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Abstract. Extraction of information about the distribution underlying a
high-dimensional data set is a formidable, complex problem dominating mod-
ern nonparametric statistics. Two general strategies are (i) to extract merely
qualitative information, such as modality or other shape information, and
(ii) to consider relatively simple inference problems, such as binary classifi-
cation. One approach toward (i) and (ii) is based on measuring qualitative
information via mass concentration functions. Another approach is based on
multivariate depth functions and inherently addresses issues of robustness.
Having different orientations and aims, these approaches have evolved in par-
allel with little interaction. Yet they both in common implicitly involve level
set estimation as a major tool. This mini-workshop was the first serious at-
tempt to study and exploit such interconnections between these approaches.
Researchers from both areas exchanged ideas toward forging a novel, syn-

ergistic approach that fruitfully strengthens the roles of mass concentration
and depth methods in statistical inference for multivariate data. Foundations
for level set estimation as a general statistical method were explored. Deeper
understanding of the so-called generalized quantiles approach was pursued.
Application to binary classification, a pervasive problem in modern statistics,
received intensive special attention.
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Introduction by the Organisers

The mini-workshop Level Sets and Depth Contours in High Dimensional Data,
organized by Mia Hubert (Katholieke Universiteit Leuven), Jun Li (UC River-
side), Wolfgang Polonik (UC Davis) and Robert Serfling (UT Dallas) on February
27–March 5th, 2011 brought together 18 participants with diverse geographic, de-
mographic and with research expertise in level sets and/or depth methodology.

Statistical methodology for high-dimensional data problems faces many chal-
lenges, many of them relate to geometry. One general strategy for dealing with
related dilemmas is to consider less complex goals. Here one approach is to obtain
qualitative information about shape, with monotonicity, modality, or mass concen-
tration of the underlying distribution being specific instances. Another approach
involves the use of multivariate quantiles and depth functionals. In fact, the notion
of a quantile is closely related to the notion of outlyingness, which in turn connects
with robustness of multivariate statistical methodology.

Interestingly, the two above-mentioned approaches both entail the estimation of
level sets : (a) level sets of depth functionals, or depth contours, provide a measure
outlyingness of outlyingness of multivariate data; (b) several mass concentration
functions of a multivariate distribution can be considered as functionals of level sets
of the corresponding probability density function; (c) information about modality
of a distribution is reflected in the shape of level sets of the probability density
function; (d) in a classification context, the Bayes decision boundary of the optimal
classifier is given by a level set of the regression function.

A second general strategy in dealing with the challenges posed by high di-
mensionality is to confine to relatively simple statistical inference procedures. A
very important example is the classification or discrimination problem. Again we
find level set estimation as an underlying tool: for example, the optimal (Bayes)
classifier is a level set of the corresponding regression function (conditional ex-
pectation). In fact, typically (binary) classifiers are characterized by a decision
boundary which may be represented as {x : g(x) = 0} for some decision function
g. In other words, if an observation falls into the level set {x : g(x) ≥ 0} then it
is classified into one class, and otherwise it is classified into the other class.

Although different in their orientation and goals, and having evolved with rela-
tively little interaction, depth-based methods and the mass concentration approach
are connected via technical commonalities revolving around the general theme of
level set estimation and through certain applications such as the classification
problem. Formal investigation and systematic exploitation of such connections
among these quite distinct statistical settings would be novel and fruitful. It is
the chief target of the proposed workshop, and other spin-offs are anticipated as
well.

This mini-workshop brought together representatives of the depth and mass
concentration groups along with interested statisticians from related areas. This
was a first serious attempt to forge a new synergy yielding a deeper understanding
of level set and depth contour estimation and their applications and to spawn new
research directions.
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Abstracts

(Level) Sets in Statistics

Wolfgang Polonik

The simple notion of a level set of a function h, i.e. the set {x : h(x) ≥ λ}
for some threshold value λ, turns out to be a cornerstone for many multivari-
ate statistical methodologies. Such methodologies include notions of stochastic
ordering (including majorization with close relation to excess mass estimation),
clustering, classification, data depth, mode hunting, multivariate quantiles, non-
parametric maximum likelihood estimation under order restriction, goodness-of-fit
testing, testing for modality and partially identified models with applications in
anomaly detection, astronomy, chemometrics, econometrics, intrusion detection,
medical imaging, and more.

Various types of functions h have been considered, such as probability densities,
depth functionals, regression functions, and weighted differences of probability
densities. In the context of partially identified models, the function h is a function
of the parameter of the underlying parametric model, i.e. the corresponding level
set is a subset of the parameter space.

The construction of the statistical methods requires the estimation of level
sets. Direct estimation methods include the excess mass and the minimum volume
approach. These methods require the specification of a model for level sets in terms
of a class of candidate sets (e.g. convex sets). Should the model be misspecified,
then the corresponding direct estimation methods lead to certain generalizations
of level sets, such as minimum volume sets or generalized λ-clusters. Indirect
methods are based on plug-in estimators of the corresponding function h.

In this talk we will discuss the indicated statistical methodology and their re-
lations under the point of view of (generalized) level sets, and we will discuss
relations among these methodologies.

References

[1] Bugni, F. (2010): Bootstrap inference in partially identified models defined by moment
inequalities: coverage of the identified set. Econometrica 76, 735-753.
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[6] Manski, C.F. (1989). Anatomy of the selection problem. J. Hum. Resources 24(3), 343 -
360.

[7] Müller, D.W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality.
J. Amer. Statist. Assoc. 86 738–746.



696 Oberwolfach Report 13/2011

[8] Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters–
an excess mass approach. Ann. Statist. 23 855–881.

[9] Polonik, W. (1997). Minimum volume sets and generalized quantile processes. Stochastic
Process. Appl. 69 1 - 24.
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Depth, Outlyingness, Quantile, and Rank Functions

Robert Serfling

Outlyingness, quantile, and rank functions are well understood in the univariate
data setting. In the multivariate setting, these along with depth functions have
been developed in recent years into a new nonparametric multivariate statistical
analysis methodology that is better tuned to the geometric nature of data in higher
dimensions. Contours and level sets play a focal role here, but to date the potential
application of some general theory on level sets that has developed in parallel to
the depth function development has not been exploited well. This Workshop is
designed to establish strong connections between the level sets and depth functions
communities. In particular, this is an opening talk providing an overview of the
landscape of depth functions, broadly considered. It provides a general framework
for the various talks at this Workshop on specific “depth function” topics, a general
orientation for the “level sets” community at this Workshop, and a prelude to
discussion of a “level sets–depth functions synergy” at this Workshop. Key topics
in this talk are:

• Relations among depth, outlyingness, quantile, and rank functions in R
d.

• Desirable properties, especially affine invariance and equivariance.
• Applications.
• Computation.
• Convergence theory for sample versions.
• Extensions to abstract settings, for a broader range of inference problems.
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the American Statistical Association 104 (2009), 718–734.
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Detection of Spatial Clusters with the Scan and the Average
Likelihood Ratio

Guenther Walther

(joint work with Hock Peng Chan)

We are concerned with the problem of detecting a deterministic signal with un-
known spatial extent against a noisy background. The standard statistical tool
to address this problem is the scan statistic (maximum likelihood ratio statistic),
which considers the maximum of local likelihood ratio statistics on certain subsets
of the data. There is a large body of work on scan statistics, see e.g. [5]. But there
is also empirical evidence that the scan statistic is suboptimal, see e.g. [7, 2].
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[10, 4] propose to use the average of the likelihood ratio statistics instead of
their maximum. In the first part of the talk we present the results of a theoretical
comparison of these two methods in the prototypical univariate sampled data
model with white Gaussian noise and we obtain the following results:

The scan statistic possesses optimal detection power only for signals with the
smallest spatial extent. Otherwise the scan statistic is suboptimal, and the loss
of power can be considerable for signals having a large spatial extent. In the case
of the average likelihood ratio (ALR) statistic, these conclusions hold in reversed
order: The ALR possesses optimal detection power for signals having large spatial
extent, but is suboptimal for signals with small spatial extent. However, the loss
of power in the latter case is so small that it is unlikely to be of concern, at least
for most sample sizes considered today.

Next we consider simple modifications to obtain universal optimality for both
the ALR and the scan. The ALR averages the likelihood ratios pertaining to ∼ n2

stretches of the data, where n is the sample size, resulting in an O(n2) algorithm.
Thus the use of the ALR is computationally infeasible even for moderate sample
sizes. We introduce a condensed ALR that averages only a certain subset of
the likelihood ratios and we show that this condensed ALR possesses optimal
detection power for signals having arbitrary spatial extent. Furthermore, this
condensed ALR can be computed in almost linear time, viz. with an O(n log2 n)
algorithm. In light of the preceding discussion, it is arguably this improvement
in computation time rather than the small gain in detection power that is the
main advantage of this modification. We note that typically, an approximation
introduced to make a procedure computationally less intensive will on the flip side
degrade its performance somewhat. It is thus noteworthy that in the case of the
ALR, our computationally efficient modification will actually lead to an improved
(in fact: optimal) performance.

In the case of the scan, optimality obtains by employing critical values that
depend on the size of the region under consideration. Two possible ways to im-
plement this idea are via penalization as introduced in [6] or by grouping regions
that have about the same size into blocks as in [11]. Various efficient algorithms
for computing a good approximation to the scan statistic have been introduced
in [8, 1, 11, 9]. Unlike the ALR, constructing a computationally efficient approxi-
mation for the scan will not lead to universally optimal power. Rather, statistical
optimality for the scan derives from employing size-dependent critical values.

We then consider the detection problem in the multivariate Bernoulli model.
Our examination suggests that the main conclusions from above extend to the
multivariate case, and we present sharp results for the special case of the Bernoulli
model in R2.
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Data Depth and Multivariate Spacings, Ordering and Beyond

Regina Y. Liu

(joint work with Juan A. Cuesta-Albertos, Jun Li)

Spacings derived from univariate order statistics have been the foundation for
much of the development in statistical inference and nonparametric statistics. The
excellent treatise by R. Pyke (1965) as well as the references therein and thereafter
all attest to the importance of spacings. In his paper R. Pyke lamented,

Perhaps the most significant restrictions of this paper has been
our concern with one-dimensional spacings. There are many ap-
plications in which samples are drawn from two- or even three-
dimensional space and for which it is important to study the spac-
ings of the observations.

Although research on spacings has continued, his call for multivariate spacings has
remained largely unanswered. The main difficulty in generalizing the univariate
spacings to multivariate settings is the lack of suitable ordering schemes for mul-
tivariate observations. Using the multivariate order statistics derived from data
depth, we introduce and develop multivariate spacings. Specifically, the spacing
between two consecutive order statistics is the region which bridges the two order
statistics, in the sense that the region contains all the points whose depth val-
ues fall between the depth values of the two consecutive order statistics. These
multivariate spacings can be viewed as a data-driven realization of the so-called
”statistically equivalent blocks”. These spacings assume a form of center-outward
layers of ”shells” (”rings” in the two-dimensional case), for which the shapes of
the shells follow closely the underlying probabilistic geometry.

We discuss the properties and applications of these spacings. For example, we
use the spacings to construct multivariate tolerance regions. The construction
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is nonparametric and completely data driven, and the resulting tolerance region
reflects the true geometry of the underlying distribution. This is different from
the existing approaches which require that the shape of the tolerance region be
specified in advance.

Finally, we also discuss several families of multivariate goodness-of-fit tests
based on the proposed spacings.

References

[1] R. Pyke, Spacings, Journal of the Royal Statistical Society. Series B (Methodological) 27

(1965), 395-449.
[2] J. Li, and R. Liu, Multivariate spacings based on data depth: I. construction of nonpara-

metric multivariate tolerance regions, Annals of Statistics 36 (2008), 1299-1323.
[3] J. Cuesta-Albertos, J. Li, and R. Liu, Multivariate spacings based on data depth: II.

Goodness-of-fit tests, preprint.

Weighted Generalisation of Halfspace Depth

Daniel Hlubinka

(joint work with Lukáš Kot́ık)

The data depth is capturing global properties of the underlying probability dis-
tribution unlike the probability density function which is purely local. Both the
global and the local view to the distribution have its advantages and disadvantages
in applications. In our lecture we propose a way how to include local behaviour
of the probability density function into a (generalised) halfspace depth function.
The idea is very simple but it allows surprisingly flexible shapes for the central
depth regions which need not to be convex, star-shaped or even connected.

The main idea is to introduce the weight function to the depth calculation.
Consider a function w(x, s) : Rd ×R

d → R
+ and define the depth of point θ ∈ R

d

w.r.t. the probability distribution P as

(1) D(θ, P ) = inf
s,‖s‖=1

Ew(X − θ, s), DN (θ, Pn) = inf
s,‖s‖=1

1

N

N∑

i=1

w(Xi − θ, s)

where s represents a normal vector to the halfspace border hyperplane and X is
a random variable distributed according to the probability distribution P , DN

being the sample version of D based on iid sample of size N from P . In some
sense generalised halfspaces are replacing the usual halfspace in (1).

There is a natural question on the possible choices of the weight function w. It
is clear that the choice w(x, s) = 1〈x,s〉≥0, i.e., w being an indicator of a halfspace
gives the usual halfspace depth. On the other hand w(x, s) = k(x), k being some
kernel centred at 0 (Gaussian, Epanechnikov, Uniform, . . . ) gives a kernel density
estimation and hence the depth central regions become the plug-in density level
sets estimators. Therefore choosing the weight function w one controls the “global”
and the “local” properties included in the depth values.
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The central regions of this generalised halfspace depth are typically smaller
in the Lebesgue measure sense than the corresponding halfspace depth central
regions. Also the “shape” of the underlying distribution is better captured by
the generalised depth (except the elliptically symmetric distributions where depth
and density contours are equivalent). The generalised depth shows quite good
performance in particular in classification problems.

References

[1] D. Hlubinka, L. Kot́ık and O. Vencálek, Weighted halfspacedepth, Kybernetika 46 (2010),
125–14*.

Data Mining Methods Based on Kernelized Spatial Depth

Xin Dang

Statistical depth functions provide center-outward ordering of points with respect
to a distribution or a date set in high dimensions. Of the various depth notions,
the spatial depth is appealing because of its computational efficiency. However,
it tends to provide circular contours and fail to capture well the underlying prob-
abilistic geometry outside of the family of spherically symmetrical distributions.
We propose a novel statistical depth, the kernelized spatial depth (KSD), which
generalizes the spatial depth via positive definite kernels. By choosing a proper
kernel, the KSD can capture the local structure of a data set while the spatial
depth fails. We demonstrate this by the half-moon data and the triangle-shaped
data. Based on the KSD, we propose a novel outlier detection algorithm, by which
an observation with a depth value less than a threshold is declared as an out-
lier. The proposed algorithm is simple in structure: the threshold is the only one
parameter for a given kernel. It applies to a one-class learning setting, in which
“normal” observations are given as the training data, as well as to a missing label
scenario where the training set consists of a mixture of normal observations and
outliers with unknown labels. We give upper bounds on the false alarm proba-
bility of a depth-based detector. These upper bounds can be used to determine
the threshold. We perform extensive experiments on synthetic data and data sets
from real applications. The proposed outlier detector is compared with existing
methods. The KSD outlier detector demonstrates competitive performance.

KSD is extended to graph data, where pairwise relationships of objects are given
and represented by edges. Several graph kernels including a new proposed one,
complement Laplacian kernel, are considered for ranking the ”centrality” of graph
vertices. An application of graph ranking to gene data is briefly discussed. Six gene
expression profiles from the Gene Expression Omnibus (GEO) include three DNA
reactive agents to induce genotoxic stress, two DNA non-reactive agents to induce
cytotoxic stress and one control group. The goal is to identify the most important
genes differentiating genotoxic compounds from the cytotoxic compounds. We
first construct a bipartite graph from the Gene Ontology (GO), which describes
dependent structure of genes. For each compound, add weights to the bigraph
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using the gene expression data. Run the KSD algorithm on each bi-graph to de-
velop a gene expression profile of ranked genes for each compound. Then compare
the ranked gene sets to find the genes which are differently regulated between two
group treatments.

A clustering algorithm based on KSD is also proposed. Preliminary results
show it promising. With successes in the application, theoretical developments of
KSD are demanding. The talk will be ended with questions:

(1) What properties does the KSD possess?
If the kernel is fixed, continuity of KSD Dκ(x,F) as a function of x and
continuity as functional F can be established. Also, consistency and as-
ymptotic normality of sample KSD can be established via the practice of
V -statistic theory. Influence function can be used for robustness analy-
sis. However, usual desired properties of depth functions may fail because
KSD fails to provide center-outward global ordering. Kernelized spatial
median and kernelized spatial quantile are also briefly discussed.

(2) What’s the role of parameter in the kernel? How to choose it optimally?
(3) What is relationship between KSD and kernel density estimation?

References

[1] Y. Chen, X. Dang, H. Peng and H. Bart, Outlier detection with the kernelized spatial depth
function, IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2) 2009, 288-
305.

[2] C. Gao, X. Dang, Y. Chen and D. Wikins, Graph ranking for exploratory gene data analysis,
BMC Bioinformatics 10(Suppl 11) 2009.

Robust Kernel Density Estimation

Clayton Scott

(joint work with JooSeuk Kim)

This talk describes a method of nonparametric density estimation that exhibits
robustness to contamination of the training sample, meaning the training sample
consists of some realizations that are not from the density being estimated. This
problem is motivated, for example, by anomaly detection applications. When
labeled examples of anomalies are unavailable, it is common to define an anomaly
detector by thresholding a density estimate based on non-anomalous data. In
applications where it is difficult or impossible to obtain a pure sample (containing
no anomalies), robust density estimation can mitigate the impact of contamination.

Let X1, . . . ,Xn ∈ R
d be a random sample from a distribution F with a density

f . We imagine f = (1 − ǫ)f0 + ǫf1, where f1 represents the anomalous compo-
nent. No assumptions are made on f0 or f1. The kernel density estimate of f is

f̂KDE (x) = 1
n

∑n
i=1 kσ (x,Xi), where kσ (x,Xi) is for concreteness assumed to be

the Gaussian kernel kσ(x,Xi) = (
√
2πσ)−d exp(−‖x−Xi‖2/2σ2).

For the Gaussian kernel, there exists a mapping Φ : Rd → Hσ, where Hσ is an
infinite dimensional Hilbert space, such that kσ (x,x

′) =
〈
Φσ(x),Φσ(x

′)
〉
. We will
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assume that Φσ(x) is the canonical feature map, Φσ(x) = kσ(·,x). We also recall
the reproducing property, which states that for all g ∈ Hσ, g(x) = 〈Φσ(x), g〉 [1].

From this point of view, the KDE can be expressed as

f̂KDE(x) =
1

n

n∑

i=1

〈
Φσ(x),Φσ(Xi)

〉
=

〈
Φσ(x),

1

n

n∑

i=1

Φσ(Xi)

〉
.

By the reproducing property of Φσ(x), f̂KDE ∈ Hσ can be seen as 1
n

∑n
i=1 Φσ(Xi),

the sample mean of Φσ(Xi)’s, or equivalently, the solution of

min
g∈Hσ

n∑

i=1

‖Φσ(Xi)− g‖2Hσ

.

For a robust loss function ρ(x) on x ≥ 0, the robust kernel density estimate is
defined as

(1) f̂RKDE = argmin
g∈Hσ

n∑

i=1

ρ
(
‖Φσ(Xi)− g‖Hσ

)
.

Well-known examples of robust loss functions are Huber’s or Hampel’s ρ.
It seems clear that this new estimator is a robust version of the KDE in the

Hilbert space, but in what sense is the corresponding function a robust estimate of
the density? Is the RKDE even a density? We address these questions as follows.

Representer Theorem: If ρ satisfies certain common assumptions, then

f̂RKDE(x) =
n∑

i=1

wikσ(x,Xi)

for some wi ≥ 0,
∑n

i=1 wi = 1. Therefore the RKDE is a density. Furthermore

wi ∝ ϕ(‖Φσ(Xi)− f̂RKDE‖)
where ϕ(t) = ψ(t)/t and ψ = ρ′. Notice that ϕ is a decreasing function for a
robust loss. Combining this with

‖Φσ(x)− f̂‖2Hσ

= 〈Φσ(x) − f̂ ,Φσ(x)− f̂〉Hσ

= ‖Φσ(x)‖2Hσ

− 2〈Φσ(x), f̂〉Hσ
+ ‖f̂‖2Hσ

= (
√
2πσ)−d − 2f̂(x) + ‖f̂‖2Hσ

,

the RKDE is such that lower weights are assigned to points in regions of lower
(estimated) density. Thus outlying data points contribute less to the estimate.

Computation: A kernelized form of iterative re-weighted least-squares is pre-
sented. The algorithm requires O(n2) steps per iteration, and often converges in
fewer than 10 iterations. For convex losses, the algorithm provably converges to
the global minimizer of (1). The algorithm can be viewed as finding a fixed point
of the equations in the aforementioned representer theorem.

Influence Function: We show how the influence function for an RKDE, based
on the empirical distribution, can be obtained by solving a system of linear equa-
tions. These equations also reveal the insensitivity of the RKDE to outlying data.
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Asymptotics: For fixed bandwidth σ, the infinite sample limits of the RKDE
is fσ = kσ ∗ pσ where

pσ(x) =
wσ(x)f(x)∫
wσ(y)f(y)dy

and wσ(x) = ϕ(‖Φσ(x) − fσ‖Hσ
). For the quadratic loss, pσ = f , whereas for

a robust loss, pσ is a modified version of f where points with lower density level
are down-weighted. Thus, the RKDE introduces a bias into the kernel density
estimator that down-weights the influence of outlying data.

Experiments: We take several benchmark data sets for binary classification,
and use them to create a contaminated sample. We then assess the ability of the
RKDE to estimate level sets of the non-anomalous component f0, evaluated in
terms of the area under the ROC. The RKDE with Hampel’s loss considerably
outperforms competing methods.
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Adaptive Density Level Set Clustering

Ingo Steinwart

A central and widely studied task in statistical learning theory is cluster analysis,
where the goal is to find clusters in unlabeled data. Unlike in supervised learning
tasks such as classification or regression, a key problem in cluster analysis is already
a conceptionally and mathematically convincing definition of the learning goal. A
widely but by no means generally accepted definition of clusters has its roots in
[1], where clusters are described to be densely populated areas in the input space
that are separated by less populated areas. The non-parametric mathematical
translation of this idea usually assumes that the data D = (x1, . . . , xn) ∈ Xn is
generated by some unknown probability measure P on a topological space X that
has a density h with respect to some known reference measure µ on X . Given a
threshold ρ ≥ 0, the clusters are then defined to be the connected components of
the density level set {h ≥ ρ}.

Historically, two distinct questions have been investigated for this cluster defi-
nition. The first one is the so-called single level approach, which tries to estimate
the connected components of {h ≥ ρ} for a single and fixed level ρ ≥ 0. The
single level approach has been studied by several authors, see, e.g., [4, 3, 7, 6, 8]
and the references therein, and hence it seems fair to say that it already enjoys a
reasonably good statistical understanding. Unfortunately, however, it suffers from
a conceptional problem, namely that of determining a good value of ρ.

The second approach tries to address this by considering the hierarchical struc-
ture of the connected components for different levels. To be more precise, if h is a
fixed density, which, for the sake of simplicity, is assumed to have closed density
level sets, and A is a connected component of {h ≥ ρ}, then, for every r′ ∈ [0, ρ],
there exists exactly one connected component B of {h ≥ ρ′} with A ⊂ B. Under
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some additional assumptions on µ and the density h, this then leads to a finite
tree, in which each node B is a connected component of some level set {h ≥ ρ′}
and all children of a node B are the connected components of {h ≥ ρ} for some
ρ > ρ′ that are contained in B. We refer to [4, 9, 2, 10] for definitions and methods
for estimating the structure of this tree. In particular, [2] show that in a weak
sense of [5], a modified single linkage algorithm converges to this tree under some
assumptions on the density h.

The goal of this work is to address the problem of the single level approach by
presenting a simple algorithm that automatically approximates the smallest pos-
sible value of ρ for which the level set {h ≥ ρ} contains more than one component.
In addition, the algorithm approximates the resulting components arbitrarily well
for n → ∞ under minimal and somewhat natural conditions, which include dis-
continuous densities. To this end, we first provide a definition for density level
sets that make them actually independent of the chosen density. Note that this is
necessary to deal with topological concepts such as connectivity without referring
to a particular, and typically rather arbitrary choice of the density. This makes
it mathematically rigorous to consider the infimum ρ∗ over all levels ρ for which
the corresponding density level sets contain more than one connected component.
For simplicity, we then assume that there exists some ρ∗∗ > ρ∗ such that the level
sets for all ρ ∈ (ρ∗, ρ∗∗] contain exactly two connected components. Note that
the persistence of the cluster structure over a small range of levels is assumed
either explicitly or implicitly in basically all density based clustering approaches.
Moreover, while the restriction to two components seems to be quite restrictive at
first glance, it turns out that it is actually more realistic than assuming more than
two components. Finally, in dimensions greater than one, one more assumption
on the level sets need to be made, namely one that excludes bridges and cusps
that are too thin and long. However, while this is certainly unpleasant, it seems
to be rather necessary, since such an assumption occurs in one form or the other
in most articles dealing with density clustering. With these assumptions our main
result then shows that a simple histogram based algorithm both approximates ρ∗

and the resulting clusters.
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Supervised Classification of Functional Data

Amparo Báıllo

The aim of supervised (binary) classification is to decide whether a random ob-
servation X (taking values in a feature space F endowed with a metric D) either
belongs to a population P0 or to another population P1. The decision is based on
the information provided by a training sample of correctly classified individuals
Xn = {(Xi, Yi), 1 ≤ i ≤ n}. Here Xi, i = 1, . . . , n, are independent replications of
X measured on n randomly chosen individuals, Y = 1{X∈P1} and 1A denotes the
indicator function on A.

The mathematical problem is to find a classifier gn(x) = gn(x;Xn), with gn :
F → {0, 1}, minimizing the classification error Ln = P{gn(X) 6= Y |Xn}. The
optimal classifier is the Bayes rule g∗(x) = 1{η(x)>1/2}(x), where η(x) = E(Y |X =
x). The Bayes error is L∗ = P{g∗(X) 6= Y }.

We are concerned here with the problem of discrimination of functional (or
infinite-dimensional) data. The space (F , D) is assumed to be a separable met-
ric space of functions. In [2] we review some differences between the finite- and
the infinite-dimensional settings that difficult the straightforward generalization
of finite-dimensional classification techniques to the infinite-dimensional frame-
work. In [3] there is a survey on supervised and unsupervised classification with
functional data.

Some existing functional classification methods are:
• adaptations of Fisher’s linear rule: [11], [12], [13], [16].
• k-nearest neighbours (k-NN) rule: [5], [6].
• kernel rule: [1], [4]. Kernel and k-NN rules are particular cases of the plug-
in methodology, where the unknown regression function η in the Bayes rule is
replaced by an estimator η̂.
• depth-based techniques. Some depth definitions applicable to the infinite-dimen-
sional setting are: spatial depth ([7], [15]), integrated dual depth ([9], [10]), random
Tukey depth ([8]), band depth ([14]) and h-modal depth ([9]).

In [2] it is shown that the Bayes rule can be explicitly computed for a class
of Gaussian processes with “triangular” covariance functions. Estimating the un-
known elements in the optimal rule yields parametric and nonparametric plug-in
classifiers. Under certain assumptions [2] obtain convergence rates in probabil-
ity to L∗ for the error Ln of the nonparametric plug-in classifier. It would be
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interesting to determine conditions under which depth-based procedures are also
Bayes-risk consistent.
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Data Depth and Quantiles in Infinite Dimensional Spaces

Probal Chaudhuri

There are several versions of quantile and depth functions available in finite dimen-
sional spaces. However, most of those finite dimensional versions do not have any
meaningful and natural extension for data or distributions in infinite dimensional
spaces. For instance, procedures based on simplices are restricted only to finite
dimensional spaces, and procedures based on linear functions (e.g., Tukey’s half-
space depth and projection depth) do not have statistically meaningful extensions
in infinite dimensional spaces. On the other hand, there are natural extensions of
spatial quantile and associated rank and depth functions in infinite dimensional
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spaces, and it can be shown that these extensions retain many of the interesting
and useful properties of their finite dimensional counterparts.

Weighted-Mean Regions: Theory and Estimation

Karl Mosler

(joint work with Rainer Dyckerhoff and Pavel Bazovkin)

Weighted-mean regions are the level sets of a new class of depth functions, the
weighted mean (WM) depth functions. They describe a probability distribution in
Euclidean d-space regarding location, dispersion and shape, and they order given
multivariate data with respect to their centrality. Also, they have a substantial
interpretation in terms of multivariate set-valued risk measures that are coherent.

The talk introduces the class of weighted-mean regions and their principal prop-
erties: affine equivariance, nestedness, continuity in the parameter as well as in the
distribution, subadditivity and monotonicity. The notion is illustrated with sev-
eral special cases, among them the zonoid regions ([6], [8]) and the ECH (expected
convex hull) trimming ([2]).

The weighted-mean regions of an empirical distribution are convex polytopes
in IR

d. A law of large numbers applies. Thus, given a sample, the empirical
regions serve as natural estimates for the regions of the underlying probability
distribution. In fact, the estimates can be computed for any dimension d by
exact and approximate algorithms. They build on methods from computational
geometry, by which the facets are characterized and their adjacency relations are
found ([7]).

Applications to multivariate risk measurement ([3]) and stochastic linear pro-
gramming are discussed.

The talk is based on joint work with Rainer Dyckerhoff ([4], [5]) and Pavel
Bazovkin ([1]).
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Data Depth for Regression and Autoregressive Models

Christine H. Müller

Data depth was generalized to regression by Rousseeuw and Hubert (1999) via the
concept of nonfit. Replacing the squared or absolute residuals in the concept of
nonfit by an arbitrary quality function, Mizera (2002) introduced a very general
concept of depth. Using a likelihood function as quality function leads to likelihood
depth, considered by Mizera and Müller (2004), Müller (2005), Denecke and Müller
(2009, 2011a,b). Although a likelihood function is given by a parametric model, the
resulting likelihood depth notion is often distribution-free. This holds in particular
for regression as Müller (2005) showed.

Additionally, any depth notion can be used as simplicial depth as Liu (1988,
1990) did with the half space depth of Tukey (1975). The simplicial depth is an U-
statistic so that in principle its asymptotic distribution is known and tests can be
derived. However, this U-statistic is often degenerated so that the spectral decom-
position of a conditional expectation is needed and the asymptotic distribution
depends on the eigen values of this decomposition. These spectral decomposi-
tions were derived for linear and quadratic regression in Müller (2005), for general
polynomial regression in Wellmann et al. (2009), for multiple regression in Well-
mann and Müller (2010a), and for orthogonal regression in Wellmann and Müller
(2010b). Usually it is often not easy to derive this spectral decomposition. One
exception is the case of one unknown parameter as for linear regression through
the origin.

However, it is also possible that the simplicial depth is not a degenerated U-
statistic. This is the case when the underlying depth notion provides biased es-
timators as Denecke and Müller (2009, 2011a) showed. Then the asymptotic dis-
tribution is simply the normal distribution. But a bias correction is needed not
only for the estimators but also for the tests to avoid very bad power of the tests
for some alternatives. These bias corrections were derived in Denecke and Müller
(2009, 2011b,c) for one-parametric copulas and for the Weibull distribution. In
Denecke and Müller (2011a), a general theory is provided to obtain consistent
tests and estimators based on such depth notions. However, up to now the general
theory concerns only the case that one parameter is unknown.

I want to discuss the following extensions of the above approaches:
a) How to generalize the bias correction to the case of two or more unknown
parameters. In particular, the generalization to regression with exponential or
Weibull distributed observations shall be discussed since this is often used in life
time experiments.
b) How to extend the approach to dependent data, in particular to autoregressive
models. It seems that at least in the AR(1) model, where only one parameter is
unknown, the theory for linear regression through the origin could be used.
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Smooth Tree-Based Level Set Estimation

Gabriel Chandler

(joint work with Leif Johnson)

A level set of a regression function S is defined as the set on which the response
surface exceeds some threshold γ. We assume we observe the model Y = m(X)+ǫ
where Y ∈ ℜ and X ∈ ℜd and E(ǫ)=0. Thus, Sγ = {x : m(x) ≥ γ}. Willet and
Nowak (2005) proposed estimation of the level set via a tree based method based
on a dyadic partition of the unit cube, which is assumed to be the support of
the X . A pruning step is implemented, in which each branch (partition) of the
tree (space) is considered for removal for the tree. This consideration accounts
for how well this split explains the data and how small the branch is. More
formally, the method minimizes a weighted average of the empirical risk R̂(T ) and
a regularization term that measures the complexity of the tree Φ(T ), where T is
of the class of all possible dyadic trees with a bounded number of splits in each
dimension. The penalty term is weighted by a parameter ρ, which is difficult to
select. We propose a non-linear mapping of a region our data space back into
the d-dimensional hypercube such that relatively simple trees in this new space
correspond to good approximations of the boundary of the level set in our original
space. We conjecture that the selection of ρ is not so crucial should we only need
relatively simple trees (few branches) to attain a good estimate. As the simplest
(non-degenerate) tree has a single split in a single dimension, we would like to
map our boundary, a d−1 dimensional manifold in such a way that it corresponds
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to a d − 1 dimensional hyperplane with height 1/2 in the dth dimension (i.e. the
boundary corresponding to the simplest tree). To do this, we first take a rough tree
based estimate (only choosing ρ so the resulting estimate is connected, which we
assume to be true) to get an idea of the orientation of the true boundary. We then
smooth this boundary slightly, and construct an invertible map of the space near
the estimated boundary such that the boundary corresponds to the hyperplane
mentioned above, with points lying inside (outside) the estimated set falling above
(below) 1/2 in the dth dimension. In the new space, a tree based estimate is fit,
and this is mapped back into our original data space. This is then itself smoothed,
and the map is reapplied. This iterative procedure is continued for a fixed number
of iterations with the final estimate being the one with the smallest empirical risk.
The resulting estimate is not only smooth, but the smoothness is locally adaptive
(as smoothness is counteracted in the new space by more complicated trees being
fit), and automatic, as the only smoothing parameter chosen was the minimal
smoothing applied at each step.
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DD-Classifier: Nonparametric Classification Procedure Based on
DD-plot

Jun Li

(joint work with Juan A. Cuesta-Albertos, Regina Y. Liu)

Classification is one of the most practical subjects in statistics. It has many impor-
tant applications in different fields. Many existing classification algorithms assume
either certain parametric distributions for the data or certain forms of separating
curves or surfaces. These parametric classifiers are suboptimal and of limited use in
practical applications where little information about the underlying distributions
is available a priori. In comparison, nonparametric classifiers are usually more flex-
ible in accommodating different data structures, and are hence more desirable. In
the last two decades, data depth has emerged as a powerful nonparametric analysis
tool in various areas of multivariate statistics. It has offered several promising so-
lutions to classification problems. For instance, Christmann and Rousseeuw (2001)
and Christmann, et al. (2002) applied the idea of regression depth (see Rousseeuw
and Huber, 1999) to classification. Ghosh and Chaudhuri (2005a) used half-space
depth and regression depth to construct linear and nonlinear separating curves
or surfaces. In those depth based methods, a finite dimensional parametric form
(usually linear or quadratic) for the separating surface is often assumed. Thus,
these classifiers are not fully nonparametric. Ghosh and Chaudhuri (2005b) sub-
sequently proposed the maximum depth classifier, which assigns the observation
to the group for which it attains the highest depth value. This classification rule is
intuitively appealing and fully nonparametric, but it performs well only when the
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populations differ in location only and the prior probabilities of the populations
are equal. Recently, Cui et al. (2008) considered a maximum depth classifier based
on a modified projection depth. However, this classifier appears to work well only
under normal settings.

Using the DD -plot (depth-versus-depth plot), we introduce a new nonparamet-
ric classification algorithm and call it a DD -classifier. The algorithm is completely
nonparametric, and requires no prior knowledge of the underlying distributions
or of the form of the separating curve. Thus it can be applied to a wide range
of classification problems. The algorithm is completely data driven and its clas-
sification outcome can be easily visualized on a two-dimensional plot regardless
of the dimension of the data. Moreover, it is easy to implement since it bypasses
the task of estimating underlying parameters such as means and scales, which is
often required by the existing classification procedures. We study the asymptotic
properties of the proposed DD -classifier and its misclassification rate. Specifically,
we show that it is asymptotically equivalent to the Bayes rule under suitable con-
ditions. The performance of the classifier is also examined by using simulated and
real data sets. Overall, the proposed classifier performs well across a broad range
of settings, and compares favorably with existing classifiers. Finally, it can also be
robust against outliers or contamination.
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On Statistical Properties of Sets Fulfilling Rollling–Type Conditions

Ricardo Fraiman

(joint work with Antonio Cuevas and Beatriz Pateiro)

Motivated by set estimation problems, we consider three closely related shape
conditions for compact sets: positive reach, r-convexity and rolling condition. The
first one (introduced by Federer (1959)) is maybe the most popular one, due to its
relevant role in geometric measure theory. First, the relations between these shape
conditions are analyzed. Second, a result of “full consistency” (i.e., consistency
with respect to the usual set distances, plus boundary Hausdorff-convergence) is
obtained for the estimation of sets fulfilling a rolling condition. Third, the class of
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uniformly bounded compact sets whose reach is not smaller than a given constant
r is shown to be a P -uniformity class (in Billingsley and Topsøe’s (1967) sense)
and, in particular, a Glivenko-Cantelli class. Fourth, under broad conditions,
the r-convex hull of the sample is proved to be a fully consistent estimator of
an r-convex support in the two-dimensional case. Moreover, its boundary length
is shown to converge (a.s.) to that of the underlying support. This provides a
simple efficient estimator of the boundary length based on just one inner sample.
Fifth, the above results are applied to get new consistency statements for level set
estimators based on the excess mass methodology (Polonik, 1995).
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Robust Classification for Skewed Data

Mia Hubert

(joint work with Stephan Van der Veeken, Irène Gijbels)

In the first part of the talk, we propose several classification rules for skewed dis-
tributions. They are based on the adjusted outlyingness (AO), as introduced in
Brys et al. (2005) and applied to outlier detection in Hubert and Van der Veeken
(2008). The new rules combine ideas of AO with the classification methods pro-
posed in Ghosh and Chaudhuri (2005) and Billor et al. (2008). The first classifier
is described in Hubert and Van der Veeken (2010) and assigns a new observation
to the group to which it attains the minimal adjusted outlyingness. The other
two rules adjust for the group sizes and perform better when the group sizes are
unequal.

In the second part of the talk, we investigate how we can reduce the mean
squared error of the medcouple, a robust estimator of skewness, which is needed
to compute the adjusted outlyingness. As already theoretically pointed out by
Fernholz (1997), smoothing the empirical distribution function with an appropriate
kernel and bandwidth can reduce the variance and mean squared error of some
quantile-based estimators in small data sets. We apply this idea on several robust
estimators of location, scale and skewness. We also propose a robust bandwidth
selection procedure and show that the use of that bandwidth indeed often leads
to smaller MSEs.
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Estimation of Extreme Risk Regions Under Multivariate Regular
Variation

John H. J. Einmahl

(joint work with Juan-Juan Cai, Laurens de Haan)

When considering d possibly dependent random variables with joint probability
law P one is often interested in extreme risk regions, with very small probability
p. We consider risk regions Q of the form {z ∈ R

d : f(z) ≤ β}, where f is the
density corresponding to P and β a small number, determined by PQ = p. Such
a region has the property that it consists of the less likely points and hence that
its complement is as small as possible.

The values of p we consider are typically of order 1/n. This means that the
number of data points that fall in Q is small and can even be zero, i.e. we are
extrapolating outside the sample. This lack of relevant data points makes estima-
tion difficult. The estimation of Q is a multivariate analogue of the estimation of
extreme quantiles in the univariate setting, see, e.g. de Haan and Ferreira (2006),
Chapter 4. The multivariate case is much more complicated, however, since we
have to estimate a set instead of a number.

Having an estimate of Q can be important in various settings. E.g., it can be
used as an alarm system in risk management: if a new observation falls in the
estimated Q it is a signal of extreme risk. See Einmahl, Li, and Liu (2009) for an
application to aviation safety along these lines.

Given a random sample of multivariate regularly varying random vectors with

law P , we construct a “statistics of extremes” estimator Q̂n of Q. When p → 0,
we prove that, under certain conditions,

P (Q̂n△Q)/p
P−→ 0, as n→ ∞,

and hence

P (Q̂n)/p
P→ 1.

Obviously Q̂n depends on p. Starting from a very small Q̂n we can enlarge
it until it first hits an observation. This observation is the “largest” one and it
has a “p-value” attached to it. This is helpful in deciding whether an observation
is the most atypical (or: an outlier). Also, by continuing this procedure we can
introduce a ranking of the larger observations.

In a detailed simulation and comparison study the good performance of the
procedure is demonstrated. We also apply our estimator to financial data.
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Prof. Dr. Christine H. Müller

Fakultät für Statistik

Technische Universität Dortmund

44221 Dortmund



Mini-Workshop: Level Sets and Depth Contours in High Dimensional Data 717

Prof. Dr. Wolfgang Polonik

Department of Statistics

University of California, Davis

One Shields Avenue

Davis CA 95616

USA

Prof. Dr. Clayton Scott

Electrical Eng. & Comp. Science Dept.

The University of Michigan

Ann Arbor , MI 48109-2122

USA

Prof. Dr. Robert J. Serfling

Department of Mathematical Sciences

University of Texas at Dallas

Richardson , TX 75080

USA

Prof. Dr. Ingo Steinwart

Fachbereich Mathematik

Universität Stuttgart

Pfaffenwaldring 57

70569 Stuttgart

Kaveh Vakili

Departement Wiskunde

Faculteit der Wetenschappen

Katholieke Universiteit Leuven

Celestijnenlaan 200B

B-3001 Leuven

Prof. Dr. Günther Walther

Department of Statistics

Stanford University

Sequoia Hall

Stanford , CA 94305-4065

USA




