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Abstract. Numerical tables were one of the most commonly used instru-
ments of calculation from the earliest periods for which we have evidence
of mathematical activity until the appearance of computing machines. Such
tables (including graphical tables) are interesting both as tools of calcula-
tion and insofar as traces for certain social and scientific activities of the
practitioners by, and for, whom they were produced. Nevertheless, despite
the fact that the historical record has preserved thousands of tables from a
broad range of civilizations, these tables have themselves received relatively
little critical study. Hence, it has seemed to us both useful and innovative
to consider the problem of tables in general by bringing together specialists
of the different mathematical traditions and of the various professional mi-
lieus in which numerical tables have been developed. The workshop allowed
us therefore to make significant breakthroughs in our understanding of the
places and roles of tables in the history of science, and should bring us to
publish a collective book on this subject.
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Introduction by the Organisers

The mini-workshop History of numerical and graphical tables was organized by
Renate Tobies (Jena) and Dominique Tournès (Saint-Denis de la Réunion). Travel
funding was provided by a grant from French National Research Agency (project
HTN 2009-2013 “Histoire des tables numériques”).
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The organizers’ main goal was to put together a group of 19 participants with a
wide range of interests in and around the subject of numerical tables. The meet-
ing was attended by specialists of the different mathematical traditions (Egypt,
Mesopotamia, Greece, India, China, the Arabic World, Europe since the Mid-
dle Ages) and of the different contexts for the development of tables (astrology,
astronomy, metrology, arithmetic, mathematical analysis, numerical calculation,
mechanics, physical sciences, engineering, school mathematics, administration and
management, etc.).

The schedule began with nineteen talks covering all historical aspects of numer-
ical and graphical tables. Abstracts are proposed in this report in the same order
as the corresponding talks were given. For efficiency, these talks were grouped in
five sessions on the following themes:

• What is a numerical table, from mathematical and linguistic points of
view, and in the modern context of computers?

• Techniques of table calculation (interpolation, finite differences, mecha-
nization).

• Arithmetical tables and other numerical tables.
• Ancient astronomical tables.
• Applications of tables in social and economic life (navigation, artillery,
engineering).

The second half of the week was devoted to work more specifically on the project
of a future collective book entitled The History of Numerical Tables. A provisional
table of contents was elaborated. Some important methodological questions, essen-
tial to structure the book and to link chapters between each others, were treated
more precisely:

• Texts for tables.
• Interpolation techniques.
• Transmission of knowledge through tables.
• Mechanization of tables.
• Tables in interaction between university and industry.

One consequence of the broad range of backgrounds of the participants is that
the meeting was particularly rich and fruitful. A second meeting will take place
in France in 2012 to achieve the writing of the book.
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Abstracts

What is a numerical table? Milestones for a historical research project

Dominique Tournès

What is a numerical table and why does this object interest historians of mathe-
matics? Since the beginning of the HTN project, we have listened to more than
fifty talks on this subject, sometimes contradictory. From these various points of
view, we must decide what is finally a numerical table. What is therefore the exact
field of our project? What definition to adopt to delimit this field with precision?

For me, a “numerical table” – at least in its most elementary form – could be
defined as a list of lists of numbers having same length n (n ≥ 2), when this list
is used to express a correspondence between n sets of numbers (by “numbers”, I
understand here either abstract numbers, or concrete measurements). The “math-
ematical dimension” of such a table is n− 1, the number of independent variables
in the relation represented by the table.

It is important to distinguish this formal notion of numerical table from the
question of the material presentation of a set of data, numerical or not, in a
tabular form with lines, columns, or other graphic codes invented to organize the
data spatially and to make appear some of their properties. The word “array”
could be used here to refer to this second point of view. As an example, I could
mention the numerous arrays of numbers found in Leibniz’s papers. These arrays
were used as a heuristic tool to explore relations between series of numbers and
to discover new theoretical results, but they are not numerical tables in our sense.
The situation is the same when we place numbers in a particular spatial disposition
on a sheet of paper or on an abacus to execute an arithmetical operation on these
numbers. We put numbers in a tabular form to facilitate the application of an
algorithm, but we cannot speak here of a numerical table.

A table can adopt a purely textual shape. It can also be written simply as a
list of lists of numbers, in a linear presentation, inserted or not into an explicative
text. These two first forms seem to be frequent in ancient texts, related to small
sets of data. Beyond these primitive forms, we encounter three fundamental types
of numerical tables ([1], 91):

1) tables of dimension one, associated with functions of one independent vari-
able, commonly presented as two lists face-to-face (e.g. table of squares, table of
cubes, logarithmic table, trigonometric table, etc.);

2) tables of dimension two, associated with functions of two independent vari-
ables, commonly presented as a double entry array (e.g. multiplication table, table
of binomial coefficients, Legendre’s tables of elliptic integrals of the first and second
kinds, etc.);

3) tables of dimension three, associated with functions of three independent
variables, that can be presented as a three-dimensional array, or, in other terms, a
collection of two-dimensional arrays, one for each value of the third variable; this
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last kind of table presents itself as a book, and is concretely impossible to realize
if the values to be tabulated are somewhat numerous.

This physical limitation of the dimension of tables that can be displayed on
paper is one of the reasons why nineteenth century engineers oriented themselves
towards graphical tables (called “nomograms”) to represent relations between more
than three variables. Of course, a graphical table is a particular form of numerical
table, in the sense that when one uses a graphical table, the data and the results
are numbers. Between the two, there is a translation process, in the direct sense
from numbers to geometrical quantities, and in the inverse sense from geometrical
quantities to numbers.

All that we have seen before shows that the notion of numerical table is linked
intimately to the concept of function. In a famous paper published in 1976 [2],
Youschkevitch already suggested this link, without going perhaps far enough in
this direction. During a long time, outside of a merely verbal description, the nu-
merical tables constituted perhaps the only way to express precisely a dependence
relation between two or more than two quantities. From 16th to 19th century, an-
alytical expressions took precedence to such an extent that the notion of function
merged itself with the one of analytical formula, either finite or infinite, permit-
ting the calculation of a value from other values on which it depends. However,
the necessity of transforming these analytical formulas into numerical tables for
applications remained a major preoccupation for astronomers, physicists, and en-
gineers. In particular, tables were necessary to numerically integrate differential
equations without solutions in finite form. Throughout this period, around one
thousand tables of special functions have been computed to answer the needs of
practitioners.

The most recent definitions of a function, elaborated from the end of the 19th
century with the beginnings of set theory, again appear to be curiously close to
the notion of table. To modern sensibilities, a relation between elements of two
sets of numbers X and Y is a set of ordered pairs (x, y), where x ∈ X and y ∈ Y .
A function is simply a particular case of relation, when every element of X is
associated at most to one element of Y. We recover, more or less, our initial
definition of a one-dimensional numerical table: a list of ordered pairs of numbers.
The only difference is that a relation is a complete virtual table, with all possible
values, the number of which can be infinite, while a numerical table is only, in
general, a sample of a theoretical relation, with missing values to be interpolated.
The conclusion is therefore that a true “tabular concept of function” is effectively
present during all history of mathematical analysis.

Some attempts have been done to inventory and classify numerical tables. I
could mention the 1873 impressive report by Glaisher [3] for the British Association
for the Advancement of Science, though this report considered only mathematical
tables in the strict sense. Another important work was made in USA in 1940
by a Committee created by the National Research Council. A new classification
took into account the numerical tables used in a lot of human activities outside
mathematics: interest and investment, actuarial science, engineering, astronomy,
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geodesy, physics, chemistry, navigation. As a consequence, a specific journal en-
titled Mathematical Tables and Other Aids to Computation was published from
1943, denoting the importance of this subject for scientific and economic life.

Outside these old surveys, the secondary sources on the subject are poor. We
can quote only one recent monograph on tables: The History of Mathematical
Tables. From Sumer to Spreadsheets [4]. In spite of its great interest, this book
is incomplete: several ages, several civilizations, several types of tables are miss-
ing in its contents. So, for instance, there is nothing on Ptolemy’s chord tables,
nothing on trigonometrical and astronomical Arabic and Indian tables, nothing on
Latin medieval tables, almost nothing on the hundred of tables of special functions
calculated in the 19th century. In addition, if certain categories of professional ta-
bles are well represented in the book, such as tables for banks and insurances and
certain astronomical tables, others, like ballistic tables or tide tables, are com-
pletely overlooked. Lastly, the reader might especially regret that ten chapters
out of twelve are devoted to Great Britain and the United States. One would have
wished a much more significant consideration for continental Europe, in particular
France, Germany and Russia.

The HTN project is born precisely in 2003, after the publication of this book.
It appeared immediately that it would be necessary to write a second volume on
the subject of numerical tables. In complement to the topics enumerated before,
it would be important to deepen several important methodological questions, for
example:

1) Tables as a significant element in the analysis of circulation of knowledge
between periods, between countries and between professional communities.

2) Role of numerical tables, of their presentation in multidimensional arrays,
and of interpolation techniques in the emergence and development of the modern
concept of function.

3) Uses and roles of tables in scientific activity: ways of presenting methodically
a set of data or the results of a research, instruments for making calculations easier,
heuristic tools for exploring new situations, etc.

4) Interactions between numerical tables, graphical tables, and mechanical ins-
truments conceived to calculate or construct them.
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Texts for tables. A perspective inspired by mathematical manuscripts
from early imperial China

Karine Chemla

This talk was devoted to numerical tables found in mathematical manuscripts ex-
cavated in the last decades in China and dating to the third and the second century
before the Common Era. In this respect, it presented the first of three parts that
will constitute the chapter on China that I prepare for the book. As I have shown
elsewhere, the constitution of Chinese mathematical sources underwent a key shift
in about the tenth century ([1], [2]). By contrast to sources written until roughly
speaking the eighth century, in which we find only discourse, extant mathematical
documents from the tenth century onwards abound in non-discursive elements.
This shift can be perceived in the text of tables. Whereas tables have to be iden-
tified in texts of the first time period as parts of discursive texts, later sources
include tables realized from a textual viewpoint as arrays of numbers or diagrams.
The third part will allude to the shift that occurred in the seventeenth century
when numerous numerical tables were translated on the basis of Western sources.

In addition to describing tables found in the excavated manuscripts and which
represent the tables inserted in texts of the first time period, the talk aimed at
suggesting elements of reflections on the text of tables more generally. The first
table discussed was taken from the Book of mathematical procedures, found in a
tomb sealed in ca. 186 BCE [5]. The manuscript is written on bamboo strips that
were once tied to each other. Its clauses each have three entries: two quantities
expressed with numbers written in characters and explicit measuring units for
length, being multiplied, yield a third quantity, expressed with the same kind of
numbers and with respect to the same measuring units, which now express the
extension of a surface. The text is made of clauses verbally complete. It organizes
the clauses in sets sharing the first same entry, which is not repeated. It is not clear
whether the set of clauses is complete. However, one can perceive an arrangement
of the clauses in a set. The second text in the same book, which deals with
multiplications by each other of powers of 10 or of a power of 10 with 1

2
, has only

complete clauses. Its entries are abstract numbers, still written, as are all the
tables from this first time period, in Chinese characters. On the other hand, no
principle can be easily detected as to the organization of the set of clauses. This
raises the question of the function of such a table.

Likewise, the book Mathematical procedures found in a tomb sealed before
157 BCE and also written on bamboo strips once tied to each other, has a ta-
ble for multiplying powers of 10 [4]. Its text is organized in registers, from top
to bottom, and they must clearly be read one register after the other. The set
of clauses is complete, and its organization is clear: In a first set of clauses, the
first entry does not change while the second entry describes a list of increasing
powers of 10. Then the first entry shifts to the next higher power of 10, and the
second entry describes a list of increasing powers of 10, starting from the same
as the first member, and so on. So the first entry describes the list of powers of
10 with a larger step than the second entry. One can perceive its link to texts in
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which the first unchanging entry is put once and for all at the beginning of a set
of clauses. Despite some irregularities, the table is organized in such a way that
one can retrieve a clause if needed. These remarks bring to light that on the same
topic – multiplying powers of 10 –, one could write down tables in a completely
different way. The table of multiplication from the Qin dynasty found in a well at
Liye and written this time on a wooden board contains a table of multiplication
that is organized according to similar principles. The clauses are not completely
verbalized, containing basically the sets of entries. Each clause is placed in a col-
umn of a registers and registers are read from right to left and then from top to
bottom. The first entry describes a decreasing sequence of digit from 9 to 2, while
the second remains constantly equal to 9. Once the first entry has reached 2, the
second entry of the next clause is transformed into 8 and the first entry starts
describing the same list between 8 and 2, avoiding any repetition of clauses on
the basis of a principle of symmetry and so on. One can perceive that the organi-
zation of clauses in this table is quite similar, even if it is reverse to, that of the
table described previously. This comparison brings to light a recurring pattern for
organizing clauses in a table, probably in relation to a kind of use (pick-up clause)
of the table. One may also assume that such tables were memorized.

If we want to focus of the kind of text shaped to write down a table in such
writings, the key point is to note that the end of a clause in the last two tables
is indicated by an empty character followed by a space that the reader translates
into going to the next column (and not to the following item on the same bamboo
strip) to find the next clause. However, similar kinds of table can be found in
manuscripts where the texts with which they are written are of another kind: they
are materialized in a running text that uses another kind of indicators to mark
the separation of clauses. In addition to the same empty character, often placed
at the end of a clause, a sign of punctuation, which is regularly used to separate
items in a text that could be wrongly associated, is almost systematically used in
manuscripts to separate clauses of tables written continuously. The manuscripts
thus show the shaping of two kinds of text to write down tables, in some cases
similar tables are found in either one or the other format.

Once one has thus identified the markers of such texts of tables, one notices
that there are several passages in the Book of mathematical procedures that are
tables. We have tables for equivalences between measuring units (for which the
manuscripts contain a text of table in either one or the other format); tables
of data; tables of procedures; tables of results of problems and mixture of these
elements. Most of the last kinds of table relate to grains, which appear to have
been a topic easily lending itself to the use of tables. A striking result of the
identification of this set of tables is that it appears that the first chapter of the
book handed down through the written tradition, Mathematical Canon of Master
Sun (ca. 400) [6], is essentially composed of tables.

Other, later, manuscripts which were found in the cache sealed in Central Asia,
in Dunhuang, in about the year 1000, also contain tables. A table of multiplication
is realized on paper, textually in exactly the same way as was the wooden board
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found at Liye. A key innovation is that it contains not only numbers written in
characters, but the results of the multiplication are also written with the represen-
tation of how numbers were written on the counting surface with counting rods.
A second table, the dimensions of which are much larger than anything known
before, presents the results of products of length and width of fields written with
respect to measuring units specific to surface and not decimal. This table presents
a second key innovation, which is its tabular layout. It is a double-entry table.
With these two innovations, we have entered a wholly new world of mathemati-
cal documents. They are written on paper and they contain more elements than
simply characters. The second part of the chapter will be devoted to them.

Some tables, found in Chinese sources and coming through translations of San-
skrit material will be dealt with in the chapter dealing with transmission. Perhaps
the same option will be taken for tables influenced by Arabic or by Latin sources.
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What is a mathematical table in era of digital computing?

Liesbeth De Mol

Is it true that the development of the digital and programmable computer resulted
in the end of the numerical table? It is clear that those involved with table making
and/or digital computing during the pioneering years of the modern computer,
were quite pessimistic about the future of projects such as the Mathematical Tables
Project and the need for mathematical tables in general. Indeed, as Ida Rhodes,
one of the participants of the MathTable project and computer pioneer, recounts:

When the ENIAC1 was finished, [Dr. Lowan] was invited to watch it. [He]
came back and said, “We’re finished. They don’t need us anymore. Do you
know [what] they do? They don’t look up Tables. They actually compute each

1The Electronic Numerical Integrator and Computer was announced to the public in 1946.
It was the first electronic computer that was basically general-purpose (it could be externally
programmed).
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value ab ovo.” And to me that sounded so impossible, so incredible. [Not] to
have to look up one of our marvelous Tables. That sounded like [the] death
knell.

This pessimism about the future of mathematical tables, given the computer,
seems to be echoed in the relatively recent volume The History of Mathematical
Tables. From Sumer to Spreadsheets [2]. It is suggested that only one spark of
hope is left for the future of mathematical tables, i.e., the table-as-spreadsheet.
But is this really all there is to say about mathematical tables in the digital era?
It is argued here that the role of mathematical tables extends well beyond that
of the table-as-spreadsheet provided that one accepts that certain aspects of nu-
merical tables have changed significantly. As a consequence, the numerical table
as it was used, represented and computed before the rise of the electronic com-
puter, has evolved considerably. But what exactly has changed? What exactly is
meant with mathematical table in the digital era? Does one need an unreasonable
generalization of the notion of a mathematical table so as to include tables in
the digital era, with the consequence of undermining the very notion? In order to
tackle these kind of questions the history of the electronic computer must be taken
into account. Two significant evolutions in this context are (1) the development
of faster computers with ever increasing digital memory and fast memory access
techniques (programming and hardware) and (2) further internalization of certain
computational processes into the machine.

The current research is mainly based on a study of papers from computer sci-
ence and engineering journals (mainly Communications of the ACM ) as well as
the journal Mathematical Tables and Other Aids to Computation and its successor
Mathematics of Computation. Despite the fact that this results in a focused and
specialized corpus, the findings from this study open up the scope of the mathe-
matical table. The different cases studied at least challenge the traditional notion
of a mathematical table as a 2D text printed on paper.

One new and major category of mathematical tables are what one could call
digital tables, i.e., tables that are internalized into the computer and that are not
there for humans but for computers. It is shown in my talk that up to today such
digital tables play an important role in digital computing, going from the use of
look-up tables in digital image processing, the use of symbol and hashing tables
in compilers or the efficient organization of data (hash tables). A borderline and
instructive example of such tables are the ENIAC function tables. These were
physical objects built as numerical tables [4]:

[T]hey can be used to store values of one or more functions tabulated against
an independent variable and can be programmed to look up and transmit the
values so stored.

These tables were used initially for interpolation for making firing tables but were
later used to turn ENIAC into a stored program computer. The ENIAC had three
function tables, each able to store up to 104 entries, an entry consisting of at most
12 digits and a sign. A fundamental feature of these tables is that, in contrast to
the “classical” printed 2D table, the “user” of these tables is not a human but a
machine. Because of this, these tables are wired into the computation. Evidently,
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this changes the idea of a mathematical table. Since the table is being wired
into the computational process, it is not only able to store but also to transmit
a value. The tables also contain certain programming facilities. Each program
control of the function table offers for instance the operation option as to wether
a tabulated entry or its complement is to be looked up and transmitted. For
every new computation the function tables could be reset and switched anew to
store different values, depending on the mathematical tables one needed. As such,
these function tables are merely carriers of mathematical tables. However, it is
also because of this possibility of resetting and switching the function tables that
these tables can be used not only for different purposes (read: computations) but
also in different ways. One could not only use them to store 104 values of three
different functions, but, using special adaptors (shifter-deleter adaptors) on the
so-called “numerical” cables (carrying digital pulses as numbers) one could for
instance “wire” them to store 104 times 12 digits (see [1] or [3] for an example
of such usage). It was exactly this kind of usage that ultimately resulted in the
use of the function tables as part of the rewired ENIAC as a stored program
computer. Once wired in this way, it was no longer necessary to externally wire
a program on ENIAC. Programs could now be fed into the machine by means of
the punched cards. The function tables were now permanently switched and used
by ENIAC as a means to execute orders. Hence, they were turned into permanent
tables and became an essential part of the interpretation of the algorithms to be
executed. In this way, mathematical tables slowly evolved from tables that store
numerical values as numerical values to be used in a computation to tables that
store numerical values as symbols that code instructions, the table thus becoming
(part of) an algorithm rather than being used by one.

The fact that a mathematical table is used internally within the computer
however not only affects our notion of table but also affects the way tables are
used and computed with. First of all, one needs to include into the algorithm
which uses the table (for instance an interpolation algorithm) also the way it
should access the table, when it should access the table, etc. Secondly, and this
becomes more and more important the larger the digital tables being used, one
needs to think about the efficient organization of data into the tables and good
algorithms to find a given piece of datum. In this context the use of the hash table
format for symbol tables in compilers offers an interesting example.

Of course, the electronic computer not only opened the way for digital tables.
It has been and is used to compute (values from) mathematical tables. Also this
affects the thinking of the human “table-maker”. First of all, the fact that one
uses a computer to compute tables changes the algorithms that underly these
computations. This was understood from the very beginnings of the digital and
programmable computer. For instance, a “computer-adapted” algorithm was used
in a number-theoretical computation that was set-up on ENIAC and which was
used to extend and debug existing tables of exponents of 2 mod p (see [1], [3]).
Secondly, if one is dealing with “explorative” tables (see Bullynck’s abstract in this
volume) the computer can also be used to explore the tables and this again affects
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the algorithms one devises. Furthermore, since the tables are no longer explored by
humans they will be organized in a different manner and, once “explored” might be
thrown away. Finally, the computer has also made it possible to directly compute
values of a given mathematical table in a reasonable amount of time, a fact that
explains the pessimism of table-makers about the future of tables in the digital era.
In these cases, attention has shifted from the efficient making and organization of
tables to the development of efficient algorithms to compute such values. However,
several examples show that it is only partially true that printed mathematical
tables have been replaced by computer programs that generate them. Whether
one choses a table or an algorithm largely depends on the usage one has in mind,
the speed of the available algorithms and hardware, the size of the memory and
the computational effort needed to retrieve information from it.

Confronting these findings with the pessimistic attitude toward the future of
mathematical tables, it is important to make a careful distinction between tables
for external, human usage and tables for internal computer use (viz. digital ta-
bles). Taking into account this distinction, it is clear that mathematical tables
in the digital era indeed challenge our notion of table, raising a lot of fundamen-
tal questions. Instead of being the end of the mathematical table, the electronic
computer opens up a promising future for this old mathematical tool, making it a
relevant tool for humans and computers, provided one accepts the challenge.
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Examples of interpolation in double entry tables in the late medieval
Latin astronomy

Matthieu Husson

The topic of interpolation could usefully result in either an independent chapter of
the book or in cases studies which enrich other chapters depending on the adopted
organization of the book. Specifically, two examples of interpolation in the double
entry tables of 14th century Latin astronomy exemplify broader issues of interest
for many of us.

John of Muris Tabule permanentes. The Tabule permanentes are double en-
try tables conceived of and computed by John of Muris and laid out by Firmin
of Beauval between 1320 and 1330. They are designed to compute the time of
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true conjunction of the sun and the moon from their mean argument, an impor-
tant step toward the computation of eclipse. Tables and canons have been edited
separately by modern scholarship (tables in [1], canons in [2]). The editors of
the tables relied on 11 manuscript copies of the work mainly from 15th century
Vienna around Peueurbach, Gmunden and Regiomontanus1. All of the Vienna
manuscripts contain only works of mathematical astronomy. In fact there is only
one copy transmitted to us in an astrologically oriented environment2. All these
little codicological particulars will be of importance in the summary of the pre-
sentation.

Muris proposed two distinct interpolation procedures. We will, for the sake of
brevity, present them in modern algebraic notation. The reader needs to know that
although we get a compacted presentation this way, we lose the rhetorical feel of the
presentation of algorithm and we completely eliminate important mathematical
issues concerning the uses of signs in complex computation. Let us represent the
table with the following array in which the capital letters stand for the value
present in the table and the small one to values absent of the table:

L1 l L2

S1 D1 D2

s d
S2 D3 D4

More precisely the ‘S’ and ‘s’ stand for the sun mean argument, the ‘L’ and ‘l’
the moon mean argument and the ‘D’ and ‘d’ for the difference between the time
of conjunction to the time of true conjunction. We enter the table with s and l
so we need to interpolate d. In the general case we are asked to use the following
procedure:

d = D1 +
l − L1

L2 − L1

× (D2 −D1) +
s− S1
S2 − S1

× (D3 −D1).

And in the near zero case we should use this other more complex and somehow
recursive procedure:

n1 = D1 −
l − L1

L2 − L1

× (D2 −D1)

n2 = D3 −
l − L1

L2 − L1

× (D4 −D3)

n3 = n1 −
s− S1
S2 − S1

× (n2 − n1)

If n3 ≥ n1 then d = n1 + n3 and if n3 ≤ n1 then d = n1 − n3.

1One of the copies is from Gmunden’s hand (Vienna, Nationalbibliothek, MS. 5268) and
another one (Nürnberg, MS. Cent VI 23) seems to have been the property of Regiomontanus.

2Metz, Bibliothèque municipale, MS. 287 seems to come from the Metz cathedral and to have
been composed in the 15th century.
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Three remarks are in order at this point:

(1) We have presented the algorithm as a sequence of formulas in order to
reflect the rhetoric presentation made by the canon.

(2) This last procedure can be understood as the consequence of a desire to
take a closer account of the moon movement near the zero position.

(3) The variation in the interpolation procedure results from the mathematical
situation (near zero of the tabulated function) and the nature of the change
is best explained by an astronomical consideration.

John of Lignieris Tabule magne. The Tabule magne are also double entry
tables realized by Ligneris in the same period than the Tabule permanentes. They
are designed to compute the equation of each planet directly from the mean argu-
ment and mean center of the planet. Three manuscript copies are known3. Two
of them are in Paris and were produced in the 15th century by a humanist pub-
lisher context. Both are of theoretical and mathematical content but in a rather
different way than those of the Tabule permanentes coming from Vienna: there
are no tables at all in the Lat. 7281 which is best understood as a first “history”
of medieval astronomy. The Erfurt manuscript contains technical material and is
closely connected to John of Saxony a pupil of Ligneris producer of one of the most
popular canons of the Alphonsine tables. Using the same kind of convention as
before we can summarize the interpolation algorithm found in these manuscripts
in the following way:

C1 c C2

A1 E1 E2

a e
A2 E3 E4

In the Erfurt manuscript:

e = E1+
a−A1

A2 −A1

×(E3−E1)+
c− C1

C2 − C1

×(E2−E1)+
a−A1

A2 −A1

c− C1

C2 − C1

×(E2−E3).

In the Paris manuscripts:

e = E1 +
a−A1

A2 −A1

× (E3 − E1) +
c− C1

C2 − C1

× (E2 − E1).

Here also two simple remarks are in order:

(1) The simple algorithm is the same in both texts, it would stand as the basic
double entry table interpolation procedure and seems a straightforward
adaptation of the simple entry table interpolation algorithm.

3BnF, lat. 7281 f. 201v-205v; BnF lat. 10263 f. 70r-78r; Erfurt 4◦ 366 f. 28r-32v.
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(2) The more complex algorithm is present only in the older manuscript, and
seems to be some sort of an unessential part of the work to its reader since
it can apparently be modified without justification or even mention. This
last remark is of importance not as a value judgment on the poor respect
paid by ancients to the author of the text4, but rather because it points
to a certain autonomy of the interpolation techniques from the tables to
which they are attached.

What can we learn from these examples? If we consider tables as some
special sort of text we can add to the remarks that were already made that the
algorithm influence also the setting of tables in which difference columns are added
in order to speed up the interpolation process.

Concerning the mathematical aspects of tables, we first need to say that at
the core of any interpolation procedure is the belief that there are some values
between the entries of the table. Thus the discrete setting of tables (because of
the discrete grid and because of the use of numbers) is conceived as something
continuous. Interpolation is one of the bridge between magnitude and multitude.
It notably results in work with the concept of sexagesimal numbers and on units.
These complex interpolation procedures are also a locus for experimentation of
long arithmetical computation with positive or negative numbers which were un-
known at the time in other branches of mathematics. Lastly these interpolation
procedures are also one important aspect of the tabular way to represent relation
in the conceptual “tool box” of ancient mathematics. In the long term it will
stay an important part of the function concept and even later of numerical and
functional analysis.

Finally examining the interpolation procedure closely may be a way to address
sociological aspect of the uses of tables. Interpolation procedures are part of both
the production and use of astronomical tables: if we are able to compare both sets
of interpolation techniques we may have evidence concerning the mathematical ed-
ucation of users and makers of tables at different times and places. The examples
of Ligneris and Muris tables of equation are also informative in this respect. The
complex interpolation procedure is present in the older manuscript which comes
directly from the peers of John of Saxony, himself a great astronomer, while the
simpler algorithm comes from manuscript circulating in a totally different milieu
of humanist publishers. This is not a question of time because Muris interpo-
lation procedures are not simplified by the 15th century astronomers who have
transmitted us the text.
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Al-Samaw’al and his unusual Sine table: Innovation or academic
fraud?

Glen Van Brummelen

Al-Samaw’al ibn Yahya al-Maghrib̄ı, a 12th century Iranian scientist best known
for his contributions to algebra, also wrote an inflammatory treatise near the end
of his life entitled Kashf’unwar al-munajjimı̄n, or Exposure of the Errors of the
Astronomers. In this work he castigates his astronomical colleagues and prede-
cessors for a variety of academic sins and proposes various solutions. A central
theme throughout the book is a methodological insistence on complete precision
when geometrical methods are called upon. Any use of approximation, whether or
not it makes any practical astronomical difference, is condemned and an alternate
argument proposed.

The fourth section of Errors of the Astronomers deals with the computation of
chord and sine tables. The standard method, established in Book I of Claudius
Ptolemy’sAlmagest, works as follows (translated from Ptolemy’s chords into sines):
begin with the values that may be found easily by geometric means, namely,
sin 18◦, sin 30◦, sin 36◦, and sin 45◦. Then apply the sine addition and subtraction
laws, the sine half-angle formula, and the Pythagorean Theorem (to find sines of
arcs for which the sines of their complements are known). This leads to values for
the sines of every multiple of 3◦. To go further to the sines of all multiples of 1◦

requires the use of an approximation. If α > β, then

α

β
>

sinα

sinβ
;

inserting (α = 3/2◦, β = 1◦) and (α = 1◦, β = 3/4◦) provides reasonably tight
upper and lower bounds for sin 1◦.

Although various enhancements to this basic scheme were conceived by Islamic
astronomers, all of them require an approximation to find sines beyond the multi-
ples of 3◦, and it is this to which Samaw’al objects. His solution is to redefine the
number of units in a circle, from 360◦ to 480 parts. In this way the geometrically
accessible sin 3◦ becomes sin 4. Apply the half-angle formula twice and we have
sin 1. From this value, all sines of whole-numbered arcs can be constructed. This
is in fact the only table Samaw’al presents in his book.

Examination of the entries of the table, however, reveals that Samaw’al did
not actually apply this method. Every fourth entry is taken directly from a con-
ventional sine table, and his other entries are interpolated from all the entries in
that table. So three quarters of Samaw’al’s sine values rely on the values that
were approximated in the conventional table. Further, he goes on to critique other
astronomers using calculations that themselves rely on this table.

On the surface, this would appear to render Samaw’al guilty of academic hypocr-
isy. But is this accusation justified, or is it an anachronistic modern judgment of
a historical period that would have treated the matter differently? Tables in me-
dieval Islam were frequently copied from one work to the other apparently without
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any sense of wrong. The academic culture of the table-makers themselves is al-
most completely unknown, since most of their activity was unrecorded except
indirectly, in the tabular entries. It does seem difficult to apply historical sensitiv-
ity in Samaw’al’s defense, since he seems to be guilty of the same crime of which
he explicitly condemns his colleagues. In general, however, we must leave open
the possibility that table makers had different standards by which their work was
judged.
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Napier revisited or A further look at the computation of his
logarithms

Joachim Fischer

(joint work with Bärbel Ruess)

John Napier (1550-1617) introduced logarithms into mathematics when he pub-
lished his Mirifici canonis logarithmorum descriptio in 1614 [3]. A more detailed
presentation of the underlying ideas and the construction of a table of logarithms
were posthumously published as the Mirifici canonis logarithmorum constructio
in 1619 [4]. Using modern notions and notation, while at the same time trying to
respect what Napier actually says, does or means, one here finds that he describes
a function LN(x) = h · ln(h/x), where LN stands for Logarithmus Neperiensis or
Napierian Logarithm, h = 107, and ln has the usual meaning. In the interval [0, h]
LN is monotonically decreasing from LN(0) = ∞ to LN(h) = 0. (If h were 1, we
would have LN(x) = ln(1/x), and this LN would immediately be recognisable as
our logarithm to base e−1.)

As LN(a · b) = LN(a) + LN(b) − h · ln(h) and h 6= 1, there is no logarithmic
functional equation for LN like log(a · b) = log(a) + log(b). Instead Napier found
LN(a)−LN(b) = LN(u)−LN(v), if a : b = u : v (implicitly requiring 0 < a < b ≤ h,
0 < u < v ≤ h in order to avoid negative numbers and to stay in the range (0, h],
0 excepted in this case). This was even better suited than a functional equation
for Napier and his contemporaries, because they were accustomed to calculating
in proportions.

For LN to be useful in replacing multiplication by addition etc., a table of LN is
needed; and for practical reasons Napier decided to tabulate LN(x) for the sines of
the angles α in the first quadrant, α = 0◦0′ (1′) 90◦0′. In Napier’s times such sine
values were tabulated as natural numbers, in many cases resulting from a radius
of h = 107. If we designate sines of this kind as SIN, then up to rounding we have
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SIN(α) = h ·sin(α); consequently we have LN(SIN(α)) = −h · ln(sin(α)), underlin-
ing the role of h as a mere scaling factor. Napier’s aim thus was to compute a table
of 5401 values LN(SIN(α)), from LN(SIN(0◦0′)) = ∞ to LN(SIN(90◦0′)) = 0.

Except for the table given by Napier himself in 1614, there are only two other
independently computed tables of LN, one given by Johannes Kepler (1624, us-
ing h = 105) and the other by Benjamin Ursinus (1625, h = 108). But as LN
was almost immediately superseded by Briggsian (or decimal) logarithms, there
hasn’t been too much interest in how Napier’s calculations were really done. Thus
it has escaped – for almost 400 years now – that Napier developed several inge-
nious numerical ideas and procedures, ranging from the first elements of interval
arithmetic (usually traced back only to the 1930s!) to the forward analysis of the
propagation of (rounding and/or truncating) errors. Considering that nothing was
known about LN’s values except LN(0) = ∞ and LN(h) = 0, it should have been
obvious that Napier, being the first to construct an LN table, must have found
the means to circumvent a lot of difficulties. Especially when one appreciates that
he intended his table to have a maximal error of one unit in the last place of the
LNs given, while at the same time he had no other values at his disposal except
the two just mentioned, one should have become interested in his procedures – the
more so, as he obviously succeeded in solving the problems.

In 1997 and 1998 one of us ([1], [2]) offered a reconstruction of some of Napier’s
ideas, of which we only see the results in the Constructio and the Descriptio, but
not the ways in which they might have been developed. In the Oberwolfach talk,
based on numerical data provided by the other of us, we had a closer look into the
calculations themselves. As Napier had at least four methods of computing LNs
in the interval [0, h], but none of them valid for the whole interval, we tried to
show when and why he switched from one method to the other; and at the same
time we were able to reassess previous speculations about the SIN table(s) used by
Napier. Further work is still necessary and will hopefully end in an even complete
synthesis of the reconstructive results which were obtained so far.
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For what kind of tables Charles Babbage’s “Difference Engine” and
“Analytical Engine” were conceived?

Marie-José Durand-Richard

This contribution is intended to delineate the project’s chapter dedicated to the
mechanization of tables, and the questions opened by this issue. This topic is a
transversal one, and will also comprehend information from other subgroups. It
crosses the 19th and the 20th century, essentially through the industrialization
process, and it meets digital devices as well as analog ones, and explores how and
why they were respectively thought of and constructed or not.

Beginning to explore this subject first leads back to Babbage’s Difference and
Analytical Engines, in order to understand better the relationships between the
mathematical and the mechanical works of their inventor, and the correlations be-
tween his ways of thinking about functions, tables and machines. The mechanical
organizational structures of these two engines will not be revisited here, as they
were very well described by various authors ([10], [8], [6]). Nevertheless, we could
remember that:

– for the Difference Engine, a first little model, with two orders of differences,
was built in 1822. Then, the construction of a bigger machine was planned, and
partially realized, with funding from both Babbage and the government, but it was
never achieved. Only a nice model with two orders of differences was mounted in
1842. Babbage’s revised plan, elaborated in the 1850s, was finally achieved by the
Science Museum of London in 1991.

– for the Analytical Engine, pieces for the machine were realized, but never
completely assembled. But numerous contemporaneous plans, explanations, and
some reviews exist.

Main sources of interest for the method of differences in the 1810s’
England. Charles Babbage (1791-1871) conceived of the Difference Engine when
he created the Astronomical Society in 1820, together with John F. W. Herschel
(1791-1871) and a group considered as “business astronomers”– because they ini-
tially worked as actuaries– such as Henry T. Colebrooke (1765-1827) and Francis
Baily (1774-1844). He walked in the footsteps of De Prony’s Great Tables, calcu-
lated in France when the decimal system was adopted, and when “grades” replaced
degrees for measuring angles.

In fact, both Babbage and Herschel had first become interested in the method
of differences ten years before, when they collaborated to introduce the differ-
ential notation in the differential calculus in Cambridge, in order that Laplace’s
Mécanique Céleste could be largely readable in England. From 1813 – with their
collective publication of the Memoirs of the Analytical Society – to 1820, Herschel
carried out numerous new investigations on equations of finite differences, paying
a special attention to the operative properties of the functional notation, and of
the symbol D = d

dx
, considered as a “symbol for an operation”.

In all these papers, as well as those of Lagrange and Laplace, powers series were
considered as an extension of algebraic polynomials. Every unknown function
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was thought of as expandable in an infinite series, so that an investigation of
the properties of the first coefficients of the series could afford an approximate
solution of the equation. And conversely, any infinite series was contemplated as
the expansion of a function, even if no analytical form was known for it. The
separation of symbols for operations from symbols for quantities was also at the
core of Babbage’s thought on the organizational structure of the Difference Engine.

A huge comprehensive plan of tables computations. In 1823, Baily pre-
sented all the fields of computations where tables were involved: numerical tables,
tables for astronomy and navigation, and tables for interests and annuities ta-
bles. He proceeded as if the Difference Engine abolished the distinction between
exact and approximating tables, so that the uniformity of the mode of comput-
ing contributed to the standardization of the whole range of numbers and tables.
Moreover, this engine opened the way to the discovery of new functions, without
known analytical form. For Baily, Colebrooke and Babbage, the Difference Engine
allowed the launch of a new program of computing tables, because all these tables
were reducible to method of differences. In this period where making tables was
still an handwork activity, they intended to make it a manufactured one. What
were at stake were the conditions of this transformation.

What is changing between the Difference and the Analytical Engine.
Clearly, the Difference Engine was a special type of engine, whose initial settings
induced the computations for a particular table. But the Analytical Engine was a
universal machine, “adapted for developing and tabulating any function whatever”.
So it could obtain numerical results – expressed by decimal fractions – for any
function defined by a series, that is, for Babbage, for the whole analysis. Moreover,
Ada Lovelace, when she translated in English the French Menabrea’s presentation
of the machine [9], insisted on the fact that the machine was essentially fitted
for analytical calculations on general symbols, and could give therefore symbolical
results.

Conclusive remarks on Babbage’s heritage. In spite of Babbage’s interest
for the world of manufacturers, the relationships between the academic world and
the engineers’ one would have to be investigated more in order to understand why
in 1876, Lord Kelvin, and in 1934, Douglas Hartree, succeeded in constructing
respectively the harmonic analyzer and the differential analyzer, the former to
analyze tides and the latter to give numerical solutions for differential equations,
involving private firms in their enterprises. To be introduced in the whole do-
main of computing tables, they also had to navigate the social organization of
computations in several professional contexts.

It will also be necessary to investigate the relationship between the mecha-
nization of tables and the respective importance of the general view of function,
which changed consistently from Cauchy’s approach, with the distinction between
discrete and continuous realms, and the respective importance of numerical and
theoretical analysis.
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Survey of graphical and numerical tables in Egypt

Micah T. Ross

At the XXIII International Congress of History of Science and Technology, a re-
ductive approach clarified the corpus of Egyptian numerical tables. More recently,
paleographical methods have illustrated a potential definition of Egyptian numer-
ical tables. Recourse to informatic definitions provides yet another definition:
tables order information by rows and columns.

In some cases, the rows and columns of the table may be used to generate
information. The information generated in a table derives from transforming the
elements of a row or column. For example, PCarlsberg 32 contains a column for the
daily motion of Mercury (A) and a column for the displacement for Mercury from
its maximal elongation (B), where An = n× 0; 05, 27, 17 and Bn = Bn−1+An [1].
In this way, all the values of table are generated from a single parameter. In order
to transform this value into an astronomically useful result, the values of this
table may have been used in conjunction with another type of table. Likewise,
the method of multiplying in Egypt involved the construction of a table which
contained successive doublings of the multiplicand until the multiplier may be
summed up from the powers of two. The consideration of every multiplication as
a table is impractical, but the identification of tables with information generation
represents an important use of tables in Egypt.

Alternately, the rows and columns can simply order information produced else-
where. In this way, the table serves as a means of organizing and displaying



Mini-Workshop: History of Numerical and Graphical Tables 661

information. For example, the Stobart Tablets formed an “analog spreadsheet”:
at least nine wooden tablets, divided into five columns and 29 to 33 rows, marked
the date of the entries of the planets into zodiacal signs [2]. The ordering of the
planets and the astronomical events conforms more closely to the genre of list
than table. Although true tables may also be used for information display, such
“table-like arrays” are more adaptable and form the larger number of examples of
information display.

The two genres may be compared: truly tabular texts defined by the argument
between the two indexes are somewhat uncommon in Egypt. The best known
examples of Egyptian numeric tables are fraction tables. Unlike the tables, table-
like enumerations lack an argument between the index and the variables. Such
texts are common in Egypt, but the best-known examples are non-numeric. The
establishment of an index forms an important point in the analysis of a table.
For example, P.CtYBR inv. 1132(B) forms a tabular array of three rows by four
columns [3]. Each cell contains information about a zodiacal sign. This papyrus
has previously been interpreted as implying an Egyptian awareness of the astro-
logical doctrine of triplicities. However, any tabular arrangement would conform
to some astrological doctrine, be it opposition, trine, quadrature, or sextile aspect.
Thus, the dimensions of the table – as well as possible implicit indexing – must be
carefully considered.

The graphical tables used in Egyptian star clocks present an interesting mid-
dle ground between the two approaches [4]. First, the measurement of the stellar
position with reference to bodily measurements challenges a strict defintion of nu-
meric tables, but even overlooking this difficulty, the tables challenge classification.
Because the horizontal axis represents successive portions of the ecliptic and the
vertical axis represents time, the table lacks a true index and forms a (possibly
compressed) list. As a further complication, some scribes working in this genre
have indicated vertical displacement from some line by vertical displacement on
the temporal axis.

The story of Egyptian numeric tables has not yet been definitively written. At
least one new fraction table will be published in the next year. This fraction table
is closely linked with the generation of information. In fact, the table is found
in a series which culminates with OMM 251, an educational text which works an
example of how to cast a horoscope for 154 a.d. [5].
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On the nature of the table Plimpton 322

Christine Proust

The cuneiform tablet Plimpton 322 (P322 in the following) is generally understood
to be a table providing 15 Pythagorean triples. This document is the best known
and the most controversial of the cuneiform mathematical texts. Various interpre-
tations of the text were offered by many scholars ([8], [2], [9], [5], [10], etc.), the
last one being provided by the forthcoming article by J. Britton, C. Proust and
S. Shnider [1]. The various interpretations rely on different assumptions about the
very nature of the text. What kind of table is P322?

The provenance of the tablet is unknown. Edward Banks, the dealer who sold
the tablet to the collector George Plimpton in 1922 or 1923, claimed that the
tablet was found in Larsa in southern Mesopotamia. Epigraphic evidence shows
that the tablet dates from the Old Babylonian period, that is, the early second
millennium BC. P322 is an atypical mathematical tablet which presents features
that are not observed in any other mathematical document: landscape orientation,
tabular format with horizontal and vertical lines, heading of columns and num-
bered rows. The tablet is inscribed on the obverse. The reverse is uninscribed, but
the vertical lines of the obverse are extended on the reverse. The left part, rep-
resenting about a third of the original tablet, is lost. The preserved text is made
of four columns with headings, and 15 rows of numbers written in place value
notation, without indication of the order of magnitude (“floating notation”).

The heading of column I runs as follows: “the square of the diagonal from
which 1 is subtracted and that of the width comes up”. This can be expressed, in
modern notation, as: δ2− 12 = β2, where δ is the diagonal of a rectangle, and β is
the width. For example, the first row of column I contains the number 1,59,0,15.
This number is noteworthy: first, it is a finite sexagesimal square number (the
square of 1,24,30); second, if 1, the first digit, is subtracted from 1,59,0,15, the
number obtained is 59,0,15 (the square of 59,30). Thus the number 1,59,0,15
alone provides a Pythagorean triple or, to use a less anachronistic concept, a
“sexagesimal rectangle”. The first column contains 15 square numbers, providing
15 sexagesimals rectangles.

In the headings of columns II and III, we read: “the side width” (b) and
“the side diagonal” (d). The data of these columns correspond to sexagesimal
rectangles (in each row, d2 − b2 is a square number), similar to the ones given
in column I. For example, the values given in the first row are 1,59 and 2,49.
The rectangle of which the width is 1,59 and the diagonal 2,49 is similar to the
rectangle obtained from column I (width 59,30 and diagonal 1,24,30).

Column IV contains the numbering of the lines (ki 1, ki 2, etc. = place 1,
place 2, etc.), with the heading: “Its lines are”.

Thus, the tablet provides a list of 15 sexagesimal rectangles. Each row contains
two similar rectangles: the first is a unit rectangle, that is, a rectangle which length
is 1; the second is a reduced rectangle, that is, a rectangle whose dimensions admit
no regular common factor. The interpretative problems raised by P322 could be
summarized into two questions:
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(1) What is the horizontal reading? Namely: are the successive columns gen-
erated by a unique algorithm?

(2) What is the vertical reading? Namely: are the successive rows generated
by a unique algorithm?

These questions were answered by historians in different ways according to
the supposed function assigned to the table. For Neugebauer and Sachs, P322
is a problem text, for Robson, it is a teaching aid, and for Friberg, it is halfway
between ([8], 41; [10], 199, 201; [5], 302; [6], 448). The forthcoming publication
by Britton, Proust and Shnider, based on new texts published and interpreted by
Friberg, revives the point of view of Neugebauer and Sachs in considering P322 as
a problem text. Here are some arguments supporting this latter interpretation.

In the present short paper, I shall limit myself to emphasizing some aspects
concerning the vertical reading. The question is: are the 15 rows the result of a
unique algorithm? This problem was solved as early as 1964 by Price who observed
that the lines drawn on the obverse of the tablet continue on the lower edge and
the reverse of the tablet. Thus, the 15 preserved rows are, in fact, the first 15 rows
of a bigger table. Probably, the scribe planned to compose between 30 and 40
rows. In addition Price assumed that the width of the rectangle was shorter than
the length, and that the numbers involved belong to the usual repertoire of the
time, that is, 1 or 2-place value regular sexagesimals numbers. For Price, as for
Neugebauer and Sachs, the algorithm for producing the sexagesimals rectangles
used generative numbers s and r, and could be described by the following formulae:

δ =
1

2

(r

s
+

s

r

)

, β =
1

2

(r

s
− s

r

)

.

Price searched for all the numbers r and s satisfying the following conditions:

• 1 < r
s
< 1 +

√
2

• r is a regular sexagesimal number
• s is a 1-place value regular sexagesimal number
• r

s
is irreducible.

He found 38 pairs r, s, among them the 15 first produced the 15 rectangles
preserved on column I. This is a very strong result. It shows that the 15 rows
of P322 were indeed generated by a systematic algorithm, and, moreover, offers
a credible reconstruction of the whole text, including the unfinished part of the
reverse (see [1] for more details).

But the Price’s reasoning is based on modern concepts, such as irreducible frac-
tion and inequalities, which are alien to contemporary Babylonian mathematical
culture. What sort of tools were available to the scribes in the Old Babylonian pe-
riod? It is well known that, as soon as in their elementary stage of education, the
scribes were trained to work on lists and tables, in particular, reciprocal tables.
Thus, the scribes probably used a list of reciprocal pairs, corresponding to the
Price’s list of ratios r

s
and s

r
. The numbers the more often used in scribal schools

were the 1-place value regular numbers, as well as the 2-place values numbers until
2,5, that is the following list of numbers:
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{1}, {2}, {3}, {4}, {5}, {6}, {8}, {9}, {10}, {12}, {15}, {16}, {18}, {20}, {24},
{25}, {27}, {30}, {32}, {36}, {40}, {45}, {48}, {50}, {54}, {1,4}, {1,12}, {1,15},
{1,20}, {1,21}, {1,30}, {1,36}, {1,40}, {1,48}, {2}, {2,5} (list A).

The set of all the quotients obtained by dividing numbers of list A by the 1-place
value regular numbers is a long list containing many duplicates. After removing
the duplicates from this long list, ordering it in lexicographic order, selecting the
numbers between 1 and 1 +

√
2 (that is, between 1 and 2,25), and rearranging in

descending order, we obtain the following list:

{2,24}, {2,22,13,20}, {2,20,37,30}, {2,18,53,20}, {2,15}, {2,13,20},
{2,9,36}, {2,8}, {2,5}, {2,1,30}, {2}, {1,55,12}, {1,52,30}, {1,51,6,40},
{1,48}, {1,46,40}, {1,41,15}, {1,40}, {1,37,12}, {1,36}, {1,33,45}, {1,30},
{1,28,53,20}, {1,26,24}, {1,25,20}, {1,24,22,30}, {1,23,20}, {1,21}, {1,20},
{1,16,48}, {1,15}, {1,12}, {1,11,6,40}, {1,7,30}, {1,6,40}, {1,4,48}, {1,4}, {1,2,30}.

This is exactly the values of r
s
obtained by Price. The 15 first values (in bold

above) generate the 15 rows of P322. Thus, using only tools known by ancient
scribes, we obtain the list of reciprocal pairs generating the extended table. This
reconstruction of the possible ancient modus operandi supports the hypothesis that
the author of P322 was looking for an exhaustive list of solutions.

Let us conclude with some remarks on the nature of the text and on the mean-
ing of the tabular format. P322 appears to be an attempt to find all the finite
sexagesimal rectangles. According to the text MS 3972 #3 published by Friberg
in 2007, the problem could be formulated as: “In order for you to see all the di-
agonals”. The tentative to “see all the diagonals” is successful if we accept some
restrictions linked to Old Babylonian calculation practices, such as the use of stan-
dard table of reciprocals. Thus, P322 seems to be a procedure text and not an aid
or a document providing data for various uses (teaching or other).

What is the meaning of the tabular format? The mathematical content of
P322 is similar to the third problem of the non tabular text MS 3972 #3. The
structure of the information is the same in both texts, as well as the indexing with
“ki 1”,“ki 2”, etc. Why is the first text tabular, but the second is not? In the
Plimpton table, the information is decomposed into elements, and these elements
of information are classified and rearranged: the items of the same nature occupy
the same column. The general names of these elements are noted in the heading.
Thus, the information is compressed, and the headings appear to be a general
formulation of the individual rows. Likewise, the tabular format underlines the
exhaustive character of the list. To conclude, P322 seems to be the beginning of
a complete set of solutions of an indeterminate problem.
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Composing material for the HTN book after the IMERA
International Workshop on Numerical Tables in Sanskrit

Agathe Keller

A great variety of numerical tables can be found in the Indian sub-continent. In
the HTN project we restrict ourselves to Sanskrit tables dating roughly from the
Common Era to the XVIIIth century.

Different kinds of mathematical objects are qualified as “tables” by historians
of mathematics working on Indian sources: verbally coded, sometimes versified,
lists of numerical data (Sines, for instance), astral tables-texts of the z̄ıj-type,
verses defining different types of measuring units (if we agree that these are not
just lists), and computational arrays. A general bird’s eye view of astronomical
tables in Sanskrit sources was made possible by an HTN funded workshop held
from the 13th to the 15th December 2010 at the IMERA in Marseille. Three main
strands were highlighted: south Indian traditions of numerical tables, astronomical
table-texts, and a long pan-Indian evolution of Sine and Sine difference tables.

Indian astronomical tables do not contain planetary observations. They concern
computed positions of planets generally in relation to a given epoch and typically
compute the times and dates of transits of planets in mean or true longitude.
This is notably the case of the south Indian vākyas studied by M. Koolakkodlu;
a kind of numerical table, coding numerical data with the help of the kat.apayādi
notation which enables lists of numbers to be given in sentences that also have
a non-numeral meaning. V. Pai and R. Sharma worked on the XVth century
Sanskrit Karan. apaddhati of Putumana Somayāj̄ı with its anonymous and undated
Malayalam commentary. This text provides algorithms to derive and modify pa-
rameters used in the Vth century Āryabhat. ı̄ya of Aryabhat.a, to find better true
and mean longitudes for planets by applying corrections to existing procedures,
and to produce tables of solar transit. The edition of the text shows a great variety
of formal displays intertwined with verbal codings of numbers, questioning what
can be found in manuscripts.
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Astronomical table-texts were studied by K. Plofker and C. Montelle, heading
a project on computational procedures and Sanskrit tables in the second millen-
nium. These “table-texts” consist mainly of laid-out tabulated data with versified
instructions. The effective astronomical contents of the texts relating to D. Pin-
gree’s classification of planetary, almanac, eclipse and geographical tables were
discussed. While south Indian verbal tables were either called vākya “sentence”
or labelled – as enumerations usually are – by suffixing the first with ādi (“etc.”),
astronomical table-texts could be called saran. i (path) or kos.t.haka (granary).

I studied two numerical tables classified on the fringes of astronomy and math-
ematics. First, I considered the versified solutions of a first degree Diophantine
linear equation provided by Bhāskara, a VIIth century astronomer commentator
of Āryabhat.a. Bhāskara’s shortcut in a “pulverizer” (kuttakāra) process attempt-
ing to find the smallest solutions of y = ax±c

b
consists in solving first the problem

when c = 1, that is:

y =
ax± 1

b
The values found as solution can then be multiplied by c; smallest solutions are
found by considering the remainders of the divisions of cy′ by a and cx′ by b.
This is known in later literature as the sthirakut.t.aka, “lasting pulverizer”. Such a
procedure could solve an astronomical problem: If ap is the number of revolutions
of a given planet p, during a yuga time cycle, and b “the number of conjunctions
of the planet with the earth” during a yuga (these are fixed parameters), and if yp
is the number of revolutions made by a given planet in x days computed from a
given epoch (ahargan. a), the assumption is that

yp
ap

=
x

b

Usually only a fractional part of yp is known: the mean longitude of the planet.
The remaining part, y, is unknown, together with x.

After explaining the pulverizer, Bhāskara gives 91 ślokas: values obtained from a
”lasting pulverizer” provide the number of civil days and the number of revolutions
since the beginning of the kali-yuga for the Sun, the Moon, the Moon’s Apogee,
the Moon’s ascending node, Mars, Mercury, Jupiter, Venus, Saturn, the Moon’s
Anomaly. Other computed elements concern intercalary months, intercalary days,
omitted days and the sun’s declination. These versified tables are implicitly in-
dexed by b and ap, measured in revolutions, signs, degrees, minutes, etc. The data
they tabulate can be seen as an intermediary tool when applying a “pulverizer” to
astronomical problems. It may also be an exploration of the ratios of the number
of revolutions of a planet to the number of days in a yuga.

The history of Sine tables in Sanskrit texts is a very much treated domain:
G. Van Brummelen has recently published a synthesis on this topic. M. Mallayya
at the workshop presented a continuation of his work published in G. G. Joseph’s
latest book. He notably looked at the XVIIth century commentator Munísvara’s
interpolating processes. Āryabhat.a’s “Sine difference table” is composed with a
meaningless verbal code. Implicitly, the argument considers a unit arc of 225’.
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Implicitly also the list of 24 items is made to be read, by summing its terms
progressively to obtain different Sines, and summing its terms reversely to obtain
Versines. Sūryadeva’s XIIth century commentary on this verse insists on the table’s
double classification: the Sines of the table are used in astronomy but grounded
in general mathematics.

Questions raised during the workshop concerned the emergence of the table-
text genre and the nature of astronomical tables: were they practitioner tools
or theoretical explorations? A continent of texts was thus uncovered. We do
not know the different communities and contexts in which these texts were used.
The remaining mathematical numerical tables are comparatively a less important
corpus (measuring units, chapters, magic squares...) and play with the limits of
what we define as a table.
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Projects and networks of tables in number theory: A proposal for
periodization (1600–1960)

Maarten Bullynck

Based upon a number of recently published historical articles ([2], [3], [4], [5]) and
the materials in [6] and [8], my talk proposed a tentative “periodization” of tables
in number theory. Approximately 8 periods could be discerned:

(1) Beginnings of systematic approaches in number theory (1600–1650)
(2) John Pell’s project for a factor table to 102,000 (around 1668)
(3) J. H. Lambert’s “call for tables” (1770–1820)
(4) Tables for higher arithmetic with the creation of modern number theory

as a discipline (around 1800)
(5) Pairwise collaborations: Mathematicians and table makers (19th century)
(6) Systematic organisation: Committees on mathematical tables (1870–1950)
(7) An international network of (amateur-) mathematicians and table-makers

(1900–1950)
(8) The journal Mathematical Tables and Other Aids for Computation, its

network and the passage into the digital age (1946–...)

Before discussing the criteria (or parameters) used in establishing this periodiza-
tion, some general remarks on this list are due.

First of all, the first and last periods of this periodization are, as always, the
most problematic ones, because they assume a “beginning of” resp. a kind of
“closure”. Indeed, it should be remarked that some kind of number theory existed
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before the 17th century and that tables played a role in it (see e.g. [1] for “number
theory” in the Middle Ages – thanks to M. Husson for pointing this out to me).
However, in this periodization, I chose to start with the Modern Period, with
the creation of “modern” mathematics (algebra). For the last period, it should
be conceived rather as a open-ended period that we cannot yet fully grasp in its
characteristics and development (see L. De Mol’s abstract for more on this).

Second, although the periods are arranged in chronological order, the periods
5 to 7 are overlapping or even partially synchronous. They can nevertheless be
distinguished easily from each other, because they are more or less anchored in spe-
cific research communities. The collaborations (period 5) are typical of a German
research culture, involving professors at university and gymnasia; the committees
(period 6) are typically an Anglo-Saxon way of organization (and it should be
remarked the tables in number theory are only a marginal topic for these com-
mittees); and the network (period 7) is mainly organized through journals and
mobilizes mainly French, Belgian, Dutch table makers as well as English and U.S.
table makers. Naturally, this periodization does not exclude that there are persons
passing from one category to the other.

Finally, the periodization only takes into account “big tables”. “Big” tables
can be set apart from “small” tables by their size, of course, but the difference
aimed at here goes epistemologically deeper. “Small” tables usually occur within
the flow of an article, of a book, and their utilization is confined to the limits
of that article or book. “Big” tables, on the other hand, are usually conceived
as independent unities, produced for utilization by many mathematicians. Said
differently, “small” tables have no independent afterlife, whereas “big” tables have.

I now turn to the criteria or parameters used in this periodization. Two main
criteria were established:

(1) the organisation of making the tables;
(2) the relationship of the table with theoretical & practical knowledge.

The first criterium includes such factors as: what kind of persons were involved,
what media of communication were used, what division of labour in making the
table was followed. This criterium was paramount in the distinction between
periods 5, 6 and 7, but it also helps to differentiate between periods 7 and 8
(division of labour changes with the introduction of the computer), or between
periods 1 and 2 (single mathematicians vs. a small group of mathematicians).

The second criterium is more difficult to pin down. In fact, it has two sides,
“[theory & know-how] → table”, and, “table → [theory & know-how]”. The first
aspect is the question: how much theoretical and practical background is needed
to understand, produce and use the table, or, how much theory and know-how
is imminent in the table. This aspect comes especially to the fore in period 4,
where the birth of higher arithmetic, amongst many other effects [7], causes new,
more theory-driven tables to be calculated. Very often, one finds that a table that
needs little theory to understand, later becomes compressed in another format
that needs more theory to understand (e.g. the table of decimal periods vs. the
table of indices modulo a prime). This could be called “internalization” of theory
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into the table. This is, in general, a recurring process in the history of a specific
kind of table.

To enunciate the second, subtler aspect of this criterium more clearly, the (so-
ciological) concept of “projects of action” (borrowed from A. Schutz [9]) is helpful.
The idea is that a sequence of actions lays out one or more “projects of action”,
i.e., it prepares and preempts possible future sequences of action that are socio-
logically recognizable as such (other people can recognize that you are working
towards project X). The extension of “table → [theory & know-how]” then, is the
answer to question: how much is the use of the table prefigured, predetermined by
the table. For instance, a logarithm table (nowadays) has a well-defined usage and
will be used in generally recognizable situations (e.g. long multiplications) that
may or may not be identified and explained in the introduction or manual to the
table.

For many tables, take a table of indices of 2 modulo a prime, several uses, not
all of which known in advance, are possible (in our example, e.g., factorization of
certain numbers, solving congruences, calculating Carmichael numbers etc.). For
some tables, no well-defined use is apparent, e.g. a table that gives even numbers
as the sum of two primes (Goldbach-conjecture). These last kind of tables may
be called proper “explorative” tables. In the course of time, tables that once
were “explorative” may become determined in use, or even become completely
obsolete. This is understandable, since “project of action” is a sociological concept,
dependent on time and context. In this periodization, e.g., Lambert’s factor table
may have had anno 1770 a partial explorative use, helping to establish a systematic
“theory of numbers” Lambert had called for. For Legendre and Gauss around
1800 this explorative “project of action” got more focussed and determined when
they started counting and analyzing the factor tables to study the distribution of
prime numbers. Nowadays then, the usage of a factor table is nearly completely
determined and is inserted in generally recognizable actions. This “table→ [theory
& know-how]” aspect is for the periodization less important than the first criterium
and the “[theory & know-how]→ table” aspect of the second criterium, however, it
may prove of considerable assistance in later historical research that wants to study
the insertion of tables into a concrete, historically situated mathematical practice.
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Aldershot: Variorum, 1991, textes X et XI.

[2] M. Bullynck, Decimal periods and their tables: A German research topic (1765-1801),
Historia Mathematica 36(2) (2009),137–160.

[3] M. Bullynck (Maarten) [2009] Reading Gauss in the computer age, Archives for the History
of Exact Sciences 63(5) (2009), 553–580.

[4] M. Bullynck, A history of factor tables with notes on the birth of Number Theory 1657–1817,
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Tabular texts of Babylonian mathematical astronomy

Mathieu Ossendrijver

Cuneiform tablets from the Late Babylonian period (450–50 BC) contain the first
written evidence of mathematical astronomy in the ancient world, in the form
of astronomical tables with computed data for the Moon and the planets, and
procedure texts with the corresponding instructions. One puzzling aspect of the
astronomical tables that has received little attention concerns the possible reasons
why certain quantities are included in the tables while others are excluded. In
order to shed light on this issue I briefly discuss the typology of the astronomical
tables, after which I explore some aspects of the content of the tables.

Classification of the tabular texts. The corpus of tabular texts consists of
approximately 340 tablets and fragments, which can be divided into four main
groups:

(1) synodic tables (130 lunar, 100 planetary),
(2) template tables (38 lunar, 12 planetary),
(3) daily motion tables (10 lunar, 40 planetary),
(4) auxiliary tables (13 lunar, 7 planetary).

Synodic tables and daily motion tables constitute the end products of mathe-
matical astronomy. The former contain computed data pertaining to the synodic
phenomena (New Moons, Full Moons; for the planets e.g. first appearances, sta-
tions, and last appearances); contain daily positions. Template tables are essen-
tially synodic tables lacking a column for the time and possibly other columns.
Auxiliary tables contain auxiliary quantities such as reference values for interpo-
lation schemes that are used for computing synodic tables. Hence they differ from
template tables in that the quantities that are tabulated in them do not directly
appear in synodic tables. Most daily motion tables contain daily positions of the
Moon or a planet and the corresponding time or date.
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Synodic tables and template tables for the planets. The synodic tables
for the planets contain the time (T ) and the zodiacal position (B) for successive
occurrences of one or more different synodic phenomena. They are computed
in a line-by-line fashion by applying differences, such that Ti = Ti−1 + τ , and
Bi = Bi−1 + σ, where τ is known as the synodic time, and σ as the synodic arc.
Based on the algorithm by which σ is computed, synodic tables can be divided
into two main families, known as system A (σ is a step function of B) and system
B (σ is a zigzag function). Most system-A tables contain only the ‘final’ quantities
T and B, while most system-B tables contain τ , T , σ, and B, i.e. both final and
auxiliary quantities. In addition to the synodic tables there are template tables,
for both families of algorithms, containing only successive values of B.

The possible reasons why certain quantities are included in these tables while
others are omitted are not really understood. The following observations may con-
tribute to a better understanding of this issue. First, the presence of columns for
τ and σ in system-B tables implies that they, in spite of being the ‘final products’
of the algorithms or T and B, incorporate data pertaining to intermediate steps of
these algorithms. Hence the system-B tables can be viewed as representations of
algorithms rather than only their end product. Secondly, there is nothing in the
nature of the algorithms for σ (and τ) that would imply a necessity for including
these quantities in a system-B table and omitting them from a system-A table.
Perhaps the omission of σ and τ from system-A tables is merely a convention for
which there is no formal justification. Thirdly, although it is often assumed that
the existence of template tables is explained by assuming that one can produce
synodic tables for different dates from a single template table by copying its col-
umn B and adding a column for T , this hypothesis is problematic. Usually there
is very little choice (if at all) in assigning dates to the positions in the template
tables, because the period after which the sequence of values for B repeats itself
tends to be very long (several centuries). It therefore seems more likely that a
template table is simply the first stage in the production of a single synodic table.

Synodic tables and template tables for the Moon. While the typology of
the planetary tables is still relatively easily described, the lunar tables, which can
contain up to 18 different quantities, exhibit an even larger variation in terms of
the selection of quantities that are included in the synodic tables and the template
tables. In order to make sense of these tables it is again useful to distinguish
between ‘final’ quantities and intermediate quantities. The former include, apart
from the time and position of the lunation (New Moon or Full Moon), a function
for eclipse ‘magnitude’ (Ψ), and the so-called Lunar Six intervals, which are six
intervals between the rising or setting of the Sun and that of the Moon around New
Moon or Full Moon. All other quantities are intermediate in the sense that they
reflect intermediate steps in the algorithms for computing the mentioned ‘final’
quantities.

Also for the lunar tables I want to make a number of observations. First, there
are (virtually) no lunar tables that include all final quantities but no other quan-
tities. Apart from a selection of final quantities the synodic tables always include
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a selection of intermediate quantities. This confirms what had been observed al-
ready for the planets, namely that the synodic tables are representations of the
algorithms for the final quantities, rather than tables containing only final results
of these algorithms. Second, while some intermediate quantities are regularly in-
cluded, there are others that are always omitted; this is especially true for the
algorithms for the Lunar Six intervals in system A, to a lesser extent in system B.
Hence as representations of algorithms, the lunar tables are remarkably deficient
with regard to the (highly complex) subalgorithms for the Lunar Six intervals.
Also here the content of the tables may be guided by conventions that do not have
any formal or practical justification. Third, since most synodic tables (especially
those of system A) contain numerous intermediate quantities it is interesting that
there are also template tables containing only a selection of intermediate quanti-
ties, but likewise associated with unique dates. As was remarked for the planetary
tables, this suggests that lunar template tables are stages in the production of
single synodic tables, rather than templates to be used for producing different
synodic tables for different years. Some intermediate quantities were first written
on template tables, after which a synodic table was compiled by combining data
from the template tables, and adding columns for the final quantities.

Mathematical tables in Ptolemy’s Almagest

Nathan Sidoli

In the Almagest, mathematical tables fit into Ptolemy’s overall goals of presenting
a mathematical structure of the cosmos, presented in an essentially single, struc-
tured argument. Indeed, Ptolemy makes a number of explicit assertions that the
structure of the tables in the Almagest should agree with the overall project of
mathematical astronomy and that they should exhibit both the true nature of the
phenomena in question and have a suitable correspondence with the mathematical
models [1, ex. vol. 1, 208 and 251]. Hence, in order to understand the role of tables
in the Almagest, we must consider their function in the deductive framework of
Ptolemy’s mathematical presentation.

It is well known that Greek mathematical texts have quite specific forms that
are so conspicuously marked that a knowledgeable reader would be able determine
what part of a mathematical argument is being developed after reading just a
sentence or two [2]. For example, in Euclid’s Elements we encounter theorems and
problems, and in the writings of Apollonius and Archimedes we find also analyses
and calculations. Furthermore, many of these types of texts also have subdivisions
that have been recognized and discussed by scholars at least as far back as Pro-
clus [3]. In this context, we can understand tables as a kind of mathematical text
in Ptolemy’s argument.

One of Ptolemy’s principle strategies, which he probably adopted from his pre-
decessors, is to apply the types of mathematical texts found in the purely theo-
retical treatises, along with new kinds that seem to have arisen within the applied
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mathematical tradition, to the investigation of objects that he regarded as math-
ematical, such as harmonic intervals or heavenly bodies ([4], 93). We find the
following types of mathematical text in Ptolemy’s works:

Description: General application of a mathematical model to a physical
situation.

Theorem: Straightforward mathematical proof (which must be interpreted
by means of the model).

Problem: Demonstration that a certain construction is possible. (Rare, but
ex. in Planisphere.)

Analysis: Argument by means of ‘givens’ that a certain calculation can be
carried out. (Metrical resolution.)

Calculation: Use of the model to produce numerical values.
Table: List of numerical values based on the model and generally of use in

further calculations.
Algorithm: General description of how we use the values in the table.

Of these, the last four are directly related to the construction and use of tables.
Indeed, in the Almagest, tables are not found alone but are always in a group of
related texts, which I call a ‘table nexus.’ The table nexus has a distinctive logical
structure.

The tables in the Almagest are sets of numerical values that correspond to
lengths and arcs in the geometric models from which they are derived. At least
in principle, they are produced by direct derivation from geometric objects with
assumed numeric values, or from a given geometric model with specific, astro-
nomically determined, parameters. We can understand the tables themselves as
a numerical representation of the underlying model, which is geometric. The ta-
bles are then used, either by Ptolemy or by his supposed reader, to provide an
evaluation of specific values that relate both to the underlying model and to the
heavenly bodies themselves.

In this way, we can outline the structure of the table nexus and relate its parts
to the types of mathematical text that Ptolemy employs:

Derivation: A calculation or analysis that shows that given the model and
its parameters, the numbers in the table are determined. (The table is, in
fact, not always derived by the method Ptolemy provides ([5], [6]).)

Representation: A table, or series of tables, that gives a numerical rep-
resentation of all of the key components of the geometric model. (Each
moving part of the model has a separate entry.)

Evaluation: An algorithm that describes how the various entries in the ta-
bles can be used to calculate phenomena that we actually see.

Ptolemy himself does not explicitly address his methods and he gives no general
statements of why he thinks they are valid or effective. Nevertheless, it is possible
to construct an argument for the validity and purpose of the tables by considering
the overall table nexus. For example, an understanding of how the components of
the geometric model move can be derived from studying the table, the argument
that the table represents a certain kind of function can be seen from the fact that
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the different columns refer to specific components of the model, an understanding
of what each of the components of the table means can be based on an analysis
of the figure, and arguments that the algorithms using the table actually produce
apparent motion can be based on an assessment of how the terms of the table
relate to the diagram.

We can take the solar theory, set out in book III of the Almagest as a general
example of how the table nexus should function. We will consider the table nexus
for the table of solar anomaly, Alm. III 6, which is composed of Alm. III 5, 6 and 8.

Alm. III 5 gives a calculation for the equation of anomaly (α), given the pa-
rameters of the model and a mean normed longitude (κ̄) of 30◦. Analyses are
then used to show that given any other values for one of κ̄, κ or α, the other two
are also given. This can be taken as a demonstration that the numeric values
corresponding to these angles in the model are all determined.

This is then followed by the table of solar anomaly, Alm. III 6, which sets
out corresponding values of κ̄ and α. Each of the entries in this table are direct
representations of an angle in a possible diagram of the model. Hence, the nature
of the function depicted by the table can be understood as predicated on the basis
of an intuitive understanding of the geometric properties of the model.

After the values of κ̄, κ and α at epoch are established in Alm. III 7, the final
section of the table nexus, Alm. III 8, gives an algorithm for using the values in
the table of solar anomaly, along with the table of mean solar motion, Alm. III 2,
to compute the apparent position of the sun for any time since epoch. There is no
attempt to justify the operations of the algorithm; however, since all of the values
in the computation are direct representations of objects in the model, which in
turn directly represent the celestial bodies, we may take everything that has lead
up to the the algorithm as its justification.

As usual in the Almagest, we can read the solar theory as a sort of model;
however, because of its simplicity, none of the other theories can be patterned on
it exactly. In the solar theory, each of the entries in the table can be related to a
specific object in the model. Hence, one could argue that the justification for the
algorithm, Alm. III 8, can be read off the model itself.

In the more involved theories, where Ptolemy tabulates functions of more than
one variable (Alm. V 8 and XI 11), individual entries in the tables will correspond
to multiple positions of the model, and interpolation will be used for the inter-
vening positions. Nevertheless, the justification for the final algorithm can still be
made by referring to the geometric features of the model, although Ptolemy does
not, himself, do this. Perhaps he thought the derivation was sufficient.
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Astronomical tables in second millennium Sanskrit sources

Clemency Montelle

One important strand in the study of numerical tables in Sanskrit sources com-
prises of the so-called kos. t.hakas or sāran. ı̄s, astronomical tables that rose in pop-
ularity from the tenth century onwards. It has been argued that the prominence
of these types of tables in Sanskrit astronomy was linked to Islamic inspiration
particularly through the influence of the z̄ıj compositions ([1], 41; [4]). Unlike the
standard Sanskrit astronomical formats that contained enumerations of impor-
tant parameters and fundamental algorithms composed in verse, these works used
spatial arrangement, ruled rows and columns, alignment, and accompanying ex-
planatory prose to present precomputed data intended for practical astronomical
application.

The earliest text of this type that we know of is a work authored by the Indian
astronomer Durlabha who was working at Multān in Sind. We know of this work
not directly, but through descriptions of it that are given by al-Bı̄rūn̄ı in his work
India. The epoch of Durlabha’s tables are given as Śaka 854 (= 932 CE) and in
subsequent centuries dozens of tables were produced in India. The tables that have
been catalogued so far by modern efforts come predominantly from North Western
India, with a handful from Kāś̄ı and Bengal. This geographical concentration
further evidences the impact that Islamic sources had on the Indian tradition.
Tables do exist from other regions of India, however, their content reveals them
to be largely independent of Islamic inspiration. This is particularly pertinent to
the tables found in South India.

In addition to new works, many authors found their inspiration in key astro-
nomical texts from previous times. Extracting the base parameters which had been
expressed in prose, they cast and developed the relevant astronomical data in a
tabular format. For example, Bhāskara II’s (b. 1114) work, the Karan. akutūhala
was recast as tables by Nāgadatta and called the Brahmatulyasāran. ı̄ (or often
the Karan. akutūhalasāran. ı̄) with an epoch of 23 February 1183. Other similar
instances abound: a tabular version of Brahmagupta’s Khan. d. akhādyaka, enti-
tled the Khan. d. akhādyakasāran. ı̄ was written (and exists in incomplete manuscript
form), the Sūryasiddhāntasārin. ı̄ based on the Sūryasiddhānta was prepared, and
the Grahalāghavasāran. ı̄ was composed by Nı̄lakan.t.ha in 1630 based on Gan. eśa’s
Grahalāghava (1520), as well as another work by the same name by Porema in 1656.

To rationalise the corpus, astronomical tables have been classified into several
distinct types [2]). These include Planetary tables, Pañcāṅgas or Calendrical ta-
bles, Eclipse tables, and Geographical tables. The parameters of the tables can
generally be further classified, both with respect to their base parameters and their
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mathematical structure. As with conventional astronomical texts, the parameters
of tables fall into the five broad paks.as or schools prevalent in Indian mathematical
astronomy. These are the Āryapaks.a, the Ārdharātrikapaks.a, the Brāhmapaks.a,
the Saurapaks.a, and the Gan. eśapaks.a. In addition, planetary tables generally fol-
low one of the following three mathematical structures: mean linear, true linear,
or cyclic.

Mean linear tables arrange their data, the mean longitudes of the planets, with
respect to time, tabulating by means of increasingly smaller time increments.
Anomalies are tabulated separately and to be applied to the mean longitudes
to find the true positions. This format forms the basis of the Ptolemaic tables.
By contrast, true linear tables tabulate the true longitudes of the planets. These
tables are arranged according to an ideal year in which the initial position of the
sun is set at Aries 0◦ and data is tabulated according to 2-week periods. This
format seems to be an Indian innovation. Lastly cyclic tables, as their name im-
plies, tabulate planetary longitudes over individual cycles, an appropriate period
of years for each planet in which the true longitudes are given for each 2-week
period within this cycle. These tables appear late in the corpus in around the sev-
enteenth century and appear to be based on Babylonian Goal-Year periods that
were introduced into the Indian astronomical tradition via Islamic sources.

Another important type of tabular texts are Pañcāṅgas, tables for computing
important elements in the calendar. Meaning “having five-limbs”, these tables
give the occurences and details of the five major subdivisions of the Indian cal-
endar: vāras, tithis, naks.atras, yogas, and karan. as. These were intended to assist
astrologers in computing the details of the calendar, the correct times for festivals
and special days, and other events. Tables designed specifically for computing the
details and circumstances of eclipses are often made, sometimes as part of larger
collections of tables, and sometimes as independent works. The Karan. akesar̄ı of
Bhāskara (fl. 1681) is a set of astronomical tables for computing lunar and solar

eclipses. Their epoch is Śaka 1603 (1681 CE) and the tables contain elongations,
apparent lunar and solar diameters, measures of the shadow cone, half-durations,
‘deflection’, and parallax, as well as other relevant astronomical parameters. There
exists a short accompanying text to supplement these tables which comprises of
20 verses as supplementary explanation.

More broadly, the contrasting intellectual circumstances in India have had a
marked effect on the practice and tradition of science, particularly with respect
to tables. An examination of these tables and an investigation into the result-
ing underlying mathematical techniques, interpolation conventions, and iterative
procedures that were developed in response to the needs of the table-makers over
the many centuries in which the genre flourished can reveal key trends in the
approaches and attitudes of these scholars. Tables therefore provide direct and
valuable evidence for the mathematical historian as to how Indian practitioners
advanced and justified developments in the astronomical field.
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Vākyas: Astronomical tables in sentences

Mahesh Koolakkodlu

Vākya and kat.apayādi notation of numerals. The Sanskrit word Vākya lit-
erally means a sentence. A vākya may consist of either a single word or a group of
words. A text named Vākyakaran. a (ca. 1300 ce) presents tabulated numerals in
the form of vākyas1. The vākyas are constructed using kat.apayādi method, a verbal
system of denoting numbers. In this system, each letter of Sanskrit represents a
digit. To denote a number, letters are grouped to construct a meaningful word or
phrase. The alphabets along with the value they represent are displayed below:

Vowels

a ā i ı̄ u ū r. r̄. l. e ai o au am. ah. → 0

A A;a I IR o � � � � O; Oe; A;ea A;Ea AM AH

Consonants

1 2 3 4 5 6 7 8 9 0
ka kha ga gha ṅa ca cha ja jha ña
k Ka ga ;Ga .z ..ca C .ja Ja Va
t.a t.ha d. a d. ha n. a ta tha da dha na
f F .q Q :Na ta Ta d ;Da na
pa pha ba bha ma
:pa :P ba Ba ma
ya ra la va śa s.a sa ha ..da
ya .= l va Za :Sa .sa h L

A consonant without vowel represents nothing. (e.g. k, j). A vowel attached to
a consonant has no value (e.g. e in ke, ı̄ in j̄ı). In the case of a conjunct letter the
consonant at the end connotes the value (e.g. dyā=yā: 1). The letters are chosen
such that the string could give a beautiful meaning so that a mnemonic string is
constructed. The number has to be read from right to left (e.g. jarmani= 850
→ 058). This type of numerical notation is mostly used in south India. In the
following section, let us see one such instance from Vākyakaran. a.

1This text has a commentary by Sundararāja (ca. 1500 ce).
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Transit vākyas. The entry of the Sun into a sign from another is called transit
or saṅkrama. This marks the beginning of a solar month. Vākyakaran. a provides
transit vākyas in order to compute the day and the time of the transits of the Sun
into different signs.

(r�a;a;gRua;Na;�a;ma:�a;a BUa;
a;vRa;�a;Da;pa;[a;a .~:��a;a:=+�a;ta;ZUa:=+a Ba;ea;ga;va:=+a;tea Á Á1 Á Á
Ba;a;va;.ca:=+ea;�a:=H .tea;na;va;Za;tva;m,a l+.ea;k+.ja;B�a;a;�a;taH .~TUa;l+.h;ya;eaY;ya;m,a Á Á2 Á Á
A;ñÍç ÅÅ*:+.�a;Da;ga;a:=H .~ta;�////////�a;}Ba;ta;na;a;�a;BaH ;�a;na;tya;Za;Z�a;a;Za;ea ya;a;ga;ma;ya;eaY;ya;m,a Á Á3 Á Á
ta;a;vua:�+:pUa;v a .sa;ñÍöÐÅÅ*:" +.ma;va;a;k�+.aM ta;tkÒ +:ma;ya;ea:$yMa :pa;a;d;va;Zea;na Á Á4 Á Á

These four verses are in a meter called paṅkti. Every quarter of each verse
contains five letters. The metrical constraint here is that the second and third
letters should be short having non-conjunct letter next to them. Others should
be either long or short preceding a conjunct letter. The first three verses present
the transit vāyas. In total, twelve numerals are listed (four in each verse) using
kat.apyādi notation. Each quarter of the verse presents five digits. These digits
spell the time and weekday of transit. The first digit indicates the weekday elapsed
before transit. The succeeding four digits tell the time of transit in ghat.ı̄s and
vighat. ı̄s. The information we get from the above verses can be displayed as follows
(the transliterated form of the verses is given):

Sign Vākya Number Meaning

2 śr̄ırgun. amitrā 2d55g32v Prosperity is associated with virtues
3 bhūrvidhipaks. ā 6d19g44v The land supported by law
4 str̄ıratísūrā 2d56g22v A woman who is a good enjoyer
5 bhogavarāte 6d24g34v This is a better enjoyment for you.
6 bhāvacarorih. 2d26g44v The [actual] enemy resides in sentiment
7 tena vaśatvam 4d54g06v getting controlled by that
8 lokajabh̄ıtih. 6d48g13v dread arisen in the world
9 sthūlahayo ′yam 1d18g37v This is a dull horse

10 aṅgadhigārah. 2d39g30v One who has crooked parts (?)
11 stambhitanābhih. 4d06g46v Fixed centre
12 nityaśaś̄ı́so 5d55g10v Moon-god who is eternal (?)
01 yāgamayo ′yam 1d15g31v This is full of sacrifice

The numbers given here are obtained through the relation Vi = mod[Di, 7] (where
Di is the exact number of days taken by the Sun to cover i 30◦ of the ecliptic;
i = 1 to 12). Fraction of a day is converted into ghat.ı̄s and vighat. ı̄s

2. The fourth
verse prescribes the method of employing the given numerals in the computation
of transit. It says that the vākyās correspond to the signs starting from Taurus,
the second sign. In other words, it can be understood that nth vākya stands for
the transit of the Sun into (n+1)th sign. [The numerals represented by] the vākyas
should be added to the day and time of the first transit.

tāvurupūrvam. saṅkramavākyam. tatkramayojyam pādavaśena ||4 ||
The transit vākya should be added in order starting with Taurus
according to [the rank of its] quarter.

21 day = 60 ghat.ı̄s; 1 ghat.ı̄ = 60 vighat.ı̄s.
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The procedure for computing the first transit is stated in the Vākyakaran. a
before presenting the vākyas.
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On the development of navigation tables in early modern England

Thomas Sonar

The earliest means of celestial navigation were the observation of the pole star
(polaris) at night and the observation of the sun at noon. Both methods give the
latitude of the observer; longitude could not be determined until clockmaker John
Harrison devised a watch which was exact on sea over months and in any weather
in the 18th century. The determination of latitude from observation of the pole
star is simple in theory and I have not described the procedure in this talk.

The determination of latitude by observation of the sun at noon is much more
complicated since the sun moves through the ecliptic.

It is advisable to compute from astronomical data 4 declination tables of the
sun starting at a leap year. If the 4 years’ cycle is over the first table can be used
again without much loss of accuracy. This procedure, however, was not followed
before the tables of William Bourne in 1571.

The earliest navigation manual we know of is a work printed in 1509 in por-
tuguese as Regimento do Astrolabio e do Quadrante, written by the physician,
mathematician, mariner, and astronomer José Vizinho. Vizinho was a Portuguese-
born Jew who studied with the famous sephardic astronomer Abraão Zacuto. Viz-
inho traveled several times down the west coast of Africa as far as to the equator.
In 1485 he was send to the coasts of Guinea by the king João II. to develop nautical
methods for the purpose of sailing. With Martin Behaim he constructed and built
an astrolabe made from wood. Vizinho was befriended with Columbus. The as-
tronomical data (ephemerides) necessary for the tables in Vizinho’s manual came
from the famous Alfonsine tables, compiled in the 13th century on the order of
Alfonso the Wise of Castilia.

When the Regimento was published in 1509 the situation of the English with
respect to navigational skills was still staggering. English sailors in the channel
used so-called rutters, small pocket books conatining details of the French and
English coasts, compass directions, and distances between ports and capes which
were derived in France around 1480 by one Pierre Garcie. This rutter was trans-
lated into English as early as 1528 and was restricted to Channel and the Biscaya.
In 1541 one Richard Proud published an English The rutter of the sea, still based
on Pierre Garcie’s book but enriched with 15th century data of English waters.
Would the Regimento have been available to English mariners early in the 16th
century it would have been completely useless since mathematics beyond simple
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mercantile techniques was unknown. It was not before the middle of the 16th
century after the two teachers of the English people in mathematics – Robert
Recorde and John Dee – had layed the mathematical foundations, that advanced
navigational techniques became intelligible in England.

In 1542 French hydrographer Jean Rotz went from Dieppe to offer his services
to King Henry VIII. He took with him his invention of a variation compass and
a work on the shortcomings of present-day navigational techniques. He became
Hydrographer to the King, published the Book of Hydrography and certainly had
considerable influence on the development of navigation in England – however, to
my knowledge his exact role is still not clear. When King Henry died in 1547 it is
said that sixty French pilots were enrolled in the service of the English court.

The Regimento do Astrolabio e do Quadrante was the blueprint for subsequent
Spanish works, namely the Arte de navigar of Martin Cortés which was published
in Spain in 1551 and became known also under the title Breve compendium. As
early as 1561, only ten years after its original publication in Spain, Richard Eden
published an English translation of Arte de navigar, The Arte of navigation.

The look-up of the declination necessitated the use of no less than three different
tables. The first one is called “The table of the true place Of the Sunne”. This
table was computed for a specific year only so that only day and month can be
used for the lookup. The second table corrects for the particular year one is in.
Now one has find the true position of the sun. From the third table this true
position then gives us the declination.

A table-lookup procedure with three different tables was much too complicated
for the ordinary English seamen and this became clear quite early on. A dramatic
breakthrough was achieved by an inn-keeper, gunner, and mathematician from the
port of Gravesend, William Bourne (ca. 1535-1582).

He learned his mathematics from the books by Recorde and showed much in-
terest in practical navigation. After having intensly studied Cortés’ Arte of Nav-
igation he published in 1567 his Almanacke and Prognostication from which no
copy has survived. However, there is a second edition published 1571 in which
Bourne reprinted the same declination tables as in his first edition. Only one table
is necessary in contrast to three in Cortés’ book.

Looking up the 22nd of February 1568, Bournes table gives us a declination
of 6◦52′ which makes a difference of 19′ ≈ 34 sea miles with Cortés’ value. Bournes
“Almanacke” is the first book including declination tables for a 4 years period.

In 1574 Bourne published A Regiment for the Sea: Conteyning most prof-
itable Rules, Mathematical experiences, and perfect knowledge of Nauigation, for
all Coastes and Countreys: most needefull and necessarie for all Seafaring men
and Trauellers, as Pilotes, Mariners, Marchants, &c. which became the definite
navigational book of the next decades.

As early as 1594 declination tables of the sun were so common that their use
was described even in popular books for the education of young gentlemen.
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In Thomas Blundeville’s (ca. 1522-ca. 1606)His Exercises, containing sixe Trea-
tises... we find a simple declination table for educational purposes. The declination
can be read off if the sign of the zodiac is known in which the sun stands.

The next step forward was achieved by the still somewhat mysterious Thomas
Harriot (1560-1621), the greatest English mathematician of his times. Working
for Sir Walter Raleigh he certainly was aware of the needs of the mariners in
all problems navigational. Being an able astronomer himself he mistrusted old
ephemerides and started his own measuring campaign. He measured the inclina-
tion angle of the ecliptic where he even took the parallax as well as the refraction
in the atmosphere into account. In his table Regiment of the sun, compiled from
1593-1596 he introduced a difference column in red ink for purposes of redundancy.
These tables were thoroughly examined and re-computed with the help of modern
computers by Roche in a beautiful paper in the British Journal for the History of
Science in 1981. Tables like Harriot’s were never seen before as far as exactness is
concerned. But Harriot was hysterically scary to publish anything in his lifetime
and his tables most likely experienced not the circulation they deserved.

The last step in the development of English declination tables was therefore not
obtained by Harriot, but by Edward Wright (1561-1615), cartographer, mariner,
and perhaps the greatest living applied mathematician in his days.

He is well know for his rigorous construction of the Mercator map and for his
book Certain Errors in Navigation, Arising either of the ordinarie erroneous mak-
ing or vsing of the sea Chart, Compasse, Crosse staffe, and Tables of declination
of the Sunne, and fixed Starres detected and corrected which was published in 1599
and saw many new editions in the 17th century.

Wright’s declination tables include many of the advances which Harriot brought
into table making: exactness and the difference column for redundancy. The table
was computed by Wright’s close friend Henry Briggs as we are informed in the
foreword of the second edition. Since his table is very close to Harriot’s one
may wonder about a hitherto unknown connection between Harriot, Briggs, and
Wright. Wright is also the first to note that declination tables are valid only for
the latitude of the place where they were computed, say London, and that the
mariner on sea had to correct for his position.

Wright’s book marks the grand finale in the development of navigational tech-
niques by the English. In only 38 years between the publication of the English
translation of Cortés’ Arte of Navigation in 1561 and Wright’s first edition in 1599
the English managed to lay the foundation for the Nautical Almanac which was
first published in the 18th century.
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Range tables at the beginning of the twentieth century

David Aubin

In this talk, I explored the production and use of ballistic tables in the first decades
of the 20th century. Based on the French case which I study in more detail in [1]
(see also [2]), my argument focused on three categories of actors involved in the
process, namely artillerymen, ballisticians properly speaking and scientists, math-
ematicians for the most part. I showed that the challenges posed by the techno-
logical innovations of the last decades of the 19th century were adequately met by
professional ballisticians who worked in rather standard disciplinary environment.
World War I introduced new use of artillery and required to overhaul computing
methods for ballistic tables.

The ballistic problem has been known for a long time. In its simplest form, it
involved solving a differential equation of the form ([3], 449):

dvx =
cv

g
F (v) dτ,

where v is the magnitude, and vx = v cos τ the horizontal component, of the veloc-
ity v of the projectile in the (x, y)-plane, expressed as a function of the uniformly
decreasing angle τ with respect to the horizontal at each point of the trajectory; g
is the acceleration due to gravity at the surface of the earth (taken in first approx-
imation to be constant); c the so-called “ballistic coefficient” (varying according
to the size and shape of the projectile); and F (v) = f(v)/v2 the law of resistance
of the air to the motion of the projectile supposed in first–order approximation to
be a function of v only.

Easily integrable for air drag law where f(v) is a power of v, the equation has
to be approximated when a more complicated function is chosen. In the nine-
teenth century, several technological advances had forced ballisticians to abandon
all hopes of being able to use such a simple function to approximate air drag over
a range of velocities up to, and higher than, 1000–1200 m/s. The combination of
breach–loading systems, riffled guns made of iron, pointed–nose projectiles, and
smokeless powder had indeed significantly increased initial projectile velocities.
The air drag function was established experimentally and a functional representa-
tion was given (but of course never used) ([4], 16):

F (v) = 0.2002 v− 48.05 +
√

(0.1648 v − 47.95)2 + 9.6 +
0.442 v(v − 300)

371 +
(

v
200

)10
.

As a result, while the relevance of ballistics had somewhat increased for fighting
artillerymen, computing methods needed to be revised. In the last decades of the
19th century, the field of external ballistics shared many of the standard attributes
one associates with scientific disciplines. There was a principal problem one could
solve in several ways and a host of secondary problems addressed by using adequate
approximation methods. There was an international community of ballisticians in
which experimental results and theoretical considerations circulated almost freely
in standard treatises and specialized journals. Scientific leaders had emerged in
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most European countries: Francesco Siacci in Italy, Alfred Greenhill in England,
Carl Cranz in Germany, and Proper-Jules Charbonnier in France. All of them
were working in military institutions whose main purpose was ballistics.

There were two standard methods for computing range tables from theory. At
the Gâvre Commission (the main experimental station for ballistics in the French
Navy, see [5]), the step-by-step integration method developed by Euler was used by
Hubert Gossot and his team. This methods was computation-intensive but very
reliable. In 1906, when Charbonnier became president of the Gâvre Commission
he decided to adapt Siacci’s method instead. This method allowed one to compute
directly the elements of a trajectory using the tabulated values of some auxiliary
functions:

J(u) = −g

∫

du

uF (u)
D(u) = −

∫

u du

F (u)

S(u) = −
∫

du

F (u)
A(u) = −

∫

uJ(u) du

F (u)
.

This computational effort was completed in 1915... at which time it was super-
seded by a return to Eulerian methods. Changing fighting conditions were mainly
responsible for this return to step-by-step integration methods. With the devel-
opment of indirect fire, heavy artillery and high-angle shooting in anti-aircraft
gunnery, the small-angle approximation used by Siacci and Charbonnier could not
be used anymore.

To carry out the large amount of computations needed to compute new tables,
mathematicians were drafted at Gâvre. Although ballisticians were well accus-
tomed to integration methods, mathematicians provided them with important re-
sults concerning the evaluation of errors, probabilistic deviation and methods for
computing “differentials” (that is, corrections to be used in specific shooting condi-
tions to account for wind, temperature of the atmosphere, wear of the piece, etc.).

At the end of 1917, according to General Herr, “the time ha[d] come when
the French artillery at long last found, if not a complete and definitive [answer],
at least one that was precise enough to be applicable so forth.” The solution to
the problem of firing by surprise was “the scientific preparation of shooting [la
préparation scientifique du tir ]” ([6], 93). Although less praised than tanks and
less bedeviled than poison gas, the new firing methods played no small part in the
outcome of the war. “It was the massive surprise action of our artillery which, from
18 July, 1918 onwards, insured the success of our great offensives until Germany’s
capitulation” ([7], 122). Ballisticians, it would seemed, had successfully fulfilled
their mission. I have argued that this success owed much to their ability to enroll
the effective collaboration of some mathematicians.

References

[1] D. Aubin, ‘I’m just a mathematician’: Why and how mathematicians collaborated with
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Numerical and graphical tables developed in interaction between
university and industry in the first half of the 20th century

Renate Tobies

The range of research questions of this field were presented in a survey lecture. On
this basis, we discussed (also in additional two sessions) the new developed table
concept created around 1900:

(1) The solution of an equation by tabular calculation ([1], 2nd ed., 41-44).
(2) Nomograms as tables (especially [2] and [3]; see also [4]).

Numerical and graphical tables became generic components of different disci-
plines for solving problems in the initial period of modern Numerical Analysis,
and when applying Mathematical Statistics on mass production. If we compare
the function of tables with modern computer, they were forerunner instruments.
Tables were developed and used for solving equations and systems of equations, for
integration of differential equations, etc. The following questions were discussed:

• What kinds of tables were developed?
• How can we classify the large number of different tables?
• Who developed tables? Or: What kinds of interaction between university
and industrial research developing tables can we identify in Germany and
other countries?

• For which purpose numerical and graphical tables were designed?
• Do we have another kind of table concept generalized by Carl Runge – the
first professor of applied mathematics at a German University?

• What kinds of international and national correlation designing tables ex-
isted between different research communities?

To answer these questions, a detailed study of new sources was proposed. In
recognition of the fact that the new table concept was created by the founder of
modern numerical analysis Carl Runge (how Lothar Collatz referred to him in
1990), it should be analyzed:
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1) The table papers and their authors published in the Zeitschrift für Mathe-
matik und Physik [Journal for Mathematics and Physics] since 1901, when Carl
Runge became one of its main editors and the journal devoted its pages exclusively
to the promotion of applied mathematics. In 1901, Runge and Mehmke include
to write in their editorial: “Moreover, we would like to devote considerable atten-
tion to the technical instruments that are used by the practitioners of these fields,
including numerical and graphical tables, mechanical calculators, and graphical
instruments.”

2) The use and development of the table concept by Carl Runge, his doctoral
and postdoctoral students also from abroad in interaction between engineering
knowledge and interdisciplinary research seminars of applied mathematics regu-
larly hold at the University of Göttingen by professors of mathematics, applied
mathematics, applied mechanics, geophysics, and theoretical physics. (Source: Fe-
lix Klein’s minutes of Seminars [Seminarprotokolle] which he headed together with
colleagues.)

3) New tables (Rechentafeln) published in the Zeitschrift für angewandte Math-
ematik und Mechanik [Journal for Applied Mathematics and Mechanics] – which
appeared in the publishing house of the Association of German Engineers – founded
by Richard von Mises, the use of these tables and their input in books which tried
to systemize all results. In the editorial of his journal, Richard von Mises had of-
fered the following prognostication: “Far more comprehensive and ripe for further
development are undoubtedly the methods of graphical calculation, which is capa-
ble of accomplishing everything that numerical calculation is able to accomplish.”

4) Laboratory Reports, Papers, and books written by industrial researchers
of German electrical engineering corporations including new developed results on
graphical and numerical tables were analysed in our recent research project [5]
and presented in the lecture within the international context. Here, it should be
only mention two representative books: Richard Becker, Hubert C. Plaut, and
Iris Runge, Anwendung der mathematischen Statistik auf Probleme der Massen-
fabrikation [The Application of Mathematical Statistics to Problems of Mass Pro-
duction] [6] – the first book of its kind in any language –, written under the aegis
of Osram’s main research department, and its included table concept (numeri-
cal tables for calculation the variance [statistisches Fehlerquadrat], the uniformity
factor [logarithmisches Streuungsmaß], tables for Gaussian (normal) distribution
curves, the Gaussian Error Integral, and different graphical tables); Marcello Pi-
rani, Graphische Darstellung in Wissenschaft und Technik [Graphical Representa-
tion in Science and Engineering] [7]. The purpose of this book, in contrast to Carl
Runge’s textbook on Graphical Methods [3], was to provide industrial engineers
and physicists with a resource for creating, on their own, graphical tables that
could be employed in solving concrete, practical problems. Both books embraced
results, tables, which were internationally obtained. One of the main objectives
is to get to know the implementation of the new table concept in interaction of
industrial research in internationally interwoven corporations (Osram, Telefunken,
General Electric Company, RCA, etc.).
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Numerical sampling tables in industry: Design and practice

Denis Bayart

Since the 1920s numerical sampling tables have been used in industry to specify
procedures of quality control by random sampling, called “acceptance sampling
plans” [1]. Given a “lot” of products, a sample is drawn at random; the lot is
accepted or rejected according to the number of defects observed in the sample.

The simplest probability model consists in an urn containing N good and bad
chips, in unknown proportion. The probability that the rate of bad chips in the urn
be greater than a predetermined number can be computed using Poisson, binomial
or multinomial laws.

Tables usually give the sample size and “acceptance number” (number of defects
in the sample beyond which the whole lot must be rejected) corresponding to a set
of parameters: lot size, “client’s risk” (probability that a bad lot may be accepted
as a good one), “producer’s risk” (probability that a good lot may be rejected).
The concepts of risk are similar to the two kinds of error in Neyman-Pearson’s
theory but they have emerged independently [2].

The curve showing the probability of acceptance as a function of the rate of
defects in the lot, given sample size and acceptance number, is called “operational
characteristic curve”. It provides a good view of the global properties of a sam-
pling plan. A sampling plan can thus be represented in three semiotic modes
complementing each other: numerical calculations, geometrical curve, symbolic
equation.

A rich corpus of historical material allows us to study the practice which de-
veloped about sampling plans. Study of practice is necessary to understand the
genesis of sampling tables in industry. Tables have been designed to fit some spe-
cific classes of situations. It is the variety of situations which explains the variety
of tables which have been published and used. The material presentation of ta-
bles, for example, will make them more or less easy to use by ordinary workers in
industry. To study the relation of tables to action, concepts borrowed from the
field of pragmatics may be useful [3]. Focusing on action rather than on knowledge
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may be important in industrial contexts. For example, the purpose of a sampling
plan is to act upon the lot (i.e. to accept, to screen or to reject it) rather than to
represent a set of quality data.

Sampling plans have also been designed as norms to legally define the conditions
of industrial and commercial exchanges. Normalization committees and agencies
were involved early in USA, UK, France. The status of a norm appears as a very
strong factor of diffusion of the tables. At the same time it implies codification
and rigidity.
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