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Introduction by the Organisers

The workshop focused on the developments in this area since the last Oberwol-
fach workshop on this topic in 2006. The participants are from mathematics and
theoretical physics institutes throughout Europe and North America.

Mathematical proofs by RG are often technically elaborate and demanding,
but the workshop did not merely focus on technical issues. Besides presentations
that provided a survey of important recent developments and some that exposed
technical novelties, there were several talks that did not directly concern the RG
but closely related fields, as well as potential new areas of application.

The topics covered in the 17 one-hour talks are many-body systems of quan-
tum statistical mechanics relevant for materials science, in particular graphene,
the Kosterlitz-Thouless transition in the two-dimensional Coulomb gas, nonlinear
elasticity, aspects of quantum field theory (operator product expansions, renor-
malization in the Euclidian and on globally hyperbolic Lorentzian space-times),
RG in stochastic population models, group quantum field theory, and the applica-
tion of the RG to long-time limits of dynamics and the emergence of irreversible
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behaviour. Two talks were devoted to geometric flows and their relation to RG
flows.

The programme adhered to the Oberwolfach traditions, leaving plenty of room
for discussions and joint work. The Oberwolfach atmosphere and the excellent
service at the centre were most appreciated.
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Abstracts

A massless quantum field theory over the p-adics

Abdelmalek Abdesselam

(joint work with Ajay Chandra, Gianluca Guadagni)

This talk is in three parts. In Part 1, we briefly outine a general program for the
rigorous study of scalar quantum field theory (QFT), in the continuum. We use
a probabilistic framework in the spirit of Dobrushin [3]. In Part 2, we explain
that everything in Part 1 makes perfect sense when spacetime Rd is replaced by
Qdp. Finally, in Part 3, we report on ongoing progress made, in collaboration with
A. Chandra and G. Guadagni (research funded by U.Va. and the NSF under grant
DMS#0907198), on the p-adic analog of the massless model studied by Brydges,
Mitter and Scoppola.

1. Outline of a program for Euclidean QFT in the continuum

The goal is to develop a mathematical theory which is a rigorous version of the
methods one finds in physics QFT textbooks (e.g., Ch. 8 and Ch. 10 of [7]). We
put the emphasis on Symanzik-Nelson positivity rather than reflection positivity.
The study of QFT thus becomes that of probability measures dµ on the space
of distributions S′(Rd) with the cylinder σ-algebra. We focus on measures which
have finite moments and are invariant by translation (stationary processes) and
by the orthogonal group O(d). One can also require self-similarity. This program
involves the following steps.
Step 0: It is to classify the self-similar Gaussian case. Let Sn(f1, . . . , fn) =
〈φ(f1) · · ·φ(fn)〉 denote the moments of the measure dµ under consideration. Sn
can also be thought of as an element of S′(Rnd). In the (centered) Gaussian case,
S2 contains all the information. By translation invariance, S2(x, y) = S2(x − y)
where S2 ∈ S′(Rd). The classification reduces to that of O(d)-invariant distribu-
tions S2 homogeneous of degree −2[φ] where [φ] is the scaling dimension of the
field. For any [φ] ∈ R, there is a 1-dimensional space of solutions. Adding the
positive-type condition entails [φ] ≥ 0. We will restrict the discussion to the range
0 < [φ] < d

2 . One then has a simple expression in both direct and Fourier space

for the two-point function S2(x, y) ∼ |x−y|−2[φ], Ŝ2(k) ∼ |k|2[φ]−d. Note that this
is only part of a bigger picture. One can handle zero-modes, e.g., by restricting
S(Rd) using moment vanishing conditions [3]. See [5] for d = 2, [φ] = 0 which is
pertinent for conformal QFT. For work related to d = 1, [φ] < 0, see the talk by
J. Unterberger.
Step 1: Putting cut-offs. One replaces, e.g, the covariance C = S2 by Cr(x) ∼∫∞
Lr

dρ
ρ ρ

−2[φ]u(xρ ) for some nice function u. Here L is the renormalization group

(RG) magnification (L > 1 is an integer). One also introduces a box Λs of side
length Ls.
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Step 2: Perturb the cut-off Gaussian dµCr
(φ) to get a new probability measure

dνr,s(φ) = 1
Z exp(−Ṽr,s(φ))dµCr

(φ) where Ṽr,s(φ) =
∫
Λs

ddx { g̃r : φ4 :Cr
(x) +

µ̃r : φ2 :Cr
(x) + · · · }. Given a bare ansatz, i.e., the germ at −∞ of a sequence

(g̃r, µ̃r, . . .)r∈Z, the key problem is to study the double limit dνr,s → dν when
r → −∞ and s → ∞. One can either use the Bochner-Minlos Theorem or a
Hamburger moment reconstruction theorem with n! growth for Sn in order to
recover the wanted QFT dν. To be interesting, dν should not be Gaussian. In
fact, we would like a stronger notion of nontriviality which begs the question: is
there a good notion of Borchers class in this probabilistic setting? Also of interest
is the massless situation. Note that, for µ > 0, (|k|d−2[φ]+µ)−1 has large distance
decay |x|2[φ]−2d if d− 2[φ] /∈ 2N. Thus, the appropriate definition of ‘massless’ for
general [φ] is the requirement of non L1 rather than power law decay for S2.
Step 3: Composite fields and operator product expansion (OPE). Borrowing our
notation from the talk by S. Hollands, we would like to define local field operators
OA[φ](x), e.g., renormalized versions of φ(x)n. After smearing by f ∈ S(Rd),
one would like φ → OA[φ](f) to be a function S′(Rd) → C. This typically fails
if [φ] > 0. One should instead define φ → OA[φ](f) as a generalized function
(or rather functional) in the spirit of Hida’s white noise calculus [4]. One needs
a space D(S′(Rd)) of test functionals F on S′(Rd) which should at least contain
monomials of the form φ(f1) · · ·φ(fn). Then OA should be constructed as a linear
map from S(Rd) to the dual space of generalized functionals D′(S′(Rd)). The
duality pairing is that given by the QFT/measure dν. Note that the correlations
〈OA[φ](f) F (φ)〉 = 〈OA[φ](f) φ(f1) · · ·φ(fn)〉 make sense, in the free case, even
at coinciding points. Namely, this defines a distribution on all of R(n+1)d. The
functional F corresponds to the spectator fields for the OPE. In the case of a sin-
gle operator insertion, one can then follow the procedure explained in the talk by
S. Hollands, in order to study the singularities on the diagonals and inductively
define the operator products OA from the corresponding short distance asymp-
totics. For the OPE with several operator insertions, one needs to define the
mixed correlations at noncoinciding points, then repeat the procedure.
Step 4: Instead of perturbing, in Step 2, around a solution of Step 0, one can
also consider similar perturbations of nontrivial RG fixed points along relevant
directions.

2. The same over Qp

The message here is that everything in Part 1 works perfectly if one considers
random fields φ : Qdp → R. Besides, the RG is much simpler and cleaner than in
the real case. Indeed, it reduces to the hierarchical RG. For p a prime number,
the field Qp is defined as the completion of the field Q with respect to the p-adic
norm/absolute value |pn ab |p = p−n, for n, a, b ∈ Z such that b 6= 0 and p does
not divide ab. A p-adic number x ∈ Qp has a unique convergent representation∑

j∈Z
ajp

j, with only finitely many negative powers of p, where the ‘digits’ aj are

in {0, 1, . . . , p− 1}. The polar part {x}p =
∑
j<0 ajp

j is a rational number. The

valuation is given by valp(x) = min{j, aj 6= 0}. The extention of the previous norm
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is |x|p = p−valp(x). The unit ball Zp = {x ∈ Qp, |x|p ≤ 1} is a compact additive
subgroup. In dimension d, the norm of a point x = (x1, . . . , xd) in Qdp is defined by

|x| = max |xi|p. We take L = pl for the RG zooming ratio. The lattice of mesh Lr is
given by Qdp/(L

−rZp)d. The big volume is Λs = (L−sZp)d = {x, |x| ≤ Ls}. For the
space of test functions we take the Schwartz-Bruhat space S(Qdp) of locally constant

functions f : Qdp → R of compact support, with the finest locally convex topology.

The Fourier transform is f̂(k) =
∫
f(x)e−2iπ{x·k}pddx where x · k =

∑
xiki and

the additive Haar measure ddx gives measure 1 to Zdp. The analog of O(d) is the
maximal compact subgroup GLd(Zp) of GLd(Qp), defined by fixing the norm |x|.
For Step 1, the cut-off covarianceCr is obtained from C(x) ∼∑j∈Z

p−2j[φ]1lZd
p
(pjx)

by imposing j ≥ rl. The RG map corresponds to integrating over fluctuations with
covariance C0 − C1. With these modifications, Part 1 works in the p-adic setting
too. For other work on p-adic QFT see [6] and references therein.

3. The p-adic BMS model

The BMS model corresponds to d = 3 and [φ] = 3−ǫ
4 for some small posi-

tive bifurcation parameter ǫ. The bare ansatz only contains φ4 and φ2 couplings

g̃r, µ̃r. We rescale to unit lattice Ṽr,s → V
(0)
r and produce new bulk potentials

V
(0)
r → V

(1)
r → · · · by iterating the RG map (we suppressed s in the notation).

Constructing a QFT morally amounts to establishing the transverse convergence

criterion (TCC): ∀q ∈ Z, limr→−∞ V
(q−r)
r exists (the effective theory at log-scale

q). This produces an ideal RG trajectory (Pq)q∈Z. One conjectures that TCC
⇒ lim dνr = dν exists. Together with A. Chandra and G. Guadagni we adapted
the proofs in [2, 1] to the p-adic case and rigorously constructed (in suitable Ba-
nach spaces) the nontrivial infrared (IR) fixed point, together with its stable and
unstable manifolds. We constructed ideal trajectories as well as established the
TCC, starting from a bare ansatz, for two massless theories: one which should be
self-similar, at the IR fixed point, and another one which joins the Gaussian and
the IR fixed points. Modulo the previous conjecture, we completed all previous
steps except Step 3. We are also making rapid progress towards proving this con-
jecture. This hinges on extending our RG tools to nonuniform local perturbations
of the massless Gaussian. This should also help for Step 3.
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Strict convexity of the surface tension for non-convex interaction
energies via renormalisation group methods

Stefan Adams

(joint work with R. Kotecký, Stefan Müller)

We consider an effective model with gradient interaction. The model describes a
phase separation in Rd+1, e.g. between the liquid and vapor phase. For simplicity
we consider a discrete basis Λ ⊂ Zd, and real-valued height variables

x ∈ Λ 7→ ϕ(x) ∈ R.

This model ignores overhangs like in Ising models, but gives a good approximation
in the vicinity of the phase separation. The distribution of the interface is given
in terms of a Gibbs distribution with nearest neighbour interactions of gradient
type, that is, the interaction between neighboring sites x, x+ei depends only on the
gradient ∇iϕ(x) = ϕ(x+ ei)− ϕ(x), i = 1, . . . , d. More precisely, the Hamiltonian
is of the form

HΛ(ϕ) =
∑

x∈Λ

d∑

i=1

W (∇iϕ(x)),

where W : R → R is a perturbation of a quadratic functions, i.e.

W (η) =
1

2
η2 + V (η) with some perturbation V : R → R.

The Gibbs distribution for a given boundary condition Ψ ∈ R∂Λ, where ∂Λ = {z ∈
Zd : |z − x| = 1 for some x ∈ Λ}, at inverse temperature β > 0 is given by

γβ,ΨΛ (dϕ) =
1

ZΛ(β,Ψ)
exp

(
− βHΛ(ϕ)

) ∏

x∈Λ

dϕ(x)
∏

x∈∂Λ
δΨ(x)(dϕ(x)),

where the normalisation constant ZΛ(β,Ψ) is the integral of the density and is
called the partition function. One is particularly interested in tilted boundary
conditions

Ψu(x) = 〈x, u〉, for some tilt u ∈ Rd.

An object of basic relevance in this context is the surface energy or free energy
defined by the limit

(1) σ(u) = lim
Λ↑Zd

− 1

β|Λ| logZΛ(β,Ψ).

This surface tension σ(u) can also be seen as the price to pay to tilt a totally flat
interface. The existence of the above limit follows from a standard sub-additivity
argument. In case of strictly convex potential, Funaki and Spohn showed in [3] that
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σ is convex as a function of the tilt. The simplest strictly convex potential is the
quadratic one with V = 0, which corresponds to a Gaussian model, also called the
gradient free field or harmonic crystal. Strict convexity of the surface tension for
strictly convex W with 0 < c1 ≤W ′′ ≤ c2 <∞, was proved in [4]. In [2] Deuschel
et al showed the strict convexity of the surface tension for non-convex potentials
in the small β (high temperature) regime. The following questions for non-convex
interaction potentials W are possible formulations of the so-called Cauchy-Born
rule:

Questions:

(a) Is the surface tension σ(u) strictly convex for large β and small tilt u?
(b) Is there uniqueness for gradient Gibbs measures for a given tilt?
(c) Is the scaling limit still the Gaussian free field?

We show (a), i.e., the strict convexity of the surface tension for large enough β
(low temperatures) and sufficiently small tilt using multi-scale techniques.

Following an idea in [3] we work on a torus TN := (Z/LNZd)d for some L > 0.
Hence we consider periodic height functions, and to kill the constant for the dis-
crete gradient mapping we add a condition, i.e. we consider the space of configu-
rations

ΩN =
{
ϕ : Zd → R;ϕ(x+ k) = ϕ(x)∀k ∈ (LNZ)d;

∑

x∈TN

ϕ(x) = 0
}
.

We use λN to denote the (LN − 1)-dimensional Hausdorff measure on ΩN . The
partition function for given tilt u ∈ R is then

(2) ZN(β, u) =

∫

ΩN

exp
(
− βHu

N (ϕ)
)
λN (dϕ),

with Hamiltonian

(3) Hu
N (ϕ) =

1

2
LNd|u|2 +

∑

x∈TN

d∑

i=1

1

2
(∇iϕ(x))

2 + V (∇iϕ(x)).

To state our main result, we need a condition on the smallness of the pertur-
bation V . We will state it in terms of the Mayer function Ku : R

d → R associated
with the function V : R → R determining the Hamiltonian Hu

N . Namely, we take

Ku(z) = exp
{
− β

∑d
i=1 V

(
zi√
β
− ui

)}
− 1. Given any h > 0, we then consider the

Banach space E of functions K : Rd → R with the norm

‖K‖h = sup
z∈Rd

∑

|α|≤14

h|α|
∣∣∂αzK(z)

∣∣e−h−2|z|2 .

Here, the sum is over nonnegative integer multiindices α = (α1, . . . , αd), αi ∈
N, i = 1, . . . , d with |α| =∑d

i=1 αi ≤ 14, and ∂α =
∏d
i=1 ∂

αi

i .
Our main result is then:
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Theorem. There exist δ0 > 0, ǫ0 > 0, M0 > 0, and h0 > 0 such that if the map
Rd ⊃ Bδ(0) ∋ u 7→ Ku ∈ E is C3, ‖Ku‖h ≤ ǫ, and

d∑

i=1

∥∥∥ ∂

∂ui
Ku

∥∥∥
h
+

d∑

i,j=1

∥∥∥ ∂2

∂ui∂uj
Ku

∥∥∥
h
+

d∑

i,j,k=1

∥∥∥ ∂3

∂ui∂uj∂uj
Ku

∥∥∥
h
≤M

with h ≥ h0, ǫ ≤ ǫ0, δ ≤ δ0, M < M0 and for any u ∈ Bδ(0), then the surface
tension σ(u) exists and it is strictly convex uniformly in u ∈ Bδ(0) and in N
sufficiently large.

The proof employes a multi-scale analysis based on ideas outlined by Brydges in
[5]. The main ingredient is a finite range decomposition of families of Gaussian
measures in [1]. The Hamiltonian in (3) shows that the partition function is
a Gaussian integral with measure µ having density given by the square of the
gradients and normalisation ZN which is independent on the tilt and β (after
some rescaling), that is

(4) ZN(β, u) = ZNe−
1
2L

dN |u|2
∫

ΩN

exp
(
−β

∑

x∈TN

d∑

i=1

V (
1√
β
∇iϕ(x)−ui)

}
µ(dϕ).

The finite range decomposition in [1] of the Gaussian measure µ means that
µ(dϕ) = µ1 ∗ · · · ∗ µN+1(dϕ) where µ1, . . . , µN+1 are Gaussian measures with a
particular finite range property. Namely, the covariances of the measures µk, k =
1, . . . , N + 1, vanish for |x| ≥ 1

2L
k. Hence it is possible to perform the Gaussian

integration in (4) in steps according to length scales given by Lk, k = 1, . . . , N +1.
This defines roughly the renormalisation group mapping, eg. on scale Lk we get
for an integrand F

(RkF )(ϕ) =

∫

ΩN

F (ϕ+ ξ)µk(dξ).

These mappings generate a dynamical system with an expanding and a contract-
ing direction and trivial fix point. The crucial step is to get the correct initial
Gaussian such that after N steps the mapping is close to the fix point. This en-
ables one to control the second derivative with respect to the tilt of the integral
in (4). To get the correct initial Gaussian measure we employ a change of Gauss-
ian measure at the beginning with some quadratic form defined by a symmetric
matrix q ∈ Rd×d. An application of the implicit function theorem will ensure the
existence of a unique matrix q0 for which the systems reaches his fix point. How-
ever, the renormalisation mappings depend on these matrices and we have loss of
regularity once we compute derivatives of Gaussian expectations with respect to
this parameter. This can be resolved with some version of the implicit function
theorem which allows a loss of regularity.
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Renormalisation Group Leftovers

David Brydges

Let Λ be a subset of the lattice Zd, let A be the Λ × Λ matrix that represents
the finite difference Laplacian when acting on a function φ : Λ → R and let V be
bounded below. Integrals of the form

(1)
1

Z

∫

RΛ

e−1/2
∑

x,y∈Λ φxAx,yφye−g
∑

x∈Λ V (φx,∇φx)φaφbd
Λφ,

are important in a wide range of problems. Z normalises the integral so that it
would equal one in the absence of φaφb. In this conference we have seen expressions
of the form (1) in the lectures by Pierluigi Falco and Stefan Adams and in [1] an
extension involving differential forms is used to represent self-avoiding walk on
Zd. The rigorous renormalisation group (RG) is a useful technique in all these
cases. In sufficiently high dimensions and when V is small it can achieve the
remarkable feat of evaluating the numerator and denominator in (1) so accurately
that their exp

[
O(|Λ|)

]
growths are exactly cancelled and the dependence on |a−b|

is obtained uniformly in Λ. Following [2] I attempt a pedagogical review of some
of the principles of proof by RG. In particular I introduce a useful class of norms
[3] that play a critical role in these proofs and show how to use them to control
the approximation of error terms in the RG by expressions of the same form as in
the exponent of (1).
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Diffusion in Hamiltonian systems

Wojciech De Roeck

(joint work with A. Kupiainen)

The rigorous derivation of long-time diffusion from first principles of mechanics, be
it quantum or classical, remains an inspiring challenge in mathematical physics.
To our best knowledge, there are up to this date very few results of this type.
Recently, in [4], a model was introduced which is quite tractable and for which
diffusion was proven in dimension d ≥ 4. It is a quantum system described by a
Hamiltonian of the type

(1) H = HS +HE + λHSE, λ > 0

where HS (S for ’system’) is the Hamiltonian of a free particle moving on the
lattice and it consists of two parts HS = Hkin+Hspin describing the translational
degrees of freedom and a spin degree of freedom, respectively. The Hamiltonian
HE (E for ’environment’) describes a free field of phonons or photons, and HSE

effectuates the coupling between both. The system is started with the phonons
in a thermal state at inverse temperature β. Such models are a paradigm of open
quantum systems. Let us list the properties that allow us to handle this model:

• The mass of the particle, or, since we are on a lattice, rather the inverse
hopping strength, is chosen large. In (1) this is accomplished by choosing
Hkin small. This allows a better control of a diagrammatic expansion in
real space, since the particle needs a long time to explore a large volume
on the lattice.

• Even though the mass is large, the ’mixing rate’ that the particle degrees
of freedom (except for the position) experience due to the interaction with
the phonons is not small. This is possible because of the inclusion of a
spin-degree of freedom

• By choosing the interaction Hamiltonian sufficiently smooth (in the mo-
mentum of the phonons), we ensure that the free space-time correlation
functions of the phonon field decay at an integrable rate in time. We need
them to decay at least as O(t−(1+α)) for large times t with α > 1/4. To
engineer this, it suffices to choose the dispersion relation of the bosons
to be quadratic in the momentum for small momenta, and to cut off the
interaction in small scales.

• By choosing the coupling constant λ small, we have a well controlled Mar-
kovian approximation (Lindblad equation) that describes the particle for
times of O(λ−2). This Markovian approximation serves as a first approx-
imation to the true behaviour and we set up an expansion to control the
deviations from it.

Under these assumptions we prove that the reduced dynamics of the particle is
diffusive: Let X be the position operator of the particle and ρS,t the density matrix
of the particle at time t, obtained by taking partial trace over the environment.
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Then we prove, for λ sufficiently small

lim
t→∞

Tr[ρS,te
ik X√

t ] = e−Dk
2/2, k ∈ Rd

for some diffusion constant D = D(λ) > 0. Our proof is based on a renormal-
ization group (RG) method that was developed in [2, 3, 1] to prove diffusion for
random walk in a random environment (RWRE). In the present context the ran-
dom environment is provided by the phonon field. Unlike in the case of RWRE in
the case at hand the particle influences the environment and the reduced dynamics
is non-Markovian. However, the Markovian approximation mentioned above pro-
vides a starting point for the analysis where a Markovian dynamics is perturbed
by a small non-Markovian noise. In units of the weak coupling time scale O(λ−2)
our model can then be viewed as a (quantum) random walk in a (quantum) ran-
dom environment. The RG method consists of an iterative scheme to show that
on successive larger temporal and spatial scales the random environment becomes
smaller and smaller and the dynamics tends to a renormalized Markovian ”fixed
point”. We show that the renormalized noise vanishes in this limit by showing
that its (quantum) correlation functions tend to zero. Here we use a formalism
developed earlier by us [5] for the confined case, i.e. the proof that the state of
a confined quantum system interacting with a similar field as here tends to the
equilibrium state.

The difference of the model considered in this paper and the one treated in [4]
is that in the latter case an additional condition was imposed on the free boson
correlation function that restricts the model to dimensions d ≥ 4 and to a rather
special class of analytic particle-phonon interaction terms. In the context of these
models where the particle mass is chosen to scale as O(λ−2) it still remains a
challenge to treat more generic phonon or photon reservoirs where the temporal
correlations decay as O(t−1). To deal with these cases with our method one needs
a more careful RG analysis. A much more difficult and interesting problem is to
relax the large mass assumption. In this case the control of the corrections to the
Markovian approximation seems still beyond current techniques.
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Kosterlitz-Thouless Transition Line for the 2D Coulomb Gas

Pierluigi Falco

The two-dimensional Coulomb Gas is the statistical system of point particles on a
planar lattice, carrying a charge ±1 and interacting through the two-dimensional
electrostatic potential that, for large distances, is

(1) V (x− y) ∼ − 1

2π
ln |x− y| .

This toy model acquired a great theoretical importance when Kosterlitz and Thou-
less, [21], found in it the solution of a puzzling dichotomy in the theory of the two
dimensional XY model: the spin-wave approximation predicts absence of order
(in agreement with Mermin-Wagner argument) and power law fall-off of the spin
correlations; on the other hand, high temperature expansion clearly demonstrates
exponential decay of the correlations. The two scenarios were merged together by
the observation that the spin-wave picture doesn’t take into account the spin con-
figurations with vortex excitations, which interact through the same logarithmic
potential of the Coulomb Gas.

Using RG ideas, Kosterlitz and Thouless, [21], [20], were able to describe the
diagram of phases of the Coulomb Gas (and hence of the XY model) in the activity
(z) vs. inverse temperature (β) space. At high temperatures, the gas is in the
plasma - or Debye screening - phase: the correlation length is expected to be finite,
and certain screening sum rules are conjectured. At low temperatures, on the
contrary, the effective range of the interactions remains long, and the correlations
length is infinite; this regime is the dipole - or KT - phase. In between the plasma
and the dipole phases there is (at least) one transition curve, βc(z), called KT
transition line, that was found to intersect the z = 0 axis at βc(0) = 8π. Besides,
approaching βc(z) from higher temperatures, the correlation length diverges as

ξ ∼ ec(z)|β−βc(z)|−
1
2 : the KT phase transition is then quite different from the

more common second order phase transition of spin systems, in which case the
correlation length diverges as ξ ∼ |β − βc|−ν (or log |β − βc|).

Efforts of many other authors were addressed to the topic, in search of stronger
evidence of the pioneering analysis of Kosterlitz and Thouless; the reader interested
in theoretical physics works can find useful discussions and a good selection of
references in [1], [18] and [11] - see also conjectures in [17].

The first rigorous result was the proof of Fröhlich and Park, [13], of the existence
of the thermodynamic limit for pressure and correlations. Later on, Fröhlich and
Spencer, [14], [15], proved, for β large enough, an upper and lower power-law bound
for the decay of correlations of fractional charges; then, refinements of the same
technique allowed Marchetti, Klain and Peres, [24], [22] [23], to cover increasing
regions in dipole phase that eventually included the point (β, z) = (8π, 0) - but
not the rest of the KT transition line. Despite its fast improvement, Fröhlich-
Spencer method seems to have some unavoidable limitations: it cannot provide
the exact power of the correlation fall-off, nor can exclude logarithmic corrections
(which actually are expected along the KT line); and it works for correlations of
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fractional charges, but does not provide any useful bound for correlations of integer
charges. For this reasons, different authors started developing a Renormalization
Group (RG) approach - at the beginning under some approximations: hierarchical
metric, or order by order in perturbation theory, see [2], [25], [9], [26], [19], [3],
[16]. Later, Dimock and Hurd, [10], provided a full-fledged RG construction of
the pressure in a region of the dipole phase that included (β, z) = (8π, 0) but not
the rest of the KT transition line; they could not discuss correlations. Finally, the
only rigorous result on the plasma phase is the one of Yang, [27], that extended
to dimension two the proof of the dynamical mass generation for small β given in
[5] and [6] for the higher dimensional case.

The objective of my work, [12], is to study the Coulomb Gas along the KT
transition line, for small activity. Using the general RG approach of [8], [4], the
covariances with compact supports of [7], and some estimates for the Coulomb
gas in [10], I provide a constructive proof of the existence of the pressure. I
do not discuss in this paper the critical exponents of the correlation functions,
which are certainly the most exciting features of the model; but, in view of the
bounds established this paper, that task should not be difficult and will be possibly
addressed soon.
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[15] Fröhlich J., Spencer T.: Comm.Math.Phys. 81 527-602 (1981)
[16] Guidi L.F., Marchetti D.H.U.: Comm.Math.Phys. 219 671-702 (2001).
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Algebraic approach to gauge theories and gravity

Klaus Fredenhagen

(joint work with Katarzyna Rejzner)

A perturbative construction of quantum gravity around a given background might
be performed in the sense of quantum field theory on curved spacetimes, as de-
veloped by Brunetti, Fredenhagen, Verch [4] and Hollands, Wald [10, 11] 10 years
ago. There are, however, several obstructions. First, one has to take into account
the gauge freedom as in gauge theories; the latter problem was solved recently by
Hollands [9], based on the Batalin-Vilkovisky (BV) formalism [2, 3], and previous
work of Dütsch et al. [6, 7].

In the locally covariant quantum field theory framework we associate with a
physical system the configuration space E(M) of all fields of the theory. In case
of general relativity this is E(M) = (T ∗M)⊗2. In terms of category theory E is
a contravariant functor from the category of globally hyperbolic spacetimes Loc
with causal isometric embedding as morphisms to the cateogry Vec of locally
convex vector spaces. In contrast, the space of compactly supported fields Ec(M)
is assigned by a covariant functor from Loc to Vec, and D : Loc → Vec is
a covariant functor that associates with M the space of test functions D(M).
Finally we define a functor F : Loc → Vec that assigns toM the space of smooth,
compactly supported functionals on E(M). We can also require some further
regularity conditions on the functionals, like fulfilling the microlocal spectrum
condition by each functional derivative at a given point (microcausality). The
details on the functional-analytic and topological aspects of the structure are given
in [8].

The dynamics of the theory is introduced by the so called generalized La-
grangian and the action S(L) is a certain equivalence class of Lagrangians, c.f.
[5]. Let g be the background metric, h ∈ E(M) the infinitesimal perturbation and
g̃ = g + h. The Einstein-Hilbert generalized Lagrangian reads: L(M,g)(f)(h)

.
=∫

R[g̃] f d vol(M,g̃).
The Euler-Lagrange derivative of S is a natural transformation S′ : E → D′

defined by: 〈S′
M (ϕ), h〉 =

〈
LM (f)(1)(ϕ), h

〉
with f ≡ 1 on supph. The field

equation is: S′
M (ϕ) = 0 and we denote the space of functionals on the solution

space by FS(M). On E(M), seen as a differentiable manifold, we can define the
vector fields. We restrict ourselves to smooth microcausal vector fields X with
compact support and with the image in Ec(M). The space of such vector fields is
denoted by V(M). A vector field X ∈ V(M) is called a symmetry of the action S
if ∀ϕ ∈ E(M) we have 0 = 〈S′

M (ϕ), X(ϕ)〉 =: δS(X)(ϕ). In concrete examples the
set of symmetries can be characterized in a more explicite way. A symmetry X is
called trivial if it vanishes on-shell. In general relativity all nontrivial symmetries
can be written as elements of G(M) := C∞(E(M),Xc(M)), where Xc(M) is the
space of compactly supported vector fields on M . This is the Lie algebra of the
diffeomorphism group Diff(M).
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The action ρ of G(M) on F ∈ F(M) is induced by the Lie derivative. The full
BV algebra for a fixed background reads:

BV(M) =
∧

V(M)⊗̂
∧

X′(M)⊗̂S•Xc(M) ,

where the elements of V(M) are the antifields (with ghost number −1), X′(M)
is the space of ghosts (forms on X with ghost number 1) and S•Xc(M) of the
antighosts (ghost number −2). All these objects have a geometrical interpretation
in the framework presented in [8]. On the graded algebraBV(M) one introduces a
graded BV differential s = s(−1) + s(0), where s(−1) is the Koszul-Tate differential
providing the resolution of FS(M):

. . .→ Λ2V⊕G
s(−1)=δS⊕ρ−−−−−−−−→ V

s(−1)=δS−−−−−−→ F → 0

The other term s(0) is the Chevalley-Eilenberg differential, which describes the
invariants under the action of X(M). We obtain a double complex which en-
codes the algebra of gauge-invariant on-shell functionals as the 0-th cohomology:
H0(BV(M), s) = Finv

S (M). A direct application of this method to gravity how-
ever fails because of the absence of local observables in gravity. This renders the
above defined cohomology trivial. One can instead lift the structure to the level
of natural transformations. We define the extended algebra of fields (understood

as natural transformations, c.f. [4]) as: Fld =
∞⊕
k=0

Nat(Ekc ,BV). The action of

symmetries on natural transformations Φ ∈ Nat(Ec,F) is given by:

(ρM (X)ΦM )(f) := ∂ρM (X)(ΦM (f)) + ΦM (ρM (X)f), X ∈ X(M) .

The set Fld becomes a graded algebra if we equip it with a graded product defined
as:

(ΦΨ)M (f1, ..., fp+q) =
1

p!q!

∑

π∈Pp+q

ΦM (fπ(1), ..., fπ(p))ΨM (fπ(p+1), ..., fπ(p+q)) .

The BV-differential on Fld is now:

(sΦ)M (f) := s0(ΦM (f)) + (−1)|Φ|ΦM (ρM (.)f) ,

where s0 is the BV differential on the fixed background. The 0-cohomology of s is
nontrivial, since it contains for example the Riemann tensor contracted with itself,
smeared with a test function: Φ(M,g)(f)(h) =

∫
M

Rµναβ [g̃]R
µναβ [g̃]fdvol(M,g̃).
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Universal conductivity in graphene

Alessandro Giuliani

(joint work with Vieri Mastropietro and Marcello Porta)

In condensed matter, there are very few phenomena, among which is the quantum
Hall effect (QHE), displaying a very strong sort of universality; e.g., quantum Hall
plateaus appear to be independent of the electron-electron interactions, thanks to
an underlying topological invariance. Unfortunately, in the theory of the QHE,
there is no first-principle derivation of this fact in any interacting many body
system. In this talk I report the first rigorous proof of a similar universality
phenomenon concerning the optical conductivity of graphene.

Indeed, recent optical measurements in graphene show that at half-filling and
small temperatures, if the frequency is in a range between the temperature and
the band-width, the conductivity is essentially constant and equal, up to a few

percent, to σ0 = e2

h
π
2 , a universal value that does not depend on the material

parameters, like the Fermi velocity. Such value coincides with the theoretical pre-
diction in the free Fermi gas on the honeycomb lattice at half-filling [4]. Of course,
interaction effects could produce modifications to this theoretical value: however,
in the case of weak short range interactions and at half-filling, we rigorously estab-
lish that this is not the case: all the interaction corrections to the zero temperature
and zero frequency conductivity cancel out exactly, as a consequence of exact lat-
tice Ward Identities and of suitable regularity properties of the current-current
response function.

Let me introduce the model and state our main results. We introduce creation
and annihilation fermionic operators ψ±

~x,σ = (a±~x,σ, b
±
~x+~δ1,σ

) = L−2
∑
~k ψ

±
~k,σ
e±i

~k~x

for electrons with spin index σ =↑↓ sitting at the sites of the two triangular
sublattices ΛA and ΛB of a periodic honeycomb lattice of side L; we assume that

ΛA = Λ has basis vectors ~l1,2 = 1
2 (3,±

√
3) and that ΛB = ΛA+~δj, with ~δ1 = (1, 0)

and ~δ2,3 = 1
2 (−1,±

√
3) the nearest neighbor vectors; the sum over ~k runs over the

first Brillouin zone associated to Λ. The Hamiltonian at half-filling is

HΛ = −t
∑

~x∈ΛA
j=1,2,3

∑

σ=↑↓
(a+~x,σb

−
~x+~δj ,σ

+ b+
~x+~δj ,σ

a−~x,σ) +

+U
∑

~x∈ΛA

∏

σ=↑↓
(a+~x,σa

−
~x,σ − 1

2
) +

∑

~x∈ΛB

∏

σ=↑↓
(b+~x,σb

−
~x,σ −

1

2
) .
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In the presence of an external vector potential ~A, the lattice current is [4] ~J
(A)
~p =

~J~p +
∫

d~q
(2π)2 ∆̂~p,~q

~A~q +O(A2), where, if ηj~p =
1−e−i~p~δj

i~p~δj
,

~J~p = iet
∑

~x∈Λ
σ,j

e−i~p~x~δjη
j
~p

(
a+~x,σb

−
~x+~δj ,σ

− b+
~x+~δj ,σ

a−~x,σ
)
,

is the paramagnetic current and

[
∆̂~p,~q

]
lm

= −e2t
∑

~x∈Λ
j=1,2,3

∑

σ

e−i(~p+~q)~x(~δj)l(~δj)mη
j
~pη
j
~q(a

+
~x,σb

−
~x+~δj ,σ

+ b+
~x+~δj ,σ

a−~x,σ) ,

is the diamagnetic tensor. The current-current response function at Matsubara
frequency p0 ∈ 2π

β (Z + 1
2 ) is defined as

K̂β,L
ij (p0, ~p) :=

1

L2

∫ β

0

dx0 e
−ip0x0〈ex0HΛJ~p,ie

−x0HΛJ−~p,j〉β,L

where 〈·〉β,L = Tr{e−βHΛ ·}/Tr{e−βHΛ}. The conductivity is defined via Kubo
formula as [4]:

σβ,Lij (p0) = − 2

3
√
3

1

p0

[
K̂β,L
ij (p0,~0) +

1

L2
〈[∆̂~0,~0]ij〉β,L

]
.

where 3
√
3/2 is the area of the hexagonal cell of the honeycomb lattice.

Our main result is that the Hubbard interaction, while it analytically modifies
several physical quantities, such as the Fermi velocity vF and the quasi-particle
weight Z−1 [1], leaves the zero frequency limit of the ground state conductivity
exactly invariant. This is proved by a combination of Renormalization Group
arguments, allowing us to prove the apriori existence and analyticity of the corre-
lation functions, and lattice Ward Identities, allowing us to identify cancellations
among the interaction corrections to the conductivity [2].

Theorem ([2]) There exists a constant U0 > 0 such that, for |U | ≤ U0 and any

fixed p0, σ
β,L
ij (p0) is analytic in U uniformly in β, L as β, L→ ∞. Moreover,

(1) σij = lim
p0→0+

lim
β→∞

lim
L→∞

σβ,Lij (p0) =
e2

h

π

2
δij .

where we restored the dimensional constant ~ = h/(2π) in the final result.

Note that the definition of σij involves a limiting procedure in which first the
temperature and then the frequency are sent to zero; i.e., close to the limit we
have β−1 ≪ p0 ≪ t, which corresponds to the range of frequencies investigated
with optical techniques in [3]. By taking the limits in the opposite order, we would
get informations about the d.c. conductivity that, in the presence of disorder, also
appears to have a universal value.
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All–order uniform momentum bounds for the massless φ4 theory in
four dimensional Euclidean space

Riccardo Guida

(joint work with Christoph Kopper)

A panoramic overview is given, of a theorem [1] establishing physical and uniform
bounds on the Fourier–transformed Schwinger functions of a massless φ4 theory
in four Euclidean dimensions, at any loop order in perturbation theory.

The first step to set up the perturbative framework is to specify a free quantum
theory describing a massless scalar field by fixing a centered Gaussian measure
on S ′(R4), µ

~C
Λ,Λ0
R

, whose covariance ~C
Λ,Λ0

R (x, y) := ~χR(x)χR(y)C
Λ,Λ0(x − y)

is assumed to be a distribution in S ′(R8) acting as a positive bilinear form on
test functions. ~ > 0 denotes the variable of the formal perturbative series. The
short–distance behavior (smoothness) of CΛ,Λ0(x) as a function is controlled by
Λ0 > 0 (known as ultra–violet, UV, cutoff), while the long–distance regularity is
controlled by 0 < Λ ≤ Λ0 (infra–red, IR, cutoff). CΛ0,Λ0 vanishes. When Λ0 tends
to infinity and Λ tends to zero, CΛ,Λ0(x) approaches the standard free propagator〈
x
∣∣∂−2

∣∣ 0
〉
. For any R > 0, the non–negative function χR ∈ C∞

c

(
R4
)
satisfies the

“finite–volume” constraint χR(x) = 1 for any |x| ≤ R.
For any N ∈ N, and any L ∈ N0 the Schwinger functions in momentum space

are defined by

L̂Λ,Λ0
N,L (p[N−1]) := lim

R→∞



(

1

L!

∂L

∂~L

)

~=0

(
δ

δϕ(0)

N−1∏

e=1

∫
d4xe e

−ixepe δ

δϕ(xe)

)

ϕ=0

(1)

(
−~ log

(∫
dµ

~C
Λ,Λ0
R

(φ)e−
1
~
Sint(φ+ϕ)/

∫
dµ

~C
Λ,Λ0
R

(φ)e−
1
~
Sint(φ)

))
,

where: [a] := [1 : b], [a : b] := {n ∈ Z|a ≤ n ≤ b}, and p[n] := (p1, · · · , pn). In (1),

the interaction action Sint(ϕ) is defined by

Sint(ϕ) :=

∫
d4x

(
A(~)

(∂ϕ(x))2

2
+B2(~)

ϕ(x)2

2
+B4(~)

ϕ(x)4

4!

)
,(2)

where A,B2, B4 are formal series in ~, whose coefficients are fixed order by order
by appropriate renormalization conditions, in such a way that the “UV+IR limit”
limΛ0→∞ limΛ→0+ L̂Λ,Λ0

N,L exists in S ′(R4(N−1)) for all N, L. In particular, it turns out
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for a massless theory that A,B2 are of order O(~), while B4 = g0+O(~). From (1)

and (2) it follows that L̂Λ,Λ0
2,0 and all L̂Λ,Λ0

N,L with odd N vanish.

The UV+IR limit of L̂Λ,Λ0
N,L is a regular function only at non–exceptional mo-

menta, see e.g. [2]. (A collection of four vectors p[N−1] is said exceptional iff it
exists a non–empty S ⊆ [N− 1] such that

∑
e∈S

pe = 0.)

Any Schwinger function L̂Λ,Λ0
N,L defined in (1) can be computed from the standard

weighted sum of all Feynman amplitudes proportional to ~L, obtained via Feynman
rules from an appropriate set of connected amputated graphs with N external lines.
Each such set includes all graphs with vertices of coordination number 4 and loop
number L. The word “amputated” means that Feynman rules do not associate
any factor to the external lines.

Schwinger functions satisfy the “Polchinski” renormalization group (RG) flow
equations, [3] (see [4] for an introduction), which in their perturbative form read:

∂ΛL̂Λ,Λ0
N,L

(
p[N−1]

)
= FΛ,Λ0

N,L,w :=

1

2

∫
d4ℓ

(2π)4
∂ΛĈ

Λ,Λ0 (ℓ) L̂Λ,Λ0

N+2,L−1

(
p[N−1],−ℓ, ℓ

)
(3)

−1

2

∑

E′⊎E′′= [0:N−1]
L
′+L

′′= L

∂ΛĈ
Λ,Λ0 (

∑
e∈E′ pe) L̂Λ,Λ0

N′,L′ (pE′) L̂Λ,Λ0

N′′,L′′ (pE′′)

,

where N
′ := |E ′| + 1, N′′ := |E ′′| + 1, p0 := −∑e∈[N−1] pe, and the sum on the

r.h.s. of (3) runs over all disjoint (possibly empty) sets E ′, E ′′ whose union gives
[0 : N− 1], as well as over all non–negative integers L′, L′′ whose sum gives L.

When the field has a mass m > 0, it is not difficult to use the RG equations
to bound Schwinger functions in momentum space (see e.g. [4]). Such bounds
are simple but clearly unphysical because they depend polynomially on external
momenta; moreover, they diverge when the mass vanishes and the IR limit is
taken. More physical bounds have been proved in the massive case, [5].

The goal of the “existence and boundedness theorem” in [1] is to extend the
ideas in [5] to obtain physical, uniform bounds for the massless case. The theo-

rem assumes that the Fourier–transformed covariance ĈΛ,Λ0(p) is O(4) invariant,

smooth in some sense, and such that Λ3∂ΛĈ
Λ,Λ0(p) and Λ2

0Λ
2∂Λ∂Λ0Ĉ

Λ,Λ0(p) (to-
gether will all necessary derivatives w.r.t. p) are exponentially decreasing when
|p|/Λ → ∞. The main result of the theorem is that for any N, L and any multi–index

w ∈ N
4(N−1)
0 , there exist a polynomial PL of degree ≤ L and with non–negative

coefficients, as well as a set of weighted trees TN,2L,w, such that (when e.g. N ≥ 4)

∣∣∣∂wp L̂Λ,Λ0

N≥4,L

(
p[N−1]

)∣∣∣ ≤ PL

(
log+

( |p[N−1]|µ
κ

)
, log+

Λ

µ

) ∑

T∈TN,2L,w

∏

i∈I(T )

|ki|−θ(i)Λ(4)

for any Λ0 > 0, 0 < Λ ≤ Λ0 and p[N−1] ∈ R4(N−1). In (4), µ > 0 is the renor-
malization scale; |p[N−1]| := supe |pe|; |p|Λ := sup(Λ, |p|); log

+
x := log sup(1, x).

κ := sup(Λ, inf(η(p[N−1]), µ)) > 0 is defined in terms of a “dynamical IR cutoff”
η(p[N−1]) := inf∅6=S⊆[N−1] |

∑
e∈S

pe| (positive for non–exceptional momenta). I (T )
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is the set of internal lines of the weighted tree T ; ki is the momentum flowing
through the internal line i, and θ(i) > 0 is the total weight associated to i.

The sets TN,R,w (R ∈ N0) satisfy two properties; nestedness: TN,R,w ⊆ TN,R+1,w;
saturation: TN,R,w = TN,3N−2,w for any R ≥ 3N− 2. The set TN,R,w=0 (corresponding
to the absence of derivatives w.r.t. external momenta) is defined as the set of all
T = (τ, ρ) in which τ is a tree and ρ : I (T ) → {1, 2} is a line weight, such that:
a) τ has N external lines and vertices of coordination number in {3, 4}; b) the
number of vertices with coordination 3 is ≤ R; c)

∑
i∈I(T ) ρ(i) = N − 4; d) there

is a bijection among the vertices of coordination number 3 and the internal lines
with ρ = 1. In the case w = 0 one has θ(i) = ρ(i).

As an example, for any L > 0 the set TN=6,R=2L,w=0 contains only the trees

p1

p2

p3

p0

p5

p4

ρ = 2 ,

p1

p2

p3

ρ = 1

p5

p4

ρ = 1

p0

,

p1

p2

ρ = 1

p4

p3

ρ = 1

p0 p5

,

and the trees derived from them by non–trivial permutations of the external mo-
menta p[0:5]. (Other trees with N external lines and vertices of coordination num-
bers 3, 4 exist but do not satisfy to the defining conditions.) Correspondingly, in
this case the bound (4) reads for any L > 0

|L̂Λ,Λ0
6,L (p[5])| ≤ (|p1+p2+p3|−2

Λ +|p1+p2+p3|−1
Λ |p4+p5|−1

Λ +|p1+p2|−1
Λ |p3+p4|−1

Λ +perms.)PL,

where PL has been introduced in (4).
The proof of the theorem is based on the recursive structure of the perturbative

RG equations (3) (see e.g. [4]). The main difficulty is to wisely deal with spurious
exceptional momenta, in order to keep the bound finite in the IR limit.

In the flow FΛ,Λ0
N,L,w, see (3), the term quadratic in Schwinger functions acts as a

junction of the weighted trees T ′, T ′′ in the bounds, respectively, of L̂Λ,Λ0

N′,L′ , L̂
Λ,Λ0

N′′,L′′ .
Now, the junction of two weighted trees happens to be a weighted tree of the
appropriate class and the inductive bound for L̂Λ,Λ0

N,L is then reproduced.

The linear term in FΛ,Λ0
N,L,w is more problematic, because it contains a loop inte-

gration which tends to destroy the tree structure of the bounds. The exponential
fall–off in ℓ/Λ of the covariance allows to prove ([5],[1]) bounds of the form

∫
d4ℓ |∂ΛĈΛ,Λ0 (ℓ)|

n∏

j=1

|ℓ+ kj |−θjΛ ≤ cΛ

n∏

j=1

|kj |−θjΛ ,(5)

which, roughly speaking, amount to “cut the loop” and to set ℓ = 0 by deleting two
external lines for each tree. This property makes the linear part of the flow more
“tree friendly”. The elimination of the unwanted Λ factor in (5) (using the bound
Λ ≤ |kj′ |Λ for some j′), and the integration over Λ (to recover Schwinger functions

from the flow) are taken into account by eliminating the factors |kj′ |−1
Λ , |kj′′ |−1

Λ

for each tree in the original bound of L̂Λ,Λ0

N+2,L−1, which amounts to consider a
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subtraction of two units in the original weights: this procedure can be consistently
implemented as a mapping among our classes of weighted trees.

The logarithms in (4) originate from the Λ integration of the flow for mar-
ginal and irrelevant Schwinger functions, as well as from the integral interpolating
marginal Schwinger functions from the renormalization point to a generic one.
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The operator product expansion converges in perturbative field theory

Stefan Hollands

All quantum field theories with well-behaved ultra violet behavior are believed to
have an operator product expansion (OPE). This means that the product of any
two local fields located at nearby points1 x and y can be expanded in the form

(1) OA(x)OB(y) ∼
∑

C

CCAB(x, y) C(y),

where A,B,C are labels for the various local fields in the given theory (incor-
porating also their tensor character/spin), and where CCAB are certain numerical
coefficient functions—or rather distributions2—that depend on the theory under
consideration, the coupling constants, etc. The sign “∼” indicates that this can
be understood as an asymptotic expansion: If the sum on the right side is carried
out to a sufficiently large but finite order, then the remainder goes to zero fast as
x → y in the sense of operator insertions into a quantum state, or into a correla-
tion function. In the talk, I reported on a forthcoming joint work with C. Kopper,
which demonstrates in a specific model that the expansion is not only asymptotic
in this sense, but even converges, to arbitrary orders in perturbative Euclidean
quantum field theory.

Our result is not merely a technical footnote, but it furnishes an important
insight into the general structure of relativistic/Euclidean quantum field theory.
This is maybe best explained in the Minkowskian context. There, the analogue
of our result would be that correlation functions such as the two-point function

1In the Minkowskian context (relativistic quantum field theory), the points should not be
lightlike to each other.

2In a theory on Minkowski spacetime with translation invariance, these distributions only
depend upon the difference x− y.
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〈A(x)B(y)〉Ψ in a state3 ψ are entirely determined by the collection of OPE coef-
ficients which are state independent, together with the 1-point functions 〈C(y)〉Ψ:

(2) 〈A(x)B(y)〉Ψ =
∑

C

CCAB(x − y) 〈C(y)〉Ψ ,

where the infinite sum over “C” would be convergent, and |x− y| would not nec-
essarily have to be small. An analogous statement would apply to the higher
n-point functions. Thus, the OPE coefficients capture the state-independent al-
gebraic structure of QFT, while all the information about the quantum state is
contained in the 1-point functions (“form factors”). It has been conjectured fur-
thermore in [Zamolodchikov et al. 1994, Hollands & Wald 2008] that the OPE
coefficients have a convergent expansion in the coupling constants near an UV fixed
point, i.e. around a conformally invariant quantum field theory, provided that the
basis of composite fields A is also chosen in a suitable manner. If this is the case,
then all nonperturbative effects are encoded in this basis in the form factors.

In our recent work, we prove convergence of the OPE in the context of perturba-
tive quantum field theory, to arbitrary but finite orders in perturbation theory. For
simplicity, we work in a Euclidean formulation of the theory in flat 4-dimensional
space, and we consider a scalar field with self-interaction gϕ4 and mass m > 0.
The composite fields A in this model are simply linear combinations of monomials
in the basic field ϕ and its derivatives and are denoted by

(3) A = ∂w1ϕ · · · ∂wnϕ , A = {n,w} ,
where each wi is a 4-dimensional multi-index. We define the engineering dimension
of such a field as usual by

(4) [A] = n+
∑

i

|wi| .

Since the model is invariant under translations, the OPE-coefficient functions de-
pend only on the difference variable and are consequently denoted as CCAB(x) , x ∈
R4\{0}. Each such coefficient is itself a formal power series in ~ (“loop expansion”)
or (equivalently) in the coupling constant g. As usual in perturbation theory, we
are not concerned with the convergence of these expansions in g or ~. Instead, in
our work, we are concerned with the convergence of the OPE (i.e. the expansion
in “C”) at fixed order in g or ~.

To analyze this issue, we must insert the left- and right sides into a Schwinger
function containing suitable “spectator fields” which play the role of a quantum
state in the Euclidean context. A simple and natural choice for the spectator fields
is e.g.

(5) ϕ(fE) :=

∫

p,x

ϕ(x)f̂ (p/E) eipx

3The state should have a well-behaved high energy behavior. In the Minkowskian context, it
should e.g. have bounded energy E, see below for an appropriate replacement in the Euclidean
context.
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where f̂(p) is a smoothed out version of the characteristic function of a unit ball
in momentum space R4, or in fact any other smooth function of compact support
in the unit ball. Thus, the spectator fields are, roughly speaking, given by the
Fourier transformed field ϕ̂(p) integrated over a momentum space ball of radius
E. Our main result is the following:

Theorem 1. Let the sum
∑

C in the operator product expansion (1) be over all
C such that

(6) [C]− [A]− [B] ≤ δ

where δ is some positive number. Then for each such δ, we have the following
bound for the “remainder” in the OPE:

∣∣∣∣∣

〈
A(x)B(0)ϕ(fE) · · ·ϕ(fE)

〉
−
∑

C

CCAB(x)
〈
C(0)ϕ(fE) · · ·ϕ(fE)

〉∣∣∣∣∣(7)

≤
√
[A]![B]! K̃ [A]+[B] (sup |f̂ |)n m[A]+[B]+n sup(1,

E

m
)([A]+[B])(n/2+2l)+3n

×
l∑

λ=0

logλ sup(1, Em )

2λλ!

1√
δ!

(
K̃ m|x| sup(1,

E

m
)n/2+2l

)δ

Here, there are n spectator fields, 〈 . 〉 denote Schwinger functions, and K̃ is a
constant. The number l is the maximum number of loops, which is bounded by
1
2 ([A] + [B] + 2r − n) + 1 when r is the order in g to within which all quantities
are evaluated.

This result establishes the convergence of the OPE, i.e. the sum over C, at
each fixed order in perturbation theory, because the remainder evidently goes to
zero as δ → ∞. There are no conditions on x, so the OPE converges even at
arbitrarily large distances! But we note that such conditions would arise if we
were to replace the spectator fields with sharp momentum cutoff E by ones that

are averaged against a testfunction f̂(p) that is only decaying in momentum space,
and not of compact support. This can be understood in a way by the fact that E
gives a measure for the “typical energy” of the “state” in which we try to carry
out the OPE. As the high energy behavior of the “state” becomes worse, so do
the convergence properties of the OPE.

To prove the theorem, one first has to give a prescription for defining the Schwinger
functions and OPE coefficients in renormalized perturbation theory. There are
several options; in this paper we find it convenient to use the Wilson-Wegner-
Polchinski flow equation method. In this method, one first introduces an infrared
cutoff called Λ, and an ultraviolet cutoff called Λ0. One then defines the quantities
of interest for finite values of the cutoffs, and derives for them a flow equation as
a function of Λ. This may be solved iteratively with appropriate boundary (=
renormalization-) conditions, and one establishes certain bounds on the quantities
of interest which are uniform in Λ0. The last fact makes it possible to remove the



806 Oberwolfach Report 15/2011

UV cutoff, and at the same time provides non-trivial bounds. In our case, we need
bounds for the remainder in the OPE. Again, such bounds are verified iteratively.

While the general strategy is rather clear conceptually, it gets more involved
in practice. This is because a relatively refined induction hypothesis is required
to ensure that it replicates itself in the iteration process. The verification of the
induction step is thus the main technical task of this paper.

A side result of our estimations which may be of some interest is that the
“gradient expansion” of the effective action converges at each fixed number of
loops; the precise statement may be found in our forthcoming paper.

Towards renormalisation of the hierarchically interacting heavy-tailed
Λ-Cannings models

Anton Klimovsky

(joint work with Andreas Greven, Frank den Hollander, Sandra Kliem)

Initiated in a series of works by Dawson and Greven in 1993 (see, e.g., [4]), the
renormalisation programme for analysis and identification of the universal patterns
in population genetics models have been pursued since then by many authors,
see [9, 10, 5], for reviews. So far, only the universal patterns for the diffusive
models of population genetics have been analysed by the renormalisation group
(RG) methods. In this work, we initiate the renormalisation analysis of population
genetics models with jumps.

We introduce and study a class of dynamical stochastic models for genetics
of spatially extended populations called hierarchically interacting CΛ-processes
(HICΛP). The HICΛP models the space-time evolution of the allelic type distribu-
tions in spatially subdivided populations. The non-spatial version of HICΛP can
be obtained as the continuous time-mass limit of the Cannings model ([2, 3]) in
the heavy-tailed reproduction regime (dual to the Λ-coalescent, see, e.g., [1] for a
review). In this model, a single individual is allowed to have the progeny of the
size comparable with the size of the whole population.

The HICΛP takes into account the effects of

• migration between geographically structured colonies of individuals;
• local resampling: haploid reproduction within colonies under the con-
strained amount of resources;

• global resampling: occasional correlated extinction-colonisation events that
affect the whole patches of the geographical space.

An important feature of the HICΛP is its non-diffusive behaviour characterised
by the presence of jumps. The jumps reflect the substantial reproduction events
and abrupt changes in the environment that lead to the large-scale extinction-
colonisation effects.
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In this work, the geographical space is assumed to have a hierarchical structure,
cf. [11]. The individuals live in the colonies indexed by the hierarchical group:

ΩN =
{
η = (η(k))k∈N ∈ {0, 1, . . . , N − 1}N |

∑

k∈N

η(k) <∞
}
, N ∈ N.(1)

We endow the ΩN with the following ultrametric notion of distance

d(η, ζ) = min{k ∈ Z+ | η(l) = ζ(l), l > k}, η, ζ ∈ ΩN .(2)

Given η ∈ ΩN and k ∈ Z+, denote the k-vicinity of the colony η by

Bk(η) := {ζ ∈ ΩN | d(η, ζ) ≤ k}.(3)

We code the allelic types of individuals by the elements of some compact Polish
space E. We assume that at each site η ∈ ΩN there is a colony with allelic type

distribution X
(N)
η (t) ∈ M1(E) at time t ∈ R+. A similar setup for diffusive

population genetics models without the global resampling was treated in [6].

Informally, the HICΛP X(N) = (X
(N)
η (t))t∈R+,η∈ΩN

is the Markov process with
the following evolution rules:

• Initial distribution is given by the distribution of types θΩN , where θ ∈
M1(E).

• Migration is parametrised by the sequence of migration rates between the
colonies: (ck)k∈Z+ ∈ (0,+∞)Z+ . The migration is performed as follows.
The individuals living in colonies labelled by ΩN perform the hierarchical
random walk (HRW, cf. [7]), i.e., each individual chooses the radius k ∈ N

at rate ck/N
k and jumps to a new location chosen uniformly at random

within the k-vicinity around its current position.
• Local/global resampling is parametrised by the sequence of finite resam-
pling measures (Λk)k∈Z+ ∈ Mfinite((0, 1])

Z+ that specify the rates at which
the resampling of the given scale occurs. The resampling is performed ac-
cording to the following algorithm:
(1) For each colony η ∈ ΩN , the radius k ∈ Z+ is chosen at rate 1/N2k.
(2) A parent individual is drawn uniformly form Bk(η).
(3) Reshuffling: each individual in Bk(η) is relocated independently to a

uniformly chosen location in Bk(η).
(4) A number r ∈ (0; 1] is chosen at rate Λ(dr)/r2. The proportion r

of uniformly chosen in Bk(η) individuals are substituted with the
offspring of the parent individual. The offspring receive the allelic
type of the parent.

The non-spatial single-colony CΛ process (NSCΛP) is a M1(E)-valued simpli-
fication of the HICΛP for the geographical space that consists just from a single
colony. Therefore, the dynamics of the NSCΛP has no migration part. The re-
sampling part is defined as the HICΛP one corresponding to k = 0 and is, hence,
parametrised by a single resampling measure Λ ∈ M1((0, 1]).
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Main results. We employ the RG type of multi-scale analysis as a tool to study
the large space-time scale behaviour of the HICΛP in the hierarchical mean-field
limit N → +∞.

In particular, we consider the spatial averages of the HICΛP

(4) Y
(N)
η,k (t) =

1

Nk

∑

ζ∈Bk(η)

X
(N)
ζ (t), η ∈ ΩN , k ∈ Z+.

We identify the weak limit for (4) at macroscopic times, i.e., for Y
(N)
η,k (tNk), as

N → +∞. It turns out that the weak limit of (4) is the sum of the following three
components:

(1) the NSCΛP with the resampling measure Λk;
(2) the diffusive Fleming-Viot process (see, e.g., [8] for a review) with constant

volatility dk that can be specified in terms of the migration and resampling
rates, cf. (6) below;

(3) drift of the speed ck towards the initial distribution θ ∈ M1(E) of the
HICΛP.

We denote the above described three-component M1(E)-valued process by

(5) Zck,dk,Λk

θ =
(
Zck,dk,Λk

θ (t)
)
t∈R+

.

To specify the volatility constants (dk) of the Fleming-Viot process, define the
sequence of the total resampling rates λk := Λk(0, 1], k ∈ Z+. Now, the volatil-
ity constants d = (dk)k∈Z+ are defined recursively as iterations of the Möbius
transformation:

(6) d0 = 0, dk+1 =
ck(

1
2λk + dk)

ck + (12λk + dk)
, k ∈ Z+.

Let L[·] denote law of “·” and “=⇒” the weak convergence on the Skorokhod path
space D(R+,M1(E)). We arrive at the following result.

Theorem 2 (Macroscopic behaviour). For every k ∈ N, uniformly in η ∈ ΩN , as
N → +∞,

(7) L
[(
Y

(N)
η,k (tNk)

)
t∈R+

]
=⇒ L

[(
Zck,dk,Λk

θ (t)
)
t∈R+

]
.

Analysing the recurrence (6), we show that, depending on the migration and
the resampling rates, the ergodic behaviour of the HICΛP displays either (1) co-
existence of several allelic types within colonies, or (2) clustering, i.e., emergence
of mono-type colonies. For each the above two ergodic behaviours, we identify the
corresponding regimes of parameters that lead to them.
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Towards microscopic models of nonlinear elasticity

Roman Kotecky

I give an overview of nonlinear elasticity with the idea that this is a new region
for application of the renormalization group methods. When discussing the links
between microscopic and macroscopic theory I state some results including large
deviation principle and the asymptotic behaviors in terms of Gradient Young-
Gibbs measures.

Kinetic scaling limits, Boltzmann equations, and Bose condensates

Jani Lukkarinen

(joint work with Jogia Bandyopadhyay, Antti Kupiainen, and Herbert Spohn)

The first part of the talk concerns the results derived in [1] for the discrete nonlinear
Schrödinger equation (dNLS). We study the evolution of a complex valued wave
field ψt(x), x ∈ Λ, satisfying i ddtψt(x) =

∑
y∈Λ α(x − y)ψt(y) + λ|ψt(x)|2ψt(x).

The particles move on a finite periodic lattice Λ, with α(x) defining the hopping
amplitudes, assumed to be real, symmetric, and sufficiently well localized. We also
consider only the dispersive case λ ≥ 0. Then standard methods guarantee the
existence and uniqueness of a global solution for any initial data ψ0 : Λ → C.

This system is Hamiltonian, with two conserved quantities: energy, HΛ(ψ) =∑
x,y∈Λ α(x − y)ψ(x)∗ψ(y) + 1

2λ
∑

x∈Λ |ψ(x)|4, and norm ‖ψ‖2 :=
∑
x∈Λ |ψ(x)|2.

The corresponding Gibbs ensemble has a weight function e−β(HΛ(ψ)−µ‖ψ‖2)/ZλΛ,
where β > 0 is the inverse temperature and µ ∈ R the chemical potential. We
choose this as a random distribution of our initial data ψ0, and let ψt(x) be
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defined by the corresponding unique solution to the dNLS, thus making it a random
variable. Physically, this means that the wave field is in thermal equilibrium.

We have to impose two types of assumptions. The first one requires that the
initial measure is “ℓ1-clustering”: we assume that all of its cumulants are absolutely
summable (with one of the arguments held fixed), and that this sum is uniformly
bounded in |Λ| and increases at most like a power of n! in the degree n of the
cumulant. In addition, we need that the corrections to the covariance are uniformly
O(λ). These properties are proven by Abdesselam, Procacci, and Scoppola in [2]
for a large class of coupling functions α and β, µ. The second set of assumptions
relates to the dispersivity of the free evolution (corresponding to λ = 0). The
precise conditions can be found in the original publication, where we also prove
that they hold for the standard nearest neighbor interactions whenever d ≥ 4.

The main theorem concerns the field-field time-correlations, more precisely, the

observable QλΛ[g, f ](t) = E[〈f̂ , ψ̂0〉∗〈e−iωλt/εĝ, ψ̂t/ε〉], where ε = λ2, and f, g are
arbitrary test functions with a finite support. In order to get a well-defined limit,
it is necessary to cancel rapidly oscillating factors. The oscillations are produced
by the free evolution and first order corrections, and the following choice suffices
in the present case: set ωλ(k) := ω(k) + λR0, where ω : Td → R denotes the free
dispersion relation, defined by ω = α̂, and R0 = R0(λ,Λ) = 2EλΛ[|ψ0(0)|2].

Theorem 3. Under the previous assumptions, there is t0 > 0 such that for |t| < t0,

lim
λ→0

lim sup
Λ→∞

∣∣∣QλΛ[g, f ](t)−
∫

Td

dk ĝ(k)∗f̂(k)W (k)e−Γ1(k)|t|−itΓ2(k)
∣∣∣ = 0 .

Here W (k) = β−1(ω(k) − µ)−1 is the Fourier transform of the covariance of
the free Gaussian measure, and Γj(k) are real, with Γ(k) = Γ1(k) + iΓ2(k) having
an explicit integral representation which we do not reproduce here. In particular,
Γ1(k) ≥ 0, and thus the corresponding factor provides exponential damping in time
for those k with Γ1(k) > 0. Heuristically, the theorem states that for all not too

large t = O(λ−2), we have E[ψ̂0(k
′)∗ψ̂t(k)] ≈ δ(k′ − k)W (k)e−iωλ

ren(k)te−|λ2t|Γ1(k),
where ωλren(k) = ω(k) + λR0 + λ2Γ2(k).

The proof of this result is based on perturbation and cluster expansions, followed
by a classification of the resulting terms based on their “momentum integration”
structure. This shows that only a small fraction of the terms contributes to the
limit, and summing over these terms yields the explicit representation for Γ(k)
mentioned above. In the second part of the talk we consider an application of the
above scheme for a weakly interacting quantum fluid, composed out of identical
spinless bosons. Although an important part of the previous analysis is still miss-
ing in that case, namely an effective estimation of the remainder terms, most of
the estimates carry over, provided ℓ1-clustering is understood to hold in the corre-
sponding quantum mechanical sense. In this manner, we obtain a conjecture not
only for time-correlations but also for the time-evolution of the reduced density
matrix, assuming that the initial state is translation invariant and ℓ1-clustering.
This leads to the standard Boltzmann-Nordheim (BN) equation, cf. [3].
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However, at low temperatures such Bose fluids can exhibit Bose condensation
where a macroscopic number of fluid particles form a condensate. If this happens,
there is no reason to expect ℓ1-clustering to hold. Thus it is not clear if the kinetic
scaling limit will suffice to describe any condensation phenomena, since it might
require processes (graphs) which become visible only after the kinetic time-scale,
for t = O(λ−p), p > 2. The main content of the second part of the talk is to
present evidence which indicates that dynamical condensation can occur already
on a finite kinetic time-scale. However, this evidence also indicates that great care
must be taken in applying the BN equation when a condensate is present: the
system will develop singularities and one cannot neglect the interaction between
the normal fluid and the condensate.

For weakly interacting bosons, with translation invariant, quasi-free, and ap-
propriately ℓ1-clustering initial data, the kinetic conjecture states that the Fourier
transform of the reduced 1-particle density matrix ρ1(r1, r2, t) =: gt(r1−r2) should
have a convergent kinetic scaling limit W (v, τ) := limλ→0+ ĝλ−2τ (v). The limit
should also satisfy the homogeneous BN equation ∂tW (v, t) = C4[W (·, t)](v), with
initial data W (v, 0) = ĝ0(v). (This is a generalization of Conjecture 5.1 in [3] to a
continuum setup.)

If W (v, 0) is isotropic (depends only on |v| =
√
2x, x denoting the kinetic

energy), then the above equation can be greatly simplified, and the remaining
discussion only concerns this simpler isotropic case. When started with smooth,
but supercritical, initial data, the numerical solution to this equation exhibits a
blowup at x = 0 in a finite time [4]. It is not obvious what, if anything, should be
done with this equation after the blowup. Mathematically, three different options
present themselves for the continuation. 1) Pointwise: One could continue using
the previous evolution equation for x > 0 with initial data which is singular at
x = 0. In the explicit case of x−7/6 singularity, this has been shown to lead to
a local existence of solutions which preserve the strength of the singularity, but
not mass [5]. 2) Measure valued: One could view the BN equation as a weak
evolution equation for positive measures in x. This has been studied in [6] where
it is shown that such solutions with many physically desirable properties, such as
conservation of mass and energy, can be found. Possible non-uniqueness and non-
constructive nature of these solutions presents problems for practical applications.
3) Physical ansatz: In [4] and [7], an explicit measure valued ansatz in the
form f reg(x, t)

√
xdx + n(t)δ(x)dx is studied. The coupled evolution equation for

f reg(x, t) and n(t) can be solved numerically. Moreover, the thermal equilibrium
states are then stationary. However, it was not shown if this set of equations is free
from blowup, and there is no clear mechanism for generation of the condensate if
initially n(0) = 0.

In [8], we consider a slight generalization of the last set of evolution equations.
Imposing explicit conservation of mass we obtain a closed non-linear evolution
equation for f reg(x, t), of the form

d

dt
f reg(x, t) = C4[f reg(·, t)](x) + (mtot(0)−m[f reg(·, t)])C3[f reg(·, t)](x)(1)
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where C3 is obtained from inserting the ansatz into C4. We study the existence and
asymptotics of solutions to this nonlinear equation, assuming that the initial state
f reg(x, 0) is a small perturbation (in a specific norm which is adapted to handle
all singularities) of the stationary solution fβ,0(x) := 1/(eβx − 1), β > 0.

Although such problems are commonplace in the literature, due to marginal
and competing singularities, the analysis in this case is not straightforward. By
developing a strong control for the linearized evolution, we prove in [8] that, if the
initial data contains a condensate and is a small perturbation of an equilibrium
state, then there exists a solution f reg(x, t), this solution conserves total energy
and mass, and it converges exponentially fast to equilibrium: f reg → fβ,0, and
n(t) → mtot(0) −m[fβ,0] as t → ∞. Moreover, the equations derived in [7] are
satisfied and the corresponding family of measures provides a weak solution to the
original BN equation, as considered in [6]. This gives some support to the validity
of the evolution equation (1). However, two major open questions remain. First,
in case a condensate is generated, does (1) have a unique solution which would
describe the condensation? Secondly, is it possible to extend the perturbative
scheme for initial data which are not ℓ1-clustering, and this way to arrive to (1)
instead of the standard BN equation?
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Time evolution of the external field problem in QED

Franz Merkl

(joint work with Dirk Deckert, Detlef Dürr, Martin Schottenloher)

Let A ∈ C∞
c (R4,R4) be a classical, external vector potential, UA(t1, t0) : H =

L2(R
2,C4) → H be the Dirac time evolution from time t0 to time t1 in the time-

dependent external potential A. Let H = H+ ⊕ H− be the splitting of H in the
negative and positive spectral subspace of the free Dirac operator, P+ : H → H+

and P− : H → H− and F the associated fermionic Fock spaces with field operators

Ψ,Ψ+ : F × H → F . We say that a unitary map Ũ : F → F lifts a unitary map
U : H → H if Ψ(+)(Ũφ, Uχ) = ŨΨ(+)(φ, χ) holds for all φ ∈ F and χ ∈ H.
The classical Shale-Stinespring criterion [9], [6] states the following: For unitary

U : H → H, there is a unitary map Ũ : F → F that lifts U if and only if the
“non-diagonal parts” P+UP− and P−UP+ are Hilbert-Schmidt operators.
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The following has been observed already in the 1970’s (see [1] and [7]; there
are other versions by many people): The maps UA(t1, t0) can be lifted to F for all
times t0 and t1 if and only if A1 = A2 = A3 = 0.
Positive results. Langmann and Mickelsson [4], [5] constructed a family of
unitary maps Tt, t ∈ R, such that the “renormalized time evolution” V A(t1, t0) =
Tt1U

A(t1, t0)T
−1
t0 can be lifted to F for all times t1, t0. Their maps Tt depend on

the vector potential A(t) at time t and on finitely many time derivatives ∂
∂tA(t).

As a corollary, the S-operator can be lifted; this has also been proven by Scharf
(see Chapter 2 in [8]) using a different technique than Langmann and Mickelsson.

There is quite some freedom in the choice of the renormalization map Tt. It
seems natural to work with varying Fock spaces Ft, t ∈ R, corresponding to varying
splittings (polarizations) H = H+(t)⊕H−(t).

Definition: A polarization of H is a closed, linear subspace V ⊂ H such that V
and V ⊥ have infinite dimension. Two polarisations V andW are called equivalent,
V ≈ W , if the orthogonal projections PV and PW to V and W differ only by a
Hilbert-Schmidt operator. Let Pol(H) denote the set of all polarizations on H.

The identity map on H lifts to a “Bogoliubov-transform” B : F(V, V ⊥) →
F(W,W⊥) between the Fock spaces F(V, V ⊥), F(W,W⊥) associated to V and W
if and only if V ≈W .

For V ≈W , the restriction PW |V →W is a a Fredholm operator. Its Fredholm
index charge(V,W ) is called the relative charge between V and W . The finer
relation V ≈0 W , defined by W ≈W and charge(V,W ) = 0 is also an equivalence
relation. The finer relation V ≈0 W holds if and only if for any c ∈ Z, the
Bogoliubov transform B maps the charge c sector of F(V, V ⊥) to the charge c
sector of F(W,W⊥).

Theorem (see [2]): There is a map C : C∞
c (R3,R4) → Pol(H)/≈0, having the

following properties:

(1) C(0) = [H−]≈0 .
(2) For all A ∈ C∞

c (R3,R4) and t0, t1 ∈ R, one has UA(t1, t0)C(A(t0) =
C(A(t1)). In particular, for V ∈ C(A(t0) and W ∈ C(A(t1)), the time
evolution UA(t1, t0) : H → H lifts to a charge-preserving unitary map

ŨA(t1, t0);F(V, V ⊥) → F(W,W⊥).

(3) For A,A′ ∈ C∞
c (R3,R4), the classes C(A) and C(A′) are equal if and only

if Aµ = A′
µ holds for µ = 1, 2, 3.

The author believes that for A 6= 0, there is no physically distinguished repre-
sentative V ∈ C(A). However, there are several “mathematically nice” represen-
tatives. Here are a few examples:
1. If Tt denotes again Langmann/Mickelsson’s renormalization map, described in
[4], then T−1

t ∈ C(A(t)) holds for t ∈ R. This implies that the the class [T−1
t H−]≈0

does not depend on time derivatives, although T−1
t H− may depend on time deriva-

tives.
2. For A ∈ C∞

c (R3,R4), let ZA(p, q), p, q ∈ R3 denote the interaction term in the
Dirac equation in momentum representation, P±(p) be the representation of the
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projections P± : H → H± in momentum space as multiplication operators, and
QA : H → H be the bounded operator having the following kernel in momentum
representation:

R3 × R3 ∋ (p, q) 7→ P+(p)Z
A(p, q)P−(q)− P−(p)ZA(p, q)P−(q)

i(E(p) + E(q))
,

where E(p) =
√
p2 +m2. Then one has C(A) = [eQ

A

]≈0 .
3. For A ∈ C∞

c (R3,R4), the essential spectrum of the Dirac operator HA equals
(−∞,−m] ∪ [m,∞). For −m < E < m, let VE denote the spectral subspace
belonging to the part (−∞, E] ∩ σ(HA) of the spectrum of the Dirac operator
with static potential A. Then VE ≈ V for all V ∈ C(A). This observation was
already made by Fierz and Scharf in [3], it is presented here in a different notation.
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Towards Renormalizing Group Field Theory

Vincent Rivasseau

This talk is based on the program [1].
The first part of the talk introduced various kinds of renormalization group

which rely on different notions of scale decomposition and locality principles and
lead to different power countings. Scalar field theories are a primary example of
ordinary renormalization group. In condensed matter renormalization group the
scales measure distance to the Fermi surface and power counting is independent of
the dimension [2]. The renormalization group associated to the Grosse-Wulkenhaar
model, a quantum field theory on the non commutative four dimensional Moyal
space, is even more exotic. The slices mix ultraviolet and infrared, the locality
principle is replaced by Moyality, and the power counting is that of a matrix model
[3].
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These examples point towards the possibility that quantum gravity might be
also renormalizable quantum field theory after all, but in such an exotic sense.
In the second part of the talk we reviewed briefly matrix models for 2d gravity
and group field theories [4, 5]. Then we present the colored group field theories
invented and developped by Razvan Gurau [6, 7] which are a promising formal-
ism for summing over different space-time topologies in dimension 3 and 4. In
particular these models admit a 1/N expansion in which the leading order graphs
triangulate the sphere, in any dimension [8, 9, 10].
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From stochastic calculus to constructive field theory

Jérémie Unterberger

Let B = (B1, . . . , Bd) be a fractional Brownian motion of Hurst index α ∈ (0, 1)
with d independent, identically distributed components. The paths of this Gauss-
ian process are continuous but very ”rough”, actually α-Hölder, or more precisely
α−-Hölder for every α− < α. This makes the very definition of stochastic integra-
tion along B or of solutions of stochastic differential equations driven by B a dif-
ficult problem, the solution of which is gradually emerging, with deep connections
to sub-Riemannian geometry [4], combinatorial Hopf algebras of trees [21, 20, 2],
and quantum field theory, more specifically renormalization [19]. Contrary to the
case of usual Brownian motion (given by α = 1/2), stochastic integrals may not
be defined for small α by straightforward, e.g. piecewise linear approximations.
Rough path theory [10, 11] shows that the key problem lies in a proper definition
of iterated integrals of B of order 2, 3, . . . , N , with N = ⌊1/α⌋, ⌊ . ⌋=integer part,
making up together what is called a rough path over B. The usual definition of
rough paths is based on an axiomatization of the geometric properties of the iter-
ated integrals of a smooth path, which may be considered (using Green-Riemann’s
formula) as (signed) areas and volumes generated by the path; these properties
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may be summarized by stating that the stack of iterated integrals are regular lifts
of the path to sections of the trivial GN -principal bundle over R (time coordinate),
where GN is a free nilpotent (or Carnot-Carathéodory) group of rank N . Regu-
lar lifts are unique in the smooth case, whereas Hölder-continuous lifts for Hölder
continuous paths are non-canonical. Let us simply say here that a rough path over
B is a limit in appropriate Hölder norms of iterated integrals of order 2, 3, . . . , N
of a sequence of approximations of B converging to B in α−-Hölder norm. Other
more geometric or algebraic definitions exist, which are shown to be equivalent
by using piecewise sub-Riemannian geodesic approximations, the natural (but far
less explicit, especially for large N , due to the notorious difficulty of construc-
tion of geodesics in this setting) generalization of piecewise linear approximations.
Despite an abstract (non constructive) proof of existence [12], and several recent
investigations [21, 20, 2] yielding a sort of general classification of rough paths
in the algebraic sense, the series of papers starting with [13] gives the first con-
struction of a rough path over B for α ≤ 1/4 by means of an explicit sequence of
approximations. The barrier at α = 1/4 has been recognized by several authors
using different approaches [1, 14, 17, 18], and shown to extend to other models as
well [6].

Our solution relies on the previously mentioned algebraic investigations, which
have brought to the light the crucial importance of the use of skeleton integrals
instead of iterated integrals and of the concept of Fourier normal ordering, and –
most essentially – on the reformulation of this problem in the language of quan-
tum field theory. We shall concentrate here on the construction of second-order
iterated integrals of fBm with α ∈ (1/8, 1/4) and d = 2. The singular part of
the area of fBm is the sum of two terms, A±(t) − A±(s), which are simply in-
crements of two functions A±. These diverge in the ultra-violet limit. In other
words, A± diverges because of the contribution of highest frequency components
of B. Precise statements may be given if one decomposes the ”signal” B into its
different ”scales” by using a dyadic Fourier partition of unity. This is well-known
to those acquainted either to Besov spaces, wavelets or quantum field theory.
Replacing B with the cut-off field B→ρ =

∑ρ
j=−∞Bj , with FBj supported on

[M j−1,M j+1] ∪ [−M j+1,−M j−1] for some fixed base M > 1, one obtains cut-off
functions A→ρ, A = A±, whose variance diverges like Mρ(1−4α) when ρ → ∞.
This quantity may be expressed as an ultra-violet diverging Feynman diagram,
see Fig. 1. Pursuing this reinterpretation, it is tempting to consider the entire
bubble series instead of the single bubble diagram. By inserting thin lines with the
correct scaling dimension between the bubbles, and considering vertices with an
imaginary coupling constant iλ, one obtains a geometric series (see Fig. 2) which
formally sums up to a finite quantity, with the correct degree of homogeneity.

Formally again, 1 − λ2
(
Mρ

|ξ|

)1−4α

+ λ4
(
Mρ

|ξ|

)2(1−4α)

+ . . . = 1
1+λ2(Mρ/|ξ|)1−4α ,

a very small quantity (for ρ → ∞), measuring an almost insensitive interaction
but sufficient to make the Lévy area converge. As explained in [13], section 3, this
may be implemented (in theory at least) by multiplying the statistical weight of
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Figure 2. Bubble series. Thin lines scale as 1/|ξ|1−4α.

the Gaussian paths by the exponential

e−
1
2 c

′
αλ

2
∫ ∫

dt1dt2|t1−t2|−4α(∂A+(t1)∂A+(t2)+∂A−(t1)∂A−(t2)).(1)

Mathematically this sounds like a joke, since we are well beyond the radius of
convergence of the series, even for small λ. But such summations may be performed
rigorously scale after scale in a finite time horizon V = [−T, T ], going down from
scale ρ to scale −∞, uniformly in ρ and V . A quantum field theoretic model
underlying this may be defined, yielding a sequence of Gibbs measures Pλ,V,ρ
which converges weakly to a unique probability measure Pλ when |V |, ρ → +∞.
The law of the process B under this measure is the same as its initial, Gaussian
measure, but the cut-off singular quantities A→ρ in the interacting measures Pλ,V,ρ
converge to give ultimately a finite rough path over the limit process B.
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[21] J. Unterberger. Hölder-continuous paths by Fourier normal ordering, Comm. Math. Phys.

298 (1), 16636 (2010).
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Geometric flows as RG flows

Eric Woolgar

In the first of two talks, I give an introduction to geometric flows. Examples of
such flows include the Ricci flow, the mean curvature flow, the Calabi flow, and
others. I first review some of the basics of Riemannian geometry, and then discuss
the naturality property under t-independent diffeomorphisms which makes these
flows “geometric”. Hamilton’s Ricci flow [7] is not a parabolic system, but that a
trick of DeTurck [2] produces a parabolic system which is related to Ricci flow via
pullback by a t-dependent diffeomorphism. Friedan [4] showed that this flow arises
as the 1-loop approximation to the RG flow of a 2-dimensional bosonic nonlinear
sigma model. Where scales are such that multi-loop corrections can be ignored,
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ancient solutions (those defined for t ∈ (−∞, 0)) of the flow correspond to cut-off
removal. For two-dimensional target spaces at least, ancient solutions of the 1-loop
are asymptotically free.

The C-theorem [15, 13] states that the RG flow has a monotonicity property.
A stronger result follows for Ricci flow (and the 1-loop RG flow) with Perelman’s
special choice for the DeTurck term. This flow is in fact the gradient of Perelman’s
energy functional [12], a fact which was first noticed in the special case of 2-
dimensional target space in [3]. Tseytlin [14] has argued that this implies that
the full RG flow of the nonlinear sigma model is therefore gradient flow whenever
the perturbative expansion is valid (but see also [10]). Remarkably, the gradient
formula extends to the case of a nonlinear sigma model with antisymmetric B-field
[10].

In the second talk, I concentrate on the Ricci flow of asymptotically flat man-
ifolds and the behaviour of mass under Ricci flow, as described in [11]. This is
motivated by a conjecture [5] for the evolution of closed bosonic strings. It is be-
lieved that a system of bosonic strings should decay from a false vacuum to a true
vacuum, a phenomenon known as tachyon condensation. As this happens, closed
string graviton excitations should carry away energy, so the total mass-energy of
the system should decrease. As well, the evolution should be driven by the RG
β-function and should be friction-dominated, so the evolution equation should be
approximately Ricci flow. In [5] a Ricci soliton is found which describes this pro-
cess for strings in a 2-dimensional target manifold. The soliton is asymptotic to
a flat cone, whose cone angle does not change under the evolution, but which has
flat space as its geometric limit as t → ∞. Since asymptotic cone angle is the
2-dimensional mass, we see that the mass does not change during the flow, but
instead decreases by jumping to zero in the limit of infinite time.

In [11], we show that this behaviour is seen in all dimensions. Specifically,
for rotationally symmetric asymptotically flat initial metrics in all dimensions, if
there is no minimal surface present in this initial data then no minimal surface
ever forms during evolution by Ricci flow, so no neck-pinch singularity occurs, and
indeed the flow exists for all time and converges to flat space. However, during
the flow, the mass never varies from its initial value. We take this as confirmation
of the string theory picture.

In the last part of the talk, I deal with an asymptotically flat Ricci flow system
in which the rotational SO(d) symmetry is broken to R× SO(d− 1). Fixed points
of this flow correspond to solutions of the static Einstein equations [6], which play
an important role in General Relativity. This flow system was introduced by List
[8] and may be a useful way to address a long-standing conjecture by Bartnik [1].
This flow was studied on Rn in [6], where we were able to compute many estimates
and show in the d = 3 case that the flow exists for t ∈ [0,∞) when no minimal
surfaces are present initially (as with Ricci flow, then no minimal surface will
form). The Bartnik conjecture concerns the class of asymptotically flat manifolds
that have nonnegative scalar curvature, no closed minimal hypersurfaces, and an
inner boundary B. It is conjectured that there are asymptotically flat solutions of
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the static Einstein equations on M := Rd−1\K, K a closed ball, obeying certain
so-called geometric boundary conditions (see [1]) on B = ∂M , and these solu-
tions minimize the mass functional. An approach to the conjecture via geometric
flows will require an understanding of such flow on manifolds with boundary. We
currently lack such understanding in all but a few simple cases.
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