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Abstract. Motivated both by industrial applications and the challenge of
new problems, one observes an increasing interest in the field of image and
surface processing over the last years. It has become clear that even though
the applications areas differ significantly the methodological overlap is enor-
mous. Even if contributions to the field come from almost any discipline
in mathematics, a major role is played by partial differential equations and
in particular by geometric and variational modeling and by their numerical
counterparts. The aim of the workshop was to gather a group of leading ex-
perts coming from mathematics, engineering and computer graphics to cover
the main developments.
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Introduction by the Organisers

Variational methods and partial differential equations form a core of various method-
ologies in image analysis, computer vision and surface processing. Geometric con-
cepts naturally appear in the modeling, processing or animation of surfaces for
instance in computer graphics. Furthermore, the space of shapes - either explic-
itly given as parametric surfaces or implicitly encoded in 2D and 3D images - has
an interesting geometric structure, the understanding of which is crucial for many
applications. This workshop brought together researchers from computer vision
as well as computer graphics and mathematicians with expertise in the calculus
of variations, in PDE analysis and numerics, in discrete geometry and sparse ap-
proximation. The aim of the workshop was to dovetail the strengths of geometry,
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analysis and numerics in order to get insight into new models.

Different from the previous workshop in 2007 with a particular focus on image de-
composition, different types of surface representation, feature preserving methods,
and the proper discretization of associated PDE models, this time the perspec-
tive was more global. In fact, instead on the processing of single geometries or
shapes the focus was more on the geometry of the space of shapes, or instead of
continuous energy descent methods, relaxation techniques and associated global
optimization approaches have been presented. Some areas of particular relevance
in the workshop have been

- Shape space analysis, with the rigorous definition of shape space as a Riemannian
manifold, the efficient computation of the geodesic distance, the Fréchet or Karcher
mean, the principal component analysis of shapes, a suitable embedding into the
context of shape statistics, and different types of underlying distances such as the
Wasserstein distance, a distanced based on viscous dissipation along motion paths,
or the Gromov Hausdorff distance,

- Global optimization approaches in image labeling or segmentation, image impaint-
ing, and motion estimation, where convex relaxation is applied in the context of
TV and L1 minimization problems and the appropriate use of primal and dual
optimization strategies leads to highly efficient algorithms,

- Concepts from discrete geometry and the modeling of discrete free form surfaces
in architecture, where methods from discrete exterior calculus lead to effective
discretization and fabrication restrictions on glass roofs pose challenging design
problems and give new impulses to discrete geometry and integrable systems.

Let us finally mention that in monday afternoon we had a special get–to–know
session with 3 minute statements of almost all participants on open problems,
new methodologies, and demanding applications prepared the ground for intensive
discussion between the participants from diverse disciplines over the whole week.
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Abstracts

Robust Geometry Processing

Pierre Alliez

Surface reconstruction from raw geometric data has received increasing atten-
tion due to the ever broadening range of geometric sensors and vision algorithms
that provide little to no reliable attributes. A common approach to this problem
involves filtering out outliers and inferring attributes before resorting to a recon-
struction method. Typically, the data is first oriented (normals are computed)
or, equivalently, signed (an inside/outside function is constructed based on the
pointset). However, outlier removal often requires an interactive adjustment of
parameters. Similarly, finding and orienting normals from raw geometric data can
be as hard as reconstructing the whole surface itself: while there are several options
to reliably estimate normal directions, robust normal orientation is considerable
harder as recently reminded in Huang et al. [1]. In parallel to the reconstruc-
tion literature, the design of approximate unsigned distance functions which are
robust to noise and outliers has recently made significant advances [2]. However,
it has not yet benefited reconstruction as the resulting robust function does not
lend itself to reliable surface reconstruction: contouring of an unsigned distance
is unreliable, creating numerous geometric and topological artifacts. We propose
to sign the unsigned distance in order to obtain an implicit function suitable for
contouring. We leverage the fact that signing a function, rather than the data, can
be made more robust by exploiting the property that signing a distance function
makes the function smoother.

Figure 1. Reconstruction pipeline in 1D. Stage 1 (left): We construct
an unsigned distance function (robust to noise and outliers, shown in
red), and a threshold for the width of the ǫ-band (in pink). Stage
2 (center): We estimate the sign (±1) of the function, along with a
confidence of each estimate. Stage 3 (right): We construct the final
signed function through smoothing, taking into account the unsigned
function, estimated sign, and confidence.

Overview. Our main contribution is a practical method for efficient reconstruc-
tion of closed surfaces from pointsets that are potentially noisy, outlier-ridden,
and undersampled [3]. Its simplicity and modularity facilitate customization and
extensibility. Starting with a pointset possibly containing both noise and outliers,
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Figure 2. Plaster Hand. Data scanned with a Kreon laser scan-
ner mounted on an articulated arm; the 18M point sampling is very
anisotropic as it was obtained by manual sweeping of a 1D contact sen-
sor. Top: input point set (with a big hole at the bottom and others due
to occlusions between the fingers), point set and 2D cut of unsigned
function, same 2D cut with nearby edges of the coarse mesh, same 2D
cut alone, and full ǫ-band. Middle: 2D cuts of sign guess (red for in-
side, blue for outside and white uncertain), confidence (which decreases
in the holes), signed function after smoothing, isosurface of the robust
unsigned function obtained by marching tetrahedra in the lattice mesh,
and same isosurface superimposed with input points. Bottom: views
of the reconstructed surface obtained by Delaunay refinement without
and with points added, and cut view of the ǫ-band with the recon-
structed isosurface of the signed function inside, with and without the
input points.

our surface reconstruction pipeline involves three main stages (see Figure 1): Com-
puting an unsigned distance function to the input data. Robustness to outliers
and noise is obtained by leveraging the advances in the design of Wasserstein-like
metrics, allowing us to reliably identify an -band containing the densely sampled
areas. Computing a global, stochastic sign estimation of the distance, first outside
the -band where rays are traced against the -band to infer inside vs. outside, then
inside the -band by propagating the sign estimates inward. The output of this
step is a sign guess for the unsigned distance, along with its confidence ranging
from zero to one. Smoothing the estimate to compute the signed distance through
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a linear solve to reconstruct a smooth, closed surface. This last step also serves
to repair holes. An example of the complete reconstruction pipeline is shown by
Figure 2.

1
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Shape spaces, with particular attention to Riemannian Manifolds of
Curves

Andrea Menucci

In the first part of the seminar, we ponder on what we use Shape Spaces for,
how we design/operate on Shape Spaces, and briefly explore some mathematical
toolsets available.

In a Shape Space M , the shape is a point, i.e. a variable x ∈ M . There are
some natural questions, operations and actions that we may perform on it, related
to vague notions of calculation, nearness, optimization, cataloging, etc etc. There
are moreover actual uses of shape spaces for shape analysis and shape optimiza-
tion, that (often implicitly) assume that certain mathematical properties of the
underlying shape space are satisfied. We confront these with the available math-
ematical toolsets, and consequently state a precise set of goals: that the shape
space should be a complete Riemannian manifold, where geodesics exist (both as
minimal geodesics and as geodesic shooting, i.e. the exponential map is defined
and surjective); we moreover ask that the [5] mean shape is defined.

In the second part of the seminar, we briefly see some examples of Shape Spaces
from the literature (see bibliographical listing). Then we present a particular
Shape Space, a Sobolev-type Riemannian space of curves, presented in [11]. In
this model, the manifold M of all smooth immersed curves is endowed with a
Riemannian metric, so that the space can be isometrically mapped to R×R2×Md

where R represents the log-scaling, R2 the translation, and Md the curve up to
scaling and translation. This implies that in this space the uniform log-scaling
and translations of curves are geodesics, and more in general that geodesics can be
computed independently in the three components of “log-scaling”, “translation”,
and “deformation” (this latter in Md). We then concentrate on the space Md; by
a result in [13] this space is isometric to an infinite dimensional Stiefel Manifold.
Up to completion, this Stiefel manifold is a complete Riemannian manifold, a
smooth submanifold of L2 ×L2 (where L2 = L2([0, 2π]) is the usual Hilbert space
of functions). Subsequently, adapting to the infinite dimensional case a result in



300 Oberwolfach Report 07/2011

[2], we obtain that the geodesics equation in the Stiefel manifold has a closed-form
solution; moreover it was later proven in [4] that any two points can be connected
by a minimal geodesic. At the same time it is possible (and computationally light)
to solve the gradient problem w.r.t. this metric. So in this Shape Space it is quite
convenient to address problems that combine many diverse tools: we eventually
present a tracking/filtering approach based on a first order dynamical system in
M , again from [11].

The complete seminar is available from http://mennucci.sns.it/11MFO.
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On Variational Methods in Computer Vision

Christoph Schnörr

The talk was organized into three parts.

(1) First, three decades of variational modeling in computer vision were briefly
overviewed, starting with landmark papers on a smooth convex variational
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model for low-level vision [5], a non-smooth convex model for image de-
composition and denoising [12], a variational model for the segmentation
of piecewise smooth and constant images [10], and a probabilistic approach
in terms of a variational model to image classes beyond piecewise smooth
functions, and to stochastic inference [4].

Notable developments include computationally tractable relaxations and
convexity. The latter plays a key role not only in modeling but also in es-
tablishing connections between computer vision and related research in
applied mathematics. Last but not least, while variational models were
considered as exotic in the beginning, they nowadays also have an impact
on industrial projects.

(2) In the main part of the talk, novel results of the continuous multiclass
image labeling problem

(1) min
ℓ

{∫

Ω

s
(
x, ℓ(x)

)
dx+ J(ℓ)

}
, ℓ : Ω → L = {1, 2, . . . , l},

were presented. Specifically, based on the convex relaxation of (1) sug-
gested in [7] (∆l ⊂ R

l denotes the standard simplex),

inf
u∈C

{∫

Ω

〈
s(x), u(x)

〉
dx+ J(u)

}
,(2a)

C = {u ∈ BV(Ω)l : u(x) ∈ ∆l for a.e. x ∈ Ω},(2b)

well-posedness was shown in [8], and a complete characterization of regu-
larizers J in terms of metric interaction potentials d : L × L → R++ was
given in [6],[8] such that, for any partition of the image domain Ω = S ∪S
with Per(S) < ∞,

(3) J(eiχS + ejχS) = d(i, j)Per(S), ∀i, j ∈ L.

In the sense of (3), the approach (2) constitutes a relaxation of the piece-
wise-constant Mumford-Shah model, utilizing arbitrary image features in
terms of an application-specific function s(x) that only depends on given
image data in some arbitrary way.

From the computational point of view, problem (2) after discretization
is a specific instance of the class of non-smooth convex programs

(4) min
u∈C

max
v∈D

{
〈s, u〉+ 〈Lu, v〉 − 〈b, v〉

}
, D = D1 ∩ · · · ∩Dr,

that also includes a slightly tighter relaxation [2] with different dual con-
straint sets Di in (4), as well as problem formulations based on functional
lifting [1], like a convex relaxation of the piecewise-smooth Mumford-Shah
approach [1, 11].

In [9], a specific operator splitting techniques for the dual problem of
(4) was devised that efficiently computes a global optimum in terms of iter-
ations, that only use explicit orthogonal projections onto Di, i = 1, . . . , r,
and a linear system that can be diagonalized by the discrete cosine trans-
form.
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(3) Finally, the difficulty was pointed out to incorporate shape prior knowl-
edge into image labeling approaches without compromising computational
tractability. In [13], a preliminary approach is presented to approximately
solve this problem by coupling binary continuous cuts (i.e. l = 2 in (2);
cf. [3]) with convex polyhedral relaxations of MRF-based shape priors.
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Anatomically Complex Representation of Functional Anatomy

Michael Miller

Functional anatomy is the study of structure and function in curved anatomical
coordinate systems. In this presentation we discuss representations of functional
anatomy in the human brain. In part, our talk will focus on probability mod-
els of subcortical neuroanatomy which is as complex as the curved coordinate
systems(caudate, putamen, hippocampus, amygdala, ventricles ...) of the brain
itself. We will show the results from studies of human neuroanatomy, including
several disease sets.
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Regularized Reconstruction of M-Rep Shapes with Statistical A Priori
Knowledge

Otmar Scherzer

(joint work with Matthias Fuchs)

The reconstruction of geometry or, in particular, the shape of objects is a common
issue in image analysis. Starting from a variational formulation of such a problem
on a shape manifold we introduce a regularization technique incorporating statis-
tical shape knowledge. The key idea is to consider a Riemannian metric on the
shape manifold which reflects the statistics of a given training set.

We expect the surface to be reconstructed the minimizing argument of an energy
functional: In case of image segmentation we use for instance the Mumford-Shah
functional [3] or the “Snakes” energy [2]. These energies incorporate some kind
of regularization to ensure the well-posedness of the corresponding variational
problems.

A second basic problem in shape analysis and recovery is the right representation
of the hypersurface in implementations. There exists no canonical approach to
model such objects, but the right choice depends on the expected topology and
regularity of the solution.

We propose the use of intelligent shape models to represent the geometry we
want to detect and to regularize the underlying detection problem. These shape
models share the following two characteristics:

• A shape model is associated with a finite dimensional parameter manifold.
An element of this manifold corresponds to an instance of the shape model.

• A shape model can be associated with statistical data which describes how
frequently individual instances of the shape model occur.

We employ the two properties above to define a regularization technique which
takes into account a priori information on the expected solution. As illustrated
by some examples this enables us to detect geometries even if the original data
is perturbed (e.g. some parts of it are missing or occluded), or allows us to
significantly reduce the complexity of reconstruction methods.

In our work we combine the idea of adding a statistically motivated regular-
ization term to a variational problem with the use of advanced shape models on
manifolds. In particular, it provides a framework to use M-Reps [4] as a starting
point for a Mahalanobis regularization of variational segmentation problems. To
our knowledge this ([1]) is the first paper which combines the idea of M-Reps with
statistical segmentation functionals. An extension of M-Reps to a shape space
with a purely geometric metric is also discussed.

This work summarizes results from [1].
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Reconstruction of a 3D shape from its apparent contour

Giovanni Bellettini

(joint work with V. Beorchia and M. Paolini)

I have described1 various recent results that we have obtained in the effort of
reconstructing a three dimensional smooth (compact solid) scene2 E ⊂ R

3 starting
from informations on its apparent contour3 AC(∂E), endowed with a Huffman
labeling. Our original motivation was the study of a two-dimensional variational
model4; however, the problem became almost immediately a topological one.

Theorem 1. (see [3]). Let V be an oriented planar graph with terminal points,
none of which is exterior, and with T -junctions, such that the exterior region lies
on the left. Then there exists an oriented planar graph A endowed with a Huffman
labelling, such that V is the visible part of A.

This theorem does not specify a “preferred” completion of V ; it says that there
is at least one completion of V . The proof is constructive5 and may require the
introduction of several additional cusps and crossings, so that A may look like
very complicated. It is therefore natural to ask whether A can be “simplified”.
This will be made more clear by the next results (see in particular Theorem 4 and
Remark 2).

1See the references for precise definitions and statements.
2The boundary ∂E of E is not connected, in general.
3The apparent contour lies in the retinal plane R2, and is the image through the orthogonal

projection π : R3 → R2 of the critical curve (this is the curve where the rank of the differential of
π|∂E is not maximal). ∂E is supposed to be in generic position with respect to π. AC(∂E) is an
oriented graph with cusps and crossing singularities. The Huffman labeling is a pair of integer
valued functions (f, d), the function f defined on R2 \ AC(∂E), and the function d defined
on AC(∂E) itself, satisfying a list of compatibility conditions. f is constant on the connected
components of R2 \ AC(∂E): f(x) counts the number of points on ∂E that project on x ∈ R2,
and it can be recovered from the orientation of the graph. d is constant on the (relatively open)
arcs of AC(∂E): d(x) counts the number of folds of ∂E which are in front of the unique point
on the critical curve that projects on x. The visible part of the apparent contour is the set
where d = 0, and is an oriented graph with T-junctions and terminal points singularities (the
orientation is such that the exterior region lies on the left, and no terminal point is exterior).

4See [1]: this variational model could maybe be considered as a sort of refinement of the
Nitzberg-Mumford model [8], [9].

5The proof is implemented inside the code appcontour developed by Maurizio Paolini (Uni-
versità Cattolica di Brescia, Italy), see also footnote 7.
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Theorem 2. (see [1]). Let A be a planar oriented graph endowed with a Huffman
labeling. Then there exists a 3D shape E such that A = AC(∂E). Moreover, E is
unique up to a continuous transformation of R3 which is strictly monotone in the
view direction.

Coupling this existence and uniqueness result with Theorem 1, we obtain a 3D
shape E starting only from the graph V .

Remark 1. Finding a “preferred” 3D shape in the class of all shapes differing
one each other by a transformation of R3 mentioned in Theorem 2 is a problem
that can be settled in variational form and possibly implemented on a computer,
and it is under investigation.

We remark that the Euler-Poincaré characteristic χ(∂E) of ∂E (and hence of
E and of R3 \E) can be inferred from the Huffman labeling of A. Instead, we do
not provide an explicit formula for counting the number of connected components
of ∂E.

Definition 3. We say that two 3D shapes E and F are equivalent if there exists
a smooth path of isotopies of R3 which takes E into F .

Theorem 4. (see [4]). Let E and F be two 3D shapes. Then E and F are
equivalent if and only if AC(∂E) and AC(∂F ) can be joined by a finite number of
elementary moves (and of their inverses), taken in an explicit (finite) list L.

Such a kind of result can probably be extracted from more general results (see
for instance [5]). The proof of [4] is given in our framework of closed embedded
surfaces in R3 and it is reasonably6 self-contained. The list L contains (strictly)
the Reidemeister’s moves for knots, which can be obtained when restricting to a
smooth tubular surface around a knot.

Remark 2. It is also possible to prove, in the spirit of [7], but with the restric-
tions given by our embedded context, that an apparent contour can always be
deformed using planar isotopies and moves (and their inverses) taken from L, so
that all cusps disappear (but the number of crossings may possibly increase).

The software appcontour7 is a code developed by Maurizio Paolini, in the effort
of topologically reconstructing ∂E starting from an apparent contour endowed
with a Huffman labeling. It needs an encoded description of the graph A8 and, at
the moment, it returns the number of connected components of ∂E, and the Euler-
Poincaré characteristic of each of these connected components (and in particular
χ(∂E))9. Appcontour returns also some informations on the hierarchical inclusions
between the various connected components of ∂E.

6Theorem 4 is based on a crucial result of J. Mather on the classification of singularities of
stable maps from a three-dimensional manifold to a three-dimensional manifold.

7Freely downloadable at http://appcontour.sourceforge.net
8The description of A is topological in character.
9It also provides various invariants of apparent contours such as the Bennequin invariant, see

for instance [6] and [2].
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Remark 3. It would be interesting to find other topological invariants of ∂E
which can be deduced looking at the graph A and at its labeling. In particular,
suppose that ∂E1 is the knotted torus, and take another connected surface ∂E2,
inequivalent to ∂E1, obtained as follows: remove from a sphere two small holes,
one around the north pole and the other one around the south pole. Then connect
the holes with a knotted tube interior to the sphere (the “tunnel” inside the sphere
is part of R3 \ E2), see the cube with knotted holes as in Figure on page 31 in
[10]. We have χ(∂E1) = χ(∂E2). We do not know it there is a quantity readable
from the corresponding apparent contours which allows to deduce that ∂E1 and
∂E2 are not equivalent.

I have concluded the discussion by pointing out some problems and generaliza-
tions that at the moment seem to be open.
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Shape Space Exploration of Planar Quad Meshes

Niloy J. Mitra

(joint work with Yong-Liang Yang, Yi Jun Yang, and Helmut Pottmann)

Given a single planar quad (PQ) mesh, we define a PQ mesh manifold as the space
of all PQ meshes having the same combinatorics as the input mesh. Navigation
in this manifold of usually high dimension and co-dimension is computationally
accessed through first and second order approximations, namely tangent spaces
and quadratically parameterized osculant surfaces. Only those parts of the man-
ifold are useful that correspond to aesthetically pleasing meshes. Aesthetics and
other constraints of practical interest are cast into energy functions, for which we
derive second order approximantions that are intrinsic to the PQ mesh manifold
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Figure 1. Starting from a single planar quad (PQ) mesh, our geo-
metric framework allows navigation and exploration of the shape space
of PQ meshes, enabling easy creation of aesthetic model variants. A
global stiffness map informs the user of relative flexibility across the
model (reference geometry from Yas Island Marina Hotel, Abu Dhabi,
by Asymptote Architecture).

and computable in the parameter space of the osculant surface. Subsequently, we
demonstrate our proposed geometric framework for navigation, design exploration,
and optimization on a variety of architectural designs, especially in the context
of form finding and fabrication-aware shape exploration (see Figure 1). Thus, we
unify two traditionally separate phases in freeform architecture, namely (i) shape
design and (ii) rationalization in view of the actual fabrication. Our mathematical
formulation is general and suited for design exploration of other types of nonlin-
early constrained geometric models.

Future research directions in multi-resolution PQ shape space exploration, and
locally supported PQ deformations were discussed. We also elaborated about
potential applications to other optimized or constrained meshes, specially for the
purpose of fabrication-aware design.

Geometric discrete Laplacians on polygonal meshes

Max Wardetzky

(joint work with Marc Alexa)

We consider the construction of geometric Laplacians on discrete surfaces made
up of polygonal faces, encompassing non-planar and non-convex polygons. Our
construction is guided by closely mimicking structural properties of the smooth
Laplace-Beltrami operator, leading to an extension of the widely employed cotan
formula from triangle to polygonal meshes. Our approach sheds light on the geom-
etry behind a mimetic finite difference scheme suggested by Brezzi and coworkers.

From smooth to discrete Laplacians. We consider an oriented 2-manifold
mesh Σ, possibly with boundary, with vertex set V , edge set E, and face set F .
We allow for faces that are simple, but possibly non-planar, polygons in R3. In
our setup, faces are solely determined by their boundary edge loops. By simple
we mean that each polygon forms a closed non self-intersecting loop. By oriented
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we mean that all faces are equipped with a consistent orientation in such a way
that any two adjacent faces induce opposite orientations on their common edge.
In order to distinguish between the resulting two orientations of each inner edge,
we work with oriented half-edges. In analogy to standard notation in the smooth
setting, we let Ωk, k ∈ {0, 1}, be the real vector space of discrete k-forms on Σ.
In particular, 0-forms are real values associated with vertices, while 1-forms are
real values associated with half-edges. We require that α(eij) = −α(eji) for any
1-form α and any oriented half-edge eij from vertex i to vertex j.

In order to define discrete Laplacians acting on 0-forms (functions), we build
on the smooth setting, where

∆ = d∗d .(1)

Here, as usual, d : Ω0 → Ω1 denotes Cartan’s exterior derivative with formal
adjoint d∗, i.e., (d∗α, u)L2 = (α, du)L2 for all α ∈ Ω1 and all u ∈ Ω0.

In order to mimic the smooth setting, we are confronted with two tasks: (i) to
provide a discrete version δ : Ω0 → Ω1 of Cartan’s exterior derivative and (ii) to
provide positive inner products on the spaces Ωk of discrete k-forms for k ∈ {0, 1}.
Indeed, these two ingredients uniquely pin down the adjoint operator δ∗ : Ω1 → Ω0

and hence—using (1) as a definition—lead to a family of discrete Laplacians.
The solution to the first task is naturally provided by considering the cobound-

ary operator δ : Ω0 → Ω1, defined by (δu)(eij) = u(j) − u(i). The second task
requires choosing inner products on the spaces Ω0 and Ω1, which we represent
by symmetric positive definite matrices M0 and M1, respectively. Any concrete
choice of M0 and M1 then yields a discrete Laplacian of the form

L = δ∗δ = M−1
0 L with L = δTM1δ .(2)

Notice that L corresponds to the strong (or pointwise) formulation of the Lapla-
cian, whereas L represents the weak (or integrated) version. Indeed, L gives rise
to the Dirichlet energy of a function u defined on the vertices via ED(u) = 1

2u
TLu.

Desiderata. While any choice of inner products M0 and M1 would in princi-
ple be conceivable, not all choices are created equal in terms of resembling and
maintaining structural properties of the smooth setting. In order to narrow the set
down to “good” inner products, we are guided by requiring a number of important
properties that hold for smooth Laplacians.

Locality (Loc). The smooth Laplacian is a differential operator; therefore,
its definition is local. In the discrete case, we maintain locality by only working
with diagonal matrices M0 and by requiring that M1 be defined per face, i.e.,

αTM1β =
∑

f∈F

αT
|fMfβ|f(3)

for any pair (α, β) of discrete 1-forms. The sum runs over all faces and α|f and
β|f , respectively, denote the restrictions of α and β to the boundary ∂f of f . For
each f ∈ F , we work with a symmetric matrix Mf .

Symmetry (Sym). The symmetry of Mf (and thus M1) reflects the fact that
on a Riemannian manifold without boundary the Laplacian is formally self-adjoint.
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Positive semi-definiteness (Psd). The smooth Laplacian on a Riemannian
manifold without boundary is positive semi-definite with one-dimensional kernel
equal to the constants. In the discrete setting we require thatM0 and eachMf (and
therefore M1) be positive definite. The kernels of L and L are then automatically
one-dimensional since δ has a one-dimensional kernel given by the constants.

Linear precision(Lin). In the smooth case, if Σ ⊂ R2 is a planar domain
and u : R2 → R is a linear function, then ∆u = 0. In the discrete case we require
that if all vertices lie in a single plane then (Lu)i = 0 at each interior vertex i and
for each linear function u over the plane.

Scale invariance (Sca). In dimension two, the (smooth) Dirichlet energy,
ED, is a conformal invariant. In particular, ED is invariant under uniformly rescal-
ing a smoothly embedded surface. Therefore, we require that the weak discrete
Laplacian, L, remains unchanged under uniformly rescaling a mesh by requiring
that each Mf be scaling invariant.

Mean curvature & area gradient. The intrinsic Laplace-Beltrami operator of
a surface that is smoothly embedded into R3 is intimately connected to the mean
curvature vector via H = ∆x, where x : Σ → R3 denotes the embedding.

Moreover, in the smooth case the mean curvature vector, H, equals the L2-
gradient of the area functional. Extending this property to polygonal meshes, we
consider vector area instead of surface area. The vector area, A(γ), of a simple
closed (and sufficiently regular) curve γ ⊂ R3 is given by the surface integral of
the unit normal over a (sufficiently regular) surface with boundary γ. A(γ) only
depends on the boundary curve, not on the choice of a particular surface spanning
this curve. Indeed,

A(γ) =
1

2

∮

γ

x× dx ,

where x denotes the position vector of γ.
Consider now all orthogonal projections of γ to planes in R3, together with

the resulting signed areas of the planar regions enclosed by the images of γ. Then
|A(γ)| is equal to the largest such area, and we call the corresponding orthogonal
projection maximal with image γ̄. In particular, A(γ) = A(γ̄).

If f is a (possibly non-planar) polygon in R3 with vector area of magnitude
|A(f)|, then the gradient with respect to varying a vertex i of f satisfies

∇i|A(f)| =
(
L̃fXf

)
i
, where L̃f := δT M̃fδ and M̃f :=

1

|A(f)|BfB
T
f .

Here Bf denotes the matrix whose rows correspond to the 3D positions of edge
midpoints of f in a cyclic ordering of the edges.

A family of discrete Laplacians. Using (3), the matrices M̃f yield positive
semi-definite inner products on 1-forms, which by (2) give pre-Laplacians L that
turn out to satisfy (Loc), (Sym), (Lin), and (Sca), but unfortunately not (Psd)
for general polygonal meshes.
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To recover (Psd) without giving up the other properties, we extend the con-
struction in [1] from the case of planar to non-planar polygons. To this end,
consider a spatial polygon f with kf vertices, and let f̄ denote the (planar) max-
imal projection of f . Let Ef̄ be the (kf × 3) matrix with rows representing the

(cyclically ordered) edge vectors of f̄ . Let Cf̄ be a kf × (kf − 2) matrix with

columns spanning the null space of ET
f̄
, and let Uf̄ be a symmetric positive defi-

nite (kf − 2)× (kf − 2) matrix. Then:

Theorem. The matrices Mf := M̃f +Cf̄Uf̄C
T
f̄

give rise to positive definite inner

products on 1–forms and, using (2), yield Laplacians L that satisfy (Loc), (Sym),
(Lin), and (Psd). Additionally, if Cf̄ and Uf̄ are chosen such that they are
invariant under uniformly rescaling f , then L also satisfies (Sca). Moreover, for
triangle meshes, any choices of Cf̄ and Uf̄ yield the cotan Laplacian in [2].

As a consequence, our result generalizes the cotan formula from triangle to
polygonal meshes and extends the construction in [1] from planar to non-planar
polygons, while—via gradients of vector area—shedding light on the geometry
underlying the corresponding mimetic finite difference construction.
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Variational Imaging with TGV2-regularization

Kristian Bredies

Most mathematical formulations of inverse problems are cast in the form of mini-
mizing a Tikhonov functional, i.e.,

min
u

F (u) + αR(u)

where F represents the fidelity with respect to the measured data, R is a regular-
ization functional and α > 0 a parameter. For mathematical imaging problems,
letting R the total variation is the most common choice due to its edge-preserving
properties [6]. However, for piecewise smooth images, TV tends to undesired
piecewise constant solutions, the “staircasing artifacts”.

In [1], the total generalized variation (TGV) of order k, defined as

(1) TGVk
α(u) = sup

{∫

Ω

udivk vdx
∣∣∣v ∈ Ck

c (Ω, Sym
k(Rd)),

‖divl v‖∞ ≤ αl, l = 0, . . . , k − 1
}
,

has been proposed and analyzed. It constitutes a new image model which can
be interpreted to incorporate smoothness from the first up to the k-th derivative.
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Here, Symk(Rd) denotes the space of symmetric tensors of order k with arguments
in Rd and αl > 0 are fixed parameters. Choosing k = 1 and α0 = 1 yields the
usual total variation functional. For k = 2, the functional reads as follows:

Definition 5. Let Ω ⊂ R
d be a bounded domain and α = (α0, α1) > 0. For

u ∈ L1
loc(Ω), the functional

(2) TGV2
α(u) = sup

{∫

Ω

udiv2 v dx
∣∣∣v ∈ C2

c (Ω, S
d×d), ‖v‖∞ ≤ α0,

‖div v‖∞ ≤ α1

}

is called the total generalized variation of second order.
Here, Sd×d is the set of symmetric matrices, C2

c (Ω, S
d×d) the vector space of

compactly supported, twice continuously differentiable Sd×d-valued mappings and
divv ∈ C1

c (Ω,R
d), div2v ∈ Cc(Ω) is defined by

(div v)i =

d∑

j=1

∂vij
∂xj

,

div2 v =

d∑

i=1

∂2vii
∂x2

i

+ 2
∑

i<j

∂2vij
∂xi∂xj

.

The norms of v ∈ Cc(Ω, Sd×d), ω ∈ Cc(Ω,Rd) are given by

‖v‖∞ = sup
x∈Ω

( d∑

i=1

|vii(x)|2 + 2
∑

i<j

|vij(x)|2
)1/2

,

‖ω‖∞ = sup
x∈Ω

( d∑

i=1

|ωi(x)|2
)1/2

.

Basic results about this functional obtained in [1] can be summarized as follows.

Theorem 6. Total generalized variation of second order enjoys the following prop-
erties:

(1) TGV2
α is a semi-norm on the Banach space BGV2

α(Ω),
(2) TGV2

α(u) = 0 if and only if u is a polynomial of degree less than 2,
(3) TGV2

α and TGV2
α̃ are equivalent for α̃ = (α̃0, α̃1) > 0,

(4) TGV2
α is rotationally invariant,

(5) TGV2
α satisfies, for r > 0, ρru(x) = u(rx) and (α̃0, α̃1) = (α0r

2, α1r), the
scaling property

TGV2
α ◦ ρr = r−dTGV2

α̃(u),

(6) TGV2
α is proper, convex and lower semi-continuous on each Lp(Ω), 1 ≤

p < ∞.

Moreover, as shown in [2], one can use Fenchel-Rockafellar duality to obtain the
following dual representation:
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Theorem 7. For each u ∈ L1(Ω) we have

(3) TGV2
α(u) = min

w∈BD(Ω)
α1‖Du− w‖M + α0‖Ew‖M

where BD(Ω) denotes the space of vector fields of Bounded Deformation [7], i.e.,
w ∈ L1(Ω,Rd) such that the distributional symmetrized derivative Ew = 1

2 (∇w +

∇wT) is a Sd×d-valued Radon measure.

The minimum characterization (3) yields an intuitive, informal interpretation
of TGV2

α: If, locally, u is smooth, we have |∇2u| ≪ |∇u|, so it might be favorable
for (3) to locally choose w = ∇u leading to the penalization of |∇2u|. On the other
hand, if, locally, u possesses an edge, ∇u will not be approximated by any w, hence
choosing w = 0 locally might be favorable for (3), leading to the penalization of
|∇u|. This way, TGV2

α reflects an optimal balancing between the first and the
second derivative.

Total generalized variation of second order can immediately be applied to image
denoising problems. Numerical experiments carried out in [1] show that TGV2

α-
regularized L2-denoising produces visually appealing results with almost no stair-
case effect present in the solution (see Figure 1). When solving the ill-posed inverse
problem Ku = f for K : L2(Ω) → L2(Ω) with TGV2 regularization, however, co-
ercivity is needed. This follows from an topological equivalence result for norms
in BV(Ω):

Theorem 8. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then there exist con-
stants 0 < c < C < ∞ such that for each u ∈ BGV2

α(Ω) there holds

c‖u‖BV ≤ ‖u‖1 + TGV2
α(u) ≤ C‖u‖BV.

Sketch of proof. Setting w = 0 in (3) immediately implies that for each u ∈
BGV2

α(Ω) we have TGV2
α(u) ≤ α1TV(u), hence we can set C = max(1, α1).

For the converse estimate, we first show that there is a C1 > 0 such that for
each u ∈ BV(Ω) and w̄ ∈ kerE there holds

(4) ‖Du‖M ≤ C1

(
‖Du− w̄‖M + ‖u‖1

)
.

Next, recall that a Sobolev-Korn inequality is valid for BD(Ω) [7]: There is a C2 >
0 such that for each w ∈ BD(Ω) there exists a w̄ ∈ ker E such that ‖w − w̄‖1 ≤
C2‖Ew‖M. For this w̄, we have, for some C3 > 0,

‖Du− w̄‖M ≤ ‖Du− w‖M + ‖w − w̄‖1
≤ C3

(
α1‖Du− w‖M + α0‖Ew‖M

)

Plugged into (4) and adding ‖u‖1 on both sides, it follows that the inequality

‖u‖BV ≤ C4

(
‖u‖1 + α1‖Du− w‖M + α0‖Ew‖M

)

holds for some C4 > 0 independent of u and w. Taking the minimum over all
w ∈ BD(Ω) and choosing c = C−1

4 finally yields the result by virtue of (3). �
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fnoise uTV

uinf−conv uTGV2
α

Figure 1. Denoising with Total Variation, infimal convolution
and Total generalized variation.

The norm equivalence implies that BGV2
α(Ω) = BV(Ω) in the sense of equivalent

Banach spaces. In particular, the known (compact) embeddings into Lp-spaces
hold and one easily obtains [2]:

Corollary 9. Let 1 < p < ∞ such that p ≤ d/(d− 1) and P : Lp(Ω) → P1(Ω) a
linear projection onto the space of affine functions P1(Ω). Then, there is a C > 0
such that

(5) ‖u‖p ≤ CTGV2
α(u) ∀u ∈ kerP ⊂ Lp(Ω).

The stated coercivity is then the main ingredient to apply the direct method
for showing existence of minimizers for the Tikhonov functionals in order to solve
Ku = f (confer again [2]):

Theorem 10. Let 1 < p < ∞, p ≤ d/(d − 1), Y be a Hilbert space, K ∈
L
(
Lp(Ω), Y

)
a linear and continuous operator which is injective on P1(Ω) and

f ∈ Y . Then, the problem

(6) min
u∈Lp(Ω)

1
2‖Ku− f‖2 + TGV2

α(u)

admits a solution.
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uorig

uTGV2
α

Figure 2. MRI undersampling reconstruction from ≈ 6% of the
Fourier points with TGV2

α.

This result can now immediately be applied to a variety of inverse imaging
problems. One of them is undersampling reconstruction in magnetic resonance
imaging (MRI). Since in usual MRI, acquisition times are high, one way to accel-
erate imaging is recording only a small subset of the necessary data using multiple,
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uorig f

uTV uTGV2
α

Figure 3. Deconvolution example. The original image uorig [4]
has been blurred and contaminated by noise resulting in f , uTV

and uTGV2
α
are the regularized solutions recovered from f .

independent receiver coils. Given the data f1, . . . , fn, the TGV2
α-MRI reconstruc-

tion problem reads as:

min
u∈L2(Ω)

1

2

n∑

i=1

‖σ̂iu− fi‖22,Σ +TGV2
α(u)

where u is the image to reconstruct, σ1, . . . , σn are the coil sensitivities, σ̂iu denotes
the Fourier transform of σiu and Σ ⊂ R2 is the undersampling pattern. Numerical
experiments performed in [5] confirm that this approach leads to high-quality
reconstructions (see Figure 2) which depict human tissue more faithful than linear
reconstructions or TV-regularized reconstructions.

Finally, another application of TGV2
α-regularization is deblurring a noisy image.

For a blurring kernel k ∈ L1(Ω0) satisfying k̄ =
∫
Ω0

kdx 6= 0, Ω ⊂ R2 a Lipschitz

domain, Ω′ ⊂ R2 a domain with Ω′ − Ω0 ⊂ Ω, f ∈ L2(Ω′) and the convolution
operator

(Ku)(x) =

∫

Ω0

u(x− y)k(y)dy, x ∈ Ω′,
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existence of a solution for the problem

min
u∈L2(Ω)

1

2

∫

Ω′

|(Ku)(x)− f(x)|2dx+TGV2
α(u)

can be shown by Theorem 10. A saddle-point formulation can be numerically
solved by, for instance, a primal-dual algorithm [3]. Figure 3 shows the effect of
TGV2

α compared to TV for deblurring a sample image.
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The structure of isometric maps and symmetries

Leonid Guibas

Approximate isometries or distance preserving transformations of surfaces model
many realistic deformations of geometric objects, yet their mathematical structures
are not well understood. In this talk we examine the intrinsic structure of isometric
and near-isometric maps, starting with Killing (isometric) vector fields and then go
on to examine isometric-preserving multiscale descriptors and their applications in
feature detection and shape analysis, concluding with algorithms for partial and
approximate isometry detection. The use of Laplace-Betrami operator and the
associated heat Kernel play a fundamental role in these developments.

Shape Spaces for Computational Anatomy

Laurent Younes

A fundamental question in Computational Anatomy addresses how the shapes
of organs (anatomy) are affected by disease. For example, most cognitive disorders
result in selective atrophy of various structures in the brain. Similarly, heart dis-
eases generally induce significant remodeling of the cardiac muscle. Describing how
and where shape changes occur can provide clinicians with essential information
on the nature of the disease.
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The following two families of statistical problems in shape spaces are typically
addressed in Computational anatomy:

- Problem 1: Assume that a population of N subjects is given, belonging to
two (or more) groups. Each subject is represented by an image or shape,
S1, . . . , SN . The question is whether the shapes are group-dependent? If
yes, can one describe where they mostly affected?

- Problem 2: Assume also a population of N subjects belonging to two
(or more) groups, but let each subject be represented by a pair of im-
ages. Refer to them as baselines (B1, . . . , BN ) and follow-ups (F1, . . . , FN ).
Question: is the deformation (or shape variation) between F and B group-
dependent? If yes, where is it affected?

Solving these problems relies on an suitable representation of shapes, or, more
generally, of deformable objects. This representation will in turn rely of a specific
construction of a “Riemannian” shape space, S. Given this, Problem 1 can be
addressed as follows. Compute an average shape (or template), using, for example,
a Karcher mean. Call it S̄. Compute minimizing geodesics between S̄ and each
Sk so that

Sk = expS̄(Dk)

for some Dk ∈ TS̄S, where exp refers to the Riemannian exponential (the end-
point at time t = 1 of the geodesic starting from S̄ with velocityDk). One can then
apply “standard” statistical methods to D1, . . . , DN , which are vectors belonging
to the same vector space.

For Problem 2, a possible approach is as follows. Start by computing minimizing
geodesics between each baseline, Bk, and the corresponding follow-up, Fk, so that

Fk = expBk
(∆k)

with ∆k ∈ TSk
S. One then transports ∆1, . . . ,∆N to a single tangent space, say

TB̄S, where B̄ is an average baseline, using parallel transport along geodesics link-
ing Bk and B̄. This results in vectors D1, . . . , DN to which “standard” statistical
methods can be applied.

It therefore remains to build this shape space, and make sure that geodesics
and parallel transport can be computed on it. Our construction, which is based
on the deformable template paradigm, works as follows. Let G be the group of
diffeomorphisms, acting transitively on a differential manifold S (shapes), so that
S is a single orbit: S = G · S0 for some reference shape S0. One can define a
right-invariant Riemannian metric on G by first defining an inner product on its
Lie algebra, denoted V , and then letting, for ϕ ∈ G:

‖v‖ϕ = ‖v ◦ ϕ−1‖V .

One then considers the projection π : G → S defined by π(ϕ) = ϕ · S0, and
defines a metric on S that turns π into a Riemannian submersion, i.e., one defines

‖ξ‖S = ‖vξ‖V
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where vξ is the horizontal lift of ξ on the Lie algebra, defined by
{
vξ · S = ξ

vξ ⊥ {w ∈ V : w · S = 0}
where w · S denotes the infinitesimal action of w on S.

With this construction, geodesics on S can be deduced from geodesics on G, in
the sense that, if S = π(φ), then expS(ξ) = (expid(v

ξ)) ◦ φ. The exponentials in
the group are well-known since Arnold’s seminal work, and are solution of the so-
called EPDiff equation. Parallel transport equations can also be written explicitly,
even if the analysis is somewhat more involved computationally. The interested
reader can refer to the referenced textbooks and to their bibliography.
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A variational framework for exemplar-based image inpainting

Pablo Arias

(joint work with Gabriele Facciolo, Vicent Caselles, Guillermo Sapiro)

Non-local methods for image denoising and inpainting have gained considerable
attention in recent years. This is in part due to their superior performance in tex-
tured images, a known weakness of purely local methods. Local methods on the
other hand have demonstrated to be very appropriate for the recovering of geo-
metric structures such as image edges. The synthesis of both types of methods is a
trend in current research. Variational analysis in particular is an appropriate tool
for a unified treatment of local and non-local methods. In this work we propose a
general variational framework for non-local image inpainting, from which impor-
tant and representative previous inpainting schemes can be derived, in addition to
leading to novel ones.

Following the tradition of non-local denoising and regularization [1, 2] we encode
the image redundancy and self-similarity (measured as patch similarity) as a non-

local weight function w : Õ × Õc → R, which serves as a fuzzy correspondence
(see Figure 1). Additionally a correspondence map can also be obtained as a limit
of our model. As a result, although the focus of this work lies on inpainting, the
framework we are introducing can be adapted for its application to other contexts
[4]. This allows us to provide intuitive interpretations of the energy and to relate
existing models for non-local regularization with exemplar-based inpainting. We
provide a detailed discussion of these relations and interpretations in the text.
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The proposed formulation is rather general and different inpainting schemes can
be derived naturally from it, via the selection of the appropriate patch similarity
criterion. In this work we present four of them, corresponding to similarity criteria
based on L2- and L1-norms between patches or their gradients. The use of the
L2-norm between patches is related to the inpainting methods of [3, 5]

Gradient-based methods, combine the exemplar-based interpolation with PDE-
based diffusion schemes. This results in a smoother continuation of the information
across the boundary and inside the inpainting domain, and in a better propaga-
tion of structures. Furthermore, the inclusion of gradients in the patch similarity
criterion allows to handle additive brightness changes.

The results obtained yield a partition of the inpainting domain into arbitrarily
shaped segments which show an exact copy (of image or gradient values) of some
region in the hole’s complement. Transitions between the copied segments take
place in a band around the boundary between the segments. The width of the
band is the size of the patch. The four inpainting schemes differ in the way
this blending is done (and in the partition found). We provide a comprehensive
empirical comparison on real and synthetic problems, showing the benefits and
limitations of each variation of the proposed formalism.

Figure 1. Inpainting problem. Left: on a rectangular image do-
main Ω, missing data u in a region O has to be reconstructed using
the available image û over Oc := Ω \ O. The set of centers of in-

complete patches is Õ := O + Ωp, being the latter the patch domain.
The center image shows a completion found with one of the one of the
schemes derived from the framework. Right: the resulting completion
is a patch-work built by copying arbitrarily shaped regions from Oc.
The red curves show the boundaries between the copied regions.
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Figure 2. Evolution of the minimization. First 3 iterations and
the final result (right) are shown for one of the proposed schemes. The
black lines correspond to the boundaries of copied segments.
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Spin Transformations of Discrete Surfaces

Keenan Crane

(joint work with Ulrich Pinkall, Peter Schröder)

Immersions of a surface M can be expressed via maps f : M → ImH into the
imaginary part of the quaternions. Two immersions f and f̃ are called spin equiv-
alent [1] if there exists some function λ : M → H such that

(1) df̃ = λ̄dfλ,

and it is clear that spin equivalence implies conformal equivalence since the induced
Riemannian metrics are related by a positive scaling: |df̃ |2 = |λ|4|df |2. In digital
geometry processing, preservation of conformal structure provides a valuable tool
for maintining signal integrity (e.g., aspect ratio of mesh elements). It is therefore
natural to seek an analog of spin transformations in the discrete setting.

Kamberov, Pedit, and Pinkall observed that, as a condition on λ, equation (1)
is equivalent to

0 = d(λ̄dfλ) = dλ̄ ∧ dfλ− λ̄df ∧ dλ = −2Im(λ̄df ∧ dλ)

whenever M is simply-connected [1]. In other words, λ̄df ∧ dλ must be equal to
some real function ρ, which leads to the integrability condition λ̄df ∧ dλ = ρ|df |2.
The function ρ represents the change in mean curvature half-density between an
initial immersion f and its spin transform f̃ , i.e., H̃|df̃ | = H |df |+ ρ|df |.

For discretization we consider the alternate formulation

(2) Dλ = ρλ
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where D is the self-adjoint elliptic operator given by

Dλ := −df ∧ dλ

|df |2 ,

which we call the quaternionic Dirac operator, since it is locally equivalent to the
standard Dirac operator for a spin-1/2 particle in the plane [2]. We can now specify
a surface (up to isometry and uniform scaling) by prescribing a change ρ|df | in
mean curvature half-density and solving the eigenvalue problem

(3) (D − ρ)λ = γλ

for the smallest eigenvalue γ. The resulting pair (λ, ρ+γ) satisfies our integrability
condition (2), with a small constant shift in the prescribed curvature change.

Consider any surface M composed of piecewise smooth faces σ with linear edges
eij . If λ is also linear along edges, then we have

∫

σ

Dλ|df |2 =

∫

σ

d(dfλ) =
∑

eij∈∂σ

∫

eij

dfλ =
∑

eij∈∂σ

(fj − fi)
λi + λj

2
,

which gives us one way to discretize D. In particular, when M is simplicial we
end up with the sparse linear operator

Dij = − 1

2Ai
ej

for each edge ej of each 2-simplex σi. In a similar fashion, the operator ρ can
be discretized as R = PB where Bij = 1/3 for each vertex vj of face σi and
Pii = ρi for some prescribed value ρi on each face. The resulting discrete operator
A = D − R is rectangular, and so there are several options for formulating the
eigenvalue problem (3). The system B

∗
A = B

∗
B obtained by averaging values from

faces back to vertices is problematic because this local averaging artificially places
high-frequency modes in the null space of the system, distorting solutions. An
alternative is to note that the generalized eigenvalue problem D2λ = γDλ shares
solutions with our original problem (3), and can be discretized as D∗

Dλ = γB∗
Dλ.

In practice the spectrum of eigenvalues computed via this discretization closely
matches the spectrum of the smooth operator, and solutions appear to converge
linearly with respect to the mean edge length of simplices [2].

One might also consider discretizations that capture the essential structure
of the smooth theory. For instance, Springborn, Schröder, and Pinkall consider
equivalence classes of discrete immersions where edge lengths are related by pos-
itive scale factors at vertices [3]. This notion of discrete conformal equivalence
leads to a theory that closely mimics the smooth setting [4], but in terms of con-
structive algorithms is limited to immersions into the plane or sphere. Therefore,
a natural question to ask is whether this same notion of conformal equivalence can
be extended to all spin transformations.
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Sparse and Low Rank Recovery

Holger Rauhut

Compressive sensing (sparse recovery) is a new area in mathematical image and
signal processing that predicts that sparse signals can be recovered from what was
previously believed to be highly incomplete measurement [3, 5, 7, 12]. Recently,
the ideas of this field have been extended to the recovery of low rank matrices from
undersampled information [6, 8]; most notably to the matrix completion problem
[4, 11].

A vector x ∈ CN is called s-sparse if ‖x‖0 := #{ℓ, xℓ 6= 0} ≤ s. In practice,
vectors will usually not be exactly s-sparse, but can be well-approximated by a
sparse vector. In order to quantify this notion one introduces the best s-term
approximation error in ℓp by σs(x)p := infz∈C,‖z‖0≤s ‖x−z‖p. Informally, a vector
x is called compressible if σs(x)p decays quickly in s.

The basic task of compressive sensing is to recover a sparse (or compressible)
vector from undersampled linear information, that is, from

y = Ax ∈ C
m, A ∈ C

m×N

where m ≪ N and A is a suitable matrix, the so called measurement matrix.
Linear algebra tells us that the above system has infinitely many solutions even if
A has full rank, so traditional wisdom is that it is impossible to single out the orig-
inal x. However, under the additional assumption that x is sparse reconstruction
becomes indeed possible, as will be outlined.

The first approach for the reconstruction of x that probably comes to mind, is
to consider the solution of the ℓ0-minimization problem

min
z∈CN

‖z‖0 subject to Az = y .

Unfortunately, this optimization problem is NP-hard, so that tractable alternatives
have to be found. A by-now well-understood approach is ℓ1-minimization,

min
z∈CN

‖z‖1 subject to Az = Ax .(1)

This convex optimization problem can be solved with efficient methods. Greedy
algorithms, and iterative methods for the compressive sensing problem have been
introduced as well. A very useful tool for the analysis of ℓ1-minimization (as well
as for some of the other algorithms) is the restricted isometry property (RIP). The
restricted isometry constant δs is the smallest number such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 for all s-sparse x.
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It can be shown [3, 1, 9, 7] that if δ2s ≤ 0.46 then every s-sparse vector is the
unique solution to (1). Moreover, stability with respect to passing from sparse to
compressible signals as well as to noise on the measurements holds as well.

Surprisingly, it is extremely hard and so far open to come up with deterministic
constructions of matrices A which have small δ2s with an optimal relation of s,m
and N . A common way out, is to consider random matrices. A very popular
choice of random matrices are Bernoulli and Gaussian random matrices, that is, all
entries are independent and take either the values ±1/

√
m with equal probability

(Bernoulli), or are N (0, 1/m)-normal distributed (Gaussian). For such matrices,
δs ≤ δ with probability at least 1−ε provided m ≥ Cδ−2(s log(eN/s)+log(2ǫ−1)),
where C is a universal constant [3, 7, 12]. In particular, we can recover every s-
sparse vector from y = Ax with high probability using ℓ1-minimization whenever

m ≥ C′s log(eN/s).

This bound is optimal as follows from lower bounds of Gelfand widths of ℓp-balls
with 0 < p ≤ 1 [10].

These ideas can be extended to the recovery of low rank matrices X ∈ Cn×q.
Assume we take measurements y = A(X), where A : Cn×q → Cm is a linear map.
Again the task is to reconstruct X from y in the interesting regime m ≪ nq. The
naive approach of solving the rank minimization problem

min
Z∈Cn×q

rank(Z) subject to A(Z) = A(X)

is again NP-hard. A tractable alternative is nuclear norm minimization,

min
Z∈Cn×q

‖Z‖∗ subject to A(Z) = A(X) .

Here, the nuclear norm is defined by ‖Z‖∗ =
∑

ℓ σℓ(Z), where the σℓ(Z) are the
singular values of Z. (Note that ‖ · ‖∗ is the dual of the operator norm.) Similarly
as above, one introduces the restricted isometry constant of A as the smallest
constant δr such that

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F for all X with rank(X) ≤ r ,

see [2, 6]. Here ‖X‖F denotes the Frobenius norm of X . If δ4r ≤
√
2 − 1 then

nuclear norm minimization recovers every X of rank at most r from y = A(X), see
[6, 8]. Here again, optimal measurement maps are provided by Gaussian maps,
that is, all coefficients Ai,j,k in the representation A(X)i =

∑
j,k Ai,j,kXj,k are

independent and N (0, 1/m)-distributed. For such maps, δr ≤ δ with probability
at least 1− ε provided

m ≥ Cδ−2r(n + q) .

Note that the term r(n + q) is essentially the number of parameters required to
describe a rank-r matrix in dimension n× q (up to constants).

For practical purposes it is essential to have structured measurement matri-
ces and measurement maps. In particular, structure can speed up matrix vector
multiplication, which is essential for recovery algorithms to work for large scale
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problems. In the low rank recovery setup, special structure is provided in the ma-
trix completion problem, where one samples entries of the matrix to be recovered,
see [11, 4] for details.

For the compressive sensing problems several types of structured random ma-
trices have been studied so far [12, 14, 15, 13]; in particular, sampling matrices
arising in random sampling of bounded orthonormal systems and partial random
circulant matrices [13]. A particular instance of the former arises when taking m
randomly selected rows of the N ×N discrete Fourier matrix. Then δs ≤ δ with
high probability provided

m ≥ Cδ−2s log3(s) log(N) .

We refer to [12] for further details.
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Shape Processing via Linear Programming Relaxation

Daniel Cremers

1. Toward Optimal Solutions to Shape Analysis

A large number of shape analysis and shape processing tasks have been for-
mulated by means of energy minimization where solutions to the processing task
correspond to configurations of minimal energy. Particular examples that we focus
on in this line of work are:

• Curvature-regularized image segmentation [6],
• Curvature-regularized image inpainting [6],
• Willmore-type surfaces [7],
• Elastic matching of surfaces in 3D space [8].

Figure 1. Specified boundary condition and discrete Willmore
surface computed via linear programming relaxation. Source:[7].

Unfortunately most existing approaches to shape analysis and shape processing
tasks focus on gradient flow solutions where respective solutions are computed
by means of gradient descent. Since the underlying energies are generally not
convex, solutions will invariably depend on the choice of initialization and may
be aribtrarily bad – this dependency on the initialization becomes particularly
undesirable in image processing tasks, where for example curvature regularity is
added to some data term that drives respective segmentations to strong intensity
edges: In noisy and cluttered images there are numerous spurious edges which
all attract a local curve evolution scheme. As a consequence it would be highly
desirable to compute solutions which do not depend on an initialization and which
come with some optimality or quality guarantee.

For a limited number of shape optimization and shape analysis problems respec-
tive energies can be minimized globally in computation times that are polynomial
in the number of basic elements discretizing the respective solution space. For
example, the elastic matching of planar shapes can be solved by means of dynamic
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Figure 2. User-labeled input image and globally optimal curva-
ture regularized segmentation computed via linear programming
relaxation. Source:[6].

programming techniques, where the optimal matching is equivalent to a monoto-
nous cyclic path on a torus [3, 4]. Similarly length-regularized image segmentation
can be solved by means of minimal s-t-cuts through respective graphs [2, 1, 5].

Unfortunately these efficient solutions often do not generalize well: The elastic
matching of surfaces in three-dimensional space no longer corresponds to a shortest
path on a torus, but rather to a codimension-two surface in four dimensional space.
Similarly the segmentation with curvature regularization no longer corresponds to
a graph cut problem.

Nevertheless, such problems can be addressed in a unifying framework. The
key insight is that both the shortest path and the graph cut problem are specific
instances of integer linear programs. While the shortest path formulation and
the graph cut formulation do not generalize to the respective higher-dimensional
problems, the paradigm of the integer linear program does.

2. Shape Inference by Linear Programming

A central aspect in efficiently computing solutions to shape optimization chal-
lenges lies in selecting the appropriate mathematical representation of the solu-
tions. In this line of work, we will consistently revert to implicit representations.
As a consequence, for problems like segmentation or shape matching curves and
shapes no longer evolve locally according to some gradient direction starting from
some initialization, but they rather emerge in specific locations independent of
initialization.

In reformulating the above problems by means of integer linear programs there
are two key ideas:

• Firstly, we represent all feasible solutions by a (potentially huge) set of
N binary variables x ∈ {0, 1}N . For the case of curvature-regularized
boundaries these variables indicate whether a set of consistently oriented
adjacent edges is part of the segmentation or not. To additionally represent
cost terms encoding integrals over the inside or outside area separated by
the boundary, we can introduce additional binary variables for each pixel
of the image. For the case of Willmore-type surfaces we can represent the
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set of feasible solutions in terms of pairs of adjacent triangles, where each
pair is either part of the solution or not. And for elastically matching two
closed surfaces X and Y by means of a diffeomorphism f : X → Y we can
discretize the graph

(1) Γ = {(x, f(x)) | x ∈ X} ⊂ X × Y,

which is a two-dimensional closed surface in four dimensions. With respect
to these discrete representations of solutions spaces, respective energies for
shape inference and matching amount to integer linear programs.

• Secondly, the consistency of solutions must be enforced by additional linear
constraints. These assure that the selected basic elements xi actually do
form a coherent surface. As a consequence, the overall shape optimization
problem amounts to an integer linear program of the form

(2)

min
x∈{0,1}N

w⊤x,

s. t. Ax = b

Upon relaxation, i.e. neglecting the integer constraint and allowing intermediate
values in the interval [0, 1] for all variables xi, the resulting linear program can be
solved in polynomial time. Subsequent binarization leads to solutions which are
within an energetic bound from the optimum.

Figure 1, 2 and 3 show image segmentations with curvature regularity, discrete
Willmore surfaces and an elastic surface matching computed in this manner. For
further details we refer the reader to [6, 7, 8].
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Figure 3. Elastic matching of shapes in 3D by means of linear pro-
gramming relaxation. Source:[8].
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Smooth Weights for Real-Time Deformation

Olga Sorkine

(joint work with Alec Jacobson, Ilya Baran and Jovan Popovic)

Figure 1. Bounded biharmonic blending supports points, bones,
and cages arranged in an arbitrary configuration. This versatility
makes it possible to choose the right tool for each subtask: bones
to control rigid parts, cages to enlarge areas and exert precise
control, and points to transform flexible parts.

Object deformation with linear blending dominates practical use as the fastest ap-
proach for transforming raster images, vector graphics, geometric models and ani-
mated characters. Given a shape Ω ∈ R2 or R3 and control handles H1, . . . , Hm ⊂
Ω, where each handle is a point, a straight line segment (i.e., skeletal bone) or a
vertex of a polygonal cage, transformation by linear blending is formulated as

(1) ∀x ∈ Ω, x′ =

m∑

j=1

wj(x)Tjx,

where Tj is an affine transformation and wj : Ω → R is a weight function as-
sociated with control handle Hj . See Fig. 1 for an example of all three control
handle types. The user is only required to supply the transformations Tj , and the
whole shape Ω is deformed by the above simple equation, which is embarrassingly
parallelizable and is routinely implemented in graphics hardware. An alternative
to linear blending of affine transformation is, e.g., Dual Quaternions [4], which
provide more intuitive interpolation of rotations at a small computational cost.

Unfortunately, blending schemes for skeletons or cages are not always easy to use
because they may require manual weight painting or modeling closed polyherdal
cages around objects. Our goal is to make the design and control of deformations
simpler by allowing the user to work freely with the most convenient combination of
handle types. We develop blending weights wj that produce smooth and intuitive
deformations for points, bones and cages of arbitrary topology.

The properties of the weight functions wj determine the quality and the intu-
itiveness of the resulting deformation. Here are the properties we would like our
weight functions to satisfy:

Smoothness: Lack of smoothness at the handles causes visible artifacts in
2D textured shapes and prevents placing handles directly on 3D shapes. Many
popular weight definition schemes, such as Harmonic Coordinates [3], suffer from
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this problem. We would like wj to be at least C1 at the control handles and C∞

everywhere else.
Non-negativity: Negative weights lead to unintuitive handle influences, be-

cause regions of the shape with negative weights move in the opposite direction to
the prescribed transformation. For instance, biharmonic functions [2], although
smooth, may attain negative values.

Shape-awareness: Informally, shape-awareness implies intuitive correspon-
dence between the handles and the domain Ω. The influence of the handles should
conform to the features of the shape and fall off with shape-aware (as opposed to
Euclidean) distance. The best shape-aware behavior one can hope for is when the
weights wj depend on the metric of Ω alone and do not change for any possible
embedding of Ω.

Partition of unity: This classical property (also seen in, e.g., Bézier curves
or NURBS) ensures that if the same transformation T is applied to all handles,
the entire object will be transformed by T .

Locality and sparsity: Each handle should mainly control a shape region
or feature in its vicinity, and each point in Ω should be influenced only by a few
closest handles. Specifically, if any locally shortest path (in a shape-aware sense)
from a point x0 to Hj passes near some other handle, then Hj is “occluded” from
x0 and wj(x0) should be zero.

No local maxima: Each wj should attain its global maximum (i.e., value of 1)
on Hj and should have no other local maxima. This property provides monotonic
decay of a handle’s influence and guarantees that no unexpected influences occur
away from the handle.

We propose to formulate the weights satisfying the properties above via a vari-
ational problem, namely as minimizers of the Laplacian energy:

argmin
wj , j=1,...,m

m∑

j=1

1

2

∫

Ω

‖∆wj‖2dV(2)

subject to: wj |Hk
= δjk(3)

wj |F is linear ∀F ∈ FC(4)
m∑

j=1

wj(x) = 1 ∀x ∈ Ω(5)

0 ≤ wj(x) ≤ 1, j = 1, . . . ,m, ∀x ∈ Ω,(6)

where FC is the set of all cage faces and δjk is Kronecker’s delta. The weights
can be found by discretizing the problem using, e.g., linear finite elements and
employing a fast QP solver such as Mosek [1].

The above weights, which we call bounded biharmonic weights, spread the influ-
ences of the controls in a shape-aware and localized manner, even for objects with
complex and concave boundaries, as can be seen in Fig. 2. The weights are C1

smooth at the controls and C∞ everywhere else, such that point controls can be
placed directly onto the shape. The only exception to the smoothness property are
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Figure 2. Bounded biharmonic weights. The blending weight
intensity for each handle is shown in red with white isolines. Each
handle has the maximum effect on its immediate region and its
influence disappears in distant parts of the object.

skeletal joints where two or more bones meet, and cage vertices: in the former case,
since joints are never “torn apart”, the value of the weights at the joint actually
does not matter; in the latter case, since cages are typically placed outside of the
actual shape being deformed, C0 smoothness there does not pose a problem visu-
ally. The properties of non-negativity, partition of unity and shape-awareness are
satisfied by construction (the latter thanks to the fact that the Laplace operator
solely depends on the metric on Ω).

The properties of locality, sparsity and lack of local maxima have been experi-
mentally observed. We are currently looking into ways to analyze the shape of the
active sets in order to formally prove or disprove these properties and understand
the behavior better. The MFO Workshop “Trends in Mathematical Imaging and
Surface Processing” has been extremely instrumental to the progress on this prob-
lem, facilitating our contact with math researchers working on similar variational
problems. We are currently investigating notions developed for general obstacle
problems [5] to help the analysis.
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Scale space for point clouds and applications

Julie Digne

Processing high precision point clouds surfaces is a very challenging problem. In-
deed, standard methods are not designed to preserve high frequencies and details.
Thanks to the definition of a new scale space for point clouds, methods can be
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adapted so that they preserve the high precision while still extracting robust in-
formation.

Interestingly, several methods have been proposed to compute the differential
properties of a surface by computing covariance matrices of local neighborhoods.
We analyzed mathematically those methods in a unified framework by comput-
ing their asymptotic form when the size of the neighborhood tends to zero. All
considered local schemes are of two kinds: either they perform a polynomial local
regression, or they compute directly local moments. But the polynomial regression
of order 1 is demonstrated to play a special role, because its iterations yield a scale
space.

Using this scale space formulation, a lot of problems arising during the process-
ing of raw point clouds can be solved. In particular, we developed a high precision
meshing method that allows for the exact visualization of raw point clouds. Using
the same scale space framework, we are able to suppress aliasing-like artifacts that
are due to the superposition of scans. Merging of low frequencies deduced from the
scale space and re-adding high frequencies yields the final shape with all details
and without the artifacts.

Generalized Reflexion Operator for multi-impact

Etienne Vouga

To simulate multiple simultaneous impacts, one of two existing algorithms is typ-
ically used: pairwise propagation (Gauss-Seidel), or a method based on linear
complementarity. As can be seen by examining the model systems-Newton’s Cra-
dle and Bernoulli problem- each method has its advantages and pitfalls. A new
approach, inspired by the propagation of shock waves through elastic media, is
the first to correctly simulate both of these problems, by guaranteeing symmetry
preservation, energy conservation, and no artificial sticking.

On a first-order primal-dual algorithm

Thomas Pock

(joint work with Antonin Chambolle)

In this talk, we have discussed new results for a first-order primal-dual algorithm
for non-smooth convex optimization problems with known saddle-point structure.
The algorithm has been recently proposed in [3] for computing solutions of a
convex formulation of the Mumford-Shah functional. In subsequent work, we have
shown in [1] that the algorithm converges to a saddle-point with rate O(1/N) in
finite dimensions for the complete class of problems. Furthermore, the algorithm
yields improved rates on problems with some degree of smoothness. In particular it
achieves O(1/N2) convergence on problems, where the primal or the dual objective
is uniformly convex, and yields linear convergence, i.e. O(ωN ) for some ω ∈ (0, 1),
on smooth problems.



Trends in Mathematical Imaging and Surface Processing 333

We have also discussed a simple pre-conditioning technique to additionally ac-
celerate the convergence of the algorithm. We proposed a simple and easy to
compute class of pre-conditioners for which convergence of the algorithm is guaran-
teed while keeping the computational complexity of the iterations unchanged. As
a by-product, we can show that for a certain instance of the pre-conditioning, the
proposed algorithm is equivalent to the old alternating step method for monotropic
programming [2]. We demonstrate the improved performance of the algorithm by
applying it to standard linear programming test problems and a few standard
computer vision problems such as image restoration, inpainting and optical flow.
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Collaborative source separation and identification in images and
signals via hierarchical sparse modeling

Pablo Sprechman

The talk presents a collaborative structured sparse model, C-Hilasso, that aims to
add stability and prior information to the sparse representation of mixed signals.
The application of C-Hilasso to source separation and identification problems will
be discussed. The method that we propose goes as follows. First we build a
structured dictionary to describe mixed signals by concatenating a set of subdic-
tionaries, each of them learned to sparsely model one of a set of possible classes
then. The coding of the mixed signal is performed by efficiently solving a convex
optimization problem that combines standard sparsity with group sparsity. The
present sources are identified by looking at the subdictionary selected in the cod-
ing. The collaborative filtering in C-Hilasso takes profit of the tenmporal/spatial
redundancy present in the signals and shows to be critical to further stabilize the
sparse representation.

Circular Arc Structures

Johannes Wallner

(joint work with Pengbo Bo, Helmut Pottmann, Martin Kilian, and Wenping
Wang)

This research has been motivated by applications in freeform architecture (see e.g.
the survey paper [4]). An important guiding principle in computational methods
in this area is the balance between cost efficiency on the one hand, and adherence
to the design intent on the other. Key issues are the simplicity of supporting
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and connecting elements as well as repetition of costly parts [3]. This leads us
to consider, in [1], the so-called circular arc structures as a means to faithfully
realize freeform designs without giving up smooth appearance. In contrast to non-
smooth meshes with straight edges where geometric complexity is concentrated
in the nodes, we stay with smooth surfaces and rather distribute complexity in a
uniform way by allowing edges in the shape of circular arcs. We study remarkable
special cases of circular arc structures which possess simple supporting elements
and whose faces may be realized by Dupin cyclides [2].

Definition. We consider mesh combinatorics (V,E, F ) which are either regular
triangular, or regular quadrangular, or regular hexagonal, with vertices {vi}i∈V in
Euclidean space, and circular arcs {eij}(ij)∈E as edges. This constitutes a circular
arc structure, if the following geometric conditions are fulfilled:

(vii) For all (i, j) ∈ E we have vi, vj ∈ eij (i.e., edges connect adjacent vertices);
(viii) the tangent vectors of edges adjacent to vj span a plane and possess a

common normal vector nj;
(ix) the configuration of these tangent vectors is the same for all vertices, up

to Euclidean congruences;
(x) if for some edge (ij) the Euclidean reflection in the edge bisector (vi−vj)

⊥

exchanges normal vectors ni, nj, then this edge is called symmetric.

Without loss of much generality we restrict ourselves to the case that the angles
between arcs eij emanating from vertex vi assume the values 2π

3 , 2π
3 , 2π

3 (in the
hexagonal case), or α, π − α α, π − α (in the quadrilateral case), or π

3 , . . . ,
π
3

(triangular case).
Returning to the applications in freeform architecture mentioned in the intro-

duction, we see that by approximating a smooth shape by a circular arc structure
we may ‘rationalize’ it (i.e., decompose it into buildable parts) in a way which
retains smoothness but uses the simplest edge elements possible, and and also
leads to congruent nodes. This approximation task can be performed by introduc-
ing vertex positions and edges’ tangent vectors as variables, and building up an
appropriate nonlinear least squares optimization problem. Its initialization and
solution (e.g. by means of level set methods) is discussed in [1].

It is elementary that edges which are symmetric are contained in a right circular
cone: This fact is again useful in applications, since it can be directly used for
supporting elements of simple shape. In case of quadrilateral combinatorics, if all
boundary edges of a face are symmetric, then it is known that there is a unique
Dupin cyclide such that the edges are principal curvature lines [2]. This property
can be used to convert a circular arc structure into a smooth union of so-called
principal patches, each of which is taken from a cyclide. Such geometric objects
are the topic of [2].

From the viewpoint of discrete differential geometry, the circular arc structures
of hexagonal combinatorics possess nice properties, since in this case there exists a
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C2 surface containing the union
⋃

(ij)∈E eij of edges (this is because the three nor-

mal curvatures in each vertex uniquely determine the second fundamental form).
We have the following interesting feature:

Prop. For any curvature-continuous surface which contains a hexagonal circular
arc structure, the mean curvature in the vertex vi equals

(1) Hi =
1

k

∑

j:(ij)∈E

2
〈 vj − vi
‖vj − vi‖2

, ni

〉
(k = 3).

The proof uses a geometric trick: Each arc eij is contained in its Meusnier sphere
Σij ; and inversion ιi with center vi maps Σij to a plane whose distance from the
tangent plane vi + n⊥

i equals half the normal curvature. Now all we have to do
is read off that distance via inversion of vj which leads to 〈ni, ιi(vj)− vi〉, and to
compute an average of the normal curvatures obtained in this way. �

Def. If a vertex vi is adjacent to k edges which enclose successive angles of 2π
k ,

then the mean curvature in this vertex is given by Equation (1).

Prop. The mean curvature Hi as defined by Equation (1) for k ≥ 3 edges is a
Möbius invariant if it is encoded as the inverse radius of a sphere which touches
the edges in the vertex vi.

The proof uses the fact that the pencil of spheres tangent to a plane in the vertex vi
is an affine line via the inverse radius as affine coordinate, and this affine structure
is preserved by Möbius transformations. Thus all affine-invariant constructions
with inverse radii of Meusnier sphere are Möbius invariant. This in particular
applies to the average of normal curvatures computed by (1). �

Presumably circular arc structures have further applications. One is in the old
and computationally difficult problem of milling of surfaces by a 5-axis cylindrical
tool, which could be solved if we can approximate the surface under consideration
by a dense union of arcs of constant radius [1].
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Osmosis – A New Methodology for Visual Computing

Joachim Weickert

Discrete formulations of diffusion filters lead to symmetric Markov chain models
with a constant steady state [2]. They are mainly applied in data smoothing and
regularization tasks. The goal of this talk is to introduce novel, nonsymmetric
Markov chains that we call osmosis models [3]. Instead of using diffusivities be-
tween two adjacent pixels, osmosis employs forward and backward osmoticities
that may differ and lead to nontrivial steady states. A fully discrete 1-D linear
osmosis process is given by

uk+1
i =

(
1− r g+

i+ 1
2

− r g−
i− 1

2

)
uk
i + r g−

i+ 1
2

uk
i+1 + r g+

i− 1
2

uk
i−1

where uk
i approximates the grey value in pixel i at time level k, g+

i+ 1
2

is the forward

osmoticity from pixel i to i+1, g−
i+ 1

2

is the backward osmoticity from pixel i+1 to

i, and r = τ
h2 denotes the mesh ratio between the time step size τ and the grid

size h.
We present a discrete theory for linear osmosis processes in arbitrary dimensions
where osmoticities are variant in space but constant in time. It has structural sim-
ilarities to the theory for discrete diffusion filtering [2], and it includes preservation
of the average grey value, positivity preservation, and convergence to a nontrivial
steady state. Using the Perron-Frobenius theory, the steady state is given by a
rescaled version of the dominant eigenvector of the transition matrix of the Markov
chain.
A continuous formulation of osmosis leads to a partial differential equation of
drift-diffusion type. In the 1-D case this is given by

∂tu = ∂x (g ∂xu) − ∂x (d u)

with a diffusivity g := g++g−

2 and a drift coefficient d := g+−g−

h .
We analyse the data integration qualities of osmosis processes in the compati-
ble and incompatible case, and we discuss relations to gradient domain methods.
While osmosis models are as easy to implement as diffusion filters, their potential
goes far beyond the limitations of diffusion filtering: Our prototypical applications
include data clustering, compact image approximations, image editing, image fu-
sion, and novel shock-capturing schemes for hyperbolic conservation laws [1]. Fig-
ure 1 shows an example where osmosis is used for seamless image cloning.
Joint work with Kai Hagenburg (Saarbrücken), Michael Breuß (Saarbrücken),
Oliver Vogel (Saarbrücken), and Peter Ochs (Freiburg).
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Figure 1. Seamless image cloning with osmosis. From left to
right: (a) Original painting of Euler. (b) Original drawing of
Lagrange (with to-be-cloned face selected). (c) Direct cloning on
top of Euler’s head. (d) Cloning with osmosis image editing.
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On the sharp interface limit of joint Ambrosio–Tortorelli segmentation
and phase-field matching

Benedikt Wirth

The tasks of image segmentation and registration are of high importance in var-
ious areas, ranging from computer vision (e.g.stereo reconstruction) to medicine
(e.g.automatic construction of anatomical atlases). Image segmentation means
partitioning an image into different regions such as foreground and background,
using for example its edge information, while image registration is the task of find-
ing a mapping from one image to a second one which maps parts from one image
to similar parts in the other. Image registration is often applied in combination
with segmentation, in particular if only the edge sets of two images are to be
matched [3]. Here, it is known that robustness can be ensured by simultaneous
segmentation and registration [5]: A good segmentation is obviously required for a
high quality registration, but a registration can also help to find the segmentation
of one image, exploiting the one-to-one correspondence between both images and
the segmentation of the second image. We will here analyze a generic, variational
model for joint image segmentation and registration which is based on Ambrosio–
Tortorelli phase fields, a smoothed representation of image edges. In particular,
we will investigate the model behaviour in the sharp interface limit.

Joint segmentation and registration via phase fields. Given two images
y00 , y

0
1 : Ω → R on some bounded connected Lipschitz domain Ω ⊂ Rd, their

segmentation can be accomplished by minimizing the well-known Mumford–Shah
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functional [4],

EMS,y0
i
[yi,Si] =

∫

Ω

(yi − y0i )
2 dx+ a

∫

Ω\Si

|∇y|2 dx+ νHd−1(Si) , i = 0, 1 ,

which yields a piecewise smooth approximation yi of image y0i as well as its edge
or discontinuity set S. Here, a and ν represent positive parameters, and Hd−1

is the (d− 1)-dimensional Hausdorff measure. Furthermore, a registration of two
images with edge sets S0,S1 can be performed by minimizing the functional

Ereg,S0,S1
[φ] = γF [φ−1(S0),S1] +W [φ] := γHd−1(φ−1(S0)∆S1) +W [φ]

to obtain a matching deformation φ : Ω → Rd with φ(S1) ≈ S0. Here, γ > 0 is a
large penalty parameter, A∆B = A \B ∪B \A denotes the symmetric difference
of two sets, and

W [φ] =

∫

Ω

c1‖Dφ‖p + c2‖cofDφ‖q + c3 detDφr + c4 detDφ−s + c5 dx

for positive constants c1, . . . , c4, p > d, r, s > 0, is a generic hyperelastic energy,
needed to regularize the deformation [2] (one might just as well consider different
hyperelastic deformation energies, the above one has only been chosen for simplic-
ity). A simultaneous segmentation and registration of the images y00 and y01 can
thus be achieved by finding the minimum of

E [y0, y1,S0,S1, φ] = EMS,y0
0
[y0,S0] + EMS,y0

1
[y1,S1] + Ereg,S0,S1

[φ]

= EMS,y0
0
[y0,S0] + EMS,y0

1
[y1,S1] + γHd−1(φ−1(S0)∆S1) +W [φ] .

Since an explicit representation of edge sets Si is numerically demanding, dif-
ferent approximations of the above segmentation energies have been developed. In
particular, we will here consider the approximation of the Mumford–Shah func-
tional by Ambrosio and Tortorelli [1],

Eε
AT,y0 [y, u] =

∫

Ω

(y − y0)2 dx+ a

∫

Ω

(
u2 +

kε
a

)
|∇y|2 dx+ νLε

AT[u] ,

in which the edge set S is replaced by a phase field function u : Ω → R which
is close to one and smooth everywhere except at the image edges, where it takes
the value 0. The width of this diffused edge representation scales with the small
parameter ε > 0. The term

Lε
AT[u] =

1

2

∫

Ω

ε|∇u|2 + 1

ε
(1− u)2 dx

is known to be an approximation of the total length of phase-field-encoded edges.
In particular,

(
Γ((L1(Ω))2)− lim

ε→0
Eε
AT,y0

)
[y, u] =: E0

AT,y0 [y, u] =

{
EMS,y0 [y,Sy] if u = 1 a. e.,

∞ else,



Trends in Mathematical Imaging and Surface Processing 339

where Sy shall denote the edge set of the image y. The registration of two phase
fields u0, u1 instead of edge sets S0,S1 can now be performed by minimizing the
functional

Ereg,u0,u1
[φ] = γFε[u0 ◦ φ, u1] +W [φ] := γ

1

ερ

∫

Ω

(u0 ◦ φ− u1)
2 dx+W [φ]

(where ρ ≥ 1), and the corresponding joint segmentation and registration energy
is given by

Eε[y0, y1, u0, u1, φ]

= Eε
AT,y0

0

[y0, u0] + Eε
AT,y0

1

[y1, u1] + Eε
reg,u0,u1

[φ]

= Eε
AT,y0

0

[y0, u0] + Eε
AT,y0

1

[y1, u1] + γ
1

ερ

∫

Ω

(u0 ◦ φ− u1)
2 dx+W [φ] .

We are interested in the relation between this matching energy and the corre-
sponding sharp interface energy E , for which purpose we analyse the Γ-limit of Eε

for ε → 0.

Γ-convergence analysis for Eε. Näıvely one would expect the energy Eε to be
an approximation of E . However, this is not the case due to different phenomena
which will be briefly explained below. In 1D we have the following.

Theorem 11. Let Ω ⊂ R, i.e.d = 1. For ρ = 1,

Γ((L1(Ω))4 × w−W 1,p(Ω)) − lim inf
ε→0

Eε = E0

where w−W 1,p(Ω) denotes the space {φ ∈ W 1,p(Ω)|φ(Ω) ⊂ Ω} equipped with the
weak W 1,p-topology and where

E0[y0, y1, u0, u1, φ] = E0

AT,y0
0
[y0, u0]+E0

AT,y0
1
[y1, u1]+νZ(γ/ν)Hd−1(Sy1\φ

−1(Sy0))+W[φ]

for a smooth, monotonously increasing concave function Z : [0,∞) → [0, 1] with
Z(0) = 0, limz→∞ Z(z) = 1.

Obviously, we only have a one-sided matching in the limit, and the correspond-
ing penalty parameter is bounded by ν, no matter how large γ was chosen. The
reason lies in strong deformations that develop close to the edges: If y0 has an
edge but y1 does not, then the minimizing u0 develops a typical phase field profile
which however gets squeezed by the deformation (Fig. 1, left). If y1 has an edge
but y0 does not, phase field u0 locally develops a ghost edge, which becomes more
and more pronounced the larger γ is (Fig. 1, middle).

Remark 12. In 2D, even the one-sided matching term vanishes in the limit ε → 0
so that Eε[y0, y1, u0, u1, φ] approximates the decoupled segmentation problem

E0
AT,y0

0

[y0, u0] + E0
AT,y0

1

[y1, u1] +W [φ] .

The reason lies in the development of small ghost edge segments which get elongated
by the deformation φ to form a complete ghost edge (Fig. 1, right).
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y00 , y0 y00 , y0

y01 , y1 y01 , y1

u0 u0

u1 u1

u0 ◦ φ
u0 ◦ φ

u0

u0◦φ

u1

Figure 1. Left: In 1D, where image y0 has an edge but y1 does
not, phase field u0 gets locally squeezed to u0 ◦ φ so that Fε[u0 ◦
φ, u1] vanishes in the limit ε → 0. Middle: In 1D, where image y1
has an edge but y0 does not, phase field u0 locally develops a ghost
edge which is counted in Eε

AT,y0
0

[y0, u0]. Right: In 2D, where image

y1 has an edge but y0 does not, phase field u0 locally develops a
sequence of small ghost edge segments that get elongated in u0 ◦φ
so that Fε[u0 ◦ φ, u1] vanishes in the limit ε → 0.

As a remedy of the above effects, one can increase the exponent ρ in Eε. This will
prohibit a decrease of the mismatch penalty term via locally strong deformations.
Thereby the increased ρ will enforce the formation of fully developed ghost edges
so that in the limit ε → 0 the mismatch term becomes zero, but the accumulated
length of all ghost edges is counted with weight ν.

Theorem 13. Let Ω ⊂ R, i.e.d = 1. For ρ > 1 + 1
max{p,r} ,

Γ((L1(Ω))4 × w−W 1,p(Ω))− lim inf
ε→0

Eε = E0,

E0[y0, y1, u0, u1, φ] = E0
AT,y0

0

[y0, u0]+E0
AT,y0

1

[y1, u1]+νHd−1(φ−1(Sy0
)∆Sy1

)+W [φ] .

In 2D, a similar result is to be expected, where the choice of ρ additionally has
to take into account the other exponents of the hyperelastic deformation regular-
ization.
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Statistical analysis of surfaces for computational anatomy

Xavier Pennec

Over the last 30 years, there was an explosion of imaging modalities allows ob-
serving both the anatomy in vivo and in situ at multiple spatial scales (from cells
to the whole body), multiple time scales (beating heart, growth, aging, evolution
of species), and on multiple subjects. The combination of these new observation
means and of the computerized methods is at the heart of computational anatomy,
an emerging discipline at the interface of geometry, statistics and image analysis
which aims at developing algorithms to model and analyze the biological shape of
tissues and organs. The goal is to estimate representative organ anatomies across
diseases, populations, species or ages, to model the organ development across time
(growth or aging), to establish their variability, and to correlate this variability
information with other functional, genetic or structural information (e.g. fiber
bundles extracted from diffusion tensor images). From an applicative point of
view, a first objective is to understand and to model how life is functioning at the
population level, for instance by classifying pathologies from structural deviations
(taxonomy). A second application objective is to better drive the adaptation of
generic models of the anatomy (atlas) into patient-specific data (personalization)
in order to help therapy planning (before), control (during) and follow-up (after).

Understanding and modeling the shape of organs is made difficult by the ab-
sence of physical models for comparing different subjects, the complexity of shapes,
and the high number of degrees of freedom implied. The general method is to
identify anatomically representative geometric features (points, tensors, curves,
surfaces, volume transformations), and to describe and compare their statistical
distribution in different populations. As these geometric features most often be-
long to manifolds that have no canonical Euclidean structure, we have to rely
on more elaborated algorithmic basis. The Riemannian structure proves to be a
powerful and consistent framework for computing simple statistics on finite di-
mensional manifolds [7, 8] and can be extend to a complete computing framework
on manifold-valued images [9]. For instance, the choice of a convenient Riemann-
ian metric on the space of positive define symmetric matrices (tensors) allows to
generalize consistently to tensor fields many important geometric data process-
ing algorithms such as interpolation, filtering, diffusion and restoration of missing
data. This framework is particularly well suited to the statistical estimation of
Diffusion Tensor Images [5], and can also be used for modeling the brain variability
from sulcal lines drawn at the surface of the cerebral cortex [4].

To move from simple point-wise features to curves, surfaces and deformations,
we believe that the embedding vector space of currents provide an interesting com-
putational environment. It was introduced in the field by Glaunes and extended
by Durrleman [2, 1] to a generative shape model which combines a random diffeo-
morphic deformation model a la Grenander & Miller, that encodes the geometric
variability of the anatomical template, with a random residual shape variability
model (a la Kendall) on the deformed template. We applied the efficient algo-
rithmic toolbox developed for handling statistics on currents to the analysis of
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the shape of the right ventricle of the heart in a population of Tetralogy of Fallot
patients The resulting statistical model of the remodeling of the ventricle dur-
ing growth turns out to have an anatomically meaningful interpretation [6]. The
extensions of this type of methodology to longitudinal evolution estimations in
populations is currently one of the most active topic in computational anatomy.
We present here a simple model where we combine a static inter-subject change
of coordinate system with a time-warp to transform the generic scenario of defor-
mation at the population level to the subject specific longitudinal observations.
When applied to different species (here bonobos vs chimpanzees) or to diseases
(autism vs control), this model suggests that the change in the speed of evolution
might be more important than the shape differences [3].
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[2] S. Durrleman, X. Pennec, A. Trouvé, and N. Ayache, Statistical models on sets of curves
and surfaces based on currents, Med. Image Analysis 13 (2009), 793–808.

[3] S. Durrleman, X. Pennec, A. Trouvé, N. Ayache and J. Braga, Comparison of the endocast
growth of chimpanzees and bonobos via temporal regression and spatiotemporal registration,
Proc. of Miccai STIA Workshop, Beijing, Sep. 2010.

[4] P. Fillard, V. Arsigny, X. Pennec, K.M. Hayashi, P.M. Thompson, and N. Ayache, Mea-
suring brain variability by extrapolating sparse tensor fields measured on sulcal lines, Neu-
roimage 34 (2007), 639–650.

[5] P. Fillard, X. Pennec, V. Arsigny, and N. Ayache, Clinical DT-MRI estimation, smoothing
and fiber tracking with log-euclidean metrics, IEEE Transactions on Medical Imaging 26

(2007), 1472–1482.
[6] T. Mansi, S. Durrleman, B. Bernhardt, M. Sermesant, H. Delingette, I. Voigt, P. Lurz, A.M

Taylor, J. Blanc, Y. Boudjemline, X. Pennec, and N. Ayache, A statistical model of right
ventricle in tetralogy of Fallot for prediction of remodelling and therapy planning, In Proc.
of MICCAI’09, LNCS 5761, pages 214–221, London, UK, Sep. 2009. Springer.

[7] X. Pennec, Probabilities and statistics on Riemannian manifolds: Basic tools for geometric
measurements, In Proc. of Nonlinear Signal and Image Processing (NSIP’99), vol. 1, p.194–
198, June 20-23, Antalya, Turkey, 1999. IEEE-EURASIP.

[8] X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric mea-
surements, J. of Mathematical Imaging and Vision 25 (2006), 127–154.

[9] X. Pennec, P. Fillard, and N. Ayache, A Riemannian framework for tensor computing,
International Journal of Computer Vision 66 (2006), 41–66.

Shape Analysis via Metric Geometry

Ron Kimmel

Natural objects can be subject to various transformations yet still preserve
properties that we refer to as invariants. In the talk I described a shape analysis
framework that treats shapes as metric spaces constructed so as to be invariant or
insensitive to desired quantities. One example is invariance to bending of an object
in 3D space. Such deformations are known to conserve the intrinsic geometry in its
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explicit sense, in which geodesic distances, defined by the shortest paths between
points on the surface, are preserved.

Different geometric structures could be defined by diffusion geometry which is an
umbrella term referring to geometric analysis of diffusion or random walk processes.
Such methods, first introduced in theoretical geometry by Berard et al. in the 90’s
have matured into practical applications in the fields of manifold learning and
shape analysis. The power of diffusion geometry is its insensitivity to topology
changes in the shape we try to characterize. Other alternative geometries include
volumetric measures, in which distances between points take into consideration
the interior of the surface and the shortest path is determined by the shortest fly-
through trajectory in the interior of the shape. Affine invariants could also play
a role in this game, in which case an arclength on the surface, invariant to affine
transformations of the embedding space, could be used to define either geodesic
distances or a new diffusion geometry.

The above measures would be used within our context of shape analysis. We
demonstrate how the right selection of a metric and a corresponding geometry
enables us to use, for example, the Gromov-Hausdorff distance for comparing
surfaces. The different choice of arclength and the resulting geometry enable us
to develop computational tools for dealing with various shape analysis problems.

In the shape analysis community, diffusion geometry methods were used to de-
fine low-dimensional representations for manifolds, build intrinsic distance metrics
and construct shape distribution descriptors, define spectral signatures like shape-
DNA, and local descriptors. Diffusion embeddings were used for finding corre-
spondence between shapes and detecting intrinsic symmetries. In many settings,
the construction of diffusion geometry boils down to the definition of a Laplacian
operator.

In this talk we show how to define an affine invariant arclength for surfaces in
R3 in order to extend the set of existing non-rigid shape analysis tools. In a recent
paper with Raviv, Bronstein, Bronstein, and Sochen) we showed that by re-defining
the surface metric as its equi-affine version, the surface with its modified metric
tensor can be treated as a canonical Euclidean object on which most classical
Euclidean processing and analysis tools can be applied. The new definition of
a metric can used to extend the fast marching method technique for computing
geodesic distances on surfaces, where now, the distances are defined with respect to
an affine invariant arclength. Applications of the proposed framework demonstrate
its invariance, efficiency, and accuracy in shape analysis.

Using an (equi-)affine invariant diffusion geometry surfaces that go through
squeeze and shear transformations can still be properly analyzed. The definition of
an affine invariant metric enables us to construct an invariant Laplacian from which
local and global geometric structures are extracted. Applications of the proposed
framework demonstrate its power in generalizing and enriching the existing set of
tools for shape analysis. All these properties were reviewed in the talk.
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Modeling 3D shapes as Riemannian manifold is a ubiquitous approach in many
shape analysis applications. In particular, in the recent decade, shape descrip-
tors based on geodesic distances induced by a Riemannian metric have become
popular. Notable examples of such methods are the canonical forms and the
Gromov-Hausdorff, and the Gromov-Wasserstein frameworks, used in shape com-
parison and correspondence problems. Such methods consider shapes as metric
spaces endowed with a geodesic distance metric, and pose the problem of shape
similarity as finding the minimum-distortion correspondence between the metrics.
The advantage of the geodesic distances is their invariance to inelastic deforma-
tions (bending) that preserve the Riemannian metric, which makes them especially
appealing for non-rigid shape analysis. A particular setting of finding shape self-
similarity can be used for intrinsic symmetry detection in non-rigid shapes.

The flexibility in the definition of the Riemannian metric allows extending the
invariance of the aforementioned shape analysis algorithms by constructing a ge-
odesic metric that is also invariant to global transformations of the embedding
space. A particularly general and important class of such transformations are the
affine transformations, which play an important role in many applications in the
analysis of images and 3D shapes. Many approaches have been suggested to cope
with the action of the affine group in a global manner, trying to undo the affine
transformation in large parts of a shape or a picture. While the theory of affine
invariance is known for many years and used for curves and flows, no numerical
constructions applicable to manifolds have been proposed.

At the end of the talk I presented the explicit way to construct an (equi-)affine-
invariant Riemannian geometry for 3D shapes. By defining an affine-invariant
Riemannian metric, we can in turn define affine invariant geodesics, which result
in a metric space with a stronger class of invariance.

New metrics allow us to develop efficient computational tools that handle non-
rigid deformations as well as affine transformations. We demonstrate the useful-
ness of our construction in a range of shape analysis applications, such as shape
processing, construction of shape descriptors, correspondence, and symmetry de-
tection.

Reporter: Vicent Caselles
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