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Introduction by the Organisers

The theory of automorphic representations has been an extremely active area of
research over the past four decades since the introduction of the powerful tools of
representation theory into the classical theory of automorphic forms by Langlands,
Harish-Chandra, Piatetski-Shapiro and others. The subject already had very deep
roots in number theory and geometry and there is now a vast program of conjec-
tures encompassing, on the one hand, the theory of automorphic representations
per se and, on the other, Grothendieck’s theory of motives. Much progress has
been made in recent years. The main goal of this meeting was to survey the most
recent developments and to provide a glimpse of the new directions that are open-
ing up, where one might imagine important future growth will take place. The
wide range of current research was evident as topics included: periods of automor-
phic representations and the relative trace formula (Lapid, Feigon, Sakellaridis),
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Arthur packets, locally and globally generic representations and the Ramanujan
conjecture (Shahidi), Eisenstein cohomology and applications to special values of
L-functions (Harder, Grbac), algebraic modular forms (Buzzard), p-adic modu-
lar forms (Mahnkopf) and automorphic forms valued in arithmetic Chow groups
(Liu), endoscopic transfer and CAP representations (Soudry, Jiang), automorphic
forms on covering groups (Ikeda, Savin), and existence questions (Muic). Two
highlights were the lecture by Waldspurger detailing his proof of the local Gross-
Prasad conjecture for orthogonal groups and the lecture by Scholze explaining his
new proof of the local Langlands conjecture for GL(n). The group of participants
was notably broad in terms of nationality and age, and the meeting confirmed the
continued vigor of research in the theory of automorphic representations.

There were 44 participants, coming mainly from Europe, North America and
Asia, among them 4 young researchers who participated as Oberwolfach Leibniz
Graduate Students and 2 US Junior Oberwolfach Fellows. The organizers are very
grateful to the Leibniz-Gemeinschaft and the NSF for this support. The staff
of the Mathematische Forschungsinstitut Oberwolfach was - as always - extremely
supportive and helpful. We thank them for providing excellent working conditions.
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Progrès récents sur la conjecture locale de Gross-Prasad . . . . . . . . . . . . . . 724

Erez Lapid (joint with Brooke Feigon, Omer Offen)
Unitary periods and distinction; representation-theoretic aspects . . . . . . . 727

Freydoon Shahidi
Arthur Packets and the Ramanujan Conjecture . . . . . . . . . . . . . . . . . . . . . . 737

Yiannis Sakellaridis
Periods over spherical subgroups: an extension of some of the Langlands
conjectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

Neven Grbac (joint with Joachim Schwermer)
On special values of automorphic L–functions and Eisenstein cohomology 741

Günter Harder
Special values of certain cohomological L-functions . . . . . . . . . . . . . . . . . . 743

Sug Woo Shin (joint with Nicolas Templier)
Sato-Tate conjecture for families of automorphic representations . . . . . . . 746

Brooke Feigon (joint with Kimball Martin, David Whitehouse)
Periods and central values of quadratic base change L-functions for
GL(2n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

Goran Muić
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Abstracts

Algebraic automorphic representations

Kevin Buzzard

Weil observed that if χ was an algebraic grössencharacter then one can attach a
1-dimensional p-adic Galois representation to χ. One can even construct a family
of representations—one for each prime number p (or more generally for each finite
place of the coefficient field).

Taniyama, in his work on Tate modules of CM abelian varieties, was led to
the more general notion of a compatible family of Galois representations of higher
dimension. Eichler and Shimura attached a compatible family of 2-dimensional
Galois representations to a holomorphic modular eigenform of weight 2. Serre
quickly noticed that various congruences for the coefficients of the ∆ function
noticed by Ramanujan and others could be explained by a generalisation of this
picture to higher weight modular forms, and shortly afterwards these representa-
tions were constructed by Deligne.

The notion of what it meant for an automorphic representation for a general
connected reductive G to be “of type A0”, or “algebraic”, was formulated in the
1970s, but perhaps not much was done with it at the time, in that generality. It was
Clozel who specialised to the case of GL(n) over a number field, and conjectured
that given an algebraic automorphic representation π of GL(n) there should be a
compatible family of n-dimensional p-adic Galois representations attached to π.
Clozel also formulated a notion of “arithmetic” for automorphic representations
of GL(n) and conjectured that π was arithmetic if and only if it was algebraic.

Inspired by work of Toby Gee on the emerging p-adic and mod p Langlands
philosophy, Gee and I set out to generalise Clozel’s conjectures to an arbitrary
connected reductive group over a number field. This was not supposed to be a big
project—the idea was just that we should formulate some notion of what it means
for an automorphic representation of G(AK) to be arithmetic/algebraic (AK the
adeles of a number field K, G now an arbitrary connected reductive group), and to
an algebraic automorphic representation there should be an associated compatible
family of p-adic Galois representations, presumably (given what we know about
the Satake isomorphism) taking values in the (Qp-valued points of the) L-group
of G.

Here is what went wrong, and which turned this idle question into a paper.

1) Given an elliptic curveE/Q there’s an associated automorphic representation
of GL(2,AQ), with trivial central character. This automorphic representation
is “clearly” algebraic (in the sense that it is cohomological, so any theory that
suggests that such a gadget is not algebraic is probably not the right theory!). It
descends to an automorphic representation of PGL(2,AQ) which is also “clearly”
algebraic. And yet the p-adic Galois representation attached to this automorphic
representation does not take values in SL(2,Qp), not even after twisting (because
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the cyclotomic character has no square root; think about complex conjugation).
Yet SL(2) is the L-group of PGL(2).

2) However, given a representation ρ : Gal(Q/K)→ GL(2,C) with det(ρ(c)) =
1 (c a complex conjugation), there is conjectured to be, and if the image of ρ is solv-
able then there really is, an associated automorphic representation on GL(2,AQ),
which is also “clearly” algebraic. Furthermore, this automorphic reprsesentation
has trivial central character (and hence descends to PGL(2,AQ) if, and only if, the
image of ρ lands in SL(2,C). This and the previous observation seem to almost
lead to a contradiction!

3) Clozel, Harris and Taylor used the cohomology of Shimura varieties to attach
Galois representations to certain cohomological automorphic representations of
certain unitary groups U . One would perhaps expect that the associated Galois
representations were taking values in the L-group of U . But this is easily checked
not to be the case in general—indeed the Galois representations are taking values
in a group whose dimension is one bigger than that of the L-group of U (rather
analogous to 1) above). It was suggested to us that perhaps the group recieving the
Galois representations was the L-group of the associated general unitary group—
but we could prove that this was not in general the case. So whatever is the
recipe being used to predict where an Frobenius element should be sent, if it is
not the element of the L-group given by Langlands’ interpretation of the Satake
isomorphism?

What we thought would be an elementary exercise turned into quite an inter-
esting puzzle! Now Gee and I have a very good understanding of what we believe
is the conjectural solution to this puzzle. we can formulate not one but two no-
tions of “algebraic” in the theory of automorphic representations (we called them
“L-algebraic” and “C-algebraic”), and not one but two notions of “arithmetic”
(we called them “L-arithmetic” and “C-arithmetic”; L is ambiguous and either
stands for “Langlands” or “L-function”; C is also ambiguous and either stands
for “Clozel” or “cohomological”). One might conjecture that π is L-algebraic iff
it is L-arithmetic, and C-algebraic iff it is C-arithmetic. Analysing the difference
between the L- and the C- notions, and how and when it is possible to move by
twisting from one notion to the other, cleared up the issues numbered 1) to 3)
above completely, in the sense that we now have a complete conjectural under-
standing of what is going on.

Progrès récents sur la conjecture locale de Gross-Prasad

Jean-Loup Waldspurger

1. Enoncé de la conjecture

Soient F une extension finie d’un corps Qp, V un espace vectoriel sur F de
dimension finie d, q une forme quadratique non dégénérée sur V , V = W ⊕ D
une décomposition orthogonale, où D est une droite. On note G et H les groupes
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spéciaux orthogonaux de V et W (H s’identifie au sous-groupe des éléments de
G qui agissent par l’identité sur D). Soient π et σ des représentations lisses
irréductibles de G(F ), resp. H(F ), dans un espace complexe Eπ, resp. Eσ. On
note HomH(F )(Eπ , Eσ) l’espace des homomorphismes de H(F )-modules de Eπ
dans Eσ et on note m(π, σ) la dimension de cet espace. D’après [1], on am(π, σ) ≤
1. La conjecture locale de Gross-Prasad calcule cette multiplicité m(π, σ) sous
certaines hypothèses.

La conjecture s’énonce plus simplement si, au lieu d’un espace V , on en con-
sidère deux. Supposons pour fixer les idées d impair et d ≥ 5. On sait que,
pour un discriminant fixé, il y a deux classes d’équivalence d’espaces quadratiques
(c’est-à-dire munis d’une forme quadratique non dégénérée) de dimension d et du
discriminant fixé. Leurs groupes spéciaux orthogonaux sont formes intérieures
l’un de l’autre, l’un est déployé et l’autre n’est pas quasi-déployé. On introduit,
pour un discriminant fixé qui importe peu, ces deux espaces que l’on note Vi et
Va, de groupes spéciaux orthogonaux Gi et Ga, et l’on suppose Gi déployé. On
suppose donnée une décomposition orthogonale Vi = Wi ⊕ D. Il y a alors aussi
une décomposition orthogonale Va =Wa⊕D, avec la même droite quadratique D.
Les espaces quadratiques Wi et Wa ont mêmes dimensions et discriminants, mais
ne sont pas équivalents. On note Hi et Ha leurs groupes spéciaux orthogonaux.

Notons WF le groupe de Weil de F et WDF = WF × SL(2,C) le groupe de
Weil-Deligne. Considérons les homomorphismes ϕ :WDF → Sp(d− 1,C) tels que
la restriction de ϕ à SL(2,C) soit algébrique et le composé de ϕ avec l’injection
Sp(d − 1,C) → GL(d − 1,C) soit semi-simple. Le groupe Sp(d − 1,C) agit par
conjugaison sur cet ensemble d’homomorphismes. Notons Φorth(d) l’ensemble des
classes de conjugaison. A tout ϕ ∈ Φorth(d), la conjecture de Langlands associe
un L-paquet fini ΠGi(ϕ), resp. ΠGa(ϕ), de représentations lisses irréductibles de
Gi(F ), resp. Ga(F ).

Le discriminant commun de Wi et Wa définit un caractère quadratique de
WF , notons-le δ. On considère les homomorphismes ϕ′ : WDF → O(d − 1,C)
vérifiant les mêmes conditions que ci-dessus et tels que det ◦ϕ′

|WF
= δ. Le groupe

SO(d− 1,C) agit par conjugaison sur l’ensemble de ces homomorphismes. Notons
Φorth(d − 1, δ) l’ensemble des classes de conjugaison. A tout ϕ′ ∈ Φorth(d− 1, δ),
la conjecture de Langlands associe un L-paquet fini ΠHi(ϕ′), resp. ΠHa(ϕ′), de
représentations lisses irréductibles de Hi(F ), resp. Ha(F ).

Pour ϕ ∈ Φorth(d), on dit que ϕ est générique si et seulement si ΠGi(ϕ) contient
une représentation admettant un modèle de Whittaker. Une définition analogue
vaut pour ϕ′ ∈ Φorth(d− 1, δ).

Conjecture. Soient ϕ ∈ Φorth(d) et ϕ′ ∈ Φorth(d − 1, δ) deux éléments
génériques. Alors il y a un unique couple (π, σ) ∈ (ΠGi(ϕ)×ΠHi(ϕ′))⊔ (ΠGa(ϕ)×
ΠHa(ϕ′)) tel que m(π, σ) = 1. Pour les autres couples, cette multiplicité est nulle.

Cf. [3] conjecture 6.9. Soient ϕ et ϕ′ comme dans cet énoncé. Notons S(ϕ)
le centralisateur dans Sp(d− 1,C) de l’image de ϕ et S(ϕ′) le centralisateur dans
SO(d − 1,C) de celle de ϕ′. Ce sont des groupes algébriques. Leurs groupes de
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composantes S(ϕ)/S(ϕ)0 et S(ϕ′)/S(ϕ′)0 sont abéliens, isomorphes à des produits
finis de copies de Z/2Z. On note (S(ϕ)/S(ϕ)0)∨ et (S(ϕ′)/S(ϕ′)0)∨ leurs duaux.
Une deuxième assertion de la conjecture de Langlands est qu’il y a des bijections

(S(ϕ)/S(ϕ)0)∨ → ΠGi(ϕ) ⊔ ΠGa(ϕ)
ǫ 7→ π(ϕ, ǫ)

et
(S(ϕ′)/S(ϕ′)0)∨ → ΠHi (ϕ′) ⊔ ΠHa(ϕ′)

ǫ′ 7→ π(ϕ′, ǫ′).

Ces bijections doivent satisfaire des propriétés très contraignantes liées à la théorie
de l’endoscopie. Gross et Prasad définissent deux éléments ǫϕ,ϕ′ ∈ (S(ϕ)/S(ϕ)0)∨

et ǫ′ϕ,ϕ′ ∈ (S(ϕ′)/S(ϕ′)0)∨, en utilisant des valeurs de facteurs ǫ.

Conjecture. L’unique couple (π, σ) de la conjecture précédente est le couple
(π(ϕ, ǫϕ,ϕ′), π(ϕ′, ǫ′ϕ,ϕ′)).

Cf. [3] conjecture 6.9.

2. Généralisations

Dans [4], Gross et Prasad généralisent les définitions et conjectures ci-dessus en
remplaçant la décomposition V = W ⊕ D par V = W ⊕ Z, où Z est un espace
quadratique de dimension impaire dont le groupe spécial orthogonal est déployé.

Ces conjectures concernent des couples (G,H) de groupes spéciaux orthogonaux
en dimensions de parités distinctes. Dans [2], Gan, Gross et Prasad posent des
conjectures similaires pour d’autres couples de groupes (G,H):

- les couples de groupes unitaires en dimensions de parités distinctes;
- les couples formés d’un groupe symplectique et d’un groupe métaplectique

(revêtement de degré 2 d’un groupe symplectique);
- les couples de groupes unitaires en dimensions de même parité.
Dans les deux derniers cas, la représentation deWeil est utilisée dans la définition

des multiplicités.

3. Résultats dans le cas spécial orthogonal

Les résultats valent pour des couples de groupes spéciaux orthogonaux en di-
mensions de parités distinctes, c’est-à-dire dans la situation de la section 1 ou la
généralisation du premier paragraphe de la section 2. Pour les groupes classiques,
les conjectures de paramétrage sont en passe d’être démontrées par Arthur, nous
les admettons. On a alors le théorème suivant.

Théorème. Les conjectures de la section 1 sont véŕıfiées.

Cf. [6], [5]. La preuve repose sur trois ingrédients:
- des formules intégrales calculant les multiplicités, ou des valeurs de facteurs ǫ,

en termes de caractères de représentations, dans le cas où ces représentations sont
tempérées;

- la théorie de l’endoscopie et de l’endoscopie tordue pour les groupes spéciaux
orthogonaux et les groupes linéaires tordus;
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- le théorème suivant, dû à Moeglin; on le formule pour les groupes spéciaux
orthogonaux en dimension impaire, mais il vaut aussi en dimension paire ou pour
les groupes symplectiques.

Théorème. Soit ϕ ∈ Φorth(d). Alors ϕ est générique si et seulement si
tout élément de ΠGi(ϕ) ⊔ ΠGa(ϕ) est l’induite irréductible d’une représentation
tempérée d’un sous-groupe de Levi.

Cf. [5], corollaire 2.14.
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Unitary periods and distinction; representation-theoretic aspects

Erez Lapid

(joint work with Brooke Feigon, Omer Offen)

Let G be a reductive group defined over a local field F and let H be a Zariski
closed subgroup of G defined over F . We also write G = G(F ), H = H(F ). For a
representation (π, V ) of G consider

HomH(π,C) = {ℓ ∈ V ∗ : ℓ(π(h)v) = ℓ(v) ∀h ∈ H, v ∈ V }.

One says that (G,H) is a Gelfand pair if for every irreducible representation π
of G we have dimHomH(π,C) ≤ 1. Equivalently, dimHomG(π,C

∞(H\G)) ≤ 1.
Suppose for simplicity that G is quasi-split and let B be a Borel subgroup defined
over F . A necessary condition (even for finite multiplicity) is that H has an open
orbit O on B\G, so that H is a spherical subgroup. An important special case
of spherical subgroups is the fixed points of an involution (defined over F ) – the
symmetric case. Not every spherical subgroup gives rise to a Gelfand pair. There
is (at least) a cohomological obstruction: H(F ) should act transitively on O(F ).
Indeed, for a principal series π = IndGB(χ) “in general position” (suitably defined)
we have

dimHomH(π,C) ≥ #[H(F )-orbits in O(F )]

(with equality in many cases – cf. [40]). The notion of Gelfand pairs has been
studied a lot in the literature since the pioneering work of Gelfand, Kazhdan and
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Bernstein [17, 6, 8]. In recent years there have been spectacular developments in
showing that certain pairs (G,H) are Gelfand pairs, and even stronger results on
multiplicity one taking into account L-packets and forms of (G,H). (Aizenbud-
Gourevitch [3, 2], Waldspurger [47, 46, 32] and others).

Sakellaridis and Sakellaridis-Venkatesh study many aspects of spherical sub-
groups (both local and global) [39, 41]. For instance they show that dimHomH(π,C)
is always finite in that case. In the Archimedean case, harmonic analysis on
H\G was studied extensively in the symmetric case by van den Ban, Delorme,
Schlichtkrull and many others.

1. Distinguished representations

If HomH(π,C) 6= 0, we say that π is H-distinguished. One motivation for this
notion is global: a non-zero period integral

∫

H(F )\H(A)

ϕ(h) dh ϕ ∈ π

on (say) a cuspidal representation π = ⊗πv of G(A) (where now G is defined over
a global field F ) gives rise to locally distinguished representations πv of G(Fv). In
this case we say that π is (globally) H-distinguished.

What characterizes H-distinguished representations (in the case H = Gθ)?
On first approximation (and in some cases, precisely), there should exist another

(explicit) involution θ̃ such that π is H-distinguished =⇒ θ̃(π) ≃ π. (In general,
we cannot expect this condition to be sufficient, e.g. for θ = id.) This is indeed
the case whenever one can prove multiplicity one (for instance using the Gelfand-
Kazhdan method, or its refinements). In general, we can only expect the L-packet

of π to be θ̃-stable. (Otherwise put, π is a functorial lift from some G′.) Also, we
had better consider certain inner forms of G and H together. From now on we
discuss a particular case where E/F is a quadratic extension, G = GLn(E) and θ
is a Galois involution defining a unitary group.

I will summarize recent joint work with Brooke Feigon and Omer Offen [16],
following up on work of Jacquet [27, 28].

1.1. Finite field case. Let τ be the non-trivial element of Gal(Fq2/Fq). The
group G = GLn(Fq2) acts transitively on the set

X = {Φ ∈ G : τ(Φt) = Φ}

of non-degenerate hermitian forms by Φ • g := τ(gt)Φg. The stabilizer of Φ under
this action is the unitary group H = Un(Fq). We have the following result due to
Gow.

Theorem 1 ([18]). For any π ∈ Ĝ

• dimHomH(π,C) ≤ 1.
• HomH(π,C) 6= 0 ⇐⇒ π is Gal(Fq2/Fq)-invariant, i.e. π

τ ≃ π.
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1.2. Base change. There is yet another interesting characterization of Galois-

invariant representations. For m ≥ 1 let ̂GLn(Fqm)
Gal(Fqm/Fq)

be the set of
Gal(Fqm/Fq)-invariant irreducible representations of GLn(Fqm).

Theorem 2 (Shintani [44]). There is a bijective correspondence

̂GLn(Fqm)
Gal(Fqm/Fq)

←→ ̂GLn(Fq)

characterized by certain character identities.

To put things in perspective we recall the so-called Glauberman correspondence.
If σ is an automorphism of a finite group G such that gcd(ord(σ), |G|) = 1 then

Ĝσ ←→ Ĝσ

2. Local fields

To what extent do these results carry over to local fields? Namely,

• multiplicity one for unitary periods,
• characterization of distinction by Galois invariance,
• relation to base change.

By the cohomological obstruction mentioned before, we do not have multiplicity
one. In fact, for unramified principle series the multiplicity is ≥ 2n−1.

Conjecture 1 (Jacquet). Let E/F be a quadratic extension of local fields. Then
a representation π of GLn(E) is distinguished by the quasi-split unitary group if
and only if π is Galois invariant.

2.1. Cyclic base change. Let E be a cyclic (Galois) extension of degree m of a
local field F and let τ be a generator of Gal(E/F ). Let

Nm : E∗ → F ∗

be the norm map homomorphism given by

Nmx = xxτ . . . xτ
m−1

.

By class field theory F ∗/NmE∗ ≃ Gal(E/F ).

Theorem 3 (Arthur-Clozel [4]). To any π ∈ ĜLn(F ) there exists bc(π) ∈

ĜLn(E)
Gal(E/F )

characterized by character identities. Moreover if bc(π1) = bc(π2)
and π1 is square-integrable then π2 ≃ π1 ⊗ ω ◦ det for some character ω of
F ∗/NmE∗.

From now on let E/F be a quadratic extension of either local or global fields.
Let τ be the non-trivial Galois involution and let ω be the corresponding quadratic
character of either F ∗ or F ∗\IF by class field theory. Set G′ = G′

n = GLn /F and
G = Gn = ResE/F GLn, i.e. G(F ) = GLn(E), X = Xn – the space of hermitian
non-singular matrices, as a variety over F with right action by G. In the p-adic
case there are exactly two orbits of G(F ) on X(F ) according to discriminant. In
the Archimedean case there are n+ 1 orbits (according to signature). Denote by
Gx the stabilizer (the unitary group defined by x).



730 Oberwolfach Report 14/2011

2.2. The supercuspidal case.

Theorem 4 (Jacquet). Suppose that F is p-adic and π is supercuspidal and Gx-
distinguished. Then π is τ-invariant.

The Theorem is proved by a global argument due to Harder-Langlands-Rapoport
[22] and independently by Oda [35], which shows that any globally distinguished
cuspidal representation is Galois invariant. In order to apply the global argument
one embeds π as a local component of a globally distinguished cuspidal represen-
tation. (See [20] for a general result.)

In many cases one can give a purely local proof (which also gives multiplicity
one) based on the Bushnell-Kutzko classification of supercuspidal representations
[11] as induced from compact open subgroups modulo the center [19, 38, 21].
However, I am not aware of a purely local argument which avoids classification.
Using the geometric Lemma of Bernstein-Zelevinsky [7] we can deduce (purely
locally)

Theorem 5 ([16]). Let π be any irreducible representation of G (F p-adic). Sup-
pose that π is distinguished by a unitary group. Then πτ ≃ π.

In the same token, we can reduce all questions about distinction and multiplicity
to the case where the supercuspidal support of π is contained in σ ⊗ |det|Z for
some supercuspidal σ, which is τ -invariant. (We call these π’s pure of type σ.)
For the non-quasi-split unitary group the condition for distinction is conjecturally
#{π′ : bc(π′) = π} > 1.

2.3. Archimedean situation. A more elaborate filtration in the archimedean
case yields

Theorem 6 (Aizenbud+Lapid). Let π be a representation of GLn(C). Suppose
that π is the Langlands quotient of χ1, . . . , χn (characters of C∗). Then π is
distinguished by Up,q =⇒ π is τ-invariant (i.e., Gal(C/R) stabilizes the multi-
set {χ1, . . . , χn}) and the number of Gal(C/R)-orbits of size two does not exceed
min(p, q) = rankUp,q. The converse holds if π is generic.

Conjecture 2. The converse holds in general.

In order to attack the other direction of Jacquet’s conjecture, as well as to
obtain results about multiplicity we need to use the full force of Jacquet’s relative
trace formula.

2.4. Bessel distributions. Let (π, V ), (π̂, V̂ ) be two representations and (·, ·) :

V × V̂ → C a non-degenerate G-invariant bilinear form. This gives rise to an

isomorphism ι : π∨ → π̂ where π∨ is the contragredient. For ℓ ∈ V ∗ and ℓ̂ ∈ V̂ ∗

we define

Bℓ,ℓ̂(π,π̂,(·,·))(f) = ℓ̂ ◦ ι(ℓ ◦ π(f)).

(The map ℓ 7→ ℓ ◦ π(f) defines an isomorphism V ∗ ≃ HomG-right(S(G), π∨).) For
example, for π = σ ⊗ σ∨, π̂ = σ∨ ⊗ σ on G = H ×H with the standard pairing
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(doubled) and ℓ = standard pairing, ℓ̂ = standard pairing we get

B(f1 ⊗ f2) = tr σ(f1 ∗ f
∨
2 ).

The following example will be important for us. Let π be non-degenerate rep-
resentation of GLn(F ) with Whittaker model Wψ(π). Consider the pairing

(W, Ŵ ) =

∫

Nn\Pn

W (p)Ŵ (p) dp, W ∈ Wψ(π), Ŵ ∈ Wψ−1

(π∨)

where Pn is the mirabolic subgroup consisting of matrices of GLn whose last row

is (0, . . . .0, 1). We write W(π) = (Wψ(π),Wψ−1

(π∨), (·, ·)) and consider

Bπ(f) = B
δw0 ,δe
W(π) (f)

where w0 =




1

. .
.

1


. (For GL2(R) this distribution is essentially represented

by the usual Bessel function [15, 5].) The distribution Bπ is left and right ψ-
equivariant. Hence (at least in the p-adic case) it depends only on the ψ-orbital
integrals of f . There is also a relative analogue of the construction of Bessel
distributions. Let π be a representation of G = GLn(E). Observe that

HomG(X, π
∗) := {α : X → π∗|αx•g = αx ◦ π(g) ∀x ∈ X, g ∈ G}

≃ ⊕x∈X/GHomGx(π,C) ≃ HomG(S(X), π∨).

For α ∈ HomG(X, π
∗) and ℓ̂ ∈ π̂∗ we consider the distribution

B̃α,ℓ(π,π̂,(·,·))(Φ) = ℓ̂ ◦ ι(α(Φ)), Φ ∈ S(X)

on X . If π is generic then for any α ∈ HomG(X,W(π)∗), B̃α,δe
W(π) is (Nn(E), ψ)-

equivariant and hence depends only on the ψ-orbital integrals of Φ.

2.5. Matching functions and distributions. The regular double cosets
tN ′\G′/N ′ = Nn(F )\GLn(F )/Nn(F ) are parameterized by diagonal elements.
Similarly, for X/Nn(E). We write Φ←→ f ′ if

ω(a1a3 . . . )

∫

N ′
n(F )2

f ′( tu1au2)ψ
′(u1u2) du1 du2 =

∫

Nn(E)

Φ(a • u)ψ(u) du

for any a = diag(a1, . . . , an) ∈ G′(F ).

Theorem 7 (Jacquet – p-adic case [25], Aizenbud-Gourevitch – archimedean case
[1]). The condition

D(Φ) = D′(f ′) ∀Φ←→ f ′

defines an isomorphism D ↔ D′ of vector spaces between the (N ′ ×N ′, ψ′ × ψ′)-
equivariant distributions o G′ and the (N,ψ)-equivariant distributions on X.
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Theorem 8 ([16]). Let π′ be a non-degenerate representation of G′
n(F ) and π =

bc(π′) (assumed generic). Then ∃! απ
′

∈ HomG(X,W(π)∗) such that B̃α
π′
,δe

W(π) ↔

Bπ′ . Moreover, in the p-adic case απ
′

x 6≡ 0 unless π′ = π′ ⊗ ω and Gx is not
quasi-split.

Corollary 1. Jacquet’s conjecture holds for non-degenerate representations.

3. Global periods

It is a remarkable fact that albeit lack of local uniqueness, global periods fac-
torize nevertheless. More precisely

Theorem 9 (Jacquet’s factorization Theorem [24]). Suppose that π = bc(π′) is
cuspidal. Then for any factorizable ϕ in the space of π we have

∫

Gx(F )\Gx(A)

ϕ(h) dh = 2LS(1, π′ × π̃′ ⊗ ω)
∏

v∈S

α
π′
v
x (Wv)

where W (ϕ) =
∫
Nn(E)\Nn(AE)

ϕ(u)ψ(u)−1 du =
∏
vWv and S is a sufficiently

large finite set of places outside of which Wv is the standard spherical vector.

This theorem is a consequence of the relative trace formula comparison. On top
of smooth matching it requires the fundamental lemma (proved in Ngô’s thesis in
the positive characteristic case [33, 13, 34] and later on by Jacquet in general
[26, 27]) and the spectral expansion [31].

Let us now consider induced representations. Let P = MU be a standard
parabolic subgroup, M = GLn1 × · · · ×GLnk

, XM = X ∩M = Xn1 × · · · ×Xnk
.

Given a representation σ of M , for each x ∈ XM and α ∈ HomMx(σ,C) we
can define a family of elements of HomGx(I(σ, λ),C), λ ∈ Ck by meromorphic
continuation. (In a more general context, cf.[9] – p-adic case, [10, 12] – archimedean
case.

A variant of this construction gives a map

α ∈ HomM (XM , σ∗)→ J(α, λ) ∈ HomG(X, I(σ, λ)
∗), λ ∈ Ck.

In the case of unramified principle series these are essentially the spherical
functions which were computed explicitly by Y. Hironaka (for E/F unramified)
[23].

4. Local functional equations

4.1. Local coefficients. Consider the intertwining operator

W (σ, λ) : I(W(σ), λ)→W(I(σ, λ))

given by the (analytic continuation of the) Jacquet integral

W (g, ϕ, λ) =

∫

w0Ūw
−1
0

ϕ(w−1
0 ug)ψ(u)−1 du.
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We have
W (wσ,wλ) ◦M(w, σ, λ) = CM (w, σ, λ)W (σ, λ)

where CM (w, σ, λ) are Shahidi’s local coefficients, [42, 43] expressible in terms of
γ-factors for Rankin-Selberg integrals (whose theory was developed by Jacquet,
Piatetski-Shapiro and Shalika).

4.2. The functional equations.

Theorem 10 (FLO). Let σ′ be a generic representation of M ′, σ = bc(σ′). Then
for λ ∈ Ck we have

αI(σ
′,λ) ◦W (·, λ) = ±

CM (w0, σ, λ)

CM ′(w0, σ′, λ)
J(ασ

′

, λ)

and (consequently)

J(αwσ
′

, wλ) ◦M(w, λ) = explicit scalar function× J(α, λ).

These functional equations are reminiscent to those of Shahidi. One difference
is that in our case there is no uniqueness.

The Theorem is proved by analyzing the continuous part of the relative trace
formula using earlier work by Lapid-Rogawski and Offen [30, 36, 37].

5. Applications

Theorem 11 (FLO). Suppose that π is square integrable and τ-invariant. Then
dimHomGx(π,C) = 1 for all x ∈ X.

More generally, suppose that π = δ1 × · · · × δk where δi are essentially square
integrable and distinct. Then {απ

′

: bc(π′) = π} forms a basis for HomG(X, π
∗).

The Theorem is no longer true in the singular case (where δi are not distinct).
In fact, dimHomG(X, π

∗) is upper semi-continuous in the parameters while
#{π′ : bc(π′) = π} is not.

We expect the following

Conjecture 3. If π = δ1 × · · · × δk with δi essentially square-integrable and τ-
invariant then dimHomG(X, π

∗) = 2k.

As explained to me by Yiannis Sakellaridis, Hironaka’s results imply that at
least for E/F unramified we have dimHomG(X, π

∗) = 2n for any generic unram-
ified representation.

5.1. Ladder representations. An interesting class of pure representations is
obtained as Langlands quotients of δ1× · · ·× δk where δi× δi+1 is reducible for all
i = 1, . . . , k− 1. We call them ladder representations. (We can parameterize them
as intervals [a1, b1], . . . , [ak, bk] such that ai, bi ∈ Z, ai − 1 ≤ bi+1 < bi for all i.)

For instance any Speh representation (the Langlands quotient of δ⊗|det ·|(m−1)/2×
· · · × δ ⊗ |det ·|(1−m)/2 where δ is square integrable) is ladder.

Theorem 12 ([16]). For any τ-invariant ladder representation π and x ∈ X we
have dimHomGx(π,C) = 1.
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Corollary 2. Jacquet’s conjecture holds for unitarizable representations.

5.2. Tadić’s determinantal formula. For the existence of local invariant func-
tionals for (Galois-invariant) Speh representations we use the following property
of the ladder representations.

Proposition 1 ([29]). The kernel of the projection δ1×· · ·×δk → π, i.e., the kernel
of the longest intertwining operator, is spanned by the kernels of the co-rank one
intertwining operators (where we switch the order of δi and δi+1), i = 1, . . . , k− 1.

Fix a supercuspidal σ and consider a ladder representation

π = LQ(∆(σ, [a1, b1])× · · · ×∆(σ, [ak, bk])).

The proposition is closely related to the following character formula, originally
proved by Tadić for Speh representations [45].

Theorem 13 ([29]). In the Grothendieck ring ⊕n≥0R(GLn(F )) we have

π = det(∆(σ, [ai, bj ])i,j=1,...,k

=
∑

w∈Sk:∀i bw(i)≥ai−1

sgnw ∆(σ, [a1, bw(1)])× · · · ×∆(σ, [ak, bw(k)]).

In the case of Speh representations a different proof was given by Chenevier-
Renard [14]. There is yet another approach, which works in general, due to Bad-
ulescu.

Suppose that we have an arbitrary irreducible representation π = LQ(δ1, . . . , δk).
Consider the kernel K of the longest intertwining operator M(w0), i.e., the kernel
of the projection δ1 × · · · × δk → π.

In order to analyze Jacquet’s conjecture in general it is necessary to analyze K.
Clearly, K contains the kernels of any intertwining operator. It seems decisive to
know whether in general

K =
∑

w=w1w2:w1 simple reflection,Mw2 isomorphism

KerMw.

Note that by Proposition 1 this holds for ladder representations (where the sum
is over simple w’s).

5.3. Imprimitive representations. We call a representation (parabolically) im-
primitive if it is not parabolically induced from any proper parabolic subgroup.

Any irreducible representation can be written uniquely (up to permutation)
as π1 × · · · × πk where πi are imprimitive. Thus, the imprimitive representa-
tions are the prime elements of the representations theory of GL(n). Any ladder
representation is imprimitive, but not conversely. For instance LQ(∆(σ, [1, 2]) ×
∆(σ, [−1, 1])× σ) is imprimitive. (This example was shown to me by Minguez.)

Conjecture 4. If π1, . . . , πk are imprimitive, τ-invariant and π = π1 × · · · × πk
is irreducible then dimHomG(X, π

∗) = 2k.
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Arthur Packets and the Ramanujan Conjecture

Freydoon Shahidi

Let G be a quasisplit connected reductive group defined over a local field
k (real, complex or p–adic). Let ψ be an Arthur parameter for G, i.e., ψ ∈
Ψ(G/k), the set of equivalence classes of homomorphism from W ′

k × SL2C) into
LG, under LG0–conjugacy (cf [A]). Let φψ : W

′
k →

LG be defined by φψ(w) =

ψ(w,

(
|w|1/2 0

0 |w|−1/2

)
). Fix a Borel subgroup B of G over k. Let P = MN

be the standard parabolic sub–group of G for which φψ factors through LM and
LM is smallest such. Let πM (φψ) be the L–packet of M(k) attached to φψ . Let
σ ∈ πM (φψ). Then π

G(φψ) will consist of Langlands quotients J(σ), ∀σ ∈ πM (φψ).
Let r be the adjoint action of LM on Ln, the Lie algebra of LN . Assume there
exists a σ such that J(σ) is generic (thus so is σ), i.e., having a Whittaker model.
Assume

(a) L(s, r̃ · φψ) = L(s, σ, r),

where the L–function on the left are those of Artin, while the right is those attached
by Langlands–Shahidi method to σ and r (cf. [Sh1]). In this lecture, we prove that
under validity of (a), if πG(φψ) has a generic member π, then φψ is tempered. The
convers is a conjecture in [Sh1] which is now proved in many cases. The result
is valid with no assumptions if k = R or C, or π is G(Ok)–unramified when k is
p–adic. In the cases of classical groups this should also be immediate since LLC
(local Langlands conjecture) is valid for them by the work of Arthur and Jiang–
Soudry (proved by D. Ban and B. Liu by other techniques including LLC, at least
in part). The proof relies on representation theoretic techniques from our method
developed in [CSh].

There are important global consequences of this result. For example, under a
certain conjecture of Clozel (and Arthur), this proves that locally generic cuspidal
representations of G(Ak), Ak adeles of a number field, are always tempered at
almost all places, i.e., are of Ramanujan type. This also gives strong evidence
that the isotypic cuspidal component of a locally generic representation always
contains a globally generic one and thus there should be no L–function obstruction
for this equivalency up to isomorphisms. We refer to [Sh2] for further details and
discussions.
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Periods over spherical subgroups: an extension of some of the
Langlands conjectures.

Yiannis Sakellaridis

1. Summary

Periods of automorphic forms over spherical subgroups tend to: (1) distinguish
images of functorial lifts and (2) give information about L-functions.

This raises the following questions, given a spherical variety X = H\G: Lo-
cally, which irreducible representations admit a non-zero H-invariant functional
or, equivalently, appear in the space of functions on X? Globally, can the period
over H of an automorphic form on G be related to some L-value?

The conjectural answer involves a “dual group” associated to X and can be
seen as a generalization of part of the Langlands conjectures for the case X =a
group under left and right multiplication by itself. The purpose of this talk is to
describe the dual group and discuss evidence suggesting that the relative trace
formula of Jacquet is the correct framework for a more precise formulation of the
conjectures.

2. Spherical varieties

A homogeneous varietyX for a reductive algebraic group G is called “spherical”
if (over the algebraic closure) a Borel subgroup of G acts with a dense orbit on X .
This includes symmetric spaces, flag varieties, and other interesting spaces such as
the “Gross-Prasad” variety SOn \(SOn× SOn+1). If X = H\G is spherical, then
H is called a spherical subgroup of G.

Let G be defined over a global field k. Then spherical varieties for G (or,
more precisely, affine embeddings thereof) give rise to interesting distributions
on the automorphic quotient [G] := G(k)\G(A), cf. [Sa]. At present there are
comparatively few spherical varieties for which we can prove that the associated
distributions have good analytic properties, and those include:

• The cases where H is reductive. The associated distribution is then the
“period integral” over H :

(1) PH(φ) :=

∫

[H]

φ(h)dh.

• When H is the semidirect product of a reductive subgroup of a Levi sub-
group with the unipotent radical of an associated parabolic, the latter
endowed with an idele class character normalized by the former. This
gives rise to “Whittaker-type” periods.
• When X happens, by coincidence, to have an open embedding into a flag
variety (for some other group). This gives rise to Rankin-Selberg integrals.
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Although only periods appear explicitly in this talk, the local discussion holds
for (almost) all spherical varieties and the global discussion holds whenever we can
make sense of the associated distribution on the automorphic quotient.

The word “almost” was inserted to exclude certain spherical varieties whose
“rank one degenerations” contain, in a suitable sense, the space PO2 \PGL2.
These varieties, and the associated periods, seem to be sharing certain features of
metaplectic groups, cf. [Ja91], and the notion of a dual group is not suitable to
describe their spectrum.

3. Local conjecture

We switch to local notation: k is a p-adic or archimedean field, H = H(k) etc.
We ask ourselves which irreducible representations π admit a non-zero:

π
H
−→
6=0

C⇔ π →֒ C∞(H\G) ⊂ C∞(X).

A related question is, which

π ∈ L2(X)

in the sense of the Plancherel formula (Fell topology)?
For π a G-discrete series, the two questions are equivalent, as a consequence of

the theory of asymptotics of such embeddings.
For simplicity, assume from now on that G is split. Recall the following (weak)

formulation of the Local Langlands Conjecture: L2(G) admits a direct integral
decomposition:

L2(G) =

∫

{φ}

HφµG(φ)

where φ ranges over the set of conjugacy classes of tempered Langlands parameters:
φ : WDk → LG, which has natural orbifold structure;
µG is the canonical Plancherel measure, and lives in the class of Lebesgue measure
for this orbifold;
Hφ =

⊕
π∈Πφ

Hπ, where Hπ is the completion of C∞
c (G) with respect to the norm

‖ • ‖π : C∞
c (G)

matrix coeff.
−→ π ⊗ π̄

‖•‖·‖•‖
−→ R+.

Conjecture 5 (S.-Venkatesh, [SV]). Let X be a spherical variety over a local field.
Then L2(X) admits a direct integral decomposition:

L2(X) =

∫

ψ

Hψµ(ψ),

where:

• ψ varies over X-distinguished Arthur parameters modulo conjugacy;
• µX ∈ class of Lebesgue measure on such parameters.

Here µX , ‖ • ‖2ψ are not canonical, but their product is.

Theorem 14 (S.-Venkatesh, [SV]). Description of ‖•‖2ψ·µX up to discrete spectra.
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Here “discrete spectra” means the discrete-modulo-center part of L2(XΘ), where
Θ varies over certain degenerations of X . Unlike the case of symmetric varieties
(such as the group variety), in the general case the variation of discrete series
with central character cannot be obtained by “twisting”, and one needs to use a
technique called “unfolding”.

Finally, the “X-distinguished Arthur parameters” of the Conjecture are those
which factor as:

WDk × SL2

ψ
''O

O

O

O

O

O

O

O

O

O

O

O

O

φ×Id
//___ ǦX × SL2

��

Ǧ

taken modulo ǦX -conjugacy.
Here ǦX is the “dual group” of the spherical variety, defined in [SV]. It is

closely related, but not identical to, the dual group constructed by Gaitsgory and
Nadler [GN10]. It has the same Weyl group, but not always the same roots, as two
root systems associated to the spherical variety by Brion and Knop [Br90, Kn96].
The map ǦX × SL2 → Ǧ is a canonical one.

4. Global conjecture

A global conjecture about the value of |PH(φ)|2 was described in the talk,
assuming that the functional PH is factorizable (i.e. a pure tensor). It is a gen-
eralization of the Ichino-Ikeda conjecture for the Gross-Prasad case [II10]; rougly
speaking, it expresses the local Euler factors for |PH(φ)|2 in terms of general-
ized characters (also called spherical characters or Bessel distributions) appear-
ing in a suitably normalized Plancherel formula for X = H\G. The conjecture
can be proven for period integrals which “unfold” to known cases of the conjec-
ture, such as: the Whittaker period in GLn, the space GLn \(GLn×GLn+1), the
Rankin-Selberg integral for GLn×GLn and (partially) the cases Sp2n \GL2n and
GLn×GLn \GL2n.
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On special values of automorphic L–functions and Eisenstein
cohomology

Neven Grbac

(joint work with Joachim Schwermer)

We present the results of a joint work with Joachim Schwermer regarding the
automorphic cohomology of a connected classical algebraic group G defined over
Q. The presented results are the content of recent papers [2], [3], [4].

The automorphic cohomology captures essential information on the cohomology
of arithmetic congruence subgroups of G(R). More precisely, the automorphic
cohomology of G is, by definition, the direct limit over open compact subgroups
C of G(Af ) of the cohomology of double coset spaces

XC = G(Q)\G(A)/KRC,

where A is the ring of adèles of Q, Af the ring of finite adèles, and KR is a fixed
maximal compact subgroup of G(R). As proved in [5], it can be computed as the
relative Lie algebra cohomology of the space of automorphic forms on G(A).

The space of automorphic forms on G(A) admits a direct sum decomposition
according to their cuspidal support (see [7], [8], [6]). The summands are indexed by
associate classes of parabolic Q-subgroups of G, and associate classes of cuspidal
automorphic representations of their Levi factors. The summand indexed by the
associate class of a proper parabolic Q-subgroup P , and the associate class of a
cuspidal automorphic representation π of the Levi factor LP (A) of P , is spanned by
all possible residues and principal values of derivatives of Eisenstein series attached
to π at certain values of their complex parameter.

This decomposition gives rise to the corresponding decomposition of automor-
phic cohomology of G. The summands indexed by the full group G form the
so–called cuspidal cohomology. The natural complement to cuspidal cohomol-
ogy, formed by the summands indexed by associate classes of proper parabolic
Q-subgroups, is called Eisenstein cohomology. We study necessary conditions for
non–vanishing of individual summands in Eisenstein cohomology.

The main result presented in this talk is that the Eisenstein series attached
to π can possibly give rise to a non–trivial cohomology class in the Eisenstein
cohomology of G only if the evaluation point satisfies a certain “half–integral”
property. In order to explain what this property means, we restrict our attention
to one of the Q-split classical groups SO2n+1, Spn, and SO2n defined over Q of
Q-rank n.

For such G, the Levi factor LP of any proper parabolic Q-subgroup P of G is
of the form

LP ∼= GLr1 × . . .×GLrd ×G
′,
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where r1, . . . , rd are positive integers such that their sum is not greater than the
rank n of G, and G′ is the (possibly trivial) classical group of the same type as G,
but of smaller rank equal to n−r1−. . .−rd. Hence, the space of complex parameters
for the Eisenstein series attached to a cuspidal automorphic representation π of
LP (A) is isomorphic to Cd, and we can take as the basis the determinant on each of
the general linear factors of LP . Then, the d–tuple (s1, . . . , sd) ∈ Cd corresponds
to the character of LP (A) given by

(g1, . . . , gd, h) 7→ | det(g1)|
s1 · . . . · | det(gd)|

sd ,

for gi ∈ GLri(A) and h ∈ G
′(A).

In this natural basis for the space of complex parameters, our “half–integral”
property of the evaluation point shows that the Eisenstein series attached to π can
possibly give rise to a non–trivial cohomology class in the Eisenstein cohomology
of one of the groups SO2n+1, Spn, and SO2n, only if

s1, s2, . . . , sd ∈
1

2
Z,

that is, all coordinates of the evaluation point are half–integers.
We observe that if one only considers the cohomology classes represented by

square–integrable automorphic forms, this result is in accordance with Arthur’s
conjectural description of the discrete spectrum of the classical group G(A) pre-
sented in [1].

This result also shows that, if we assume that π is globally generic (with respect
to a fixed non–trivial additive character ψ of k\A), and apply the Langlands–
Shahidi method, developed in [9], to study the poles of Eisenstein series, then
with regard to cohomological questions we only need to understand the analytic
properties of the automorphic L–functions at certain special values of their complex
argument. For example, in the case of theQ-split classical groups SO2n+1, Spn and
SO2n already considered above, the symmetric and exterior square automorphic
L–functions appear in the Langlands–Shahidi normalizing factors of intertwining
operators with the argument of the form 2si. Since our “half–integral” property
implies that only the evaluation points with 2si ∈ Z matter, the unknown analytic
properties of symmetric and exterior square L–functions inside the critical strip
0 < Re(s) < 1 play no role in computing the cohomological contribution.
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Special values of certain cohomological L-functions

Günter Harder

This is a report on joint work with A. Raghuram ([4]. We generalize the method
for proving rationality results of special values of L− functions from my talk in
OWR 2008/5 to the group G̃ = GlN/Z, Nodd. (see also [2]) For the following
notations and general results I refer to [3].

For any reductive group scheme G/Z and any highest weight moduleMλ,Z we
consider the long exact sequence

→ H•
c (S

G
Kf
,Mλ,Z)→ H•(SGKf

,Mλ,Z)→ H•(∂SGKf
,Mλ,Z)→ H•+1

c (SGKf
,Mλ,Z)→

as a sequence of modules under the integral Hecke algebra, this is our basic object
of interest.

We still have the inner cohomology H•
! (S

G
Kf
,Mλ,Z) and we know that after a

suitable finite extension F/Q it decomposes into a direct sum of isotypical com-
ponents absolutely irreducible modules for the Hecke-algebra

H•
! (S

G
Kf
,Mλ,Z ⊗ F ) =

⊕

πf

H•
! (S

G
Kf
,Mλ,Z ⊗ F )(πf ).

In [3] 3.1 I explain how to attach a cohomological (motivic) L-function Lcoh(πf , r, s)
to πf and a representation r of the dual Langlands group. This L-function is equal
to the usual L-function in the theory of automorphic forms up to a shift in the
argument s. It is defined in terms of the integral structure of the Hecke-module
πf . and it has the following property: If we twist our coefficient systemMλ,Z by
a character δ : G→ Gm then πf ⊗ |δf |−1 occurs in H•

! (S
G
Kf
,Mλ+δ,Z⊗F ) and we

have

Lcoh(πf , r, s) = Lcoh(πf ⊗ |δf |
−1r, s).

It is part of the general philosophy of Langlands that there should exist motives
M(πf , r) such that we have an equality

Lcoh(πf , r, s) = L(M(πf , r), s) =
∏

p

L(πp, r, s)

where for almost all primes L(πp, r, s) = det(Id− r(Φ−1
p )p−s)

−1
Consider the

group G = Gln/Z and a regular highest weight λ. Then a πf which occurs as
isotypical module in the inner cohomology occurs in lowest degree bn = n2/4
(resp. (n2 − 1)/4 ) with multiplicity 2 (resp. 1) if n is even (resp. odd). We have
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an action of π0(G(R)) = Z/2Z on Hbn
! (SGKf

,Mλ,Z ⊗ F )(πf )), which commutes

with the Hecke algebra. In the even case

H
bn
! (SG

Kf
,Mλ,Z ⊗ F )(πf )) = H

bn
! (SG

Kf
,Mλ,Z ⊗ F )+(πf ))⊕H

bn
! (SG

Kf
,Mλ,Z ⊗ F )−(πf ))

and in the odd case π0(G(R)) acts by a sign character ǫ(λ) on Hbn
! (SGKf

,Mλ,Z ⊗

F )(πf )).
In the even case we can choose an Hecke module isomorphism

T arith(πf ) : H
bn
! (SGKf

,Mλ,Z ⊗ F )+(πf ))
∼
−→ Hbn

! (SGKf
,Mλ,Z ⊗ F )−(πf ))

which is unique up to an element in F×. (A more meticulous argumentation
shows that we can pin down T arith(πf ) up to an element in O×

F,S , where S is

a computable finite set of primes which has to be inverted). If we choose an
embedding ι : F →֒ C, then we can construct a canonical isomorphism

T
trans(πf , ι) : H

bn
! (SG

Kf
,Mλ,Z ⊗F ⊗F,ι C)+(πf ))

∼

−→ H
bn
! (SG

Kf
,Mλ,Z ⊗F ⊗F,ι C)−(πf ))

and this provides an array of periods Ω(πf ) = {. . . ,Ω(πf , ι), . . . }ι:F →֒C, which is
defined by

Ω(πf , ι)T
trans(πf , ι) = T arith(πf )⊗F,ι C.

These periods have the following property: If we modify λ to λ + d det then
Ω(πf ⊗ | detf |−d) = (−1)dΩ(πf ). We start from the group G̃, a highest weight
moduleMλ,Z and a finite extension F/Q and consider the restriction map

r : H•(SG̃Kf
,Mλ,Z ⊗ F )→ H•(∂SG̃Kf

,Mλ,Z ⊗ F ).

Now I refer to the description of the cohomology of the boundary in terms of
the cohomology of the boundary strata of the Borel-Serre compactification. The
strata are labelled by the conjugacy classes of parabolic subgroups over Q. For
any decomposition N = n+ n′ we have a pair of opposing conjugacy classes P,Q
whose Levi quotient is Gln ×Gln′ = M. We realize them as a pair of opposing
parabolic subgroups containing the standard maximal split torus T. They provide
a submodule

H•
! (∂PS

G̃
Kf
,Mλ,Z ⊗Q)⊕H•

! (∂QS
G̃
Kf
,Mλ,Z ⊗Q) ⊂ H•(∂SG̃Kf

,Mλ,Z ⊗Q).

which satisfies Manin-Drinfeld with respect to H•(∂SG̃Kf
,Mλ,Z⊗Q). ([3] , 2.4.1).)

Then it becomes clear that the image of r intersected with this direct summand
is a Q -sub-vector space. We apply the principles from [3]. Kostants theorem
combined with the decomposition into isotypical subspaces yields

H•
! (∂PS

G̃
Kf
,Mλ,Z ⊗ F ) =

⊕

w∈WP

⊕

σf

IGP H
•
! (S

M
Kf
, H l(w)(uP ,Mλ,Z ⊗ F )(w · λ)(σf )

H•
! (∂QS

G̃
Kf
,Mλ,Z⊗F ) =

⊕

w′∈WQ

⊕

σ′
f

IGQH
•
! (S

M
Kf
, H l(w′)(uQ,Mλ,Z⊗F )(w

′ ·λ)(σ′
f ).

In [2] 1.2.1 we establish a one-to-one correspondences w ↔ w′, l(w) + l(w′) =
dim(UP ), and σf ↔ σ′

f , σf = σ′
f ⊗ |ρ

−2
U,f |. (See [2] 1.2.3.
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Under these special circumstances the theory Eisenstein cohomology tells us
that

Eis(σf ) ⊂ I
G
P H

•

! (S
M
Kf

,H
l(w)(uP ,Mλ,Z ⊗F )(σf )⊕ I

G
QH

•

! (S
M
Kf

,H
l(w′)(uQ,Mλ,Z ⊗F )(σ′

f )

is the graph of homomorphism between the two summands as Hecke modules.
Hence we know how to identify the two summands we find

Eis(σf ) = {ψf + c(σf )T
arith(ψf )}

where c(σf ) ∈ F (it may happen that c(σf ) =∞).
The Langlands-Shahidi method yields a formula for the term c(σf ). Recall that

M = Gln ×Gln′ = G1 ×G2 is a product and accordingly

H
•

! (S
M
Kf

,H
l(w)(uP ,Mλ,Z⊗F )(w·λ)(σf ) = H

•

! (S
G1

K
(1)
f

,Mλ1)(σ1,f )⊗H
•

! (S
G2

K
(2)
f

,Mλ2)(σ2,f )

The c(σf ) can be expressed in terms of special values of the completed cohomo-
logical L function

Λcoh(σ1,f × σ2,f , τ1 × τ
∨
2 , s) = L∞(w, λ, s)Lcoh(σ1,f × σ2,f , τ1 × τ

∨
2 , s).

Here the τi are the tautological representations of the Langlands dual of Gi and
τ∨2 is the dual. The factor L∞(w, λ, s) is product of Γ factors depending on w, λ.

To give the formula we look again at the embeddings ι : F →֒ C, then Λcoh(σ1,f×
σ2,f ◦ ι, τ1 × τ

∨
2 , s) becomes an honest function in the complex variable s. If n is

even then

ι(c(σf )) = c(σf◦ι) =
( C∞(w, λ)

Ω(σ1,f , ι))

)e(w,λ) Λcoh(σ1,f × σ2,f ◦ ι, τ1 × τ∨2 , a(w, λ))

Λcoh(σ1,f × σ2,f ◦ ι, τ1 × τ∨2 , a(w, λ) + 1))
,

where a(w, λ) is an integer (depending explicitly on w, λ, I do not give the formula)
and e(w, λ) is±1, the value depends on the parity of a(w, λ). The number C∞(w, λ)
is a non zero rational number, which we have not yet computed (see [2],2.2).

The question arises what are the values of a(w, λ) which occur here. Recall
that the cohomological L does not change if we twist σ1,f × σ2,f by | det1,f |

a ×
| det2,f |b, then a(w, λ) changes into a(w, λ) + a − b, this means that the same L
function is evaluated at different arguments. To answer to this question we need
a combinatorial lemma concerning the symmetric group SN , which we believe is
true and which we have checked in the cases n = 1, 2 and some other cases.

Assuming the combinatorial lemma the numbers a(w, λ), which occur are
exactly those numbers ν for which ν and ν + 1 are critical ( see [1])for the hy-
pothetical motive M(σ1,f , τ1)×M(σ2,f , τ

∨
2 ). This set of critical values can also be

read off from the factor L∞(w, λ, s).
Hence we can say: If we accept the existence of the the motive M(σ1,f , τ1) ×

M(σ2,f , τ
∨
2 ) then we have proved a rationality statement for the special values

of its L-function, which is very close to Delignes conjecture in [1]. If we do not
believe in this motive, then we still have a theorem on the special values of certain
automorphic L-functions.
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Sato-Tate conjecture for families of automorphic representations

Sug Woo Shin

(joint work with Nicolas Templier)

Mathematics is concerned with not only exact formulas but also asymptotic
formulas. The question is rich when it comes to the asymptotic behaviors and
formulas of arithmetic origin. Many sophisticated questions can be asked via the
means of “equidistribution”.

A general setup is the following. Let X be a nice topological space (which hosts
arithmetic invariants of interest). Denote by C(X) the space of complex-valued
continuous functions equipped with sup norm. Let µ be a measure on X defining a
linear functional on C(X). Let {Fk}k≥1 be a sequence of finite subsets of X such
that |Fk| → ∞ as k → ∞. The sequence {Fk}k≥1 is said to be µ-equidistributed
if µ is the limit of the averaged counting measure 1

|Fk|

∑
x∈Fk

δx as k →∞.

In number theory we wish to detect the equidistribution property when Fk
are formed from arithmetic invariants, for instance rational points (or cycles) on
algebraic varieties, Fourier coefficients of modular forms, or Frobenius eigenvalues
on the Tate modules of abelian varieties, just to name a few. A general philosophy
is that when arithmetic invariants do not obey exact formulas, they tend to be
random. For a simplest example, the fact that primes are equidistributed between
1 mod 4 and 3 mod 4 means that choosing a prime mod 4 is the same as flipping
a coin. To put it another way, equidistribution in number theory shows that
arithmetic invariants are predictably unpredictable.

In my talk I considered (the analogue of) the Sato-Tate conjecture for families
of automorphic representations. Roughly speaking, the aim is to show that the
Satake parameters at p of the given family of automorphic representations are
equidistributed as p tends to infinity according to a natural measure (the so-called
Sato-Tate measure), perhaps under a suitable condition. Although the Sato-Tate
conjecture can be formulated for a single automorphic representation, it is not easy
to cleanly state it in general and turns out to be extremely difficult already for
GL(2). (It should be a consequence of the Langlands functoriality conjecture, but
the latter is far from fully established.) Our observation is that the analogue for
families can still be attacked with the trace formula and various other techniques.
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Now let us be more precise. Let G be a connected semisimple group over Q
with trivial center. (This amounts to working with automorphic representations
of a reductive group with fixed central character.) Although it is unnecessary, G
is assumed to be split to simplify the exposition. Let Adisc(G) denote the set of
isomorphism classes of discrete automorphic representations of G(A). Let T be a
maximal torus of G. Let U ⊂ G(A∞) be an open compact subgroup and ξ ∈ X∗(T )
be a highest weight parameter for an irreducible algebraic representation of G
over C. A sequence of such objects is denoted by Uk and ξk, respectively. A
π ∈ Adisc(G) is said to have level U if π∞ has a nonzero U -fixed vector, and
weight ξ if π ⊗ ξ∨ has nontrivial Lie algebra cohomology in some degree. Two
types of families {Fk} are going to be considered where Fk in each case consists
of all π ∈ Adisc(G) with

(1) level Uk and weight ξ, as Uk → {1} (level goes to infinity), or
(2) level U and weight ξk, as ξk →∞.

The precise definition for Uk → {1} and ξk →∞ is technical and not to be written
out in this report. By Harish-Chandra’s finiteness theorem, each Fk is a finite set.
For a reason coming from the trace formula, Fk is allowed to be a multi-set; the
same π may appear with multiplicity a(π) ∈ Z>0.

We introduce the habitat for Satake parameters. Let T̂ be the (complex) dual

torus of T , and T̂c the maximal compact subtorus of T̂ . Denote by Ω the Weyl
group. Let p be a prime and assume that πp is unramified. The Satake isomor-

phism canonically associates to πp a point sπp
∈ T̂ /Ω. Moreover πp is tempered if

and only if sπp
∈ T̂c/Ω. The locus (T̂ /Ω)unit for unitary πp contains T̂c/Ω. There

are two natural measures to consider in this context. The Plancherel measure µ̂pl
p

is defined on (T̂ /Ω)unit and supported on T̂c/Ω. The Sato-Tate measure µ̂ST
p on

T̂c/Ω is defined as follows: Let Ĝc be a maximal compact subgroup of Ĝ. Any

g ∈ Ĝc can be pulled into T̂c by conjugation, and this defines a map Ĝc → T̂c/Ω.

The pushforward of the Haar measure on Ĝc under this map is µ̂ST
p .

Let H(G(Qp)) denote the unramified Hecke algebra for G(Qp). Note that

φp ∈ H(G(Qp)) naturally defines a function φ̂p on T̂ /Ω by sπp
7→ trπp(φp). One

can define a truncated Hecke algebraH(G(Qp))≤κ for each κ ∈ Z≥1 which is a non-
canonical increasing exhaustive filtration of H(G(Qp)) by complex vector spaces.
To keep this article to a reasonable length we skip the definition of truncation.

To formulate equidistribution we need to define an averaged counting measure

on T̂ /Ω (or its subspace). For each Fk as above, let aF (π) denote the multiplicity
of π in the multi-set Fk. (Set aFk

(π) = 0 if aFk
(π) /∈ Fk.) Define a measure on

(T̂ /Ω)unit (which is often restricted to T̂c/Ω)

µ̂Fk,p :=
1

|Fk|

∑

π∈Fk

aFk
(π)δπp

.

We are ready to state the main result.
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Theorem. Let {Fk} be a family of automorphic representations of G(A) as above.
Then there exists a polynomial P (κ) ∈ R[x] (with nonnegative coefficients) and a
constant C > 0 such that for any prime p, any κ ≥ 1 and any φp ∈ H(G(Qp)),

• µ̂Fk,p(φ̂p)− µ̂
pl(φ̂p) = O(N(Uk)

−C1pP (κ)) for a family of type 1.

• µ̂Fk,p(φ̂p)− µ̂
pl(φ̂p) = O(m(ξk)

−C1pP (κ)) for a family of type 2.

Here N(Uk),m(ξk) ∈ Z≥1 are integers measuring the “sizes” of Uk and ξk. (If
G = PGL(2), these may be thought of as the usual level and weight for modular
forms.)

Two interesting consequences immediately follow. First if p is fixed and k →
∞ then the right hand side tends to zero. This means that the “Satake pa-

rameters” sπp
are equidistributed on T̂c/Ω according to the Plancherel measure.

Second, let {pk} be a sequence of primes such that pk → ∞. Suppose that
limk→∞ pmk /N(Uk) = 0 (resp. limk→∞ pmk /m(ξk) = 0) for all m ≥ 1. Then

for any “polynomial function” φ̂ on T̂c/Ω we obtain

(1) lim
k→∞

µ̂Fk,pk(φ̂) = µ̂ST(φ̂).

This follows from the above theorem and the relatively easy fact that µ̂ST is the
limit of µ̂pl as primes tend to ∞. Formula (1) is exactly the Sato-Tate equidistri-
bution for families as alluded to in the title.

A few words should be said about the proof of the main theorem. The first
step, considered standard, is to interpret µ̂Fk,p as the spectral side of Arthur’s
trace formula with Euler-Poincaré functions at infinity. (This can be done for
various choices of the multiplicity aFk

(π).) Thus one has a geometric expansion
for µ̂Fk,p in terms of orbital integrals on G and its Levi subgroups. The orbital

integral at 1 on G turns out to yield µ̂pl(φ̂) by the Plancherel formula. Therefore
the main problem is to bound the remaining terms in the geometric expansion
as in the right hand side of the theorem. This requires various techniques to
estimate the number of rational conjugacy classes, volumes of locally symmetric
spaces (coming from centralizers of semisimple elements), orbital integrals and
stable discrete series characters at infinity.

Periods and central values of quadratic base change L-functions for
GL(2n)

Brooke Feigon

(joint work with Kimball Martin, David Whitehouse)

Let E/F be a quadratic extension of number fields, π a cuspidal automorphic
representation of PGL(2,AF ) and πE the base change of π. Let X(E, π) denote
the set of isomorphism classes of quaternion algebras D/F such that there exists
an embedding of E into D and an automorphic representation πD on D× such that
the Jacquet-Langlands transfer of πD is π. Then Waldspurger proved in [5] that
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L(1/2, πE) = 0 if and only if
∫
E×A

×
F
\A×

E

φ(t)dt = 0 for all φ ∈ πD, D ∈ X(E, π).

This result was reproved by Jacquet using the relative trace formula [3].
In this talk we explain some progress on extending Jacquet’s approach to Wald-

spurger’s result to higher rank. That is, let π be a cuspidal automorphic repre-
sentation of PGL(2n,AF ) that transfers to an automorphic representation πD of
PGL(n,D(AF )), where we choose D such that there exists an embedding E into
D. We show that, under certain conditions, if there exists φ ∈ πD such that

(0.1)

∫

PGL(n,E)\PGL(n,AE)

φ(h)dh 6= 0

then L(1/2, πE) 6= 0 and L(s, π,Λ2) has a pole at s = 1.
The method we use is a comparison of two “simple” relative trace formulas:

one on (GL(n, F ) × GL(n, F ))\GL(2n, F )/(GL(n, F ) × GL(n, F )) and one on
GL(n,E)\GL(n,D)/GL(n,E). We avoid convergence issues on the geometric
and spectral sides by choosing our test function to be a matrix coefficient of a
supercuspidal representation at one place and to have support on the elliptic set
at another place. We are then able to compare the two relative trace formulas
on the geometric side by using work of Guo’s [2] and reducing matching functions
to the known case of quadratic base change. The full fundamental lemma at the
split places and a recent result of Ramakrishan’s [4], allow us to reduce the spec-
tral sides to a single representation. By work of Friedberg-Jacquet [1] the periods
occurring in the spectral expansion of the relative trace formula for GL(2n, F )
are related to L(1/2, πE). The result now follows as (0.1) occurs in the spectral
expansion of the relative trace formula for GL(n,D).
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On the Existence of Cuspidal Automorphic Forms

Goran Muić

Existence and construction of cusp forms is a fundamental problem in the mod-
ern theory of automorphic forms ([1], [11], [3]). In this talk we address the issue
of existence of cusp forms using an extension and refinement of a classical method
of (adelic) compactly supported Poincaré series. Our approach is based on the
spectral decomposition of compactly supported Poincaré series. This method was
successfully applied in the case of a cocompact discrete subgroup of a semisimple
Lie group [6] to give some quantitative information on the decomposition of the
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corresponding L2–space. It is extended in the non–cocompact settings and adélic
settings in [7]. Some examples related to the existence of cusps forms for SL2(R)
can be found in [8]. The relation to the action of unramified Hecke algebra in [9].
The joint work with Allen Moy [10] contains some further refining of results of [7]
using Moy–Prasad filtration [5], [4].

We introduce some notation. LetG be a semisimple algebraic group defined over
a number field k. We write Vf (resp., V∞) for the set of finite (resp., Archimedean)
places. For v ∈ V∞ ∪ Vf , we write kv for the completion of k at v; if v ∈ Vf ,
then we let Ov be the ring of integers of kv. The group G is unramified over kv

for almost all v ∈ Vf . In this case G is defined over Ov and Kv
def
= G(Ov) is

a hyperspecial maximal compact subgroup of G(kv). Let G∞ =
∏
v∈V∞

G(kv).
This is a semisimple Lie group with finite center; let K∞ and g∞ be a maximal
compact subgroup and the (real) Lie algebra of G∞, respectively. Let G(Af ) be
the restricted product of all G(kv), v ∈ Vf , w.r. to the groups Kv defined above.
The group G(k) is diagonally embedded into G(A) which is the restricted product
of all G(kv), v ∈ V∞ ∪ Vf , w.r. to the groups Kv defined above. We assume that

G∞ is not compact.

Let L ⊂ G(Af ) be an open–compact subgroup. Then the intersection Γ = ΓL =
G(k) ∩ L ⊂ G(Af ), which is taken in G(Af ) where we consider G(k) diagonally
embedded in G(Af ). The group Γ can be identified with a discrete subgroup of
G∞. It is called a congruence subgroup.

Motivated by [3], where they considered the existence of cuspidal automorphic
forms in L2

cusp(Γ\G∞)K∞ for level zero congruence subgroup Γ, we consider the

following problem. Let K̂∞ be the set of equivalence classes of irreducible repre-
sentations of K∞. Let δ ∈ K̂∞. Then, we want to prove that there exists infinitely
many automorphic cuspidal representations in L2

cusp(Γ\G∞) which contain δ.
We recall that by a well–known theorem of Gelfand, Piatetski Shapiro, Graev

and Langlands (if not trivial) L2
cusp(Γ\G∞) decomposes into a Hilbert direct sum

of irreducible subspaces of G∞:

(0.1) L2
cusp(Γ \G∞) = ⊕̂jH

j ,

where each irreducible unitary representation of G∞ appears with a finite multi-
plicity.

The first observation ([6], Theorem 2.1) shows that not all K∞–types δ are
necessary to detect the representations Hj .

Theorem 0.2. Let ψ be a non–zero K∞–finite square–integrable automorphic
form (for example, ψ could belong to the space of K∞–finite vectors for some
Hj). Then, the (g∞,K∞)–module of generated by ψ contains a non–trivial isotypic

component for some δ ∈ K̂∞ such that there is a non–zero K∞∩Γ–invariant vector
in the space of δ.

This result is a sort of Frobenius reciprocity for the restriction of ”the induced
representation” L2(Γ \ G∞) to K∞. In Section 3 of [6] we explain the method
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of approach to the problem assuming that Γ is cocompact in G∞. The main
point is that given δ ∈ K̂∞ such that there is a non–zero K∞ ∩ Γ–invariant
vector in the space of δ, we can construct ψ(g) =

∑
γ∈Γ ϕ(γg), for appropriate

ϕ ∈ C∞
c (G∞), such that it is non–zero, transforms on the right as δ and its

support which is invariant on the right under Γ does not contain a connected
component of the Lie group G∞. Then, since we assume that Γ is cocompact
in G∞, L2(Γ \ G∞) = L2

cusp(Γ \ G∞) and we can decompose ψ according to
(0.1): ψ =

∑
j ψj . The requirements on ψ implies that all ψj transform on the

right as δ and for infinitely many j’s ψj 6= 0. This obviously implies that there
exists infinitely many automorphic cuspidal representations in L2

cusp(Γ\G∞) which

contain δ. When Γ is not cocompact in G∞, then L2(Γ \ G∞) 6= L2
cusp(Γ \ G∞),

and we need an additional requirement∫

Γ∩UP,∞\UP,∞

ψ(ug∞)du = 0, g∞ ∈ G∞,

for all proper k–parabolic subgroups P of G. (We write UP for the unipotent
radical.) Here UP,∞ =

∏
v∈V∞

UP (kv).
This additional requirement is very difficult to understand without working in

adelic settings. Now, we present approach from [7]. Let Acusp(G(k)\G(A)) be the
space of K∞–finite cuspidal automorphic forms for G(A). This is a (g∞,K∞) ×
G(Af )–module. In particular, it is a smooth G(kv)–module for v ∈ Vf . This fact
enables us to apply the local Bernstein’s theory and decompose according to the
Bernstein classes Mv the smooth module

Acusp(G(k) \G(A)) = ⊕Mv
Acusp(G(k) \G(A))(Mv).

If Mv is a Bernstein’s class of (Mv, ρv), where Mv is a Levi subgroup of G(kv)
and ρv is an (irreducible) supercuspidal representation of Mv, then, by definition,
Acusp(G(k) \ G(A))(Mv) is the largest G(kv)–submodule of Acusp(G(k) \ G(A))

such that its every irreducible subquotient is a subquotient of Ind
G(kv)
Pv

(χvρv), for
some unramified character χv of Mv. Here Pv is an arbitrary parabolic subgroup
of G(kv) containing Mv as a Levi subgroup. Obviously, this is also a (g∞,K∞)×
G(Af )–module decomposition. Further, we can iterate this for v ranging over a
finite set of places, and as a result, we arrive at the question of non–triviality of a
(g∞,K∞) × G(Af )–module Acusp(G(k) \ G(A))(Mv ; v ∈ T ), where T ⊂ Vf is a
finite and non–empty set of places. The following theorem gives a rather precise
information on the structure of Acusp(G(k) \G(A))(Mv ; v ∈ T ).

Theorem 0.3. Let T be a finite set of places of k such that G is unramified over
kv for v ∈ Vf − T . For v ∈ T , let Mv be a Bernstein’s class of G(kv) determined
by (Mv, ρv). We define P to be the set of all k–parabolic subgroups P such that
a Levi factor of P (kv) contains a G(kv)–conjugate of Mv for all v ∈ T . Then we
have the following:

(i) Acusp(G(k) \G(A))(Mv ; v ∈ T ) 6= 0.
(ii) Assume that P = {G}. Then for a sufficiently small open–compact sub-

group L ⊂ G(Af ) of the form L =
∏
v∈T Lv×

∏
v∈Vf−T

G(Ov), there exist
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infinitely many K∞–types δ which depend on L such that a (g∞,K∞) ×
G(Af )–module Acusp(G(k) \ G(A))(Mv ; v ∈ T ) contains infinitely many
irreducible representations of the form πj∞ ⊗v∈Vf

πjv, where π
j
v is unram-

ified for v ∈ Vf − T , πjv belongs to the class Mv and it contains a non–
trivial vector invariant under Lv for v ∈ T , and the irreducible unitarizable
(g∞,K∞)–module πj∞ contains δ. The set of equivalence classes of repre-
sentations in {πj∞} which contribute to L2

cusp(ΓL \G∞) is infinite.

We remark that an optimal choice (see [10]) of Lv may be in future obtained
along the lines and definitions of [2] and [5].
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[10] G. Muić and A. Moy, On the Cusp Forms for the Congruence Subgroups of a Semisimple

Lie group, in preparation.
[11] J.-L. Li and J. Schwermer, On the cuspidal cohomology of arithmetic groups, Amer. J. Math.

131 (2009), no. 5, 1431–1464.

Parametrizing tempered near equivalence classes of cuspidal

representations of S̃p2n(A) with CAP representations of Sp4n(A)

David Soudry

(joint work with David Ginzburg, Dihua Jiang)

1. Functorial lift and descent S̃p2n ↔ GL2n

Let F be a number field, and denote by A its ring of Adeles. We fix a nontrivial
character ψ of F\A. Let π̃ be an irreducible, automorphic, genuine, cuspidal rep-

resentation of the Adelic metaplectic group S̃p2n(A), acting in a given subspace of
cusp forms, which we keep denoting by π̃. Assume that π̃ is ψ–generic, that is the
Fourier coefficient, with respect to the standard Whittaker character determined
by ψ is not trivial on (the space of) π̃. By use of the ψ– theta correspondence to
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SO2n+1(A), and [1], we can lift π̃, almost everywhere, with respect to ψ, to an irre-
ducible automorphic, cuspidal representation τ of GL2n(A). We will assume that
τ is cuspidal. Then, using Rankin-Selberg integrals which represent the standard
(partial) L-function LSψ(π̃ × τ, s), we know that L(τ,∧2, s) has a pole at s = 1,

and that L(τ, 12 ) 6= 0. The point is that

LSψ(π̃ × τ, s) = LS(τ × τ, s) = LS(τ × τ̂ , s)

has a pole at s = 1, and since the Rankin-Selberg integrals above depend on an
Eisenstein series Eτ,s on Sp4n(A), corresponding to the parabolic induction

Ind
Sp4n(A)

P 4n
2n (A)

τ |det · |s−
1
2 ,

we see that Eτ,s has a pole at s = 1, and this implies the two conditions above
on the pole of the exterior square L-function of τ and on the central value on the
standard L-function of τ . See [3], [11]. In general, we denote by P 2m

k the standard
parabolic subgroup of Sp2m, whose Levi part is isomorphic to GLk×Sp2(m−k); we

will denote its unipotent radical by N2m
k .

Conversely, starting with such a representation τ , consider the Eisenstein series
Eτ,s on Sp4n(A), as above. It has a pole at s = 1 (for suitable sections). Denote
by Eτ the corresponding residual representation of Sp4n(A). Now we apply to Eτ
Fourier-Jacobi coefficients attached to the symplectic partition [(2n), 12n]:

(1) D̃4n
2n,ψ(Eτ ) = π̃ψ(τ) = π̃.

This is the descent of Eτ (we also say ”the descent of τ”) to S̃p2n(A).

Theorem 15. π̃ψ(τ) is an irreducible, automorphic, cuspidal and ψ-generic rep-

resentation of S̃p2n(A); it lifts almost everywhere, with respect to ψ, to the repre-
sentation τ .

This theorem, except the assertion about irreducibility, was proved in [4]–[7].
The irreducibility of π̃ψ(τ) follows from [9], [10].
In general, Fourier–Jacobi coefficients, as above, are defined, as follows. Consider,
in Sp2k, the following subgroup, which is the unipotent radical of the standard
parabolic subgroup, whose Levi part is isomorphic to GLr1 × Sp2(k−r).

U2k
r =



u(z, v, y) =



z v y

I2(k−r) v′

z∗


 ∈ Sp2k : z ∈ Zr



 ,

where Zr is the group of upper unipotent r × r matrices. Consider the following
character of U2k

r (A),

ψU2k
r
(u(z, v, y)) = ψ(z1,2 + z2,3 + · · ·+ zr−1,r).

It is trivial on U2k
r (F ). The map

ℓk−r : u(z, v, y) 7→ (vr ; yr,1)

projects U2k
r onto the Heisenberg group in 2(k − r) + 1 variables, H2(k−r)+1.

Let π be an automorphic representation of Sp2k(A). Consider, for φ ∈ S(Ak−r),
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the theta series θφψ−1,k−r onH2(k−r)+1(A)S̃p2(k−r)(A). Embed Sp2(k−r) inside Sp2k

as diag(Ir , Sp2(k−r), Ir). Now, define, for ϕπ ∈ π and g̃ ∈ S̃p2(k−r)(A), projecting
to g ∈ Sp2(k−r)(A),

FJφψ,k−r(ϕπ)(g̃) =

∫

U2k
r (F )\U2k

r (A)

ϕπ(ug)θ
φ
ψ−1,k−r(ℓk−r(u)g̃)ψ

−1
U2k

r
(u)du.

This is a Fourier-Jacobi coefficient of ϕπ corresponding to the symplectic partition

[(2r), 12(k−r)] of 2k. It is a smooth automorphic function on S̃p2(k−r)(A) and has
a uniform moderate growth. We denote

D̃2k
2(k−r),ψ(π) = Span{FJφψ,k−r(ϕπ) : ϕπ ∈ π, φ ∈ S(A

k−r)}.

The metaplectic group S̃p2(k−r)(A) acts on D̃
2k
2(k−r),ψ(π) by right translations.

Similarly, if π̃ is an automorphic representation of S̃p2k(A), we define, for ϕπ̃ ∈ π̃,

the Fourier-Jacobi coefficient FJφψ,k−r(ϕπ̃)(g), on Sp2(k−r)(A), and, similarly, we

define the Sp2(k−r)(A)–module D2k
2(k−r),ψ(π̃). In (1), we took Sp2k = Sp4n, π = Eτ ,

r = n.

2. CAP representations of Sp4n(A)

Let us relax the conditions on τ . Instead of the condition L(τ, 12 ) 6= 0, let us

require that there is a ∈ F ∗, such that L(τ ⊗χa,
1
2 ) 6= 0, where χa is the quadratic

character of F ∗\A∗, determined by a (the Hilbert symbol (·, a)). Assume that
L(τ, 12 ) = 0, so that a /∈ (F ∗)2. By Theorem 15,

D̃4n
2n,ψa(Eτ⊗χa

) = π̃

is an irreducible, automorphic, cuspidal, ψa–generic representation of S̃p2n(A),
which lifts, almost everywhere, with respect to ψa to τ ⊗ χa, and, hence, it lifts,
almost everywhere, with respect to ψ, to τ . The representation π̃ is not ψ–generic,
since if it where, then, as before, we would get that L(τ, 12 ) 6= 0, contrary to our
present assumption. As a result of our main theorems (to follow), we will obtain

Theorem 16. There is a unique CAP representation π of Sp4n(A), which is
isomorphic, at almost all finite places v, to the unramified constituent of

Ind
Sp4n(Fv

P 4n
2n (Fv)

τv|det · |
1
2 ,

such that

D̃4n
2n,ψ(π) = π̃.

The existence of CAP representations with respect to Ind
Sp4n(A

P 4n
2n (A)

τ |det · |
1
2 was

proved in [8]. We followed the same ideas and discovered a lot more.
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3. Near equivalence classes determined by τ

Let τ be an irreducible, automorphic, cuspidal representation of GL2n(A), such
that L(τ,∧2, s) has a pole at s = 1, and there is a quadratic character χ of F ∗\A∗,
such that L(τ ⊗χ, 12 ) 6= 0 (we allow χ = 1). We define the following sets of nearly
equivalent automorphic representations.
Let N

S̃p2n
(τ, ψ) denote the set of irreducible, automorphic, cuspidal (genuine)

representations π̃ of S̃p2n(A), which lift almost everywhere, with respect to ψ, to
τ .
Let NSp4n

(τ, ψ) denote the set of irreducible, automorphic representations π of
Sp4n(A), in the discrete automorphic spectrum, such that πv is isomorphic, at

almost all finite places v, to the unramified constituent of Ind
Sp4n(Fv

P 4n
2n (Fv)

τv|det · |
1
2 ,

and such that D̃4n
2n,ψ(π) 6= 0. In both sets the representations are counted with

multiplicities.
From Theorem 15 and from Section 2, we know that N

S̃p2n
(τ, ψ) is not empty, and

even contains generic elements. Our goal is to set a bijection between the two sets
above. More precisely, we want to show that the descent map

Ψ(π) = D̃4n
2n,ψ(π)

is bijective from NSp4n
(τ, ψ) to N

S̃p2n
(τ, ψ). We can prove this, modulo a result

on irreducibility of residual Eisenstein series, which should follow from Arthur’s
work and from the work of Moeglin. What we can prove, without any assumption
is the following. Let N 0

Sp4n
(τ, ψ) be the subset of cuspidal elements in NSp4n

(τ, ψ).

Define

N ′
Sp4n

(τ, ψ) =

{
N 0

Sp4n
(τ, ψ) , L(τ, 12 ) = 0

N 0
Sp4n

(τ, ψ) ∪ {Eτ} , L(τ, 12 ) 6= 0

From Arthur’s work, we should get that N ′
Sp4n

(τ, ψ) = NSp4n
(τ, ψ). We can prove

Theorem 17. For each π ∈ N ′
Sp4n

(τ, ψ), Ψ(π) is an irreducible representation

which lies in N
S̃p2n

(τ, ψ). Moreover, the restriction of Ψ to N ′
Sp4n

(τ, ψ) is surjec-

tive on N
S̃p2n

(τ, ψ).

In [8], the goal was simply to construct elements in N 0
Sp4n

(τ, ψ). What brought

us back to this was the following observation.

Let π be a CAP representation, with respect to Ind
Sp4n(A

P 4n
2n (A)

τ |det · |
1
2 . The proof

that the constant terms, along unipotent radicals of parabolic subgroups, of Ψ(π),
are all zero, is the same as we already had for the case π = Eτ , because the proof
here was to take an unramified finite place v, and show that the local version,

given through Jacquet modules, D̃4n
2n,ψv

(πv), has trivial Jacquet modules, along

unipotent radicals of parabolic subgroups of S̃p2n(Fv). For such v, πv is the

unramified constituent of Ind
Sp4n(Fv

P 4n
2n (Fv)

τv|det · |
1
2 , and all we needed to know was that

τv ∼= τ̂v and that the central character of τv is trivial. Similarly, the proof that an
irreducible subrepresentation of Ψ(π) lifts almost everywhere, with respect to ψ,
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to τ , was obtained by computation of Jacquet modules at each unramified place.
Thus, the fact that each irreducible subrepresentation of Ψ(π) lies in N

S̃p2n
(τ, ψ)

is straightforward.

4. Constructing elements in N ′
Sp4n

(τ, ψ) and the map Ψ

Starting with π̃ ∈ N
S̃p2n

(τ, ψ), we will construct elements π ∈ N ′
Sp4n

(τ, ψ), such

that Ψ(π) = π̃. We consider the Eisenstein series of S̃p6n(A) attached to

Ind
S̃p6n(A)

P̃ 6n
2n (A)

γψτ |det · |
s ⊗ π̃.

It has a pole at s = 1 ( since LSψ(π̃× τ, s) has a pole at s = 1). Denote the residual

representation by Eτ,π̃,ψ. Now, we apply descent to Sp4n(A):

Φ(π̃) = D6n
4n,ψ−1(Eτ,π̃,ψ).

We prove

Theorem 18. 1. Φ(π̃) 6= 0.
2. Φ(π̃) is square-integrable. Moreover, it is cuspidal if and only if π̃ is not ψ-
generic. If π̃ is ψ-generic, then (Eτ exists and)

Φ(π̃) = Eτ ⊕ cuspidal representation.

3. Each irreducible, cuspidal subrepresentation π of Φ(π̃) is CAP with respect to

Ind
Sp4n(A

P 4n
2n (A)

τ |det · |
1
2 .

4. Each irreducible, subrepresentation π of Φ(π̃) satisfies

D̃4n
2n,ψ(π) 6= 0.

To prove (1), we prove much more, namely

Theorem 19. We have

D̃4n
2n,ψ(D

6n
4n,ψ−1(Eτ,π̃,ψ)) = π̃,

that is

Ψ(Φ(π̃)) = π̃

(equality of spaces).

This theorem results from a precise identity that we obtain for the double
descent above. The proof of (2) in Theorem 18 relies on proving that

D6n
4(n−ℓ),ψ−1(Eτ,π̃,ψ) = 0,

for 1 ≤ ℓ ≤ n. This is done by computing analogous Jacquet modules at one
unramified place. Similarly with (3). For (4), let π be an irreducible, cuspidal
subrepresentation of Φ(π̃). Then the L2-product, along Sp4n(F )\Sp4n(A),

< π,D6n
4n,ψ−1(Eτ,π̃,ψ) >L2(Sp4n)
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is not identically zero. When we replace the residue by the Eisenstein series
at s, the last pairing can be unfolded, for Re(s) large, to an Eulerian integral
representing LS(π × τ, s+ 1

2 ). It contains, as an inner integral, the pairing

< D̃4n
2n,ψ(π), π̃ >L2(Sp2n)

.

See [2]. In particular, Ψ(π) = D̃4n
2n,ψ(π) 6= 0, and hence π ∈ N ′

Sp4n
(τ, ψ). Finally,

if π = Eτ , then we already know that Ψ(Eτ ) 6= 0.

5. The composition Φ(Ψ(π)).

Let π ∈ N ′
Sp4n

(τ, ψ). Consider the residual Eisenstein series Eτ,π on Sp8n(A),

relative to Ind
Sp8n(A)

P 8n
2n (A)

τ |det · |s ⊗ π, at s = 3
2 . We prove a similar identity, as the

one for Theorem 19.

Theorem 20.

D6n
4n,ψ−1(D̃8n

6n,ψ(Eτ,π)) = π.

We also prove

Theorem 21. D̃8n
6n,ψ(Eτ,π) is a square-integrable representation of S̃p6n(A). More-

over, it has a unique nontrivial constant term, namely the one along the unipotent
radical N6n

2n . Denote it by CN6n
2n
. Then

CN6n
2n
(D̃8n

6n,ψ(Eτ,π)) = γψδ
1
2

P 6n
2n
|det · |−1τ ⊗Ψ(π).

Let π̃ be an irreducible subrepresentation of Ψ(π). By Theorem 21, D̃8n
6n,ψ(Eτ,π)

contains an irreducible subrepresentation σ of Eτ,π̃,ψ. As in Theorem 18(4), we
prove that D6n

4n,ψ−1(σ) 6= 0. By Theorem 20,

D6n
4n,ψ−1(σ) ⊂ D6n

4n,ψ−1(D̃8n
6n,ψ(Eτ,π)) = π.

Since π is irreducible,, we get

π = D6n
4n,ψ−1(σ).

Hence

π ⊂ D6n
4n,ψ−1(Eτ,π̃,ψ) = Φ(π̃).

Apply Ψ. Then by Theorem 19,

Ψ(π) ⊂ Ψ(Φ(π̃)) = π̃,

and hence Ψ(π) = π̃ is irreducible. This proves that Ψ(π) is irreducible, and that
Ψ (when restricted to N ′

Sp4n
(τ, ψ)) is surjective. Moreover, we also proved

Theorem 22.

π ⊂ Φ(Ψ(π)).
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If we know the irreducibility of Eτ,π̃,ψ (and this should follow from the works of
Arthur and the works of Moeglin), then we get

π = D6n
4n,ψ−1(Eτ,π̃,ψ) = Φ(π̃) = Φ(Ψ(π)),

and hence Ψ is bijective, with

Ψ−1 = Φ.

When π̃ is generic we can prove that Eτ,π̃,ψ is irreducible, and then we conclude
that Φ(π̃) is irreducible. Finally, we have the following application.

Theorem 23. Assume that L(τ⊗χa,
1
2 ) 6= 0. Then N

S̃p2n
(τ, ψ) contains a unique

ψa-generic representation. This is π̃ψa(τ ⊗ χa) = D̃4n
2n,ψ(Eτ⊗χa

). In particular,

π̃ψa(τ ⊗ χa) occurs with multiplicity one within the ψa-generic representations.

It is easy to reduce to the case χa = 1 (a ∈ (F ∗)2). If π̃ ∈ N
S̃p2n

(τ, ψ) is

ψ-generic, then, by what we explained before, Φ(π̃) is irreducible. By Theorem
18(2), we conclude that Φ(π̃) = Eτ , and so,

π̃ = Ψ(Φ(π̃)) = Ψ(Eτ ) = π̃ψ(τ).
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Stabilization of the trace formula for the covering groups of SL2 and
some applications

Tamotsu Ikeda

(joint work with K.Hiraga)

In this talk, we gave a partial stabilization of the trace formula for the covering
groups over SL2 of even degree. Local theory for the transfer was developed by
Adams, Schultz, and Trehan for covering groups of SLr. As for the global theory,
Wen-Wei Li gave a stabilization of the trace formula for the metaplectic double
covering groups of Spr. In this talk, we discuss a stabilization of elliptic terms of
the trace formula for the covering groups of SL2 with even degree.

Let F be a local field. We assume n is even and ♯µn(F ) = n, where µ is the

group of n-th roots of unity. The n-fold covering S̃L2(F ) of SL2(F ) defined by the

Kubota 2-cocycle c(g1, g2). An element of S̃L2(F ) is denoted by [g, ζ], g ∈ SL2(F ),
ζ ∈ µn. [g, 1] is simply denoted by [g] or g.

We define two maps τ+ : GL2(F ) → SL2(F ) and τ− : GL2(F ) → SL2(F )
by τ+(g) = (detg)−n/2gn and τ−(g) = −(detg)−n/2gn. Then τ+ and τ− factors
through τ+ : PGL2(F )→ SL2(F ) and τ

− : PGL2(F )→ SL2(F ).
We fix an additive character ψ : F → C× once and for all. Let αψ(x) be the Weil

constant of x ∈ F× with respect to an additive character ψ. For [h, ζ] ∈ S̃L2(F )
and g ∈ PGL2(F ), we define the transfer factors δ+ψ ([h, ζ], g) and δ−ψ ([h, ζ], g) as

follows (cf. [1], [8]).
If h ∈ SL2(F ) is stably conjugate to τ+(g), then we set

δ+ψ ([h, ζ], g) =




ζ

αψ(1)

αψ(detg)
c((detg)n/2, h) if n ≡ 2 mod 4,

ζc((detg)n/2, h) if n ≡ 0 mod 4.

If h ∈ SL2(F ) is not stably conjugate to τ+(g), then we set δ+ψ ([h, ζ], g) = 0. We

also set δ−ψ ([h, ζ], g) := αψ(1)
2c(−1, h)δ+ψ ([−h, ζ], g). Then these transfer factors

δ+ψ ([h, ζ], g) and δ
−
ψ ([h, ζ], g) have the following properties.

Lemma. Let g, g′ ∈ PGL2(F ) and h̃, h̃
′ ∈ S̃L2(F ).

(1) If g and g′ are conjugate in PGL2(F ), then δ
±
ψ (h̃, g) = δ±ψ (h̃, g

′).

(2) If h̃ and h̃′ are conjugate in S̃L2(F ), then δ
±
ψ (h̃, g) = δ±ψ (h̃

′, g).

Here, the sign changes simultaneously.
Lemma. Let g, g′ ∈ PGL2(F ), h, h

′ ∈ SL2(F ), and ε, ε
′ ∈ {+,−}. Assume that

the following conditions (1), (2), (3), and (4) hold:

(1) τε(g) = h, and τε
′

(g′) = h′.
(2) h and h′ are elliptic.
(3) h and h′ are stably conjugate.
(4) g and g′ are not conjugate.
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Then we have

δε
′

ψ ([h], g
′)

δεψ([h], g)
= −

δε
′

ψ ([h
′], g′)

δεψ([h
′], g)

.

Let I([h], ϕ̃) and I(g, ϕ) be normalized orbital integrals for h ∈ SL2(F ), g ∈

PGL2(F ), ϕ̃ ∈ C̃0(S̃L2(F )) and ϕ ∈ C0(PGL2(F )). Here, C̃0(S̃L2(F )) (resp.
C0(PGL2(F))) is the space of anti-genuine locally constant compactly supported

functions on S̃L2(F ) (resp. the space of locally constant compactly supported
functions on PGL2(F )).

For ε ∈ {+,−}, ϕε ∈ C0(PGL2(F )) is a transfer of ϕ̃ ∈ C̃0(S̃L2(F )) with respect
to δεψ, if

∑

h

δεψ([h], g)I([h], ϕ̃) = I(g, ϕε)

for any semi-simple element g ∈ PGL2(F ) such that τε(g) is regular. Here, h
extends over a set of representatives for conjugacy classes of SL2(F ). For any anti-

genuine function ϕ̃ ∈ C̃∞
0 (S̃L2(F )), there exists a transfer ϕε ∈ C∞

0 (PGL2(F )) of
ϕ̃ with respect to δεψ.

Assume F is non-archimedean, n ∈ o×, and ψ is of order 0. In this case, there is

a canonical splitting for the covering S̃L2(F )→ SL2(F ) over the maximal compact

subgroup SL2(o). By this splitting, we regard SL2(o) as a subgroup of S̃L2(F ).
Then, there exists a canonical isomorphism

H(PGL2(F )//PGL2(o)) ≃ H̃(S̃L2(F )//SL2(o)),

which preserves the transfers. Here, H(PGL2(F )//PGL2(o)) is the Hecke alge-

bra for (PGL2(F ),PGL2(o)), and H̃(S̃L2(F )//SL2(o)) is the anti-gemuine Hecke

algebra for (S̃L2(F ), SL2(o)).

Now let F be an algebraic number field such that ♯µ(F ) = n, Let S̃L2(A)
be the n-fold metaplectic covering of SL2(A). Let C0(PGL2(A)) be the space of
smooth functions on PGL2(A) with compact support. For g = (gv) ∈ PGL2(A)
and ϕ =

∏
v ϕv ∈ C0(PGL2(A)), set

I(g, ϕ) :=
∏

v

I(gv, ϕv).

Similarly, let C̃0(S̃L2(A)) be the space of anti-genuine smooth functions on

S̃L2(A) with compact support. For h = (hv) ∈ S̃L2(A) and ϕ̃ =
∏
v ϕ̃v ∈

C̃0(S̃L2(A)),

I(h, ϕ̃) :=
∏

v

I(hv, ϕ̃v).
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Theorem. We have

2
∑

h∈SL2(F )/∼
h: ell. reg.

I(h, ϕ̃) =
∑

g∈PGL2(F )/∼

τ±(g): ell. reg.

(
I(g, ϕ+) + I(g, ϕ−)

)
.

Here, / ∼ means the conjugacy.

As an application of the trace formula, we can construct an generalization of the
theory of Kohnen plus subspace for Hilbert modular forms of half-integral weight.
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Generating series and arithmetic theta lifting

Yifeng Liu

We formulate a general arithmetic inner product formula as the arithmetic
counterpart of the classical Rallis inner product formula [12], by constructing so-
called arithmetic theta lifting using Kudla’s special cycles and generating series
[7], [5], [6]. The arithmetic inner product formula has been studied in the book [8]

for certain cases for the reductive pair (S̃L(2),O(3)). We will focus on the case of
unitary groups as developed in the upcoming paper [11].

Let us first introduce some notations and briefly recall the Rallis inner product
formula in a special case. Let F be a number field, E/F a quadratic extension
with the nontrivial Galois involution τ . We let A (resp. Af ) andM (resp. Mf)
be the ring of (resp. finite) adèles and the set of all (resp. finite) places of F . Let
ηE/F : F×\A× → C× be the associated quadratic character and ψ : F\A→ C× a
nontrivial additive character. For r ≥ 1, denote Wr the skew-hermitian space over
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E (w.r.t. τ) of rank 2r defined by the matrix wr =

(
1r

1r

)
, where 1r is the

identity matrix of rank r. Let G = U(Wr) be the corresponding unitary group.
Given any (non-degenerate) hermitian space V over E of rank m ≥ 1 and H =
U(V ), we obtain a reductive pair (G,H) in the sense of Howe inside the symplectic
group Sp(W) for some symplectic space W over F of rank 4rm. By [3], for any
character η : E×\A×

E → C× extending ηmE/F , we can use η to lift G(A)×H(A) to

the (C×-) metaplectic cover of Sp(W)(A) and hence have the Weil representation
ωη,ψ of G(A) ×H(A) on the space of Schwartz functions S(V r(A)). For any φ ∈
S(V r(A)), we form the classical theta series θ(g, h;φ) =

∑
x∈V r(E) ωη,ψ(g, h)φ(x),

which is a smooth, slowly increasing function on G(F )\G(A)×H(F )\H(A). Now
let π ⊂ A0(G) be an irreducible cuspidal automorphic representation of G(A)
inside the space of cuspidal automorphic forms of G and π∨ the contragredient
representation realizing on the complex conjugation of π. For f ∈ π and φ ∈
S(V r(A)), define the theta lifting

θfφ(h) =

∫

G(F )\G(A)

f(g)θ(g, h;φ)dg

which is an automorphic form of H . Similarly, we define θf
∨

φ∨ for f∨ ∈ π∨ and

φ∨ ∈ S(V r(A))∨. One can ask if the theta lifting θfφ is nontrivial for some f and

φ. The answer will relate to the central value of the L-function L(12 , π) defined in
[2] when r = n,m = 2n and assuming η = 1 for simplicity. In fact, by [4] and [10],
we have the following Rallis inner product formula (assuming V is anisotropic for
simplicity):

〈θfφ, θ
f∨

φ∨ 〉H :=

∫

H(F )\H(A)

θfφ(h)θ
f∨

φ∨ (h)dh =
L(12 , π)

2
∏2n
i=1 L(i, η

i
E/F )

∏

v∈S

Z∗
v (0)

where S ⊂ M is a finite subset and Z∗
v (s) = Z∗

v (s; ; fv, f
∨
v , φv ⊗ φ∨v ) is certain

normalized zeta integral as considered in [3]. In fact, Z∗
v (0) can be viewed as a

nonzero invariant functional in HomGv×Gv
(I2n,v(0), π

∨
v ×πv), where I2n,v(0) is the

space of certain degenerate principal series of the doubling unitary group. By [9],
we have I2n,v(0) =

⊕
R(Vv) where the direct sum is taken over all isomorphic

classes of hermitian spaces Vv over Fv of rank 2n and R(Vv) is the space of Siegel-
Weil sections obtained from Vv. By the theta dichotomy [3], [13], [1], we know
that I(Vv, πv) := HomGv×Gv

(R(Vv), π
∨
v × πv) 6= 0 for exactly one Vv. Moreover,

it is conjectured that, for that Vv, Z
∗
v (0) is the unique element, up to constant, in

I(Vv, πv), which is true when n = 1 [11]. Define ǫ(πv) = ηE/F,v((−1)
ndisc(Vv)) ∈

{±1} for the unique Vv such that I(Vv, πv) 6= 0 and ǫ(π) =
∏
v∈M ǫ(πv). There

are two cases: (a) ǫ(π) = 1; (b) ǫ(π) = −1.
For (a), there is V/F , unique up to isomorphism, such that Z∗

v (0)|R(Vv) 6= 0
for all v ∈ M and then the obstruction for some theta lifting of π to H = U(V )
being nontrivial is the vanishing of L(12 , π). For (b), there is no chance to get any

nontrivial theta lifting and moreover we prove that L(12 , π) = 0. In this sense,
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the classical theory misses the second half. The arithmetic theory comes in when
we try to fill up the case (b). For this purpose, we need more assumptions. Let
we assume that: (1) F is totally real and E/F is totally imaginary; (2) πv is
the discrete series representation whose minimal K-type is detn × det−n for v
archimedean. It is easy to see that I(Vv , πv) 6= 0 for Vv of signature (2n, 0) when
v is archimedean.

We let V to be the (unique up to isomorphism) hermitian space over A of rank
2n such that I(Vv, πv) 6= 0, then V 6∼= V ⊗FA for any V/F . Instead of the reductive
groupH over F , we have Shimura varieties ShK for K ⊂ H(Af ) (sufficiently small)
open compact subgroups of H(Af) where H = U(V). They are smooth and quasi-
projective over E of dimension 2n− 1. Instead of the theta series, we construct a
generating series Zφ(g) using Kudla’s special cycles on ShK , for φ = φ0∞φf whose
archimedean components are the Gaussian. By construction, Zφ(g) is a function
on G(A) whose values are formal series in Chn := lim

−→K
Chn(ShK)⊗ C. We have

Theorem 24 (Modularity of generating series, [11]). For any linear functional ℓ
of Chn, denote ℓ(Zφ)(g) = ℓ(Zφ(g)),
(1) If ℓ(Zφ)(g) is absolutely convergent, then it is an automorphic form of G;
(2) If n = 1, ℓ(Zφ)(g) is always absolutely convergent.

We remark that: (1) The generating series can be defined for general (r,m) with
r ≤ m− 1 and the above theorem still holds. In particular, the second part is true
only assuming r = 1. (2) There is a similar result in the context of symplectic-
orthogonal pair which is proved in [14] and our proof is based on the one there.
In what follows, we assume that F 6= Q when n > 1 to avoid the problem of
compactification (see [11] for the general discussion). Parallel to the definition of
theta lifting, we define the following arithmetic theta lifting

Θfφ =

∫

G(F )\G(A)

f(g)Zφ(g)dg

which is in Chn. Moreover, we prove that it is cohomologically trivial. Hence

we can talk about the (conjectural) Beilinson-Bloch height pairing 〈Θfφ,Θ
f∨

φ∨〉BB,
which is just the Néron-Tate height pairing when n = 1. We have the following.

Conjecture 6 (Arithmetic inner product formula, [11]). Let π, V, f , f∨, φ and
φ∨ be as above, then

〈Θfφ,Θ
f∨

φ∨〉BB =
L′(12 , π)

2
∏2n
i=1 L(i, η

i
E/F )

∏

v∈S

Z∗
v (0).

Using some ideas in [15] to our situation, we are able to prove the following.

Theorem 25 ([11]). The above conjecture holds when n = 1.
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A new approach to the Local Langlands Correspondence for GLn over
p-adic fields

Peter Scholze

Fix a p-adic field F , i.e., a finite extension of Qp, with ring of integers O. Recall
that the Local Langlands Correspondence, which is now a theorem due to Harris-
Taylor, [3], and Henniart, [4], asserts that there should be a canonical bijection
between the set of isomorphism classes of irreducible supercuspidal representa-
tions of GLn(F ) and the set of isomorphism classes of irreducible n-dimensional
representations of the Weil group WF of F , denoted π 7−→ σ(π). One possible
local characterization of this bijection was given by Henniart, showing that there
is at most one family of bijections defined for all n ≥ 1 preserving L- and ǫ-factors
of pairs, and also compatible with some basic operations on both sides such as
twisting with characters.

We have a new local characterization of the Local Langlands Correspondence.
Assume that F = Qp for simplicity. Recall that it is known that the cohomology
of the Lubin-Tate tower realizes the Local Langlands Correspondence, cf. e.g. [3],
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Theorem C, but only for supercuspidal representations. The idea is that replacing
the Lubin-Tate space, i.e. the moduli space of one-dimensional formal groups of
height n, by the moduli space of one-dimensional p-divisible groups of height n,
one adds exactly the extra amount of information necessary to get the Langlands
Correspondence for all irreducible smooth representations.

With this in mind, we just repeat the construction of the Lubin-Tate tower,
except that we start with objects defined over a finite field: Take some integer
r ≥ 1 and a one-dimensional p-divisible group H of height n over Fpr . Looking at
its Dieudonné module, this is equivalent to giving an element

δ ∈ GLn(Zpr )diag(p, 1, . . . , 1)GLn(Zpr )

up to σ-conjugation by an element of GLn(Zpr ), where σ is the absolute Frobenius

of Zpr . Let Rδ be the deformation space of H , with universal deformation H , and
let Rδ,m/Rδ be the covering parametrizing Drinfeld-level-m-structures onH . Then
GLn(Z/pm) acts on Rδ,m. We choose ℓ 6= p and take the global sections of the
nearby-cycle sheaves in the sense of Berkovich:

Rψδ = lim
−→

H0(RψSpf Rδ,m
Q̄ℓ) ,

and their alternating sum [Rψβ ]. These objects carry an action ofWQpr
×GLn(Zp).

Now take an element τ ∈ WQp
projecting to the r-th power of geometric Frobe-

nius, and let h ∈ C∞
c (GLn(Zp)) have values in Q. Define a new function h∨ ∈

C∞
c (GLn(Zp)) by h∨(g) = h((g−1)t).
Theorem 1 Define a function φτ,h on GLn(Qpr ) by

φτ,h(δ) = tr(τ × h∨|[Rψδ]) ,

if δ is as above, and by 0 else. Then φτ,h ∈ C∞
c (GLn(Qpr )), with values in Q

independent of ℓ.
This allows us to define a function fτ,h ∈ C∞

c (GLn(Qp)) by requiring that it has
matching (twisted) orbital integrals. We use the normalization of Haar measures
that gives maximal compact subgroups volume 1. Note that this function fτ,h itself
is not well-defined, but e.g. its orbital integrals and its traces on representations
are.
For general p-adic fields F , we have an analogous definition of fτ,h ∈ C∞

c (GLn(F ))
depending on τ ∈ WF projecting to a positive power of geometric Frobenius and
h ∈ C∞

c (GLn(O)).
Theorem 2

(a) For any irreducible smooth representation π of GLn(F ) there is a unique
semisimple n-dimensional representation rec(π) of WF such that for all τ
and h as above,

tr(fτ,h|π) = tr(τ |rec(π))tr(h|π) .

Write σ(π) = rec(π)(1−n2 ).

(b) If π is a subquotient of the normalized parabolic induction of the irre-
ducible representation π1 ⊗ · · · ⊗ πt of GLn1(F ) × · · · × GLnt

(F ), then
σ(π) = σ(π1)⊕ . . .⊕ σ(πt).
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(c) The map π 7−→ σ(π) induces a bijection between the set of isomorphism
classes of supercuspidal irreducible smooth representations of GLn(F ) and
the set of isomorphism classes of irreducible n-dimensional representations
of WF .

(d) The bijection defined in (c) is compatible with twists, central characters,
duals, and L- and ǫ-factors of pairs, hence is the standard correspondence.

One main difference to the known proofs is that a previous result from [1] allows
us to give a direct proof of part (c), i.e. the bijectivity of the correspondence. We
do so without making use of the numerical Local Langlands Correspondence of
Henniart, [5]. This argument relies on a geometric result from [1] describing the
inertia-invariant nearby cycles in certain regular situations. This determines the
inertia invariants σ(π)IF for all irreducible smooth representations π, and implies
that there are no supercuspidal representations that stay supercuspidal after any
series of base-changes.

Moreover, we have a different proof of the local-global-compatibility result at
all places due to Harris-Taylor, [3], avoiding the use of Igusa varieties and in-
stead reducing all the necessary counting of points directly to the classical work
of Kottwitz, [6], in the unramified case.
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P -adic families of modular forms

Joachim Mahnkopf

1. Introduction

Let G,G′/Q be reductive algebraic groups and let

ϕ : LG→ LG′

be a morphism of the corresponding L-groups. According to the (conjectural)
functoriality principle there should be a map

ϕ̃ : Automorphic representations on G Automorphic representations on G′
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such that tπ′,ℓ = ϕ(tπ,ℓ) for all unramified primes ℓ; here, tπ,ℓ is the Langlands
parameter attached to the local component πℓ of π. One possible method to prove
such a statement is the comparison of trace formulas. Roughly, this means the
following. We denote by HG resp. HG′ the Hecke algebra attached to G(A) resp.
G′(A).

1. Step: Find an identity between traces of Hecke operators T ∈ HG acting on
L2
0(G(Q)\G(A)) and traces of Hecke operators T ′ ∈ HG′ acting on L2

0(G
′(Q)\G′(A)),

which implies the existence of the mapping ϕ.
2. Step: Verify this identity by comparing trace formulas on G and on G′.
Roughly, the functoriality principle relates the existence of Automorphic repre-

sentations on different groups. Somewhat similar, the theory of p-adic families of
modular forms relates the existence of modular forms in different weights. It was
our motivation to find out whether the comparison of trace formulas can also be
applied to prove the existence of the families of modular forms, which are predicted
by the theory of p-adic families. In the following we describe such a comparison
of trace formulas following [3].

2. P -adic families of modular forms

We fix some notation. We fix a prime p ∈ N an integer N ∈ N, which is
relatively prime to p, and a Dirichlet character χ : Z/(pN)∗ → C∗. We denote by
Γ = Γ1(pN) ≤ SL2(Z) the Hecke subgroup of level pN ,Mk =Mk(Γ, χω

−k) is the
space of holomorphic modular forms of level Γ, weight k and nebentype χω−k (ω
is the Teichmuller character) and Sk = Sk(Γ, χω−k) is the subspace of cusp forms.

We denote by Tℓ = Γ

(
1

ℓ

)
Γ the classical Hecke operator attached to the prime

ℓ ∈ N and we denote by

H = 〈Tℓ, ℓ prime〉

the Z-algebra generated by the Hecke operators. We fix a p-adic valuation vp on
Q̄p and for any α ∈ Q≥0 we denote by Sαk ≤ Sk the slope α subspace. According
to the Conjecture of Mazur-Gouvea (cf. [2]) any eigenform f0 ∈ Sαk0 fits in a p-
adic analytic family of eigenforms of varying weight k, i.e. there are • a finite
flat Zp[[X ]]-algebra R • morphisms ηk : R → Q̄p • a formal q -expansion F =∑

n>0Anq
n ∈ R[[q]] such that the following holds: for any k the specialization

fk = ηk(F ) :=
∑

n>0 ηk(F )q
n is an eigenform in Sαk and fk0 = f0. Hence, (fk)k

is a family of eigenforms, which depends p-adic analytically on the weight k and
which passes through the given eigenform f0. Thus, the theory of p-adic families
relates the existence of modular forms in different weights.

3. Comparison of trace formulas

We want to establish the existence of a family of eigenforms passing through
a given eigenform by a comparison of trace formulas. To this end instead of
eigenforms f satisfying Tℓf = λℓf for all primes ℓ we consider the (corresponding)
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systems of eigenvalues λ = (λℓ)ℓ. For any sequence λ = (λℓ)ℓ of algebraic numbers
we denote by

Mk(λ) = {f ∈ Mk : for all ℓ there is nℓ ∈ N : (Tℓ − f)nℓ = 0}

the generalized eigenspace attached to λ = (λℓ)ℓ and

Φαk = {λ = (λℓ)ℓ : Mk(λ) 6= 0 and vp(λp) = α}

is the set of systems of eigenvalues appearing in slope α. We then want to show
that any λ0 ∈ Φαk0 fits in a p-adic analytic family of systems of eigenvalues (λk)k,
where λk ∈ Φαk . We proceed in 2 steps.

1. Step. Any λ0 fits in a p-adic continuous family of eigenvalues (λk)k. Here,
continuous means that there is a ∈ Q≥0 such that k ≡ k′ (mod pm) implies
vp(λk,ℓ − λk′,ℓ) > am for all primes ℓ.

2. Step. Any continuous family is analytic. Here we assume α = 0, i.e. we
restrict to the ordinary case.

As in the talk we will only report on the first step. If any λ0 fits in a continuous
family as in step 1, then there are mappings

ϕk : Φαk0 → Φαk

such that vp(ϕ(λ) − λ) > am if k ≡ k0 (mod pm). We want to establish the
existence of the mappings ϕk by comparing trace formulas in weight k0 and k. To
this end we introduce certain mod pc multiplicities: for any λ = (λℓ)ℓ and any
c ∈ N we set

mα
k (λ, c) =

∑

µ∈Φα
k

vp(µ−λ)>c

dimMk(µ).

Thus, mα
k (λ, c) counts the number of eigenforms, which are congruent to a given

eigenform modulo pc. The map ϕk now exists if there is a ∈ Q≥0 with the following
property: for any λ there is c = c(λ) > am such that mα

k0
(λ, c) 6= 0 implies

mα
k (λ, c) 6= 0. In fact we have:

Proposition. Assume that trT |Mα
k
is a continuous function of the weight

k for all T ∈ H, i.e. there is A ∈ Q≥0 such that k ≡ k′ (mod pm) implies that
vp(trT |Mα

k
− trT |Mα

k′
) ≥ Am. Then there is a ∈ Q≥0 with the following property:

for all k ≡ k0 (mod pm) and all λ ∈ Φαk0 there is c = c(λ) > am such that

mα
k0(λ, c) = mα

k (λ, c).

To prove the Proposition we first define the number a (a will depend on A).
According to a Theorem of Hida/Buzzard (cf. [1]) there is L = L(α) ∈ N such
dimMα

k < pL for all weights k ≥ 2 and we then construct an element e ∈ H⊗Z Q
and specify a natural number c > am such that

• tr e|Mα
k0
≡mα

k0
(λ, c) (mod pL),

• tr e|Mα
k
≡mα

k (λ, c) (mod pL),
• the p-adic value of the denominator of e is bounded by Am− L.
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Using the continuity of tre|Mα
k
and the bound of Buzzard/Hida we see that the

above two equations imply that mα
k0
(λ, c) = mα

k (λ, c).

Using the topological trace formula we verify the continuity of trT |Mα
k
, which

together with the above Proposition yields the existence of continuous p-adic fam-
ilies of eigenforms passing through a given eigenform f0.

4. Final Remarks

1.) In [3] we also verified analyticity of the trace in the slope 0 case and used
this to show that continuous families of slope 0 are analytic. Hence, we obtain
the existence of analytic slope 0 families of eigenforms passing through a given
eigenform of slope 0.

2.) Using the Topological Trace Formula we compute in [3] the Lefschetz num-
ber of Hecke operators acting on the cohomology of quotients of the upper half
plane with coefficients in finite dimensional representations of GL2. From this we
deduce continuity of the trace in the finite slope case and analyticity in the slope 0
case. We hope that by computing Lefschetz numbers of Hecke operators acting on
cohomology with coefficients in some Verma type modules we can even conclude
analyticity of the trace in the finite slope case and, hence, the existence of p-adic
analytic families of finite slope.

3.) The main obstacle to generalizing the approach to higher rank is the use
of the Theorem of Hida/Buzzard on the boundedness of the slope subspace of the
space of modular forms. Therefore, in [4] we generalized their result to arbitrary
Chevalley groups, hence, our approach should carry over to higher rank groups
having discrete series.

4.) The proofs in [3] do not make use of rigid analytic methods or p-adic
Fredholm theory and are elementary in a sense comparable to [1].
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Construction of Endoscopy Transfers for Classical Groups

Dihua Jiang

(joint work with David Ginzburg, David Soudry)

This is a report of our work in progress on construction of endoscopy transfers for
quasi-split classical groups.

This construction uses certain Fourier coefficients of residues of certain Eisen-
stein series as kernels of integral transforms. The formulation works for all quasi-
split classical groups. However, we discuss in this notes a particular case, which
explains the idea and the method behind the construction.

Let F be a number field, and A be the ring of adeles of F . Let τ be an irreducible
unitary cuspidal automorphic representation of GL2a(A), with a positive integer
a. Assume that τ is self-dual and with trivial central character. It is well-known
that τ is either of symplectic type (i.e. the partial exterior square L-function
LS(s, τ,∧2) has a pole at s = 1) or of orthogonal type (i.e. the partial symmetric
square L-function LS(s, τ,∨2) has a pole at s = 1).

For a positive integer m, consider the F -split even special orthogonal group
SO2am. Assume that if τ is of symplectic type, take m to be even; and if τ is of
orthogonal type, take m to be odd. When m is odd and τ is of orthogonal type,
we denote by ǫ the automorphic descent of τ from GL2a to SO2a, following the
work of Ginzburg, Rallis, and Soudry [7].

When m = 2n, take the standard parabolic subgroup P(2a)n with the Levi

part being GL
×(n)
2a ; and when m = 2n + 1, take the standard parabolic sub-

group P(2a)n with the Levi part being GL
×(n)
2a ×SO2a. Consider the cuspidal data

(P(2a)n , τ
⊗(n)) whenm = 2n, and (P(2a)n , τ

⊗(n)⊗ǫ) whenm = 2n+1, respectively.
Let s := (s1, s2, · · · , sn) ∈ Cn. Following Langlands, there are Eisenstein series
E(g,Φτ⊗(n) , s) when m = 2n, and E(g,Φτ⊗(n)⊗ǫ, s) when m = 2n + 1, attached
to the above cuspidal data. It is not hard to check that E(g,Φτ⊗(n) has a pole
at s = (n − 1

2 , n −
3
2 , · · · ,

1
2 ) when m = 2n, and E(g,Φτ⊗(n)⊗ǫ, s) has a pole at

s = (n, n− 1, · · · , 1) when m = 2n+ 1 ([8]).
We denote by E(τ,m)(g) the iterated residue of this Eisenstein series at the given

point, which is a square-integrable automorphic form on SO2am(A).
In the following, we construct kernel functions for the integral transform, which

gives certain types of endoscopy transfers ([1]). In order to explain the idea and the
method of the construction, we consider the following type of endoscopy transfer

(1) SO2ab × SO2k → SO2k+2ab,

where b is a positive integer.
The kernel functions for such a construction are given by certain Fourier co-

efficients of the residues E(τ,2k+b)(g) on SO2a(2k+b)(A). Consider the standard

parabolic subgroup P(2k)a−1 of SO2a(2k+b) with the Levi part being GL
×(a−1)
2k ×

SO2ab+4k. The unipotent radical is denoted by Va,k,l. It is clear that

(2) Va,k,l/[Va,k,l, Va,k,l] ∼=M
⊕(a−2)
(2k)×(2k) ⊕M(2k)×(ab+k) ⊕M(2k)×(2k) ⊕M(2k)×(ab+k)
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where Mm×n denotes the matrix of size m × n. The elements on the right hand
side is denoted by (X1, · · · , Xa−2;Y1, Y2, Y3). Take a non-trivial additive character
ψ of F\A, and define a character of Va,k,l(A) by

(3) ψa,k,l(v) := ψ(trace(X1 + · · ·Xa−2 + Y2)).

It is left Va,k,l(F )-invariant. It is easy to check that the stabilizer of the character

ψa,k,l in the Levi subgroup GL
×(a−1)
2k × SO2ab+4k is SO

∆(a)
2k × SO2ab+2k. The

elements

(g,

(
h1 h2
h3 h4

)
) ∈ SO2k × SO2ab+2k

correspond to the elements

(g∆(a−1),



h1 h2

g
h3 h4


) ∈ GL

×(a−1)
2k × SO2ab+4k.

The Fourier coefficient defined by

(4) Θτ,ψa,k,l(g, h) :=

∫

Va,k,l(F )\Va,k,l(A)

E(τ,2k+b)(v(g, h))ψa,k,l(v)dv

is automorphic over SO2k(A)× SO2ab+2k(A). Let σ and π be irreducible cuspidal
automorphic representations of SO2k(A) and SO2ab+2k(A), respectively. Then the
main integral is defined as follows:

(5) Iψa,k,l(τ, σ;π) :=

∫

[SO2k]

∫

[SO2ab+2k]

Θτ,ψa,k,l(g, h)ϕσ(g)ϕπ∨(h)dhdg,

where [SO2k] := SO2k(F )\SO2k(A) and [SO2ab+2k] := SO2ab+2k(F )\SO2ab+2k(A).
We make the following conjecture.

Conjecture: Let σ and π be irreducible cuspidal automorphic representations
of SO2k(A) and SO2ab+2k(A), respectively. Assume that if τ is of symplectic type,
take b to be even; and if τ is of orthogonal type, take b to be odd, and assume that

the integral Iψa,k,l(τ, σ;π) is nonzero for some choice of ϕσ ∈ Vσ and ϕπ∨ ∈ Vπ∨ .
Then σ has a global Arthur parameter ψSO2k

if and only if π has a global Arthur
parameter ψSO2k

⊕ (τ, b).
Note that the global Arthur parameters are referred to [1]. The condition that

if τ is of symplectic type, take b to be even; and if τ is of orthogonal type, take b
to be odd is to make (τ, b) a global Arthur parameter for SO2ab.

The following special cases of our conjecture are proved in [4] and [5].
Theorem: The above conjecture holds for tempered representation σ and for

either b = 1 if τ is orthogonal or b = 2 if τ is symplectic.
In [6], we explore the problem on cuspidality of the above construction for

a fixed σ with b varying. This leads to the problem on the first occurrence in
such endoscopy tower, generalizing the classical theory on first occurrence in theta
correspondences.
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Representations of Metaplectic Groups

Gordan Savin

(joint work with Wee Teck Gan)

Let k be a non-archimedean local field of characteristic zero and residual char-
acteristic p. Let (W, 〈−,−〉) be a symplectic vector space of dimension 2n over k,
with associated symplectic group Sp(W ). The group Sp(W ) has a unique two-fold
central extension Mp(W ) which is called the metaplectic group:

1 −−−−→ {±1} −−−−→ Mp(W ) −−−−→ Sp(W ) −−−−→ 1.

The purpose of this work is to investigate the (genuine) representation theory of
Mp(W ). The prototype of our results is the work of Waldspurger who considered
the case dimW = 2. We obtain extensions of essentially all of Waldspurger’s
results mentioned above to the case of general W ’s. First, one has the following
theorem, whose proof was sketched in [GGP], based on a key result of Kudla-Rallis
[KR].

Theorem 1. For each non-trivial additive character ψ : k → C×, there is a
bijection

Θψ : Irr(Mp(W ))←→ Irr(SO(V +)) ⊔ Irr(SO(V −)),

where V + (respectively V −) is the split (resp. non-split) quadratic space of discrim-
inant 1 and dimension 2n+1. This bijection is given by the theta correspondence
(with respect to ψ) for the group Mp(W )× SO(V ±).

Corollary 2. Assume the local Langlands correspondence for SO(V ±). Then one
obtains a local Langlands correspondence for Mp(W ), i.e. a bijection (depending
on ψ)

Lψ : Irr(Mp(W ))←→ Φ(Mp(W ))

where Φ(Mp(W )) is the set of pairs (φ, η) such that
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• φ : WDk −→ Sp2n(C) is a 2n-dimensional symplectic representation of
the Weil-Deligne group WDk of k;

• η is an irreducible representation of the (finite) component group Aφ =
π0(ZSp2n(C)

(φ)).

Since the local Langlands correspondence for SO(V ±) is known for dimV = 5
(by [GT] and [GTW]), the statement of the corollary is unconditional in this case.
The general case has been announced by Arthur and will appear in his forthcoming
book [A]. One may ask if the local Langlands correspondence given in Corollary 2
satisfies certain typical properties. For example, for a representation σ of Mp(W )
with L-parameter φ, one would expect that σ is a discrete series representation
if and only if φ does not factor through any proper Levi subgroup. To a large
extent, such questions amount to whether the bijection Θψ satisfies the analogous
properties. More precisely, we have:

Theorem 3. Suppose that π ∈ Irr(SO(V )) and σ ∈ Irr(Mp(W )) correspond under
Θψ. Then we have:

(i) π is a discrete series representation if and only if σ is a discrete series repre-
sentation.

(ii) π is tempered if and only if σ is tempered.

(iii) In general, suppose that

π = JQ(τ1|det|
s1 , ..., τr|det|

sr , π0), s1 > s2 > .... > sr > 0

is a Langlands quotient of SO(V ), where Q is a parabolic subgroup of SO(V )
with Levi subgroup GLn1 × ... × GLnr

× SO(V0), the τi’s are unitary tempered
representations of GLni

, and π0 is a tempered representation of SO(V0). Then

σ = JP̃ (τ1|det|
s1 , ..., τr|det|

sr ,Θψ(π0))

where P̃ is the parabolic subgroup of Mp(W ) with Levi subgroup G̃Ln1 ×µ2 ...×µ2

G̃Lnr
×Mp(W0).

Given an irreducible representation π of SO(V ), exactly one extension of π
to Ø(V ) = SO(V ) × {±1} has nonzero theta lift to Mp(W ). Let πǫ denote the
extension of π where −1 acts as ǫ. We have:

Theorem 4. Let π be an irreducible representation of SO(V ). Then πǫ partici-
pates in theta correspondence (with respect to ψ) with Mp(W ) if and only if

ǫ = ǫ(V ) · ǫ(1/2, π).

Here ǫ(s, π, ψ) is the standard epsilon factor defined by Lapid-Rallis [LR] using the
doubling method; its value at s = 1/2 is independent of ψ, and ǫ(V ) is the Witt
invariant of V .

Finally, we investigate how the local Langlands correspondence Lψ depends
on ψ. For this, we shall of course assume the local Langlands correspondence
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for SO(V ±) so that Corollary 2 makes sense. To state the result, we recall that
φ : WDk −→ Sp2n(C) is a symplectic representation of WDk, and if we write φ =⊕

i ni ·φi as a direct sum of irreducible representations φi with some multiplicities
ni, then the component group Aφ is given by

Aφ =
∏

i:φi symplectic

Z/2Zai,

so that Aφ is a vector space over Z/2Z with a canonical basis. Now we have:

Theorem 5. For σ ∈ Irr(Mp(W )) and c ∈ k×, let

Lψ(σ) = (φ, η) and Lψc
(σ) = (φc, ηc).

Then:

(i) φc = φ⊗ χc, where χc is the quadratic character associated to c ∈ k×/k×2.

It follows by (i) that we have canonical identification of component groups:

Aφ = Aφc
= ⊕iZ/2Zai,

so that it makes sense to compare η and ηc.

(ii) the characters η and ηc are related by:

ηc(ai)/η(ai) = ǫ(1/2, φi) · ǫ(1/2, φi ⊗ χc) · χc(−1)
1
2dimφi ∈ {±}.

It is interesting to note that the proof of this last theorem makes use of the
Gross-Prasad conjecture for tempered representations of special orthogonal groups,
which is recently demonstrated by Waldspurger.
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