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March 20th – March 26th, 2011

Abstract. The subject of this workshop was numerical methods that pre-
serve geometric properties of the flow of an ordinary or partial differential
equation. This was complemented by the question as to how structure preser-
vation affects the long-time behaviour of numerical methods.

Mathematics Subject Classification (2000): 65xx.

Introduction by the Organisers

The subject of this workshop was numerical methods that preserve geometric prop-
erties of the flow of an ordinary or partial differential equation: symplectic and
multisymplectic integrators for Hamiltonian systems, symmetric integrators for
reversible systems, methods preserving first integrals and numerical methods on
manifolds, including Lie group methods and integrators for constrained mechanical
systems, and methods for problems with highly oscillatory solutions. The unifying
theme is structure preservation: not just the ”how?” but also ”why?”, ”where?”
and ”what for?”.
The motivation for developing structure-preserving algorithms for special classes
of problems arises independently in such diverse areas of research as astronomy,
molecular dynamics, mechanics, control theory, theoretical physics, electrical and
electronic engineering and numerical analysis with important contributions from
other areas of both applied and pure mathematics. Moreover, it turns out that
the preservation of geometric properties of the flow not only produces an improved
qualitative behaviour, but also allows for a significantly more accurate long-time
integration than with general-purpose methods.
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Geometric numerical integration has been an active and interdisciplinary research
area in the last two decades. While the core of the subject is well documented in
the monographs

E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Inte-
gration. Springer, Berlin, 2nd edition, 2006,

K. Feng, M. Qin, Symplectic Geometric Algorithms for Hamilton-
ian systems. Springer, Berlin, 2010

and

B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics.
Cambridge Univ. Press, 2004,

the area in its wider sense has in recent years undergone substantial and exciting
developments:

1. Backward error analysis for infinite-dimensional systems, using modulated
Fourier expansions and normal forms. This has, for the first time, brought
partial differential equations to within the realm of backward error anal-
ysis, thereby helping to understand the long-term behaviour of numerical
methods;

2. The understanding of numerical methods using tools from Hopf algebra
and graph theory. This has clarified the sort of invariants that B-series-
based numerical methods can respect. Thus, for example, such methods
cannot conserve volume but they can be designed to respect Hamiltonian
energy;

3. Understanding of symplectic structure of exponential integrators and the
design of exponential integrators best capable of dealing with highly oscil-
latory solutions;

4. The design of asymptotic numerical approaches to numerical integration of
highly oscillatory ODEs and DAEs, applications in electronic engineering
and in control theory;

5. The analysis of multiscale algorithms, not least of the Heterogeneous Mul-
tiscale method, with modulated Fourier series;

6. The understanding how symmetries in differential equations and in dis-
cretized systems can be exploited by means of group theory and harmonic
analysis, to reduce the cost of computations;

7. Geometric integrators for Maxwell and wave equations, applications in
astrophysics, plasma physics and nano-optics;

8. Application of geometric integrators to the Schrödinger equation and re-
duced models in quantum mechanics;

9. Better understanding of geometric integrators in the context of molecular
dynamics and macro-molecule modelling.
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The intention of this second Oberwolfach workshop on geometric numerical inte-
gration (a first one was held in 2006) was to address these recent developments.
Geometric numerical integration is by its very nature a multidisciplinary topic and
this was well reflected in the workshop.
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Abstracts

Hybrid Monte-Carlo sampling on Hilbert spaces and Geometric
Integration

J.M. Sanz-Serna

(joint work with A. Beskos, F.J. Pinski, A.M. Stuart)

We address the problem of sampling from a probability distribution π defined on
a Hilbert space H. In a typical application one may have to deal with an evolu-
tionary partial differential equation whose initial datum f is unknown and has to
be estimated statistically by using solution values ui obtained experimentally. In
a Bayesian approach one assumes a prior distribution π0 for f in a suitable space
H and then the available measurements ui determine, via Bayes theorem, the cor-
responding posterior distribution π. This posterior is analytically intractable and
any desired information —such as its expectation or variance— has to be deter-
mined through Monte Carlo techniques: hence the need to sample from π. The
study of conditioned diffusion also requires sampling from distributions defined on
a Hilbert space.

We assume that (as it is the case in the applications we have just mentioned)
the target distribution π is defined by prescribing its negative log-density Φ with
respect to a reference Gaussian measure π0:

dπ

dπ0
(q) ∝ exp

(
−Φ(q)

)
.

In turn π0 is specified by its mean and its covariance operator C.
For probability distributions defined on RN , the hybrid Monte Carlo method

(HMC), introduced in [3], provides a useful technique because it generates samples
f (n) that do not lie in the neighbourhood of f (n−1): in this way the correlations
in the chain are small and the algorithm has the possibility of exploring the whole
state space with a moderate computational effort. HMC makes proposals by in-
tegrating with the Verlet method a Hamiltonian systems of differential equations;
a Metropolis-Hastings accept/reject rule is employed to ensure that the generated
chain is reversible with respect to π. The choice of Verlet as an integrator is dic-
tated by its good geometric properties: it is essential that the time-stepper be
time-reversible and volume-preserving.

Since standard HMC handles (finite-dimensional) distributions through their
densities with respect to the standard Lebesgue measure in RN and those densities
have no counterpart in H, it is clear that HMC cannot be directly applied to the
task of sampling from the target π on H. An indirect use would consist of first
discretizing H and π and then applying HMC to the resulting finite-dimensional
problem. (For instance in the partial differential equation case mentioned above
one may represent the real function f by its values at N points in a spatial grid
and replace H by RN .) However such indirect approach is unsatisfactory: the
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performance of HMC is known [1] to degrade with increasing N and the time-
step ∆t in the Verlet algorithm has to be chosen smaller and smaller as N ↑ ∞
if the acceptance probability is to remain bounded away from zero. There is no
need to say that with ∆t very small the computational cost becomes prohibitive.
The situation is therefore akin to that found in the time-integration of, say, the
heat equation with an explicit method, say Euler’s rule. The method does not
make sense if the heat equation is seen as an evolution equation on a Hilbert
space H (the relevant infinitesimal generator —the Laplacian— is unbounded).
One may first discretize in space to replace the unbounded operator by a large
N×N differentiation matrix and then apply Euler to integrate in time the resulting
system of ordinary differential equations. However for N large the matrices are
necessarily ill-conditioned (they approximate an unbounded operator) and a very
small value of ∆t is required to ensure stability.

The preceding considerations show the advisability of introducing variants of
HMC that may be applied on H (or —if one prefers— that may be applied on
discretized state spaces with a probability of acceptance independent of the dis-
cretization parameter N). One algorithm that fulfils those requirements has re-
cently been introduced in [2] and may be written purely in terms of the elements
Φ and π0 that define π without invoking any finite-dimensional approximations.
Reference [2] shows (i) how to define a suitable infinite-dimensional Hamiltonian
dynamics to guide the proposal mechanism, (ii) how to numerically integrate the
Hamiltonian problem and (iii) how to formulate a suitable accept/reject rule.

For simplicity [2] only considers a simple time-integrator à la Strang. There is
much scope for improvements by means of more sophisticated split-step methods
and any help in that connection would be most welcome.

References

[1] A. Beskos, N.S. Pillai, G.O. Roberts, J.M. Sanz-Serna, A.M. Stuart, Optimal tuning of
Hybrid Monte-Carlo, submitted.

[2] A. Beskos, F.J. Pinski, J.M. Sanz-Serna, A.M. Stuart, Hybrid Monte-Carlo on Hilbert spaces,
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Numerical stroboscopic averaging for ODEs and DAEs

Mari Paz Calvo

(joint work with Ph. Chartier, A. Murua and J.M. Sanz-Serna)

We consider differential systems of the form

(1)
dy

dt
= f(y,

t

ǫ
; ǫ), t0 ≤ t ≤ t0 + L,

with initial condition y(t0) = y0 ∈ Rd, where f(y, τ ; ǫ) is 2π-periodic in τ = t/ǫ, ǫ
is a small parameter and, as ǫ ↓ 0, L = O(1). Our attention is restricted to cases
where f = O(1/ǫ) and the corresponding Poincaré map Ψt0;ǫ, which advances the
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solution over one period 2πǫ starting from t = t0, is an O(ǫ) perturbation of the
identity as ǫ ↓ 0. For a list of families of problems fitting in this framework, see
[3].

In what follows we describe the stroboscopic averaging method (SAM) intro-
duced in [2]. If ϕt0,t;ǫ denotes the solution operator of (1), then Ψt0;ǫ = ϕt0,t0+2πǫ;ǫ.
One important observation is that Ψt0;ǫ depends on t0 in a 2πǫ-periodic manner
and, consequently, at stroboscopic times tn = t0+2πǫn, n = 0,±1,±2, . . . it holds

y(tn) = (Ψt0;ǫ)
ny0, n = 0,±1,±2, . . . .

Since the map Ψt0;ǫ is close to the identity, standard results from backward error
analysis of numerical integrators imply the existence of an autonomous differential
system

(2)
dY

dt
= F (Y ; ǫ) = F1(Y ) + ǫF2(Y ) + ǫ2F3(Y ) + · · · ,

whose formal solution Y (t) exactly coincides with y(t) at the stroboscopic times
tn = t0 + 2πǫn, if Y (t0) = y(t0). The series (2) does not converge in general, and
in order to get rigorous results one has to consider a truncated version.

In order to integrate the highly oscillatory problem (1) we (approximately) com-
pute the smooth interpolant Y (t) by integrating the averaged equation (2) with
a numerical method (macro-solver) with macro-step size H that should be much
larger than the fast period 2πǫ. In the spirit of the Heterogeneous Multiscale Meth-
ods of E and Engquist [4], our algorithm does not require the explicit knowledge of
the analytic form of F . The information on F is gathered on the fly by integrating
(with micro-step size h) the original system (1) in small time-windows of length
O(ǫ). There is much freedom in the choice of the macro-solver and micro-solver,
including standard variable-step/order codes.

If the macro-solver is a linear multistep or Runge-Kutta method, then the only
information on (2) required by the solver are function evaluations F (Y ∗; ǫ) at given
values of the argument Y ∗. If Φt;ǫ denotes the flow of the averaged system (2), it
is clear that

F (Y ∗; ǫ) =
d

dt
Φt;ǫ(Y

∗)

∣∣∣∣
t=t0

and, approximating the time-derivative by central differences,

F (Y ∗; ǫ) =
1

2η
[Φη;ǫ(Y

∗)− Φ−η;ǫ(Y
∗)] +O(η2).

Choosing now η = 2πǫ, and using that at stroboscopic times the solution of (1)
coincides with the solution of (2) if the initial conditions are the same, we conclude
that the formula

(3) F̃ (Y ∗; ǫ) =
1

4πǫ
[Ψt0;ǫ(Y

∗)−Ψ−1
t0;ǫ(Y

∗)],

provides an O(ǫ2) approximation F̃ (Y ∗; ǫ) to F (Y ∗; ǫ). To find Ψt0;ǫ(Y
∗) and

Ψ−1
t0;ǫ(Y

∗) one has to micro-integrate (1) with initial condition y(t0) = Y ∗ first
forward from t = t0 to t = t0+2πǫ and then backward from t = t0 to t = t0− 2πǫ.
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Difference formulae of higher order can be used but then, micro-integrations over
wider windows are required.

In order to analyze the errors in SAM, it is important to notice that the method
consists in integrating (2) with a chosen macro-integrator using inexact values of
the right-hand side F . There are then three sources of errors:

(i) The error from the approximation of the true values of F by a finite-difference

approximation F̃ , which is O(ǫδ), if δ denotes the order of the finite-difference
formula (δ = 2 if (3) is used).

(ii) The error in the difference formula due to the replacement of the Poincaré

map Ψ by numerical approximations Ψ̃ obtained via micro-integrations. If the
micro-integrator has order p and the micro-step size is h/ǫ (in the variable τ), the
implied error in the approximated value of F is O(ǫ−1(h/ǫ)p). However, choosing
the micro-integrator suitably, the errors due to micro-integration may behave as
ǫν(h/ǫ)p), with ν > 0, leading to errors O(ǫν−1(h/ǫ)p) in the approximation to F .

(iii) The error due to the macro-integrator used to solve the averaged equation,
which is O(HP ), if H is the macro-step size and P is the order of the macro-
integrator.

Combining (i)–(iii), one concludes that SAM provides approximations with error

(4) O
(
ǫδ +HP + ǫν−1

(h
ǫ

)p
)
,

where the constant implied in the O notation is independent of ǫ, h and H .
The efficiency of SAM and the sharpness of the error estimate (4) are tested

with different numerical experiments.
When integrating the perturbed Kepler problem as proposed in [5] using SAM

with second order differencing and the classical fourth order Runge-Kutta method
as macro and micro-integrator, one observes that halving ǫ leads to the same com-
putational work but doubles the error, while the standard Runge-Kutta integrator
works twice and doubles the error too (ν = 0 in (4)). If the micro-integrations
are performed using an appropriate splitting scheme, when ǫ is halved, the error is
halved too, keeping the same computational work. The standard splitting scheme
halves the error but doubles the computational effort. This situation corresponds
to ν = 2 in (4).

The second test problem we have considered is the well known van der Pol
system, which has been efficiently integrated using SAM with the variable step-
size code ode45 of MATLAB as macro-integrator and Strang splitting for micro-
integrations. Once the limit cycle has been reached, SAM increases the macro-step
and, therefore, the variable-step macro-integration is much cheaper than its fixed
step-size counterpart and both are much cheaper than the standard integration
with the splitting scheme.

Finally, SAM has been applied to the vibrated double pendulum formulated in
cartesian coordinates using the GGL approach, which leads to an index 2 differen-
tial algebraic system. As macro- and micro-integrator the third order, three stages,
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half-explicit Runge-Kutta method in [1] has been used. In this case the error es-
timator (4) applies with ν = 1, which means that if the dominant error in (4) is
the one coming from micro-integrations, when halving ǫ, both, the errors and the
computational cost for SAM are the same. For the standard integration with the
half-explicit scheme although the error almost does not change, the computational
cost doubles.
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Quasi-stroboscopic averaging: The non-autonomous case

Philippe Chartier

(joint work with Ander Murua and Jesus M. Sanz-Serna)

The talk considers non-autonomous oscillatory systems of ordinary differential
equations with d > 1 nonresonant constant frequencies of the form

d

dt
y = ǫf(y, tω), y(0) = y0 ∈ RD,(1)

where f(y, θ) depends 2π-periodically on each of the scalar components θ1,. . . ,θd
of the angular variable θ ∈ Td and ω ∈ Rd is a constant vector of angular frequen-
cies. Formal series like those used nowadays to analyze the properties of numerical
integrators (B-series [7, 13, 9, 6]) are employed to construct higher-order averaged
systems and the required changes of variables. With the new approach, the aver-
aged system and the change of variables consist of vector-valued functions that may
be written down immediately and scalar coefficients that are universal in the sense
that they do not depend on the specific system being averaged and may therefore
be computed once and for all. The new method may be applied to obtain a va-
riety of averaged systems. In particular we study the quasi-stroboscopic averaged
system characterized by the property that the true oscillatory solution and the
averaged solution coincide at the initial time. We show that quasi-stroboscopic
averaging is a geometric procedure because it is independent of the particular
choice of co-ordinates used to write the given system. As a consequence, quasi-
stroboscopic averaging of a canonical Hamiltonian (resp. of a divergence-free)
system results in a canonical (resp. in a divergence-free) averaged system.
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Quasi-stroboscopic averaging: The autonomous case

Ander Murua

(joint work with Philippe Chartier and Jesus M. Sanz-Serna)

B-series and related formal series expansions that are nowadays used to analyze
numerical integrators [7], [13], [10], [6], provide a powerful means to study and
implement the method of averaging (see e.g. [8], [12] and also [1], Chapter 4, [2],
Chapter 10, [11]). We consider systems with d ≥ 1 constant fast frequencies of the
form

d

dt
y = ǫf(y, tω), y(0) = y0 ∈ RD,(1)

where f(y, θ) depends 2π-periodically on each of the scalar components θ1,. . . ,θd
of the angular variable θ ∈ Td and ω ∈ Rd is a constant vector of angular fre-
quencies. Throughout the paper we assume that ω is non-resonant, i.e. k · ω 6= 0
for each multi-index k ∈ Zd, with k 6= 0. (Of course a problem with a resonant
ω may be written in non-resonant form by lowering the number d of frequencies.)
When the number d of frequencies is 1, quasi-stroboscopic averaging reduces to the
stroboscopic averaging method investigated in [5]. (For the application of the idea
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of stroboscopic averaging to the construction of numerical integrators the reader
is referred to [3], [4].)

Our approach makes it possible to construct in an explicit way higher-order
averaged systems and the associated changes of variables. In our new approach,
the averaged system and the change of variables consist of vector-valued functions
that may be written down immediately and scalar coefficients that are universal
in the sense that they do not depend on the specific system being averaged and
may therefore be computed once and for all for each vector of frequencies ω ∈ Rd.
The new method may be applied to obtain a variety of averaged systems. In
particular we study the quasi-stroboscopic averaged system characterized by the
property that the true oscillatory solution and the averaged solution coincide at the
initial time. We show that quasi-stroboscopic averaging is a geometric procedure
because it is independent of the particular choice of co-ordinates used to write
the given system. As a consequence, quasi-stroboscopic averaging of a canonical
Hamiltonian (resp. of a divergence-free) system results in a canonical (resp. in a
divergence-free) averaged system.

We also study the averaging of a family of near-integrable systems where our
approach may be used to construct explicitly d formal first integrals for both the
given system and its quasi-stroboscopic averaged version. As an application we
construct three first integrals of a system that arises as a nonlinear perturbation
of five coupled harmonic oscillators with one slow frequency and four resonant fast
frequencies.

In this talk, we mainly focus on a family of autonomous problems where the vec-
tor field is an O(ǫ) perturbation of an integrable system with constant frequencies.
Such problems may be brought to the format (1) by means of a time-dependent
change of variables. We describe how to obtain a quasi-stroboscopically averaged
system with a number of favourable properties. If the original system is Hamilton-
ian, the averaged system will also be Hamiltonian and furthermore it is possible
to construct explicitly d formal first integrals (of both the given and averaged sys-
tems) that are a O(ǫ) perturbation of the first integrals of the unperturbed system.
As an application we construct three first integrals of a system taken from [6] that
arises as a nonlinear perturbation of five coupled harmonic oscillators with one
slow frequency and four resonant fast frequencies.

References

[1] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd
ed., Springer, New York, 1988.

[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Springer, New York,

1989.
[3] M.P. Calvo, Ph. Chartier, A. Murua, J.M. Sanz-Serna, A stroboscopic method for highly

oscillatory problems, in Numerical Analysis of Multiscale Computations (B. Engquist, O.
Runborg, R. Tsai, eds.) in Lect. Notes Comput. Sci. Eng. 82, Springer, Berlin, to appear.

[4] M.P. Calvo, Ph. Chartier, A. Murua, J.M. Sanz-Serna, Numerical stroboscopic averaging
for ODEs and DAEs, submitted.

[5] P. Chartier, A. Murua, J.M. Sanz-Serna, Higher-Order averaging, formal series and numer-
ical integration I: B-series, Found. Comput. Math. 10, 695–727 (2010).



838 Oberwolfach Report 16/2011

[6] E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration, 2nd ed., Springer,
Berlin, 2006.

[7] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff
Problems, 2nd ed., Springer, Berlin, 1993.

[8] P. Lochak, C. Meunier, Multiphase Averaging for Classical Systems, with Applications to
Adiabatic Theorems, Springer, New York, 1988.

[9] A. Murua, The Hopf algebra of rooted trees, free Lie algebras and Lie series, Found. Comput.
Math. 6, 387–426 (2006).

[10] A. Murua, Formal series and numerical integrators, part I: systems of ODEs and symplectic
integrators, Appl. Numer. Math. 29, 221–251 (1999).

[11] L.M. Perko, Higher order averaging and related methods for perturbed periodic and quasi-
periodic systems, SIAM J. Appl. Math. 17, 698–724 (1968).

[12] J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical
Systems (2nd. ed.), Springer, New York, 2007.

[13] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall,
London, 1994.

Some topics in multisymplectic integration

Robert I McLachlan

Consider the two dichotomies ODEs vs PDEs and scalar vs differential con-
servation laws. These yield four classes of conservations laws that have striking
similarities and differences both analytically and numerically. To review the ODE
case first, a conserved quantity is a scalar H that obeys Ht = 0 on solutions of the
ODE. Any such ODE can be written in coordinates in the form zt = K(z)∇H(z)
where K⊤ = −K [1]. Unless the ODE has further structure, the conserved quan-
tity merely constrains the motion to a hypersurface and little more can be said.
Many numerical methods are known that conserve H (i.e., that obey ∆tH = 0)
(e.g. projection methods and discrete gradient methods) but it is notable that H
can be conserved by a B-series method if K(z) ≡ const. The Average Vector Field
method [2] is an example.

The next case is a differential conservation law for an ODE, of which the two
main cases are conservation of a 2-form and a volume form. In the Hamiltonian
case, zt = K(z)∇H(z) and the differential conservation law is ωt = 0 when dω = 0,
ω = dz ∧ K−1dz. By its nature this is harder to conserve. Yet, once again, if
K(z) ≡ const. then ω can be conserved, i.e. ∆tω = 0, by a B-series method—the
midpoint rule is an example. No symplectic integrators are known for general K.

The natural analogue of conserved quantities for PDEs are conservation laws.
The scalar case in 1 + 1 dimensions is Ht + Fx = 0. These can be found by
Lagrangian, Hamiltonian, and direct methods, but the theory is different both
analytically and dynamically from the ODE case. There is no general theory on
how to preserve them under discretization, although discrete conservation laws
are widely used when one component of the PDE itself is a conservation law. The
discrete conservation law typically takes the form ∆tH +∆xF = 0 where H ≈ H
depends locally on the fields.

Lagrangian and multiHamiltonian systems Kzt+Lzx = ∇S(z) have differential
conservation laws like ωt+κx = 0, κ = dz∧Kdz, κ = dz∧Ldz. Discretizations of
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ωt + κx = 0 are preserved by applying a symplectic discretization (e.g. symplectic
Runge–Kutta) in x and in t [3]. A major open question concerns the implications
of the multisymplectic conservation law for the dynamics. Notice that discrete
conservation laws are necessarily different from continuous ones, unlike the ODE
case, and may themselves depend on the method.

As so little is known about numerical methods for both types of conservation
laws, it seems advantageous to simply find some more methods. We present a new
class of methods for each type.

A discrete gradient on a vector space V with inner product a⊤b is a function
satisfying the discrete gradient axiom

(z1 − z0)
⊤Hz(z0, z1) = H(z1)−H(z0)

for all smooth functions H : V → R and all z0, z1 ∈ R. For example, Hz(z0, z1) =∫ 1

0 ∇H(ξz1 + (1− ξ)z0) dξ is the average value discrete gradient.
A discrete gradient method for the ODE zt = K(z)∇H(z) is

z1 − z0
∆t

= K(z0, z1)Hz(z0, z1), K
⊤
= −K, K(z, z) = K(z).

We have H(z1)−H(z0) = Hz(z0, z1)
⊤(z1 − z0) = ∆tHz(z0, z1)

⊤KHz(z0, z1) = 0,
i.e. H is conserved.

For Hamiltonians of the form H =
∫
H(z, zx) dx, K

⊤ = −K a constant matrix,
and equations of motion

zt = K
δH
δz

= K(Hz − ∂xHzx),

the energy conservation law can be found as follows.

Ht = H⊤
z zt +H⊤

zxzxt

= H⊤
z K(Hz − ∂xHzx) +H⊤

zxK(Hz − ∂xHzx)x

=
(
H⊤

zxKHz −H⊤
zxK∂xHzx

)
x

Discrete gradient methods are a practical and general way to construct energy-
preserving integrators for Hamiltionian PDEs. I now show that discrete gradient
methods preserve the energy conservation law (ECL) as well.

Write Hy for the y-components of Hz . If z = (x, y), then the discrete gradient
axiom becomes

(x1 − x0)
⊤Hx + (y1 − y0)

⊤Hy = H(x1, y1)−H(x0, y0).

We apply a discrete gradient method in (z, zx) to the PDE giving

z1 − z0
∆t

= K
(
Hz − ∂xHzx

)
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The change in energy density over one time step is

H(z1, z1x)−H(z0, z0x)

∆t
= Hz

⊤ z1 − z0
∆t

+Hzx

⊤ z1x − z0x
∆t

= Hz
⊤
K(Hz − ∂xHzx) +Hzx

⊤
K(Hz − ∂xHzx)x

=
(
Hzx

⊤
KHz −Hzx

⊤
K∂xHzx

)
x

A similar result holds for the Hamiltonian system zt = K δH
δz where K is any

constant skew-adjoint differential operator and H = H(x, z, zx, zxx, . . . ) is any
differential function of z; for the (e.g. multiHamiltonian) case Kzt = δH

δz where
K may be singular; and for the fully discrete case, although this requires that the
semidiscretization itself has an energy conservation law.

I now describe a new class of integrators for Kzt + Lzx = ∇S(z), the diamond
schemes, that are linear and only locally implicit. These provide the first multi-
symplectic integrators that are well-defined for a variety of boundary conditions
when the PDE has a noncanonical structure, e.g. KdV.

Although symplectic partitioned Runge–Kutta methods formally provide mul-
tisymplectic integrators on tensor product grids, many of them are unconditionally
unstable. Gauss RK is stable, but it is fully implicit and not well-defined for many
boundary conditions. Lobatto PRK can be explicit for some K, L, and S and is
then conditionally stable [4].

The diamond scheme uses a non-tensor product grid; the grid lines are x±at =
const. and the cells are diamonds. An affine map yields a square grid and a
symplectic PRK method is applied to each cell. For example, the midpoint rule
yields

K∆tz + L∆xz = ∇S(MtMxz)

(M = average). The method is multisymplectic and is implicit in at most a single
cell. For r-stage PRK, the data are the stage values on each cell edge and r2

implicit equations have to be solved within each cell. The method is explicit in
x and implicit in z. For the KdV equation, it turns out to be fully explicit. It is
conditionally stable (e.g. ∆t ≤ ∆x for the linear wave equation), with no parasitic
waves for any ∆t, ∆x. Because it is a linear method, the dispersion and stability
of diamond RK can be determined for all linear PDEs (which is not the case for
PRK methods).

The simple affine transformation of space-time has radically altered the numer-
ical properties of the method, but preserved the key one (multisymplecticity) of
interest here. I hope that this broader class will lead to useful methods and greater
understanding of the multisymplectic domain.
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Splitting and composition methods for the time dependent
Schrödinger equation

Sergio Blanes

(joint work with Fernando Casas, Ander Murua)

To describe and understand the dynamics and evolution of many basic atomic
and molecular phenomena, their time dependent quantum mechanical treatment
is essential, and this usually requires to solve the time dependent Schrödinger
equation. If a space discretization is applied, one ends up with a linear system of
ODEs of the form

(1) i
d

dt
u(t) = Hu(t), u(0) = u0 ∈ CN ,

where H is a real symmetric matrix. The exact solution of eq. (1) is given by

(2) u(t) = e−itH u0,

but to compute the exponential of the N × N complex and full matrix (−itH)
(typically also of large norm) by diagonalizingH can be prohibitively expensive for
large values of N . In practice, thus, one turns to time stepping methods advancing
the approximate solution from time tn to tn+1 = tn + τ .

Due to the nature of this problem, the wave function vanishes asymptotically
for large values of the space coordinates, and one can assume that the problem
is periodic on a sufficiently large interval. This usually allows one to compute
the matrix-vector products Hu by using FFTs. It is then natural to approxi-
mate e−iτtHun by explicit polynomials. The Taylor series is the simplest one.
It provides very accurate results for low frequencies, but it needs many terms in
the expansion to approximate the high frequencies. To this purpose, one can use
Chebyshev polynomial approximations (if one knows in advance an upper bound
of the spectral radius, ρ(H)). The action of the polynomials on vectors is com-
puted by the Horner or the Clenshaw algorithms which need to keep in memory
only two and three complex vectors, respectively.

We propose an alternative scheme to compute the matrix-vector products which
leads to more efficient algorithms. This can be illustrated by the first order Euler
method, un+1 = un − iτHun. If we write u = q + ip, it is immediate to see that
the algorithm is

(3)

{
qn+1 = qn + τHpn
pn+1 = pn − τHqn.

Computing Hun requires a FFT for complex vectors, whereas Hqn, Hpn require
a FFT for real vectors so, the computational cost of (3) remains the same as Hun
if appropriately implemented. However, in (3) we can replace the second equation
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by pn+1 = pn − τHqn+1 at no extra cost, leading to the symplectic Euler method
(or the first-order Lie-Trotter method) which is considerably more efficient (in the
Taylor and Chebyshed methods, q and p are computed simultaneously instead of
sequentially). This can be extended to higher orders if one rewrites (1) as [6]

(4)
d

dt

(
q
p

)
=

(
0 H

−H 0

)(
q
p

)

and approximate the corresponding solution (the rotation matrix) by

(5)

(
qn+1

pn+1

)
= K(τH)

(
qn
pn

)
, K(τH) =

(
K1(τH) K2(τH)
K3(τH) K4(τH)

)
,

where the entries K1(y) and K4(y) (respect., K2(y) and K3(y)) are even (repect.,
odd) polynomials in y ∈ R, and detK(y) = K1(y)K4(y)−K2(y)K3(y) ≡ 1.

We have built several methods which cover most frequent problems by choosing
appropriately the polynomials Ki [3]. To compute the action of K(τH) on a
vector, (qn, pn)

T , one can decompose the matrix K(τH) as
(6)

K(τH) =

(
I 0

−bmτH I

)(
I amτH
0 I

)
· · ·
(

I 0
−b1τH I

)(
I a1τH
0 I

)
,

where the coefficients ai, bi are obtained from the coefficients of the polynomials
Ki (this decomposition is unique if it exists [2]). The scheme involves 2m products
with real vectors (notice that Ki are polynomials up to degree 2m) which has the
same cost as a mth-order Taylor or Chebyshev polynomial approximation and
belongs to the class of splitting methods. Next, to reach the desired accuracy for
a given problem, one has to adjust the scaled time step τ/m (for a given value of
ρ(H)) such that

(7)
τ

m
<

1

ρ(H)
θ′,

where θ′ is a parameter depending on the method. To get accurate and stable
solutions by Taylor methods we found that θ′ ≤ 0.25 approximately, whereas for
Chebyshev it is usually required that θ′ ≤ 0.5, i.e. it is for most cases about twice
faster. We have built new methods with values θ′ ∼ 0.75− 1.4 (m is the number
of stages in (6)). Basically, the new schemes are obtained as follows [3]: we first
choose θ′ ∈ [0.5, 1.4] (a large choice for θ′ makes more difficult to obtain accurate
methods). Next, we consider a matrix K(y) with components Ki of sufficient high
order (typically m ∼ 20−40) and look for approximations to the exact solution at
different orders of accuracy which are stable for y < mθ′ (here y plays the role of
τρ(H)). Each method is characterised by some parameters, µr, νr, and the error
bound [3]

‖un − u(t)‖ ≤ t µr ‖u0‖r+1 + νr‖u0‖r
ρ(H)r

.(8)

Here r is the order of the method and ‖u0‖k = ‖Hku0‖. Then, given a tolerance,
we can choose among our methods the one which provides such accuracy with the
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largest value of θ′, i.e. with the lowest computational cost. The new methods show
in practice a superiority w.r.t. Chebyshev similar to the superiority of Chebyshev
w.r.t. Taylor. This class of splitting methods, in addition, preserve symplecticity
and are conjugate to unitary methods [1, 2].

On the other hand, for those problems where H is separable into kinetic and
potential energy, H = T +V , and the solution is relatively smooth, it can be more
appropriate to consider unitary splitting methods

(9) e−ibmτV e−iamτT · · · e−ib1τV e−ia1τT .

The number of exponentialsm (and therefore the number of coefficients {ai, bi}mi=1)
has to be sufficiently large to solve all the equations required to achieve a given
order. The number of order conditions depends on the Lie algebra generated by
the operators T, V , which is considerably more involved than in the previous case.

In general, the methods from the literature are such that ai, bi ∈ R. In some
recent works, looking for splitting methods in semigroups, complex solutions have
been explored [4, 5, 7]. It was observed that in most cases, given a composition (say,
for example, (9)) one can find many sets of real and many more sets of complex
solutions for ai, bi. Usually, the best (in a certain unspecified sense) complex
solution leads to considerably more accurate results than the best real solution.
Typically, this higher accuracy does not pay for the extra cost by using complex
arithmetic (roughly four times more expensive in most cases) in problems where
negative real coefficients are allowed. However, the computational cost to compute
one step for the composition (9) does not increase when the coefficients ai, bi are
complex because the main factor in the computational cost is the evaluation of
FFTs. On the other hand, since T is an unbounded operator, it is necessary that
ai ∈ R, otherwise (−iajτT ) would be unbounded for at least one aj . Thus one
may argue whether new methods such that ai ∈ R and bi ∈ C are worth to be
considered, being this a subject under investigation at present.
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Statistically consistent model reduction for point vortices

Jason Frank

(joint work with Svetlana Dubinkina, Benedict Leimkuhler)

The talk was based on a paper with Svetlana Dubinkina and Ben Leimkuhler
that recently appeared in SIAM Multiscale Modeling and Simulation [4]. In it we
present an approach to constructing a simple model reduction based on the statis-
tical mechanical concept of a thermodynamic reservoir, and the use of thermostat
device such as the Nosé and Hoover methods [1, 2, 3].

The reduced modeling approach can be summarized as follows:

(1) Given a Hamiltonian system ẏ = J∇H(y), y(t) ∈ Rd, where J = −JT ,
consider a partition of the variables into resolved yA ∈ RdA and unresolved
yB ∈ Rd−dA components, i.e. y = (yA, yB), and a corresponding Hamil-
tonian splitting H(y) = HA(yA)+HB(yB)+HAB(yA, yB). The dynamics
due to HB will be absorbed into the reservoir, and we model the dynamics
due to HAB using a thermostat.

(2) The reduced system yA(t) ∈ RdA is distributed according to canonical
statistical mechanics. Almost every trajectory ergodically samples the
Gibbs distribution ρ ∝ exp(−βHA).

(3) Since the reduced dynamics y′A = J∇HA cannot sample ρ, we introduce
a thermostat, the Nosé-Hoover-Langevin method:

˙yA = J∇HA(yA) + ξ g(yA),

ξ̇ = h(yA)−
ασ2

2
+ σẇ,

where g is an appropriately chosen vector field on RdA , w′ denotes the
increments of a scalar Wiener process, and α and σ are appropriately
chosen constants. The function h(yA) : RdA → R is chosen such that
the augmented distribution ρ̃ = ρ exp(−αξ2/2) is the unique steady state
solution of the associated Fokker-Planck equation.

We applied this reduced modeling approach to the problem of point vortices
on a cylinder. In [5], Oliver Bühler considered a heterogeneous system of point
vortices, strong and weak, with positive and negative circulations, to study the
theory proposed by Lars Onsager [6]. The equations of motion for point vortices
are Hamiltonian:

ΓiẊi = K
∂H

∂Xi
, Xi ∈ R2

where K =
(

0 1
−1 0

)
and H = − 1

4π

∑
i<j ΓiΓj ln(|Xi −Xj |2). Additional terms are

added to the Hamiltonian to model the cylinder domain: for each vortex, an image
vortex of opposite orientation is placed outside the domain.

The point vortex problem has the unusual property that the whereas the phase
space is bounded (it is just N copies of the disc for N vortices), the energy func-
tion is unbounded from above and below—collisions of like and oppositely signed
vortices drive the energy to plus and minus infinity, respectively.
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Bühler’s experimental setup was as follows. Strong vortices: 2 each positively
and negatively oriented (vortex strength ±10π). Weak vortices: 48 each positively
and negatively oriented (vortex strength ±2π) on a disc of radius 5. From the
point of view of the strong vortices, the weak ones form a reservoir for the strong
vortex dynamics. Bühler proposed this point of view and recorded statistics on
the strong vortices.

Because Bühler’s reservoir is composed of 96 weak vortices, finite reservoir ef-
fects were observed. To correct for this, the Gibbs distribution was modified to
include a second term. Our thermostat was constructed to sample the distribu-
tion ρ = exp(−βH − γH2). This turns out to require a trivial modification of the
method.

Figure 1 summarizes the statistics. The top, middle and bottom rows of plots
include histograms derived from the strong vortex time series: the distance be-
tween like signed (top row) and opposite signed (middle row) vortices, and the
radial distances of each vortex from the origin (bottom row). The three columns
contain results for positive, zero and negative inverse statistical temperatures β.
As Onsager predicted, at negative temperatures, like-signed vortices tend to clus-
ter, and at positive temperatures, oppositely signed vortices cluster, or vortices
spend more time near the wall, in the neighborhood of their image vortex. Bühler’s
data is shown in black; his direct numerical simulations are denoted by a thin, solid
black line. Our statistics (shown in blue) compare favorably, and reproduce the
qualitative features of his histograms.

Figure 1. Histograms of strong vortex functions. See text for
explanation.



846 Oberwolfach Report 16/2011

We would like to extend this approach to grid-based methods for PDEs. The
primary challenge to doing so is the correct interpretation of canonical statistical
mechanics in this setting. For example, what constitutes the reservoir? Is it the
set of unknowns on a fine grid, such that the reduced model is a subset of these?
Another question we would like to address is the degree to which the trajectories of
the thermostated variables (e.g. the strong point vortices) may still approximate,
in an appropriate weak sense, the trajectories of full model.
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Long term evolution of the Solar System

Jacques Laskar

As the Solar System motion is chaotic, with exponential divergence of nearby
trajectories as

d = d0 10T/10,

where T is in Myr, it is practically impossible to obtain a precise solution for its
evolution over 100 Myr. Nevertheless, solutions of the Earth valid over extended
times are needed for paleoclimate reconstructions. They are currently used in
order to establish a geological time scale based on the correlation of sedimentary
paleoclimate records with the computed variation of insolation on Earth resulting
from planetary mutual perturbations.

In the past years, we have tried to match the need of geologists for a reference
solution over 60 Myr, but this represents an improvement of 2 orders of magnitude
in precision with respect to our best solution of 2004, valid over 40 Myr. The
main limitation is on th model, but we also need to push the numerical symplectic
scheme to its limits, and we are searching for optimal methods.

The same model can be used to answer the question of the stability of the Solar
System.

In this case, only a statistical answer can be given. We have performed 2501
trajectories of the Solar System equations over 5 Gyr with close initial conditions,
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compatible with our best knowledge of the present state. Most of the trajecto-
ries remain relatively stable over 5 Gyr, but for 1% of them, a resonance in the
perihelion motion of Mercury and Jupiter increases in a large amount Mercury’s
excentricity, leading to a collision with Venus or the Sun.

In some cases, this induces a complete destabilisation of the full inner Solar
System, with possible collisions of Venus and Mars with the Earth.

In a remarkable way, if the contribution of general relativity is removed, the 1%
probability of strong instabilities raised to 60%.

Volume preserving splitting methods for divergence-free vector fields

Antonella Zanna

(joint work with Huiyan Xue)

In this talk we consider the problem of integrating divergence-free vector fields by
explicit, volume preserving splitting methods. Our departure point is a splitting
of a divergence-free vector field f(x) in a diagonal and off-diagonal part. The
off-diagonal part consists of those terms such that ∂xi

fi(x) = 0 (i.e. ẋi does not
depend explicitly on xi), the diagonal part is the complement. By construction, the
off-diagonal part is automatically divergence free and can be treated in a volume
preserving manner by several methods already known in literature. Thus we focus
on a vector field with a diagonal part only. The diagonal part appears explicitly in
the divergence function and it is crucial to split it in an appropriate way, otherwise
the resulting split vector fields will not be divergence free.

The main idea proposed in this talk is to consider a basis expansion of the
divergence function. For each basis function, we reconstruct an Elementary Di-
vergence Free Vector Field (EDFVF). This is obtained by collecting all the terms
in the vector field that contribute to the basis function. We consider in detail the
case of the monomial basis xj = xj11 · · ·xjnn , which is relevant if the original vector
field is polynomial (or if the given vector field can be easily approximated by a
polynomial field). We show that the EDFVF for the monomial basis can be inte-
grated exactly, because the basis functions always obey the same type (solvable)

differential equation ẋj = kx2j, where k is a constant depending on the coefficients
of the EDFVF.

Thereafter we generalize our construction to the case when the basis consists
of tensor products of 1D bases. We characterize the corresponding EDFVF and
show that these always possess an integral. From the form of the EDFVF and the
integral, we point at two possible ways to construct volume preserving methods:
one (generic) is to use the integral to transform the EDFVF into a off-diagonal
system, that can be treated by known methods; the other (specific to the basis)
depends on whether we can solve for the basis function, as a function of time, as
we were able in the polynomial case.

We show some numerical experiments in which we plot Poincaré sections for a
cubic Stokes flow. The methods recover very well the sections, due to the intrinsic
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volume preservation. The cost of the split methods (explicit) is comparable to the
cost of an explicit one-step method.

In the future, we plan to extend this work to the reconstruction of particle flows
in the context of partial differential equations.
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Resonances in long times integration of the nonlinear Schrödinger
equation

Erwan Faou

We consider the nonlinear Schrödinger equation with cubic nonlinearity

(1) i∂tu = −∆u+ ε|u|2u,
where u(t, x) ∈ C is the wave function, and x ∈ Td the d-dimensional torus. The
coefficient ε << 1 is a small parameter. This equation is called resonant as the
eigenvalues of the Laplace operator −∆ are all integers. We present here some
results concerning the numerical simulation of this equation over long times.

If we decompose the exact solution in Fourier as u(t, x) =
∑

j∈Zd ξj(t)e
ij·x, the

equation (1) is written

ξ̇j = −i|j|2ξj − iε
∑

j=k−ℓ+m

ξk ξ̄ℓξm = −i∂H
∂ξ̄j

(ξ, ξ̄),

where the Hamiltonian function is given by

H(ξ, ξ̄) =
∑

k∈Zd

|k|2|ξk|2 +
ε

2

∑

j,k,ℓ,m∈Z
d

k+m−ℓ−j=0

ξkξmξ̄ℓξ̄j ,

where |k|2 = k21 + · · · k2d for k = (k1, . . . , kd) ∈ Zd. Let us first consider the Fourier
pseudo-spectral collocation approximation which consists in searching a Fourier
polynomial

UK(t, x) =
∑

j∈BK

ξKj (t)eij·x

satisfying (1) at the equidisant grid points xj = 2jπ/K ∈ [−π, π]d, j ∈ BK (here
BK is a set of elements of Zd depending on the parity of K). In this case, it can
be shown that the coefficient ξKj satisfy a Hamiltonian system associated with the
Hamiltonian function

HK(ξ, ξ̄) =
∑

k∈BK

|k|2|ξk|2 +
ε

2

∑

k,m,ℓ,j∈BK

k+m−ℓ−j∈KZ

ξkξmξ̄ℓξ̄j =: TK(ξ, ξ̄) + PK(ξ, ξ̄).
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We then consider the following time splitting method applied to this Hamiltonian:
given a stepsize τ > 0, we define the fully discrete Fourier coefficients ξK,n =

(ξK,n
j )j∈Zd by the recursion relation

ξK,n+1 = ϕτ
PK ◦ ϕτ

TK (ξK,n).

The exact evaluations of the flows ϕτ
PK and ϕτ

TK can be easily done using the Fast
Fourier Transform algorithm. With this fully discrete solution, we can associated
a modified energy in the sense of [4, 3]: For a fixed M , there exists C such that
for all N , K, τ satisfying the CFL condition

τ
K2

2
<

2π

N + 1
,

there exists a polynomial Hamiltonian HK
τ such that for all ξ ∈ BM = { ξ ∈

ℓ1 | ‖ξ‖
ℓ1

≤M }, we have

‖φτPK ◦ φτTK (ξ)− φτHK
τ
(ξ)‖

ℓ1
≤ (ετ)N+1(CN)N .

Here, ‖ξ‖
ℓ1

:=
∑

k∈Z
|ξk| is the norm defining the Wiener algebra. Moreover, the

first terms of the modified Hamiltonian are given by

(2) HK
τ (ξ, ξ̄) =

∑

k∈BK

|k|2|ξk|2 +
ε

2

∑

k,m,ℓ,j∈BK

k+m−ℓ−j∈KZ

iτΩkmℓj

eiτΩkmℓj − 1
ξkξmξ̄ℓξ̄j +O(ε2τ)

with Ωkmℓj = |k|2 + |m|2 − |ℓ|2 − |m|2. The CFL condition ensures that τΩkmℓj is
always smaller than 2π and the modified energy is hence well defined.

With this modified energy in hand, we aim at studying the long time behavior
of the fully discrete approximations ξK,n. The situation differs in a significant way
in dimension d = 1 or d = 2.

In dimension 1, the equation (1) is integrable [6] and it can be shown [5] that
the actions Ij(t) = |ξj(t)|2 of the exact solution are preserved for all times: we
have for all t ∈ R and j ∈ Z, |Ij(t)− Ij(0)| ≤ Cε for some constant C independent
on j. However, to reproduce this preservation property at the numerical level, we
must assume that the number K is a prime number, see [3, Chapter VII]. More

precisely, we can show that if IK,n
j = |ξK,n

j |2 are the numerical actions, we have

(3) ∀ j ∈ BK , |IK,n
j − IK,0

j | ≤ Cε, for nτ ≤ T

ε

for some constant T independent on K, n and j, and under the condition that K
is prime. If K = 2P with P a prime number, the same relation holds for the super

actions JK,n
j = IK,n

j + IK,n
−j . An example of such numerical instabilities is given

in Figure 1, where we perform the same simulation with different numbers of grid
points: K = 31 and K = 30 = 2× 3× 5.

An open question is: does the preservation relation (3) holds for longer times,
typically of order O(ε−r) with large r?

In dimension 2, it can be shown [2] that unlike the one-dimensional case, there
exist initial data for which we can prove that there are energy exchanges between
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Figure 1. Evolution of the actions for K = 30 (left) and K = 31 (right)

the actions. The evolution of the actions of the exact solutions is represented
in Figure 2 (in logarithmic scale), where the initial data 1 + 2 cos(x) + 2 cos(y)
yields an energy cascade behavior. The analysis of this phenomenon relies on the
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studying of the resonant modulus

K = {|j|2 + |k|2 − |ℓ|2 − |m|2 = 0 and j + k − ℓ−m = 0},
which contains in particular quadruplets (j, k, ℓ,m) ∈ Z2 for which the endpoints
of the vectors j, k, ℓ,m form four corners of a non-degenerate rectangle with j
and k opposing each other. Note that to prove the same result for the numerical
solution, we have to study the corresponding numerical resonant modulus, and
show that it contains the same rectangles as in the continuous case. In particular,
it is not the case when using an implicit scheme and numerical simulations show
that the correct energy exchanges are not reproduced, see [3, ChapterVII]. This is
due to the fact that implicit schemes change the internal frequencies of the linear
operator.

Finally, we emphasize that in this situation, it is conjectured in [1] that there
exist initial data for (1) whose corresponding solutions u(t) tend to infinity in Hs

norm, for s > 1, when t → ∞ (while all solutions have global bounds in H1, as
ε > 0). An open question would be to find - at least numerically - such solutions,
and to exhibit the possible mechanisms that could produce such effects.
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Long-time analysis of Hamiltonian partial differential equations and
their discretizations

Ludwig Gauckler

We discuss near-conservation properties of symplectic discretizations of Hamilton-
ian partial differential equations, for example nonlinear Schrödinger equations, in
a weakly nonlinear setting. As a preparatory work for such a numerical analysis we
study nonlinear perturbations of linear Hamiltonian partial differential equations.

We consider infinite dimensional Hamiltonian systems of the form

(1) i
d

dt
ξj(t) = ωjξj(t) +

∂P

∂ηj
(ξ(t), ξ(t)), j ∈ N ⊆ Zd,

with real-valued frequencies ωj and a nonlinearity given by a function P (ξ, η) which
is assumed to be (at least) cubic. Equations of this type describe for example the
evolution of the Fourier coefficients of solutions of Hamiltonian partial differential
equations such as the nonlinear Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + |ψ(x, t)|2ψ(x, t)

with periodic boundary conditions in space and a potential V acting on ψ by
convolution.

The actions along weakly nonlinear Hamiltonian pdes. Without the non-
linear term in (1) (P = 0), the actions

Ij(ξ, ξ) = |ξj |2

are exactly conserved along solutions of (1). In the presence of the nonlinear term
in (1), but in a weakly nonlinear setting of small initial values

‖ξ(0)‖s =
(∑

j∈N

|j|2s|ξj(0)|2
) 1

2 ≤ ε

with |j|2 = max(1, j21 + · · ·+ j2d), we expect near-conservation of actions on time
intervals of length O(ε−1) since the nonlinearity in (1) is of order ε in variables of
order 1.
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By transforming the equation (1) to a Birkhoff normal form [1] or by expanding
the solution of (1) as a modulated Fourier expansion [5] and [4], we can study much
longer time intervals: We have near-conservation of actions

∑

j∈N

|j|2s |Ij(ξ(t), ξ(t))− Ij(ξ(0), ξ(0))|
ε2

≤ CNε
1
2

over long times

0 ≤ t ≤ ε−N .

This can be shown under a non-resonance condition on the frequencies ωj and a
regularity assumption on the nonlinearity in (1). In the talk, the ideas of the proof
of this result based on modulated Fourier expansions have been explained.

The actions along a numerical discretization. For the discretization of (1) a
Lie–Trotter splitting or a Strang splitting of (1) in its linear and its nonlinear part
is a popular choice. Along this numerical solution (and for small initial values)
one has again long-time near-conservation of actions as along the exact solution.
This result is obtained in a similar way as for the exact solution by considering a
modulated Fourier expansion of the numerical solution [4]. Another possibility to
prove this result is to use a Birkhoff normal form for the numerical method, [2]
and [3].

The non-resonance condition used here does not only involve the frequencies
ωj but also the time step-size of the numerical discretization. The possibility of a
numerical resonance was illustrated in the talk by a numerical experiment.

The energy along a numerical discretization. The energy or Hamiltonian
function

H(ξ, ξ) =
∑

j∈N

ωj |ξj |2 + P (ξ, ξ)

is a conserved quantity of (1). For the same kind of discretization as before we
have near-conservation of energy

H(ξn, ξn)−H(ξ0, ξ0)

ε2
≤ CNε

1
2

along the numerical solution ξn ≈ ξ(tn) over long times

0 ≤ tn = nh ≤ ε−N .

This result is easily deduced from the near-conservation of actions.
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Heterogeneous Multiscale Methods for Highly Oszillatory Dynamical
Systems

Bjorn Engquist

The Heterogeneous Multiscale Method (HMM) is a framework for the numeri-
cal approximation of general classes of multiscale problems by coupling different
methods on different scales in the same simulation. When HMM is applied to dy-
namical systems a microscale integrator supplies the average force to a macroscale
method with long time steps. We discuss this technique and focus on the problem
of finding appropriate macroscale variables.

Multiscale computation for oscillatory dynamical systems with more
than two separated time scales

Richard Tsai

(joint work with Gil Ariel, Bjorn Engquist, and Seong Jun Kim)

We discuss several issues arising in designing hierarchical HMMs (Heterogeneous
Multiscale Methods) for computing the effective behavior of highly oscillatory
dynamical systems in a long time interval [0, T ]. The number 0 < ǫ ≪ 1 will
be used to parametrize the time scales involved: the fastest time scale involves
oscillations whose frequencies are at the order of 1

ǫ2 , and the T ≥ Cǫ−k, k ≥ 0.
Constructively, hierarchical HMMs aim at resolving interactions of the oscillations
in different scales.

When more than two separated time scales are considered, there exists a new
type of slow variables whose time derivatives are not bounded (as ǫ → 0) along
the flow of the dynamical system. Such type of slow variables do not appear
for problems with only two separated time scales. In the literature, the time
dependent function x1 = sin(t) with |ẋ1| = O(1) is naturally regarded as slow
and x2 = sin(t/ǫ) with |ẋ2| = O(ǫ−1) is fast. Similarly x3 = sin(t) + ǫ sin(t/ǫ)
is slow. In addition, we need to consider x4 = sin(t) + ǫ sin(t/ǫ2) as slow even if
|ẋ4| = O(ǫ−1). It will be regarded as slow because |x4 − sin t| = O(ǫ) and sin(t) is
slow. We show that the effective behavior described by this type of slow variables
cannot be ignored in building multiscale algorithms.

The second topic of our discussion involves averaging over suitable tori at dif-
ferent time scales due to different types of near resonances in the system. The tori
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in question are defined by the slow variables of the oscillatory dynamical systems.
Consider the simple model problem:

(1)





d
dtz1 = 2πi 1ǫ z1,
d
dtz2 = 2πiλǫ z2,
d
dtw = g(w, z1, z2).

where λ = 1 + δ, δ is a small irrational number, and hence (z1(t), z2(t)) stay on
an invariant 2-torus. Depending on the strength of δ, the slow variable w can be
approximated by different averaging procedures. We classify two kinds of near

resonances – weak near resonances for the case δ = ǫ
1
q , q > 1, and strong near

resonances for δ = ǫp, p ≥ 1. This separation is related to the speed of the flow
to cover an invariant torus.

When the system is in weak near resonance, the trajectories ”cover” an invariant
torus sufficiently fast and we need to average over a torus. On the other hand,
when strong near resonance occurs, the system is effectively in resonance for any
time interval that is independent of ǫ. Therefore, we only need to average the flow
over suitable topological circles which are one dimensional periodic orbits on the
invariant torus. For longer times, we need to average over the torus since time is
long enough for the flow to cover the torus.

We propose an algorithm for efficiently computing averages over invariant tori
for systems in weak near resonance. In an analogy to molecular dynamics, this
algorithm combines time averaging with ensemble averaging. In short, our algo-
rithm constructs a global orthogonal coordinate system on a torus, places a grid
over the torus using the constructed coordinate system, and then computes suit-
able averages of the flows that start out from the grid nodes. This way, we can
efficiently integrate over a torus via short time integration of the oscillatory sys-
tem and iterative use of an efficient averaging kernel developed for averaging over
circles. The orthogonal coordinate system on the torus is constructed by using a
smooth invertible mapping of the dynamical system’s flow direction and the nor-
mals of the torus to designated standard basis vectors in the embedding Euclidean
space Rn, and then properly pulling back the remaining basis vectors in Rn to the
torus’ tangle bundle.

If the dynamical system is ergodic on an invariant manifold and the correspond-
ing invariant measure is non-uniform, the preceding method needs to be modified.
Indeed, the flow density of such a dynamical system, is not explicitly available in
general, so we must consider a way to statistically estimate the density by looking
at the flow.
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On the efficiency of numerical homogenization methods

Assyr Abdulle

We study finite element (FE) discretizations of second-order elliptic problems of
the form

(1) −∇ · (aε(x)∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω,

where Ω is a bounded convex polyhedron in Rd, with d ≤ 3. Zero Dirichlet
boundary conditions are taken here for simplicity and we emphasize that other
boundary conditions can be treated with the multiscale method described below.
We also note that while we discuss linear elliptic problems, the multiscale method
(and the a-priori analysis) can be derived for time-dependent problems (parabolic
or hyperbolic) or nonlinear problems [7],[8],[9].

The d × d tensor aε(x), assumed to be uniformly elliptic and bounded, is al-
lowed to vary on a very small spatial scale denoted by ε. This behavior of aε

makes a standard numerical approximation very costly if not impossible. Numer-
ical homogenization methods are multiscale methods, inspired by homogenization
theory [11],[14], aiming at computing an effective solution, u0(x), of the equation
(1). This effective solution solves a homogenized problem, whose data are usually
unknown in explicit form.

The FE-HMMmethod for computing a numerical approximation of the effective
(homogenized) solution u0(x) is based on a macro FE space made of piecewise
polynomial functions of degree ℓ defined on a macro partition TH of Ω, and micro
FEMs for the solution of so-called cell problems (involving the oscillating tensor of
equation (1)) defined on sampling domains located at quadrature points within the
macro partition. A proper averaging of the micro solutions allows then to define the
effective bilinear form whose solution gives an approximation of the homogenized
solution u0. Supplemented with appropriate numerical correctors, the FE-HMM
solution can also capture, in certain situation, the fine scale solution uε(x) (see
[1],[2],[3],[12],[13]).

A fully discrete a priori convergence analysis shows that the complexity of the
FE-HMM (as any numerical homogenization method) is superlinear with respect
to the macroscopic degrees of freedom [1],[2],[3]. In particular, macro and micro
meshes have to be refined simultaneously to obtain optimal convergence rates with
a minimal computational cost. For high dimensional problems or high order macro
methods (for which a lot of sampling domains have to be used) the FE-HMM can
become costly.

Three ways of reducing the complexity. We discuss three (non exclusive)
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ways to reduce the complexity of numerical homogenization methods as the FE-
HMM. To simplify the presentation we consider a tensor of the form aε = a(x, x/ε).

Case of very regular micro oscillations of a(x, ·). In this situation, the macro solver
of the FE-HMM can be coupled with pseudo-spectral methods on the sampling
domains. Taking advantage of the fast convergence of the micro solvers, this strat-
egy can reduce significantly the computational cost provided enough regularity of
the oscillating tensor at the micro scale [4].

Case of a regular dependence on the macro variable of a(·, x/ε). In such a situa-
tion, following the reduced basis framework, the idea is to compute in an offline
stage a low dimensional subspace of the micro solutions used to define the effective
bilinear form in the FE-HMM. These parametrized micro solutions are selected by
a Greedy algorithm. Let M be the space of all cell problem solutions indexed by
ν ∈ Ω, the barycenter of the sampling domains and η = 1, . . . , d, the d solutions of
the cell problem in each sampling domain. The goal is to find an N−dimensional
subspace MN of M that “minimizes” the distance supξ∈M dist(ξ,MN ) [10]. This
precomputed set of selected solutions of cell problems (computed with high accu-
racy) can then be used in an online stage to obtain cheap micro solutions.

Case of low regularity of u0. In this situation, explicit localized error indicators for
robust and reliable adaptive mesh refinement can be derived. A (non-uniformly)
refinement of the macromesh can be coupled to a refinement of the micromesh
covering the sampling domains [5],[6]. As new microsolutions need not to be
re-computed in non refined elements, adaptive mesh refinement allows for an im-
portant computational saving compared to uniform refinement strategies.

Acknowledgment. This work was supported in part by a Swiss National Science
Foundation under Grant 200021 134716/1.

References

[1] A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, SIAM
Multiscale Model. Simul., 4, no. 2 (2005), 447–459.

[2] A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy
for multiscale PDEs, GAKUTO Int. Ser. Math. Sci., 31, (2009), 133–181.

[3] A. Abdulle, A priori and a posteriori analysis for numerical homogenization: a unified
framework, to appear in Ser. Contemp. Appl. Math. CAM.

[4] A. Abdulle, B. Engquist, Finite element heterogeneous multiscale methods with near optimal
computational complexity, SIAM Multiscale Model. Simul., 6, no. 4 (2007), 1059–1084.

[5] A. Abdulle, A. Nonnenmacher, A posteriori error analysis of the heterogeneous multiscale
method for homogenization problems, C. R. Acad. Sci. Paris, Ser. I. 347, no. 17-18 (2009)

1081–1086.
[6] A. Abdulle and A. Nonnenmacher, Adaptive FE heterogeneous multiscale method for ho-

mogenization problems, Comput. Methods Appl. Mech. Engrg., to appear.
[7] A. Abdulle and M. Grote, Finite element heterogeneous multiscale method for the wave

equation, to appear in SIAM Multiscale Model. Simul.
[8] A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous mul-

tiscale method for nonmonotone elliptic homogenization problems, preprint,
http://infoscience.epfl.ch/record/163326.



Geometric Numerical Integration 857

[9] A. Abdulle and G. Vilmart, Fully discrete finite element heterogeneous multiscale method
for parabolic homogenization problems, preprint.

[10] A. Abdulle and Y. Bai, in preparation.
[11] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic struc-

tures, North Holland, Amsterdam, 1978.
[12] W. E and B. Engquist, The Heterogeneous Multi-Scale Methods, Commun. Math. Sci., 1

(2003), 87–132.
[13] W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic

homogenization problems, J. Amer. Math. Soc. 18, no. 1 (2005), 121–156.
[14] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and

integral functionals, Springer-Verlag, Berlin, 1994.

Data assimilation for dynamical systems

Sebastian Reich

(joint work with Georg Gottwald (University of Sydney), Kay Bergemann
(Universität Potsdam), Eugenia Kalnay, Javier Amezcua, Kayo Ide (University

of Maryland))

The basic task of data assimilation (nonlinear filtering) can be explained for
second-order Langevin dynamics

dq = vdt,(1)

dv = −V ′(q)dt − γvdt+
√
σdw(t)(2)

where w(t) denotes standard Brownian motion. The parameters γ > 0 and σ > 0
are assumed to be known as well as the initial conditions q(0) and v(0). In addition
it is assumed that one has “measurements”Q(t) of the “true” positions qT (t) which
satisfy the stochastic differential equation

(3) dQ = vT (t)dt+
√
rdu(t)

where u(t) is again Brownian motion, (qT (t), vT (t)), t ≥ 0, is an unknown solution
(the “truth”), and r > 0 is known.

Both naive approaches of either solving (1)-(2) with the given initial condi-
tions or integrating (3) to obtain Q(t) are able to track the reference solution
(qT (t), vT (t)) over long periods of time. Instead one has to resort to filtering or
smoothing techniques to combine (1)-(3).

In recent year, the ensemble Kalman filter [1] has emerged as a powerful non-
linear filter for intermittent data assimilation. We have extended this technique
to continuous data assimilation problems as outlined above. In particular, the
ensemble Kalman-Bucy filter [5, 7] leads to the following augmented system of
stochastic differential equations. We first rewrite (1)-(3) in more abstract form as

dx = f(x, t)dt+Σ1/2dw(t),(4)

dy = Hxdt+R1/2du(t)(5)
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Then the ensemble Kalman-Bucy filter equations for an ensemble of m members
xi(t) are

dxi = f(xi, t)dt+Σ1/2dwi(t)− PHTR−1(Hxidt− dy(t) +R1/2dui(t))

with empirical covariance matrix

P =
1

m− 1

∑

i

(xi − x̄)(xi − x̄)T , x̄ =
1

m

∑

i

xi

and mutually independent Brownian motions wi(t), ui(t), i = 1, . . . ,m.
To make progress to more general and accuracte filters for nonlinear problems

we consider intermittent data assimilation where (5) is replaced

(6) yq = Hx(tq) +R1/2ηq

at discrete times tq, q = 1, . . . ,K with ηq ∼ N(0, 1). We also set Σ = 0 in (4).
The ensemble Kalman-Bucy filter can also be applied to such filter problems and
leads to efficient implementation of ensemble Kalman filters [2, 3, 4, 7].

On a more general level, one can reformulate (4) with Σ = 0 and (6) as a
Vlasov-McKean system [5]

ẋ = f(x, t) +
∑

q

δ(t− tq)M∇xψ(x, ρ)(7)

ρt = −∇x · (ρẋ),(8)

where δ(·) denotes the Dirac delta function, M is a positive definite matrix, and
the potential ψ is determined from

(9) ∇x · (ρM∇xψ) = ρ(L− Eρ[L])

where

L(yq;x) ∝ exp

(
−1

2
(Hx− yq)

TR−1(Hx− yq)

)

is the likelihood associated with the measurement (6) and Eρ[L] denotes expec-
tation of L with respect to the probability density ρ. Numerical approximations
based on (7)-(8) including Gaussian mixture approximations for ρ have been dis-
cussed in [5, 6]. The key idea is to approximate (7)-(8) using ensemble Monte
Carlo techniques. The ensemble at time tq is converted into a statistical model
yielding a density approximation ρ̃ which is then used in (9) in place of ρ to find
the potential ψ in (7).

Interesting questions for further research include the importance of geometric
integration methods for solving (7)-(8) and efficient numerical methods for solving
(7)-(8) in the presence of highly oscillatory solution components.
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Discrete Mechanics and Optimal Control: Structure preserving
integration for the optimal control of mechanical systems

Sina Ober-Blöbaum

For the numerical solution of optimal control problems, direct methods are based
on a discretization of the underlying differential equations which serve as equality
constraints for the resulting finite dimensional nonlinear optimization problem.
For the case of mechanical systems, the presented method, denoted by DMOC
(Discrete Mechanics and Optimal Control), is based on the discretization of the
variational structure of the system directly. The discretization of the Lagrange-
d’Alembert principle leads to structure preserving time-stepping equations such
that the resulting optimal control algorithm inherits the structure preserving prop-
erties of the mechanical system. Furthermore, the approximation order of the ad-
joint equations resulting from the necessary optimality conditions is the same as
for the state system due to the symplecticity of the discretization scheme.

1. Discrete mechanics and optimal control

Consider a mechanical system described by a C2-Lagrangian L : TQ → R to
be moved on a curve q(t) ∈ Q ⊆ Rn during the time interval [0, T ] from an initial
state (q0, q̇0) to a final state (qT , q̇T ). The motion is influenced via a control
force fL(q(t), q̇(t), u(t)) with control parameter u(t) ∈ U ⊆ Rm such that a given
objective functional

(1) J(q, u) =

∫ T

0

C(q(t), q̇(t), u(t)) dt+Φ(q(T), q̇(T))

is minimized. Here C : TQ × U → R and Φ : TQ → R are continuously dif-
ferentiable cost functions. The motion of the system is to satisfy the Lagrange-
d’Alembert principle, which requires that

(2) δ

∫ T

0

L(q(t), q̇(t)) dt+

∫ T

0

fL(q(t), q̇(t), u(t)) · δq(t) dt = 0

for all variations δq with δq(0) = δq(T) = 0 which is equivalent to the fulfillment
of the Euler-Lagrange equations d

dt
∂
∂q̇L(q, q̇)− ∂

∂qL(q, q̇) = f(q, q̇, u). The optimal

control problem stated in (1) and (2) is transformed into a finite dimensional
constrained optimization problem using a global discretization of the states and
the controls. The state space TQ is replaced by Q × Q and the discretization
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grid is defined by ∆t = {tk = kh | k = 0, . . . , N}, Nh = T , where N is a positive
integer and h is the step size. The path q : [0, T ] → Q is replaced by a discrete path
qd : {tk}Nk=0 → Q, where qk = qd(kh) is an approximation to q(kh) [3, 4]. Similarly,

the control path u : [0, T ] → U is replaced by a discrete one ud = {uk}N−1
k=0 , where

uk is the discrete control parameter guiding the system from qk to qk+1.
The discrete Lagrange-d’Alembert principle (3), emerges using an approxi-

mation of the action integral in (2) by a discrete Lagrangian Ld : Q × Q →
R, Ld(qk, qk+1) ≈

∫ (k+1)h

kh L(q(t), q̇(t)) dt, and discrete forces f−
k ·δqk+f+

k ·δqk+1 ≈∫ (k+1)h

kh
f(q(t), q̇(t), u(t)) · δq(t) dt, where the left and right discrete forces f±

k now
depend on (qk, qk+1, uk). For the fulfillment of the discrete Lagrange-d’Alembert
principle, it is necessary to consider discrete paths {qk}Nk=0 such that for all vari-
ations {δqk}Nk=0 with δq0 = δqN = 0, it is true that

(3) δ

N−1∑

k=0

Ld(qk, qk+1) +

N−1∑

k=0

(
f−
k · δqk + f+

k · δqk+1

)
= 0.

In a similar way, an approximation of the objective functional (1) generates the
discrete objective function Jd involving the discrete cost functions Cd and Φd.
The resulting discrete constrained optimization problem is stated as follows: Find
discrete paths qd and ud that minimize the discrete objective function,

(4) Jd(qd, ud) =

N−1∑

k=0

Cd(qk, qk+1, uk) + Φd(qN−1, qN , uN−1),

subject to discretized boundary conditions and the forced discrete Euler-Lagrange
(DEL) equations resulting from (3) as

(5) D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−

k = 0

with k = 1, ..., N − 1 and Di denotes the derivative w.r.t. the i-th argument.
Note that (5) provides a discretization scheme for the Euler-Lagrange equations.

Such a scheme is called variational integrator [3] since it is derived in a discrete
variational way rather than based on a discretization of the ordinary differential
equations. Variational integrators are structure-preserving integration methods,
that are symplectic and momentum consistent, i.e. the symplectic structure and
the momentum maps induced by symmetry groups are consistent with the control
forces (or exactly preserved in absence of external forces) in the discrete solution
independent of the step size h [4].

2. The adjoint system

The variational character of the discrete scheme plays an important role com-
paring the adjoint systems of the optimal control problem and its discrete version.
The adjoint systems are determined by the necessary optimality conditions which
are given by Pontryagin’s maximum principle (PMP) and the Karush-Kuhn-Tucker
equations (KKT) for the continuous and the discrete problem, respectively.
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The optimal control problem stated in (1) and (2) can be rewritten in standard
form as minx(·),u(·) J̄(x, u) s.t. ẋ = f(x, u), x(0) = x0 with x = (q, q̇). The PMP
provides necessary optimality conditions in the following way (for simplicity we
consider the case C = 0 and no final point constraint is involved). Let (x∗, u∗)
be an optimal solution. Then, there exists a function λ : [0, T ] → Rn such that
H(x∗(t), u∗(t), λ(t)) = max

u(t)∈U
H(x(t), u(t), λ(t))∀t ∈ [0, T ],

ẋ∗(t) = ∇λH(x∗(t), u∗(t), λ(t)), x∗(0) = x0,(6)

λ̇(t) = −∇xH(x∗(t), u∗(t), λ(t)), λ(T ) = ∇xΦ(x
∗(T ))(7)

with the Hamiltonian H(x(t), u(t), λ(t)) = λT (t) · f(x(t), u(t)).
The discrete optimal control problem stated in (4) and (5) can be rewritten as

the constrained optimization problem miny φ(y) s.t. g(y) = 0 with y = (qd, ud),
where g(y) ∈ Rp involves the forced DEL equations as well as the initial condition.
If y∗ is an optimal solution it has to fulfill the KKT equations given by

g(y∗) = 0(8)

∇φ(y∗)−∇g(y∗)Tλ = 0(9)

with the Lagrange multiplier λ ∈ Rp assuming that ∇g(y∗)T has full rank.
In optimal control theory an interesting question is, in which way the discrete

necessary optimality conditions (8)-(9) approximate the continuous ones (6)-(7).
Since the discretization (5) of the state system (6) was chosen, the consistency
order is determined by the order of the variational integrator in use. In the same
way, (9) can be seen as a discrete scheme for the adjoint system (7). Based on
smoothness and coercivity conditions, the following was shown in [4]:

Theorem 2.1 (Consistency order of adjoint scheme). If the variational integrator
scheme used for the discretization of the Lagrangian system is equivalent to a
symplectic partitioned Runge-Kutta method, the resulting adjoint scheme is again
a variational integrator scheme for the adjoint system, in particular both (state
and adjoint) schemes are equivalent and of same order.

The proof is based on existing results for standard Runge-Kutta methods [1, 2]
applied to the corresponding Hamiltonian system and in addition, exploits the
symplecticity conditions on the coefficients of the scheme.

3. Conclusion

Direct methods for the numerical solution of optimal control problems are
based on a discretization of the state equation. It was shown that if a partic-
ular variational scheme (which is equivalent to a symplectic partitioned Runge-
Kutta scheme) is used for this discretization, its symplecticity entails equivalent
variational integrator schemes for state and adjoint system. For standard (non-
symplectic) Runge-Kutta discretizations this is in general not true [2]. To obtain a
general statement for any variational integrator, a proof directly on the Lagrangian
side (rather than switching to the Hamiltonian side) is desirable.
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Structure preserving integration of inequality constrained dynamics

Danny M. Kaufman

(joint work with Dinesh K. Pai, Eitan Grinspun)

Generalized equations of motion for a Hamiltonian system subject to combined
unilateral and bilateral constraints can be expressed as a differential inclusion.
When such constraints restrict system configuration, q, to a (generally nonconvex
and nonsmooth) admissible set A, the Euler-Lagrange differential inclusion follows
as

Mq̈+∇V (q) ∈ −∂IA(q) .
Here, and in the following, we reserve ∂ to denote the generalized gradient op-
erator [4] while IA gives the extended-value indicator function on the admissible
set. Correspondingly the variational picture can be considered by composing the
extended Lagrangian obtained by subtraction of IA from the natural Lagrangian.

As in the standard smooth setting, these nonsmooth systems continue to pre-
serve standard invariants, e.g., energy, momentum, phase-volume and the symplec-
tic form. Structure-preserving numerical strategies have thus been applied to treat
integration in this setting by considering both energy-momentum and symplectic-
momentum preservation. In this latter vein Kane et al. [2] and Fetecau et al. [1]
have observed that Discrete Variational Integration methods may be particularly
well-suited for these purposes. In each such preliminary investigation, however,
nonsmoothness has not been folded directly into the discrete action. Consequently
it is observed that these methods experience drift and resultant instability [5, 3].

It is thus natural to consider a nonsmooth, discrete Variational Principle for in-
equality constrained systems. We begin by composing and extremizing a discrete,
nonsmooth action that enforces hard constraints on all endpoints, {q0, ..., qk, ..., qN},
of the discrete trajectory with respect to discrete Lagrangian quadratures, Ld, ob-
taining

δk

N−1∑

k=0

(
Ld(q

k, qk+1)− IA(q
k+1)

)
∋ 0 .
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Stationarity then gives us our constrained, Discrete Euler-Lagrange Inclusion (DELI),

D2Ld(q
t−1, qt) +D1Ld(q

t, qt+1)− ∂IA(q
t) ∋ 0 , qt+1 ∈ A .(1)

We are then left with an interesting question of causality. We first observe
that the above DELI system merely requires constraint forces to lie in the span of
the normal cone generated by the configuration at time t and given by −∂IA(qt).
Since this cone is independent of final configuration, (1) only specifies the span of
possible constraint force directions but does not pin down a corresponding force
magnitude.

Thus, in the inequality constrained setting, we observe that standard discrete
variational structure is not sufficient, on its own, to define a well-posed integra-
tor. We find that constraint forces must be applied along the directions positively
spanned by the normal cone and, likewise, all inequalities must be satisfied, but
fundamentally, nothing further is specified. In particular, an underdetermined
system is composed with any number of solutions, most of which will not gen-
erate symplectic-momentum preserving maps. Our proposed DELI formulation
thus provides a framework for numerical integration in addition to which further
structure is required to compose a fully specified integration method.

To formulate the first such instantiation of a DELI-based method, we specifically
note that the dichotomy between nonsmooth and smooth trajectories is not well-
resolved by the discrete variational framework.

We start with the assumption that the admissible set is given explicitly by

A := {q : g(q) = (g0(q), ..., gm(q))T ≥ 0},

and adopt a constraint subset notation. For each index subset, K ⊂ {0, ...,m},
define

g
K
(q) :=

(
g

k0
(q), ..., g

kl
(q)
)T
, {k0, .., kl} ≡ K,

G
K
(q) :=

(
∇g

k0
(q)T , ...,∇g

kl
(q)T

)T
, {k0, .., kl} ≡ K,

N
K
(q) := G

AK
(q), AK =

{
i : gi(q) = 0, i ∈ K

}
.

An absence of subscripting then defaults to the entire constraint set, e.g., N(q) =
N

{0,...,m}
(q).

To formulate a DELI-based integrator we can consider the time-continuous
structure of both smooth unilaterally constrained trajectories and the correspond-
ing nonsmooth case. Imposing discrete analogues of both smooth-trajectory con-
ditions and nonsmooth-jumps we obtain a DELI-based, Generalized Variational
Integrator (GVI) whose time-forward, one-step map is given by sequencing through
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a nonsmooth momentum update

pt
+

= pt + N(qt)λ+,

N(qt)TM−1
(
pt + N(qt)λ+

)
≥ 0,

λ+ ≥ 0,

Ed(q
t, pt + N(qt)λ+) = Ed(q

t, pt),

where Ed gives the numerical Hamiltonian; a smooth configuration update

D1Ld(q
t, qt+1) + pt

+

+ NS(t)(q
t)λ− = 0,

0 ≤ λ− ⊥ gS(t)(q
t+1) ≥ 0,

S(t) =
{
i : ∇gi(qt)TM−1pt

+

= 0, gi(q
t) = 0, i ∈ {0, ..,m}

}
;

and a smooth momentum update

pt+1 = D2Ld(q
t, qt+1) + NS(t)(q

t+1) µ,

NS(t)(q
t+1)TM−1pt+1 = 0 .

Definition (Active Set). At time t the active set is A(t) =
{
i : gi(q

t) ≤ 0, i ∈
{0, ..,m}

}
.

Definition (Discrete-Smooth Interval). An interval [a, b] is discrete-smooth if for
all t ∈ [a, b] we have S(t) = A(t).

Theorem. On discrete-smooth intervals GVI is symplectic-momentum preserv-
ing.

(a) (b) (c)

Figure 1. Numerical example of particles connected sequentially
by rods interacting in a Lennard-Jones potential.

We then note that on intervals where discrete-smoothness does not hold we con-
tinue to observe good long-term behavior. To illustrate these properties we close
by considering the numerical example of six spheres in R3, i.e., q = (qT1 , ..., q

T
6 )

T ∈
R18, connected sequentially by bilateral rod constraints,

fi(q) =‖ qi − qi+1 ‖ − l = 0.
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Sphere-pairs are constrained by non-overlap conditions,

gi,j(q) =‖ qi − qj ‖ −2r ≥ 0,

interact in a Lennard-Jones potential,

V (q) =
∑

i6=j

4ǫ
[( σ

‖ qi − qj ‖
)12

−
( σ

‖ qi − qj ‖
)6]

,

and are further constrained to lie in a bounding sphere of radius rB so that addi-
tionally,

gi,b(q) = − ‖ qi ‖ −r + rb ≥ 0.

In our simulation we employ reduced time units, (mσ2/ǫ)1/2, with the mass of all
particles set to unity, σ/2 = r = 0.3, rb = 5, and l = 1. Figure 1(a) shows a
snapshot of the system configuration. Figure 1(b) traces out the entire trajectory
computed by a Störmer-Verlet-based GVI of all particle centers over 2000 units
of simulation time, stepped at h = 10−2, while Figure 1(c) plots the change in
energy over the same trajectory.

As illustrated in the above example, DELI can be further extended to simul-
taneously enforce bilateral constraints. For these details and additional materials
see Kaufman and Pai [3].
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Discrete Dirac Mechanics and Discrete Dirac Geometry

Melvin Leok

(joint work with Tomoki Ohsawa)

Dirac structures, which can be viewed as simultaneous generalizations of symplec-
tic and Poisson structures, were introduced in [6, 7]. In the context of geometric
mechanics [1, 2, 16], Dirac structures are of interest as they can directly incor-
porate Dirac constraints that arise in degenerate Lagrangian systems [10], LC
circuits [4, 21, 24], interconnected systems [22], and nonholonomic systems [3],
and thereby provide a unified geometric framework for studying such problems.

From the Hamiltonian perspective, these systems are described by implicit
Hamiltonian systems [8, 21]. An implicit Hamiltonian system is defined by a
Hamiltonian and a Dirac structure, which is a subbundle that satisfies certain



866 Oberwolfach Report 16/2011

conditions. On the Lagrangian side, an implicit Lagrangian system [24] is de-
fined by exploiting the geometric structure called the Tulczyjew’s triple [19, 20] in
addition to a Dirac structure. The Tulczyjew triple relates iterated tangent and
cotangent bundles, and is given by,

T ∗TQ

πTQ
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?

γQ
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Ω
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��

��
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��
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??
??

??
??

?
(q, p,−δp, δq)?

����
��

��
��

��
�

(q, δq) (q, p)

Given a Lagrangian L : TQ → R, we define the Dirac differential DL : TQ →
T ∗T ∗Q by

DL ≡ γQ ◦ dL.
In local coordinates,

DL(q, v) =

(
q,
∂L

∂v
,−∂L

∂q
, v

)
.

Then, an implicit Lagrangian system (ILS) is defined by

(X,DL) ∈ D.

In particular, if D is the induced Dirac structure D∆Q
, given by,

D∆Q
≡
{
(v, α) ∈ TT ∗Q⊕ T ∗T ∗Q | v ∈ ∆T∗Q, α− Ω♭(v) ∈ ∆◦

T∗Q

}
,

this reduces to

TπQ(X) ∈ ∆Q, Ω♭(X)−DL ∈ ∆◦
T∗Q,

A discrete Tulczyjew’s triple is given by,

T ∗(Q×Q)

πQ×Q
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??

??
??

??
??

?
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(q0, q1,−p0, p1)
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which provide the natural setting to define implicit discrete Lagrangian and Hamil-
tonian systems. The discrete induced Dirac structure is given by

Dd+
∆Q

≡
{
((z, z+), αẑ) ∈ (T ∗Q × T ∗Q)× T ∗(Q ×Q∗)

∣∣∣

(z, z+) ∈ ∆d
T∗Q, αẑ− Ω♭

d+((z, z
+)) ∈ ∆◦

Q×Q∗

}
,

Then, an implicit discrete Lagrangian system is a triple (Ld,∆
d
Q, Xd) with

(
Xk

d ,D
+Ld(qk, q

+
k )
)
∈ Dd+

∆Q
.

In coordinates, we have the following discrete implicit Lagrange–d’Alembert equa-
tions:

(qk, qk+1) ∈ ∆d
Q, qk+1 = q+k ,

pk+1 = D2Ld(qk, q
+
k ), pk +D1Ld(qk, q

+
k ) ∈ ∆◦

Q(qk).

In particular, this recovers nonholonomic integrators [5, 18] that are typically
derived from a discrete Lagrange–d’Alembert principle.

We also introduce discrete Lagrange–d’Alembert–Pontryagin and Hamilton–
d’Alembert variational principles, that provide a variational characterization of
implicit discrete Lagrangian and Hamiltonian systems that were described using
discrete Dirac structures, and which reduce to the standard Lagrangian [17] and
Hamiltonian [11, 14] variational integrators in the absence of constraints. Discrete
Lagrangian, Hamiltonian, and nonholonomic mechanics have also been generalized
to Lie groupoids [9, 15, 23]. A detailed exposition of the discrete geometric and
variational structure of discrete Dirac mechanics can be found in [12, 13].
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11(4):393–414, 1969.

[11] S. Lall and M. West. Discrete variational Hamiltonian mechanics. Journal of Physics A:
Mathematical and General, 39(19):5509–5519, 2006.

[12] M. Leok and T. Ohsawa. Discrete dirac structures and implicit discrete lagrangian and
hamiltonian systems. AIP Conference Proceedings, 1260(1):91–102, 2010.

[13] M. Leok and T. Ohsawa. Discrete Dirac structures and variational discrete Dirac mechanics.
Foundations of Computational Mathematics, 2011. (accepted).

[14] M. Leok and J. Zhang. Discrete Hamiltonian variational integrators. IMA J. Nuer. Anal,
2011. (accepted).

[15] J. C. Marrero, D. Mart́ın de Diego, and E. Mart́ınez. Discrete Lagrangian and Hamiltonian
mechanics on Lie groupoids. Nonlinearity, 19(6):1313–1348, 2006.

[16] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. Springer-Verlag,
1999.

[17] J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numerica,
pages 357–514, 2001.

[18] R. McLachlan and M. Perlmutter. Integrators for nonholonomic mechanical systems. Journal
of Nonlinear Science, 16(4):283–328, 2006.

[19] W. M. Tulczyjew. Les sous-variétés lagrangiennes et la dynamique hamiltonienne. C. R.
Acad. Sc. Paris, 283:15–18, 1976.

[20] W. M. Tulczyjew. Les sous-variétés lagrangiennes et la dynamique lagrangienne. C. R. Acad.
Sc. Paris, 283:675–678, 1976.

[21] A. J. van der Schaft. Implicit Hamiltonian systems with symmetry. Reports on Mathematical
Physics, 41(2):203–221, 1998.

[22] A. J. van der Schaft. Port-Hamiltonian systems: an introductory survey. In Proceedings of
the International Congress of Mathematicians, volume 3, 2006.

[23] A. Weinstein. Lagrangian mechanics and groupoids. In Mechanics day (Waterloo, ON,
1992), volume 7 of Fields Inst. Commun., pages 207–231. Amer. Math. Soc., Providence,
RI, 1996.

[24] H. Yoshimura and J. E. Marsden. Dirac structures in Lagrangian mechanics Part I: Implicit
Lagrangian systems. Journal of Geometry and Physics, 57(1):133–156, 2006.

Bilinear discretization of quadratic vector fields

Yuri B. Suris

This talk was devoted to the remarkable properties of the following discretization
method applicable to any system of ODEs with quadratic vector fields:

ẋ = Q(x) +Bx+ c  (xk+1 − xk)/ǫ = Q(xk, xk+1) +B(xk + xk+1)/2 + c,

where B ∈ Rn×n, c ∈ Rn, each component of Q : Rn → Rn is a quadratic form,
and Q(x, y) = (Q(x+y)−Q(x)−Q(y))/2 is the corresponding symmetric bilinear
function. This discretization method goes back to W. Kahan [1].

It is important to observe that equations for xk+1 are linear, hence their solution
by the Cramer’s rule leads to a map xk+1 = f(xk, ǫ) which is rational. Moreover,
due to the obvious symmetry of the above difference equation with respect to the
flip xk ↔ xk+1 accompanied by the change of sign ǫ → −ǫ, one has the following
reversibility:

f−1(x, ǫ) = f(x,−ǫ).
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so that the map f is birational.
Kahan illustrated his method by the famous Lotka-Volterra system, for which

his discretization produces non-spiralling solutions, unlike most of the convenient
integrators. This behavior was partly explained by J. Sanz-Serna [2] who demon-
strated that Kahan’s integrator for the Lotka-Volterra system is symplectic (Pois-
son).

In this talk, we are mainly interested in application of the Kahan’s discretization
method to algebraically integrable systems, which was initiated by R. Hirota and
K. Kimura [3, 4] (for the Euler and the Lagrange tops). In this context, we refer
to this method as the Hirota-Kimura (HK) discretization. My interest in this
topic was stimulated by the talk given by T. Ratiu at the Oberwolfach Workshop
“Geometric Integration” in March 2006, who claimed that HK-type discretizations
for the Clebsch system and for the Kovalevsky top are also integrable. The HK
discretization of the Euler top was demonstrated to be a bi-Hamiltonian system
in [5]. Integrability of the HK discretization of the Clebsch system was actually
proven in [6]. There are indications that the HK discretization of the Kovalevsky
top is non-integrable, although a rigorous proof of such a statement seems to be a
very difficult enterprize.

Our analysis of the work by Hirota-Kimura (which is not easy to put on a firm
mathematical base) and our study of the HK discretization of the Clebsch system
led us to the formulation of the following definition.

Definition. For a given birational map f : Rn → Rn, a set of functions
Φ = (ϕ1, . . . , ϕl), linearly independent over R, is called a HK-basis, if for every
x0 ∈ Rn there exists a vector c = (c1, . . . , cl) 6= 0 such that

c1ϕ1(f
i(x0)) + . . .+ clϕl(f

i(x0)) = 0 ∀i ∈ Z.

For a given x0 ∈ Rn, the set of all vectors c ∈ Rl with this property will be denoted
by KΦ(x0) and called the null-space of the basis Φ (at the point x0). This set
clearly is a vector space.

HK bases seem to be novel mathematical objects, closely related to but clearly
different from integrals of motion. For instance, in the above definition we cannot
claim that h = c1ϕ1 + ...+ clϕl is an integral of motion, since vectors c ∈ KΦ(x0)
vary from one initial point x0 to another. However, existence of a HK-basis Φ with
dimKΦ(x0) = d has similar dynamical consequences as existence of d independent
integrals of motion: in both cases the orbits of f are confined to (n−d)-dimensional
invariant sets. Moreover, if Φ is a HK-basis for a map f , thenKΦ(f(x0)) = KΦ(x0)
and thus the d-dimensional null-space KΦ(x0) is a Gr(d, l)-valued integral. Its
Plücker coordinates are then scalar integrals. Especially simple is the situation
when the null-space of a HK-basis has dimension d = 1:

Fact. Let Φ be a HK-basis for f with dimKΦ(x0) = 1 for all x0 ∈ Rn. Let
KΦ(x0) = [c1(x0) : . . . : cl(x0)] ∈ RPl−1. Then the functions cj/ck are integrals of
motion for f .

The main difficulties in the rigorous proof of integrability of HK discretizations,
like for the Clebsch system in [6], come from the necessity of a symbolical solution
of linear systems whose coefficients are composed of higher iterates of the map
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f . However, the complexity of this map precludes any simple-minded attempts
in this direction. For instance, for the Clebsch case the complexity of the map
f is best described by the following data: the common denominator and the
numerators of components of f are polynomials of degree 6 in six variables, the
common denominator consists of 28 monomials, the numerators consist of up to 41
monomials. For the second iterate f2, the common denominator of its components
has total degree 27, with degree 24 in each of variables, while the numerators
are of total degree 33, with degree 28 in each of variables. Thus, even a naive
computation and storage of f2 is nearly impossible with the current software and
hardware. One can consult [6] for some tricks which allowed us to overcome these
difficulties.

In [7], we give an overview of results on the integrability of HK discretizations
available at present. An (incomplete) list of examples includes:

• Periodic Volterra chain of period N = 3, 4;
• Dressing chain with N = 3 particles;
• Euler and Lagrange cases of the heavy top;
• Kirchhof and Clebsch cases of the rigid body motion in an ideal fluid;
• Some cases of the Zhukovsky-Volterra gyrostat;
• Three-wave interaction system;
• System of two interacting Euler tops.

For the most complicated cases, our proofs are computer assisted. We did not
find a general structure, which would provide us with less computational proofs
and with more insight. In particular, nothing like a Lax representation has been
found. Nothing is known about the existence of an invariant Poisson structure for
these maps, although an invariant volume measure has been found for all of them.

In [6], we pushed forward the following conjecture:

Conjecture. For any algebraically completely integrable system with a qua-
dratic vector field, its Hirota-Kimura discretization remains algebraically com-
pletely integrable .

However, at present we have a number of apparent counterexamples (it is ex-
tremely difficult to prove non-integrability). Nevertheless, the HK discretization
preserves integrability much more often than a mere coincidence would allow.

The full story still waits to be clarified.
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Solving KdV (and Painlevé II) numerically using Riemann–Hilbert
problems

Sheehan Olver

(joint work with Tom Trogden)

Integrable systems are of immense importance in mathematics, quantum physics,
molecular dynamics and elsewhere. In addition to other important properties,
many integrable systems can be reformulated as Riemann–Hilbert (RH) problems.
A classical example is the Korteweg–de Vries (KdV) equation,

ut + 6uux + uxxx = 0, u(0, x) = u0(x),

for x on the real line. Associated to the initial data is the scattering data: given
initial condition u0, we can compute the reflection coefficient r(k) and the soliton
data (κ1, γ1), . . . (κN , γN). From the scattering data, we can construct an RH
problem which is equivalent to solving KdV [6]: find a function Φ, meremorphic
off R with only simple poles at ±iκ1, . . . ,±iκN , which satisfies

Φ+(k) = Φ−(k)

(
1− |r(k)|2 −r̄(k)e−2i(4tk3+xk)

r(k)e2i(4tk
3+xk) 1

)
for x ∈ R,

Res iκj
Φ(k) = Φ(iκj)

(
0 0

iγ2ke
−2(−4tκ3

j+xκj) 0

)
for j = 1, . . . , N,

Res −iκj
Φ(k) = Φ(−iκj)

(
0 −iγ2ke−2(−4tκ3

j+xκj)

0 0

)
,

Φ(∞) = (1, 1),

where Φ+ and Φ− are the limits as k approaches the real line from above and
below, respectively. The goal of this talk is to demonstrate that KdV can be
solved accurately for all values of x and t, by solving this RH problem.

We begin by demonstrating the approach used in [8] for solving the RH problem
associated with the Painlevé II transcendent. This RH problem consists of finding
a 2× 2 matrix function Φ which is analytic off a curve Γ consisting of six rays in
the complex plane, satisfying

(1) Φ+(k) = Φ−(k)G(k) for k ∈ Γ and Φ(∞) = I,

where G is a function depending on x and the three Stokes’ constants s1, s2, s3
which satisfy

s1 − s2 + s3 + s1s2s3 = 0.
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Using the Cauchy transform

(2) Cf(z) = 1

2πi

∫

Γ

f(x)

x− z
dx,

we can reduce (1) to a problem on the contour Γ: letting Φ = I + CU , (1) implies
that U satisfies

(3) (CU)+ − (CU)−G = G− I

on Γ. Assuming C can be computed reliably, including its left and right limits on
Γ, we can solve (3) using a collocation/spectral method: represent

U ≈
∑

ckψk

for an appropriate basis ψk, determining the (matrix) coefficients ck by ensuring
that (3) is satisfied at a sequence of points xj on Γ. In other words, we solve the
linear system

∑
ck
{
(Cψk)

+(xj)− [(Cψk)
−(xj)]G(xj)

}
= G(xj)− I.

The key tool we require is computation of Cauchy transforms. If Γ is the
unit interval, then one can compute the Chebyshev expansion of f , reducing the
problem to that of computing the moments CTk, where Tk is the kth Chebyshev
polynomial. For these moments, we can use the closed form formula derived in
[7], resulting in an approximation to (2) which converges uniformly throughout
the complex plane, including along the branch cut itself. This can be extended to
each of the constituent pieces of Γ via conformal maps, therefore, we choose the
basis ψk to be piecewise conformally mapped Chebyshev polynomials. In other
words, the computation of Cψk is exact.

One last aspect is crucial to the accuracy of the method: all junction points of
Γ must be included in the collocation system. Though the Cauchy transform of a
piecewise mapped Chebyshev polynomial explodes at its junction points, we know
precisely what the contribution to the Cauchy transform would be if this blow up
were somehow cancelled by Cauchy transforms over the connecting curves. We
take this as the value of the Cauchy transform at such points in the collocation
system. Fortunately, this convention ensures that the resulting approximation of
U is bounded, which in turn justifies the special definition chosen for the Cauchy
transform.

The resulting numerical method converges spectrally fast, i.e., the error decays
faster than any inverse polynomial in the number of collocation points used. This
compares favourably with previous attempts at solving RH problems numerically,
such as [4], where exponentially many points were needed near junction points to
simulate boundedness.

There are two issues with the numerical approximation: the jump curve G be-
comes increasingly oscillatory for x far away from the origin, and the collocation
system becomes badly conditioned. Both issues can be avoided by using nonlin-
ear steepest descent [3]: the contour Γ can be deformed in the complex plane to
transform oscillations into exponential decay, the jump matrix G can be factored
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and any jump matrix which is diagonal or skew-diagonal can be removed via a
parametrix. By using these techniques, we can obtain an RH problem which is nu-
merically useful, and the resulting approximation remains accurate for large and
small x.

To adapt this approach for the KdV RH problem, we must be able to handle
the poles at ±iκj. This means the solution can no longer be represented by a
Cauchy transform over R. However, we can represent the solution by such a
Cauchy transform as well as the functions

1

z − iκj
,

and append the conditions on the residues to the collocation system. In different
regimes of x and t we obtain different deformations, however, because we are
solving the resulting RH problem numerically (rather than asymptotically), the
validity of the deformations actually overlaps. Thus, for any x and t, even very
large t, we can compute the solution to KdV to arbitrary accuracy, and each
evaluation is independent: we do not need to time-step. On the other hand,
because KdV exhibits very harsh oscillations in the dispersive tail, any traditional
numerical method would rapidly break down.
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On energy preserving integrators for polynomial Hamiltonians

Elena Celledoni

(joint work with B. Owren and Y. Sun)

We shall be concerned with canonical Hamiltonian systems

(1) y′ = J−1∇H(y) = f(y), J =

(
0 I
−I 0

)
.

The numerical solution of problems of the this type has been treated extensively
in the literature, we refer to the monographs [4, 8] and the references therein for
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details. Important properties of the system (1) are symplecticity and reversibility
of the flow map, conservation of the Hamiltonian H(y) along any solution y(t) and
volume preservation. The circumstances under which various numerical integrators
inherit these properties are by now fairly well understood. For example Runge–
Kutta methods can preserve symplecticity and reversibility, but no Runge–Kutta
method can be energy-preserving for any Hamiltonian function H and no B-series
can be volume preserving for any system (1).

In the present work we focus on the preservation of the Hamiltonian itself, we
study integrators generating a sequence of approximations {yn} to the solution of
(1) such that H(yn) = H(y0) for all n ≥ 1, and in particular, what can be achieved
when the Hamiltonian is polynomial and the integrator is a Runge–Kutta method.
For linear Hamiltonians, the resulting ODE is constant and any consistent Runge–
Kutta scheme will reproduce the exact solution. If the Hamiltonian is a quadratic,
then the resulting ODE is linear, and the condition for preserving energy is that
the stability function of the method satisfies R(z)R(−z) = 1. For polynomials of
higher order it is not known to which extent Runge–Kutta methods can preserve
the Hamiltonian. However, it was observed in [9] that the Averaged Vector Field
(AVF) method, defined as

(2) yn+1 = yn + h

∫ 1

0

f((1− ξ)yn + ξyn+1) dξ

preserves the Hamiltonian for all problems of the form (1). The AVF method has
second order convergence. In particular, when the Hamiltonian is a polynomial,
the integral can be exactly resolved, the same result is obtained if the integral in (2)
is replaced by a quadrature rule of sufficiently high order. This was observed in [1].
In fact, using a standard linear formula with abscissae c = (c1, . . . , cs)

T and weights
b = (b1, . . . , bs)

T , the result is a Runge–Kutta method in which the Butcher matrix
is given as A = cbT . This immediately shows that for any polynomial Hamiltonian
system, there exist Runge–Kutta methods which exactly preserve the energy, see
[6] for a different proof of this result. Note also that any choice of quadrature
rule of sufficiently high order yields the same approximation, the AVF method is
reproduced exactly.

As pointed out in [1] any energy-preserving integrator for (1) must obey all
quadrature conditions, but for polynomial systems this can be relaxed. Letting
the Hamiltonian be a polynomial of degreem, a necessary condition for the energy
to be preserved is that the quadrature conditions hold up to order m, or in terms
of Runge–Kutta coefficients

(3)
∑

i

bic
k−1
i =

1

k
, k = 1, . . . ,m.

Thus, in considering energy preserving Runge–Kutta methods for polynomial
Hamiltonians of degree ≤ m one may immediately restrict the focus to schemes
whose coefficients satisfy (3). If m = 2s then the smallest possible number of
stages in the scheme is s the resulting abscissae and weights are those of the
Gauss–Legendre quadrature rule. If m = 2s−1 then the smallest possible number
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of stages is still s, but the quadrature rule is not uniquely given. One can prove
the following theorem.

Theorem 0.1. Let m ≥ 3. Among all Runge–Kutta methods which exactly pre-
serve all polynomial Hamiltonians of degree at most m, those with the minimal
number of stages coincide with the AVF method when applied to such problems.
The number of stages in these methods is ⌊(m+ 1)/2⌋.

In general, there are energy preserving Runge–Kutta methods for polynomial
Hamiltonian systems which do not coincide with the AVF-integrator. There also
exist such methods of arbitrarily high order [7], see also [5]. Examples are easily
obtained as composition methods based on the AVF-integrator.

The proof makes use of results from [3] and [2] and the W -transform.
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Collocation-like methods with conservation properties for the
numerical integration of Hamiltonian systems

Felice Iavernaro

(joint work with Luigi Brugnano, Donato Trigiante)

Summary. The present report sketches the theory of Hamiltonian Boundary Value

Methods (HBVMs), a class of Runge–Kutta methods, able to preserve the energy
function of polynomial Hamiltonian canonical systems. A documentation, Matlab
codes, and a complete set of references is available at the url [5].

Definition of the problem. We consider canonical Hamiltonian systems
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ẏ = J∇H(y), J =

(
0 I

−I 0

)
,

and we assume that the Hamiltonian function H(y) is a polynomial. Our aim is
to define one-step methods yn+1 = Φh(yn) (h is the stepsize of integration) that
conserve the Hamiltonian function: H(yn+1) = H(yn) for all n and h > 0.

The genesis. The first instance of conservative Runge–Kutta methods dates back

to 2007 [8] and takes the form of a generalization of the trapezoidal method1

yn+1 − yn =
1

2
J (∇H(yn) +∇H(yn+1)) .

Multiplication of both sides by (∇H(yn) +∇H(yn+1))
T
yields

(1) (∇H(yn) +∇H(yn+1))
T
(yn+1 − yn) = 0.

For quadratic Hamiltonian functions this is tantamount to the conservation law
H(yn+1) = H(yn). To see this, consider the segment σ joining yn to yn+1, namely
σ(t0 + ch) = (1− c)yn + cyn+1, with c ∈ [0, 1], and the line integral

H(yn+1)−H(yn) =

∫

yn→yn+1

∇H(y) dy =

∫ 1

0

σ̇(t0 + ch)T ∇H(σ(t0 + ch)) dc

= h(yn+1 − yn)
T

∫ 1

0

∇H(σ(t0 + ch)) dc(2)

=
1

2
h(yn+1 − yn)

T (∇H(yn) +∇H(yn+1)),(3)

where (3) comes from the application of the trapezoidal rule for the exact evalua-
tion of the integral in (2), ∇H(y) being linear. Thus (1) means H(yn+1) = H(yn).

Now suppose that degH(y) = ν: the integrand in (2) has degree ν − 1 and can
be solved by any quadrature formula, with abscissae c1 < c2 < · · · < ck in [0, 1]
and weights b1, . . . , bk, having degree of precision d ≥ ν − 1. In place of (3) we
now obtain

H(yn+1)−H(yn) = h(yn+1−yn)T
k∑

i=1

bi∇H(Yi), Yi = σ(t0+cih), i = 1, . . . , k.

This suggests the method

(4) yn+1 = yn + h

k∑

i=1

bif(Yi), Yi = (1 − ci)yn + ciyn+1, i = 1, . . . , k.

The stages Yi are called silent stages since their presence does not affect the
degree of nonlinearity of the resulting R-K method: (4) is a mono-implicit method.

The Butcher tableau associated with these methods is
c cbT

bT
, where c and b are

1Any other Runge–Kutta method yielding energy conservation when H(y) is quadratic, such
as the implicit midpoint method, may be used to sketch the idea.



Geometric Numerical Integration 877

the vectors of the abscissae and weights respectively. Routine computation shows
that each method has order two and is symmetric. The table below summarizes
the behavior of (4) for some choices of the abscissae distribution.

Abscissae distribution Newton-Cotes Lobatto Gauss
Energy preserving when degH ≤ k, k + 1 degH ≤ 2k − 2 degH ≤ 2k

Higher order methods. Higher order energy-preserving Runge–Kutta methods
have been obtained by considering a polynomial curve σ of higher degree in the
phase space, along which to evaluate the line integral [9, 10]. Starting from [1], it
was understood that to maximize the order of the resulting methods, the use of
the Legendre polynomial basis {Pj(c)}j=1,...s shifted on the interval [0, 1] was in
order (Pj(c) denotes the polynomial of degree j− 1). A polynomial σ(t) of degree
s, with σ(t0) = y0, is defined on [t0, t0 + h] by means of the expansion

(5) σ̇(t0 + ch) =

s∑

j=1

γjPj(c) =⇒ Yi ≡ σ(t0 + cih) = y0 + h

s∑

j=1

γj

∫ ci

0

Pj(x) dx,

where the (vector) coefficients {γj} are to be regarded as unknowns and y1 =
σ(t0 + h) is meant to yield the approximation to y(t0 + h). We have

H(y1)−H(y0) =

∫ t0+h

t0

(σ̇(t))T∇H(σ(t))dt = h

s∑

j=1

γTj

∫ 1

0

Pj(c)∇H(σ(t0+ ch))dc

which vanishes by imposing, for j = 1, . . . , s, the following orthogonality conditions

(6) γj = ηj

∫ 1

0

Pj(τ)J∇H(σ(t0 + ch))dc = ηj

k∑

ℓ=1

bℓPj(cℓ)J∇H(σ(t0 + cℓh)).

where, after observing that the integrand function has degree νs − 1, to obtain
the rightmost equality, we have assumed that d ≥ νs − 1. The scalars ηj are
suitable nonzero scaling factors that make the resulting method consistent: ηj =(∫ 1

0 P
2
j (x)dx

)−1

, j = 1, . . . , s (and hence ηj = 2j − 1 in case of the Legendre

basis). Substituting (6) into the right formula in (5) yields the following R-K
method
(7)



Yi = y0 + h
∑s

j=1 ηj
∫ ci
0
Pj(x)dx

∑k
ℓ=1 bℓPj(cℓ) f(Yℓ),

i = 1, . . . , s,

y1 = y0 + h
∑k

i=1 biYi,

⇐⇒

c1
...
ck

IΛPTΩ

b1 . . . bk

where the matrices I,P ∈ Rk×s and Λ,Ω are defined as

Iij =
∫ ci

0

Pj(x)dx, Pij = Pj(ci),
Λ = diag(η1, . . . , ηs),
Ω = diag(b1, . . . , bk).

The Runge–Kutta method (7) has order 2s for all d ≥ 2s − 1, is symmetric and
precisely A-stable, becomes the Gauss–Legendre method of order 2s when k = s, is



878 Oberwolfach Report 16/2011

energy preserving when applied to canonical polynomial Hamiltonian systems with
Hamiltonian function H(y) of degree ν ≤ d+1

s (if the ci are the Gauss abscissae

then ν ≤ 2k
s ). An interesting link to standard collocation methods (see [3]) is that

the Butcher array in (7) may be put in the form A(P̂P̂TΩ), where P̂ = PΛ1/2 and
A is the Butcher array associated with a standard collocation method defined on
the same abscissae ci and weights bi, provided d ≥ 2s−1. Methods such as (7) are
denoted by HBVM(k,s), where k is the total number of stages and s is the degree
of the underlying polynomial σ. The block-BVM notation uncouples the linear
and nonlinear parts of (7) thus making the method suitable for implementation.

∞-HBVMs [2]. These are the limit of HBVM(k,s), as k → ∞, and are obtained
by simply retaining the integrals instead of the sums in (6) (see [2]). The ∞-
HBVM of order 2 becomes the averaged vector field [11, 6], while limit formulae
based upon the Lagrange basis were first proposed by E. Hairer [7].

HBVMs and Fourier expansions [4]. Expanding f along the orthonormal Le-
gendre basis and truncating after the first s terms yields a continuous perturbed
problem with respect to which the HBVMs are standard collocation methods.

References

[1] L. Brugnano, F. Iavernaro, D. Trigiante, Analisys of Hamiltonian Boundary Value Methods
(HBVMs): a class of energy-preserving Runge–Kutta methods for the numerical solution
of polynomial Hamiltonian dynamical systems, Preprint (2009), (arXiv:0909.5659).

[2] L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian Boundary Value Methods (Energy
Preserving Discrete Line Integral Methods), Jour. of Numer. Anal., Industr. and Appl.
Math. 5 (no. 1-2) (2010), 17–37, (arXiv:0910.3621).

[3] L. Brugnano, F. Iavernaro, D. Trigiante, The Lack of Continuity and the Role of Infi-
nite and Infnitesimal in Numerical Methods for ODEs: the Case of Symplecticity, Applied
Mathematics and Computation (to appear), (arXiv:1010.4538).

[4] L. Brugnano, F. Iavernaro, D. Trigiante, A unifying framework for the derivation and anal-
ysis of effective classes of one-step methods for ODEs, Preprint, 2010, (arXiv:1009.3165).

[5] L. Brugnano, F. Iavernaro, D. Trigiante, The Hamiltonian BVMs (HBVMs) Homepage,
arXiv:1002.2757 (URL: http://web.math.unifi.it/users/brugnano/HBVM/).

[6] E. Celledoni, R.I. McLachlan, D. McLaren, B. Owren, G.R.W. Quispel, W.M. Wright,
Energy preserving Runge–Kutta methods, M2AN 43 (2009), 645–649.

[7] E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl.
Math., 5,1-2 (2010).

[8] F. Iavernaro, B. Pace, s-Stage Trapezoidal Methods for the Conservation of Hamiltonian
Functions of Polynomial Type, AIP Conf. Proc. 936 (2007), 603–606.

[9] F. Iavernaro, B. Pace, Conservative Block-Boundary Value Methods for the Solution of
Polynomial Hamiltonian Systems, AIP Conf. Proc. 1048 (2008), 888–891.

[10] F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of
polynomial Hamiltonian problems, Jour. of Numer. Anal., Industr. and Appl. Math. 4 (no.
1-2) (2009), 87–101.

[11] G.R.W. Quispel, D.I. McLaren, A new class of energy-preserving numerical integration
methods J. Phys. A 41 (045206), 2008.



Geometric Numerical Integration 879

Unitary transformations depending on a small parameter

Fernando Casas

(joint work with J.A. Oteo, J. Ros)

Quantum Mechanics (QM) presented since its very creation a view of physical
phenomena radically different to that of Classical Mechanics (CM). In many ways,
however, CM played a seminal and guiding role in the construction of the quantum
formalism. This is evident in the contributions of some of the founding fathers of
QM: for example in the famous “Drei männer arbeit” by Born, Heisenberg and
Jordan [1] in which they built the quantum perturbation theory in strong analogy
with the classical version. In addition, all three of them were able to make use
of their through knowledge of the classical theory, especially of the perturbation
schemes and the theory of canonical transformations, for extending their matrix
scheme to general quantum systems.

Since then the mutual relationship between QM and CM has been fruitful,
manyfold and has gone in both ways. A fact that is not always sufficiently em-
phasized. One of the reasons is that once QM was formulated in Hilbert space the
essentially linear character of the formalism made more evident the use of alge-
braic techniques in this context than in CM. Perturbation theory is another area
in which one can say that the quantum treatment is more popular than its classi-
cal counterpart. Here again the underlying linear structure of the quantum case
allows for a simpler presentation. This is especially true if one adheres to the old-
fashioned formulation of classical canonical perturbation theory with mixed (new
and old) coordinates in phase space. However, since the late 60’s there is a clear
alternative to this procedure. It arose in Celestial Mechanics [2] and found early
applications in plasma physics and accelerator studies. This approach is based
on the use of Lie algebraic methods in CM and originates a perturbation theory
that, while being equivalent to the classical Poincaré–Von Zeipel’s, is simpler in
presentation and richer in applications.

In this presentation we adapt the Lie–Deprit algorithm of classical mechanics
as a perturbation theory for general quantum systems. This approach has the
advantage that it allows a unifying view, in the following sense. On one hand, it
establishes a direct connection between the classical and the quantum formalism.
On the other hand, the same algorithm can be applied both to time-independent
and time-dependent quantum systems. In addition, and contrarily to the usual
time dependent perturbation theory, the scheme is unitary at any order of approx-
imation.

Suppose we are interested in a quantum system which can be described by a time
independent Hamiltonian H0 perturbed by a time-dependent H ′(t, ǫ) that depends
on a small parameter ǫ in such a way that H ′(t, ǫ = 0) = 0. The Hamiltonian
whose dynamics has to be solved reads then

(1) H(t, ǫ) = H0 +H ′(t, ǫ) ≡ H0 +

∞∑

n=1

ǫnHn(t),
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where we have assumed that H ′(t, ǫ) is analytic in ǫ. The time evolution of the
wave function Ψ(t) may be described in terms of the evolution operator, Ψ(t) =
U(t, t0)Ψ(t0), which is unitary and obeys the Schrödinger equation

(2) i~
∂

∂t
U(t, t0) = H(t)U(t, t0), U(t0, t0) = I.

Since the dynamics corresponding to H0 has been solved, one has UH0
(t, t0) =

exp(−i(t− t0)H0/~). The goal is then to construct a unitary near-identity trans-
formation T (t, ǫ) such that the transformed system

(3) i~
∂

∂t
UK(t, t0) = K(t, ǫ)UK(t, t0), UK(t0, t0) = I

is easier to solve than the original equation (2). Then it is easy to verify that
U(t, t0) is factorized as

(4) U(t, t0) = T (t, ǫ)UK(t, t0)T
†(t0, ǫ),

and the new Hamiltonian K is given by

(5) K(t, ǫ) = T †(t, ǫ)H(t, ǫ)T (t, ǫ) + i~
∂T †(t, ǫ)

∂t
T (t, ǫ).

Vey often we will take T (t0 = 0, ǫ) = I in (4). We guarantee that T is indeed
unitary is by introducing a skew-Hermitian operator L(t, ǫ) such that T (t, ǫ) is the
solution of the operator differential equation ∂

∂ǫT (t, ǫ) = −T (t, ǫ)L(t, ǫ). Equiva-
lently,

(6)
∂

∂ǫ
T †(t, ǫ) = L(t, ǫ)T †(t, ǫ), T †(t, 0) = I.

The formal solution of this equation can be obtained by applying the so-called
Magnus expansion [3], so that we can write T †(t, ǫ) = exp(Ω(t, ǫ)), where Ω is a
skew-Hermitian operator. Deriving equation (5) with respect to ǫ we arrive after
some algebra at

(7)
∂K

∂ǫ
= [L,K] + eadΩ

∂H

∂ǫ
+ i~

∂L

∂t
,

where [L,K] ≡ LK −KL and adΩB ≡ [Ω, B], with adnΩB ≡ adn−1
Ω B.

At this stage, three different issues have to be addressed:

(1) Choose the new Hamiltonian K such that equation (3) is easy to solve.
(2) Compute the skew-Hermitian generator L of the required transformation.
(3) Construct the unitary transformation T from the generator L, or equiva-

lently, the operator Ω in T = exp(−Ω).

It turns out that first two problems above enumerated can be solved perturbatively
with equation (7), whereas the third can be treated independently. To proceed,
we introduce in addition to (1), the following series expansions:

(8) K(t, ǫ) =

∞∑

n=0

ǫnKn(t), L(t, ǫ) =

∞∑

n=0

ǫnLn+1(t).
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Then, by applying the Magnus expansion, it is possible to determine Ω(t, ǫ) as a
power series in ǫ, Ω(t, ǫ) =

∑∞
n=1 ǫ

nvn(t) and the vn(t) can be expressed in terms
of Lj(t). In particular

v1 = L1, v2 =
1

2
L2, v3 =

1

3
L3 −

1

12
[L1, L2].

On the other hand, we have eadΩ ∂H
∂ǫ =

∑∞
n=0 ǫ

nwn(t) which can also be obtained
algorithmically, its first terms being

w0 = H1, w1 = 2H2+[L1, H1], w2 = 3H3+2[L1, H2]+
1

2
[L2, H1]+

1

2
[L1, [L1, H1]].

Finally, inserting these series into (7) and collecting terms of the same power in ǫ,
results in the following homological equation

(9) i~
∂Ln

∂t
+ [Ln, H0] = nKn − F̃n, n = 1, 2, . . .

with

(10) F̃n =

n−1∑

j=1

[Ln−j,Kj ] + wn−1

in addition toK0 = H0. This equation admits the formal solution (Ln(t0 = 0) = 0)

(11) Ln(t) = − i

~

∫ t

0

du e−i(t−u)H0/~
(
nKn(u)− F̃n(u)

)
ei(t−u)H0/~.

The election of a particularK is a degree of freedom of the method, and thus it can
be adapted to any particular problem one is dealing with. Perhaps the simplest
option is to take K = H0 or equivalently Kn = 0 for n ≥ 1. In this way one tries
to construct a unitary transformation in such a way that in the new image there
is no perturbation at all. In that case UK(t) = exp

(
− iH0(t− t0)/~

)
and

(12) U(t) = T (t, ǫ) e−
i
~
H0(t−t0) = e−Ω(t,ǫ) e−

i
~
H0(t−t0).

Other options are of course valid. For instance, if H0 has a pure non-degenerate
point spectrum we can choose Kn diagonal. This is the natural choice when
the original Hamiltonian (1) is time independent. It is also worth stressing that
this procedure can be generalized to any linear differential equation and thus
constitutes a novel approach to carry out perturbative analysis whereas preserving
qualitative (geometric) properties of the exact solution.
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Trigonometric schemes for stiff second-order SDEs

David Cohen

(joint work with Magdalena Sigg)

Inspired by the construction of trigonometric schemes for highly oscillatory deter-
ministic problems, see [4, Chapter XIII] and references therein, we propose a new
approach for the numerical discretisation of stiff second-order SDEs of the form

Ẍt + ω2Xt = g(Xt) + Ẇt,

where ω ≫ 1 is a large parameter, the nonlinearity g(x) = −U ′(x) is smooth and
Wt is a standard Wiener process.

For this type of problems, we obtain order one mean-square error estimates in
the position, independent of the large parameter ω. We have also shown that the
expected value of the energy E[ 12

(
(Ẋt)

2 + ω2(Xt)
2
)
+ U(Xt)] along the numerical

solution has almost the same linear drift as the exact solution of our problem.
An extension of the method to systems of SDEs

Ẍt +Ω2Xt = g(Xt) +BẆt,

where Ω = 1
εA

1/2 with A ∈ Rd×d symmetric positive definite and ε≪ 1, B ∈ Rd×m

is “nice”, and Wt is an m-dimensional Wiener process, is then presented. Similar
results as the one for the above scalar case are briefly presented. The proofs heavily
relies on the main result given in [3] for deterministic problems. We mention that
our results are closely related to the one by [5] for stiff Langevin systems.

Currently we are extending the above results to stiff SDEs with multiplicative
noises.

Finally, we conclude the talk by showing numerical experiments for possible
extensions (the Kubo oscillator, Langevin-type equations) and for a nonlinear
stochastic wave equation. These are ongoing works.
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Meshfree integrators

Marco Caliari, Alexander Ostermann, Stefan Rainer

1. Introduction

We consider the time-dependent partial differential equation

(1)
∂

∂t
u(t, ξ) = F

(
t, ξ, u(t, ξ),

∂

∂ξ
u(t, ξ), . . .

)
, t ∈ [0, T ], ξ ∈ Ω ⊂ Rd

subject to appropriate initial and boundary conditions. We assume that the es-
sential support of the solution, that is the closure of the set of points where the
magnitude of the solution is greater than some given threshold, is small with re-
spect to the domain of interest, and varying in time.

For the numerical solution of (1), we propose a meshfree integrator. The spatial
discretisation relies on a stable and robust interpolation based on compactly sup-
ported radial basis functions; exponential integrators are employed for the time
integration. Our meshfree integrator controls the errors both in space and time.

2. Meshfree integrators

In this section we briefly describe how we compute the numerical approximation
un(ξ) ≈ u(tn, ξ) for discrete times 0 = t0 < t1 < . . . < tN = T . For a detailed
description of the method, we refer to [2]. Given an approximation un−1(ξ) at
time tn−1, we interpolate it by compactly supported radial basis functions

un−1(ξ) ≈ s(ξ) =
∑

η∈H λη φ
(
‖ξ − η‖

)

using a set of interpolation points H = {η1, . . . , ηm}. The coefficients λη are
determined from the interpolation conditions s(ηi) = un−1(ηi), i = 1, . . . ,m. In
order to control the spatial interpolation error, we update the set of interpolation
points using a residual subsampling method. For this purpose, we measure the
difference between un−1 and its interpolant at a different set of check points. We
update the set of interpolation points (by a coarsening and a refinement procedure)
until the error at all check points lies between two given thresholds θc < θr.

Approximating the right-hand side in (1) we obtain a system of stiff ordinary
differential equations

w′(t) = Gn(t, w(t)), t ∈ [tn−1, tn],

where the vector w(tn−1) contains the values of un−1(ξ) at the interpolation and
check points. This system is solved with an exponential integrator. For a review
of such integrators, we refer to [6]. The required actions of matrix functions are
computed with the Real Leja Points Method (see, e.g., [5, 2]).

The numerical solution un(ξ) is finally constructed from the numerical approxi-
mation to w(tn). In order to control the error in time we use an embedded method.
The error in space is again controlled by a residual subsampling method. Unless
both errors are sufficiently small, we repeat the time step by taking a smaller step
size and/or a different set of interpolation points.
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3. Numerical example

We consider the solution of the nonlinear Schrödinger equation

(2)





iε∂tψ = −ε
2

2
∆ψ + V (x, y)ψ − |ψ|2pψ, (x, y) ∈ R2, t > 0

ψ(0, x, y) = ψ0(x, y),

where 0 < p < 1. As initial value we take a two-bump solution

ψ0(x, y) =
2∑

j=1

r

(
x− x̄j
ε

,
y − ȳj
ε

)
,

where x̄j , ȳj are given offset centres and r(x, y)e−iλt is the ground state solution
(see, e.g., [3]) of the associated nonlinear potential-free Schrödinger equation

i∂tϕ = −1

2
∆ϕ− |ϕ|2pϕ, ‖ϕ‖2L2 = m,

that is the solution ϕ(t, x, y) = r(x, y)e−iλt minimising the energy

E(ϕ) = E(r) =
1

2

∫

R2

|∇r|2dxdy − 1

p+ 1

∫

R2

|r|2p+2dxdy.

From Newton’s laws

(3)

{
[ẍj(t), ÿj(t)] = −∇V (x(t), y(t)),

[xj(0), yj(0)] = [x̄j , ȳj], [ẋj(0), ẏj(0)] = [0, 0]
for j = 1, 2

one infers (see [4]) that the solution of (2) behaves like

2∑

j=1

r

(
x− xj(t)

ε
,
y − yj(t)

ε

)
exp

(
i

ε

(
xẋj(t) + yẏj(t) + θεj (t)

))
,

where θεj : R
+ → [0, 2π), j = 1, 2 are suitable shifts, up to an error of size O(ε).

This dynamical behaviour, in which the shape of ψ(t, x, y) remains close to that
of the initial value ψ0(x, y), is typically known as soliton dynamics.

In order to solve (2), we apply the fourth-order splitting method SRKNb
6 by

Blanes and Moan [1]. The first part of the equation, with the Laplacian, is ap-
proximated in space using Wendland’s compactly supported radial basis function
φ3,2 (see [7]) and exactly integrated in time using an exponential integrator. The
second part, with the potential and the nonlinear term, has an analytic solution.

In Figure 1 we show the behaviour of the solution of (2) for

ε = 0.01, p = 0.2, V (x, y) =
3

2
x2 + y2,

with x̄1 = ȳ1 = −2.5, x̄2 = ȳ2 = 2 at different times t. In this case, the solutions
of (3) are analytically known (they lie on Lissajous curves). We observe that the
shape of the two bumps is well preserved during time integration and their centres
of mass follow the Lissajous curves. Moreover, the location of the interpolation
points is always well spread around the essential support of the solution.
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Figure 1. Contour levels of the solution (left) and location of
interpolation points (right) at different times t.
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Superinterpolation in highly oscillatory quadrature

Daan Huybrechs

(joint work with Andreas Asheim, Sheehan Olver)

The computation of highly oscillatory integrals of the form

(1) I[f ] :=

∫ b

a

f(x)eiωg(x)dx

is a recurring problem in many disciplines of science, in particular those involving
wave phenomena. The evaluation of such integrals by standard numerical integra-
tion methods is considered to be computationally demanding for large values of
the frequency parameter ω.

On the other hand, it is known from asymptotic analysis that the integral above
has an asymptotic expansion in inverse powers of ω:

I[f ] ∼
∞∑

k=1

ak ω
−bk , ω ≫ 1,

where the exponents bk form an increasing sequence of values with positive real
part. Moreover, it can be determined that the coefficients ak are linear functionals
of f that have explicit expression in terms of the derivatives of f at a small number
of points. These points include the endpoints a and b of integral (1), as well as
so-called stationary points. The latter points are those where g′(x) vanishes.

A numerical approximation Q[f ] to I[f ] can be called robust for large ω if Q[f ]
has the same asymptotic behaviour as the integral itself, i.e., if

(2) Q[f ] ∼
s∑

k=1

ak ω
−bk +O(ω−bs+1), ω ≫ 1.

In this case, by construction the numerical error asymptotically decreases with ω
at a potentially fast rate,

(3) Q[f ]− I[f ] ∼ O(ω−bs+1), ω ≫ 1.

Truncated asymptotic expansions trivially satisfy this property, but in general they
have uncontrollable error and as such they are not desirable for use in applications
where accurate approximations are required. Adding terms to the expansion does
not necessarily improve accuracy and eventually leads to divergence. However,
numerical methods satisfying (2) can be devised that do converge to I[f ]. We
conceptually introduce a new parameter n and focus on methods that satisfy

Q[f, n] → I[f ], n→ ∞,

in addition to (3).
Our first example of a numerical method with high asymptotic order that can

be made to converge to I[f ] for all values of the parameter ω, large or small, is a
Filon-type method [1]. The function f is replaced by a polynomial p and the result
is integrated exactly, Q[f ] = I[p]. Polynomial approximation is achieved using
interpolation at certain quadrature points. It is observed in [1] that interpolating



Geometric Numerical Integration 887

derivatives at the critical points yields high asymptotic order of the approximation.
Since the asymptotic expansions of I[f ] depends on precisely these values, the
approximation I[p] agrees asymptotically to I[f ] to an extent that depends on the
number of derivatives being interpolated. In practice, Filon-type quadrature takes
the form of an interpolatory quadrature rule using derivatives,

I[f ] ≈ Q[f ] =

n∑

j=1

si−1∑

i=0

wi,jf
(i)(xj).

Next, we ask ourselves the question what the maximal asymptotic order of
accuracy of a numerical method can be, when s evaluations of f or its derivatives
near the critical points are allowed. This is a topic studied in [2, 3]. The outcome
of this study is Gaussian quadrature rules associated with functionals of the form

(4) L[f ] =

∫ ∞

0

f(x)eixdx,

L[f ] =

∫ ∞

0

f(x)eix
r

dx, or L[f ] =

∫ ∞

−∞

f(x)eix
r

dx.

In particular, the evaluation of f in s points that are (suitably scaled in an ω-
dependent way) roots of polynomials with respect to these functionals leads to
twice the asymptotic order of accuracy than that of an asymptotic expansions
truncated after s terms. However, a considerable drawback of this approach is
that these points lie in the complex plane, close to but away from the interval
[a, b]. As such, the integrand has to be assumed to be analytic and deformation
of the integration path into the complex plane has to be justified by Cauchy’s
theorem. The quadrature points in most cases lie on the paths of steepest descent
of the oscillator g(x). Letting the number of quadrature points s grow may or may
not lead to convergence of the numerical approximation to I[f ]: this depends on
the behaviour of f in the complex plane.

A surprising observation made in [4] is that Filon-type methods and steepest
descent methods can be combined. Given a set of s Gaussian quadrature points
determined from a steepest descent analysis near each critical point of the integral,
we augment this set with additional points on the interval [a, b]. Assume that p
interpolates f in all these points and consider the numerical method Q[f ] = I[p].
This is a Filon-type method with complex quadarature points. This method has
the same asymptotic order as the steepest-descent based method, which is twice as
high as a Filon-type method interpolating s derivatives of f at the critical points.
The computational cost is the same and, moreover, the approximation can be
made to converge to I[f ] by a judicious choice of the interpolation points on [a, b].
It is advocated in [4] to interpolate in the roots of the Chebyshev polynomial of
the first kind, shifted to [a, b]. In this case, it is shown that the approximation
error improves both with increasing frequency ω and with an increasing number
of quadrature points on [a, b].
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Finally, we remark that Gaussian quadrature rules can be devised for functionals
generalizing (4) to the form [5]

L[f ] =

∫ ∞

0

f(x)h(x)dx.

As before, the quadrature points are the roots of polynomials that are (formally)
orthogonal with respect to the derived bilinear form

a(f, g) = L[fg],

in the sense that
a(pn, pm) = δm,n.

The resulting quadrature rules are suitable for the evaluation of integrals of the
form ∫ ∞

0

f(x)h(ωx)dx.

Examples of practical interest are those where h is a trigonometric function, a
Bessel function or the Airy function.
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Asymptotic numerical methods for oscillatory systems of differential
equations

Alfredo Deaño

(joint work with Marissa Condon and Arieh Iserles)

In this contribution we present a method to compute effectively solutions of sys-
tems of ordinary differential equations with highly oscillatory forcing terms. More
precisely, we are concerned with systems of ODEs of the following form:

(1) y′(t) = h(y(t)) + gω(t)f (y(t)), y(0) = y0,

where y(t) : R → Rd, f(y),h(y) : Rd → Rd are analytic functions (generally
nonlinear), and the scalar term gω(t) can be written in the form of a modulated
Fourier expansion (MFE), that is

(2) gω(t) =

∞∑

m=−∞

am(t)eimωt.
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Differential equations of this type are very relevant in the context of circuit
modeling in electronic engineering, but (as we explain below) they also represent
a numerical challenge because of the highly oscillatory behaviour of the solutions.

Some typical forcing terms in applications involve either one or two frequencies

gω(t) = eiωt, ω ≫ 1,

gω(t) = sinω1t sinω2t, ω2 ≫ ω1 ≫ 1,

the second example being important in amplitude modulation, or full spectrum
(in equations for diodes and transistors):

gω(t) = eη cosωt, ω ≫ 1.

In this last case, a Fourier expansion can be obtained involving modified Bessel
functions In(η).

The form of the exact solution of such a problem can be analysed by writing
the oscillatory ODE (1) as a perturbation of

(3) z′(t) = h(z(t)), z(0) = y0,

with the same initial data. Then application of nonlinear variation of constants
allows us to relate the solutions of the perturbed and unperturbed systems:

(4) y(t) = z(t) +

∫ t

0

Φ(t− s)f (y(s))gω(s)ds.

Here Φ solves the so-called variational equation

Φ′ =
∂h(z(t))

∂z
Φ, Φ(0) = I.

The matrix Φ may not be analytically available for general nonlinear equations,
but if the integrand is smooth enough and gω(t) is a trigonometric function (see
the examples cited before), then integration by parts gives that the integral in (4)
is O(ω−1) as ω → ∞.

This result shows that under quite general assumptions, the difference between
both solutions is of order O(ω−1). Moreover, the integral in (4) is highly oscil-
latory because of the factor gω(s). As a consequence of this, standard methods
for numerical solutions of ODEs such as Runge–Kutta are not effective, since they
will apply a classical quadrature rule to this integral at each step. It is known
that this idea leads to a very small stepsize, of order hω ≈ 1, which is both too
expensive for implementation and also unreliable because of the large number of
steps needed to integrate the ODE in a given interval.

As shown for instance in [6], integrals of Fourier type

I[f ] =

∫ b

a

f(x)eiωg(x)dx,

where f(x) is smooth and g′(x) 6= 0 in [a, b], can be expanded in inverse powers
of ω, using integration by parts or Watson’s lemma applied to oscillatory inte-
grals, see for example [7]. In the spirit of the method of stationary phase, the
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coefficients in such an expansion only depend on the functions f(x) and g(x) (and
their derivatives) at the endpoints of the interval of integration. It follows that
interpolation of f(x) at these endpoints will result in an effective method for large
values of ω, since in that case the error with respect to the quadrature rule Q[f ]
will be

E[f ] =

∫ b

a

f(x)eiωg(x)dx−Q[f ] = O(ω−2).

The use of Hermite–type interpolation (including derivatives of f(x) at the end-
points) leads to higher order methods. This is the idea behind Filon-type methods,
which have been studied recently [6] as a very effective tool in the approximation
of highly oscillatory integrals.

The method that we propose follows these lines, and proposes the following
ansatz for the solution of the ODE, in terms of modulated Fourier expansions:

y(t) =
∞∑

n=0

ψn(t)

ωn
, ψn(t) =

∞∑

m=−∞

pn,m(t)eimωt, n ≥ 0.

We expand everything formally in inverse powers of ω using the ansatz, and
then substitute in the ODE. Separation first in orders of magnitude (powers of ω),
and then in frequencies (values of m) leads either to nonoscillatory ODEs or to
recursions for the coefficients pn,m(t). In this way, oscillations are removed and
are only added at the end, when assembling the modulated Fourier expansion.

For example, consider

y′(t) = h(y(t)) + gω(t)f (y(t)), gω(t) =

∞∑

m=−∞

αme
imωt, y(0) = y0.

If we equate O(1) terms, we have

p′0,0(t) = h(p0,0(t)) + α0f(p0,0(t)), p0,0(0) = y(0) = y0,

which is nonoscillatory, and can be solved using standard methods. Additionally

p1,m(t) =
αm

im
f(p0,0(t)), m 6= 0.

The O(ω−1) level yields again a differential equation for p1,0:

p′1,0 = Jh(p0,0)p1,0 + Jf (p0,0)

∞∑

r=−∞

αr p1,−r,

together with p1,0(0) = 0 (because the full initial condition has been assigned to
the zeroth term ψ0(t)), and a recursion for the next level:

p2,m = − i

m

[
−p′1,m + Jh(p0,0)p1,m + Jf (p0,0)

∞∑

r=−∞

αrp1,m−r

]
,

for m 6= 0. Here Jh and Jf are the Jacobian matrices of h and f respectively.
Higher order terms can be computed following this scheme.
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Other examples are considered in [3, 4], including second order non-linear equa-
tions of Van der Pol and Duffing type with oscillatory forcing, and also equations
with ω dependence in the coefficients, like the classical Kapitsa inverted pendulum.

It is worth mentioning that this approach is also useful in equations with in-
trinsic oscillation of the form ẍ+Ω2x = g(x), where

Ω =

(
0 0
0 ωI

)
,

and ω ≫ 1. These types of equations are of great importance in Geometric Nu-
merical Integration, and have been extensively studied in [2, 5].

We also note that this approach is very closely related to stroboscopic and
higher order averaging, as explained very recently in [1].

Ongoing and future work on this topic includes further exploration of these
connections with related approaches and also extension to systems of DAEs, which
are a more realistic model in electronic engineering, as well as delay differential
equations (DDEs) and partial differential equations.
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——————————————
Shooting and operator determinant techniques for computing spectra

Simon J.A. Malham

(joint work with Issa Karambal, Veerle Ledoux, Robert Marangell, Jitse Niesen
and Vera Thümmler)

Elliptic operators. For brevity, we focus on our applications of interest. These
involve finding the pure-point spectra of elliptic operators L := B∆ + V (x), say
of order n (even), on a domain Ω ⊆ Rd. Here B is a constant diagonal diffu-
sion matrix, and the non-symmetric matrix potential V = V (x) is the principal
source of non-selfadjointness. Most of our development also applies for more gen-
eral elliptic operators, diffusions and advection terms (the latter can often be
scaled/weighted out, but this is not required). To compute the eigenvalues for
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such operators, sophisticated projection algorithms have been developed. Such al-
gorithms project the differential eigenvalue problem onto a finite dimensional basis
(usually) of L2(Ω). Then further algorithms tailored to solving algebraic eigen-
value problems are applied. For example iteration techniques can be bolted on if
particular eigenvalues are sought, and good initial guesses are available. One dis-
advantage of generic implementations is that spurious eigenvalues are generated.
Typically though, as the projection dimension is increased, they converge towards
the continuous spectrum, while genuine eigenvalues remain relatively static. We
must however, carefully separate them.

Shooting. Suppose Ω = R, finite or semi-infinite intervals can be treated simi-
larly. The elliptic eigenvalue problem for L with spectral parameter λ ∈ C is thus
equivalent to finding localized homogeneous solutions of the nth order unbounded
operator ∂x −A(x;λ) where A is a non-selfadjoint matrix. Under suitable (weak)
assumptions on the far-field limits of V and using weights if necessary, there is
a subregion of the spectral parameter plane, containing the right-half plane, that
excludes the essential spectrum, but within which isolated eigenvalues may ex-
ist. Choose a region Λ of that subregion within which you seek eigenvalues. For
λ ∈ Λ, the operator ∂x − A is Fredholm, with kernel and cokernel of the same
dimension, say k, and thus index zero. This is equivalent to the existence of ex-
ponential dichotomies; see Sandstede [6]. The upshot is, there exist k solutions
Y = [Y1 . . . Yk] satisfying natural boundary data as x → −∞, and (n − k) solu-
tions Z = [Z1 . . . Zn−k] for x → +∞. Setting Y ∧k := Y1 ∧ . . . ∧ Yk, the natural
generalization of the Wronskian is the Evans function determinant Y ∧k ∧Z∧(n−k)

which is zero at eigenvalues. Using the correct exponential weighting it is inde-
pendent of x and analytic in λ. Newton iteration can be used to determine the
complex zeros/eigenvalues. Better yet we can apply the argument principle to
globally count the number of eigenvalues inside ∂Λ. To each (x, λ) ∈ R × ∂Λ at-
tach Y (x;λ)⊕Z(x;λ). Cap off the cylinder R× ∂Λ with the far-field solutions at
x = ±∞ for λ ∈ Λ◦. We have generated a fibre bundle E → S2 where the fibres are
solution sections in Cn. One can compute the first Chern class c1(E) ∈ H2(S2;Z)
and first Chern number which equals the winding number of the Evans function
round ∂Λ and thus the number of eigenvalues inside Λ; see Alexander, Gardner
and Jones [1].

Schubert varieties. Shooting for n≫ 1 was a well-known difficulty until Humpherys
and Zumbrun introduced their continuous orthogonalization method. In [3, 4] we
proceeded instead as follows. To detect eigenvalues, it is sufficient to compute
the subspace spanned by Y at (x, λ). This is an element in the Grassmannian
Gr(n, k) of k-planes (or k-dimensional subspaces). Coordinate charts of Gr(n, k)
are isomorphic to C(n−k)×k. Another way to see this is that with respect to the
polarization Cn = Ck ⊕ Cn−k the graph of a linear operator y ∈ Lin(Ck;Cn−k),
i.e. {(idCk + y)(z) : z ∈ Ck}, realizes such a k-plane. Hence y ∈ C(n−k)×k lo-
cally parameterizes Gr(n, k). For the spectral problem, the k-plane spanned by
Y , represented in a given chart by y ∈ C(n−k)×k, evolves according to the Riccati
equation y′ = c+ d y − y(a+ b y), where a, b, c and d are appropriate sub-blocks
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of A(x;λ). Riccati solutions can become singular. This means we are leaving a
‘good’ representative coordinate patch. We could simply swap patches. However,
singularities indicate a ‘change of state’ as follows. The Grassmannian is the dis-
joint union of Schubert cells Cµ, indexed by partitions µ of k · (n− k). Performing
Gaussian elimination on any k-plane Y ∈ Gr(n, k) determines pivot positions and
the unique cell Y lies in. The Schubert varieties Xµ are identified by the zero
solution set of all k × k minors of Cµ. By identifying Schubert varieties Xµ with
index µ obtainable from each other by GL(n) transformations, we determine the
Schubert cycles σµ = [Xµ]. A singularity indicates the solution has changed cell,
variety and cycle. In R × Λ, there are singular curves which wind round and
converge to eigenvalues as x → +∞. The Riccati flow evolves y along R on ∂Λ
(one hemisphere of S2) in a given top cycle. It carries all the spectral information
with it for the partial spectral problem up to x ∈ R. This is because, first, the
far field data or ‘state’ is fixed, and second, the cohomological ring of the Grass-
mannian is completely known: the Schubert cycles give a basis, and intersections
generate the cup-product. The Riccati flow tells us the current ‘state’ and the
‘state’ singularities correspond to. We can thus compute their intersection with
the far field ‘state’. Indeed the Riccati flow is enough to generate the determinant
line bundle. As we expect, on the singularity curve the Evans function is zero
(realized for a chosen flag). Punctures of R × ∂Λ by singularity curves thus in-
dicate entering eigenvalues for the partial problem, which if they do not exit, are
eigenvalues for the full spectral problem. Note we can construct the explicit map
f : S2 → Gr(n, k). Any vector bundle over S2 can be thought of as E = f∗(T)
with T the tautological bundle T −→ Gr(n, k)× Cn −→ Q, with quotient bundle
Q. The Chern classes of T are ci(T) = σ1i , and of Q are ci(Q) = σi, the special
Schubert cycles which generate H∗(Gr(n, k);Z). By naturality, we can determine
the invariants of E using ci(f

∗(T)) = f∗(c1(T)). Computing the Riccati flow is rel-
atively efficient. We use a Lie group integrator close to singularities. Further, for
sectorial operators, the locus of singularity curves is significantly restricted—we
can track eigenvalues by numerical continuation, so that computing eigenvalues
becomes significantly more efficient.

Operator determinants. Let H be a separable Hilbert space over Ω ⊆ Rd (now
a general domain). The space of trace class operators K on H, denoted J1(H), is
a Banach space with norm ‖K‖J1 := tr |K|, while the space of compact Hilbert–
Schmidt operators J2(H) for which trK∗K is finite, is a Hilbert space. If K ∈
J1(H) then det1(id + K) :=

∑
trK∧m, where trK∧m is the natural trace on

H∧m. Indeed Fredholm computed an explicit formula for det1(id +K) as a series
expansion in multiple integrals of determinants of the Green’s kernel G associated
with K. Essentially each term trK∧m generates a multiple integral in terms of
G, and the determinants naturally arise out of the alternating algebra of G∧m

on H∧m (and the trace applied). If K ∈ J2(H) then det2(id + K) := det1(id +
K) · exp(−trK). Hilbert proved an analogous series expansion for det2(id+K) in
terms of Green’s kernels (exponentially scaling out trK knocks out the diagonal
kernel terms in the determinants).
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We can solve the original eigenvalue problem by the perturbative approach. We
decompose L − λ into L0(λ) + L̂ where L̂ contains part of the matrix potential

such that L̂ → 0 as x → ∂Ω for an interior domain, or |x| → ∞, say, for an
exterior domain. The constant coefficient operator L0(λ) is associated with a
background “free” state. If we can compute the Green’s kernel corresponding to
K0(λ) = L−1

0 (λ) then the eigenvalue problem is equivalent to
(
id+K0(λ)◦L̂

)
u = 0.

In shooting we directly attempt to numerically invert L − λ. Here we invert the
simpler operator L0(λ) (a big step) and then compute the operator determinant

det
(
id + K0(λ) ◦ L̂

)
. Bornemann [2] recently provided a tremendous impetus

to this approach by demonstrating that simple quadrature approximations for
‘id + K0(λ) ◦ L̂’ can lead to fast convergence results for smoother kernels. For
practical problems, especially in higher dimensions, the kernels are not smooth
and usually singular, nevertheless a generalization of Bornemann’s approach can
be applied and proves quite efficient compared to shooting (initial investigations
with Karambal).

The talk presented these ideas and results we achieved thusfar using them.
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Kepler, Newton and GNI

Gerhard Wanner

The emphasis of the talk is to describe the discovery of Kepler’s Laws in the As-
tronomia Nova (1609), starting from Ptolemy–Copernicus–Brahe’s model of the
movement of the planets on excentric circles with the speed governed by a “punc-
tum aequans”. Kepler, trying to get rid of this puntum aequans, came slowly
up with the area-law (in chapter XL) and, trying to adjust circular movement
with Tycho Brahe’s measurements, with the elliptic movement (in chapter LVI).
Newton then, in Proposition I of the Principia (1687) explained the area-law by
concentrating the continuous force to discrete shocks, which transforms the orbit
into a polygon whose triangles explain the law from Eucl. I.41. Nowadays, this
procedure is seen as the “syplectic Euler” method,one of the fundamental proce-
dures for methods preserving geometric properties of the solution. In the next
step (Proposition XI of the Principia) he derived the Law of Gravitation from
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geometric properties of the ellipse. Only Euler, in 1747, was the first to formulate,
what nowadays is called, Newton’s differential equations of mechanics.

Reporter: Daniel Weiß
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