π+ =

µ+ λ

γσ2
,

where π− and π+ are evaluated, respectively, at the ask and bid prices.
iii) (Liquidity premium) λ is identified as the unique value for which the so-

lution w(λ, x) of the initial value problem

w′(x) + (1 − γ)w(x)2 +

(

2µ

σ2
− 1

)

w(x) − γ

(

µ− λ

γσ2

)(

µ+ λ

γσ2

)

= 0

w(0) =
µ− λ

γσ2
,

satisfies the terminal boundary condition

w(log(uλ/ℓλ)) =
µ+ λ

γσ2
where

uλ
ℓλ

=
1

(1 − ε)2
(µ+ λ)(µ − λ− γσ2)

(µ− λ)(µ + λ− γσ2)
.
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Since w(λ, x) can be expressed in terms of trigonometric functions, this is
a one-dimensional equation for λ.

iv) (Trading volume) Relative turnover, defined as the number d‖ϕ‖t of shares
traded divided by the number |ϕt| of shares held, has long-term average
equal to

lim
T→∞

1

T

∫ T

0

d‖ϕ‖t
|ϕt|

=

(

1 − µ− λ

γσ2

)

σ2

2

(

2µ
σ2 − 1

(u/ℓ)
2µ

σ2 −1 − 1

)

+

(

1 − µ+ λ

γσ2

)

σ2

2

(

1 − 2µ
σ2

(u/ℓ)1−
2µ

σ2 − 1

)

.

v) (Asymptotics) As the bid-ask spread becomes small (ε ↓ 0), the following
asymptotic expansions hold:

a) Liquidity premium:

λ =

(

3µ2(µ− γσ2)2

2γ2σ2

)1/3

ε1/3 +O(ε).

b) Certainty equivalent rate:

β = r +
µ2

2γσ2
−
(

3µ2(µ− γσ2)2

25/2γ7/2σ5

)2/3

ε2/3 +O(ε4/3).

c) Trading boundaries:

π± =
µ

γσ2
± 1

γσ2

(

3µ2(µ− γσ2)2

2γ2σ2

)1/3

ε1/3 +O(ε).

d) Long-term average trading volume:
(

µ(µ− γσ2)4

12γ4σ4

)1/3

ε−1/3 +O(ε1/3).

Higher-order terms can be algorithmically computed.
vi) (Shadow price) The investor is indifferent – both in terms of certainty

equivalent rate and optimal trading policy – between trading the asset S
with transaction costs, and trading a frictionless asset with shadow price
S̃ that follows the dynamics

dS̃t/S̃t = µ̃(Yt)dt+ σ̃(Yt)dWt,

for deterministic functions µ̃(·) and σ̃(·) of Y , the (normalized) logarithm
of the ratio of risky and safe weights, which follows reflected Brownian
motion with drift in [0, log(uλ/ℓλ)]. The shadow price S̃t always lies within
the bid-ask spread, and coincides with the trading price at times of trading
for the optimal policy.

The main message is that the optimal trading policy, its welfare, and the result-
ing trading volume are all simple functions of investment opportunities r, µ, σ, of
risk aversion γ, and, crucially, of the liquidity premium λ. The liquidity premium
does not admit an explicit formula in terms of the transaction cost parameter ε,
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but is determined through the implicit relation in iii), and has the asymptotic
expansion in v), from which all other asymptotic expansions follow through the
explicit formulas.

The result has several novel implications. First, trading boundaries are symmet-
ric around the frictionless Merton proportion µ/γσ2. At first glance, this result
seems to contradict previous studies (cf., e.g., [7]), which emphasize how these
boundaries are asymmetric, and may even fail to include the Merton proportion.
This literature employs a common reference price (the average of the bid and ask
prices) to evaluate both boundaries. By contrast, we use trading prices to ex-
press trading boundaries (i.e., the ask price for the buy boundary, and the bid
price for the sell boundary). This simple convention unveils the natural symme-
try of the optimal policy, and resolves the paradoxes of asymmetry as figments of
notation. Of course, such symmetry hinges on the absence of intermediate con-
sumption, thereby raising the question of comparing our trading boundaries with
those obtained in the consumption model of Davis and Norman [1].

Indeed, a comparison of our asymptotics to those obtained by Janeček and
Shreve [5] in the model of [1] reveals that they are equal, at least to the first order.
Hence, while the traditional separation between consumption and investment —
which holds in a frictionless model with constant investment opportunities — fails
in the presence of proportional transaction costs, it does hold at first order.

Second, our results show that, unlike in the frictionless theory, with transaction
costs leverage does matter. More precisely, when transaction costs are considered,
an investor is not indifferent between two markets with identical Sharpe ratios.
Indeed, note that λ/σ2, the liquidity premium per unit variance, depends on µ
and σ only through µ/σ2, the expected return per unit variance, not on the Sharpe
ratio µ/σ. The parameter µ/σ2 is not leverage invariant, since multiplying µ and
σ by a constant does not change µ/σ, but does change µ/σ2. The intuition is
that even if two markets have the same Sharpe ratios, one of them can be more
attractive than the other, if it leads to wider trading boundaries, and hence lower
trading costs. As an extreme case, in one market it may be optimal lo leave all
wealth in the risky asset, thereby eliminating trading costs.

Third, our model yields the first continuous-time benchmark for trading vol-
ume, giving a closed-form expression for stationary turnover and its asymptotic
expansion. Trading volume is an elusive quantity for frictionless models, because
they typically imply that turnover is infinite in any time interval1. Our asymptotic
formula implies that, for large values of risk aversion, trading volume converges to
a finite value. More risk averse investors hold less risky assets (reducing volume),
but also rebalance more frequently (increasing volume). The two effects balance
each other, leading to a finite limit that increases in µ and σ.

1The empirical literature has long been aware of this theoretical vacuum. [3] reckon that The
intrinsic difficulties of specifying plausible, rigorous, and implementable models of volume and
prices are the reasons for the informal modeling approaches commonly used. Eight years later,
[8] still note that although most models of asset markets have focused on the behavior of returns
[...] their implications for trading volume have received far less attention.
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A key idea in our results – and in their proof – is that a market with constant
investment opportunities with transaction costs is equivalent to another market,
without transaction costs, but with stochastic investment opportunities. The state
variable is the logarithm of the ratio between the risky and the safe weights po-
sitions, and tracks the location of the portfolio within the trading boundaries,
affecting both the volatility and the expected return of the shadow price. Such a
shadow price has previously been determined for log-investors (cf. [6, 4]); here we
also construct it for investors with power utilities.

References

[1] M. Davis and A. Norman, Portfolio selection with transaction costs, Math. Oper. Res. 15
(1990), 676–713.

[2] B. Dumas and E. Luciano, An exact solution to a dynamic portfolio choice problem under
transaction costs, J. Finance 46 (1991), 577–595.

[3] A. Gallant, P. Rossi, and G. Tauchen, Stock prices and volume, Rev. Finan. Stud. 5 (1992),
199–242.

[4] S. Gerhold, J. Muhle-Karbe, and W. Schachermayer, The dual optimizer for the growth
optimal portfolio under transaction costs. Finance Stoch. (2011), to appear.
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Forward performance process and an ill-posed HJB equation

Sergey Nadtochiy

(joint work with Thaleia Zariphopoulou)

This work is concerned with the forward performance approach to the optimal
investment problem. The classical point of view on the optimal investment prob-
lem is based on the concept of utility function, representing the preferences of a
typical investor at some fixed moment of time in the future. The optimal invest-
ment strategy is then obtained by maximizing the expected utility of the terminal
wealth. A more recent alternative approach, developed by T. Zariphopoulou and
M. Musiela (see [1], [2]) suggests that instead of considering a utility function, one
starts with the forward performance function, representing the current “instan-
taneous”) preferences of the investor, and models its evolution forward in time.
This results in an investment performance criterion (and, consequently, an optimal
investment strategy), which is consistent across all maturities and only relies on
the “local” characteristics of the investor’s preferences. The cornerstone of the
forward performance theory is a stochastic partial differential equation, which is
an analogue of the HJB equation in the classical utility maximization theory.
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It is possible (as shown, for example, in [3]) to prove existence of a solution
to the aforementioned SPDE, for any admissible structure of the volatility of the
forward performance process. However, the description of admissible volatility pro-
cesses available so far is rather implicit, and in particular requires the knowledge
of the corresponding optimal investment strategy. We, on the contrary, attempt
to provide a constructive existence result, which, despite some loss of generality,
would allow to estimate (or calibrate) the volatility and give a clear interpretation
of the resulting forward performance process, together with the optimal invest-
ment strategy (which we treat as an output, rather than input, of the model). In
particular, we consider a general two-factor stochastic volatility model, and search
for a forward performance process in the form of a function of the spatial variable,
time and the stochastic factor (which is equivalent to assuming that the volatil-
ity of forward performance is of functional form). The corresponding SPDE, in
the present case, turns into a deterministic Hamilton–Jacobi–Bellman equation.
However, instead of a terminal condition at some time horizon T , which appears
in the classical formulation of the problem, the solution is expected to satisfy an
initial condition, which makes the problem “ill-posed”. We show that in the case
of a complete market (or for some specific choices of initial preferences), the HJB
equation can be linearized, and the problem reduces to an ill-posed linear para-
bolic PDE, with space-dependent coefficients. The characterization of solutions to
this equation, for the case of constant coefficients, is known as Widder’s theorem
(see [4]). We provide an explicit integral representation of solutions to an ill-posed
linear parabolic equation with non-constant coefficients, and prove its sufficiency.
The necessity of this representation, which can be viewed as a direct generalization
of Widder’s theorem, is a subject of ongoing research.
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Dynamic risk measures under volatility uncertainty

Marcel Nutz

(joint work with H. Mete Soner)

The starting point of this talk is Peng’s G-expectation; cf. [3] for extensive ref-
erences. The G-expectation is a sublinear operator defined on a class of ran-
dom variables on the canonical space Ω, while G is a real function of the form
G(x) = (σ2x+ − σ2x−)/2 for some constants σ ≥ σ ≥ 0. If P is the set of martin-
gale laws on Ω under which the volatility of the canonical process stays between σ2
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and σ2, the G-expectation at time t = 0 may be expressed as the upper expectation
EG
0 (X) := supP∈P E

P [X ]. For positive times t, Peng constructed the conditional
G-expectation EG

t (X) by using the nonlinear heat equation ∂tu−G(uxx) = 0.
The first part of the talk provides an extension of the G-expectation to the case

where the constant bounds σ, σ are replaced by path-dependent ones, which corre-
sponds to a random function G. This extension, called random G-expectation, is
constructed using regular conditional probability distributions and dynamic pro-
gramming techniques (cf. [1]).

In the second part of the talk, we consider an axiomatic setup for a dynamic
risk measure E under volatility uncertainty. Given a suitable random variable X ,
we construct a càdlàg process E(X) which corresponds to the dynamic evaluation
of X and which we call the E-martingale associated with X . We provide an op-
tional sampling theorem for E(X). Furthermore, we obtain a decomposition of
E(X) into an integral of the canonical process and a decreasing process, similarly
as in the classical optional decomposition for incomplete markets. In particular,
the E-martingale yields the dynamic superhedging price of the financial claim X
and the integrand ZX yields the superhedging strategy. We also provide a connec-
tion between E-martingales and second order backward SDEs by characterizing
(E(X), ZX) as the minimal solution of such an equation (cf. [2]).
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Utility theory front to back: recovering agents’ preferences from their

choices

Jan Ob lój

(joint work with A.M.G. Cox, David Hobson)

We pursue an inverse approach to utility theory and consumption and investment
problems. Instead of specifying the agents’ utility function and deriving their
actions, we assume we observe their actions (i.e. the consumption and investment
strategies) and aim to derive a utility function for which the observed behaviour
is optimal. We work in continuous time both in a deterministic and stochastic
setting.

In a deterministic setup, the agents choose a consumption policy c∗(t, w), func-
tion of time and their remaining wealth, which is then applied to a given initial
capital. We find that there are infinitely many utility functions u for which a
given consumption pattern maximises the integral of utility of consumption over
time. If y∗ denotes the inverse of c∗, then u is specified via uc(t, c) = F (y∗(t, c)),
where F is an arbitrary non-negative decreasing absolutely continuous function
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with F (∞) = 0. In particular, we show that the same consumption may arise
from very different preferences, e.g. with decreasing and increasing absolute risk
aversion.

In the stochastic setting of the Black–Scholes complete market, it turns out that
the consumption and investment strategies c, π, assumed to be functions of time
and wealth, have to satisfy a consistency condition (PDE) if they solve a classical
utility maximisation problem. This PDE has been first discovered by Black (1968)
and this inverse Merton problem was then studied by He and Huang (1994). Our
main results states that c, π solve Black’s PDE and satisfy integrability and budget
constraints if and only if they achieve a finite maximum in the problem

max
Ct,Πt∈A

E

[
∫ ∞

0

u(t, Ct)dt

]

for a (regular) utility u and where admissible pairs A induce a nonnegative wealth
process of the agent. The (recovered) utility function u is then specified (es-
sentially) uniquely. We further show that agents’ important characteristics such
as their attitude towards risk (e.g. DARA) can be directly deduced from their
consumption/investment choices. Finally we prove a lemma which gives a set of
sufficient conditions on c, π for our main theorem to hold. This yields large classes
of new examples of optimal consumption and investment policies. In particular
we can exhibit examples with prescribed convexity/concavity properties for c and
π and with absolute risk aversion which is neither decreasing nor increasing.
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Detecting financial bubbles in real time

Philip Protter

(joint work with Robert Jarrow, Younes Kchia)

After the 2007 credit crisis, financial bubbles have once again emerged as a topic
of current concern. An open problem is to determine in real time whether or
not a given asset’s price process exhibits a bubble. Due to recent progress in the
characterization of asset price bubbles using the arbitrage-free martingale pricing
technology (see for example [1],[2],[3]), we are able to propose a new methodology
for answering this question based on the asset’s price volatility. We limit our-
selves to the special case of a risky asset’s price being modelled by a Brownian
driven stochastic differential equation. Such models are ubiquitous both in theory
and in practice. Our methods use sophisticated volatility estimation techniques
combined with the method of reproducing kernel Hilbert spaces. We illustrate
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these techniques using several stocks from the alleged internet dot-com episode of
1998–2001, where price bubbles were widely thought to have existed. Our results
support these beliefs.
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Around the problem of testing 3 statistical hypotheses for Brownian

motion with drift

Albert N. Shiryaev

(joint work with Mikhail V. Zhitlukhin)

On a filtered probability space (Ω,F , (Ft)t≥0,P), we observe a process

Xt = µt+Bt, t ≥ 0,

where B = (Bt)t≥0 is a Brownian motion and µ takes one of the three values

µ = µ1,

µ = µ0,

µ = µ2,

with µ1 < µ0 < µ2

(hypothesis H1),

(hypothesis H0),

(hypothesis H2).

We consider the sequential Bayesian formulation of testing the 3 hypotheses H1,
H0, H2 with the sequential decision rule δ = (τ, d), where τ is an (FX

t )t≥0-stopping
time, d is FX

τ -measurable (d = d1, d0, d2) and the risk of the decision rule δ is given
by

Rδ(π) = Eπ(cτ + w(µ, d)),

where Pπ = π1
P
1 + π0

P
0 + π2

P
2, Pi = Law(X |µ = µi), πi = P(µ = µi); µ and B

are independent. We take the terminal risk w(µ, d) of the form

w(µi, di) = 0, w(µi, dj) = aij , i 6= j.

It is easy to see that if πi
t = P(µ = µi | FX

t ), then

inf
δ=(τ,d)

Rδ(π) = inf
τ
Eπ{cτ +G(π1

τ , π
0
τ , π

2
τ )},

where

G(π1, π0, π2) = min
{

a10π
1 + a20π

2, a01π
0 + a21π

2, a02π
0 + a12π

1
}

.
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For simplicity assume that

π1 = π0 = π2 = 1/3,

aij = 1, i 6= j; aii = 0,

µ1 = −1, µ0 = 0, µ2 = 1.

(symmetric case),

By the innovation representation for Xt = µt+Bt, we have

dXt = A(t,Xt) dt+ dBt,

where

A(t, x) =
e−t/2(ex − e−x)

1 + e−t/2(ex + e−x)

and (Bt)t≥0 is an innovation Brownian motion. In terms of (t, x), the function
G(π1, π

0, π2) takes the form

G(t, x) =
min{1 + e−x−t/2, 1 + ex−t/2, e−x−t/2 + ex−t/2}

1 + e−t/2(e−x + ex)
.

For x 6= ±t/2,
L(t,x)G(t, x) = 0,

where

L(t,x) =
∂

∂t
+A(t, x)

∂

∂x
+

1

2

∂2

∂x2
.

Taking this into account and applying the generalized Itô formula to G(t,Xt), we
find that

EG(τ,Xτ ) = G(0, X0) − 1

2
E

∫ τ

0

dLs

2 + e−s
,

where Ls is the local time of the process X on the rays x = ±s/2. Because
1/3 < 1/(2 + e−s) < 1/2, we have

1

4
E(4cτ − Lτ ) ≤ E(cτ +G(τ,Xτ )) ≤ 1

6
E(6cτ − Lτ ).

So to get lower and upper bounds for infτ E(cτ +G(τ,Xτ )), it is sufficient to solve
for the local time the optimal stopping problem

τ 7→ inf
τ
E(cτ − Lτ )

for different c > 0.
We show then that there exist two continuous functions f(t), g(t) and T0 > 0

such that the optimal set C∗ of continuation of observations has the form

C∗ = C∗
1 ∪ C∗

2 ,

where

C∗
1 = {(t, x), t ≤ T0 : − f(t) < x < f(t)},

C∗
2 = {(t, x), t ≥ T0 : g(t) < x < f(t) or − f(t) < x < −g(t)}.
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Theorem 1. For large t

f(t) =
t

2
+A+O(e−t), g(t) =

t

2
−A+O(e−t),

where A is the unique solution of the equation

eA − e−A + 2A = 2c−1.

The constant T0 is a root of the equation g(T0) = 0.

Also, we obtain integral equations for the boundaries f = f(t), t ≥ 0, and
g = g(t), t ≥ T0.

Optimal investment with high-watermark fees

Mihai Ŝırbu

(joint work with Karel Janeček, Gerard Brunick)

The effect of high-watermark fees on fund managers is well studied in the finance
literature, and more recently in mathematical finance [2]. The main goal of the
present project is to analyze the effect of such fees on the investor, in models of
increasing generality.

Consider an investor who chooses as investment vehicle a risky fund (hedge
fund) with share/unit price Ft at time t. We assume that the investor can freely
move money in and out of the risky fund and therefore continuously rebalance her
investment. If the investor chooses to hold θt capital in the fund at time t and
no fees of any kind are imposed, then her accumulated profit from investing in the
fund evolves as

{

dPt = θt
dFt

Ft
, 0 ≤ t <∞

P0 = 0.

Assume now that a proportion λ > 0 of the profits achieved by investing in the
fund is paid by the investor to the fund manager. The fee is a commission to the
fund manager for offering an investment opportunity for the investor (usually with
a positive expected return). The fund manager keeps track of the accumulated
profit that the investor made by holding the fund shares. More precisely, the
manager tracks the high-watermark of the investor’s achieved profit

Mt := sup
0≤s≤t

Ps.

Any time the high-watermark increases, a λ percentage of this increase is paid to
the fund manager, i.e., λ∆Mt = λ(Mt+∆t −Mt) is paid by the investor to the
manager in the interval [t, t+ ∆t]. Therefore, the evolution of the profit Pt of the
investor is given by

(1)

{

dPt = θt
dFt

Ft
− λdMt, P0 = 0

Mt = sup0≤s≤t Ps.
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We emphasize that the fund price process F is exogenous to the investor. Equation
(1) represents our general model of profits from investing in the fund, and can also
be interpreted as a model of capital gain taxation.

In [3], we assume that the investor starts with initial capital x > 0 and the only
additional investment opportunity is the money market paying zero interest rate.
We further assume that the investor consumes at a rate γt > 0 per unit of time. We
denote by C the accumulated consumption process. Since the money market pays
zero interest rate, the wealth Xt of the investor at time t is given as initial wealth
plus profit from the fund minus accumulated consumption, i.e. Xt = x+ Pt −Ct.
Taking this into account, the high-watermark of investor’s achieved profit can be
computed by tracking her wealth and accumulated consumption. More precisely,
the high-watermark can be represented as

Mt = sup
0≤s≤t

(Xs + Cs) − x.

An investment and consumption strategy is called admissible if the corresponding
wealth remains positive. The goal of the investor is to maximize discounted ex-
pected utility from consumption rate over an infinite horizon, which means to find
the admissible (θ, γ) that maximizes

E

[
∫ ∞

0

e−βtU(γt)dt

]

,

for some utility function U and discount factor β > 0. In order to use dynamic
programming arguments, an important task is to choose carefully the state pro-
cesses. We note that fees are paid whenever Xt +Ct = sup0≤s≤t(Xs +Cs), which
is the same as X = N for

Nt := sup
0≤s≤t

(Xs + Cs) − Ct.

We therefore choose as state process the two-dimensional process (X,N) which
satisfies X ≤ N and is reflected whenever X = N .

We further assume that the utility function U has the particular form

U(γ) =
γ1−p

1 − p
, γ > 0,

for some p > 0, p 6= 1, and the fund follows a geometric Brownian motion with
excess return α > 0 and volatility σ. With these assumptions, the equation de-
scribing the evolution of (X,N) is

{

dXt =
(

θtα− γt
)

dt+ θtσdWt − λ(dNt + γtdt), X0 = x

Nt = sup0≤s≤t

{

Xs +
∫ s

0
γudu

}

−
∫ t

0
γudu.

To summarize, we model the optimal investment and consumption in a hedge
fund as the optimal control of a two-dimensional reflected diffusion (X,N). The
Hamilton–Jacobi–Bellman equation can actually be reduced to one dimension,
using the scaling property of the power utility function. We solve the problem
by showing that the HJB equation has a smooth solution and then performing
a verification argument. The solution of the HJB equation is found analytically,
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using Perron’s method to obtain a viscosity solution and then upgrading its reg-
ularity. Since the problem does not admit closed-form solutions, we analyze the
quantitative impact of the high-watermark fees through some numerical examples.

In [1] we take up the task of analyzing a more general model, with non-zero
interest rates and additional assets. The key modelling observation is to consider
the distance to paying fees, namely the process Y := M − P , as a state process
instead of N as above. The process Y satisfies the equation

{

dYt = −θt dFt

Ft
+ (1 + λ)dMt,

Y0 = 0, Yt ≥ 0

where the the positive measure dM charges only the set of times when Y = 0. This
is the famous Skorohod equation, explaining the pathwise solution obtained in [2]
or [3] for the accumulated profit P . In addition, considering the two-dimensional
reflected diffusion (X,Y ) as state process allows for a full analysis of interest rates
and additional investment opportunities. The two-dimensional HJB equation still
reduces to one dimension by scaling. We place particular emphasis on the analytic
expansion of the optimal strategies with respect to the small fee λ > 0.
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Stochastic differential games and oligopolies

Ronnie Sircar

(joint work with Andrew Ledvina)

We discuss Cournot and Bertrand models of oligopolies, first in the context of
static games and then in dynamic models. The static games, involving firms with
different costs, lead to questions of how many competitors actively participate in
a Nash equilibrium and how many are sidelined or blockaded from entry. The dy-
namic games lead to systems of nonlinear partial differential equations for which
we discuss asymptotic and numerical approximations. Applications include mar-
kets for substitutable consumer goods (Bertrand) or differentiated grades of oil
(Cournot).

Oligopolistic competition has been studied extensively in the economic litera-
ture, beginning with Cournot [2] where firms compete with one another in a static
setup by choosing quantities to supply of a homogeneous good. This was later
criticized by Bertrand [1] who said firms actually compete by setting prices. We
study price-setting and quantity-setting oligopolies in continuous time and where
the goods are differentiated from one another. However, much of the intuition
about what one expects in certain market types is still grounded in the original
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static models. For example, the original Bertrand model results in perfect compe-
tition in all cases besides monopoly, which is unrealistic in most settings, leading
one to conclude that the correct setup leads to the wrong result. The Cournot
model leads to more realistic outcomes, but as most firms seem to set their prices,
not their quantities, many economists have argued that the Cournot model gives
the right answer for the wrong reason.

Our objective is to study the effect of product differentiation on the outcomes
in these two oligopoly models. This builds on an earlier analysis of nonzero-sum
differential games of Bertrand type in [6] and Cournot type in [3]. Moreover, this
work is complementary to our comparison of Bertrand and Cournot oligopolies in
a static setting in [4]. Here we compare Bertrand and Cournot oligopolies in a
continuous-time framework with two players and a linear demand structure. The
inverse demand system, which forms the basis of Cournot competition, is given by

(1) pi(q) = α− β (qi + εqj) , i = 1, 2; j 6= i.

The parameter ε is positive to model substitute goods. For ε < 1, we can invert
the system (1), to obtain the duopoly demand

(2) qi(p) =

(

α

β(1 + ε)

)

−
(

1

β(1 − ε2)

)

(pi − εpj) , i = 1, 2; i 6= j,

which is the basis of Bertrand competition.

Denote the capacity of firm i ∈ {1, 2} by X i,b
t , X i,c

t for the Bertrand and
Cournot games, respectively. Throughout what follows a superscript b will indicate
a variable related to the game of Bertrand type and a superscript c for Cournot. We
look for Markov perfect equilibria; in other words, firms use Markovian strategies.
In the Bertrand game, let the Markovian price strategy of firm i at time t be given

by pi(X1,b
t , X2,b

t ), i = 1, 2. Similarly, in the Cournot game, let the Markovian

strategic rate of supply of firm i be given by qi(X1,c
t , X2,c

t ).
In the Bertrand game, the dynamics of the state processes are given by the

controlled stochastic differential equations

(3) dX i,b
t = −qi(p1(X1,b

t , X2,b
t ), p2(X1,b

t , X2,b
t ))dt+ σidW i

t

for i = 1, 2 and where (W 1
t ) and (W 2

t ) are correlated Brownian motions with

E
{

dW 1
t · dW 2

t

}

= ρdt. These are the correct dynamics provided that X1,b
t > 0,

X2,b
t > 0. If either one is strictly positive and the other is zero, then the first has

a monopoly, and the other remains at zero forever.
The dynamics for the Cournot state variables are defined in a similar fashion

by

(4) dX i,c
t = −qi(X1,c

t , X2,c
t )dt+ σidW i

t ,

where the Brownian motions are the same as those above. Again, these only hold
for X1,c

t > 0, X2,c
t > 0, but here things are slightly more simple. If either state

variable hits zero then the corresponding qi is equal to zero. The Brownian mo-
tions in (3) and (4) could represent uncertainty of actual demand or of remaining
reserves, depending on the context of actual application.
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The objective of the firms is to maximize expected lifetime profit in an equilib-
rium sense to be made precise below. To this end, we define the profit functionals
of the firms

J i,b(p1(x1, x2), p2(x1, x2)) := Ex1,x2

{

∫ τ i,b

0

e−rtpiqi(p
1, p2)dt

}

,(5)

J i,c(q1(x1, x2), q2(x1, x2)) := Ex1,x2

{

∫ τ i,c

0

e−rtpi(q
1, q2)qidt

}

,(6)

where τ i,b = inf{t > 0 : X i,b
t = 0}, and similarly for τ i,c. A vector p⋆ is

a Markov perfect Nash equilibrium of the dynamic Bertrand game if for
all positive and suitably regular (for example Lipschitz) Markov controls p1 we
have J1,b(p1,⋆, p2,⋆) ≥ J1,b(p1, p2,⋆), and for all such Markov controls p2 we have
J2,b(p1,⋆, p2,⋆) ≥ J2,b(p1,⋆, p2). The concept is defined analogously for the dynamic
Cournot game.

As the players employ Markovian strategies, we define the value functions of
the players as a function of their capacities by

V i,b(x1, x2) = sup
pi

J i,b(p1, p2), V i,c(x1, x2) = sup
qi
J i,c(q1, q2).

Assuming sufficient regularity of the value functions, a sufficient condition for equi-
librium can be found by solving the associated system of HJB partial differential
equations

LV i,b + sup
pi≥0

{

−V i,b
x1
q1(p1, p2) − V i,b

x2
q2(p1, p2) + pi · qi(p1, p2)

}

= rV i,b,(7)

LV i,c + sup
qi≥0

{

−V i,c
x1
q1 − V i,c

x2
q2 + pi(q

1, q2) · qi
}

= rV i,c,(8)

where L = 1
2 (σ1)2 ∂2

∂(x1)2
+ ρσ1σ2 ∂2

∂x1∂x2
+ 1

2 (σ2)2 ∂2

∂(x2)2
. In order to complete the

description of the PDE problem associated with these games, we also need to
specify boundary conditions. One of these conditions is quite straightforward; we
must have V 1,·(0, x2) = V 2,·(x1, 0) = 0 as there is no profit possible once a firm
exhausts their capacity. The other boundary is slightly more complicated. Let
vbm be the value function of a monopolist in a Bertrand market, and vcm be the
corresponding value function in a Cournot market. We then have the condition
V 1,·(x1, 0) = v·m(x1) and V 2,·(0, x2) = v·m(x2).

The degree of product differentiation is measured by the quantity ε ∈ [0, 1).
If ε = 0 then the individual firm inverse demand and direct demand functions are
equal to their monopoly counterparts, i.e. each firm has a monopoly in the market
for their individual good which implies their behavior is independent of the other
firm. In the case of no randomness, σi = 0, we provide a three-term asymptotic
expansion for the value functions for Cournot and Bertrand markets in powers
of ε. It turns out that the first two terms are identical, but the third O(ε2) is
of different sign: negative for Bertrand and positive for Cournot. It follows from
these approximations that the game ends sooner in the Bertrand market. This
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again aligns with previous intuition that a Bertrand market is more competitive
than a Cournot market. This increased level of competition leads to a faster rate
of capacity depletion, ceteris paribus. However, the intuition that comes from
the static game breaks down when we plot the resulting price paths. The static
game intuition says that Bertrand should have lower prices and higher quantities.
This is true at the beginning of the game when both firms have a large capacity.
But, as the firms deplete their capacities, we see that the price in the Bertrand
market increases until it finishes above that in the Cournot market. Likewise,
the quantity begins higher in the Bertrand market, but eventually drops below
the quantity in the Cournot market. The dynamic nature of the game and the
dependency on firms’ capacities leads to these counterintuitive results which are
discussed in more detail, along with a numerical study of the stochastic game, in
[5].
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Second order BSDEs: existence and uniqueness

H. M. Soner

(joint work with N. Touzi and J. Zhang)

This talk summarizes a recent joint paper of the author with Touzi and Zhang [3].
The paper provides a new formulation of second order stochastic target problems
introduced in [2] by modifying the reference probability so as to allow for different
scales. This new ingredient enables us to prove a dual formulation of the target
problem as the supremum of the solutions of standard backward stochastic differ-
ential equations. In particular, in the Markov case, the dual problem is known to
be connected to a fully nonlinear, parabolic partial differential equation and this
connection can be viewed as a stochastic representation for all nonlinear, scalar,
second order, parabolic equations with a convex Hessian dependence.

We continue with the description of the target problem. Let B be a Brown-
ian motion under the probability measure P0 and {Ft, t ≥ 0} the corresponding
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filtration. For a continuous semimartingale Z, we denote by Γ the density of its
covariation with B. We then define the controlled process Y by

Yt := y −
∫ t

0

Hs(Ys, Zs,Γs)ds+

∫ t

0

Zs ◦ dBs, d〈Z,B〉t = Γtdt,(1)

where ◦ denotes the Fisk–Stratonovich stochastic integration. We assume that the
given random nonlinear function H satisfies the standard Lipschitz and measura-
bility conditions. Then, for any reasonable process Z and an initial condition y,
a unique solution, which is denoted by Y y,Z , exists. We now fix a time horizon,
say T = 1, and a class of admissible controls Z0. Then, given an F1-measurable
random variable ξ, [2] defines the second order stochastic target problem by

(2) V 0 := inf
{

y : Y y,Z
1 ≥ ξ P0-a.s. for some Z ∈ Z0

}

.

In this formulation, the structure of the set of admissible controls is crucial. In
fact, if Z0 is not properly defined, then the dependence of the problem on the
variable Γ can be trivialized. We refer to [1] for a detailed discussion of this issue
in a particular example of mathematical finance. One of the achievements of the
new approach given below is to avoid this strong dependence on the control set
and simply to work with standard spaces.

Here we only provide an intuitive description of our formulation. For this heuris-
tic explanation we assume a Markov structure. Namely we assume that H in (1)
and ξ in (2) are given by

(3) Ht(y, z, γ) = h(t,Xt, y, z, γ), ξ = g(XT ),

where X is the solution of a Markov stochastic differential equation and h, g are
deterministic scalar functions. Let V 0(t, x) be defined as in (2) with time origin at
t and Xt = x. As it is usual, we assume that γ 7→ h(t, x, y, z, γ) is non-decreasing.
Then, by an appropriate choice of admissible controls, it is shown in [2] that
this problem is a viscosity solution of the corresponding dynamic programming
equation,

(4) −∂u
∂t

− h
(

t, x, u(t, x), Du(t, x), D2u(t, x)
)

= 0, u(1, x) = g(x).

We further assume that γ 7→ h (t, x, r, p, γ) is convex. Then,

(5) h (t, x, r, p, γ) = sup
a≥0

{

1

2
aγ − f (t, x, r, p, a)

}

,

where f is the (partial) convex conjugate of h with respect to γ. Let Df be the
domain of f as a function of a. By the classical maximum principle of parabolic
differential equations, we expect that for every a ∈ Df , the solution u ≥ ua, where
u solves (4) and ua is defined as the solution of the semi-linear PDE

(6) −∂u
∂t

− 1

2
aD2u(t, x) + f (t, x, u(t, x), Du(t, x), a) = 0, u(1, x) = g(x).
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In turn, by standard results, ua(t, x) = Y a
t , where, for s ∈ [t, T ],

Xa
s = x+

∫ s

t

a1/2r dBr,(7)

Y a
s = g (Xa

T ) −
∫ T

s

f (r,Xa
r , Y

a
r , Z

a
r , a) dr −

∫ T

t

Za
r a

1/2dBs.(8)

We have formally argued that V 0(t, x) ≥ Y a
t for any a ∈ Df . Let Af be the

collection of all processes with values in Df . By extending (7), (8) to processes a,
it is then natural to consider the problem

(9) Vt := sup
a∈Af

Y a
t

as the dual of the primal stochastic target problem. Indeed, the optimization
problem (9) corresponds to the dual formulation of the second order target problem
in the Markov case. Such a duality relation was suggested in the specific example
of gamma constraints and can be proved rigorously by showing that v(t, x) := Vt
is a viscosity solution of the fully nonlinear PDE (4). This, by uniqueness, implies
that v = V 0. Of course, such an argument requires some technical conditions at
least to guarantee that comparison of viscosity supersolutions and subsolutions
holds true for the PDE (4).

The main object of this paper is to provide a purely probabilistic proof of this
duality result. Moreover, our duality result does not require to restrict the problem
to the Markov framework.
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Asymptotic results and statistical procedures for time-changed Lévy

processes sampled at hitting times

Peter Tankov

(joint work with Mathieu Rosenbaum)

In this talk, based on the paper [5], we focus on time-changed Lévy models, that
is, we assume that the process of interest Y is given by Yt = XSt

where X is a one-
dimensional Lévy process and S is a continuous increasing process (a time change),
which plays the role of the integrated volatility in this setting. Time-changed Lévy
models were introduced into the financial literature in [2] and their estimation from
high frequency data with deterministic sampling was recently addressed in [3, 6].

In the context of ultra high-frequency financial data, the assumption of deter-
ministic sampling times is arguably too restrictive. In this work we assume that
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the sampling times are given by first hitting times of symmetric barriers whose
distance with respect to the starting point is equal to ε. More precisely, the process
Y is observed at times (T ε

i )i≥0 with T ε
0 = 0 and T ε

i+1 = inf{t > T ε
i : |Yt−YT ε

i
| ≥ ε}

for i ≥ 1. The parameter ε is the parameter driving the asymptotic and thus we
will assume that ε goes to zero. This scheme is probably the most simple and
common endogenous sampling scheme. Moreover, in the spirit of [4] it can be seen
as a first step towards a model for ultra high frequency financial data including
jump effects.

Convergence of the exit time and the overshoot We focus on the class of
Lévy processes such that for a suitable α ∈ (0, 2], the rescaled process

(Xα,ε
t )t≥0 := (ε−1Xεαt)t≥0

converges in law to a strictly α-stable Lévy process X∗ as ε goes to zero. This
class turns out to be rather large, and contains in particular all Lévy processes
with non-zero diffusion component, all finite variation Lévy processes with non-
zero drift and also most parametric Lévy models found in the literature. We show
that for such Lévy processes the moments of first exit times from intervals, and
certain functionals of the overshoot converge to the corresponding functionals of
the limiting stable process, which are often known explicitly.

More precisely, denote the first exit time of the rescaled process from the interval
(−1, 1) by τε1 := inf{t ≥ 0 : |Xε,α

t | ≥ 1} and the first exit time of the limiting
process X∗ from the interval (−1, 1) by τ∗. We show that

(1) (τε1 , X
ε
τε
1
) converges in law to (τ∗1 , X

∗
τ∗

1
) as ε ↓ 0.

(2) limε↓0E[(τε1 )kf(Xε
τε
1
)] = E[(τ∗1 )kf(X∗

τ∗

1
)] for all k ≥ 1.

Under additional assumptions on the process X , the rate of the above convergence
can be quantified, namely we show that

lim
ε↓0

ε−α/2(E[τε1 ] − E[τ∗1 ]) = 0

and for a bounded continuous function f ,

lim
ε↓0

ε−α/2(E[f(Xε
τε
1
)] − E[f(X∗

τ∗

1
)]) = 0.

Statistical applications The above asymptotic results, which are of interest in
their own right, allow us to prove the convergence of quantities of the form

V ε(f)t =
∑

T ε
i ≤t

f
(

ε−1(YT ε
i
− YT ε

i−1
)
)

to known deterministic functionals of the limiting process X∗ and the time change
S. More precisely, let

m(f) =
E[f(X∗

τ∗

1
)]

E[τ∗1 ]

and let f be a bounded continuous function on R. Then

lim
ε↓0

εαV ε(f)t = m(f)St(1)
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in probability, uniformly on compact sets in t (ucp).
This result can be in particular used to build estimators of relevant quantities

such as the time change or the Blumenthal–Getoor index. The time change can
be recovered simply from the times (T ε

i ) as ε→ 0, by taking f = 1, which gives,

St = lim
ε↓0

εαV ε(1)tE[τ∗1 ].

In a model where the limiting process X∗ is a symmetric α-stable process with
α ∈ (1, 2), such as for example the CGMY process [2], the Blumenthal–Getoor
index of X , which coincides with the parameter α, can be recovered via

α = 2 lim
ε↓0

V ε(f)t
V ε(1)t

, f(x) =
1

x2
∧ 1.

Assuming that the time change S defining Y is independent of the underlying
Lévy process X , one can in some cases establish the rate of convergence and
asymptotic normality of the renormalized error in (1). Define Rε

t = (Rε
t,1, . . . , R

ε
t,d)

with

Rε
t,j = ε−α/2(εαV ε(fj)t −m(fj)St).

Then, as ε goes to zero, Rε converges in law to B◦S, for the usual Skorohod topol-
ogy, with B a continuous centered Rd-valued Gaussian process with independent
increments, independent of S, such that E[Bt,jBt,k] = (t/(E[τ∗1 ])Cj,k with

Cj,k = Cov[fj(X
∗
τ∗

1
) −m(fj)τ

∗
1 , fk(X∗

τ∗

1
) −m(fk)τ∗1 ].
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Matrix-valued affine processes and their applications

Josef Teichmann

(joint work with Christa Cuchiero, Martin Keller-Ressel and Walter
Schachermayer)

We present two new results on affine processes: first, we show that affine processes
(in the sense that the Fourier–Laplace transform of a stochastically continuous
Markov process on some subset of Rd is exponentially affine in the state variable)
necessarily admit a semimartingale version with characteristics affine in the state
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variable. This is an important progress towards the final goal of classifying all affine
processes on all possible state spaces, since now one can analyse the problem from
the point of view of stochastic invariance for Markovian semimartingales. The
result has been obtained jointly with Christa Cuchiero, Martin Keller-Ressel and
Walter Schachermayer. Second, a result on filtering of affine processes is presented.
We show that the Zakai equation related to the noisy (linear) observation of an
affine process admits a deterministic high-order approximation scheme by affine
methodology. We introduce for this purpose stochastic Riccati equations and show
that their solutions lead to stochastic evolutions of (unnormalized) conditional
density processes.

Reporter: Martin Schweizer
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Prof. Dr. Nicole El Karoui

LPMA / UMR 7599
Universite Pierre & Marie Curie
Paris VI
Boite Courrier 188
F-75252 Paris Cedex 05



290 Oberwolfach Report 06/2011

Prof. Dr. Damir Filipovic

EPFL
Swiss Finance Institute
Quartier UNIL-Dorigny
Extranef 218
CH-1015 Lausanne

Prof. Dr. Hans Föllmer
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