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Introduction by the Organisers

The workshop, Geometric Quantization in the Non-compact Setting, organized by
Lisa Jeffrey (Toronto), Xiaonan Ma (Paris) and Michèle Vergne (Paris) was held
February 13th - February 19th, 2011.

The meeting was attended by 48 participants, representing researchers from
many European countries, and Australia, Canada, China, Japan, USA. Unfortu-
nately, Lisa Jeffrey could not be present because a minor injury before the meeting
made it impossible for her to travel.

The meeting was devoted to the following theme (and adjacent themes). Let
G be a Lie group acting on a manifold M . Assume that G preserves some data
(D), such as a symplectic structure, or a differential operator on M , or a fibra-
tion, . . ., then the aim of Geometric Quantization is to associate to these data a
representation of G in a vector space Q(M,D), and to analyze the relations of
the quantum space Q(M,D) with the classical data (M,D). There are diverse
constructions of the quantum space Q(M,D). They should all have some functo-
rial properties, summarized in the maxim (only a hope or guiding principle rather
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than an established fact in this very general setting): quantization commutes with
reduction.

To report on the recent progress overcoming a certain number of difficulties,
arising in the case of a noncompact manifold, or a noncompact group G, was an
important goal for this meeting. However, important results on the quantization
in the case of compact manifolds were also reported in this meeting.

Thus the topic of our meeting included deformation quantization of functions
on a symplectic manifold via Toeplitz operators, branching rules for unitary repre-
sentations of real Lie groups, equivariant index of transversally elliptic operators,
quantization of Hamiltonian manifolds with proper moment maps, group valued
moment maps, Lagrangian fibrations.

It was not clear to the organizers that our choice of participants working on these
many diverse topics and with many different techniques (topologicalK-theory, an-
alytic estimates, C∗-algebras, representation theory) could lead to anything other
than a series of talks with disjoint attendance. However, we think that the meeting
was very successful in making bridges between the many different approaches to-
wards a general common goal. This is certainly due to the very unique atmosphere
of the Oberwolfach setting.

There were 22 talks of approximately 50 minutes, 7 talks of 30 minutes, and a
session of short talks by young postdocs. All the speakers presented interesting
new results, and they were concerned with clearly communicating the results of
their research to an audience, possibly not familiar with techniques used, although
interested in same themes. Thus our meeting was successful due to the efforts of
the speakers. Certainly, this meeting will produce new ideas in the future in the
participants’ research, generated by attending a live presentation of new points of
view.

Let us give some details on the topics of the conference:
• Quantization Q(M,L) of a noncompact symplectic manifoldM provided with

a line bundle L.
Methods via C∗-algebras, or transversally elliptic operators or cutting methods

were presented.
Hamiltonian manifolds such as the cotangent bundle of a manifold are a classical

topic in mechanics. The list of other interesting Hamiltonian manifolds include the
coadjoint orbits of real reductive Lie groups, representation spaces of fundamental
groups of a surface of genus g with value in a compact Lie group (moduli spaces
of flat bundles) or in a complex lie group (Hitchin moduli spaces). Results on the
quantisation of those manifolds were discussed.
• Toeplitz algebras: this leads to quantisation of the algebra of functions on

a symplectic manifold by studying asymptotic k estimates of the quantisation
Q(M,Lk) when the line bundle L is raised to its k-th power.
• The equivariant index of elliptic operators or of transversally elliptic operators.
Methods via C∗-algebras, the heat kernel or topological K-theory were pre-

sented.
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• Quantisation of integrable systems. This includes the theory of Lagrangian
fibrations (possibly singular) and Bohr-Sommerfeld orbits.
• Spectrum of the Laplacian or the hypoelliptic Laplacian. Zeta functions of

the Laplacian, analytic torsion.
Detailed information on the topics presented are given in the abstracts.
We had asked several young researchers to prepare a poster on their research

before coming to Oberwolfach. Wednesday evening was then devoted to a special
session of short talks and posters. Talks given by the younger researchers were
dynamic and very well prepared. Furthermore, although the talks were necessarily
very short due to the lack of time, we had a poster session just after the introduc-
tory talks, and scientific informal discussions. This was the “must-see event” of
the workshop, and it went very well.

On behalf of all participants, we would like to thank the staff for their concern
in providing the best material conditions for our stay. The setting of Oberwolfach
is beautiful, the food of excellent quality, the library full of resources, and the staff
extremely helpful.

Thanks to Oberwolfach grants, four young researchers: Solha (Barcelona), Del-
tour (Montpellier), Hochs (Utrecht), Szilagyi (Geneve) could participate to our
workshop.

Finally, as organizers, we would like to thank the director and his staff for their
great help in the scientific organization. In particular, the director explained the
general policy of the Oberwolfach meeting to us, which was very helpful.

1. Program of the conference

Monday, 14/02/2011

9h00-10h00 G. Marinescu
Toeplitz operators and geometric quantization

10h10–11h10 P. Ramacher
Singular equivariant heat asymptotics and Lefchetz formulas

11h20 -12h20 M. Duflo
Kirillov’s formula and Box splines

14h30–15h30 P-E. Paradan
Spin quantization in the compact and non-compact setting

16h00-17h00 T. Kobayashi
Geometric quantization, limits and restrictions–some examples for elliptic and

minimal orbits

17h10-18h10 B. Ørsted
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Deformation of Fourier transformation

Tuesday, 15/02/2011

9h00-10h00 J. Brüning
Formulas for the multiplicities of the equivariant index

10h10–11h10 W. Zhang
Geometric quantisation for proper moment maps

11h20 -12h20 L. Boutet de Monvel
Asymptotic equivariant index of Toeplitz operators on spheres

16h00-17h00 W. Müller
Dynamical zeta functions and analytic torsion

17h10-18h10 K-I. Yoshikawa
Singularities and Analytic Torsion

Evening talk: 20h00-21h00 J.M. Bismut
Hypoelliptic Laplacian

Wednesday, 16/02/2011

8h50-9h40 G. Kasparov
K-theoretic index theorems for transversally elliptic operators

9h50-10h40 V. Mathai
Geometric quantization commutes with reduction

11h00–11h50 P. Piazza
Eta cocycles, relative pairings and Godbillon-Vey index theorem

12h00 -12h50 T. Schick
L2-Betti numbers and their values

20h00 –21h30 Short talks and Poster session
M. Hamilton
Real and complex quantization of flag manifolds
P. Hochs
Quantization commutes with reduction at non-trivial representation
S. Fitzpatrick
Quantization of manifolds with f-structure
R. Solha
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Geometric quantization of integrable systems with singularities
Z. Szilagyi
An equivariant Jeffrey-Kirwan formula in non-compact case

Thursday, 17/02/2011

9h00-10h00 H. Fujita
Localization of Riemann-Roch numbers via Torus fibrations

10h10–11h10 A. Szenes
Enumerative topology of quotients

11h20 -12h20 E. Meinrenken
Verlinde formulas for non-simply connected groups

16h00-17h00 G. Heckman
On the regularization of the Kepler problem

17h10- 17h40 G. Deltour
Symplectic and Hamiltonian properties of holomorphic co-adjoint orbits

17h40– 18h10 A-L. Mare
On the image of real loci of symplectic manifolds under moment maps

Friday, 18/02/2011

9h00-9h30 E. Miranda
From action-angle coordinates to geometric quantization: a30-minute round trip

9h30-10h00 C. Procesi (presented by M. Vergne)
Multiplicities formulas for transversally elliptic operators

10h20-10h50 S. Wu
Quantization of the cotangent bundle of Lie groups

10h50–11h20 J. Huebschmann
Singular Kähler quantization on the moduli space of semi- stable holomorphic

vector bundles on a curve

11h40– 12h10 S. Goette
Perturbative analysis of the L2 heat kernel for large times

13h50–14h50 A. Alekseev
Tropical avatar of the Gelfand-Zeitlin integrable system
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Michèle Vergne (joint with Claudio de Concini, Claudio Procesi)
Multiplicities of the equivariant index of a transversally elliptic operator 509

Siye Wu (joint with William D. Kirwin)
Quantisation of the cotangent bundle of Lie groups . . . . . . . . . . . . . . . . . . 511

Ken-Ichi Yoshikawa
Singularities and analytic torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Weiping Zhang (joint with Xiaonan Ma)
Quantization on noncompact symplectic manifolds . . . . . . . . . . . . . . . . . . . 515



Geometric Quantization in the Non-compact Setting 433

Abstracts

The hypoelliptic Laplacian

Jean-Michel Bismut

The purpose of the talk was to given an elementary introduction to aspects of the
hypoelliptic Laplacian connected with the object of the conference.

The following 3 questions were given as a motivation for the talk, to which the
hypoelliptic Laplacian provides the proper answer:

(1) A trace formula can be viewed as a Lefschetz formula. Indeed, let X be a

compact Riemannian manifold. The trace of the heat kernel TrL
X
2

[
et∆

X
]

is the trace of the ‘group element’ g = et∆
X

on the vector space LX
2 . If

we consider the Hilbert space LX
2 as the cohomology of some complex,

then TrL
X
2

[
et∆

X
]
is the evaluation of a Lefschetz trace. Index theoretic

methods teach us that this trace should be equal to the supertrace of some
new ‘heat operator’ also depending on a parameter b > 0 on an adequate
resolution of LX

2 . For a complete development of this line of thought, we
refer to [6].

(2) Let G be compact connected Lie group, let g be its Lie algebra equipped
with an invariant scalar product. Let pt (g) be the heat kernel on G. In [1],
Atiyah raised the question of relating the evaluation of pt (g) as a sum over
a lattice in the Lie algebra t of a maximal torus to the localization formulas
of Duistermaat-Heckman [9], Berline-Vergne [2]. Arguments by Frenkel
[10] have shown that when certain smooth paths in G are identified with
coadjoint orbits of the loop group, such formulas are formal consequences
of Kirillov versus Lefschetz formulas for the characters of the loop group.
On the other hand, in finite dimensions, there is an efficient Gaussian
proof of localization formulas [3]. In [5], it is shown that the hypoelliptic
Laplacian provides the analytic counterpart to this Gaussian proof, which
is now extended to infinite dimensions.

(3) Witten’s deformation of the Hodge-de Rham Laplacian [13] provides an
interpolation between classical Hodge theory on a manifold X and the
Morse theory associated with a Morse function f . If X is replaced by its
loop space LX , and if f is now any of the classical Lagrangian function
on LX like the energy E, can one perform a similar interpolation? The
problem with the question is that there is no Hodge theory on LX . The
critical points of the E are the closed geodesics. In [4], we have provided
the proper construction of an existing object, the hypoelliptic Laplacian in
de Rham theory, which interpolates between the standard Hodge-de Rham
Laplacian of X and the Lie derivative associated with the generator of the
geodesic flow.

The analytic theory of the hypoelliptic Laplacian has been developed by Lebeau
and ourselves [8].
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If X is a Riemannian manifold, and if π : X → X is the total space of its
tangent bundle (or some bigger bundle), the hypoelliptic Laplacian Lb, b > 0 is an
operator of the form

(1) Lb =
1

2b2

(
−∆V + |Y |2 − n

)
− ∇Y

b
+ . . .

In (1), the first operator is the harmonic oscillator along the fibre, the second
operator is the generator of the geodesic flow. The remaining terms, in general
nonscalar, are related to the specific geometrical data one is trying to deform. If
one ignores these terms, as b→ 0, Lb tends in the proper sense to −∆X/2.

In the talk, the case of R and its compact quotient S1 was extensively reviewed.
In this case, the relevant operator is the operator of Kolmogorov [11],

(2) Lb =
1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
− 1

b
y
∂

∂x
.

The nonelliptic, non self-adjoint operator Lb can be shown to be conjugate by an
unbounded conjugation to the self-adjoint elliptic operator

(3) Mb =
1

2b2

(
− ∂2

∂y2
+ y2 − 1

)
− 1

2

∂2

∂x2
.

The conjugation, a bizarre version of Egorov’s theorem, takes the form

(4) exp

(
b
∂2

∂x∂y

)
Lb exp

(
−b ∂2

∂x∂y

)
=Mb.

Let NΛ·(R) be the number operator of Λ· (R). Set

(5) Lb = Lb +
NΛ·(R)

b2
.

In the talk, for t > 0, I established the identity of operators acting on C∞,c (R,R),

(6) exp

(
t

2

∂2

∂x2

)
= Trs [exp (−tLb)] .

In the right-hand side, the supertrace is taken with respect to the variable y, and
also with respect to Λ· (R). By introducing the proper index theoretic formalism,
equation (6) can be viewed as an operator valued index formula, which explains
the independence on b > 0 of the right-hand side. Making b→ 0 exactly gives the
left-hand side. Making b→ +∞ gives the classical Gaussian formula for the heat
kernel on R.

In our proof of Selberg’s trace formula [6], the above formalism was extended
to general symmetric spaces of noncompact type. The Dirac operator of Kostant
[12] plays a crucial role in the constructions.

For more details on various aspects of this talk, we refer to the survey [7].



Geometric Quantization in the Non-compact Setting 435

References

[1] M. F. Atiyah. Circular symmetry and stationary-phase approximation. Astérisque, (131):43–
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Asymptotic Equivariant Index of Toeplitz Operators on the Sphere

Louis Boutet de Monvel

Toeplitz operators, in the sense of my book with V. Guillemin, live on arbitrary
contact manifolds, generalising pseudodifferential operators. We recall that an
oriented contact manifoldX is a smooth manifold of odd dimension 2n−1 equipped
with a contact form λ (two forms define the same structure if they are positive
multiples of each other). Here X will always be supposed to be compact. X is the
basis of a symplectic cone Σ, e.g. the set of positive multiples of λ in T ∗X (the
correspondence between symplectic cones and contact manifolds is an equivalence
of categories). In pseudodifferential theory the relevant symplectic cone is the
cotangent bundle T ∗V of a smooth manifold V , deprived of its zero section, and
the contact manifold is the cotangent sphere S∗V .

Toeplitz operators behave much in the same way as pseudodifferential operators.
They act on a scale of Hilbert spaces Hs (mimicking the Sobolev spaces), and they
give rise to the same symbolic calculus, which lives on Σ: if P is of degree p (acting
continuously Hs → Hs−p), its symbol σp(P ) (or σP ) is a smooth function on Σ,
homogeneous of degree p; for two operators we have

σp+q(PQ) = σp(P )σq(Q), σp+q−1([P,Q]) =
1

i
{σp(P ), σq(Q)}
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where [P,Q] denotes the commutator and { , } the Poisson bracket of Σ.
H :

⋃
Hs is the range of a generalised Szegö projector (see [2, 3]) mimicking

the Szegö projector of a boundary complex structure. If Σ is embedded in a
cotangent bundle T ∗V , this is a Fourier integral projector in L2(V ). Toeplitz
operators mod C∞ acting on H mod C∞ define a sheaf, locally isomorphic to the
sheaf of pseudodifferential operators acting on microfunctions; they form a sheaf
of algebras which can be represented by a star-product (not canonically, as for
pseudodifferential operators).

More generally one can define Toeplitz operators acting on sections of vector
bundles (generalised Szegö projectors acting on sections of vector bundles exist).

There is an obvious notion of elliptic operator (the principal symbol is elliptic).
Such an operator has an index. However this index in general cannot give rise
to a useful topological formula. In fact it can be shown that the Toeplitz space
H is essentially well defined, independently of the choice of a Szegö projector, or
of the manner in which Σ is embedded: for any two choices H1,H2 there exists
a Fourier integral operator F : H1 → H2 which behaves as an elliptic operator
- in particular it is Fredholm and preserves Toeplitz operators. But it is not
better than Fredholm and one has no control on its index; only the Toeplitz
algebra mod C∞ is well defined, and unique (up to non unique isomorphism). A
comparable pseudodifferential situation is the following: let E be a vector bundle
on the cotangent sphere S∗V (V compact). Then E can be realised as a direct
summand of some trivial bundle L, with projector pE . It is immediate that pE is
the symbol of a pseudodifferential projector PE , with range HE and one can then
define pseudodifferential operators HE → HF ; if such an operator is elliptic it has
an index; but this cannot be intelligently computed because the projectors PE , PF

are by no means unique and without further data the range is at best defined up
to a finite dimensional space.

All the constructions and statements above allow a compact group action; in
particular if G is a compact group acting on a compact contact manifold X , there
exists an invariant generalised Szegö projector, and this is “essentially unique”
as above. The equivariant asymptotic index theory is an outgrowth of Atiyah’s
equivariant index theory [1] for transversally elliptic operators in presence of a
compact group action, but still meaningful for Toeplitz operators; we used it in [4]
to prove the Atiyah-Weinstein conjecture about the relative index of CR structures.

Associated to the group action is the characteristic set char g ⊂ Σ, which is
the set where the symbols of all infinitesimal generators vanish (if u ∈ g - the Lie
algebra - it defines a vector field Lu on X which preserves the Szegö projector,
and a Toeplitz operator Tu (the restriction of Lu to H); char g is the set where all
symbols σ(Tu) vanish; its basis Z ⊂ X is the set where all vectors Lu are orthogonal
to the contact form). A Toeplitz operator (or system of such) is G-elliptic if its
principal symbol is invertible on char g (transversally elliptic in [1] - but there
is nothing much to be transversal to in the Toeplitz context). If an equivariant
Toeplitz system A is G-elliptic it can be shown, as in [1], that although it may not
be Fredholm, its restriction to all isotypic components are. Its equivariant index



Geometric Quantization in the Non-compact Setting 437

is then defined as a virtual infinite representation IndG(A) whose character is a
central distribution on G: ∑

α

1

dα
Ind(Aα) χα

(α ranges among all classes of irreducible representations, with character χα and
degree dα; Aα denotes the component ot type α of A).

As above, although the equivariant index exists, it is not computable because
the Toeplitz spaces are at best defined up to finite dimensional spaces. The as-
ymptotic index was introduced to palliate this: it is the equivariant index mod
finite representations; its character is the singularity of a central distribution on
G (a distribution mod C∞).

If a Toeplitz system A is G-elliptic, its symbol defines an element [A] of the
equivariant K-theory (with compact support) KG(X − Z). It is immediate that
the asymptotic index is additive and deformation invariant, so it defines an index

map: KG(X − Z)→ R̂G/RG .

It is also shown (cf [3, 4]) that, for index computation purpose, any G-elliptic
Toeplitz system can be equivariantly embedded in a larger and simpler G-contact
manifold, just as in the 1968 proof of the Atiyah-Singer index theorem. The
embedding preserves the asymptotic index (not the absolute); the K-theoretic
counterpart is the Bott periodicity homomorphism, which is well defined since the
normal bundle of a contact embedding is symplectic. In particular one can embed
in the sphere of a numeric space CN with a unitary action of G.

To understand what the index looks like, as indicated by Atiyah [1], the first
case to examine is the case where G is a torus acting diagonally on a sphere. So
let now X = S2N−1 ⊂ V = CN be a sphere, equipped with a unitary action of a
torus G = Rm/Zm; the contact form is λ = Im (z̄ · dz), the Szegö projector is the
orthogonal projector on the space of boundary values of holomorphic functions:

Sf(z) =
1

vol(X)

∫

X

f(w)dσ(w)

(1− z · w̄)N .

The group action is given by g · z = (χk(g)zk) where χk = e2iπξk (k = 1 · · ·N)
are characters of G (ξk ∈ g∗ integral linear forms). If u ∈ g the symbol of 1

iTu is∑
ξk(u)zkz̄k (on unit covectors - this is also the moment of Lu).
We will from now on suppose that there is no fixed point: ξk 6= 0 (otherwise if

X1 is the sphere orthogonal to the fixed sphere, it is immediate that X1 − Z is a
deformation retract of X − Z so we are reduced to the former case).

A first simple case is when the action of G is elliptic, i.e. Z = ∅, equivalently
the infinitesimal characters ξk generate a strictly convex cone in g∗. In this case
all equivariant Toeplitz system are G-elliptic. The base space H is the space of

holomorphic functions; the element of R̂G it defines is β−1, with β = Π(1 − χk)
(the convention is that the inverse is expanded as a series of positive powers of the
χk); it is the index of the G-elliptic operator H→ 0, whose asymptotic index thus
is β−1 mod RG. All other indices are multiples of this by finite elements in RG.
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In this case (no fixed point) we have KG(X) = RG/RGβ so the asymptotic index

map is an isomorphism of KG(X) to its image RGβ
−1/RG ⊂ R̂G/RG.

In general, let X ′ be an elliptic subsphere of X in a coordinate subspace V ′.
The embedding procedure mentioned above takes the following form: let kV ” be
the Koszul complex of the orthogonal subspace V ” to X ′ (in negative degrees):

(Ek, d′′) with Ek = H⊗ ΛkV ′′∗ d′′ω(z′, z′′) =
∑

dz′′j
∂ω

∂z′′j

This is an equivariant resolution of HV ′ . If A is a Toeplitz system on X ′, A on
X ′ and kV ” ⊗A on X have the same equivariant index. The K-theoretic element
defined by the symbol of kW is βW , so we have [kW ⊗A] = βW · [A], the image by
the Bott periodicity homomorphism.

It is natural to conjecture that all elliptic systems from X are obtained from
elliptic subspheres in that manner, i.e. that the βV ” generate KG(X − Z), when
V ” describes the set of all orthogonal subspaces to elliptic subspheres. This is
easily seen to be true if G is the circle group. It is also true if the characters go by
opposite pairs (that case can be reduced to the case studied by Atiyah in [1]; the
‘maximal complex structures’, which provide the K-theoretical generators there,
exactly correspond to the maximal elliptic subspheres). It is also true in various
other examples, but I have no proof for the general case.
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Multiplicities and the equivariant index

Jochen Brüning

(joint work with Franz Kamber and Ken Richardson)

Let M be a smooth manifold which is closed, oriented, and connected, and let
E± → M be two smooth complex vector bundles over M . Consider moreover a
first order differential operator D+ : C1(M,E+) → C1(M,E−) which we assume
to be elliptic. Finally, let a compact Lie group, G, act effectively on M and E±,
hence on the smooth sections of E±, such that G commutes with D+. We pick G-

invariant metrics gTM onM and hE
±

on E± and we put E := E+⊕E−. Then we
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can form the adjoint operator D− := (D+)† : C1(M,E−)→ C1(M,E+) such that
D := D+ ⊕D− : C1(M,E)→ C1(M,E) is symmetric and essentially self-adjoint
in the Hilbert space L2(M,E), and its self-adjoint closure is discrete.

The equivariant index of D is by definition the virtual character

(1) indD(g) = trkerD
+

(g)− trkerD
−

(g),

which, by the argument of McKean-Singer, can also be written as

(2) indD(g) = trL
2(M,E)

s

(
ge−tD2

)
, t > 0,

where trs denotes the supertrace with respect to the grading of E. Now let ρ : G→
AutVρ be an irreducible representation of G; we are interested in the multiplicitiy
of ρ in the virtual representation indD, i.e. in the integer

(3) indρD := dimHomG(Vρ, kerD
+)− dimHomG(Vρ, kerD

−).

The purpose of this work is to present an explicit formula for indρD in terms of
the geometric data. We start with several ways to express indρD which have been
used in the study of this problem.

indρD =

∫

G

indρD(g)χρ(g)dg(4)

= (dimVρ)
−1 trL

2(M,E)
s

(
Pρe

−tD2
)

(5)

= (dimVρ)
−1 indD+

ρ(6)

=

∫

M×G

χρ(g) tr
Ep
s

(
ge−tD2

(g−1p, p)
)
dpdg(7)

=:

∫

M

kDρ (t, p)dp.(8)

Here Pρ denotes the orthogonal projection in L2(M,E) onto the ρ-isotypical sub-
space, explicitly

Pρs = dimVρ

∫

G

χρ(g) gs dg,

where s ∈ L2(M,E) and we use the normalized biinvariant integral on G. Also,
the operator Dρ is a self-adjoint Fredholm operator which we will describe below.
Atiyah, Segal, and Singer [1] have generalized the index theorem for elliptic opera-
tors to a formula for indD(g) which localizes on the fixed point set of g and which
gives a formula of the kind we are looking for in the case of finite groups, via (4),
which can be extended to orbifolds [6]. Berline and Vergne [2] have generalized
this further to a full asymptotic expansion of the equivariant heat kernel kDρ (t, p)
on the diagonal; however, it seems quite difficult to evaluate the integral over G
in (4) or (7) if the G-action has isotropy groups of varying dimensions.

In our approach, we make crucial use of the stratification of M defined by the
G-action. To describe it, we denote by ([Gj ])

r
j=1 the finitely many orbit types of

the G-action. For subgroups H,K of G we write [H ] ≤ [K] if K is conjugate to
a subgroup of H ; then we may arrange the labeling in such a way that [Gi] ≤
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[Gj ] implies i ≤ j. The strata of the G-action are then the submanifolds Mi :=
M[Gi], i = 0 . . . r which form a decomposition of M . M0 is the top stratum of M
which is an open and dense subset, while we call

Σ := ∪ri=1Mi

the singular set or the union of the singular strata; the connected components of
Σ will be labeled as (Σj)

r̄
j=1. Note that a minimal stratum is closed in M .

For our final result, we have to introduce an assumption. We note that the
operator D+

ρ in (6) is unitarily equivalent to an elliptic first order differential

operator induced by D in L2(M0, Eρ) where Eρ,p := Ep,ρ (with respect to the
action of Gp), as explained in [3]; this operator is discrete and hence Fredholm.
Thus it follows from (6) that indρD is invariant under G-equivariant deformations
which preserve ellipticity, a fact we use repeatedly. We then assume that near any
minimal stratum, Σ, the operator D can be deformed equivariantly to an operator
product DΣ ∗DNΣ acting on a vector bundle E = EΣ ⊠ ENΣ with both factors
G-bundles, cf. [5, Ch.19.2]. In order to restrict our final computations to the
ρ-isotypical parts, we will have to decompose further

ENΣj = ⊕k≥1ENΣj ,k,

into a finite sum of isotypical G-bundles. This will induce operators DΣj ,k =
DΣj ⊗ IENΣj,k

acting on the smooth sections of EΣj ⊠ ENΣj ,k over Σj .

Now we can formulate our result.

Theorem 1. There is data M̃, Ẽ, and D̃ canonically constructed from M,E,G
and D which enjoy analogous properties, in particular an effective G-action which
commutes with D̃. In addition, the following assertions hold.
1. G acts on M̃ with one orbit type.
2. There is a smooth surjective map π̃ : M̃ → M which is a 2r-sheeted covering
outside (π̃)−1(Σ).
3. For each G-invariant submanifold U of M there is a distinguished preimage
Ũ ⊂ M̃ which is a G-invariant submanifold of M̃ .
4. The submanifolds Σ̃j are closed.
5. We obtain the formula

(9) indρD =

∫

M̃0

kD̃ρ (t) +
∑

j,k

cj,k

∫

Σ̃j

k
D̃Σj ,k

ρ (t);

the constants cj,k can be computed explicitly

We add some comments on the proof of the theorem. The manifold M̃ is
called the desingularization ofM and is, in principle, well known. Its construction
proceeds inductively, starting each time with a (closed) minimal stratum. This can
be viewed as an inverse to Seeley’s conic degeneration [7] which needs to be applied
here to Euclidean balls in the normal bundle of a singular stratum. Therefore, the
change in index from the ball to the cylinder, by blowing up the origin, can be
computed explicitly which leads eventually to the formula of the theorem. Note
that the integrals in (9) can be rewritten as integrals over the respective G-orbit
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spaces of the Atiyah-Singer integrand computed for the quotient operators. As a
consequence, we have indρD = 0 if all singular strata have odd dimensional orbit
spaces.

Of course, applying the theorem is technically demanding but doable. As one of
the most interesting applications, we obtain a basic index theorem for Riemannian
foliations, a problem that has been open for some time, cf. [4].

Finally, it should be noted that the theorem above extends to transversally
elliptic operators without modifications.
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[4] J. Brüning, F. Kamber, K. Richardson, Index theory for basic Dirac operators on Riemann-

ian foliations, to appear.
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Symplectic and Hamiltonian properties of holomorphic coadjoint

orbits

Guillaume Deltour

Let G be a connected Lie group, and K a compact connected Lie subgroup of G.
We denote by g and k their Lie algebras. Any coadjoint orbit O of G carries a
natural G-invariant symplectic structure, the Kirillov-Kostant-Souriau form ΩO
of O. It is a well-known fact that the symplectic G-manifold (O,ΩO) is actually
a Hamiltonian K-manifold, for the induced action of K, with moment map ΦK :
O ⊂ g∗ → k∗ obtained by composing the inclusion O →֒ g∗ with the canonical
projection g∗ → k∗. The map ΦK is called the orbit projection of O relatively to
the subgroup K. When the moment map ΦK is proper, the Kirwan’s Hamiltonian
Convexity Theorem [4, 7, 12] asserts that the image of the orbit projection ΦK

intersects a fixed Weyl chamber of some maximal torus ofK in a locally polyhedral
convex set ∆K(O), called moment polyhedron of the orbit projection of O.
Question 1. Can we determine the equations of the moment polyhedron ∆K(O)?

So far, this question has been mainly studied for G compact. With this as-
sumption, any orbit projection is proper, and the moment polyhedron ∆K(O) is
actually a convex polytope. The study of this polytope’s equations culminated in
the 2000’s, starting with the complete resolution of the famous Horn’s Eigenvalue
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Problem by Klyachko [5] and Knutson-Toa-Woodward [6]. This Eigenvalue Prob-
lem corresponds to the diagonal injection of K = U(n) into G = U(n)× U(n). In
the general compact case K ⊂ G, Berenstein-Sjamaar [1] gave a set of equations
determining the polytope ∆K(O), using Geometric Invariant Theory (GIT).

In the compact setting, the moment polytope, associated to the orbit projec-
tion, has a strong relation with the restriction of irreducible representations of G

relatively to the subgroup K. Indeed, if Ĝ (resp. K̂) denotes the set of dominant

weights of G (resp. K), then, for all λ ∈ Ĝ and µ ∈ K̂, we have the following
equivalence :

µ ∈ ∆K(G · λ) ⇐⇒ ∃N ≥ 1, V K
Nµ ⊆ V G

Nλ,

where V G
ν (resp. V K

ν ) denotes the irreducible representation of G (resp. K) with

highest weight ν ∈ Ĝ (resp. ν ∈ K̂).
In algebraic geometry, one studies the following set,

C+
Q := {(µ, ν) dominant rational weight of K ×G | ∃N ≥ 1, (V K

Nµ ⊗V G
Nν)

K 6= 0},
which is a polyhedral convex cone, called the semiample cone of the complete flag
manifold of K × G. This GIT object has been defined more generally for any
projective variety by Dolgachev-Hu [3]. The important fact is that the equations
of the polytope ∆K(G · λ) are determined by the ones of C+

Q , since ∆K(G · λ) is a
rational polytope and the set of its rational points is equal to an affine section of
C+

Q . Then, it suffices to compute the equations of C+
Q , which is done by applying

GIT techniques based on Hilbert-Mumford’s criterion.

Unfortunately, in the non-compact setting, we can’t apply these GIT techniques
directly. However, in some special cases of non-compact coadjoint orbits, one can
obtain the equations of ∆K(O) by computing the ones of the semiample cone
related to a particular compactification of O. In this note, we will study the orbit
projection of holomorphic coadjoint orbits.

Let G be a connected, non-compact, semisimple, real Lie group with finite cen-
ter, such that G/K (where K is a maximal compact subgroup of G) is Hermitian.
For instance, the classical simple groups of such type are Sp(R, 2n), SO∗(2n),
SU(p, q) et SO(p, 2). The holomorphic coadjoint orbits are the elliptic coadjoint
orbits of G which are endowed with a natural invariant Kählerian structure com-
patible with the K-K-S symplectic form. These orbits corresponds to Harish-
Chandra’s holomorphic discrete series.

First, we have to study the symplectic structure of holomorphic coadjoint or-
bits. McDuff [8] proved that the Hermitian symmetric space G/K, which can be
thought of as the coadjoint orbit Oλ0 of some element λ0 ∈ k∗ with stabilizer K,
endowed with the K-K-S symplectic form, is symplectomorphic to a symplectic
vector space. The first main result of my Ph.D. thesis proves a generalization
of McDuff’s symplectomorphism for holomorphic coadjoint orbits: it shows that
there exists a K-equivariant symplectomorphism between any holomorphic coad-
joint orbit Oλ and the product of symplectic manifolds K · λ × p, where K · λ is
the associated compact coadjoint orbit (endowed with its K-K-S symplectic form),
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and p is a symplectic vector space given by the Cartan decomposition of g. As
a corollary, this gives another proof of the equality of the two moment polyhedra
∆K(Oλ) and ∆K(K · λ × p) proved by Paradan [10], and Nasrin [9] when λ is
central in k∗.

Enventually, it boils down to compute the equations of the polyhedron ∆K(K ·
λ × p). The idea is to apply GIT methods not directly on K · λ × p, but on the
semiample cone of the projective variety K/T × K/T × P(p ⊕ C), where T is a
maximal torus of K. This semiample cone is the following set,

CQ(p)
+ = {(µ, ν, r) | ∃N ≥ 1, (V K

Nµ ⊗ V K
Nν ⊗ C≤Nr[p])

K 6= 0},
where µ and ν are in the set of rational dominant weights of K, and r is in the set
of non-negative rational numbers. The equations of CQ(p)

+ are obtained by using
the notion of well covering pairs introduced by Ressayre [11].

Then, we obtain the equations of ∆K(T ∗K×p) by linear projection of the ones
of CQ(p)

+ (where we forget the last rational variable r). Indeed, one can see that
the set of rational points of the polyhedral convex cone ∆K(T ∗K × p) is

{(µ, ν, r) | ∃N ≥ 1, (V K
Nµ ⊗ V K

Nν ⊗ C[E])K 6= 0}.
Then, by refining Ressayre’s criterion in this setting, we note that the projection of
the equations of CQ(p)

+ has a good behavior, since the equations of ∆K(T ∗K×p)
is induced by a particular subset of equations of CQ(p)

+.
Finally, since ∆K(K ·Λ× p) is an affine section of ∆K(T ∗K × p), the equations

of ∆K(K ·Λ× p) are obvioulsy induced by the ones of the polyhedral convex cone
∆K(T ∗K × p).

These results concern a substantial part of elliptic coadjoint orbits of such group
G. So, now, the question that remains is: is it possible to extend them to all elliptic
coadjoint orbits of G? In particular, the generalization of McDuff’s theorem would
prove that the symplectic slice at λ of the Hamiltonian action of K on Oλ is
actually a global symplectic slice.
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[10] Paradan, P.-É., Multiplicities of the discrete series, arXiv:0812.0059 (2008).
[11] Ressayre, N., Geometric invariant theory and the generalized eigenvalue problem, Invent.

Math. 180 (2010), 389-441.
[12] Sjamaar, R., Convexity properties of the moment mapping re-examined, Adv. Math. 138

(1998), 46-91.

Kirillov’s formula and Box splines

Michel Duflo

(joint work with Michèle Vergne)

I explained how the two topics in the title are used to prove some cases of
“[Q,R] = 0” in the context of real reductive groups, not necessarily compact.

Let G be a connected real reductive group with a compact Cartan subgroup
T ⊂ G. Let g be the Lie algebra of G, g∗ its dual space. Harish-Chandra as-
sociated to a coadjoint orbit M ⊂ g∗, which is elliptic, regular, and admits an
equivariant Spinc-structure, an irreducible unitary representation πM of G. The
representations of G obtained in this manner are exactly the discrete series, that
is the representations which can be realized as an irreducible subrepresentation
of the left regular representation of G in L2(G). We consider πM as the Spinc-
quantization of M . This claim may be supported in various ways, in particular
by the work of W. Schmid realizing concretely πM as a space of L2-solutions of a
suitable Dirac operator.

Kirillov’s formula provides a direct link between M and πM , through the char-
acter of πM .

Recall that the character of an irreducible unitary representation π of G is a
generalized function on G, informally denoted by tr(π(g)). We need the following
notations : for x ∈ g,

jg(x) = det(
ead(x)/2 − ead(−x)/2

ad(x)
),

and βM is the Liouville measure of the symplectic manifold M . Kirillov’s formula
says that for x in a suitable subset of g, the character tr(πM (ex)) and the Fourier
transform of βM are related by the following formula :

(1) jg(x)
1/2tr(πM (ex)) =

∫

M

eim(x)dβM (m).

In this case, formula (1) is due to Rossmann [3]. Note that πM may be sometimes
also defined for non regular coadjoint orbitsM ; but formula (1) holds usually only
for regular orbits.

We suppose that G′ is another connected reductive group with a compact Car-
tan subgroup. We suppose that G is a closed subgroup of G′. Let π′ := π′

M ′ be a
discrete series of G′ associated as above to a coadjoint orbit M ′ ⊂ g′∗ of G′. We
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denote by p : M ′ ⊂ g′∗ → g∗ the moment map (the restriction map) for the action
of G in M ′. We consider the restriction π′|G of π′ to G as the Spinc-quantization
of the G-manifold-M ′.

We assume that p is proper. It is known that in this case π′|G is an
Hilbertian direct sum of discrete series πM of G occurring with finite multiplicities
m(M). On the other hand, the direct image p∗(βM ′) is a G-invariant measure on
g∗. A variant of the problem “[Q,R] = 0” could be : is it possible to compute the
multiplicities m(M) from the measure p∗(βM ′)? This is maybe too optimistic. To
explain what is going on, we need more notations.

Let V := t∗. We denote by P ⊂ V the set of λ such that eiλ is a character of
T , ∆(g′), ∆(g), ∆(g′/g) the multisets of non zero roots of t in the corresponding
spaces. We denote by Φ a choice of positive roots for ∆(g′/g). We may describe
Φ as a list Φ = [α1, . . . , αN ] of non zero vectors in V , with repetitions allowed.

The (centered) box spline BΦ is the probability measure on V defined by the
formula

(2) BΦ(f) =

∫ 1/2

−1/2

· · ·
∫ 1/2

−1/2

f(t1α1 + · · ·+ tNαN ) dt1 . . . dtN .

The relevance of BΦ to our problem comes from the fact that the Fourier trans-
form of BΦ is equal to jg′(x)1/2/jg(x)

1/2 for x ∈ t. Thus the box spline BΦ takes
care of the difference between the Kirillov formula for the discrete series of G and
of G′.

The properties of the box spline we need depend strongly on its vertex set
V er(Φ) ⊂ T , that is the set of s ∈ T such that there exists a basis σ ⊂ Φ of t∗

such that, for all α ∈ σ, the value of eiα at s is 1.

When Φ is unimodular (i. e. V er(Φ) = {1}), one can recover the multiplicities
m(M) from the measure p∗(βM ′ ) ”by inverting the box spline”, see the report of
M. Vergne in the same workshop. The formula involves the differential operator
of Khovanskii-Pukhlikov type

(3) ÂΦ = Πφ∈Φ
∂φ

e∂φ/2 − e−∂φ/2
.

In general, Kirillov’s formula (1) does not provide a sufficient information on
the representation πM to determine it. However, building on the Harish-Chandra
method of descent, we gave in [2] a formula relating, for s ∈ T and x ∈ g commuting
with s, tr(π(sex)) and the manifold M s of fixed points of s in M . The final result
is that the multiplicities m(M) can be recovered from the measures p∗(βM ′s),
s ∈ V er(Φ). The formula involves the differential operators, generalizing the
Khovanskii-Pukhlikov operators, introduced in [1].
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Quantization of manifolds with f-structure

Sean Fitzpatrick

Let M be a smooth, compact manifold, and let ϕ ∈ Γ(M,End(TM)) be an f -
structure on M ; that is, ϕ is an endomorphism field satisfying [12]

ϕ3 + ϕ = 0.

The complementary projection operators l = −ϕ2 and m = ϕ2 + IdTM determine
a splitting TM = kerϕ⊕ imϕ of the tangent bundle ofM . The restriction of ϕ to
imϕ squares to − Idimϕ, and thus an f -structure is equivalent to an almost CR
structure together with a choice of complement to the Levi distribution.

Given (M,ϕ) it is always possible to find a compatible metric g and connection
∇ such that [11]

g(ϕX, Y ) + g(X,ϕY ) = 0 and ∇ϕ = ∇g = 0.

Using the data (ϕ, g,∇), we can construct a differential operator whose principal
symbol is of the type we studied in [6]. In certain settings with additional struc-
ture, this operator may be interesting from the point of view of CR geometry. In
both symplectic and contact geometry, there is a notion of compatible f -structure.
In this symplectic case this is of course an almost complex structure, while in the
contact case, it is an almost contact structure. We can describe two “quantization”
procedures for manifolds with f -structure that reduce to familiar methods in sym-
plectic geometry when our f -structure is a compatible almost complex structure,
as well as to the geometric quantization of contact manifolds described in [7] in
the almost contact case.

Let E1,0 ⊂ TCM denote the +i-eigenbundle of ϕ which, as noted above, defines
an almost CR-structure onM . We use the data (ϕ, g,∇) to construct an odd first-
order differential operator D acting on sections of S = ΛE∗

0,1, where E0,1 = E1,0.
The construction is based on the usual construction of a Dirac operator on a
complex manifold (see for example [2, Section 3.6]): the metric g allows us to
construct the bundle of Clifford algebras Cl(E), whose fibre over x ∈ M is the
complexified Clifford algebra of E∗

x with respect to the inner product induced by
g. The Clifford bundle then acts on S via the Clifford action c defined for α ∈
Γ(M,E∗) by c(α)γ =

√
2
(
α0,1 ∧ γ − ι(α1,0)γ

)
, where the contraction is defined

using g. The bundles E∗ and T ∗ are orthogonal with respect to g, and we let
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πE∗ : T ∗M → E∗ denote the orthogonal projection. We then define D by the
composition

Γ(M,S) ∇−→ Γ(M,T ∗M ⊗ S) πE∗−−→ Γ(M,E∗ ⊗ S) c−→ Γ(M,S).
When the almost CR structure determined by ϕ is CR-integrable, we can also
define the ∂b operator of the resulting tangential CR complex, and construct an-
other odd first-order differential operator acting on sections of S, given in this

case by Db =
√
2(∂b+∂

∗
b), where ∂

∗
b denotes the formal adjoint of ∂b, with respect

to the pairing induced by the metric g. This operator satisfies D
2
b = 2✷b, where

✷b denotes the Kohn-Rossi Laplacian [9, 5]. When M is equipped with the addi-
tional structure of an almost S-manifold, as defined in [4], there exists a canonical
connection ∇LP analogous to the Tanaka-Webster connection of a strongly pseu-
doconvex CR manifold of hypersurface type [10]. Although ∇LP necessarily has
torsion, we can show that if we take ∇ = ∇LP in the definition of D given above,
then D = Db.

We can also consider the case of a compact Lie group G acting smoothly on M
such that ϕ, g and ∇ (and hence D) are G-invariant. Such group action preserves
the splitting TCM = E1,0⊕E0,1⊕ (T ⊗C), where T = kerϕ. The principal symbol
of D is given by σP (D)(x, ζ) = ic(πE∗(ζx)) for (x, ζ) ∈ T ∗M , so that the results
of [6] apply whenever the vector fields generated by the infinitesimal action span
T . When this is the case, the operator D is G-transversally elliptic, since σP (D)
is invertible for all nonzero α ∈ E∗

x. The equivariant index of D can therefore be
defined as a distribution (i.e. generalized function) on G. In the almost S case,
where the subbundle T is trivial (and assuming we have twisted by a complex line
bundle V), the germ of the equivariant index of D near the identity element in G
is given (for X ∈ g sufficiently small) by the formula

indexG(D)(eX) =
1

(2πi)n

∫

M

Td(E,X)Ch(V , X)J (E,X),

where n = rankE/2. The formulas for the equivariant index near other elements
of G, and for the case when T is not trivial, are similar. The term J (E,X) is an
equivariant differential form with generalized coefficients defined as follows: Let
θ ∈ A1(T ∗M) denote the Liouville 1-form on T ∗M , let ι : E0 →֒ T ∗M denote
the inclusion of the annihilator of E (which may be identified with T ∗), and let
p : E0 → M denote the projection mapping. The equivariant differential of θ is
given by Dθ(X) = dθ − θ(XM ), where XM denotes the vector field generated by
X ∈ g, and J (E,X) is defined by

J (E,X) = (2πi)− rankT p∗ι
∗eiDθ(X).

The form J (E,X) was studied carefully in [6] and shown to be well-defined when-
ever the group action is transverse to the subbundle E.

By analogy with the symplectic case, we interpret the above as an index-
theoretic description of a “quantization” Q(M) given by the virtual G-representa-
tion Q(M) = kerD−kerD∗; when D is G-transversally elliptic, this representation



448 Oberwolfach Report 09/2011

has a well-defined (distributional) virtual character given by the equivariant index
of D. When the fundamental 2-form Φ given by

Φ(X,Y ) = g(X,ϕY )

is closed, it defines a symplectic structure on the fibres of E. A Hermitian line bun-
dle L equipped with a connection ∇L whose curvature is equal to Φ, is a quantum
bundle [5], and we can take the L2 sections of this bundle as a “prequantization”
of M . If our f -structure is CR-integrable, the resulting CR structure is a natural
analogue of a complex polarization; if in addition L is CR holomorphic, we can
identify the space of polarized sections with the CR holomorphic L2 sections of
L, and take this to be an alternative definition of Q(M). In the almost S case, a
suitable example is given by the trivial bundle M × C. Associated to the 2-form
Φ is the set

P(M,Φ) = {(f,X) ∈ C∞(M)× Γ(M,TM) : df = −ι(X)Φ},
which has a natural Poisson structure [8] such that the assignment

(f,X) 7→ −i∇L
X + f

defines a Lie algebra homomorphism from P(M,Φ) to the space of Hermitian
operators on Q(M). We note that given an “observable” f ∈ C∞(M), the cor-
responding vector field X is only defined up to sections of T , and that not every
f ∈ C∞(M) can be considered an “observable”: if (f,X) ∈ P(M,Φ), then Y f = 0
for any section Y of T .
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Localization of Riemann-Roch numbers via torus fibrations

Hajime Fujita

(joint work with Mikio Furuta, Takahiko Yoshida)

1. Riemann-Roch number and its localization. Let (M,ω) be a symplectic
manifold. In this report we assume that (M,ω) is prequantized. Namely there
exists a Hermitian line bundle with connection (L,∇) whose curvature form is
equal to −

√
−1ω and we fix it. We take and fix an ω-compatible almost complex

structure. Then we have a Dirac type operator D = ∂̄L + ∂̄∗L defined by the
Dolbeault operator ∂̄L with values in L and its formal adjoint ∂̄∗L. If M is closed,
then the analytic index of D can be defined as an invariant of (M,ω) and it is
called the Riemann-Roch number. We denote it by RR(M) for short. In the
context of spinc-quantization RR(M) is nothing other than the dimension of the
quantization. There are several facts concerning localizations of RR(M).

(i) If M has a structure of a Lagrangian fibration without singular fibers,
then RR(M) is equal to the number of Bohr-Sommerfeld fibers ([1]). It is
a localization of RR(M) to BS fibers.

(ii) If M has a structure of a toric manifold, then RR(M) is equal to the
number of the integral lattice points in the momentum polytope ([2]). It
is a localization of RR(M) to integral lattice points.

(iii) If a compact Lie group acts on (M,ω,L,∇), then the “quantization com-
mutes with reduction ([Q,R] = 0)” holds. There are several proofs using
localization of equivariant integrals ([8], [13]), symplectic cutting ([10],[11]),
cobordism invariance ([6]), or analytic method ([12]).

Since toric manifold is a Lagrangian fibration with singular fibers, (ii) is a gen-
eralization of (i) to singular fibration cases. Similar results for the moduli space
of flat SU(2)-connections over a Riemann surface and the Gelfand-Cetlin system
are known ([9], [7]). All these facts can be understood in a formal framework of
localization. The point is to define a local invariant for any neighborhood of each
singular locus so that the resulting invariant has several topological properties. In
joint works [3, 4, 5] with M. Furuta and T. Yoshida, we introduced a geometric
structure which gives a sufficient condition to define such an invariant and a uni-
fied approach to the localizations (i), (ii) and (iii)(for torus actions). Our theorem
can be stated as follows.

Theorem (Fujita-Furuta-Yoshida). Let (X,ω, L,∇, J) be a prequantized sym-
plectic manifold with an ω-compatible almost complex structure J . Let V be an
open subset of X whose complement X \V is compact. Suppose that V is equipped
with an “acyclic compatible system”. Then we can define an integer RR(X,V )
which satisfies the following properties.

(P1) RR(X,V ) = RR(X) for a closed manifold X.
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(P2) Deformation invariance.
(P3) Exciton property.
(P4) Gluing formula.
(P5) Product formula.

By (P1) and (P3) we have a localization formula of the Riemann-Roch number.

Corollary. Let (X,V, ω, L,∇, J) be the data as in Theorem. Suppose that X is
a closed manifold. Then we have the following equality.

RR(X) =
∑

i

RR(Xi, Xi ∩ V ),

where Xi is any small open neighborhood of a connected component of X \ V .

For a Lagrangian fibration we can take V to be the complement of BS-fibers and
singular fibers. In particular we have a localization of the Riemann-Roch number
to any neighborhood of BS fibers and singular fibers ([3]). In [3] we showed that
if Xi is a neighborhood of a BS-fiber, then RR(Xi, Xi ∩ Vi) = 1, and hence, we
have a generalization of Andersen’s theorem (i). For a toric manifold we can take
V to be the complement of the inverse images of lattice points, and we have a
proof of Danilov’s theorem (ii) from the view point of localization of index. Using
the equivariant version, we also have a proof of [Q,R] = 0 for Hamiltonian torus
actions ([5]). The points in our proof of [Q,R] = 0 are the product formula (P5)
and a variant of the equivariant version which we call the G-acyclicity.

2. Acyclic compatible system. In this report we explain our geometric
structure the “acyclic compatible system” in a simple setting, S1-bundle arising
from an S1-action. See [4, 5] for the full version.

Let (X,ω, L,∇, J) be a prequantized symplectic manifold with an ω-compatible
almost complex structure J . Suppose that there is an open subset V of X with
the following properties.

(1) X \ V is compact.
(2) S1 acts on V without any fixed points and preserving ω and J on V .
(3) All orbits are acyclic, i.e., for all x ∈ V , the restriction (L,∇)|S1·x does

not have any non-trivial global parallel sections.

By (2) the natural projection to the orbit space π : V → V/S1 has a structure
of an S1-bundle (in the orbifold category). In our setting we do not use the non-
degeneracy of the symplectic form ω.

3. Definition of RR(X,V ). We define RR(X,V ) by using a variant of the
Witten deformation. Let Tπ → V be the tangent bundle along S1-orbits. Let
Dπ : Γ(∧•T ∗π⊗L|V )→ Γ(∧•T ∗π ⊗L|V ) be the differential operator along orbits
whose restriction to each orbit is the deRham operator on the orbits with values
in L|orbit. Take and fix a smooth function ρ on X such that suppρ is contained in
V and it is identically 1 on the complement of a compact set of X . For any Dirac
type operator D on X and t ≥ 0 we put Dt := D + tρDπ : Γ(∧•T ∗X0,1 ⊗ L) →
Γ(∧•T ∗X0,1⊗L). Note that we may think ρDπ = ρDπ ⊗ id as an operator acting
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on Γ(∧•T ∗X0,1⊗L) = Γ(∧•(Tπ⊗C⊕ (Tπ⊗C)⊥)⊗L). A key to define RR(X,V )
is the following vanishing theorem.

Proposition. Suppose that X is closed or V has a cylindrical end and all the
data are translationally invariant on the end. If X = V , then there do not exist
any non-trivial L2-solutions of Dtf = 0 for any t≫ 0.

By the above vanishing theorem, we have that in the cylindrical end case the
space of L2-solutions of Dtf = 0 is finite dimensional for any t ≫ 0. In this case
we can define RR(X,V ) as the index of Dt(t≫ 0) using the APS-type boundary
condition. For more general case we can deform all the data so that they have
cylindrical end structure and are translationally invariant on the end. Then we
define RR(X,V ) to be the index of the deformed data. This index satisfies (P1),
(P2), (P3) and (P4). The product formula (P5) can be verified in the generalized
version in [4].

There are two points in the proof of the vanishing theorem. (a) Using the
S1-invariant canonical flat structure on each orbit we can check that the anti-
commutator DDπ + DπD is a differential operator along the orbit. (b) The
acyclicity for (L,∇)|S1·x is equivalent to the vanishing of the cohomology of the
flat line bundle, H•(S1 · x, (L,∇)|S1·x) = {0}, and hence it is also equivalent to
Ker(Dπ|S1·x) = {0}. Using these two points and the a priori estimate for the
positive operator D2

π, we can estimate the norms of sections in the kernel of D2
t

as in the similar way for the Witten deformation.
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The perturbative expansion of the L2-heat kernel for large times

Sebastian Goette

(joint work with Sara Azzali, Thomas Schick)

In this talk, we sketch an important technical step in the generalisation of the sig-
nature theorem for families and the Bismut-Lott theorem [2] to an L2-setting. Our
proof is based on the McKean-Singer formula for the heat kernels associated to the
fibrewise de Rham operator. As a byproduct, we can define L2-versions of the fam-
ily signature η- and ρ-invariants, and of the Bismut-Lott analytic torsion. Similar
problems have also been considered by Heitsch-Lazarov [4], [5] and Benameur-
Heitsch [1] for foliations. Whereas Benameur and Heitsch have to assume that the
Novikov-Shubin invariants of the leafwise operators are larger than 1

2 dimB, our
method works if the Novikov-Shubin invariants are merely positive. However, we
can only work with the fibrewise de Rham operator, which we may regard either
as Euler operator or as signature operator.

Let p : M → B be a proper submersion, let A be a von Neumann algebra with
a faithful finite normal trace, and let F → M be a family of finite dimensional
A-modules with a flat A-linear connection ∇F and a family of admissible scalar
products gF . For the signature operator, we either demand that gF is parallel, or
we make the more general assumptions of [6] involving a real von Neumann algebra
with a family of real A-modules, a parallel nondegenerate bilinear form ( · , · ) and
an endomorphism JF such that gF = ( · , JF · ).

As a simple example, let a group Γ act freely and cocompactly on the fibres of
a fibration p̃ : M̃ → B, and consider

p̃ : M̃ −→ M̃/Γ =M
p−→ B .

Let A be the group von Neumann algebra of Γ, then

F = M̃ ×Γ ℓ
2(M)

is a family of finite-dimensional A-modules, and there is an A-linear isomorphism
of infinite-dimensional bundles of vertical differential forms,

Ω•(M/B;F) = Ω•(M̃/B)→ B .

For the proof of local index theorems, one regards the curvature of the Bismut
superconnection A acting on Ω•(M/B;F). Because the leading term of A2 is a

Laplacian, the operator e−tA2

is a generalisation of the fibrewise heat operator.
We use a trick due to Bismut and Lott [2] and Lott [6], which allows us to write
the curvature of the Bismut superconnection as

A2 = −X2 .

Here X is an operator that differentiates only along the fibres, and hence an endo-
morphism of Ω•(M/B;F).
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We perform the usual rescaling

Xt = t
1
2X0 +X1 + t−

1
2X2

with X1 = X and with Xi ∈ Ωi
(
B; EndΩ•(M/B)

)
. The operator X0 = d∗ − d is

a skewadjoint elliptic first order differential operator along the fibres, whereas X1

and X2 are bounded operators. Then we are interested in the von Neumann trace

of the fibrewise heat kernel eX
2
t for large t.

We use Duhamel’s formula, therefore let

∆k =
{
s̄ = (s0, . . . , sk) ⊂ [0, 1]k

∣∣ s0 + · · ·+ sk = 1
}

denote the standard simplex, and write Xt =
√
tX0 +Rt. Then

(1) Xa
t e

X2
t =

dimB∑

k=0

∫

∆k

(√
tX0 +Rt

)a
es0tX

2
0
(√
t (X0Rt +RtX0) +R2

t

)

es1tX
2
0 · · · esktX2

0 dk(s0, . . . , sk) .

Note that even though t may be very large, we also encounter instances of the
heat kernel for small times whenever at least one of the simplex coordinates si is
small. Thus, it is difficult to give a uniform estimate of the trace of the integrand
over the whole k-simplex.

Let P ∈ EndΩ(M/B;F) denote the fibrewise L2-projection onto the reduced
L2-cohomology, represented by the bundle of fibrewise harmonic forms

H = kerX0 ⊂ Ω•(M/B;F) .
Let τ denote the von Neumann trace on EndΩ(M/B;F), and let ‖ · ‖τ denote
the induced norm on the trace class operators.

Lemma. There exists a function ϑ : (0,∞) → R with limt→∞ ϑ(t) = 0 and a
constant C such that for all s, t > 0,

∥∥∥t
c
2Xc

0 e
stX2

0

∥∥∥
∞
≤ C s−

c
2 ,(1)

∥∥∥estX2
0 − P

∥∥∥
τ
= ϑ(st) ,(2)

∥∥∥t
c
2Xc

0 e
stX2

0

∥∥∥
τ
≤ C s−

c
2 ϑ

(st
2

)
for c = 1, 2 ,(3)

∥∥∥∥
∫ s̄

0

t
c
2Xc

0 e
stX2

0 ds

∥∥∥∥
∞
≤ C s̄c−1 for c = 0, 1 ,(4)

∫ s̄

0

tX2
0 e

stX2
0 ds = es̄tX

2
0 − id .(5)

One can now fix s̄(t) > 0 and decompose the simplex ∆k in regions where
certain si are smaller than s̄(t) and the remaining are larger. Then one integrates
over the small simplex coordinates before considering the limit t→∞. Let

R = X1 = lim
t→∞

Rt .
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With a careful choice of s̄ : (0,∞)→ (0, 1), one obtains

. . . Rt t
c
2Xc

0 e
sitX

2
0 Rt . . .  





R (P − id)R if si is small and c = 2,

RP R if si is large and c = 0, and

0 otherwise

if t is large. Integration over the remaining simplex coordinates finally proves that

(2) lim
t→∞

Xa
t e

X2
t = (PRP )a e(PRP )2

in the trace norm, as in the classical case, see [2].
The bundle H → B carries the flat Gauß-Manin connection ∇H and an L2-

metric gHL2 induced by the inclusion H ⊂ Ω•(M/B;F). If the fibres are oriented
and 4k-dimensional, there exists a natural splitting H = H+−H−. More generally,
in the context of [6], the real bundle HR carries an automorphism JH if the fibres
are even-dimensional. Using the McKean-Singer trick and equation (2), one can
prove cohomological versions of the index theorems in [2] and [6].

By adapting the method of Cheeger and Gromov [3], one defines L2-signature η-
invariants ητ (T

HM, gTX , JF ) and L2-analytic torsion forms Tτ (THM, gTX , gF) ∈
Ω•(B). In the following theorems, the exterior derivative d on C0-forms on B is
understood in a weak sense.

Theorem. Assume that the Novikov-Shubin invariant of X0 is positive and that
the fibres are even-dimensional and oriented. Then

dητ (T
HM, gTX , JF) =

∫

M/B

L̂(TX,∇TX)chτ (F , JF)− chτ (H, JH) .

If the fibres are oriented and odd-dimensional, then

dητ (T
HM, gTX , JF ) =

∫

M/B

L̂(TX,∇TX)chτ (F , JF ) .

Theorem. Assume that the Novikov-Shubin invariant of X0 is positive. Then

dTL2(THM, gTX , gF ) =

∫

M/B

e(TX,∇TX) choτ (F , gF )− choτ (H, gHL2) .
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Real and complex quantization of flag manifolds

Mark Hamilton

(joint work with Hiroshi Konno)

Background. Given a symplectic manifold (M,ω), the geometric quantization
is defined in terms of sections of a prequantum line bundle, which is a complex
line bundle L over M with a connection whose curvature is ω. Näıvely, we want
the quantization to be the space of sections of L, but this space is “too big.” We
restrict by choosing certain sections using a polarization.

The most common type of polarization is a Kähler polarization or complex
polarization, which is given by a compatible complex structure on M ; in this case,
the quantization is the space of holomorphic sections of L.

Another type of polarization is a real polarization, given by a foliation ofM into
Lagrangian submanifolds. In this case the sections considered are those that are
“flat along the leaves,” i.e. covariant constant (with respect to the connection on
L) in directions tangent to the leaves of the polarization. There are some subtleties
involved in the definition, since such sections cannot be defined on all ofM but only
on certain leaves of the polarization called Bohr-Sommerfeld leaves, but we do not
address those here. The main result about quantization using real polarizations
is a theorem of Śniatycki, who proved in [S] that, under certain nice conditions,
the dimention of the real quantization is equal to the number of Bohr-Sommerfeld
leaves of the polarization.

We call the quantizations coming from these two types of polarizations the
“complex quantization” and “real quantization” of M . If a manifold admits both
a real and Kähler polarization, it is natural to ask if the resulting quantizations
are the same.

Gelfand-Cetlin and flag manifolds. Let F be the complex flag manifold F =
{0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn| dimVk = k}. Since F is a complex manifold (of

dimension d = n(n−1)
2 ), it has a natural complex polarization.

There is also a completely integrable system on F , called the Gelfand-Cetlin sys-
tem, which we denote by λ : F → Rd. It was introduced and studied by Guillemin
and Sternberg in [GS]. By the Arnol’d-Liouville theorem, a completely integrable
system gives a structure very much like a real polarization, except that it has
singularities, and so we can think of the Gelfand-Cetlin system as giving a sin-
gular real polarization on F . This was observed by Guillemin and Sternberg,
who showed that the number of Bohr-Sommerfeld fibres for this system equals
the dimension of the space of holomorphic sections, and so the real and complex
quantizations of F are “the same.” However, this was expressed in terms of the
equality of two numbers which were computed by other means (combinatorial and
representation-theoretic), and did not give any direct relationship between the
quantizations.

We give a direct relationship between the real and complex quantizations of
F , by deforming the complex structure on F in such a way that holomorphic
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sections converge to distributional sections supported on the Bohr-Sommerfeld
fibres, which can be seen as elements of the real quantization. Our construction is
based on two techniques.

Toric degeneration of flag manifolds. There exists a family of Kähler man-
ifolds Xt, t ∈ C, with constant dimension, such that X1 = F and X0 is a toric
variety.

Toric degenerations of flag manifolds were studied by various authors over the
past decade or two. Most recently, Nishinou, Nohara, and Ueda in [NNU] con-
structed a toric degeneration of F that carries the Gelfand-Cetlin integrable system
on F to the integrable system on X0 coming from the torus action. (In their con-
struction, they use a “degeneration in stages,” where the parameter t is not in C
but in Cn−1.) More history of toric degenerations is given in [NNU].

Deformation of complex structure of a toric manifold. Recently, Baier,
Florentino, Mourao, and Nunes [BFMN] constructed a deformation of the complex
structure on a symplectic toric manifold, such that an element of the canonical
basis of holomorphic sections (corresponding to an integer lattice point in the
moment polytope) converges to a distributional section supported on the Bohr-
Sommerfeld fibre over the same integer lattice point.

Our result. Our construction is a combination of these two techniques, applied
to the flag manifold case. Näıvely, we degenerate F to X0 and then apply BFMN’s
deformation to the X0, which is toric; the actual process is slightly more compli-
cated.

First of all, BFMN’s deformation does not apply directly to X0, because X0

is (almost always) singular. However, it sits inside P =
∏n−1

k=1 P(∧kCn) which is
a smooth toric manifold, in such a way that “everything” is compatible: the real
polarization, the complex structure, and the actions of the respective tori on XO

and P . We apply the deformation to P and keep track of what happens on X0.
Second, we cannot directly apply the toric degeneration either, because the

manifolds Xt are no longer diffeomorphic to F after the first “stage” of the de-
generation. Instead, we use an approximation to NNU’s degeneration in stages so
that the degenerating manifolds remain diffeomorphic to F . By a delicate limiting
argument, we prove convergence of the holomorphic sections.

In the end, we obtain:

Theorem. View the complex flag manifold F as a symplectic manifold, with sym-
plectic form ω, complex structure JF , and prequantum line bundle L. Denote by
∆ ⊂ Rd the convex polytope that is the image of the Gelfand-Cetlin system λ.
Then there exists a one-parameter family {Js}s∈[0,∞) of complex structures on F ,
compatible with ω, such that J0 = JF and the Kähler polarizations defined by Js
converge to the real polarization defined by λ, in the following sense: For each
s ∈ [0,∞), there exists a basis {σm

s | m ∈ ∆ ∩ Zd} of the space of holomorphic

sections H0(L) such that, for each m ∈ Int∆ ∩ Zd, the section
σm
s

‖σm
s ‖L1

converges
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as s → ∞ to a delta-function section δm supported on the Bohr-Sommerfeld fiber
λ−1(m).

Thus, we have a direct relationship between the holomorphic sections σm
0 , which

are elements of the complex quantization of F , and the distributional sections δm,
which can be seen as elements of the real quantization.
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On the Regualirization of the Kepler Problem

Gert Heckman

In the lecture I discuss four proofs of Kepler’s ellipse law. The first one (hard to
imagine, but maybe new) is geometric in origin and was obtained by Van Haandel
and Heckman, while teaching a master class for high school students in their final
grade. This is the proof I like best, and would describe as a proof from ”The
Book”. The second proof is the original proof by Newton, rephrased in modern
terminology, and explaining his beautiful comparison of the inverse square force
(Kepler problem) with the harmonic oscillator (Hooke law). The third proof is the
one of Bernoulli and Hermann, that is found in most physics text books. Rewrite
the equation of motion for position vector as function of time via polar coordinates
as a second order equation of the inverse distance as a function of the angle. This
equation is easy to solve, but the proof is black magic. The final proof is the
construction of a canonical bijection between the part of phase space of the Kepler
problem with negative energy to the punctured cotangent bundle of the sphere
(with the cotangent space above the north pole deleted) which intertwines the
Kepler Hamiltonian with the Delaunay Hamiltonian for the sphere. The essential
step is due to Moser: stereographic projection after geometric Fourier transform.
However under this geometric transformation Kepler and Delaunay flow are inter-
twined with different times. The map can be adjusted according to a formula by
Ligon and Schaaf (1976) with improvements by Cushman and Duistermaat (1997)
so that the two times also match. Our main point (collaboration with Tim de
Laat) is that the Ligon-Schaaf formula can be understood in an almost trivial way
from the Moser regularization paper (1970).
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Quantisation commutes with reduction at nontrivial representations

Peter Hochs

1. Quantisation and noncommutative geometry

Landsman [6] formulated a version of the quantisation commutes with reduc-
tion problem that is meaningful for noncompact groups acting on noncompact
manifolds, as long the orbit space of the action is compact. Consider a prequan-
tisable Hamiltonian action by a Lie group G on a symplectic manifold (M,ω),
such that M/G is compact. Landsman defines the geometric quantisation of this
action using the analytic assembly map from the Baum–Connes conjecture [1, 8]
in noncommutative geometry

µG
M : KG

0 (M)→ K0(C
∗G).

Here KG
0 (M) is the equivariant K-homology of M [2], in which the (Spinc- or

Dolbeault-)Dirac operator /DM associated to all the data given above naturally
defines a class [/DM ] ∈ KG

0 (M). Furthermore, K0(C
∗G) is the K-theory of the

full group C∗-algebra of G. We will in fact use a version for the reduced group
C∗-algebra (see below), but this is not suitable for Landsman’s purposes. The
geometric quantisation of the action is then defined as

QG(M,ω) := µG
M [/DM ] ∈ K0(C

∗G).

If M and G are compact, there is a natural isomorphism

K0(C
∗G) ∼= R(G),

with R(G) the representation ring, which maps the geometric quantisation defined
in this way to the standard equivariant index of the Dirac operator /DM .

Landsman proceeds to define a reduction map

R0
G : K0(C

∗G)→ Z,

that coresponds to taking the multiplicity of the trivial representation in the com-
pact case. It is functorially induced by the continuous map

C∗G→ C,

which on the dense subset Cc(G) ⊂ C∗G is given by

ϕ 7→
∫

G

ϕ(g) dg.

His generalised quantisation commutes with reduction conjecture then reads

R0
G ◦QG(M,ω) = index(/DM0),
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where /DM0 is the Dirac operator on the symplectic quotient M0 of M at 0 ∈ g∗.
This conjecture was proved under additional assumptions in [3]. A complete proof
was given by Mathai, Zhang and Bunke in [7].

2. Discrete series representations

For applications in representation theory, it is useful to have a version of quanti-
sation commutes with reduction that is valid for reduction at other representations
that the trivial one. In the compact situation, the case for reduction at the trivial
representation implies the case for reduction at any irreducible representation. In
the noncompact case, a similar principle does not hold (or is not known yet).

We have obtained a result [4] for reduction at discrete series representations of
semisimple groups. Therefore, suppose from now on that G is a semisimple Lie
group with finite centre, that has discrete series representations. We also assume
G to be connected to avoid some technical difficulties, although this assumption
is not essential.

A key assumption is that the momentum map associated to the action,

Φ :M → g∗,

takes values in the strongly elliptic set g∗se ⊂ g∗, which is the set of all elements of
g∗ with compact stabilisers under the coadjoint action. Heuristically, the coadjoint
orbits inside this set are associated with discrete sreies representations (see Schmid
[11], Parthasarathy [10] and also Paradan [9]). In [13], Proposition 2.6, Weinstein
proves that g∗se is nonempty if and only if rankG = rankK, which is Harish-
Chandra’s criterion for the existence of discrete series representations of G.

We define geometric quantisation as

QG(M,ω) = µG
M [/DM ] ∈ K0(C

∗
rG),

where now µG
M is the version of the analytic assemmply map with values in the

K-theory of the reduced group C∗-algebra C∗
rG of G, and /DM is the Spinc-Dirac

operator on M associated to all the data. Following Lafforgue [5], we define a
reduction map at a discrete series representation (H, π) of G, as a map

RH
G : K0(C

∗
r (G))→ Z,

in the following way. Consider the continuous map

C∗
r (G)→ K(H)

(the C∗-algebra of compact operators on H), given on Cc(G) ⊂ C∗
r (G) by

ϕ 7→
∫

G

ϕ(g)π(g) dg.

SinceK0(K(H)) ∼= Z, this map induces a mapK0(C
∗
r (G))→ Z onK-theory, which

by definition is RH
G . The reason why we now use the reduced group C∗-algebra

whereas Landsman used the full one, is that his reduction map R0
G is defined for

the full group C∗-algebra, while the map RH
G is defined for the reduced one.

With these preparations in place, the result can be stated as follows. Fix a
maximal compact subgroup K < G, a maximal torus T < K, and a positive Weyl
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chamber t∗+. Let H be an irreducible discrete series representation. Let λ ∈ it∗ be
its Harish-Chandra parameter such that (α, λ) > 0 for all compact positive roots
α. We will write (Mλ, ωλ) := (M−iλ, ω−iλ) for the symplectic reduction of (M,ω)
at −iλ ∈ t∗+ ∩ g∗se.

Theorem 1 (Quantisation commutes with reduction at discrete series represen-
tations). If −iλ is in the image of Φ, then

RH
G ◦QG(M,ω) = (−1) dimG/K

2 Q(Mλ, ωλ).

If −iλ does not lie in the image of Φ, then the integer on the left hand side equals
zero.

The quantisation Q(Mλ, ωλ) of the (compact) reduced space is the usual Spinc-
quantisation in the compact setting.

3. Quantisation commutes with induction

Our proof of this result is based on a reduction to the compact case. Crucial
roles are played by the Hamiltonian induction and Dirac induction maps. Dirac
induction is the map

D-IndGK : R(K)→ K0(C
∗
rG)

used in the Connes–Kasparov conjecture [5, 12]. Hamiltonian induction maps a
compact Hamilton K-manifold (N, ν) to a Hamiltonian G-manifold

H-IndG
K(N, ν) =

(
M := G×K N,ω

)
,

with ω some symplectic form on the fibred product G ×K N . Under the as-
sumptions we have made (the main one being that Φ(M) ⊂ g∗se), the Hamiltonian
induction map is invertible. Its inverse is called taking Hamiltonian cross-sections,
and is defined by

H-CrossGK(M,ω) =
(
N := Φ−1(k∗), ω|N

)
.

Hamiltonian induction extends to all relevant data, such as prequantisations and
equivariant Spinc-structures.

Our central result is the fact that quantisation commutes with induction:

Theorem 2. Let (N, ν) be a compact Hamiltonian K-manifold. Suppose (N, ν) is
equivariantly Spinc-prequantisable, and let QK(N, ν) ∈ R(K) be its usual Spinc-
quantisation. Then

D-IndG
K ◦QK(N, ν) = QG ◦H-IndGK(N, ν).

The quantisation commutes with reduction result for discrete series representa-
tions follows readily from this theorem.
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Singular Kähler quantization on the moduli space of semi-stable

holomorphic vector bundles on a curve

Johannes Huebschmann

A well-known construction of Seshadri [20] involving Grothendieck’s quot-scheme
[4] yields the moduli space of semi-stable holomorphic vector bundles on a curve
(equivalently: Riemann surface) of fixed rank and degree as a normal projective
variety.

In the coprime case, as a projective variety, the moduli space is non-singular and
acquires a Kähler structure. In the general case, an infinite-dimensional approach
due to Atiyah and Bott yields the moduli space by a version of infinite-dimensional
Kähler reduction [1]. A construction worked out by L. Jeffrey and me [7], [12]
that involves a suitable extended moduli space establishes the moduli space by
symplectic reduction in finite dimensions. The moduli space thus acquires the
structure of a stratified symplectic space in the sense of [21].

Our aim is to construct the moduli space as a purely finite dimensional Kähler
quotient and to develop singular quantization on that space via singular Kähler
reduction. To this end, relative to the appropriate symmetry group, we endow
an open and dense non-singular stratum of the space of holomorphic maps from
the curve to a suitable Grassmannian with an invariant Kähler structure together
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with a momentum mapping; that open and dense stratum consists of those holo-
morphic maps that parametrize semi-stable holomorphic vector bundles on the
given curve, cf. e. g. [17]. Kähler reduction in finite dimensions [15], [16] then
yields the moduli space. This construction complements that of Seshadri. Among
our tools are Chen’s theory of “differentiable spaces” [3] or, equivalently, Souriau’s
theory of “diffeological spaces” [22] and the equivariant Chern-Weil construction
à la Berline and Vergne [2]; the latter is here a crucial ingredient for the con-
struction of the requisite momentum mapping, a momentum mapping associated
with a closed equivariant 2-form being an equivariantly closed extension of that
2-form. The resulting Kähler quotient construction endows the moduli space with
a stratified Kähler structure [9] and explains in particular the in general singular
structure of the moduli space, that singular structure being finer than the ordinary
complex analytic singularity structure. Suffice it to mention here the following: a
stratified symplectic space is a stratified space whose strata are symplectic mani-
folds together with a Poisson algebra of continuous functions such that, for each
stratum, the restriction mapping on that algebra of continuous functions goes into
the smooth functions on that stratum and is actually a Poisson mapping relative
to the ordinary smooth symplectic Poisson algebra on that stratum; a stratified
Kähler space is a complex analytic space that is, furthermore, endowed with a
complex analytic stratification together with a compatible stratified symplectic
structure such that, on each stratum, the pieces of structure combine to a Kähler
structure; this kind of structure is considerably more subtle than just that of a
stratified space whose strata are Kähler manifolds and, in particular, is not equiv-
alent to Grauert’s notion of stratified Kählerian space. As for the moduli spaces of
semi-stable holomorphic vector bundles on a curve under discussion, in the special
case of genus two, rank two, degree zero, and trivial determinant—in the litera-
ture, this case is considered exceptional—the moduli space is complex projective
3-space, the semi-stable points that are not stable constitute a Kummer surface
[18], and this surface arises here as the singular locus of an exotic stratified Kähler
structure on complex projective 3-space even though, with the standard structure,
complex projective 3-space is non-singular. Here the term “exotic” is intended to
refer to the fact that that structure on projective 3-space is essentially different
from the standard (non-singular Fubini-Study) Kähler structure [9].

Equivariant Kähler quantization of the data then proceeds via an appropriate
equivariant holomorphic line bundle (a determinant bundle) on that open and
dense stratum of the space of holomorphic maps, and Kähler reduction yields a
holomorphic line bundle or, more generally, coherent sheaf, on the moduli space.
Taking holomorphic sections, we obtain a costratified Hilbert space [10], a quan-
tum structure that has the classical singularities as its shadow; we recall that a
costratified Hilbert space consists of a system of Hilbert spaces, one for each stra-
tum, each stratum, apart from those at the “bottom”, being a non-compact Kähler
manifold (unless there is a single stratum), together with bounded operators which
reflect the stratification on the classical level.
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The constructions admit generalizations to other principal bundles on a curve
(a general compact Lie group being substituted for the unitary group) and, even
more generally, to the situation of Hermite-Einstein theory.

The construction of the moduli space as a stratified Kähler space and the sub-
sequent quantization procedure is part of a research program that addresses the
issue of quantization in the presence of classical phase space singularities [8]-[11],
[13], [14].

References

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans.
R. Soc. London A 308 (1982), 523–615.
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K-theoretic index theorems for transversally elliptic operators

Gennadi Kasparov

Let X be a complete Riemannian manifold (in general, non-compact), equipped
with a proper isometric action of a Lie group G. To simplify things, we will assume
that X/G is compact. Let T (X) be the tangent bundle of X , T ∗(X) the cotangent
bundle and p : T (X)→ X the projection. We identify T (X) with T ∗(X) via the
Riemannian metric. We will denote covectors on X by ξ. The Lie algebra of the
groupG will be denoted g. We will consider properly supported pseudo-differential
operators on X of the Hörmander class ρ = 1, δ = 0.

Let x ∈ X and fx : G → X be the map defined by g 7→ g(x). We denote by
f ′
x : g→ Tx(X) the tangent (first derivative) map of fx at the identity of G, and by
f ′∗
x : T ∗

x (X)→ g∗ the dual map. It is easy to see that for any x ∈ X, g ∈ G, v ∈ g,
one has: g(f ′

x(v)) = f ′
g(x)(Ad(g)(v)).

Let us consider a trivial vector bundle gX = X × g over X with the G-action
given by (x, v) 7→ (g(x), Ad(g)(v)). Because the G-action on X is proper, there
exists aG-invariant Riemannian metric on gX . Equivalently, one can say that there
exists a smooth map from X to the space of Euclidean norms on g: x 7→ || · ||x,
such that for any x ∈ X, g ∈ G, v ∈ g, one has: ||Ad(g)(v)||g(x) = ||v||x.

It is clear that the map f ′ : gX → T (X) is G-equivariant. Note that by
multiplying our Riemannian metric on gX by a certain strictly positive function
lifted from X/G, we can also arrange that the following condition is satisfied: for
any v ∈ g, ||f ′

x(v)|| ≤ ||v||x. We will assume this, and so ||f ′
x|| ≤ 1 for any x ∈ X .

We identify gX with its dual bundle via the Riemannian metric and define
a G-invariant quadratic form q on cotangent vectors ξ ∈ T ∗

x (X) by qx(ξ) =
|(f ′

xf
′∗
x (ξ), ξ)| = ||f ′∗

x (ξ)||2x. It follows from the above that qx(ξ) ≤ ||ξ||2 for any
covector ξ.

Note that a covector ξ ∈ T ∗
x (X) is orthogonal to the orbit passing through x if

and only if qx(ξ) = 0.
In the definition of the symbol, as well as in the definition of the K-theoretic

index class of a transversally elliptic operator, we will use the following convention:
we replace the operator A with

(
0 A∗

A 0

)
on E = E0⊕E1 acting on the vector bundle

E = E0 ⊕ E1. It means that we consider E as a Z2-graded vector bundle, and A
is a selfadjoint operator on E of grading degree 1.

Definition. A properly supported G-invariant pseudo-differential operator A
of order 0 on a vector bundle E over X will be called transversally elliptic if its
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symbol σA satisfies the following condition: for any compact subset K ⊂ X and
any ǫ > 0, there exists c > 0 such that for any x ∈ K,

||σ2
A(x, ξ)− 1||(x,ξ) ≤ c ·

1 + qx(ξ)

1 + ||ξ||2 + ǫ.

The notation || · ||(x,ξ) means the norm of an endomorphism of the vector bundle
p∗(E) on T ∗(X) at the point (x, ξ).

In order to define the K-theory symbol class, we first need to introduce an
analog of the algebra of scalar symbols of negative order. We define this algebra
of symbols as the following commutative C∗-algebra SG(X) ⊂ Cb(T

∗(X)).

Definition. The symbol algebra SG(X) is the norm-closure in Cb(T
∗(X)) of

the set of all smooth, bounded, compactly supported in the x-variable functions
b(x, ξ) on T ∗(X) which satisfy the following conditions 1), 2):

1) The exterior derivative dxb(x, ξ) is norm bounded uniformly in ξ, and for the
exterior derivative dξ there is an estimate:

||dξb(x, ξ)|| ≤ C · (1 + ||ξ||)−1

where the constant C depends only on b and not on (x, ξ);
2) for any ǫ > 0, there exists c > 0 such that for any x ∈ X ,

|b(x, ξ)| ≤ c · 1 + qx(ξ)

1 + ||ξ||2 + ǫ.

Note that condition 1) is just a weak version of the Hörmander property of the
ρ = 1, δ = 0 class of symbols for order 0 operators. Under the assumption that
the condition 1) is satisfied, the condition 2) is equivalent to the usual condition
of transverse ellipticity of Atyiah-Singer.

Let E be a vector bundle on X , and consider the norm-closure of the set of
all smooth bounded sections of p∗(E) over T ∗(X) which satisfy the conditions of
the definition of the algebra SG(X) (with |b(x, ξ)| replaced with ||b(x, ξ)||(x,ξ)).
Call it SG(E). Then SG(E) is a Hilbert module over SG(X), with the obvious
multiplication and the pointwise inner product given by the Hermitian metric of
p∗(E). The algebra C0(X) acts on SG(E) by multiplication.

Let A be a formally self-adjoint, properly supported, G-invariant pseudo-diffe-
rential operator A of order 0 on X in the Hörmander class ρ = 1, δ = 0. We
assume that its symbol σA satisfies the conditions of the definition of transverse
ellipticity. Then this symbol is a bounded operator on the Hilbert module SG(E)
and f(σ2

A − 1) ∈ SG(E) for any f ∈ C0(X). It allows to define an element
[σA] ∈ K0(C

∗(G,SG(X))).

On the other hand, as noticed by P. Julg in the case of compact G and X , the
natural covariant representation of the algebra C∗(G,C0(X)) on L2(E), together
with the transversally elliptic operator A of order 0, define an element of the dual
K-homology group K0(C∗(G,C0(X))). This remains true for the non-compact G
and X .
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In order to state the index theorem we need certain K-theory elements. We
will use KK-theory and its small modification suggested by G. Skandalis, KKsep,
in order to deal with non-separable algebras. Note that the algebra SG(X) is not
separable. For simplicity we omit the subscrip sep.

We will use two canonical elements: the Dirac element

[dX,G] ∈ K0(C∗(G,S(X)))

and the local dual Dirac element

[ΘX,G] ∈ K0(C
∗(G,C0(X))⊗ C∗(G,S(X))).

We can now state the
Inverse Index Theorem.

[σA] = [ΘX,G]⊗C∗(G,C0(X)) [A] ∈ K0(C
∗(G,S(X))).

Finally, to state the index theorem, we transform the symbol [σA] into an el-
ement [σ̃A] ∈ KK0(C

∗(G,C0(X)), C∗(G,S(X))) by a certain natural homomor-
phism.

Index Theorem. Let X be a complete Riemannian manifold and G a Lie
group which acts on X properly and isometrically. Let A be a properly supported
G-invariant transversally elliptic operator on X of order 0. Then

[A] = [σ̃A]⊗C∗(G,S(X)) [dX,G] ∈ K0(C∗(G,C0(X))).

The proof of the Inverse Index Theorem uses a certain rotation homotopy in
the neighborhood of the diagonal of X ×X . The Index Theorem follows from the
Inverse one.

It is important to note that there is Poincare duality between the symbol and
the index (such duality also exists in the elliptic case). Poincare duality here is
the isomorphism between the groups K0(C

∗(G,S(X))) and K0(C∗(G,C0(X))).
It maps the symbol into the index. So if the symbol and the index elements are
defined as above, they carry the same information.

Note also that one can define a Clifford symbol of a transversally elliptic oper-
ator. This can be done by replacing the algebra SG(X) with a much smaller (and
separable) algebra Cτ⊕g(X) which is KK-equivalent to SG(X). The above index
theorems and the Poincare duality remain true after this replacement.

Geometric quantization, limits, and restrictions– some examples for

elliptic and nilpotent orbits

Toshiyuki Kobayashi

The Kirillov–Kostant–Duflo orbit philosophy relates the set of equivalence classes
of irreducible unitary representations of a Lie group G with the set of coadjoint
orbits. Our expectation is that this correspondence is given by a “geometric quan-
tization”:

(1) Q : g∗/Ad∗(G)→ Ĝ,
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satisfying functorial properties (e.g. [Q,R] = 0, [Q,Limit] = 0). This works per-
fectly for simply connected nilpotent G. However, for reductive G, there is no

reasonable bijection between Ĝ and g∗/Ad∗(G) (or its subset requiring some in-
tegrality conditions). Nevertheless we know more or less what Q should be for
semisimple orbits. For example, Q(OG) is realized in a certain Dolbeault coho-
mology group on OG for an integral elliptic orbit OG, and Q(OG) is given by a
(classical) parabolic induction for a hyperbolic orbit OG.

Let H be a subgroup of G, h ⊂ g their Lie algebras, and pr : g∗ → h∗ the
restriction map. Take any coadjoint orbit OG ⊂ g∗. Then the natural inclusion
ι : OG →֒ g∗ gives the momentum map of the Hamiltonian action of G on OG

endowed with the Kirillov–Kostant–Souriau symplectic form, and the composition
µ := pr · ι : OG → h∗ gives that for H .

For a coadjoint orbit OH ⊂ h∗, we set

n(OG,OH) := #(µ−1(OH)/H) = (OG ∩ pr−1(OH))/H.

Our concern is with the case where G and H are non-compact reductive groups.

For OG such that Q(OG) ∈ Ĝ is well-defined, we raise:

Conjecture 1. (1) The restriction of the unitary representation Q(OG)|H is
multiplicity-free, namely, the ring EndH(Q(OG)) is commutative if

(2) n(OG,OH) ≤ 1 for any OH ∈ h∗/Ad∗(H).

(2) If OG
λ is a family of coadjoint orbits with parameter λ such that the restric-

tions Q(OG
λ )|H are multiplicity-free, then (2) holds for all OG

λ .

We present some non-compact settings for Conjecture 1 (2), and show some
evidence of the Conjecture. For a simple Lie algebra g with Cartan decomposition
g = k+ p, we set

C∗k := ([k, k] + p)⊥ ⊂ g∗.

We note C∗k 6= 0 iff G/K is a Hermitian symmetric space. Assume that a coadjoint
orbit OG satisfies

(3) OG ∩ C∗k 6= ∅.
Let {ν1, . . . , νk} be the maximal set of strongly orthogonal set in ∆(p−τ

+ , tτ )
(see [2] for more details). For A = Z or R, we define

C+A := {
k∑

j=1

ajνj : a1 ≥ · · · ≥ ak ≥ 0, aj ∈ A (1 ≤ j ≤ k)}.

Theorem Bhol and B
Q
hol

([2, 4]). Suppose (G,H) is a symmetric pair of holo-
morphic type. For any OG

λ satisfying the condition (3), we have:

(1) µ : OG
λ → h∗ is proper, and n(OG

λ ,OH) ≤ 1 for any H-coadjoint orbit OH in
h∗. Further, n(OG

λ ,OH) 6= 0 only if OH is elliptic. More precisely,

µ(OG
λ ) =

∐

µ∈λ+C+
R

OH
µ .
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(2) The restriction of the unitary representation Q(OG
λ )|H is discretely decompos-

able and multiplicity-free. More precisely,

Q(OG
λ )|H ≃

∑⊕

µ∈λ|tτ +ρ(p−τ
+ )+C+

Z

Q(OH
µ ) (discrete direct sum).

Theorem Banti and B
Q
anti

([2, 4]). Suppose (G,H) is a symmetric pair of anti-
holomorphic type. For any OG

λ satisfying the condition (3), we have:

(1) The momentum map µ : OG → h∗ is not proper. Further, n(OG
λ ,OH) ≤ 1 for

any H-coadjoint orbit OH in h∗. More precisely, n(OG
λ ,OH) 6= 0 if and only

if OH is hyperbolic. Hence,

µ(OG
λ ) =

∐

µ∈(ah)∗+

OH
µ .

(2) The restriction Q(OG
λ )|H is decomposed only by continuous spectrum:

Q(OG
λ )|H ≃

∫

(ah)∗+

Q(OH
µ )dµ (direct integral).

A remarkable feature of Theorem Banti is that the image µ(OG
λ ) is independent

of λ in contrast to Theorem Bhol.
The geometric quantization of nilpotent orbits is non-trivial. Observing that

any nilpotent orbit Onilp can be approximated by semisimple orbits Oν , we pro-
pose:

Problem 1. Construct a representation Q(Onilp) from the knowledge of geometric
quantizations Q(Oν) for semisimple orbits that approach to Onilp.

Here is an example for which the idea works. Let G = O(p, q), and set

f := E12 − E21, h := E1,p+q + Ep+q,1 ∈ g.

For a parameter ν > 0, we introduce a family of minimal elliptic and hyperbolic
orbits

Oell
ν := Ad∗(G)(νf), Ohyp

ν := Ad∗(G)(νh).

Theorem C ([6]).

lim
ν↓0
Ohyp

ν = lim
ν↓0
Oell

ν = Onilp
0 ∪ Omin ∪ {0}.

Here Ohyp
ν , Oell

ν , and Onilp
0 are hyperbolic, elliptic, and nilpotent orbits of di-

mension 2(p + q − 2), and Omin is the minimal nilpotent orbit. Then, we can
construct Q(Omin) from the knowledge of Q(Ohyp

ν ) or Q(Oell
ν ) as follows:

Theorem CQ ([6, 7]). For p+ q even and p, q ≥ 2, there exists the following two
non-splitting exact sequences of G-modules:

0→ ̟min → Q(Ohyp
−1 )

∆̃→ Q(Ohyp
1 )→ 0,

0→ ̟min → Q(Oell
−1) → Q(Oell

1 ) → 0.
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Remark. (1) The same representation ̟min appears as a subrepresentation of the

two completely different representations Q(Ohyp
−1 ) and Q(Oell

1 ).
(2) We have used Q by a little abuse of notation, namely, as an “analytic

continuation” of Q. We note that neither Q(Ohyp
±1 ) nor Q(Oell

−1) is unitarizable.

(3) The intertwining operator ∆̃ is given by the Yamabe operator in the con-

formal geometry (see [7]) for the pseudo-Riemannian manifold Ohyp
1 ≃ (Sp−1 ×

Sq−1)/Z2.

Finally we discuss a direct approach to get a quantization Q(OG
min), namely,

to construct an irreducible unitary representation from a real minimal nilpotent
orbit OG

min. Here is an optimistic approach:

Approach. Find an appropriate Lagrangian submanifold C of OG
min, and con-

struct an irreducible unitary representation Q(OG
min) of G on L2(C).

We list some difficulties:

• The group G cannot act geometrically on any such C.
• There does not exist any invariant polarization on OG

min.
• For some group G, there is no candidate for Q(OG

min).

However, we can give some affirmative results in the following setting:

Theorem D and DQ ([1, 3]). Suppose G is the conformal group of any real
simple Jordan algebra V . Then C := OG

min ∩ V is Lagrangian in OG
min, and the

above approach works for an appropriate covering of G except for g ≃ so(p, q)
(p+ q odd).

A generalized Fourier transform is studied in details in [3].
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Quantization of the moduli space of flat G-bundles using G-valued

moment maps

Derek Krepski

Let G be a compact, connected Lie group and let Σ be a compact oriented sur-
face of genus g with r boundary components. Recall from [AMM] that the moduli
space MG(Σ;C1, . . . ,Cr) of flat G bundles over Σ with boundary holonomies in
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prescribed conjugacy classes Cj ⊂ G can be realized as a symplectic quotient of a
quasi-Hamiltonian G-space:

MG(Σ;C1, . . . ,Cr) = (G2g × C1 × · · · × Cr)//G.

That is, MG(Σ;C1, . . . ,Cr) = Φ−1(e)/G where Φ : X = G2g ×C1 × · · · ×Cr → G
is the group-valued moment map for the quasi-Hamiltonian G-space X given by

Φ(a1, b1, . . . , ag, bg, c1, . . . cr) =
∏

i

aibia
−1
i b−1

i

∏

j

cj .

Important examples of quasi-Hamiltonian G-spaces include conjugacy classes C →֒
G with moment map the inclusion (the quasi-Hamiltonian counterpart to coadjoint
orbitsO ⊂ g∗ in the ordinary setting of Hamiltonian group actions), and the double
D(G) = G×G with moment map (a, b) 7→ aba−1b−1.

In a recent paper [M2], E. Meinrenken has defined the quantization Q(M) ∈
Rk(G), the level k fusion ring (or Verlinde algebra), for (pre-quantized) quasi-
Hamiltonian G-spaces M . Several basic properties are established, including

(1) Q(M1 ×M2) = Q(M1)Q(M2) (compatibility with fusion products), and
(2) Q(M//G) = Q(M)G (quantization commutes with reduction).

Problem: In the framework of quasi-Hamiltonian G-spaces, compute
Q(MG(Σ;C1, . . . ,Cr)).

When G is simply connected, such a computation is carried out in [M2]. For G
non-simply connected, there are some complications.

For example, there are obstructions to pre-quantization if π1(G) is non-trivial.
Indeed, suppose G is simple. Then in [K1] it is shown that the obstruction to

level k pre-quantization is a cohomology class φ̃∗(kx) ∈ H3(G × G;Z), where

φ̃ : G×G→ G̃ is the canonical lift of the group commutator φ : G×G→ G to the
universal covering group G̃, and x ∈ H3(G̃;Z) ∼= Z represents a generator. This
obstruction vanishes precisely when k is a multiple of l0, displayed in Table 1 for
every non-simply connected compact simple Lie group G.

G
SU(n)/Zk PSp(n) SO(n) PO(2n) Ss(4n) PE6 PE7

n ≥ 2 n ≥ 1 n ≥ 7 n ≥ 4 n ≥ 2

l0 ordk(
n
k )

1, n even
1

2, n even 1, n even
3 2

2, n odd 4, n odd 2, n odd
Table 1. The integer l0. Notation: ordk(x) denotes the order of x
mod k in Zk = Z/kZ.

Remark : The numbers appearing in Table 1 also appear in the paper of Toledano-
Laredo [TL] but in a different context. Specifically, there is an integer lb defined
in [TL] (lb = smallest integer l for which the restriction to the integer lattice of G
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of lB(−,−), where B is the basic inner product on g, is integral.) The integer lb
is then used to help classify central extensions

1→ S1 → L̂G→ LG→ 1.

It was observed by inspection that lb = l0. A partial explanation for the coincidence
can be found in [K2], where an explicit pre-quantum line bundle is constructed
using lb in the context of Hamiltonian loop group actions.

Specializing to the case G = SO(3), explicit computations for Q(D(SO(3))) ∈
Rk(SU(2)) can be found in [M1]. Further calculations involving conjugacy classes
C ⊂ SO(3) have also been obtained [MK]. Similar computations for other non-
simply connected G are the subject of future work.
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On the image of real loci of symplectic manifolds under moment maps

Liviu Mare

(joint work with Lisa Jeffrey)

Let (M,ω) be a connected symplectic manifold equipped with a Hamiltonian action
of a torus T and let Φ : M → t∗ be a moment map, where t := Lie(T ). Let also
τ be an automorphism of M , which is involutive, i.e. it satisfies τ ◦ τ = idM . We
also assume that τ is anti-symplectic and compatible with the T -action. That is,
we have

τ∗ω = −ω
τ(g.m) = g−1.τ(m), for all g ∈ T,m ∈M.

We denote by M τ the fixed point set of τ . The following result has been proved
by Duistermaat, see [2, Theorem 2.5]:

Theorem 1. (Duistermaat) If M is compact and M τ 6= ∅ then we have

Φ(M τ ) = Φ(M).
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This result has been generalized by Hilgert, Neeb, and Plank [3], [4] and O’Shea
and Sjamaar [6] to the case when the moment map Φ is proper. Our goal is to
present a generalization of Theorem 1 to the context of non-proper moment maps.
We are motivated by the following example.

Example. (see [7, Counterexample 0.1]) We consider the spaceM := C2\(D×D),
where D is the closed unit disk in C. It is an open subset of C2, invariant under
the canonical action of the torus T 2 on C2. The corresponding moment map is
Φ : M → R2, Φ(z, w) = 1

2 (|z|2, |w|2), where we have identified the dual vector

space of Lie(T 2) with R2. The main observation of [7] is that

Φ(M) = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0} \ {(x, y) ∈ R2 : x ≤ 1

2
and y ≤ 1

2
},

which is not a convex subset of R2. The reason is that Φ is not a proper map:
indeed, the image of Φ is not a closed subset of R2. However, if τ : M → M is
given by τ(z, w) = (z̄, w̄), then the assumptions above on M,ω, τ , and the T 2-
action are satisfied and we have Φ(M τ ) = Φ(M). Let us finally observe that the
map Φ : M → Φ(M) is a closed map (in fact, it is a proper map); moreover, all
fibers of Φ are connected subspaces of M .

This is just a particular case of the following theorem, which is our main result.

Theorem 2. Let τ be an anti-symplectic involutive automorphism of the symplec-
tic manifold (M,ω) which is compatible with the T -action. Assume that the map
Φ : M → Φ(M) is a closed map and all of its fibers are connected. If M τ 6= ∅,
then Φ(M τ ) = Φ(M).

To prove the theorem we will use the following result of Birtea, Ortega, and
Ratiu, see [1, Corollary 2.18].

Proposition 3. (Birtea, Ortega, and Ratiu) If Φ : M → Φ(M) is a closed map
and all of its fibers are connected then the map Φ :M → Φ(M) is an open map.

Proof of Theorem 2. Let us first note that M τ is a closed subspace of M . Thus
Φ(M τ ) is a closed subspace of Φ(M). We now show that Φ(M τ ) is an open
subspace of Φ(M). Indeed, take m ∈ M τ . By [3, Proof of Theorem 2.3], there
exists a τ -invariant neighborhood U of m in M such that Φ(U ∩M τ ) = Φ(U).
By Proposition 3, the map Φ : M → Φ(M) is open. Thus, Φ(U ∩M τ ) is open in
Φ(M), i.e. it is an open neighborhood of Φ(m) in Φ(M). This implies that Φ(M τ )
is open in Φ(M), as desired. Consequently, Φ(M τ ) must be equal to Φ(M). �

From Theorem 2 we can now deduce the following result, which seems to be
new even in the case when M is compact.

Corollary 4. Under the hypotheses of Theorem 2, the map Φ|Mτ :M τ → Φ(M τ )
is an open map.

Proof. Let V be an open subset of M such that V ∩M τ is non-empty. We will
show that Φ(V ∩M τ ) is open in Φ(M τ ). Indeed, take m ∈ V ∩M τ . Let U be
a neighborhood of m in M which is τ -invariant and satisfies Φ(U ∩M τ ) = Φ(U).
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As before, such a U exists by an argument which can be found in [3, Proof of
Theorem 2.3]; moreover, we can assume that U ⊂ V . We deduce that

Φ(U) = Φ(U ∩M τ ) ⊂ Φ(V ∩M τ ).

Since Φ(U) is open in Φ(M) and Φ(M) = Φ(M τ ) (see Theorem 2), we deduce that
Φ(V ∩M τ ) is a neighborhood of Φ(m) in Φ(M τ ). Since m was chosen arbitrarily,
we deduce that Φ(V ∩M τ ) is open in Φ(M τ ), QED �

Application. Let N be a symplectic manifold with a Hamiltonian action of a
compact non-abelian Lie group G and moment map Ψ : N → g∗, where g :=
Lie(G). Assume that the map Ψ is proper. Let T ⊂ G be a maximal torus
and denote its Lie algebra by t. We also consider a closed Weyl chamber t∗+ ⊂
t∗ ⊂ g∗ and denote its interior by Int(t∗+). Recall that the principal face σprin
of the latter polyhedral cone is the minimal face σ with the property that the
Kirwan polytope Ψ(N)∩ t∗+ is contained in the closure of σ. Assume that σprin =
Int(t∗+) (for a concrete situation when this assumption is fulfilled we refer to the
example described in [8, Section 2.4]). By [5, Theorem 3.7], the pre-image M :=
Ψ−1(Int(t∗+)) is a symplectic cross-section of the G-action, hence a symplectic
submanifold, which is T -invariant. The moment map of the T -action on M is
Φ = Ψ|M :M → t∗. The image of this map is Int(t∗+) ∩Ψ(N), which is in general
not a closed subset of t∗ (see again [8, Section 2.4]). Thus the map Φ : M → t∗

is in general not proper. However, the hypotheses in Theorem 2 are satisfied.
Indeed, the map Φ : M → Φ(M) is proper, since for any K ⊂ Φ(M) which is
compact, we have Φ−1(K) = Ψ−1(K). Any fiber of the map Φ : M → Φ(M)
is also a fiber of Ψ, hence it is connected. Let us now consider an involution τ
of N which is antisymplectic and compatible with the T -action on N . The last
condition implies that Ψ ◦ τ = Ψ (cf. [2]). Thus M is τ -invariant. Theorem 2
implies that Φ(M τ ) = Φ(M) = Ψ(N) ∩ Int(t∗+).

Acknowledgement. We would like to thank Yael Karshon for discussions about
the topics of the paper.
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2000/2001, Astérisque no. 282 (2002), Exp. no. 888, viii, 249–278

Toeplitz operators and geometric quantization

George Marinescu

(joint work with Xiaonan Ma)

The goal of this talk is to review the Berezin-Toeplitz quantization in the frame-
work of spinc quantization for symplectic manifolds.

The aim of the geometric quantization theory of Kostant and Souriau is to
relate the classical observables (smooth functions) on a phase space (a symplectic
manifold) to the quantum observables (bounded linear operators) on the quantum
space (sections of a line bundle). Toeplitz operators and more generally Toeplitz
structures were introduced in geometric quantization by Berezin [1] and Boutet de
Monvel-Guillemin [3]. Using the analysis of Toeplitz structures [3], Bordemann-
Meinrenken-Schlichenmaier [2] and Schlichenmaier [10] gave asymptotic expansion
for the composition of Toeplitz operators in the Kähler case.

We will first show that in the general symplectic case the kernel of the spinc oper-
ator is a good substitute for the space of holomorphic sections used in Kähler quan-
tization. Then we present an approach to the asymptotic expansion of Toeplitz
operators using kernel calculus and the off-diagonal asymptotic expansion of the
Bergman kernel of Dai-Liu-Ma (based in turn on analytic localization techniques
of Bismut-Lebeau). For more details and a global picture see the article [5].

1. Spectral gap of the spinc Dirac operator

Let (X,ω) be a compact symplectic manifold, dimRX = 2n, with compatible
almost complex structure J : TX → TX . Let gTX be the associated Riemannian
metric, gTX(u, v) = ω(u, Jv). Let (L, hL,∇L) → X be Hermitian line bundle,
endowed with a Hermitian metric hL and a Hermitian connection ∇L, whose
curvature isRL = (∇L)2. We assume that the prequantization condition is fulfilled:

(1)

√
−1
2π

RL = ω .

Let (E, hE ,∇E) → X be a Hermitian vector bundle. We will be concerned with
asymptotics in terms of high tensor powers Lp ⊗ E, when p → ∞, that is, we
consider the semi-classical limit ~ = 1/p→ 0.

Let us consider the Clifford connection ∇Cliff on Λ0,•T ∗X (see e.g. [8, §. 1.3]).
The connections ∇L, ∇E and ∇Cliff induce the connection

∇p = ∇Cliff ⊗ Id+ Id⊗∇Lp⊗E on Λ0,•T ∗X ⊗ Lp ⊗ E.

The spinc Dirac operator is defined by

(2) Dp =
2n∑

j=1

c(ej)∇p,ej : Ω0,•(X,Lp ⊗ E) −→ Ω0,•(X,Lp ⊗ E) .



Geometric Quantization in the Non-compact Setting 475

where (ej)
2n
j=1 local orthonormal frame of TX and c(v) is the Clifford action of

v ∈ TX .
If (X, J, ω) is Kähler then Dp =

√
2(∂ + ∂

∗
) so ker(Dp) = H0(X,Lp ⊗ E) for

p ≫ 1. The following result shows that ker(Dp) has all semiclassical properties
of H0(X,Lp ⊗E). The proof is based on a direct application of the Lichnerowicz
formula forD2

p. Note that the metrics gTX , hL and hE induce an L2-scalar product

on Ω0,•(X,Lp ⊗ E), whose completion is denoted (Ω0,•
(2)(X,L

p ⊗ E), ‖ · ‖L2).

Theorem 1.1 ([6, Th. 1.1, 2.5], [8, Th. 1.5.5]). There exists C > 0 such that for
any p ∈ N and any s ∈⊕

k>0 Ω
0,k(X,Lp ⊗ E) we have

(3) ‖Dps‖2L2 ≥ (2p− C)‖s‖2L2 .

Moreover, the spectrum of D2
p verifies

spec(D2
p) ⊂ {0} ∪ [2p− C,+∞[ .(4)

By the Atiyah-Singer index theorem we have for p≫ 1

(5) dimker(Dp) =

∫

X

Td(T (1,0)X) ch(Lp ⊗ E) = rank(E)
pn

n!

∫

X

ωn +O(pn−1) .

Theorem 1.1 shows the forms in ker(Dp) concentrate asymptotically in the L2 sense
on their zero-degree component and (5) shows that dim ker(Dp) is a polynomial
in p of degree n, as in the holomorphic case.

2. Toeplitz operators in spinc quantization

Let us introduce the orthogonal projection Pp : Ω0,•
(2)(X,L

p ⊗ E) −→ ker(Dp),

called the Bergman projection in analogy to the Kähler case. Its integral kernel is
called Bergman kernel . The Toeplitz operator with symbol f ∈ C∞(X,End(E)) is

Tf,p : Ω0,•
(2)(X,L

p ⊗ E)→ Ω0,•
(2)(X,L

p ⊗ E) , Tf,p = PpfPp

A draw-back is that Tf,p ◦Tg,p 6= Tfg,p. However, equality holds in the asymptotic
sense. To make this precise we introduce the following definition. A (generalized)

Toeplitz operator is a sequence (Tp) of linear operators Tp ∈ End(Ω0,•
(2)(X,L

p⊗E))

verifying Tp = Pp Tp Pp , such that there exist a sequence gl ∈ C∞(X,End(E))
with the property that for all k ≥ 0, there exists Ck > 0 so that

(6)
∥∥∥Tp −

k∑

l=0

Tgl,p p
−l
∥∥∥ ≤ Ck p

−k−1 for any p ∈ N∗,

where ‖ · ‖ denotes the operator norm on the space of bounded operators.

We express (6) symbolically by Tp = Pp

(∑k
l=0 p

−lgl
)
Pp + O(p−k−1). If this

holds for any k ∈ N, then we write Tp = Pp

(∑∞
l=0 p

−lgl
)
Pp +O(p−∞).

By the Bergman kernel expansion of Dai-Liu-Ma we obtain the expansion of
the integral kernels of Tf, p , Tg, p and hence of Tf, p ◦ Tg, p . We check then that
Tp := Tf, p ◦Tg, p satisfies the characterization of Toeplitz operators [7, Th. 4.9], [8,
Lemmas 7.2.2, 7.2.4,Th. 7.3.1] in terms of the off-diagonal asymptotic expansion of
their integral kernels. We obtain thus the following.
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Theorem 2.1 ([7, Th. 1.1], [8, Th. 7.4.1]). Let f, g ∈ C∞(X,End(E)). The com-
position (Tf, p ◦ Tg, p) is a Toeplitz operator, i.e.,

(7) Tf, p ◦ Tg, p =

∞∑

r=0

p−rTCr(f,g), p +O(p−∞),

where Cr are bidifferential operators, C0(f, g) = fg and Cr(f, g) ∈ C∞(X,End(E)).
Let f, g ∈ C∞(X) and let {·, ·} be the Poisson bracket on (X,ω). Then

(8)
[
Tf, p , Tg, p

]
=

√
−1
p

T{f,g}, p +O(p−2).

In view of Theorem 2.1 we define an associative star-product on C∞(X,End(E))

(9) f ∗ g :=

∞∑

k=0

Ck(f, g)~
k ∈ C∞(X,End(E))[[~]] , f, g ∈ C∞(X,End(E)) ,

where Cr(f, g) are determined by (7). This is the Berezin-Toeplitz star product .
We denote by Ric the Ricci curvature of (X, gTX) and set Ricω = Ric(J ·, ·).
Theorem 2.2 ([9]). Assume that (X,ω) is Kähler and let f, g ∈ C∞(X,End(E)).

Then C1(f, g) = − 1
2π 〈∇1,0f, ∂

E
g〉ω . If f, g ∈ C∞(X), then

C2(f, g) =
1

8π2
〈D1,0∂f,D0,1∂g〉+

√
−1

4π2
〈Ricω, ∂f ∧ ∂g〉 −

1

4π2
〈∂f ∧ ∂g,RE〉ω .

(10)

This result has been used by J. Fine [4] for the quantization of Mabuchi energy.
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Toeplitz quantization, Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud.,
vol. 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 289–306.



Geometric Quantization in the Non-compact Setting 477

Geometric quantisation commutes with reduction

Varghese Mathai

(joint work with Weiping Zhang)

In 2005, Hochs and Landsman [3] proposed a generalization of the Guillemin–
Sternberg [2] conjecture to the case of locally compact symplectic manifolds and
locally compact Lie groups, using some of the ideas surrounding the Baum–Connes
conjecture. Indeed, Landsman viewed this as a consequence of the functoriality
of quantization. Let (M,ω) be a symplectic manifold with a Hamiltonian action
of a Lie group G. That is, for all V ∈ g, there is a smooth function fV satisfying
iV ω = dfV . Then (M,ω) has a moment map, Φ :M −→ g∗ defined as Φ(m)(V ) =
fV (m). The Marsden–Weinstein quotient (MG, ωG), i.e.

MG = Φ−1(0)/G,

turns out to be a symplectic manifold if 0 is a regular value of Φ. Suppose that
[ω] ∈ H2(M,Z). Recall the quantisation Q commutes with reduction diagram,
where RC denotes classical reduction and RQ quantum reduction:

(G 	M,ω)
Q−−−−→ G 	 Q(M,ω)

RC

y
yRQ

(MG, ωG)
Q−−−−→ Q(MG, ωG)

The commutativity of the diagram boils down to the equality,

dim(Q(M,ω)G) = dim(Q(MG, ωG)).

To define the quantum spaces, first note that by assumption, there is a prequantum
complex line bundle L → M whose first Chern class is [ω]. In fact, [ω + Φ] ∈
H2

G(M,Z), so that L is a G-equivariant line bundle over M . Then M has a G-
invariant SpinC-structure and an equivariant SpinC-Dirac operator denoted ðLM ,
with equivariant index,

indexG(ð
L
M ) = [ker(ðL+

M )]− [ker(ðL−
M )] ∈ R(G),

where R(G) denotes the representation ring of G. Define the quantum space,

Q(M,ω) = indexG(ð
L
M ) ∈ R(G).

The equivariant line bundle L descends to a line bundle LG overMG, which inherits
a SpinC-structure and so an SpinC-Dirac operator denoted ðLG

MG
. The index is,

index(ðLG

MG
) = ker(ðLG+

MG
)− ker(ðLG−

MG
)

Define the quantum space,

Q(MG, ωG) = index(ðLG

MG
).

Then the Guillemin-Sternberg conjecture is:-

dim
(
indexG(ð

L
M )G

)
= dim(index(ðLG

MG
))
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Equivalently, the following diagram commutes:-

(G 	M,ω)
Q−−−−→ G 	 Q(M,ω) ∈ R(G)

RC

y
yRQ

(MG, ωG)
Q−−−−→ Q(MG, ωG) ∈ Z

This was first proved by Meinrenken, with partial results by others earlier, in-
cluding by Guillemin-Stenberg who established the Kähler case. Alternate proofs
were later given by Vergne, Paradan and also by Tian-Zhang [5]. Using standard
ideas from the context of the Baum-Connes conjecture, Hochs-Landsman defined
a generalization of the Guillemin-Sternberg conjecture for noncompact groups G
and noncompact manifolds M . Additionally, one assumes that the Hamiltonian
action G 	 (M,ω) is proper and cocompact, (i.e. M/G is compact). The only
changes are:-

• The representation ring R(G) is replaced by K0(C
∗(G)), i.e. the usual

K0-group of the group C∗-algebra of G.
• The equivariant index, indexG(ðLM ) ∈ R(G) is replaced by, µG

M ([ðLM ]) ∈
K0(C

∗(G)), where

µG
M : KG

0 (M)→ K0(C
∗(G))

is the analytic assembly map, KG
0 (M) is the equivariant analytical K-

homology group defined by G 	M , and [ðLM ] is the class in KG
0 (M) of the

SpinC Dirac operator ðLM .
• Therefore, the quantisation of the unreduced space (G 	 M,ω) is now
given by

(1) Q(M,ω) = indexG(ð
L
M ) ∈ K0(C

∗(G)),

where

indexG(ð
L
M ) := µG

M ([ðLM ])

purely as a matter of notation.

• The map RQ : R(G)→ Z is replaced by the map

RQ =
(∫

G

)
∗ : K0(C

∗(G))→ Z

functorially induced by map
∫

G

: C∗(G)→ C

given by

f 7→
∫

G

f(g) dg

(defined on f ∈ L1(G) or f ∈ Cc(G) and extended to f ∈ C∗(G) by
continuity). Here we make the usual identification of K0(C) with Z.
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Let G be a unimodular Lie group, let (M,ω) be a symplectic manifold, and let
G 	 M be a proper strongly Hamiltonian action. Suppose 0 is a regular value of
the momentum map Φ. Suppose that the action is cocompact and admits an equi-
variant prequantum line bundle L. Assume there is an almost complex structure
J on M compatible with ω. Let ðLM be the Dirac operator on M associated to J

and coupled to L, and let ðLG

MG
be the Dirac operator on the reduced space MG,

coupled to the reduced line bundle LG. Then
(∫

G

)
∗ ◦ µ

G
M

[
ðLM

]
= index

(
ðLG

MG

)
.

Equivalently, the following diagram commutes:-

(G 	M,ω)
Q−−−−→ G 	 Q(M,ω) ∈ K0(C

∗(G))

RC

y
yRQ

(MG, ωG)
Q−−−−→ Q(MG, ωG) ∈ Z

Theorem (Mathai-Zhang [4], quantization commutes with reduction). Under the
hypotheses of the Hochs-Landsman conjecture, there is a positive integer p0 such
that for all integers p such that p ≥ p0, one has

(∫
G

)
∗ ◦ µ

G
M

[
ðL

p

M

]
= index

(
ð
Lp

G

MG

)
.

When G has an Ad-invariant metric, then we can take p0 = 1.

This essentially proves the Hochs-Landsman conjecture. In the case when G
is a finitely generated discrete group, this theorem gives an extremely general
index theorem for orbifolds. The idea of the proof is to use a variant of Witten
deformation, adapting the technique in [5]. Due to lack of space, we will not give
a sketch of proof, but we mention here that a key step is an interesting new index
theorem that we prove in our context. Roughly speaking, in a special case it says:-

Theorem (Mathai-Zhang [4]). Under the hypotheses of the Hochs-Landsman con-
jecture, for any G-equivariant first order elliptic differential operator D acting on
Ω0,•(M,Lp), then the induced operator

DG : Ω0,•(M,Lp)G −→ Ω0,•(M,Lp)G

is a Fredholm operator.

For a precise statement, we refer to [4]
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Verlinde Formulas for non-simply connected groups

Eckhard Meinrenken

The purpose of this talk is to describe an application of the recently developed
quantization of group-valued moment maps [6] to Verlinde-type formulas for the
quantization of moduli spaces. The talk is related to, and in part based on, joint
work with A. Alekseev and C. Woodward from over 10 years ago [2], and with D.
Krepski from less than 10 months ago [5].

1. Notation

Let G be a compact, simple, simply connected Lie group, with maximal torus
T . The Lie algebras are denoted g, t. We denote by Q ⊂ P ⊂ t∗ the root lattice
and the weight lattice, and by Q∨ ⊂ P∨ ⊂ t the co-root lattice and the co-weight
lattice. (We work with real weights and co-weights; these differ from the complex
weights by factors of 2πi.) Then

Z(G) = P∨/Q∨ ⊂ T = t/Q∨.

Let t+ be the choice of a fundamental Weyl chamber, αmax ∈ Q the highest root,
and

∆ = {ξ ∈ t+| 〈αmax, ξ〉 ≤ 1}
the fundamental alcove. The alcove parametrizes conjugacy classes in G, in the
sense that for any conjugacy class C there is a unique ξ ∈ ∆ such that exp(ξ) ∈ C.
The center Z(G) acts on the set of conjugacy classes by translation, this defines an
action on ∆. The basic inner product on g is the unique invariant inner product
such that ||α∨

max|| =
√
2. Use the inner product to identify g with g∗, hence t with

t∗. One knows that Q∨ ⊂ P under this identification. Let

P+ = P ∩ t+

be the dominant weights. The representation ring R(G), viewed as a ring of
characters, has basis the characters χλ of irreducible representations of highest
weight λ ∈ P+. The intersection

Pk = P ∩ k∆
are the level k weights. For all λ ∈ Pk, the points (λ+ ρ)/(k+ h∨), where ρ is the
half-sum of positive roots and h∨ = 1 + 〈ρ, α∨

max〉 is the dual Coxeter number, lie
in the interior of ∆, hence

tλ = exp(
λ+ ρ

k + h∨
) ∈ T

are regular elements of the maximal torus. The level k fusion ring (Verlinde
algebra) is the quotient

Rk(G) = R(G)/Ik
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where Ik is the ideal of characters vanishing at all points tλ, λ ∈ Pk. The images
τµ, µ ∈ Pk of the characters χµ form an additive basis of Rk(G). The maps
R(G) → C given by evaluation at points tλ descend to the fusion ring, and any
element of Rk(G) is determined by these values. Hence the complexified ring
Rk(G)⊗ C has another basis τ̃µ, given by the conditions

τ̃µ(tλ) = δλ,µ.

In the new basis, the fusion product is diagonalized: τ̃λτ̃λ′ = δλ,λ′ τ̃λ. The two
basis are related by the S-matrix :

Sλµ = c
∑

w∈W

(−1)l(w)e−
2πi

k+h∨ w(λ+ρ)·(µ+ρ).

Here c is a scalar, which can be chosen such that S is a unitary matrix, and
S0,λ > 0. One has

τ̃λ = Sλ0

∑

µ∈Pk

Sλµτµ.

2. Verlinde Formulas

Let Σ be a surface of genus g without boundary, and

MG(Σ) =
{flat connections on Σ×G}

gauge equivalence

the moduli space of flat G-connections. In terms of holonomies, it has a description
MG(Σ) = Φ−1(e)/G where Φ: G2g → G is the map

Φ(a1, b1, . . . , ag, bg) =

g∏

i=1

aibia
−1
i b−1

i .

The space Ω1(Σ, g) of connections on Σ×G carries a symplectic structure, given by
pointwise inner product · followed by integration over Σ. As observed by Atiyah-
Bott, this induces a symplectic structure on MG(Σ), turning it into a singular
symplectic space. Furthermore, there exists a pre-quantization at any integer
level k ∈ N, i.e. a pre-quantum line bundle L with curvature the k-th multiple of
the symplectic form. (For the purposes of this talk, we ignore the singularities -
in reality we work with appropriate desingularizations.) We take the index of the
Spinc-Dirac operator on M with coefficients in L to be the quantization

Q(M) = index(/∂L) ∈ Z

for the given level k. According to the Verlinde formula [7],

Q(M) =
∑

λ∈Pk

S2−2g
0,λ .

Our approach to the Verlinde formula uses the theory of group-valued moment
maps [1]. A q-Hamiltonian G-space (M,ω,Φ) is a G-manifoldM with an invariant
2-form ω and an equivariant map Φ: M → G such that

(1) dω = −Φ∗η, η = 1
12θ

L · [θL, θL] ∈ Ω3(G),
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(2) ι(ξM )ω = − 1
2ξ · Φ∗(θL + θR),

(3) ker(ω) ∩ ker(dΦ) = 0,

with θL, θR ∈ Ω1(G, g) the Maurer-Cartan forms. The first condition says that the
pair (ω, η) defines a cocycle in relative cohomology for the map Φ, and we define
a level k pre-quantization to be an integral lift of k[(ω, η)] ∈ H3(Φ,R). Given
such a pre-quantization, the construction in [6] produces a push-forward map
Φ∗ : K0

G(M)→ Rk(G). (This uses the interpretation of Rk(G) in terms of twisted
K-theory, due to Freed-Hopkins-Teleman.) We then define the quantization as

Q(M) = Φ∗(1) ∈ Rk(G).

Some properties are Q(M1×M2) = Q(M1)Q(M2) and the quantization commutes
with reduction theorem Q(M)G = Q(M//G), whereM//G = Φ−1(e)/G is the sym-
plectic quotient and the superscript G signifies the coefficient of τ0. Furthermore,
there is a localization formula

Q(M)(tλ) =
∑

F⊂Mtλ

∫

F

Â(F )Ch(LF , tλ)1/2
DR(νF , tλ)

.

Without going into details, we remark that these are the usual Atiyah-Singer fixed
point contributions for a certain Spinc-structure on TM |F , with associated line
bundle LF . As described in [6], these arise along fixed point manifolds even though
M itself need not carry a natural Spinc-structure, in general. As a special case,
this applies to the double D(G) = G × G with G-action the conjugation action
on each factor, and moment map (a, b) = aba−1b−1. The fixed point set of tλ is
simply F = T ×T , since tλ) is regular. It becomes straightforward to evaluate the
fixed point contribution of F , and one obtains Q(D(G))(tλ) = S−2

0,λ. Hence

Q(D(G)) =
∑

λ∈Pk

S−2
0,λτ̃λ ⇒ Q(D(G)g) =

∑

λ∈Pk

S−2g
0,λ τ̃λ

⇒ Q(D(G)g//G) =
∑

λ∈Pk

S2−2g
0,λ

where we used τ̃Gλ = S2
0,λ. But D(G)g//G =MG(Σ).

3. Fuchs-Schweigert formulas

In their 1999 paper [3], Fuchs and Schweigert considered generalizations of the
Verlinde formulas to non-simply connected groups. As in our discussion of the
Verlinde formulas, we will only consider the case without markings. Consider

G′ = G/Z

where Z is a subgroup of the center Z(G). To simplify notation, we assume
Z = Z(G). The space D(G′)g//G′ is the space of flat G-bundles, which is a
disconnected space with components labeled by topological types of G’-bundles.
The space of flat connections on the trivial bundle is, instead,

MG′(Σ) = D(G′)g//G



Geometric Quantization in the Non-compact Setting 483

where D(G′) = D(G)/(Z × Z) is viewed as a q-Hamiltonian G-space (note that
the G-moment map descends). By a theorem of D. Krepski [4], the space D(G′)
is pre-quantizable at level k if and only if P∨ ·P∨ ⊂ 1

kZ. The various inequivalent
pre-quantizations are related by homomorphims ψ ∈ Hom(Z×Z,U(1)). We found
the following formula for the quantization of D(G′):

Q(D(G′)) =
1

|Z|2
∑

γ=(γ1,γ2)∈Z2

φ(γ)
∑

λ∈Pγ
k

S−2
0,λτ̃λ

Here P γ
k are the level k weights that are fixed under the action of both γ1, γ2 ∈ Z

on Pk. (The action of Z on ∆ induces an action on level k weights.) The most
subtle point is the computation of the phase factor φ(γ) ∈ U(1). It depends on
the choice of pre-quantization, and is explictly given by

φ(γ) = ψ(γ)e−2πik ((1−w∗)
−1ζ1)·ζ2 ,

where ψ ∈ Hom(Z2,U(1)), the ζi ∈ ∆ exponentiate to ci, and w∗ ∈ W is the
Coxeter transformation. Following the argument forMG(Σ), we now obtain

Q(MG′(Σ)) =
1

|Z|2g
∑

γ=(γ1,...,γ2g)∈Z2g

φ(γ1, . . . , γ2g)
∑

λ∈Pγ
k

S2−2g
0,λ

where the phase factor is the product of the phase factors φ(γ2i−1, γ2i) defined
above. This is the formula conjectured by Fuchs-Schweigert. The more general
Fuchs-Schweigert formulas with markings can be addressed similarly; for the case
of G′ = SO(3) this is fully worked out in [5].
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From action-angle coordinates to geometric quantization: a round trip

Eva Miranda

The philosophy of geometric quantization is to find and understand a “(one-way)
dictionary” that “translates” classical systems into quantum systems . In this way,
a quantum system is associated to a classical system in which observables (smooth
functions) become operators of a Hilbert space and the classical Poisson bracket
becomes the commutator of operators. In this process, the choice of additional
geometric structures (polarizations) plays an important rôle. A desired property
is that the quantization obtained does not depend on the polarization. Another
rule in the game is that of keeping track of the symmetries on both sides. This is
the deep link of geometric quantization with representation theory. The quanti-
zation commutes with reduction “principle” becomes realistic in some geometric
quantization set-ups.

Our point of view in this big endeavour is very modest. We plan to construct a
“representation space” in the case the polarization is given by a real polarization.
For this, we follow the definition of Kostant of the representation spaces via higher
cohomology groups with coefficients in the sheaf of flat sections. In this short
note, we will not discuss either the (pre)Hilbert structure of this space nor the
quantization rules.

1. Quantization via real polarizations

Let (M2n, ω) be a symplectic manifold such that [ω] is integral. Under these
circumstances (see for instance [14] or [6]), there exists a complex line bundle L
with a connection ∇ over M such that curv(∇) = ω. The symplectic manifold
(M2n, ω) is called prequantizable and the pair (L,∇) is called a prequantum line
bundle of (M2n, ω). In order to construct the representation space we need to
restrict the space of sections to a subspace of sections which are flat in “priv-
iledged” directions given by a polarization. In this note we will just consider a
real polarization. A real polarization P is a foliation whose leaves are Lagrangian
submanifolds. Integrable systems provide natural examples of real polarizations.
If the manifoldM is compact the “moment map”: F :M2n → Rn has singularities
that correspond to equilibria. Consider the following:

Example 1.1. Consider M = S1×R and ω = dt∧dθ. Take as L the trivial bundle
with connection 1-form Θ = tdθ. Now, let P =< ∂

∂θ > then flat sections satisfy,

∇Xσ = X(σ)− i < θ,X > σ. Thus σ(t, θ) = a(t).eitθ and Bohr-Sommerfeld leaves
are given by the condition t = 2πk, k ∈ Z.

This example shows that flat sections are not globally defined but they exist
along a subset of leaves of the polarization. These are called Bohr-Sommerfeld
leaves. The characterization of Bohr-Sommerfeld leaves for regular fibrations un-
der some conditions is a well-known result by Guillemin and Sternberg ([4]). In
particular the set of Bohr-Sommerfeld leaves is discrete and is given by “action”
coordinates.
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Theorem 1.1 (Guillemin-Sternberg). If the polarization is a regular fibration
with compact leaves over a simply connected base B, then the Bohr-Sommerfeld
set is discrete and assuming that the zero-fiber is a Bohr-Sommerfeld leaf, the
Bohr-Sommerfeld set is given by, BS = {p ∈ M, (f1(p), . . . , fn(p)) ∈ Zn} where
f1, . . . , fn are global action coordinates on B.

This result connects with Arnold-Liouville-Mineur theorem for action-angle co-
ordinates for integrable systems. When we consider a toric manifolds the base B
may be identified with the image of the moment map by the toric action (Delzant
polytope).

In view of the previous theorem, it would make sense to “quantize” these sys-
tems counting Bohr-Sommerfeld leaves. When the polarization is an integrable
system with global action-angle coordinates, Bohr-Sommerfeld leaves are just “in-
tegral” Liouville tori. But why? Following the idea of Kostant [7], in the case
there are no global sections denote by J the sheaf of flat sections along the polar-
ization, we can then define the quantization as Q(M) =

⊕
k≥0H

k(M,J ). Then
quantization is given by precisely the following theorem of Sniatycki [13]:

Theorem 1.2 (Sniatycki). If the leaf space Bn is a Hausdorff manifold and the
natural projection π : M2n → Bn is a fibration with compact fibres, then all the
cohomology groups vanish except for degree half of the dimension of the manifold.
Furthermore, Q(M2n) = Hn(M2n,J ), and the dimension of Hn(M2n,J ) is the
number of Bohr-Sommerfeld leaves.

There are two different approaches to compute this sheaf cohomology:

(1) Using a fine resolution of the complex: Namely, we can define the sheaf:
Ωi

P(U) = Γ(U,∧iP). and C to be the sheaf of complex-valued functions
that are locally constant along P . Consider the natural (fine) resolution

0→ C i→ Ω0
P

dP→ Ω1
P

dP→ Ω1
P

dP→ Ω2
P

dP→ · · ·
The differential operator dP is the restriction of the exterior differential
to the directions of the distributions (as in foliated cohomology). We can
use this resolution to obtain a fine resolution of J by twisting the previous
resolution with the sheaf J .

(2) A different approach used in [2] and [5] is the one of Čech cohomology
which turns out to be useful when we consider integrable systems with
singularities.

1.1. Applications to the general case of Lagrangian foliations. This fine
resolution approach can be useful to compute this geometric quantization for reg-
ular foliations (including those not coming from integrable systems like irrational
slope on the torus).

In [9] we use the classification of foliations on the torus (Kneser-Denjoy-Schwartz
theorem) together with basic properties of this sheaf cohomology to compute the
geometric quantization of a torus. In the case of irrational slope we can compute



486 Oberwolfach Report 09/2011

the quantization (see [9]) and we obtain that the quantization space is always infi-
nite dimensional. However, if we compute the limit case of the foliated cohomology
(ω = 0), we obtain that this foliated cohomology is finite dimensional if the irra-
tionality measure of η and is infinite dimensional if the irrationality measure of η
is infinite. The results contained in [9] seem to generalize a result of El Kacimi [8]
for foliated cohomology.

Most computations in [9] rely on what we call “geometric quantization compu-
tation kit” (essentially a Künneth formula and a Mayer-Vietoris theorem in this
context). This Künneth formula is very helpful to extend results to higher dimen-
sion by reduction to the 2-dimensional case (whenever the corresponding theorem
for reduction also holds within the category of foliations considered).

2. Quantization using singular action-angle coordinates

Consider the case of rotations of the sphere. There are two leaves of the po-
larization which are singular and correspond to fixed points of the action. What
happens if we go to the edges and vertexes of Delzant’s polytope? This case and,
more generally, that of toric manifolds was considered by Mark Hamilton in [2].

Theorem 2.1 (Hamilton). For a 2n-dimensional compact toric manifold and
let BSr be the set of regular Bohr-Sommerfeld leaves, Q(M) = Hn(M ;J ) ∼=⊕

l∈BSr
C

Then this geometric quantization does not see the singular elliptic points. In
the example of the sphere Bohr-Sommerfeld leaves are given by integer values of
height (or, equivalently) leaves which divide out the manifold in integer areas.

In order to consider more general singularities, we need to review some results
for normal forms of integrable system. The theorem of Guillemin-Marle-Sternberg
gives normal forms in a neighbourhood of fixed points of a toric action. This can
be generalized to normal forms of integrable systems (not always toric) that we
call non-degenerate. A proof of this theorem in the elliptic case can be found in
[1]. For the other cases see the author’s thesis [10] where the idea of symplectic
orthogonal decomposition is used and the paper [12].

Theorem 2.2 (Eliasson-Miranda). There exists symplectic Morse normal forms
for integrable systems with non-degenerate singularities.

The local model is given by N = Dk ×Tk ×D2(n−k) and ω =
∑k

i=1 dpi ∧ dθi +∑n−k
i=1 dxi ∧ dyi. and the components of the moment map are:

(1) Regular fi = pi for i = 1, ..., k;
(2) Elliptic fi = x2i + y2i for i = k + 1, ..., ke;
(3) Hyperbolic fi = xiyi for i = ke + 1, ..., ke + kh;
(4) focus-focus fi = xiyi+1 − xi+1yi, fi+1 = xiyi + xi+1yi+1 for i = ke + kh +

2j − 1, j = 1, ..., kf .

We can use these models to compute geometric quantization in these cases. In
the case of non-degenerate singularities in dimension 2 (only elliptic and hyperbolic
singularities), we [5] obtain the following:
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Theorem 2.3 (Hamilton and Miranda). The quantization of a compact surface
endowed with an integrable system with non-degenerate singularities is given by,

Q(M) = H1(M ;J ) ∼=
⊕

p∈H
(CN ⊕ CN)⊕

⊕

l∈BSr

C ,

where H is the set of hyperbolic singularities.

In particular, this theorem shows that this quantization depends strongly on
the polarization (for more details see [5]).

2.1. New directions. The case of general non-degenerate singularities in higher
dimensions is a joint work of the author with Romero Solha and uses the above-
mentioned “geometric quantization computation kit” together with the results in
[11] and [10]. For these singular real polarizations a “quantization commutes with
reduction” principle seems to hold.

Finally, we have learned from the symplectic case that action-angle coordinates
are useful to compute geometric quantization. We can use the existence of (par-
tial) action-angle coordinates for Poisson manifolds (recently explored in [3]) to
compute geometric quantization in the Poisson context. This is a joint project
with Mark Hamilton.
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Dynamical zeta functions and the spectrum of hyperbolic manifolds

Werner Müller

It is a basic problem of quantum mechanics to understand the relation between
a classical Hamiltonian system and its quantization. In particular, one wants to
understand the semi-classical limit as ~→ 0 for the quantized system. An example
are the Bohr-Sommerfeld quantization rules, which apply to integrable systems.
The opposite of integrable systems are Hamiltonian systems whose dynamics is
“chaotic”, which means that the flow when restricted to a fixed energy surface is
ergodic and has almost everywhere positive Ljapunov exponents. The study of
quantum systems with chaotic behavior of the underlying classical Hamiltonian
system is the content of “quantum chaos”. An example of a chaotic dynamical
system is the geodesic flow on a manifold of negative curvature. In this talk we
will discuss some aspects of these questions for the geodesic flow.

Let (X, g) be a compact Riemannian manifold. Let H(x, ξ) be the Hamiltonian
on the cotangent bundle T ∗(X) which is defined by

H(x, ξ) =
1

2
‖ ξ ‖2x .

It gives rise to the geodesic flow φt on the unit-cotangent bundle S∗(X). Let
∆ = d∗d denote the Laplace operator on X . Recall that in local coordinates it is
given by

∆ = − 1√
g

n∑

i,j=1

∂

∂xi

(√
ggij

∂

∂xj

)
,

where g =
∑n

i,j=1 gijdxi ⊗ dxj , g = det(gij), and gkl are the components of the

inverse of the matrix (gij). By the usual quantization procedure (see [LL]), ~2∆
is the Hamilton operator of the quantized geodesic flow. It is well known that ∆
is an essentially self-adjoint operator in L2(X) and its spectrum Spec(∆) consists
of a sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞
of finite multiplicities with corresponding eigenstates φi, i ∈ N0, which can be
chosen to form an orthonormal basis of L2(X). On the classical side we have the
length spectrum of closed geodesics

L(X, g) := {ℓ(γ) : γ closed geodesic of X},
where ℓ(γ) denotes the length of γ. Part of the problem described above is to
understand the relation between L(X, g) and Spec(∆). In this respect Chazarain
[1] proved the following result. Let

u(t) = Tr
(
eit

√
∆
)
,

where the trace is understood in the distributional sense. Then one has

sing supp(u) j L(X, g).
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This was generalized by Duistermaat and Guillemin [2]. Moreover, they showed if
there is only a finite number of periodic geodesics of period T : γ1, · · · , γN and that
for each γi the Poincaré map Pγi satisfies the Lefschetz condition det(I −Pγ) 6= 0,
then u(t) is smooth in an interval 0 < |t− T | < a and

lim
t→T

(t− T )u(t) =
N∑

i=1

Tr(Hγi)
|T |
2π

(
√
−1)σi

∣∣ det(I − Pγi)
∣∣−1/2

,

where σi is the Maslov index of γi. In [5] Guillemin improved this result to a full
asymptotic expansion. The coefficients are called wave trace invariants. They play
an important role in spectral geometry.

For compact locally symmetric spaces the Selberg trace formula (STF) provides
a much more precise relation between L(X, g) and Spec(∆). For example, consider
a compact, oriented hyperbolic n-manifold X = Γ\Hn. Let ϕ ∈ C∞

c (R) be even
and f = ϕ̂. Then the STF is the following identity

∞∑

j=0

f

(√
λj − (n− 1)2/4

)
=

∫

R

f(λ) dµPL(λ) +
∑

[γ] 6=e

ℓ(γ0)

D(γ)
ϕ(ℓ(γ)).

Here dµPL denotes the Plancherel measure, ℓ(γ0) is the length of the primitive
closed geodesic associated to γ, D(γ) is the discriminant of γ, and [γ] runs over
the non-trivial Γ-conjugacy classes (see [12] for details).

In order to study the relation between L(X, g) and Spec(∆) it is convenient
to introduce zeta functions associated to these spectra. On the geometric side
these are dynamical zeta functions. The first example of such a zeta function was
first introduced by Selberg [11] – the Selberg zeta function of a closed hyperbolic
surface Γ\H2. Ruelle [10] introduced dynamical zeta functions in a more gen-
eral context. The Ruelle zeta function R(s) associated to the geodesic flow on a
compact hyperbolic manifold X = Γ\Hn is defined as

R(s) :=
∏

[γ] 6=e
prime

(1− e−sℓ(γ)), Re(s) > n− 1.

Using the Selberg trace formula, one can show that R(s) admits a meromorphic
extension to the whole complex plane and satisfies a functional equation.

We study a more general type of zeta functions, called twisted Ruelle zeta func-
tions. They arise as follows. Let ρ : Γ → GL(V ) be a finite-dimensional complex
representation of Γ. Put

R(s; ρ) :=
∏

[γ] 6=e
prime

det
(
I− ρ(γ)e−sℓ(γ)

)(−1)n−1

.

The infinite product converges absolutely in some half-plane Re(s) > c. Note
that there is some similarity with the Artin L-function. Let K/L be a Galois
extension of number fields with Galois group G = Gal(K/L) and let (V, ρ) be a
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representation of G. Then the Artin L-function is defined to be

L(s; ρ) :=
∏

p

Lp(s; ρ).

Here p runs over the prime ideals of L and for an unramified p, the Euler factor is
given by

Lp(s; ρ) := det
(
I− ρ(ϕP/p)N(p)−s

)−1
,

where P is any prime of K which lies over p and ϕP/p ∈ G denotes the corre-
sponding Frobenius element.

Our main result concerning R(s; ρ) is the following theorem.

Theorem 1. R(s; ρ) admits a meromorphic extension to C and satisfies a func-
tional equation.

The existence of a meromorphic extension was proved by Fried [4] by different
methods. Our method relies on an extension of the Selberg trace formula [7], by
which we can handle non-unitary representations of the lattice Γ. This method
also implies the functional equation.

As in the arithmetic case, it is interesting to study the behavior of R(s; ρ) at
special points, from which one expects to extract interesting identities relating
L(X, g) and Spec(∆). In this respect, a point of special interest is s = 0. The
behavior of R(s; ρ) at s = 0 is related to the analytic torsion, whose definition we
recall next. Given a representation ρ : Γ → GL(V ), let Eρ denote the associated
flat vector bundle over X = Γ\Hn. Pick a Hermitian fiber metric in Eρ. Let
∆ρ,p : Λ

p(X,Eρ) → Λp(X,Eρ) be the Laplace operator on Eρ-valued p-forms on
X . Let

ζp(s; ρ) :=
∑

λi

λ−s
i ,

where λi runs over the nonzero eigenvalues of ∆ρ,p, counted with multiplicities.
The series converges absolutely and locally uniformly in the half-plane Re(s) > n/2
and admits a meromorphic extention to C which is regular at s = 0. Then the
analytic torsion TX(ρ) ∈ R+ is defined by

logTX(ρ) :=
1

2

n∑

p=1

(−1)pp d
ds
ζp(s; ρ)

∣∣
s=0

.

If n is odd and H∗(X,Eρ) = 0, then TX(ρ) is independent of the choice of the
fiber metric in Eρ. With these notations we have

Theorem 2. Let n be odd. Let ρ be a representation of Γ which is either unitary
or is given by restriction to Γ of a representation of SO0(n, 1). Assume that
H∗(X ;Eρ) = 0. Then R(s; ρ) is regular at s = 0 and we have

|R(0; ρ)| = TX(ρ)2.

For ρ unitary this result is due to Fried [3]. If ρ is obtained by restriction to
Γ of a representation of SO0(n, 1), Theorem 2 was proved by Wotzke in his thesis



Geometric Quantization in the Non-compact Setting 491

[13]. A different proof is based on the extended Selberg trace formula [7]. This
method can be used to extend Theorem 2 to general representations ρ.

In [8] we consider hyperbolic 3-manifolds X and use Theorem 2 to study the
behavior of TX(ρ) as ρ grows. More precisely, letX = Γ\H3 be a compact. oriented
hyperbolic 3-manifold. Then we may regard Γ as a discrete subgroup of SL(2,C).
Given m ∈ N, let τm = Symm be the m-th symmetric power representation of the
standard representation of SL(2,C). Then we have

− logTX(τm) =
Vol(X)

4π
m2 +O(m)

as m → ∞. This formula has applications to the cohomology of arithmetic sub-
groups of SL(2,C) (see [9]).

It is interesting to see how these results can be extended to the non-compact
case. Let G = SO0(n, 1) and let Γ ⊂ G be a lattice, i.e., Γ is a discrete subgroup
such that Vol(Γ\G) < ∞, where the volume is computed with respect to any
Haar measure. We assume that Γ is torsion free. Then X = Γ\Hn is a complete
hyperbolic manifold of finite volume. Assume that X is non-compact. Then
the Laplace operator has a non-empty continuous spectrum which is equal to
[(n−1)2/4,∞). Besides of the continuous spectrum, ∆ has a pure point spectrum
which consists of a sequence of eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · . In general,
the point spectrum may be finite. The only eigenvalue which we know to exist for
sure is λ0 = 0. So the eigenvalues are certainly not the right spectral parameters
associated to the quantized system. Instead resonances come into play. This means
the following. It is known that the resolvent, regarded as operator

(∆− s(n− 1− s))−1 : L2
cpt(X)→ H2

loc(X)

has a meromorphic extension from the half-plane Re(s) > n − 1 to the whole
complex plane. Poles of the analytic continuation of the resolvent in the half-
plane Re < (n − 1)/2 are called scattering poles, because they coincide with the
poles of the scattering matrix. Let σ(X) be the union of the eigenvalues and the
set of scattering resonances. The point (n− 1)/2 has also to be included. This is
the resonance set. Then the Selberg trace formula sets up correspondence

L(X)↔ σ(X).

Now one can start to investigate the corresponding zeta functions on the geometric
and spectral side.
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Deformations of the Fourier transform

Bent Ørsted

(joint work with Salem Ben Said, Toshiyuki Kobayashi)

The Fourier transform and its basic properties may be understood in many dif-
ferent ways; one is the relation to the representation theory of the double cover
of the real symplectic group, namely as a special element in the metaplectic rep-
resentation. From this point of view we shall introduce a natural two-parameter
family of deformations of the Fourier transform, in effect interpolating between
two minimal representations of two different semisimple Lie groups; at the same
time the deformation allows introducing the differential-difference operators for
Coxeter groups found by C. Dunkl [3]. The two minimal representations in ques-
tion have the physical interpretations as the quantum harmonic oscillator resp.
Kepler problem - curiously, for the classical systems with two degrees of freedom,
such a connection was discovered by Newton (in modern terms by considering the
square map of the complex numbers).

We construct a two-parameter family of actions ωk,a of the Lie algebra sl(2,R)
by differential-difference operators on RN \ {0}. Here, k is a multiplicity-function
for the Dunkl operators, and a > 0 arises from the interpolation of the two sl(2,R)
actions on the Weil representation of Mp(N,R) and the minimal unitary repre-
sentation of O(N + 1, 2). We prove that this action ωk,a lifts to a unitary rep-
resentation of the universal covering of SL(2,R), and can even be extended to a
holomorphic semigroup Ωk,a. In the k ≡ 0 case, our semigroup generalizes the
Hermite semigroup studied by R. Howe (a = 2) [4] and the Laguerre semigroup
by T. Kobayashi with G. Mano (a = 1) [7]. One boundary value of our semigroup
Ωk,a provides us with (k, a)-generalized Fourier transforms Fk,a, which includes
the Dunkl transform Dk (a = 2) [5] and a new unitary operator Hk (a = 1),
namely a Dunkl–Hankel transform. We establish the inversion formula, and a
generalization of the Plancherel theorem, the Hecke identity, the Bochner identity,
and a Heisenberg uncertainty relation for Fk,a. We also find kernel functions for
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Ωk,a and Fk,a for a = 1, 2 in terms of Bessel functions and the Dunkl intertwining
operator. See [1] and the preprint [2] for more details and proofs.

First we find a holomorphic semigroup Ik,a(z) with two parameters k and a.
Dunkl operators are differential-difference operators associated to a finite reflection
group on the Euclidean space. They were introduced by C. Dunkl [3]. This
subject was motivated partly from harmonic analysis on the tangent space of the
Riemannian symmetric spaces, and resulted in a new theory of non-commutative
harmonic analysis ‘without Lie groups’. The Dunkl operators are also used as a
tool for investigating an algebraic integrability property for the Calogero–Moser
quantum problem related to root systems.

Our holomorphic semigroup Ik,a(z) is built on Dunkl operators. To fix notation,
let C be the Coxeter group associated with a root system R in RN . For a C-
invariant real function k ≡ (kα) (multiplicity function) on R, we write ∆k for the
Dunkl Laplacian on RN (see [3]).

We take a > 0 to be a deformation parameter, and introduce the following
differential-difference operator

(1) ∆k,a := ‖x‖2−a∆k − ‖x‖a.
Here, ‖x‖ is the norm of the coordinate x ∈ RN , and ‖x‖a in the right-hand side
of the formula stands for the multiplication operator by ‖x‖a. Then, ∆k,a is a
symmetric operator on the Hilbert space L2(RN , ϑk,a(x)dx) consisting of square
integrable functions on RN against the measure ϑk,a(x)dx, where the density func-
tion ϑk,a(x) on RN is given by

(2) ϑk,a(x) := ‖x‖a−2
∏

α∈R
|〈α, x〉|kα .

Then ϑk,a(x) has a degree of homogeneity a− 2 + 2〈k〉, where 〈k〉 := 1
2

∑
α∈R kα

is the index of k = (kα).
The (k, a)-generalized Laguerre semigroup Ik,a(z) is defined to be the semigroup

with infinitesimal generator 1
a∆k,a, that is,

(3) Ik,a(z) := exp
(z
a
∆k,a

)
,

for z ∈ C such that Re z ≥ 0.

Theorem 1. With notation as above,

(1) Ik,a(z) is a holomorphic semigroup in the complex right-half plane {z ∈
C : Re z > 0} in the sense that Ik,a(z) is a Hilbert–Schmidt operator on
L2(RN , ϑk,a(x)dx) satisfying

Ik,a(z1) ◦ Ik,a(z2) = Ik,a(z1 + z2), (Re z1,Re z2 > 0),

and that the scalar product (Ik,a(z)f, g) is a holomorphic function of z for
Re z > 0, for any f, g ∈ L2(RN , ϑk,a(x)dx).

(2) Ik,a(z) is a one-parameter group of unitary operators on the imaginary
axis Re z = 0.
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The ‘boundary value’ of the (k, a)-generalized Laguerre semigroup Ik,a(z) on the
imaginary axis gives a one-parameter family of unitary operators. The case z = 0
gives the identity operator, namely, Ik,a(0) = id. The particularly interesting case

is when z = πi
2 , and we set

Fk,a := c Ik,a
(πi
2

)
= c exp

(πi
2a

(‖x‖2−a∆k − ‖x‖a)
)

where the phase factor c = ei
π
2 ( 2〈k〉+N+a−2

a ). Then, the unitary operator Fk,a for
general a and k satisfies the following significant properties:

Theorem 2. Suppose a > 0 and a+ 2〈k〉+N − 2 > 0.

(1) Fk,a is a unitary operator on L2(RN , ϑk,a(x)dx).
(2) Fk,a ◦ E = −(E +N + 2〈k〉+ a− 2) ◦ Fk,a.

Here, E =
∑N

j=1 xj∂j.

(3) Fk,a ◦ ‖x‖a = −‖x‖2−a∆k ◦ Fk,a,
Fk,a ◦ (‖x‖2−a∆k) = −‖x‖a ◦ Fk,a.

(4) Fk,a is of finite order if and only if a ∈ Q. Its order is 2p if a is of the
form a = p

q , where p and q are positive integers that are relatively prime.

We call Fk,a a (k, a)-generalized Fourier transform on RN . The representation

ωk,a of sl(2,R) generated by i
a‖x‖a and i

a‖x‖2−a∆k lifts to the universal covering

group ˜SL(2,R):

Theorem 3. If a > 0 and a + 2〈k〉 + N − 2 > 0, then ωk,a lifts to a unitary

representation of ˜SL(2,R) on L2(RN , ϑk,a(x)dx).

The Hilbert space L2(RN , ϑk,a(x)dx) decomposes discretely as a direct sum of

unitary representations of the direct product group C× ˜SL(2,R):

(4) L2(RN , ϑk,a(x)dx) ≃
∞∑⊕

m=0

Hm
k (RN )∣∣SN−1

⊗ π
(2m+ 2〈k〉+N − 2

a

)
,

where Hm
k (RN ) stands for the representation of the Coxeter group C on the

eigenspace of the Dunkl Laplacian (the space of spherical k-harmonics of degree

m) and π(ν) is an irreducible unitary lowest weight representation of ˜SL(2,R)
of weight ν + 1. The unitary isomorphism (4) is constructed explicitly by using
Laguerre polynomials.

The unitary representation of ˜SL(2,R) on L2(RN , ϑk,a(x)dx) extends further-
more to a holomorphic semigroup of a complex three dimensional semigroup. Basic
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properties of the holomorphic semigroup Ik,a(z) defined in (3) and the unitary op-
erator Fk,a can be read from the ‘dictionary’ of sl(2,R) as follows:

i

(
0 1
−1 0

)
←→ 1

a
∆k,a

exp iz

(
0 1
−1 0

)
←→ Ik,a(z) = exp(

z

a
∆k,a)

w0 = exp
π

2

(
0 −1
1 0

)
←→ Fk,a (up to the phase factor)
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Spin-quantization in the compact and non-compact setting

Paul-Emile Paradan

We explain how the “quantization commutes with reduction” phenomenon of
Guillemin-Sternberg [3] holds in the context of the metaplectic correction. In the
first part the talk, we expose the main result of the preprint arXiv:0911.1067 that
will appear in Journal of Symplectic Geometry. In the second part of this talk we
explain how we can extend this result in the non-compact setting.

Let K be a compact connected Lie group with Lie algebra k. An Hamilton-
ian K-manifold (M,ω,Φ) is Spin-prequantized if M carries an equivariant Spinc

structure P with determinant line bundle being a Kostant-Souriau line bundle
over (M, 2ω, 2Φ). Let DP be the Spinc Dirac operator attached to P , where M
is oriented by its symplectic form. When M is compact the Spin-quantization of
(M,ω,Φ) corresponds to the equivariant index of the elliptic operator DP , and is
denoted

QK
spin(M) ∈ R(K).
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Let Â(M)(X) be the equivariant A-genus class: it is an equivariant analytic
function from a neigborhood of 0 ∈ k with value in the algebra of differential forms
on M . The Atiyah-Segal-Singer index theorem [1] tell us that

(1) QK
spin(M)(eX) := (

i

2π
)dimM/2

∫

M

ei(ω+〈Φ,X〉)Â(M)(X)

for X ∈ k small enough. It shows in particular that QK
spin(M) ∈ R(K) does not

depend of the choice of the Spin-prequantum data.
This notion of Spin-quantization is closely related to the notion of metaplec-

tic correction. Suppose that (M,ω,Φ) carries a Kostant-Souriau line bundle Lω,

and that the bundle of half-forms κ
1/2
J associated to an invariant almost complex

structure J is well defined. In this case, (M,ω,Φ) is Spin-prequantized by the

Spinc-structure defined by J and twisted by the line bundle Lω ⊗ κ1/2J . The cru-
cial point here is that the corresponding Spin-quantization of (M,ω,Φ) does not
depend of the choice of the almost complex structure.

One wants to compute geometrically the multiplicities ofQK
spin(M) ∈ R(K) in a

way similar to the famous “quantization commutes with reduction” phenomenon of
Guillemin-Sternberg [3, 7, 8, 16, 9, 17, 4, 18, 14]. This question was first addressed
in the work of Cannas-Karshon-Tolman [2] and Vergne [17] in the case of a circle
action. The non-abelian group action case was first studied by Jeffrey-Kirwan
[4] and by the author [10], but both papers made fairly strong assumptions: in
[4] they suppose that 0 ∈ k∗ has a big enough neighborhood of regular values
of the moment map, and in [10] one asks that the infinitesimal stabilizers of the
K-action are abelian. We will now explain how a “quantization commutes with
reduction” theorem holds in the general case. Note that C. Teleman also obtained
some results [15][Proposition 3.10] in the algebraic setting.

The striking difference with the standard Guillemin-Sternberg phenomenon is
the rho shift that we explain now. Let T be a maximal torus of K with Lie algebra
t ⊂ k. Let t∗+ ⊂ t∗ be the closed Weyl chamber. We will look at t∗+ as a disjoint
union of its open faces, the maximal one being its interior (t∗+)

o. Let ρ ∈ (t∗+)
o

be the half sum of the positive roots. At each open face τ of t∗+, we associate the
term ρτ which is the half sum of the positive roots which are orthogonal to τ . We
note that ρ− ρτ ∈ τ is to the orthogonal projection of ρ on τ .

For any ξ ∈ t∗+ and any face τ containing ξ in its closure, we consider the shifted
symplectic reduction

M τ
ξ := Φ−1(ξ + ρ− ρτ )/Kτ

where Kτ is the common stabiliser of points in τ . Note that ξ + ρ− ρτ ∈ τ when
ξ ∈ τ .

We are particularly interested to the smallest face σ of the Weyl chamber so
that the Kirwan polytope ∆K(M) := Φ(M) ∩ t∗+ is contained in the closure of
σ. It is not hard to see that the Spin-prequantum data on (M,ω,Φ) descents
to the shifted symplectic reduction Mσ

µ when µ is a dominant weight belonging
to σ. Then Qspin(M

σ
µ ) ∈ Z is naturally defined when µ + ρ − ρσ is a regular
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value of the moment map. In general, the number Qspin(M
σ
µ ) is defined by shift-

desingularization.
By definition Qspin(M

σ
µ ) vanishes when µ+ρ−ρσ /∈ ∆K(M), but in fact we can

strengthen this vanishing property: Qspin(M
σ
µ ) = 0 if µ+ ρ− ρσ does not belong

to the relative interior of the Kirwan polytope ∆K(M).
Recall that the irreducible representation V K

µ of K are parametrized by their

highest weight µ ∈ K̂ ⊂ t∗+.
Our “Spin-quantization commutes with reduction” theorem is the following.

Theorem [13] Let (M,ω,Φ) be a compact Spin-prequantized Hamiltonian K-
manifold. Let σ be the smallest face of the Weyl chamber so that ∆K(M) ⊂ σ.
We have

QK
spin(M) =

∑

µ∈K̂∩σ

Qspin(M
σ
µ )V

K
µ .

Suppose now that the manifold M is (possibly) non-compact but with a proper
moment map Φ. Here the Spin-quantization of (M,ω,Φ) is an admissible repre-
sentation

Q−∞,K
spin (M) ∈ R−∞(K) := hom(R(K),Z)

which is defined as an index of a transversally elliptic operator on M [5, 6, 12] .
Note that in this context, the reduced spaces Mσ

µ are compact, and one can
define their Spin-quantization Qspin(M

σ
µ ) ∈ Z.

Using the technique of symplectic cutting developed in [11, 12], we are able to

prove that the multiplicity of V K
µ in Q−∞,K

spin (M) is equal to Qspin(M
σ
µ ) ∈ Z. This

result will appear in a subsequent paper.
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Eta cocycles, relative pairings and the Godbillon-Vey index theorem

Paolo Piazza

(joint work with Hitoshi Moriyoshi)

Connes’ index theorem forG-proper manifolds [3], withG an étale groupoid, unifies
under a single statement most of the existing (longitudinal) index theorems. We
shall focus on a particular case of such a theorem, that of foliated bundles. Thus,
let N be a closed compact manifold. Let Γ→ Ñ → N be a Galois Γ-cover. Let T
be a smooth oriented compact manifold with an action of Γ which is assumed to
be by diffeomorphisms, orientation preserving and locally faithful, as in [7]. Let

Y = Ñ ×Γ T and let (Y,F) be the associated foliation. (This is an example of
G-proper manifold with G equal to the groupoid T ⋊Γ.) Let D be a Γ-equivariant

family of Dirac operators on the fibration Ñ × T → T ; such a family induces a
longitudinal Dirac operator on (Y,F).

If T = point and Γ = {1} we have a compact manifold and Connes’ index
theorem reduces to the Atiyah-Singer index theorem. If Γ = {1} we simply have
a fibration and the theorem reduces to the Atiyah-Singer family index theorem.
If T = point then we have a Galois covering and Connes’ index theorem reduces
to the Connes-Moscovici higher index theorem. If dim T > 0 and Γ 6= {1}, then
Connes’ index theorem is a higher foliation index theorem on the foliated manifold
(Y,F).

One fascinating higher index is the so-called Godbillon-Vey index on a codi-
mension 1 foliation (thus we take T = S1 in this case). Following the treat-
ment of Moriyoshi-Natsume in [7] the corresponding higher index formula can
be stated in the following way: there is a cyclic 2-cocycle τGV on C∞

c (Y,F) :=

C∞((Ñ × Ñ × S1)/Γ) which can be paired with the (compactly supported) index
class Indc(D) ∈ K0(C

∞
c (Y,F)); there is a holomorphically closed subalgebra A,

C∞
c (Y,F) ⊂ A ⊂ C∗(Y,F), containing the C∗-index class Ind(D) and such that

τGV extends to A; the pairing 〈Ind(D), [τGV ]〉 can be written down explicitly and
it involves the Godbillon-Vey class of the foliation, GV ∈ H3(Y ). As an example,
let Σg be a closed compact riemann surface of genus g ≥ 2 and let Γ→ H2 → Σg



Geometric Quantization in the Non-compact Setting 499

be the associated universal covering; for the particular 3-dimensional example
given by Y = H2 ×Γ S

1, with Γ < PSL(2,R) acting on S1 by fractional linear
trasformation, the higher index formula reads

(1) 〈Ind(D), [τGV ]〉 =
∫

Y

ωGV

with ωGV an explicit closed 3-form on Y such that [ωGV ] = GV ∈ H3(Y ). In
particular, we find that 〈Ind(D), [τGV ]〉 = gv(Y,F), with gv(Y,F) the Godbillon-
Vey invariant of the foliation (Y,F). Thus, a purely geometric invariant of the
foliation (Y,F), gv(Y,F), is in fact a higher index.

One might wonder if Connes’ general index theorem on G-proper manifolds can
be extended to foliated bundles with boundary, in the spirit of the seminal work
of Atiyah-Patodi-Singer [1]. For simplicity, let us concentrate on foliated bundles.
Then, under a polynomial growth assumption on the group Γ and requiring, as
usual, invertibility of the boundary operator, such an extension was proved by
Leichtnam and Piazza in [4]. The structure of the (higher) index formula in [4]
is precisely the one displayed by the classic Atiyah-Patodi-Singer index formula.
Thus there is a local contribution, which is the one appearing in the corresponding
higher index formula in the closed case, and there is a boundary-correction term,
which is a higher eta invariant. This higher eta invariant should be thought of as a
secondary higher invariant of the operator on the boundary (indeed, the index class
for the boundary operator is always zero). We remark that some of the interesting
geometric applications of the theory do employ this secondary invariant in order
to tackle classification problems that cannot be treated by ordinary higher indices.

We now make the crucial observation that the polynomial growth assumption
in [4] excludes many interesting (typically type III) examples and higher indices;
in particular it excludes the possibility of proving a Atiyah-Patodi-Singer formula
for the Godbillon-Vey higher index.

The main goal of my talk was to explain recent results, in collaboration with
Hitoshi Moriyoshi, establishing such a formula. See the announcement [5] and the
complete paper [6]. Notice that this formula constitutes the first instance of a
higher APS index theorem on type III foliations. Notice also that, consequently,
we define a Godbillon-Vey eta invariant on the boundary-foliation; this is a type III
eta invariant. In tackling this specific index problem we develop what we believe
is a new approach to index theory on geometric structures with boundary, heavily
based on the interplay between absolute and relative pairings. We think that this
new method can be applied to a variety of situations.

Let us give a brief description of our main results.
It is clear from the structure of the classic Atiyah-Patodi-Singer index formula

that one of the basic tasks in the theory is to split in a precise way the interior
contribution from the boundary contribution in the higher index formula. We
look at operators on the boundary through the translation invariant operators
on the associated infinite cyclinder; by Fourier transform these two pictures are
equivalent. We solve the Atiyah-Patodi-Singer higher index problem on a foliated
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bundle with boundary (X0,F0), X0 = M̃ ×Γ T , by solving the associated L2-
problem on the associated foliation with cylindrical ends (X,F). With the goal
of splitting the interior contribution from the boundary contribution in mind, we
define a short exact sequence of C∗-algebras

0→ C∗(X,F)→ A∗(X,F)→ B∗(cyl(∂X),Fcyl)→ 0 .

This is an extension by the foliation C∗-algebra C∗(X,F) of a suitable algebra
of translation invariant operators on the cylinder; we call it the Wiener-Hopf ex-
tension. We briefly denote the Wiener-Hopf extension as 0→ C∗(X,F)→ A∗ →
B∗ → 0. These C∗-algebras are the receptacle for the two C∗-index classes we will
be working with. Thus, given a Γ-equivariant family of Dirac operators (Dθ)θ∈T

with invertible boundary family (D∂
θ )θ∈T we prove that there exist an index class

Ind(D) ∈ K∗(C∗(X,F)) and a relative index class Ind(D,D∂) ∈ K∗(A∗, B∗) . The
higher Atiyah-Patodi-Singer index problem for the Godbillon-Vey cocycle consists
in proving that there is a well defined paring 〈Ind(D), [τGV ]〉 and giving a formula
for it, with a structure similar to the one displayed by the Atiyah-Patodi-Singer
index formula. Now, as in the case of Moriyoshi-Natsume, τGV is initially defined
on the small algebra Jc(X,F) of Γ-equivariant smoothing kernels of Γ-compact
support; however, because of the structure of the parametrix on manifolds with
cylindrical ends, there does not exist an index class in K∗(Jc(X,F)). Hence, even
defining the index pairing is not obvious. We solve this problem by showing that
there exists a holomorphically closed intermediate subalgebra J containing the in-
dex class Ind(D) but such that τGV extends. More on this in a moment. This
point involves elliptic theory on manifolds with cylindrical ends in an essential
way.

Once the higher Godbillon-Vey index is defined, we search for an index formula
for it. Our main idea is to show that such a formula is a direct consequence of the
equality

(2) 〈Ind(D), [τGV ]〉 = 〈Ind(D,D∂), [(τrGV , σGV )]〉

where on the right hand side a new mathematical object, the relative Godbillon-
Vey cocycle, appears. The relative Godbillon-Vey cocycle is built out of the usual
Godbillon-Vey cocycle by means of a very natural procedure. First, we proceed
algebraically. Thus we first look at a subsequence of 0→ C∗(X,F)→ A∗ → B∗ →
0 made of small algebras, call it 0→ Jc(X,F)→ Ac → Bc → 0; Jc(X,F ) are, as
above, the Γ-equivariant smoothing kernels of Γ-compact support; Bc is made of
Γ × R-equivariant smoothing kernels on the cylinder of Γ × R-compact support.
The Ac cyclic 2-cochain τrGV is obtained from τGV through a regularization à
la Melrose. The Bc cyclic 3-cocycle σGV is obtained by suspending τGV on the
cylinder with Roe’s 1-cocycle. We call this σGV the eta cocycle associated to τGV .
One proves, but it is not quite obvious, that (τrGV , σGV ) is a relative cyclic 2-
cocycle for Ac → Bc. We obtain in this way a relative cyclic cohomology class
[τrGV , σGV ] ∈ HC2(Ac, Bc).
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We remark here that for technical reasons having to do with the extension of
these cocycles to suitable smooth subalgebras, see below, we shall have to consider
the cyclic cocycle and the relative cyclic cocycle obtained from τGV and (τrGV , σGV )
through the S operation in cyclic cohomology, see [2]: thus we consider Sp−1τGV

and (Sp−1τrGV ,
3

2p+1S
p−1σGV ) obtaining in this way a class in HC2p(Jc) and a

relative class in HC2p(Ac, Bc). With a small abuse of notation we still denote
these cyclic 2p-cocycles by τGV and (τrGV , σGV ).

Once the algebraic theory is clarified, we need to pair the class [τGV ] ∈ H2p(Jc)
and the relative class [τrGV , σGV ] ∈ HC2p(Ac, Bc) with the corresponding index
classes Ind(D) ∈ K∗(C∗(X,F)) and Ind(D,D∂) ∈ K∗(A∗, B∗). To this end we
construct an intermediate short exact subsequence 0 → J → A → B → 0 of
Banach algebras, sitting half-way between 0 → C∗(X,F) → A∗ → B∗ → 0 and
0 → Jc(X,F) → Ac → Bc → 0. Much work is needed in order to define such a
subsequence and prove that

Ind(D) ∈ K∗(J) ∼= K∗(C
∗(X,F)) , Ind(D,D∂) ∈ K∗(A,B) ∼= K∗(A

∗, B∗) .

Even more work is needed in order to establish that the Godbillon-Vey cyclic
2p-cocycle τGV and the relative cyclic 2p-cocycle (τrGV , σGV ) extend for p large
enough from Jc and Ac → Bc to J and A→ B, thus defining elements

[τGV ] ∈ HC2p(J) and [τrGV , σGV ] ∈ HC2p(A,B).

We have now made sense of both sides of the equality (2) 〈Ind(D), [τGV ]〉 =
〈Ind(D,D∂), [(τrGV , σGV )]〉. The equality itself is proved by establishing and using
the excision formula: if αex : K∗(J)→ K∗(A,B) is the excision isomorphism, then

αex(Ind(D)) = Ind(D,D∂) in K∗(A,B) .

The index formula is obtained by explicitly writing the relative pairing

〈Ind(D,D∂), [(τrGV , σGV )]〉
in terms of the graph projection eD, multiplying the operator D by s > 0 and
taking the limit as s ↓ 0. The final formula in the 3-dimensional case (always with
an invertibility assumption on the boundary family) reads:

(3) 〈Ind(D), [τGV ]〉 =
∫

X0

ωGV − ηGV ,

with ωGV equal, as in the closed case, to (a representative of) the Godbillon-Vey
class GV and

(4) ηGV :=
(2p+ 1)

p!

∫ ∞

0

σGV ([ṗt, pt], pt, . . . , pt, pt)dt ,

with pt := etDcyl the graph projection associated to the cylindrical Dirac family
tDcyl. Observe that by Fourier transform the Godbillon-Vey eta invariant ηGV

only depends on the boundary family D∂ ≡ (D∂
θ )θ∈T .
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Singular equivariant heat asymptotics

Pablo Ramacher

Let M be a closed n-dimensional Riemannian manifold, and E a complex C∞-
vector bundle over M . Consider an elliptic differential operator

P : C∞(M,E) −→ L2(M,E)

of order d on E, regarded as an operator in the Hilbert space L2(M,E) of square
integrable sections of E, its domain being the space C∞(M,E) of smooth sections.
In addition, assume that P is symmetric and positive. Under these assumptions,
P has discrete spectrum, and there exists an orthonormal basis of L2(M,E) con-
sisting of smooth sections {ej} such that Pej = λjej , |λj | → ∞. Consider now
the heat equation

(∂t + P )h(x, t) = 0, lim
t→∞

h(x, t) = f(x), t > 0,

with initial condition f ∈ C∞(M,E). Its solution is given by h(x, t) = e−tP f(x),
where e−tP denotes the heat operator. It has a smooth kernel K(t, x, y, P ) ∈
Hom(Ey, Ex), and is of L2-trace class, its trace being given by

trL2(e−tP ) =
∑

j≥0

(e−tP ej, ej)L2 =
∑

j≥0

e−tλj =

∫

M

trK(t, x, x, P ) dM(x).

Approximating the heat operator with pseudodifferential operators, it can be
shown that the heat trace has the asymptotic expansion

trL2(e−tP ) ∼
∑

j≥0

aj(P )t
(j−n)/d, t→ 0,

where the coefficients aj(P ) are invariantly defined. Let now G be a compact
Lie group acting isometrically and effectively on M , and (πχ, Vχ), an unitary

irreducible representation of G corresponding to the character χ ∈ Ĝ. We are
interested in an asymptotic expansion of

Lχ(t) =
∫

G

trL2(Tg ◦ e−tP )χ(g) dg =

∫

G×M

tr [Tg ◦K(t, gx, x, P )]χ(g) dM(x) dg
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as t → 0, where Tg : Egx → Ex is a fiber linear map depending smoothly on
x ∈ M . Using an approximation of e−tP by pseudodifferential operators, this
reduces to the problem of finding asymptotics for oscillatory integrals of the form

I(µ) =

∫

T∗Y

∫

G

eiµΦ(x,ξ,g)a(gx, x, ξ, g) dg d(T ∗Y )(x, ξ), µ→ +∞,

via the generalized stationary phase theorem, where (κ, Y ) are local coordinates
on M , d(T ∗Y ) is the canonical volume density on the cotangent bundle T ∗Y , and
dg is the volume density of a left invariant metric on G, while a is a compactly
supported amplitude, and Φ(x, ξ, g) = 〈κ(x) − κ(gx), ξ〉. While for free group
actions the critical set of the phase function Φ is a smooth manifold, this is no
longer the case for general non-transitive group actions, so that, a priori, the
principle of the stationary phase can not be applied. Nevertheless, this obstacle can
be circumvented by partially resolving the singularities of the critical set, yielding
asymptotics for Lχ(t) in the case of singular group actions. The existence of such
expansions could probably lead to equivariant Lefschetz formulae for arbitrary
compact group actions.

Atiyah’s question about possible values of L2-Betti numbers

Thomas Schick

(joint work with Mikaël Pichot, Andrzej Zuk)

Atiyah defined L2-Betti numbers of a compact manifoldM in terms of harmonic
L2-forms on the universal covering. A priori, these are arbitrary non-negative
real numbers. However, their alternating sum is the Euler characteristic. This
lead Atiyah to the question about the possible values these L2-Betti numbers can
assume, in particular whether they always have to be rational. Varies conjectures
in this direction have been popularized as the “strong Atiyah conjecture”. This
conjecture predicts in particular that the numbers are integers if the fundamental
group Γ of M is torsion-free.

Indeed, the L2-Betti numbers can (by Dodziuk’s L2-Hodge de Rham theorem),
also be computed from the cellular chain complex of the universal covering, which
is a chain complex of free Z[Γ]-modules and it turns out that the strong Atiyah
conjecture is really (equivalent to) a purely algebraic statement about elements of
the integral group ring Z[Γ], as following.

Let A be a d × d-matrix over ZΓ. It acts by left convolution multiplication as
bounded operator on the Hilbert space l2(Γ)n. Let pA be the orthogonal projection
onto the null space of this operator. Let δe ∈ l2(Γ) be the characteristic function
of the identity element and δie ∈ l2(Γ)n the vector with entry δe at position i and 0

at all other positions. Then b(2)(A) :=
∑d

i=1〈pAδie, δie〉l2(Γ)n . This is a normalized

trace of the projector onto the kernel of A. The possible values of L2-Betti numbers
of manifolds with fundamental group Γ coincides with the possible values of b(2)(A)
where A varies over matrices over ZΓ. Note that Γ must be finitely presented to
be the fundamental group of a compact manifold.
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The task now is to find groups Γ and elements A ∈ Z[Γ] where ker(A) and
b(2)(A) are explicitly calculable and have unexpected, namely transcendental val-
ues.

First calculations in this direction for the random walk operator on the lamp-
lighter group have been carried out in [2], where a complete eigenspace decom-
position is derived. This has been taken up for free lamplighter groups, i.e. the
restricted wreath product of Z/2Z by non-abelian free groups. Recently an ex-
plicit irrational L2-Betti number for a random walk operator on a free lamplighter
group has been computed by Lehner and Wagner [4]. The main point here is to
get a hold on the combinatorial difficulties of understanding all finite connected
subgraphs in the Cayley graph of a free group (a regular tree) and the kernel of
the graph Laplacian on these.

In a different direction and slightly earlier, Austin [1] uses suitable quotients
of the free lamplighter group and tailor-made (very much generalized) relatives
of the random walk operator to produce an uncountable set of L2-Betti numbers,
so that transcendental ones have to exist. The drawback, however, is that this
method is not explicit and does not give finitely presented groups as examples.

The main point of the work [5] reported on in the talk is, to refine the work of
Austin in such a way as to arrive at explicit calculations. For this, a different class
of operators is used.

We arrive at the following results:

• there are explicit finitely presented groups and elements in their group ring
with transcendental L2-Betti numbers; therefore also closed manifolds with
such L2-Betti numbers.
• every algebraic number is an L2-Betti number of a closed manifold, more-
over every real number which admits a Turing machine producing its dec-
imal expansion (in correct order), e.g. π.
• purely algebraically, every element of R≥0 is a b

(2)(A) for a suitable matrix
over A the integral group ring of a suitable discrete group.

Very similar results have been obtained independently, using a way to imple-
ment Turing machines into groups and elements of their group ring, by Lukasz
Grabowski in [3].
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Geometric quantisation of integrable systems with nondegenerate

singularities

Romero Solha

(joint work with Eva Miranda)

1. abstract

This talk shows an attempt to extend some results by Snyaticki, Guillemin and
Sternberg in geometric quantisation considering regular fibrations as real polari-
sations to the singular setting. The generic real polarisations concerned here are
given by integrable systems with nondegenerate singularities (in the Morse-Bott
sense). And the definition of geometric quantisation used is the one suggested by
Kostant; via higher cohomology groups. The case of nondegenerate singularities
was obtained in dimension 2 by Hamilton and Miranda [1] and the completely
elliptic case was considered by Hamilton [2] in any dimension. The approach is
to combine previous results of Miranda and Presas [3] on a Künneth formula to
reduce to the 2-dimensional case.

2. The regular case

Let (M2n, ω) be a symplectic manifold such that [ω] is integral. In [4] is
proved the existence of (L,∇) a complex line bundle with connection overM that
satisfies curv(∇) = −iω. Under these conditions the symplectic manifold (M2n, ω)
is called prequantisable and the pair (L,∇) a prequantum line bundle of (M2n, ω).

The definition of geometric quantisation used here is the one suggested by
Kostant via higher cohomology groups. A real polarisation P is a integrable sub-
bundle of TM whose leaves are lagrangian submanifolds. And the quantisation of
(M2n, ω, L,∇, P ) is

Q(M) =
⊕

k≥0

Hk(M ;J )

where J is the sheaf of flat sections, i.e.: the space of local sections s of L such
that ∇Xs = 0, for all sections X of P .

Theorem: (Sniatycki) If the leaf space Bn is a Hausdorff manifold and the nat-
ural projection π : M2n → Bn is a fibration with compact fibres, then Q(M2n) =
Hn(M2n;J ), and the dimension of Hn(M2n;J ) is the number of Bohr-Sommerfeld
leaves.

A leaf ℓ of P is a Bohr-Sommerfeld leaf if there is a nonzero flat section s : ℓ→ L,
and a theorem due to Guillemin and Sternberg [6] guarantees that the set of
(Liouville tori) Bohr-Sommerfeld leaves is discrete.

The main problem of Sniatycki’s result is that the topological condition on the
leaf space is too strong. For the simplest example of lagrangian fibration, toric
manifold, Delzant’s result [7] implies that the leaf space is a polytope. Thus instead
of regular lagrangian fibrations is not unnatural to consider singular foliations.
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3. The nondegenerate singular case

For an integrable system F : M2n → Rn on a symplectic manifold the
Liouville integrability condition implies that the distribution of the hamiltonian
vector fields of the components of the moment map generates a lagrangian foliation
(possible) with singularities; which is just the level sets of the moment map. This is
an example of a generalised real polarisation, i.e.: a integrable subbundle of TM
whose leaves are generically lagrangian submanifolds (except for some singular
isotropic leaves).

There is a classification of the kinds of singularities that can appear in integrable
systems (see e.g.: [9] and references therein). Here it will be considered just the
nondegenerate singularities (in the Morse-Bott sense). For them there exists a
normal form [8, 9, 10] and the results of [2, 1] rely on it.

For toric manifolds Hamilton [2] has shown that Sniatycki’s theorem holds and
the elliptic singularities give no contribution to the quantisation (just the trivial
vector space {0}). Also Sniatycki’s theorem holds for 2-dimensional compact in-
tegrable systems, whose momentum map has only nondegenerate singularities, as
has been show by Hamilton and Miranda [1]. In that case elliptic singularities
give no contribution and each hyperbolic singularity gives a CN⊕CN contribution.
And they conjecture the following:

Conjecture: (Miranda and Hamilton) For a 2n-dimensional compact inte-
grable system, whose momentum map has only nondegenerate singularities, Q(M) =
Hn(M ;J ). Moreover, the cohomology Hn(M ;J ) has contributions of the form
C for each (Liouville tori) Bohr-Sommerfeld leaf, CN ⊕CN for the hyperbolic sin-
gularities and the elliptic points give no contribution (just the trivial vector space
{0}).

The idea to prove this is to use a singular Poincaré lemma [11] which gives:

Theorem: (Miranda and Solha)

0 −→ J →֒ S d∇−→ S1P (L)
d∇−→ · · · d∇−→ SnP (L)

d∇−→ 0

is a fine resolution for J . where SkP (L) is the associated sheaf of Γ(
∧k

P ∗⊗L) and
d∇ is the exterior derivative obtained by twisting the foliated cohomology exterior
derivative dP with the connection ∇ of the prequantum line bundle. Therefore its
cohomology computes geometric quantisation (Hk(M ;J ) ∼= Hk(SP

•(L))).

With it is possible to mimic the proof of a Künneth formula which exists for
the regular lagrangian case [3] to reduce to the 2-dimensional case.
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Equivariant Intergation and moduli spaces

András Szenes

We give a review of localization principles and their application to the coho-
mology of moduli spaces.

Localization is a major tool in calculating classical enumerative quatities. As
a basic example, consider the problem of finding the number of lines in 3-space
intersecting 4 given lines. This number may be expressed as the intersection
number on the Grassmannian:

∫
Gr(2,4)

c1(E
∗)4, where E is the tautological bundle.

Bott’s localization theorem form the 60’s gives a rather complicated formula for
this quantity: a sum of 6 rational functions in 4 variables, which, after being
brought to common denominators, reduces to an integer.

A more efficient method is the Witten-Jeffrey-Kirwan reduction principle from
the early 90s. It uses the fact that Gr(2, 4) may be obtained as a (GIT) quotient
of the linear space of 2-by-4 matrices by the group GL(2). One needs to take the
compact diagonal torus U(1)2 ⊂ GL(2); denote the linear weights of this torus
by a and b. The fixed point set of this commutative subgroup consists of a single
point: the zero matrix. The contribution at this point is given by a residue:

(1)

∫

Gr(2,4)

c1(E
∗)4 = Res

a=0
Res
b=0

−(a− b)2(a+ b)4 da db

2a4b4
.

This residue may be easily calculated by hand: the result is 2.
Under conditions that the Chern classes generate cohomology, these intersection

numbers give a complete description of the cohomology ring of a spaceM endowed
with a torus action with isolated fixed points. Moreover, this is done in the most
natural manner, since residues have an internal duality, thus these cohomology
rings end up being represented by residue cycles. This idea was developed for
toric varieties in my joint work with Michele Vergne on the cohomology ring of
toric varieties and mirror symmetry.
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Remarkably, this approach may also be used for calculating the cohomology
rings of non-compact varieties, which do not satisfy Poincaré duality. This may
be done by formal Berline-Vergne localization. Assume that M is a non-compact
T = U(1)-manifold. Then, under appropriate conditions, calculating the fixed
point contributions, one obtains a functional on the equivariant Chern ring of M
with values in meromorphic functions in the variable u, where the equivariant
cohomology of a point is H∗

T (pt) = C[u]. Again, under certain conditions, this
functional satisfies Poincaré duality, which allows us to calculate H∗

T (M). Then
one has H∗(M) = H∗

T (M)/uH∗
T (M). Using this method, I, jointly with T. Hausel,

obtained results on the cohomology ring of the moduli spaces of Higgs bundles in
rank 2. This method corresponds to the Bott localization formula in the compact
case described above.

Recently, my student Zs. Szilagyi, wrote down a formula for these equivariant
intersection numbers in the case when we obtain our non-compact T -manifold M
as aG-quotient of a T×Gmanifold M̃ . This formula is thus the equivariant version
of the method represented by the formula (1) above. Using this new formula, one
can attack a number of cohomology rings in an efficient manner. These calculations
are joint work in progress.

An equivariant Jeffrey-Kirwan formula in non-compact case

Zsolt Szilágyi

Introduction. We consider (non-compact) symplectic manifolds which admit
Hamiltonian action of S = S1 with compact S-fixed point sets.

Let (M,ω) be a symplectic manifold with commuting Hamiltonian actions of a
compact group G and the circle S with moment maps µ : M → g∗ and ϕ : M →
s∗ ≃ R, respectively. We suppose that ϕ is proper and bounded below. Moreover
suppose that 0 ∈ g∗ is a regular value of µ and consider the symplectic quotient
M0 =M//G. Define the integration on M and M0 by Atiyah-Bott-Berline-Vergne
formula ∮

M

α :=
∑

F⊂MT×S

∫

F

i∗Fα

eT×S(NF )
, α ∈ HG×S(M),

∮

M0

β :=
∑

F0⊂MS
0

∫

F0

i∗F0
β

eS(NF0)
, β ∈ HS(M0),

where T ⊂ G is a maximal torus of rank r.

An equivariant version of the Jeffrey-Kirwan formula. For α ∈ HG×S(M) ≃
HT×S(M)W we have
∮

M0

κS(αe
ω−µ−ϕ) =

1

|W |vol(T )JKRess>u
u

(∮

M

∆(u)α(u, s)eω−〈µT ,u〉−ϕ·s
)
du,

where W is the Weyl group, ∆ is the product of roots, κS : HG×S(M)→ HS(M0)
is the Kirwan map.
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Definition of JKRess>u
u . Let {u1, . . . , ur} be a basis of t∗ and {s} be a basis

of s∗ ≃ R. Consider linear forms λ, γ1, . . . , γr on t ⊕ s. The polarization of
linear forms on t ⊕ s is induced by the ordered basis {s, u1, . . . , ur} as follows:
γi = γ0s+ γ1u

1 + . . .+ γru
r is polarized if the first non-zero coefficient is positive.

(We suppose that all γi’s are polarized.) If pr1(γ1), . . . , pr1(γr) form a basis of t∗

then we can write λ = λ0s+ λ1γ1 + . . .+ λrγr (suppose λi 6= 0) and

JKRess>u
u

(
eλdu

γn1+1
1 · · · γnr+1

r

)
=





1

| det[γij ]ri,j=1|
λn1
1 · · ·λnr

r eλ0s

n1! · · ·nr!
λ1, . . . , λr > 0,

0 otherwise.

HyperKähler version. Now let (M,ω1, ω2, ω3) be a hyperKähler manifold. We
suppose that S is Hamiltonian with respect to the symplectic form ωR := ω1 and
the complex moment map µC := µ2 +

√
−1µ3 : M → g∗ ⊗ C is S-equivariant:

µC(σ · m) = σkµC(m), σ ∈ S. Consider the hyperKähler reduction M////G =
µ−1
R (ξ) ∩ µ−1

C (0)/G. Then
∮

M////G

κ(αeωR−µ+ξ−ϕ) =
1

|W |vol(T )JKRess>u
u

(∮

M

∆∆Cαe
ωR−µ+ξ−ϕ

)
du,

where ∆C = (ks)r
∏

w(ks+ w), (product over all roots).
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Multiplicities of the equivariant index of a transversally elliptic

operator

Michèle Vergne

(joint work with Claudio de Concini, Claudio Procesi)

Let G be a compact Lie group acting on a G-manifold M . Let g be the Lie
algebra of G with dual vector space g∗. Then T ∗M is a G-Hamiltonian manifold,
with moment map µ : T ∗M → g∗ given by 〈µ([x, ξ]), X〉 = 〈ξ,Xx〉. Here x ∈
M, ξ ∈ T ∗

xM ,X ∈ g andXx is the tangent vector at x produced by the infinitesimal
action of X ∈ g. By definition T ∗

GM = µ−1(0).
An element σ ∈ K0

G(T
∗
GM) will be called a transversally elliptic symbol. It

can be represented as an equivariant morphism σ([x, ξ]) : E+
x → E−

x between two
equivariant bundles E± onM (lifted to T ∗

GM) invertible outside a compact subset
of T ∗

GM .
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Atiyah-Singer ([1]) have associated to σ a (virtual) trace class representation
index(σ) of G:

index(σ) =
∑

λ∈Ĝ

m(λ)λ

where m(λ) ∈ Z is the multiplicity of the representation λ in the representation
index(σ).

Our aim is to produce a cohomological formula for m(λ). Remark that the
computation ofm(λ) is already problematic, in the case of an elliptic symbol where
Atiyah-Bott-Segal-Singer fixed point formula is available as a sum of meromorphic
functions. This fixed point formula does not lead to an intrinsic formula for m(λ).
When σ is not transversally elliptic, no fixed point formula is available.

Our idea is that m(λ) is the quantum analogue of the Duistermaat-Heckman
measure, so that the function m(λ) should be a piecewise polynomial function

on Ĝ, computable in function of the equivariant Chern character of σ and of the
equivariant Â genus of T ∗M . We give a meaning to this statement in our work
[4].

It is possible to reduce the computations to the case where G is a torus. To
simplify the statements of our results, in this abstract, we assume that the torus
G acts effectively on M and that every stabilizer of a point m ∈M is connected.

Consider the equivariant cohomology with compact supports H∗
G,c(T

∗
GM). In

[3], we have defined a map:

(1) infdex : H∗
G,c(T

∗
GM)→ D′(g∗)

associating to an element α of H∗
G,c(T

∗
GM) a distribution infdex(α) on g∗.

For any α ∈ H∗
G,c(T

∗
GM), the distribution infdex(α) is piecewise polynomial:

there exists a finite union of affine hyperplanes H = ∪iHi, and, on each connected
component of the complement of H, infdex(α) is given by a polynomial function.

We consider a piecewise polynomial function on g∗ as a function f = (fτ )
on the open set g∗ \ H. Here τ is a connected component (a tope) and fτ a
polynomial function on τ . We can apply to a piecewise polynomial function (fτ )
a constant coefficient differential operator of infinite order P (∂). The formula is
P (∂)pw(fτ ) = (P (∂)fτ ). We say that a piecewise polynomial function f = (fτ )
is continuous at a point λ ∈ g∗ if all the values fτ (λ) are equal whenever the
connected component τ contains λ in its closure. We can then define f(λ).

Assume that the tangent bundle to M is stably trivial: there exists a real
representation space R of G such that TM is stably equivalent to M × R as a
G-manifold. Consider the list L of weights ±a ∈ g∗ of the action of G in RC and
the infinite order differential operator on g∗ defined by

Â(∂) =
∏

a∈L

∂a
(1 − e−∂a)

.

We recall that the Chern character associate to a transversally elliptic symbol
σ an element ch(σ) in (a completion of) H∗

G,c(T
∗
GM) (see [6]).

Theorem
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Let σ ∈ K0
G(T

∗
GM) be a transversally elliptic symbol. If the tangent bundle to

M is stably equivalent to M ×R, then
(i) the piecewise polynomial function Â(∂)pwinfdex(ch(σ)) is continuous at any

point λ of the lattice Ĝ ⊂ g∗.
(ii) we have

index(σ) =
∑

λ

(Â(R)pwinfdex(ch(σ)))(λ)e
λ.

The idea of this formula comes by taking the Fourier transform of the cohomo-
logical index formula given by Berline-Vergne, [2] and by Paradan-Vergne [6]. The
result follows from applying the miraculous deconvolution formula of Dahmen-
Micchelli in approximation theory [5].

Finally, we can reduce the computation to the case treated above of stably
trivial tangent bundle by embedding M in a vector space V and taking direct
images.
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Quantisation of the cotangent bundle of Lie groups

Siye Wu

(joint work with William D. Kirwin)

We consider a family of adapted complex structures on the cotangent bundle of a
Lie group and find the BKS pairing relating the corresponding half-form quantisa-
tion. We show that the resulting bundle of quantum Hilbert spaces over the space
of polarisations is flat. The vertical polarisation as a limit of complex polarisations
yields the coherent state transform (or the Segal-Bargmann-Hall transform). We
show that there is another limit of the complex polarisations that corresponds to
the Peter-Weyl theorem.
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Singularities and analytic torsion

Ken-Ichi Yoshikawa

1. Introduction

Let M be a compact Kähler manifold and let F be a holomorphic Hermitian
vector bundle onM . Let �n,q = 2(∂̄+ ∂̄∗)2 be the Laplacian acting on (n, q)-forms
on M with values in F and let ζn,q(s) be its zeta function:

ζn,q(s) :=
∑

λ∈σ(�n,q)\{0}
λ−s dimE(λ,�n,q),

where σ(�n,q) denotes the set of eigenvalues of �n,q and E(λ,�n,q) denotes the
eigenspace of �n,q with eigenvalue λ. Let ωM be the canonical bundle of M and
write ωM (F ) := ωM ⊗ F . Then the analytic torsion of (M,ωM (F )) is defined as

τ(M,ωM (E)) := exp[−
∑

q≥0

(−1)qq ζ′n,q(0)].

In this note, we fix the following notation. Let X be a connected Kähler mani-
fold of dimension n+1 and let S ⊂ C be the unit disc. Let π : X → S be a proper
surjective holomorphic map with connected fibers. Let Σπ ⊂ X be the critical
locus of π. We assume π(Σπ) = {0}. Then π : X \ π−1(0)→ S \ {0} is a family of
compact Kähler manifolds of dimension n. For s ∈ S, we set Xs := π−1(s). Then
Xs is equipped with the Kähler metric induced from the Kähler metric on X .

Let ξ be a holomorphic Hermitian vector bundle on X . Set ξs := ξ|Xs for s ∈ S.
Question 1. Determine the behavior of τ(Xs, ωXs(ξs)) as s→ 0.

Under certain assumptions, we settle this question.

2. Nakano semi-positive vector bundles

Let Rξ be the curvature of ξ with respect to the Chern connection and write
hξ(
√
−1Rξ(·), ·) = ∑

i,j,α,β Rαβ̄ij̄ (e
∨
α ⊗ ē∨β )⊗ (θi ∧ θ̄j), where hξ is the Hermitian

metric on ξ and {e∨α} (resp. {θi}) is a local unitary frame of ξ∨ (resp. Ω1
X). Then

ξ is said to be Nakano semi-positive if for all (ηαi ) ∈ Cr(n+1),
∑

i,j,α,β

Rij̄αβ̄ η
α
i η̄

β
j ≥ 0.
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If ξ is Nakano semi-positive on X , then the direct image sheaf Rqπ∗ωX/S(ξ) is a
torsion-free sheaf on S by [5], so that Rqπ∗ωX/S(ξ) has the structure of a holo-
morphic vector bundle on S for all q ≥ 0. Set ℓq := rkRqπ∗ωX/S(ξ) ∈ Z≥0.

3. Semistable reduction and comparison of direct images

Let (T, 0) be another unit disc of C. By the semi-stable reduction theorem [3],
there exist an integer ν > 0 and a diagram

F : (Y, Y0)→ (X,X0)

f ↓ ↓ π
µ : (T, 0)→ (S, 0)

where µ(t) = tν , Y0 is a reduced, normal crossing divisor of Y , and Y is smooth.
Since F ∗ξ is Nakano semi-positive, Rqf∗ωY/T (F

∗ξ) is a holomorphic vector
bundle on T . By [4], there is a natural injective homomorphism of holomorphic
vector bundles of equal rank ℓq

ϕq : R
qf∗ωY/T (F

∗ξ) →֒ µ∗Rqπ∗ωX/S(ξ).

Hence we may regard Rqf∗ωY/T (F
∗ξ) ⊂ µ∗Rqπ∗ωX/S(ξ) via ϕq and we can write

(µ∗Rqπ∗ωX/S(ξ)/R
qf∗ωY/T (F

∗ξ))0 ∼=
⊕

1≤α≤ℓq
C{t}/(te(q)α ), where e

(q)
α ∈ Z≥0.

4. The Gauss map

Let P(TX)∨ be the projective bundle such that P(TX)∨x is the set of hyper-
planes of TxX for x ∈ X . Define the Gauss map γ : X \ Σπ → P(TX)∨ by

γ(x) = [ker(π∗)x] = [TxXπ(x)] ∈ P(TxX)∨, x ∈ X \ Σπ.

By [2], there is a resolution q : (X̃, E) → (X,Σπ) of the indeterminacy of γ.
Namely,

• q|X̃\E : X̃ \ E ∼= X \ Σπ is an isomorphism;

• γ̃ := γ ◦ q extends to a holomorphic map from X̃ to P(TX)∨.

Let H be the tautological quotient bundle on P(TX)∨; we get an exact sequence
0 → U → Π∗TX → H → 0 of holomorphic vector bundles on P(TX)∨, where
Π : P(TX)∨ → X is the projection and U → P(TX)∨ is the universal bundle.

5. The main theorems

Theorem 1. [7] If ξ is Nakano semi-positive on X and if there is a projective
algebraic manifold containing X as an open subset, then as s→ 0

log τ(Xs, ωXs(ξs)) =

(
α+

χ

degµ

)
log |s|2 + ρ log(− log |s|2) + c+O

(
1

log |s|

)
,

where ρ ∈ Z (see the end of this note for its formula), c ∈ R and

α :=

∫

(π◦q)−1(0)∩E

γ̃∗
{
Td(H∨)−1 − 1

c1(H∨)

}
q∗{Td(TX)ch(ξ)} ∈ Q,
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χ :=
∑

q≥0

(−1)q dimOT /m0

(
µ∗Rqπ∗ωX/S(ξ)

Rqf∗ωY/T (F ∗ξ)

)

0

=
∑

q≥0

(−1)q
∑

λ

e
(q)
λ ∈ Z.

Theorem 2. [7] Assume that ξ is Nakano semi-positive on X. If X0 is reduced,
normal and has only canonical (equivalently rational) singularities, then there exist
c ∈ C, r ∈ Q>0, l ∈ Z≥0 such that as s→ 0

log τ(Xs, ωXs(ξs)) = α log |s|2 + c+O
(
|s|r(log |s|)l

)
.

Theorem 3. [8] The complex Hessian ∂ss̄ log τ(Xs, ωXs(ξs)) has Poincaré growth:

∂ss̄ log τ(Xs, ωXs(ξs)) =
ρ

|s|2(log |s|)2 +O

(
1

|s|2(log |s|)3
)

(s→ 0).

The key to the proofs of these theorems is the following structure theorem for
the singularity of L2-metric on Rqπ∗ωX/S(ξ), as well as the structure theorem for
the singularity of Quillen metric on detRπ∗ωX/S(ξ) [1], [6].

Theorem 4. [7] Endow Rqπ∗ωX/S(ξ) with the L2-metric hL2.

(1) By a suitable choice of a basis {Ψ(q)
α } of Rqπ∗ωX/S(ξ), the Hermitian

matrix G(s) :=
(
hL2(Ψ

(q)
α (s),Ψ

(q)
β (s))

)
∈ Herm(ℓq) admits the expression

G(tν) = D(t) ·H(t) ·D(t), D(t) = diag(t−e
(q)
1 , . . . , t

−e
(q)
ℓq ).

(2) One has the expression on T \ {0}

H(t) =

n∑

m=0

Am(t) (log |t|2)m, Am(t) ∈ C∞(S,Herm(ℓq)).

(3) Defining the real-valued functions ak(t) ∈ C∞(S), 0 ≤ k ≤ nℓq, by

detH(t) =

nℓq∑

k=0

ak(t) (log |t|2)k,

one has ak(0) 6= 0 for some 0 ≤ k ≤ nℓq. Set ρq := max{k; ak(0) 6= 0}.
Then

detH(t) = (log |t|2)ρq {aρq (0) +O(1/ log |t|)}.
By this last estimate, we get ρ =

∑
q(−1)qρq.
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Quantization on noncompact symplectic manifolds

Weiping Zhang

(joint work with Xiaonan Ma)

In this talk we report our joint work with Xiaonan Ma on the resolution of a
conjecture due to Michèle Vergne [13] concerning the geometric quantization on
noncompact symplectic manifolds.

To be more precise, let (M,ω) be a (not necessarily) compact symplectic man-
ifold with symplectic form ω. We assume that (M,ω) is prequantizable, that is,
there exists a complex line bundle L (called a prequantized line bundle) carrying
a Hermitian metric hL and a Hermitian connection ∇L such that√

−1
2π

(
∇L

)2
= ω.(1)

Let J be an almost complex structure on TM such that

gTM (u, v) = ω(u, Jv), u, v ∈ TM(2)

defines a J-invariant Riemannian metric on TM .
Let G be a compact connected Lie group with Lie algebra denoted by g. We

assume that the compact connected Lie group G acts on M and that this action
lifts to an action on L. Moreover, we assume that G preserves gTM , J , hL and
∇L.

For any K ∈ g, let KM be the vector field generated by K over M .
Let µ : M → g∗ be the moment map defined by the Kostant formula

2π
√
−1µ(K) = ∇L

KM − LK , K ∈ g.(3)

Then µ verifies the Hamiltonian action condition that for any K ∈ g,

dµ(K) = iKMω.(4)

From now on, we assume that the following fundamental assumption holds.

Fundamental Assumption. The moment map µ : M → g∗ is proper, in the
sense that the inverse image of a compact subset is compact.

Fix a maximal torus of G and let Λ∗
+ ⊂ g∗ be the corresponding set of dominant

weights of irreducible representations of G.
Take any γ ∈ Λ∗

+. If γ is a regular value of the moment map µ, then one
can construct the Marsden-Weinstein symplectic reduction (Mγ , ωγ), whereMγ =
µ−1(G · γ)/G is a compact orbifold (since µ is proper). Moreover, the line bundle
L (resp. the almost complex structure J) induces a prequantized line bundle Lγ

(resp. an almost complex structure Jγ) over (Mγ , ωγ). One can then construct
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the associated Spinc-Dirac operator (twisted by Lγ), D
Lγ

+ : Ω0,even (Mγ , Lγ) →
Ω0,odd(Mγ , Lγ) on Mγ , of which the index

Q (Lγ) := Ind
(
D

Lγ

+

)
:= dimKer

(
D

Lγ

+

)
− dimCoker

(
D

Lγ

+

)
∈ Z,(5)

is well-defined. If γ ∈ Λ∗
+ is not a regular value of µ, then by proceeding as in [8]

(cf. [9, §7.4]), one still gets a well-defined quantization number Q(Lγ) extending
the above definition.

On the other hand, let g∗ be equipped with an AdG-invariant metric. Then
H = |µ|2 is G-invariant. Let XH = −J(dH)∗ be the Hamiltonian vector field
associated to H.

Since µ is proper, for any a > 0, Ma := H−1([0, a]) = {x ∈M : H(x) ≤ a} is a
compact subset of M . Recall that by Sard’s theorem, the set of critical values of
the function H :M → R is of measure zero.

For any regular value a > 0 of H, it is clear that XH is nowhere zero on
∂Ma = H−1(a). Thus the triple (Ma, X

H, L) defines a transversally elliptic symbol

σMa

L,XH =
√
−1c(·+XH)⊗ IdL,(6)

where c(·) is the Clifford action on Λ(T ∗(0,1)M), in the sense of Atiyah [1] and

Paradan [9]. Let Ind(σMa

L,XH) ∈ R[G] be the corresponding transversal index in the

sense of [9].
For any γ ∈ Λ∗

+, let V
G
γ denote the corresponding irreducible representation of

G, let Q(L)γa ∈ Z denote the multiplicity of V G
γ of Ind(σMa

L,XH) ∈ R[G].

Theorem 1. a) For any γ ∈ Λ∗
+, there exists aγ > 0 such that Q(L)γa ∈ Z does

not depend on a ≥ aγ, with a a regular value of H.
b) Q(L)γ=0

a ∈ Z does not depend on a > 0, with a a regular value of H.

According to Theorem 1, for any γ ∈ Λ∗
+, we have a well-defined integer Q(L)γa

not depending on the large enough regular value a > 0. From now on we denote
it by Q(L)γ .

Theorem 2. For any γ ∈ Λ∗
+, the following identity holds,

Q(L)γ = Q(Lγ).(7)

Remark 3. If the zero set of XH is compact, then Theorem 1 was already known,
while Theorem 2 was conjectured by Michèle Vergne in [13, §4.3]. Thus Theorem
2 provides a solution of Vergne’s conjecture even when the zero set of XH is
non-compact. If M is compact, then Theorem 2 reduces to the famous Guillemin-
Sternberg geometric quantization conjecture [4] first proved in [7] and [8].

Outline of Proof. Our proof of Theorems 1 and 2 is analytic. We first interpret
the transversal indices appearing in the context through the analytic indices of
Atiyah-Patodi-Singer [2] type, by making use of a result of Braverman [3]. We
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then prove Theorems 1 and 2 by analyzing the corresponding APS type indices,
by adapting the analytic methods developed in [11] and [12]. Extra difficulties
appear in dealing with the γ 6= 0 case. For more details, see [5] and [6].

Remark 4. For an alternate proof of Theorems 1 and 2, see [10].
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Mathematisches Institut
Heinrich-Heine-Universität
Gebäude 25.22
Universitätsstr. 1
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520 Oberwolfach Report 09/2011

Prof. Dr. Eckhard Meinrenken

Department of Mathematics
University of Toronto
40 St George Street
Toronto , Ont. M5S 2E4
CANADA

Dr. Eva Miranda

Departament de Matematica Aplicada I
EPSEB, Edifici P
Universita Politecnica de Catalunya
Av. del Doctor Maranon, 44-50
E-08028 Barcelona

Prof. Dr. Werner Müller

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn

Prof. Dr. Karl-Hermann Neeb

Department Mathematik
Universität Erlangen-Nürnberg
Bismarckstr. 1 1/2
91054 Erlangen

Prof. Dr. Bent Orsted

Matematisk Institut
Aarhus Universitet
Ny Munkegade
DK-8000 Aarhus C

Prof. Dr. Paul-Emile Paradan

Departement de Mathematiques
Universite Montpellier II
Place Eugene Bataillon
F-34095 Montpellier Cedex 5

Prof. Dr. Paolo Piazza

Dipartimento di Matematica
Universita di Roma ”La Sapienza”
Istituto ”Guido Castelnuovo”
Piazzale Aldo Moro, 2
I-00185 Roma

Prof. Dr. Pablo Ramacher

FB Mathematik & Informatik
Philipps-Universität Marburg
Hans-Meerwein-Strasse (Lahnbg.)
35032 Marburg

Prof. Dr. Ken Richardson

Department of Mathematics
Texas Christian University
Box 298900
Ft Worth , TX 76129
USA

Prof. Dr. Thomas Schick

Mathematisches Institut
Georg-August-Universität Göttingen
Bunsenstr. 3-5
37073 Göttingen

Prof. Dr. Martin Schlichenmaier

University of Luxembourg
Mathematics Research Unit, FSTC
Campus Kirchberg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

Prof. Dr. Andras Szenes

Section Mathematiques
Universite de Geneve
2-4 rue du Lievre
CH-1211 Geneve 4

G. Zsolt Szilagyi

Departement de Mathematiques
Universite de Geneve
Case Postale 64
2-4 rue du Lievre
CH-1211 Geneve 4

Prof. Dr. Susan Tolman

Dept. of Mathematics, University of
Illinois at Urbana Champaign
273 Altgeld Hall
1409 West Green Street
Urbana , IL 61801
USA



Geometric Quantization in the Non-compact Setting 521

Prof. Dr. Mathai Varghese

Department of Pure Mathematics
The University of Adelaide
Adelaide SA 5005
AUSTRALIA

Prof. Dr. Michele Vergne

Inst. de Mathematiques de Jussieu
Universite Paris VII
175, rue du Chevaleret
F-75013 Paris

Prof. Dr. Guofang Wang

Albert-Ludwigs-Universität Freiburg
Mathematisches Institut
Eckerstr. 1
79104 Freiburg

Prof. Dr. Jonathan Weitsman

Northeastern University
Department of Mathematics
567 Lake Hall
360 Huntington Ave.
Boston MA 02115-5000
USA

Prof. Dr. Siye Wu

Department of Mathematics
University of Hong Kong
Pokfulam Road
Hong Kong
P.R.CHINA

Dr. Takahiko Yoshida

Meiji Institute for Advanced Study
of Mathematical Sciences
1-1-1 Higashimita, Tamaku
Kawasaki 214-8571
JAPAN

Dr. Ken-Ichi Yoshikawa

Department of Mathematics
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN

Prof. Dr. Wei-Ping Zhang

Chern Institute of Mathematics
Nankai University
Weijin Road 94
Tianjin 300071
P.R. CHINA




