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Introduction by the Organisers

Operator algebras, representation theory, and harmonic analysis have always been
closely related to physics, in particular quantum theory. Indeed, quantum theory
was a driving force behind the early history of operator algebras and representa-
tion theory. Early pioneers, such as J. von Neumann, viewed those subjects not as
separate fields, but two sides of a general theory. Very recently, other connections
to more applied sciences, in particular to engineering, have emerged and stim-
ulated research in mathematics which in turn has led to interdisciplinary work.
These connections include wavelet theory, frame theory, fractals, function spaces
related to representations, analysis on loop groups, and the geometry of tilings.
New connections to approximation theory, numerical mathematics, and microlocal
analysis have also influenced today’s research atmosphere. Advances made in any
one of these subfields will have direct implications for the others. The central
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topic of our workshop is an excellent example of recent changes in paradigms and
creative interactions. It was built around a single conjecture, the Kadison-Singer
conjecture, and yet it involved four separate areas, spanning a wide range from
pure to applied mathematics.

Each area was represented by several experts. The meeting therefore was es-
pecially fruitful in facilitating discussions across fields, and involving researchers
each having unique perspectives, but perhaps not insight all the four main themes.

The Kadison-Singer conjecture was stated in a pioneering 1959-paper by R.
V. Kadison, who was a participant at this meeting, and I. Singer [5]. The two
authors were inspired in turn by P. A. M. Dirac’s use of operators in Hilbert space
H: quantum mechanical observables and states. In the theory, pure states are
the building blocks. Further Dirac was interested in the role of maximal abelian
algebras of bounded operators. The Kadison-Singer conjecture asks if every pure
state on the infinite by infinite diagonal matrices (as they are represented by
operators on H) extends “uniquely” to a pure state on the algebra of all bounded
operators on H. Existence is clear, so the open problem is the uniqueness.

For nearly two decades the Kadison-Singer conjecture (KS) represented only
a specialized corner of operator algebra theory. This has all changed. Recently
KS has blossomed into a vibrant interdisciplinary research endeavor, with research
teams coming from disparate corners of pure and applied mathematics. Our work-
shop aimed at bringing all of this into focus.

Initially, like with other parts of operator algebras, the KS problem had its
roots in quantum mechanics. More recently, two things happened to bring KS
back front and center, as a common thread in four fields, some of them often
thought of as disparate: (i) operator algebras, representation theory and harmonic
analysis, (ii) signal processing, and the use of frames (over-complete ”bases”), (iii)
combinatorics of pavings, and (iv) Banach space geometry, see e.g., [3]. The four
themes in turn overlap with other research trends, one being multi-scale theory.
This lies behind powerful tools used both in frames and in the analysis of fractals.
An important class of frames constitutes wavelet families built from scale similarity
(hence multi-scale). By their very definition, fractals are understood from the
similarity of data or geometries at different scales.

One breakthrough was papers [1, 2] by Joel Anderson which established the
equivalence between KS and what is now called the paving conjecture; and the
other was work [4] initiated by P. Casazza, who also attended the workshop, show-
ing that KS is equivalent to key conjectures in signal and image processing, one
of them known as the Feightinger conjecture. These conjectures are, on the face
of it, from quite disparate areas of mathematics. It is therefore especially intrigu-
ing that, quite recently, their equivalence has been established. This also means
that the resolution of the conjecture is now more likely, and that the answer will
have implications going far beyond just finding out if the answer is “yes” or “no”,
The implications of a no-answer will be as important as those deriving from an
affirmative resolution.
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This diversity of topics closely connected to the Kadison-Singer conjecture is
illustrated by the listed topics below, and by speakers at the meeting. Each talk
was interdisciplinary in the sense of giving rise to a lively discussion between
participants from diverse areas. The topics covered included:

(1) Operator Algebras, including various aspects of the Kadison-Singer con-
jecture and, related to this, extensions of the Schur-Horn theorem and the
Bourgain-Tzafriri restricted invertibility theorem.

(2) Representation Theory, relating Feichtinger’s conjecture to duality princi-
ples.

(3) Frame Theory, with topics ranging from spanning and linear independence
properties over semiframes to duality principles.

(4) Applied Harmonic Analysis, focusing in particular on the novel anisotropic
system of shearlets and on various aspects of uncertainty principles.

(5) Fractal Theory, in particular, analysis on Cantor sets.
(6) Classical Harmonic Analysis and Sampling Theory, covering diverse as-

pects of sampling from the Zak transform to extensions of Shannon’s sam-
pling theorem.

(7) Compressed Sensing and Sparse Approximation, including the theory re-
lated to the Johnson-Lindenstrauss lemma.

During the meeting 21 expert talks were presented. To also accommodate
younger researchers, we had one session of shorter talks.

In addition to the Oberwolfach Reports with Abstracts of talks (edited by J.
Lemvig in collaboration with the organizers), we have arranged a journal special
issue in the journal Numerical Functional Analysis and Optimization to help dis-
seminate results from our workshop. This will include refereed papers also from
participants who did not get a chance to deliver formal talks at the workshop. The
editors are Pete Casazza, Palle Jorgensen, Keri Kornelson, Gitta Kutyniok, David
Larson, Peter Massopust, Gestur Ólafsson, Judith Packer, Sergei Silvestrov, and
Qiyu Sun.

Acknowledgments. The organizers thank the director Prof. Dr. Gert-Martin
Greuel, and the Oberwolfach staff for offering us outstanding support in all phases
of the planning. We also thank the funding agencies helping with partial support
of participants, especially the US National Science Foundation and Oberwolfach
Leibniz Fellowship Program for grants supporting graduate students and postdocs.
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Abstracts

The Heisenberg relation – mathematical formulations

Richard Kadison

(joint work with Zhe Liu)

We study the Heisenberg relation, in its original (pure) form, QP − PQ = i~I,
where h = 2π~ is Planck’s experimentally determined quantum of action ∼ 6.625 ·
10−27 erg s, with a focus on the ways it can be realized (“represented”) mathe-
matically. We show, among other things, that this cannot be accomplished with
(unbounded) operators affiliated with a factor of type II. This results from a
special case of our conjecture: If p is a non-commutative polynomial in n vari-
ables such that τ(p(A1, . . . , An)) = 0 for all A1, . . . , An in a II, factor M, then
τ(p(τ1, . . . , τn)) = 0 whenever τ1, . . . , τn are operators affiliated withM for which
p(τ1, . . . , τn) is bounded (τ is the trace on M). We have been able to prove the
special case, where p(x1, x2) is x1x2 − x2x1, provided at least one of x1, x2 is
replaced by a self-adjoint operator affiliated withM.

Operators and frames

Peter G. Casazza

(joint work with Jameson Cahill and Gitta Kutyniok)

We address several fundamental problems in Hilbert space frame theory which will
appear in three papers - two of Cahill and Casazza and one by Cahill, Casazza
and Kutyniok.

Definition 1. For any vectors {fi}Mi=1 in a Hilbert space HN :

• The synthesis operator is the N ×M matrix F :=
[
f1 · · · fM

]
.

• The analysis operator is the M ×N matrix F ∗ =



f∗
1
...
f∗
M


.

• The frame operator is the N ×N matrix S = FF ∗ =

M∑

i=1

fif
∗
i .

• {fi}Mi=1 is a frame if there are 0 < A ≤ B so that

A I ≤ S ≤ B I

• {fm}Mm=1 is a tight frame if S = A I for some A > 0, and a Parseval
frame if A = 1.
• {fm}Mm=1 is a equal norm frame and ‖fm‖ = c for all m = 1, 2, . . . ,M ,
and a unit norm frame if c = 1.
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• Two frames {fi}Mi=1 and {gi}Mi=1 for HN are isomorphic if there is an
invertible operator T : HN → HN with

Tfi = gi, for all i = 1, 2, . . . ,M.

• Two frames are frame equivalent if they are isomorphic and have the
same frame operator.

Main Question: To understand how invertible operators change a frame. I.e.
Given a frame, when is it isomorphic to a frame with another (preferably better)
set of properties?

Some special cases are:

• Given a frame {fi}i∈I , find the invertible operator T so that {Tfi}i∈I is
the closest to being an equal norm Parseval frame.
• Which frames are isomorphic to unit norm frames?
• Which frames have the same frame operator?
• Given a frame {fi}i∈I , find the numbers {ai}i∈I so that the frame {aifi}i∈I
is the closest to being Parseval.
• Given a frame {fi}i∈I with frame operator S, classify the invertible op-
erators T so that {Tfi}i∈I has frame operator S. This problem will be
answered in these papers.
• Given a frame {fi}i∈I , classify the set

{{‖Tfi‖}Mi=1 : T is an invertible operator}.
Closest will need to be defined above. The reason these problems are important
is that often in practice we are given a frame which arises in an application and
we have to work with it. This frame may have very bad frame properties such
as a too small lower frame bound or too big upper frame bound as well as the
norms of the vectors being very spread out. It is possible that this was a very
good frame - such as an equal norm Parseval frame - but an invertible operator
has been applied to it ruining its good properties. So our goal long term is to take
a given frame and apply an invertible operator to it to turn it into the best frame
possible. At this time, equal norm Parseval frames are the best frames in that we
have some strong results here [1] which show that such frames can be partitioned
into a number of linearly independent spanning sets with a possibly non-spanning
linearly independent set left over.

A fundamental lemma for our work is:

Lemma 2. Let T : HN → HN be an invertible operator on HN and let {ei}Ni=1 be
an orthonormal basis for HN . The following are equivalent:

(1) {Tei}Ni=1 is an orthogonal set,

(2) {ei}Ni=1 is an eigenbasis for T ∗T with respective eigenvalues ‖Tei‖2.

In particular, T must map some orthonormal basis to an orthogonal set.
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This lemma clearly fails for infinite dimensions since in this case the frame
operator may not have any eigenvectors.

Some Sample Results

A unitary operator clearly takes a frame to a frame equivalent frame. But as
we will see, these are not the only operators doing this.

Fix an orthonormal basis E = {ei}Ni=1 for HN and fix positive constants U =
{µi}Ni=1 and let {gi}Ni=1 be any orthonormal basis for HN , with

gj =

N∑

i=1

〈fj, ei〉ei.

Define vectors {hi}Ni=1 by:

hi =

N∑

i=1

√
µi
µj
〈gi, ej〉ej .

An operator T : HN → HN is called admissible for (U , E) if
T ∗ei = hi, for all i = 1, 2, . . . , N.

Let S be a positive operator on a Hilbert space HN with eigenvectors E =
{ei}Ni=1 and respective eigenvalues Λ = {λi}Ni=1, and let T be an invertible operator
on HN .

We now have:

Theorem 3. The following are equivalent:

(1) S = TST ∗.

(2) T is an admissible operator for (Λ, E).
In another direction we ask:

Problem: Given a frame {fi}Mi=1 for HN and a constant c, can we classify the
operators T so that ‖Tfi‖ = c‖fi‖?

Note: Clearly a multiple of a unitary operator does this. Can any other operator
do this?

Definition 4. Let F = {fi}Mi=1 be a frame for HN and let E = {ej}Nj=1 be an
orthonormal basis for HN . We define:

H(F , E) = span {|〈fi, e1〉|2, |〈fi, e2〉|2, . . . , |〈fi, eN 〉|2) : 1 ≤ i ≤M}.
Now we can answer our problem.

Theorem 5. Let F = {fi}Mi=1 be a frame for HN . Let T be an invertible operator
on HN and let T ∗T have the orthonormal basis E = {ej}Nj=1 as eigenvectors with

respective eigenvalues {λj}Nj=1.
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The following are equivalent:

(1) We have ‖Tfi‖ = c‖fi‖, for all i = 1, 2, . . . ,M .

(2) We have

(λ1 − c2, λ2 − c2, . . . , λN − c2) ⊥ H(F , E).
Hence, if H(F , E) = HN , then λi = c2, for all i = 1, 2, . . . ,M and so T must be a
multiple of a unitary operator.

References
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The Zak transforms

Guido Weiss

(joint work with Eugenio Hernández, Hrvoje Šikić, and Edward Wilson)

We introduce two (associated) Zak transforms:

(Zf)(x, ξ) =
∑

k∈Z

f(x+ k)e−2πikξ, (Z̃g)(x, ξ) =
∑

ℓ∈Z

g(ξ + ℓ)e2πiℓx.

where f, g ∈ L2(R). They map L2(R) isometrically onto the Hilbert spaces
M = {ϕ(x, ξ), (x, ξ) ∈ R2 : ϕ is 1-periodic in x and satisfies

(1) ϕ(x + ℓ, ξ) = e2πiℓξϕ(x, ξ), ‖ϕ‖2M =

∫ 1

0

∫ 1

0

|ϕ(x, ξ)|2dξdx <∞}
and
M̃ = {ϕ̃(x, ξ), (x, ξ) ∈ R2 : ϕ̃ is 1-periodic in x and satisfies

(2) ϕ̃(x+ ℓ, ξ) = e2πiℓξϕ̃(x, ξ), ‖ϕ̃‖2M̃ =

∫ 1

0

∫ 1

0

|ϕ̃(x, ξ)|2dxdξ <∞} .

The isometric property is easily seen from the property
∑

k∈Z

|f(x + k)|2 < ∞

a.e. (since

∫ 1

0

∑
|f(x + k)|2dx =

∫ ∞

−∞
|f(x)|2dx < ∞ from which we deduce

∫ 1

0

∫ 1

0

|ϕ(x, ξ)|2dxdξ =
∫ 1

0

∑

k

|f(x+ k)|2dx = ‖f‖2L2(R)). That Z maps ontoM

follows from the observation that ϕ(x, ξ) =
∑

k∈Z

ck(x)e
−2πikξ in M is Zf ,where

f(x+ k) = ck(x) for x ∈ [0, 1). The proof that Z̃ on L2(R) is an isometry onto M̃
is completely analogous. It is also easy to see that Z−1 is the operator

∫ 1

0

dξ (If
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ϕ(x, ξ) =
∑

k

f(x+ k)e−2πikξ, then, clearly,

∫ 1

0

ϕ(x, ξ)dξ = f(x),

the 0 coefficient of the Fourier series ϕ(x, ξ) =
∑

k

f(x + k)e−2πikξ. ) Similarly,

Z̃−1 =

∫ 1

0

dx. It is also easy to check that the operator U :M→ M̃ defined by

(Uϕ)(x, ξ) = e−2πixξϕ(x, ξ) ≡ ϕ̃(x, ξ) is a unitary operator. In addition,

(UZf)(x, ξ) =
∑

k∈Z

f(x+ k)e−2πi(x+k)ξ ≡ ϕ̃(x, ξ).

Thus,

(Z̃−1UZ)f(x, ξ) =
∫ 1

0

∑

k∈Z

f(x+ k)e−2πi(x+k)ξdx = f̂(ξ).

The justification of these equalities is an easy exercize. This gives us the Plancherel
theorem.

Theorem 1. The Fourier transform F is equal to F = Z̃−1UZ and F−1 =
Z−1U∗Z̃, and both operators are unitary.

This proof depends on the elementary properties of Fourier series in L2([−1, 1)):∑

k

cke
−2πikξ ∼ h(ξ) ∈ L2([−1, 1)) and ‖h‖2L1([−1,1)) =

∑

k∈Z

|ck|2.

The material in this lecture represents a collaboration with E. Hernandez, H.
Sikic and E. Wilson [1].

Some simple applications of this material were given in this lecture and it was
indicated that all this can be extended to higher dimensions as well as in the
setting of locally compact, Abelian groups G and their duals Ĝ. The space L2(Rn)
corresponds to a separable Hilbert space H on which acts a unitary representation
of G.
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Norm-controlled inversion

Karlheinz Gröchenig

(joint work with Andreas Klotz)

Let A ⊆ B be pair of nested Banach ∗-algebras with a common unit element. We
say that A is inverse-closed in B, if

a ∈ A and a−1 ∈ B ⇒ a−1A .
The classical example of this situation is Wiener’s Lemma for absolutely convergent
Fourier series. It states that the algebra of absolutely convergent Fourier series in
inverse-closed in the (C∗-) algebra of continuos periodic functions.

If A is inverse-closed in B, then a natural next question is whether there is some
form of norm control for the inverse a−1 in the smaller algebra A. Precisely, we
say that A admits norm control in B, if there exists a function h : R2

+ → R+, such
that

‖a−1‖A ≤ h(‖a‖A, ‖a−1‖B) .
Clearly, norm control is stronger than inverse-closedness. In view of many applica-
tions of inverse-closed Banach algebras, norm control would help to turn qualitative
results into quantitative results.

At this time it is a complete mystery when an inverse-closed subalgebra admits
norm control.

Consider the following examples.

Example 1. Let C(T) consist of all continuous functions on the torus T and
C1(T) consists of all continuously differentiable functions on T with norm ‖f‖C1 =
‖f ′‖∞ + ‖f‖∞. The quotient rule (f−1)′ = −f ′/f2 implies that C1(T) is inverse-
closed in C(T). In addition,

‖f−1‖C1 ≤ ‖f ′‖∞‖f−1‖2∞ + ‖f−1‖∞
≤ ‖f‖C1‖f−1‖2∞ + ‖f−1‖∞ ≤ 2‖f‖C1‖f−1‖2∞ .

As the controlling function h one may take h(u, v) = uv2 + v or h(u, v) = 2uv2.

Example 2. Let A(T) be the algebra of absolutely convergent Fourier series with
norm ‖f‖A = ‖a‖1 for f(t) =

∑
k∈Z

ake
2πikt. By Wiener’s Lemma A(T) is inverse-

closed in C(T). A deep result of Nikolski [7] shows that A does not admit norm
control in C(T).

Example 3. Let B the C∗-algebra of bounded operators on ℓ2(Z) and Js be the
Banach algebra of matrices with polynomial off-diagonal decay with norm

‖A‖Js = sup
k,l∈Z

|Akl|(1 + |k − l|)s .

By a result of Jaffard [5] and Baskakov [1] off-diagonal decay is preserved and Js
is inverse-closed in B(ℓ2) for s > 1. It is implicit in [8] that Js possesses norm
control in B(ℓ2), but the controlling function h does not seem to be known yet.
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The three examples offer many puzzles. When is a subalgebra of a Banach
algebra inverse-closed? Under which additional conditions does a subalgebra admit
norm-control? The examples of absolutely convergent series shows that even in
concrete situations these questions may be difficult to answer.

As a generic result we may formulate the following insight:

Theorem 4. Assume that A is a smooth subalgebra of B.
(i) Then A is inverse-closed in B.
(ii) A admits norm-control in B.

This theorem is of course meaningless, unless we give a precise definition of
smooth subalgebras. Some recipes are known in the theory of operator algebras [2].
A systematic construction of smooth subalgebras can be based on classical ap-
proximation theory [4]. The standard smoothness spaces in analysis, for instance
spaces of n-times differentiable functions, Hölder-Lipschitz spaces, Besov spaces,
and Bessel potential spaces, possess an analogue in the world of Banach alge-
bras. This discovery enabled us to give a systematic construction of inverse-closed
subalgebras of a given Banach algebra [4].

It turns out that all these subalgebras admit also norm-control.
We give two examples of how to fill the above meta-theorem with content.
(1) By replacing the derivative of a function by an unbounded (closed) derivation

on a Banach algebra, one can repeat the proof of the quotient rule and obtain
results on inverse-closedness and norm-control.

A derivation δ on a Banach algebra is a linear mapping that satisfies the product
rule δ(ab) = aδ(b) + δ(a)b for a, b ∈ A. Under certain conditions one can show
that

0 = δ(e) = δ(a−1a) = aδ(a−1) + δ(a)a−1

and thus obtains the quotient rule δ(a−1) = −a−1δ(a)a−1.
If the derivation is unbounded and closed, then the domain dom δ is inverse-

closed inA and the quotient rule implies norm-control in precisely the same manner
as for C1(T). This observation goes back to Bratteli and Robinson [2] and is the
main construction of smooth subalgebras in operator theory.

(2) If A possesses a bounded group of automorphisms parametrized by Rd, then
one can imitate difference operators. Precisely, let t ∈ Rd → ψt ∈ Aut (A) be a
commutative subgroup of the automorphism group, satisfying ψs+t = ψsψt for
s, t ∈ Rd and ‖ψt(a)‖A ≤ M‖a‖A for all t ∈ Rd and a ∈ A. Then one can define
the difference operator ∆t(a) = ψt(a) − a and higher order difference operators.
Furthermore, one can define Besov spaces in complete analogy to the definition
on Rd. Let s > 0 be a smoothness parameter, k an integer > s, and 1 ≤ p ≤ ∞.
Then the Besov space Bps (A) consists of all a ∈ A, such that the norm

‖a‖Bp
s (A) = ‖a‖A +

( ∫

Rd

(
|t|−s‖∆k

t (a)‖A
)p d

|t|d
)1/p
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is finite. Definitions of this type go back to [3], but so far Besov spaces have been
studied exclusively with respect to Banach space properties. If A is a Banach al-
gebra with a uniformly bounded automorphism group Rd, then Bps (A) is a Banach
algebra.

As a first theorem to give precise mathematical substance to the meta-theorem 4
we formulate the following result.

Theorem 5. Let A be a Banach ∗-algebra with a bounded automorphism group
{ψt : t ∈ Rd}.

(i) Then Bps (A) is inverse-closed in A [6].
(ii) Bps (A) admits norm-control in A. Explicitly, for n− 1 ≤ s < n we have

‖a−1‖Bp
s (A) ≤ (2M)2

n−1‖a‖2n−1
Bp

s (A)
‖a−1‖2nA .

One may now develop a systematic correspondence between smoothness spaces
in approximation theory and smooth subalgebras of a Banach algebra with an
automorphism group. In all known cases the smooth subalgebra is inverse-closed
and admits norm-control. The inverse-closedness was already investigated in [4]
and [6].

The investigation of norm-control is work in progress with Andreas Klotz, Uni-
versity of Vienna.
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Operator-valued measures, dilations, and the theory of frames

David R. Larson

(joint work with Deguang Han, Bei Liu, and Rui Liu)

This talk represents some ongoing joint work with Deguang Han, Bei Liu and Rui
Liu. We develop elements of a dilation theory for operator-valued measures from
a σ-algebra of sets into B(X), where X is a Banach space. Our main results are
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apparently new even for the special case where X is a Hilbert space, and in fact it
is the Hilbertian case that provides the prime motivation for this work. Hilbertian
operator-valued measures are closely related to bounded linear maps on abelian
von Neumann algebras, and some of our results in this setting include new dilation
results for bounded linear maps that are not necessarily completely bounded, and
from domain algebras that are not necessarily abelian. There are applications to
both the discrete and the continuous frame theory. We investigate some natural
associations between the theory of frames (including continuous frames and fram-
ings), the theory of operator-valued measures on sigma-algebras of sets, and the
theory of continuous linear maps between C∗-algebras. In this connection frame
theory itself is identified with the special case in which the domain algebra for
the maps is an abelian von Neumann algebra and the map is ultraweakly (i.e., σ-
weakly) continuous. Some of results for maps extend to the case where the domain
algebra is non-commutative. It has been known for a long time that a necessary
and sufficient condition for a bounded linear map from a unital C*-algebra into
B(H) to have a Hilbert space dilation to a ∗-homomorphism is that the mapping
needs to be completely bounded. Our theory shows that if the domain algebra is
commutative, then even if it is not completely bounded it still has a Banach space
dilation to a homomorphism. We view this as a generalization of the known result
of Cazzaza, Han and Larson that arbitrary framings have Banach dilations, and
also the known result that completely bounded maps have Hilbertian dilations.
Our methods extend to some cases where the domain algebra need not be commu-
tative, leading to new dilation results for maps of general von Neumann algebras.
This paper was motivated by some recent results in frame theory and the obser-
vation that there is a close connection between the analysis of dual pairs of frames
(both the discrete and the continuous theory) and the theory of operator-valued
measures.

Framings are the natural generalization of discrete frame theory (more specif-
ically: dual-frame pairs) to a non-Hilbertian setting, and even if the underlying
space is a Hilbert space the dilation space can fail to be Hilbertian. This the-
ory was originally developed by Casazza, Han and Larson in [1] as an attempt
to introduce frame theory with dilations into a Banach space context. The initial
motivation for the present manuscript was to completely understand the dilation
theory of framings. In the context of Hilbert space, we realized that the dilation
theory for discrete framings from [1] induces a dilation theory for discrete operator
valued measures that fail to be to be completely bounded in the sense of (c.f. [3]).
This gives a generalization of Naimarks’s Dilation Theorem for the special case.
This result led us to consider general (non-necessarily-discrete) operator valued
measures. Our main results give a dilation theory for general (non-necessarily-cb)
OVM’s that completely generalizes Naimark’s Dilation theorem in a Banach space
setting, and which is new even for Hilbert space.

There is a well-known theory establishing a connection between general bounded
linear mappings from the C∗-algebra C(X) of continuous functions on a compact
Hausdorf spaceX into B(H) and operator valued measures on the sigma algebra of
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Borel subsets of X (c.f. [3]). If A is an abelian C∗-algebra then A can be identified
with C(X) for a topological space X and can also be identified with C(βX) where
βX is the Stone-Cech compactification of X. Then the support σ-algebra for the
OVM is the sigma algebra of Borel subsets of βX which is enormous. However in
our generalized (commutative) framing theory A will always be an abelian von-
Neumann algebra presented up front as L∞(Ω,Σ, µ), with Ω a topological space
and Σ its algebra of Borel sets, and the maps on A into B(H) are normal. In
particular, to model the discrete frame and framing theory Ω is a countable index
set with the discrete topology (most often N), so Σ is its power set, and µ is
counting measure. So in this setting it is more natural to work directly with
this presentation in developing dilation theory rather than passing to βΩ, and
we take this approach in this paper. We feel that the connection we make with
established discrete frame and framing theory in the literature is transparent,
and then the OVM dilation theory for the continuous case becomes a natural
but nontrivial generalization of the theory for the discrete case that was inspired
by framings. After doing this we attempted to apply our techniques to the case
where the domain algebra for a map is non-commutative. We obtained some
results which we discussed in our workshop talk. We show that all bounded maps
have Banach dilations. However, additional hypotheses are needed if dilations of
maps are to have strong continuity and structural properties. If the range space
is a Hilbert space then it is well-known that there is a Hilbertian dilation if the
map is completely bounded. The part of this theory that is apparently new is that
even if a map is not cb it has a Banach dilation. In the discrete abelian case we
show that the dilation of a normal map can be taken to be normal and the dilation
space can be taken to be separable. We show that under suitable hypotheses this
type of result can be generalized to the noncommutative setting.

A point on terminology: As in the past, we will call a framing for a Hilbert
space it Hilbertian if it has a Hilbert space dilation to a pair consisting of a basis
and its dual basis, or equivalently if the framing is a dual-pair of frames, and to
call it a non-Hilbertian framing if it is a framing for a Hilbert space which has
only a Banach dilation. There is no ambiguity here with terminology for framings
for Banach spaces because it goes without saying that they are not Hilbertian.
For consistency we adopt the same convention for operator-valued measures on
Hilbert space and linear maps of operator algebras on Hilbert space, calling them
it Hilbertian if they admit a dilation where the dilation space is a Hilbert space,
and calling them non-Hilbertian otherwise.

This theory is really a symbiosis between aspects of Hilbert space operator
algebra theory and aspects of Banach space theory, so we try to present Banach
versions of Hilbertian results when we can obtain them. Some of the essential
Hilbertian results we use are proven more naturally in a wider Banach context.
Operator valued measures have many different dilations to idempotent valued
measures on larger Banach spaces (even if the measure to be dilated is a cb measure
on a Hilbert space) and a part of this theory necessarily deals with classification
issues. In the workshop talk we discussed some additional results and exposition
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for Hilbert space operator-valued framings and measures, including the non-cb
measures and their Banach dilations. In particular, we discussed some examples
on the manner in which frames and framings on a Hilbert space induce natural
operator valued measures on that Hilbert space.
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Wavelet techniques in multifractal analysis: recent advances and open
problems

Stéphane Jaffard

(joint work with Patrice Abry, Stéphane Roux and Herwig Wendt)

The starting point of multifractal analysis is the analysis and classification of
irregular signals. A seminal idea lies in the notion of self-similarity of fractal sets:
The triadic Cantor set, or the Van Koch curve are made of pieces similar to the
whole. In such cases, one adopts the following rule: If a set A is composed of N
pieces similar to A with ratio r, then dim(A) = − logN

log r , which yields a dimension

of log 2
log 3 for the Cantor set, and of log 4

log 3 for the Van Koch curve.

Consider now a random function, such as Fractional Brownian Motion (FBM):
sample paths do not satisfy such an exact selfsimilarity relationship, which only
holds in law:

(1) BH(ax)
L
= aHBH(x).

The exponent H is the selfsimilarity exponent and is related with the dimension of
the graph GH of BH by: dim(GH) = 2−H ; (1) cannot be checked on one sample
path, because it requires the knowledge of all sample paths. However, one can
make the following considerations on one sample path: BH(t) satisfies ∀s, t ≥ 0,
IE(|BH(t) − BH(s)|2) = |t − s|2H ; It follows that |BH(t + δ) − BH(t)| ∼ |δ|H ;
integrating on a whole interval, we get∫

|BH(x+ δ)−BH(x)|pdx ∼ |δ|Hp.

Therefore, when δ → 0, the left-hand side gets arbitrarily close to a deterministic
quantity from which one can recover the exponent H . Following this intuition,
Kolmogorov, in 1942, proposed to associate to an irregular signal f its scaling
function ζf (p) defined for p > 0 by

∫
|f(x+ δ)− f(x)|pdx ∼ |δ|ζf (p).
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Note that, numerically, it can be easily recovered by a regression on a log-log plot.
Kolmogorov expected a linear scaling function for the velocity of fully developed

turbulence: ζv(p) = p/3, which is compatible with a FBM modeling. However,
in the 1960s, experimental evidence showed that the scaling function of fully de-
veloped turbulence is not linear. Cascade models were proposed in order to take
this behavior into account, by Kolmogorov, Obukhov, Novikov, Stewart, Yaglom,
and culminated with the famous “Mandelbrot cascades”, which had an impor-
tant impact inside mathematics and in modeling. Understanding their properties
opened the way to the theory of multiplicative martingales and multiplicative
chaos, started by J.-P. Kahane and J. Peyrière, [4]. More and more general mod-
els of random cascades were constructed afterwards; these constructions also had
implications outside of turbulence models, e.g., in fragmentation, and for the study
of the harmonic measure on a fractal boundary, see [1].

An important step was taken when G. Parisi and U. Frisch proposed to inter-
pret the nonlinearity of the scaling function as revealing the presence of Hölder
singularities of different strengths, [5]. Informally, the Hölder exponent hf (x0) of

a function f at x0 is defined by |f(x) − f(x0)| ∼ |x − x0|hf (x0). The spectrum of
singularities of f is

df (H) = dim ({x0 : hf (x0) = H})
where dim stands for the Hausdorff dimension. The Multifractal formalism asserts
that the scaling function and the spectrum of singularities are related through a
Legendre transform:

(2) df (H) = inf
p
(1 +Hp− ζf (p)) .

However, (2) usually fails for Hs such that the infimum is attained for p < 0;
therefore, one should not take it as a formula to be checked, but rather as a
research program. Alternative scaling functions based on wavelet techniques were
proposed by A. Arneodo et al.. The idea is to replace increments by integrals
against wavelets, i.e. smooth, localized, oscillating functions at different scales. A
wavelet basis on IR is generated by a smooth, well localized, oscillating function
ψ such that the 2j/2ψ(2jx− k), j, k ∈ Z form an orthonormal basis of L2(IR).

We use the following notations: Dyadic intervals are λ = [k2−j, (k + 1)2−j [,
wavelet coefficients: cλ = 2j

∫
f(x)ψ(2jx − k)dx and Λj = {λ : |λ| = 2−j}. A

first possibility is to consider the wavelet scaling function ηf (p), defined by

2−j
∑

λ∈Λj

|cλ|p ∼ 2−ηf (p)j .

Recall that f belongs to the Besov space Bs,∞p (IR) if

∃C, ∀j : 2−j
∑

λ∈Λj

|cλ|p ≤ C · 2−spj .

Therefore, ∀p > 0, ζf (p) = sup{s : f ∈ B
s/p,p
p }. Thus, the wavelet scaling

function allows to determine simply (by a regression on log-log plot) which function
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spaces data belong to. In 2D, this has implications in image processing, where
models often make the assumption that, indeed, data belong to certain function
spaces; for instance, a standard assumption in the “u + v” models is that the
“cartoon part” of the image is in BV and and “texture part” in L2, [3]. The talk
shows examples taken from natural textures, that either satisfy or do not satisfy
such assumptions. However, the wavelet scaling function does not solve the initial
problem we mentioned of supplying a scaling function for which the multifractal
formalism would be valid for p < 0. This requirement calls for a new scaling
function defined as follows. Let λ be a dyadic interval; 3λ is the interval of same
center and three times wider. Let f be a bounded function; the wavelet leaders
of f are the quantities dλ = supλ′⊂3λ |cλ′ |. If

2j
∑

λ∈Λj

|dλ|p ∼ 2−ηf (p)j ,

then ηf (p) is the leader scaling function. The Legendre spectrum of f is

Lf(H) = inf
p∈IR

(1 +Hp− ηf (p)) .

The wavelet leaders multifractal formalism holds if df (H) = Lf (H). Oscillation
spaces are associated with the leader scaling function: Let p > 0; f ∈ Osp (IR) if

∃C, ∀j : 2−dj
∑

λ∈Λj

|dλ|p ≤ 2−spj .

As in the case of Besov spaces,

∀p > 0, ηf (p) = sup {s : p ∈ Os/pp }.
One can show that Osp = Bs,∞p if s > 1/p. However, If s < 1/p, they are different
families of function spaces, [2]. Comparing the spaces Osp and Bsp which contain
f yields an information on the clustering of the large wavelet coefficients of
f , [2]. The leader scaling function has the following robustness properties : It
is independent of the wavelet basis ∀p ∈ IR if the ψ(i) belong to S (however,
the question is still open for wavelets with finite smoothness, such as compactly
supported wavelets); it is invariant under the addition of a C∞ function, or under

a C∞ change of variable. If f belongs to Cε(IRd) for an ε > 0 then ∀H, df (H) ≤
Lf(H), and one can show that equality holds for “many” functions and stochastic
processes such as FBM, Random wavelets series, Random wavelet cascades, . . .
and equality also holds generically (in the Baire or Prevalence sense). The talk
shows several examples taken form various fields of applications where the wavelet
leader scaling function is used for classification and model validation.
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22 (1976), 131–145.

[5] G. Parisi, U. Frisch, Fully developed turbulence and intermittency, Proc. Int. Summer School
on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics
(1985), 84–88.

Probability measures on solenoids and induced representations

Judith A. Packer

(joint work with Lawrence W. Baggett, Kathy D. Merrill, and Arlan Ramsay)

We discuss a construction, first due to D. Dutkay and P. Jorgensen ( [4], [3]), that
creates probability measures on solenoids from filter functions defined on the unit
circle related to generalized wavelets. Using this construction, a representation
of the Baumslag-Solitar group is obtained, and properties of the representation
are related to properties of the original wavelet and filter systems. In particular,
the existence of what is called a wavelet set is contingent on the corresponding
representation of the Baumslag-Solitar group Qd ⋉Z being induced from a repre-
sentation of the normal abelian subgroup Qd. Here Qd = ∪∞n=0d

−n(Z), where d is
an integer greater than 1. This work is joint with L. Baggett, K. Merrill, and A.
Ramsay ( [2]).

Let N and d be positive integers, with N > 1. Let QN,d = ∪∞j=0(N
−j(Zd)) ⊂

[Q]d. Recall that one can form the generalized Baumslag-Solitar group BSN,d, as
a semidirect product, with elements in QN,d × Z and with group operation given
by

(β1,m1) · (β2,m2) = (β1 +N−m1(β2),m1 +m2),

β1, β2 ∈ QN,d, m1, m2 ∈ Z. The Pontryagin dual of QN,d is the (N, d)-
solenoid, denoted by SN,d. It is the compact inverse limit abelian group {(zi)∞i=0 :
zi ∈ Td, (zi+1)

N = zi, ∀i}. For every j ∈ N ∪ {0}, there is a map πj : SA,d → Td

given by πj((zi)
∞
i=0) = zj .

For d = 1, the dual pairing between the two groups is given by:

〈N−j(k), (zi)
∞
i=0〉 = [πj((zi))]

k = (zj)
k.

In this report, a review of the construction, originally to Dutkay and Jorgensen,
on constructing probability measures on SN,d from filters from wavelet theory was
given. These measures on the solenoid were then used to construct a different
version of the wavelet representation of the Baumslag-Solitar group. It was shown
that analyzing a certain decomposition of these measures gives further information
about the representation involved.
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Definition 1. Let N and d be as before, and let h : Td → C. We call a non-
constant function h a low-pass filter for dilation by N if it is non-zero in a neigh-
borhood of 1 and satisfies ∑

{w:wN=z}
|h(w)|2 = N, z ∈ Td.

With this definition in hand, we can describe the probability measure construc-
tion of Dutkay and Jorgensen:

Theorem 2 ( [3], [1]). Let h : Td → C be a “low-pass” filter for dilation N > 1
such that the Haar measure of h−1({0}) is equal to 0. Then there is a unique
probability measure τh on SN,d such that for every f ∈ C(Td),

∫

SN,d

f ◦ πj((zi))dτh =

∫

Td

f(z)

j−1∏

k=0

|h((z)Nk

)|2dz.

One way that filters naturally arise is as follows: let X ⊂ Rd, and suppose X
is invariant under multiplication by N, and under translations by {v : v ∈ Zd}.
Let µ be a Borel measure on X. Suppose there is a constant K > 0 such that
µ(N(S)) = Kµ(S) for S a Borel subset of X. Since X is invariant under dilation
by N, and sinceX is invariant under translations {v : v ∈ Zd}, X is also invariant
under all compositions of translations from Zd and powers of N, so (X,µ) will be
invariant under translation by every element in QN,d.

One defines dilation and translation operators D and {Tβ : β ∈ QN,d ⊂ Qd}
on L2(X,µ) by

D(f)(x) =
√
Kf(Nx),

Tβ(f)(x) = f(x− β), f ∈ L2(X,µ).

A calculation shows that TβD = DTN(β), β ∈ QN,d. The wavelet represen-

tation of BSN,d on L2(X,µ) is obtained from the unitary operators above. Our
ultimate aim is to give conditions under which this representation is induced from
a representation of the normal subgroup QN,d.

In examples we study, there is at least one scaling function φ in L2(X,µ) sat-
isfying:

(1) {Tv(φ) : v ∈ Zd} form an orthonormal set
(2) There exists {av : v ∈ Zd} ∈ l2(Zd) such that

φ =
∑

v∈Zn

avDTv(φ).

In our examples, only finitely many of the {av} will be non-zero.
(3) Setting V0 = span{Tv(φ) : v ∈ Zn} and Vj = Dj(V0), ∪j∈ZVj is dense in

L2(X,µ) and ∩j∈ZVj = {0}.
The ‘low-pass’ filter h in this case is defined by h(z) =

∑
v∈Zd av < z, v > , z ∈

Td.
D. Dutkay in [3] has constructed a generalized Fourier transform

F : L2(X,µ)→ L2(SN,d, τh)
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satisfying

FTβF−1f((zi)) = 〈β, (zi)〉f((zi)), β ∈ QN,d
∼= ŜN,d,

FD−1F−1f((zi)) = h(z0)f(σ
−1((zi)

∞
i=0), (zn)

∞
n=0 ∈ SN,d.

In this situation, F(φ) = 1SA,d
, and σ−1 is the inverse shift

σ−1((zn)) = (ζn)
∞
n=0, ζ0 = (z0)

N , ζn = zn−1, n ≥ 2.

Definition 3. ( [2]) Let h : Td → C be a polynomial filter for dilation by N
corresponding to a multiresolution analysis on L2(X,µ). Let τh be the probability
measure on SN,d associated to h, and F : L2(X,µ)→ L2(SN,d, τh) the generalized
Fourier transform of Dutkay. Let ψ ∈ L2(X,µ) be a single wavelet for dilation by
N and translation by Zd, so that {DjTk(ψ) : j, k ∈ Z} is an orthonormal basis for
L2(X,µ). We say that ψ is a generalized M.S.F. wavelet if F(ψ) = λ((zn)

∞
n=0)1E ,

where E ⊂ SN,d is a measurable set such that {σj(E) : j ∈ Z} tile SN,d up to sets
of τ -measure 0.

We outline here the main results, first noting that it is possible to define a Borel
isomorphism Θ between the Cartesian product Td ×ΣN,d, and the solenoid space
SN,d and where ΣN,d is the 0-dimensional space ΣN,d =

∏∞
j=0[{0, 1, · · · , N − 1}d].

Using the map Θ, we obtain the following result concerning the decomposition of
the measure τh. To simplify the statement, we let d = 1.

Theorem 4 ( [2]). Let h : T → C be a low-pass filter for dilation by N > 1, let
τh be the Borel measure on ΣN,1 constructed using the filter h. Using the Borel
isomorphism Θ : T ×∏∞

j=0{0, 1, · · · , N − 1} → SN,1 defined above, the measure

τ̃ = τh ◦Θ corresponds to a direct integral τ̃ =
∫
T
dνzdz,

where the measure νz for z = e(t) on π−1
0 ({z}) ∼= ΣN,1 =

∏∞
j=0[{0, 1, · · · , N − 1}]

is defined on cylinder sets by
νz({a0} × · · · × {ak−1} ×

∏∞
j=k[{0, 1, · · · , N − 1}]) ]

= 1
Nk

∏k
j=1 |h(e(N−j(t) · e(A−j(

∑j−1
i=0 N

i(ai)))|2.

Using the above result, we can analyze whether or not the fiber measures νz
described above are atomic, which obviously depends on h. This allows us to
deduce the following result, relating the existence of generalized MSF wavelets to
induced representations:

Theorem 5 ( [2]). Let ψ ∈ L2(X,µ) be a single wavelet for dilation by N, i.e.
suppose that {DjTv(ψ) : j ∈ Z, v ∈ Zd} is an orthonormal basis for L2(X,µ).
Then, the following are equivalent:

i) ψ is a generalized M.S.F. wavelet in the sense defined earlier.
ii) W0 is invariant under every translation in {Tβ : β ∈ QN,d}.
iii) The wavelet subspaces Wj = span{DjTv(ψ)} are the closed subspace

corresponding to a system of imprimitivity {Pj : [j] ∈ BSN,d/QN,d}.
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Frames and semi-frames

Jean-Pierre Antoine

(joint work with Peter Balazs)

Given a separable Hilbert space H, it is often convenient to expand an arbitrary
element f ∈ H in a sequence of simple, basic elements (atoms) Ψ = (ψk), k ∈ Γ,
f =

∑
k∈Γ ckψk, where the sum converges in an adequate fashion (e.g. strongly

and unconditionally) and the coefficients ck are (preferably) unique and easy to
compute. There are several possibilities for obtaining that result. In order of
increasing generality, we can require that Ψ be: (i) an orthonormal basis; (ii) a
Riesz basis; (iii) a frame. Uniqueness is achieved in the first two cases, but lost in
the third one. However, even a frame may be too restrictive, in the sense that it
may impossible to satisfy the two frame bounds simultaneously. Accordingly, we
define Ψ to be an upper (resp. lower) semi-frame if it is a total set and satisfies
the upper (resp. lower) frame inequality. Then the question is to find whether the
signal can still be reconstructed from its expansion coefficients.

We start with the so-called continuous generalized frames, introduced some time
ago [1, 2], and studied further by a number of authors (see [3] for references).

LetH be a Hilbert space andX a locally compact space with measure ν. Then a
generalized frame for H is a family of vectors Ψ := {ψx, x ∈ X}, ψx ∈ H, indexed
by points of X , such that the map x 7→ 〈f, ψx〉 is measurable, ∀ f ∈ H, and

∫

X

〈f, ψx〉〈ψx, f ′〉 dν(x) = 〈f, Sf ′〉, ∀ f, f ′ ∈ H,

where S is a bounded, positive, self-adjoint, invertible operator on H, called the
frame operator.

The operator S is invertible, but its inverse S−1, while self-adjoint and positive,
need not be bounded. We say that Ψ is a frame if S−1 is bounded or, equivalently,
if there exist constants m > 0 and M <∞ (the frame bounds) such that

(1) m ‖f‖2 ≤ 〈f, Sf〉 =
∫

X

|〈ψx, f〉|2 dν(x) ≤ M ‖f‖2 , ∀ f ∈ H.
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First, Ψ is a total set inH. Next define the analysis operator. CΨ : H → L2(X, dν)
by (CΨf)(x) = 〈ψx, f〉, f ∈ H, with range by RC := Ran(CΨ). Its adjoint
C∗

Ψ : L2(X, dν) → H is called the synthesis operator. Then C∗
ΨCΨ = S and

‖CΨf‖2L2(X) = ‖S1/2f‖2H = 〈f, Sf〉. Furthermore, CΨ is injective, since S > 0, so

that C−1
Ψ : RC → H is well-defined.

Next, the lower frame bound implies that RC is a closed subspace of L2(X, dν).
The corresponding projection is an integral operator with (reproducing) kernel
K(x, y) = 〈ψx, S−1ψy〉, thus RC is a reproducing kernel Hilbert space. In addition,
the subspace RC is also complete in the norm ‖·‖Ψ, associated to the inner product

(2) 〈F, F ′〉Ψ := 〈F,CΨ S
−1 C−1

Ψ F ′〉L2(X), for F, F ′ ∈ RC .

Hence (RC , ‖ · ‖Ψ) is a Hilbert space, denoted by HΨ, and the map CΨ : H → HΨ

is unitary. Therefore, it can be inverted on its range by the adjoint operator

C
∗(Ψ)
Ψ : HΨ → H. Thus one gets, for every f ∈ H, a reconstruction formula:

(3) f = C
∗(Ψ)
Ψ =

∫

X

F (x)S−1 ψx dν(x), for F = CΨf ∈ HΨ (weak integral).

Let now Ψ be a (continuous) upper semi-frame, that is, there exists M <∞ s.t.

(4) 0 <

∫

X

|〈ψx, f〉|2 dν(x) ≤ M ‖f‖2 , ∀ f ∈ H, f 6= 0.

In this case, Ψ is a total set in H, the operators CΨ and S are bounded, S is
injective and self-adjoint. Therefore RS := Ran(S) is dense in H and S−1 is also
self-adjoint. S−1 is unbounded, with dense domain Dom(S−1) = RS .

Define the Hilbert space HΨ := CΨ(RS)
Ψ
, where the completion is taken with

respect to the norm ‖ · ‖Ψ. defined in (2). Then, the map CΨ is an isometry from
Dom(S−1) = RS onto CΨ(RS) ⊂ HΨ, thus it extends by continuity to a unitary
map from H onto HΨ. Therefore, HΨ and RC coincide as sets, so that HΨ is a
vector subspace (though not necessarily closed) of L2(X, dν).

Consider now, in the Hilbert space RC , the operators G = CΨ S C
−1
Ψ and G−1,

the self-adjoint extension of G−1
S = CΨ S

−1 C−1
Ψ , the latter being essentially self-

adjoint. Both operators are self-adjoint and positive, G is bounded and G−1 is
densely defined in RC . Furthermore, they are inverse of each other on appropriate
domains. Moreover, the norm ‖·‖Ψ is equivalent to the graph norm of G−1/2.

We will say that the upper semi-frame Ψ = {ψx, x ∈ X} is regular if all
the vectors ψx, x ∈ X , belong to Dom(S−1). In that case, the discussion pro-
ceeds exactly as in the bounded case. In particular, the reproducing kernel
K(x, y) = 〈ψx, S−1ψy〉 is a bona fide function on X ×X . One obtains the same
weak reconstruction formula, but restricted to the subspace RS = Dom(S−1):

(5) f = C
∗(Ψ)
Ψ F =

∫

X

F (x)S−1 ψx dν(x), ∀ f ∈ RS , F = CΨf ∈ HΨ.
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On the other hand, if Ψ is not regular, one has to treat the kernel K(x, y) as
a bounded sesquilinear form over HΨ and use the language of distributions, for
instance, in terms of a Gel’fand triplet [3].

Given a frame Ψ = {ψx}, one says that a frame {χx} is dual to the frame {ψx}
if one has, in the weak sense, f =

∫
X
〈χx, f〉ψx dν(x), ∀ f ∈ H. Then the frame

{ψx} is dual to the frame {χx}. We want to extend this notion to semi-frames.
Let first Ψ = {ψx} be an arbitrary total family in H. As usual, we define

the analysis operator as CΨf(x) = 〈ψx, f〉 and the synthesis operator DΨF =∫
X
F (x)ψx dν(x), on natural domains. They are both unbounded.

Lemma 1. (i) Given any total family Ψ, the analysis operator CΨ is closed. Then
Ψ satisfies the lower frame condition iff CΨ has closed range and is injective.

(ii) If the function x 7→ 〈ψx, f〉 is locally integrable for all f ∈ H, then the
operator DΨ is densely defined and one has CΨ = D∗

Ψ.

The condition of local integrability is satisfied for all f ∈ Dom(CΨ), but not
necessarily for all f ∈ H, unless Ψ is an upper semi-frame, since Dom(CΨ) = H.

Finally, one defines the frame operator as S = DΨCΨ on the obvious domain
Dom(S) ⊂ Dom(CΨ). However, if the upper frame inequality is not satisfied, S
and CΨ could have nondense domains, in which case one cannot define a unique
adjoint C∗

Ψ and S may not be self-adjoint. However, if ψy ∈ Dom(CΨ), ∀ y ∈ X ,
then CΨ is densely defined, DΨ ⊆ C∗

Ψ and DΨ is closable. Finally, DΨ is closed iff
DΨ = C∗

Ψ. Then S = C∗
ΨCΨ is self-adjoint.

Next, we say that a family Φ = {φx} is a lower semi-frame if it satisfies the
lower frame condition, that is, there exists a constant m > 0 such that

(6) m ‖f‖2 ≤
∫

X

|〈φx, f〉|2 dν(x), ∀ f ∈ H.

Clearly, (6) implies that the family Φ is total in H. With these definitions, we
obtain a nice duality property between upper and lower semi-frames.

Proposition 2. (i) Let Ψ = {ψx} be an upper semi-frame, with upper frame bound
M and let Φ = {φx} be a total family dual to Ψ. Then Φ is a lower semi-frame,
with lower frame bound M−1.

(ii) Conversely, if Φ = {φx} is a lower semi-frame, there exists an upper semi-
frame Ψ = {ψx} dual to Φ, that is, one has, in the weak sense,

f =

∫

X

〈φx, f〉ψx dν(x), ∀ f ∈ Dom(CΦ).

We can give concrete examples [3] of a non-regular upper semi-frame (from
affine coherent states) and of a lower semi-frame (from wavelets on the 2-sphere).

If X is a discrete set and ν a counting measure, we go back to the familiar
(discrete) frame. All the previous results hold true, the only difference being
that, instead of weakly convergent integrals, we are interested in expansions with
norm convergence. The Hilbert space L2(X, dν) becomes ℓ2 and the analysis
operator C : H → ℓ2, the synthesis operator D : ℓ2 → H, and the frame operator
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S : H → H take their usual form. In the case of a Bessel sequence (i.e. when the
upper frame inequality is satisfied), all three operators are bounded and one has
D = C∗, C = D∗ and S = C∗C.

For lack of space, we will not go into details, but simply refer to [3].
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On the duality principle by Casazza, Kutyniok, and Lammers

Ole Christensen

(joint work with Hong Oh Kim and Rae Young Kim)

Let {fi}i∈I denote a frame for a separable Hilbert space H with inner product
〈·, ·〉. In [1], Casazza, Kutyniok, and Lammers introduced the R-dual sequence of
{fi}i∈I with respect to a choice of orthonormal bases {ei}i∈I and {hi}i∈I as the
sequence {wj}j∈I given by

wj =
∑

i∈I
〈fi, ej〉hi, j ∈ I. (1)

The paper [1] demonstrates that there is a strong relationship between the frame-
theoretic properties of {wj}j∈I and {fi}i∈I . In the talk we analyze the concept of
R-dual sequence from another angle than it was done in [1]. Technically this is done
by considering a dual formulation of (1), namely, for a given frame {fi}i∈I and
a (Riesz) sequence {wj}j∈I to search for orthonormal bases {ei}i∈I and {hi}i∈I
such that

fi =
∑

j∈I
〈wj , hi〉ej , i ∈ I.

Using this approach we state a number of equivalent conditions for {wj}j∈I to
be an R-dual of {fi}i∈I . In particular we introduce a sequence {ni}i∈I that can be
used to check whether {wj}j∈I is an R-dual of {fi}i∈I or not; in fact, the answer
is yes if and only if {ni}i∈I is a tight frame sequence with frame bound E = 1.

One of the key properties of the R-duals is a certain duality relation that re-
sembles the duality principle in Gabor analysis. The driving force in the article [1]
was the question whether the duality principle in Gabor analysis actually can be
derived from the theory of the R-duals. The question remains unsolved, but in [1]
a positive conclusion is derived in the special case of a tight Gabor frame. The
results presented here shed new light on this issue: in fact, the partial result in [1]
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turns out to be a consequence of a general result about R-duals, valid for any tight
frame in any Hilbert space.
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Directional tight framelets with OEP filter banks

Bin Han

The main theme of this talk is to study wavelets and framelets within the frame-
work of nonhomogeneous wavelet systems. Let us first introduce some notation
and definitions.

For a function f : Rd → C and a d× d invertible matrix U , we define

fU ;k,n(x) := | detU |1/2e−in·Uxf(Ux− k), x, k, n ∈ Rd.

In particular, fU ;k := fU ;k,0 = | detU |1/2f(Ux− k).
For a subset Ψ of functions/distributions and a d × d invertible matrix M , a

homogeneous M -wavelet system is defined to be

WS(Ψ) := {ψMj ;k | j ∈ Zd, k ∈ Z, ψ ∈ Ψ}.
Similarly, for sets Φ,Ψ of functions/distributions, a nonhomogeneous M -wavelet
system is defined to be

WSJ(Φ;Ψ) := {φMJ ;k | k ∈ Zd, φ ∈ Φ} ∪ {ψMj ;k | j ≥ J, k ∈ Zd, ψ ∈ Ψ}.
Though nonhomogeneous wavelet systems are much less studied than homogeneous
wavelet systems, in this talk we show that nonhomogeneous wavelet systems play
a fundamental role in wavelet analysis and link together many aspects of wavelet
analysis, for example, multiresolution analysis, refinable functions, filter banks, ho-
mogeneous wavelet systems, and etc.. This talk concentrates on the investigation
of several aspects of nonhomogeneous wavelet systems.

First, we show that a nonhomogeneous orthonormal wavelet basis, a nonho-
mogeneous Riesz wavelet basis, or a nonhomogeneous tight or dual wavelet frame
naturally leads to a homogeneous orthonormal wavelet basis, a homogeneous Riesz
wavelet basis, or a homogeneous tight or dual wavelet frame, respectively. In other
words, a nonhomogeneous wavelet system induces a sequence of nonhomogeneous
wavelet systems at all the scale levels J preserving almost all its properties; a
homogeneous wavelet system is the limiting system of this sequence of nonho-
mogeneous wavelet systems and preserves almost all the properties of the given
nonhomogeneous wavelet system. More details are given in [1] (also see [2] for the
case of dimension one).
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Then we shall study nonhomogeneous wavelet systems in the frequency domain.
Let D(Rd) denote the linear space of all C∞ compactly supported functions. For
a tempered distribution f , we have

f̂U ;k(ξ) = e−i(U
T )−1k·ξf̂((UT )−1ξ) =: f̂(UT )−1;0,k.

Let Φ,Ψ be subsets of tempered distributions and WSJ(Φ;Ψ) be an M -wavelet

system. Define Φ := {φ̂ : φ ∈ Φ} and Ψ := {ψ̂ : ψ ∈ Ψ}. Then the image of
WSJ (Φ;Ψ) under the Fourier transform becomes FWSJ(Φ;Ψ):

FWSJ (Φ;Ψ) = {φNJ ;0,k | k ∈ Zd, φ ∈ Φ} ∪ ∪∞j=J{ψNj ;0,k | k ∈ Zd, ψ ∈ Ψ},

where N := (MT )−1. Then we introduce a notion of a pair of frequency-based dual
N -wavelet frames in the distribution space. Such a notion has been introduced in
dimension one in [2] and generalized to high dimensions in [1]. Roughly speaking,
the notion of a pair of frequency-based dual N -wavelet frames in the distribution
space allows one to have the perfect reconstruction for any smooth function from
the test function space D(Rd). We present a complete characterization of a pair
of frequency-based dual N -wavelet frames in the distributions (see [1, 2] for more
detail). The same technique can be used to provide a complete characterization of
frequency-based fully nonstationary dual wavelet frames in the distribution space.
Here the word fully nonstationary means that at the scale level j, one is not only
be able to change to the set of wavelet generators but also be able to change the
associated dilation matrix.

Next, we present several applications of the notion of a pair of frequency-based
dual wavelet frames in the distribution space. The oblique extension principle
(OEP) has been introduced in [5–7] for the construction of tight or dual wavelet
frames with high vanishing moments. See [5–9] and many references therein for
the study and construction of tight or dual wavelet frames in the square integrable
space. We show that without any extra condition such as vanishing moments and
smoothness, every OEP-based filter bank with perfect reconstruction is always
naturally linked to a pair of frequency-based dual wavelet frames in the distribution
space. This provides a precise connection between the theory of filter bank and
the theory of wavelet analysis.

Using the characterization of a pair of frequency-based dual wavelet frames in
the distribution space, for any d×d real-valued expansive matrix M , we construct
a smooth tight M -wavelet frame in L2(R

d) such that the tight wavelet frame is
generated by two Schwarz functions which are radial functions. Then we show
that by a simple modification, directional tight wavelet frames can be easily con-
structed. Both types of tight wavelet frames have an underlying OEP-based filter
bank with the perfect reconstruction property. Currently, the application of the
directional tight wavelet frames to image denoising is undergoing.

Finally, in this talk, we introduce the notion of wavelets and framelets in func-
tion spaces. For the study of wavelets and framelets in the Sobolev spaces, see [4]
for more detail. For the notion of wavelets and framelets in a general function
space, see [3] for more detail. Then we show that a wavelet or framelet in a
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general function space can be completely characterization by two properties: the
stability of the nonhomogeneous wavelet systems in associated function spaces and
a pair of frequency-based dual wavelet frames in the distribution space.
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The digital shearlet transform on pseudo-polar grids

Xiaosheng Zhuang

(joint work with David L. Donoho, Gitta Kutyniok, and Morteza Shahram)

Directional representative systems ( [2–4]) provide sparse approximation of an-
isotropic features are highly desired in both theory and application. The shearlet
system is a novel system which provides a unified treatment of both the continumn
and digital realms. Our main goal is to develop a digital shearlet theory which is
rationally designed in the sense that it is the natural digitalization of the existing
shearlet theory for continuum data. More precisely, let

{φn := φ(· − n)}n∈Z2 ∪ {ψι
jsm := 2

3
4
jψι(Sι

sAj · −m)}j,s∈Z,m∈Z2;ι=1,2

be a shearlet system, where Aj =
(
4j 0

0 2j

)
is the parabolic scaling matrix and

S1
s =

(
1 s
0 1

)
, S2

s =
(

1 0
s 1

)
are the shearing matrices with respect to vertical and

horizontal cones ( [4]). The digitization of the continumn shearlet transform:

f 7→ {〈f, φn〉}n ∪ {〈f, ψιjsm〉}j,s,m;ι

cascades the following three main steps for an N ×N image:

1) Pseudo-polar Fourier transform with oversampling factor of R ( [1]).
2) Multiplication by ‘density-compensation-style’ weights.
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3) Decomposing the pseudo-polar grids into rectangular subbands with ad-
ditional 2D-iFFT.

Weighted Pseudo-Polar Fourier Transform. Since 〈f, ψιjsm〉 = 〈f̂ , ψ̂ιjsm〉, we
first apply a weighted pseudo-polar Fourier transform to an N×N image I so that
the image is tranformed from the cartesian grid in time domain to a pseudo-polar
grid in the frequency domain. This is the contents of 1) and 2), for which we need
to find a weight function w : ΩR → R+ so that

(1)

N/2−1
∑

u,v=−N/2

|I(u, v)|2 =
∑

(ωx,ωy)∈ΩR

w(ωx, ωy) · |Î(ωx, ωy)|2,

where Î(ωx, ωy) is the pseudo-polar Fourier transform given by

(2) Î(ωx, ωy) =

N/2−1
∑

u,v=−N/2

I(u, v)e
− 2πi

m0
(uωx+vωy),

and ΩR = Ω1
R ∪ Ω2

R is the pseudo-polar grid with

Ω1
R = {(− 4ℓk

RN
, 2k

R
) : −N

2
≤ ℓ ≤ N

2
, −RN

2
≤ k ≤ RN

2
},

Ω2
R = {( 2k

R
,− 4ℓk

RN
) : −N

2
≤ ℓ ≤ N

2
, −RN

2
≤ k ≤ RN

2
},

and R ≥ 2 is the oversampling factor. Notice that the center C = {(0, 0)} appears
N + 1 times in Ω1

R and Ω2
R, and the points on the seam lines S1R = {(− 2k

R ,
2k
R ) :

−RN2 ≤ k ≤ RN
2 , k 6= 0} and S2R = {(2kR ,− 2k

R ) : −RN2 ≤ k ≤ RN
2 , k 6= 0} appear

in both Ω1
R and Ω2

R. It has been shown that (2) can be fastly computed with order
O(N2 logN) (see [1]). Choosing the weights carefully, the following ‘Plancherel
theorem’ – similar to the one for the discrete Fourier transform – can be proved
for the pseudo-polar grid ΩR = Ω1

R ∪ Ω2
R.

Theorem 1. Let N be even, and let w : ΩR → R+ be a weight function satisfies
the symmetry conditions: w(ωx, ωy) = w(ωy , ωx), w(ωx, ωy) = w(−ωx, ωy), and
w(ωx, ωy) = w(ωx,−ωy) for all (ωx, ωy) ∈ ΩR. Then (1) holds if and only if, for
all −N + 1 ≤ u, v ≤ N − 1, the weight function w satisfies

δ(u, v) = w(0, 0) + 4 ·
∑

ℓ=0,N/2

RN/2
∑

k=1

w( 2k
R
, 2k

R
· −2ℓ

N
) · cos(2πu · 2k

m0R
) · cos(2πv · 2k

m0R
· 2ℓ

N
)

+ 8 ·
N/2−1
∑

ℓ=1

RN/2
∑

k=1

w( 2k
R
, 2k

R
· −2ℓ

N
) · cos(2πu · 2k

m0R
) · cos(2πv · 2k

m0R
· 2ℓ
N
).

Digital Shearlets on the Pseudo-Polar Grid. For 3), we need to construct
a sequence of subband window functions on the pseudo-polar grid. In summary,
we construct a tight frame {ϕι0n , σιjsm : ΩR → C}j,s,m;ι0,ι on the psuedo-polar grid
ΩR, which we call digital shearlets.

let W0 be the Fourier transform of a Meyer scaling function with suppW0 ⊆
[−4jR , 4jR ] and jR := −⌈log4(R/2)⌉, and let V0 be a ‘bump function’ satisfying
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suppV0 ⊆ [−4jR − 1/2, 4jR +1/2] with V0(ξ) ≡ 1 for |ξ| ≤ 4jR . Then we define the
scaling function φ for the digital shearlet system to be

φ̂(ξ1, ξ2) =W0(ξ1)V0(ξ2), (ξ1, ξ2) ∈ R
2.

We further choose W to be the Fourier transform of the Meyer wavelet function
satisfying suppW ⊆ [−4jR+1,−4jR−1] ∪ [4jR−1, 4jR+1], and V to be a ‘bump’
function satisfying suppV ⊆ [−1, 1] and |V (ξ − 1)|2 + |V (ξ)|2 + |V (ξ + 1)|2 = 1
for all |ξ| ≤ 1 and ξ ∈ R. Then the generating shearlet ψ for the digital shearlet
system on Ω2

R is defined as

ψ̂(ξ1, ξ2) =W (ξ1)V ( ξ2
ξ1
), (ξ1, ξ2) ∈ R

2.

Before stating the definition of digital shearlets, we first partition the set ΩR
beyond the already defined partitioning into Ω1

R and Ω2
R by setting Ω1

R = Ω11
R ∪

C ∪ Ω12
R and Ω2

R = Ω21
R ∪ C ∪ Ω22

R , where Ω11
R := {(ωx, ωy) ∈ Ω1

R : ωy ≥ 1},
Ω12
R := {(ωx, ωy) ∈ Ω1

R : ωy ≤ −1}, and so on. The number of sampling points in
radial and angular direction affected by a window at scale j and shear s is now
given by

L1
j =

{

4j+jR−1 R
2
15 + 1 : 0 ≤ j < ⌈log4N⌉ − jR,

⌊R
2
(N − 4j+jR−1)⌋+ 1 : j = ⌈log4N⌉ − jR,

and

L2
j,s =

{

2−jN + 1 : −2j < s < 2j ,
2−j N

2
+ 1 : s ∈ {−2j , 2j}.

We define Rj,s to be a rectangle given by

Rj,s ={((L1
j )

−14j(R/2)r1,−(L2
j,s)

−1(N/2j+1)r2)}0≤r1≤L1
j
−1;0≤r2≤L2

j,s
−1

and set the low frequency rectangle to be R = {(r1, r2)}−1≤r1≤1;−N/2≤r2≤N
2
.

We are now ready to define digital shearlets.

Definition 2. At scale j ∈ {0, . . . , ⌈log4N⌉ − jR}, shear s = {−2j, . . . , 2j}, and
spatial position m ∈ Rj,s, the digital shearlets on the cone Ω21

R are defined by

σ21
j,s,m(ωx, ωy) =

C(ωx,ωy)√
|Rj,s|

W (4−jωx)V (s+ 2j
ωy

ωx
) · χΩ21

R
(ωx, ωy) e

−2πim′(4−j 2k
R

,−2j+1 ℓ
N

),

where C(ωx, ωy) = 1 if (ωx, ωy) 6∈ S1R∪S2R, C(ωx, ωy) = 1√
2
if (ωx, ωy) ∈ (S1R∪S2R)\

C, and C(ωx, ωy) = 1√
2(N+1)

if (ωx, ωy) ∈ C. The shearlets σ11
j,s,m, σ

12
j,s,m, σ

22
j,s,m

on the remaining cones are defined accordingly by symmetry with equal indexing
sets. For n ∈ R, we further define the functions

ϕι0
n (ωx, ωy) =

C(ωx,ωy)√
|R|

W0(ωx)V0(ωy) · χΩ21
R
(ωx, ωy) e

−in′( k
3
, ℓ
N+1

), ι0 = 1, 2.

Summarizing, we call the system

{ϕι0
n }ι0=1,2;n∈R ∪ {σι

j,s,m}ι=11,12,21,22;0≤j≤⌈log4 N⌉−jR;−2j≤s≤2j ,m∈Rj,s

the digital shearlet system, and denote it by DSH.
This system has the following desirable property:

Theorem 3. The digital shearlet system DSH defined in Definition 2 forms a
tight frame for functions J : ΩR → C.
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Digital Shearlet Transform. Now, given an image I of size N × N , the dig-
ital shearlet transform of I produces a sequnce of digital shearlet coefficients
{cι0n , cιjsm}ι0,ι;j,s,m, where cι0n := 〈Ĵw, ϕι0n 〉 and cιjsm := 〈Ĵw, σιjsm〉, and Ĵw is

the weighted pseudo-polar Fourier tranform of I defined to be Jw(ωx, ωy) =√
w(ωx, ωy)Î(ωx, ωy), (ωx, ωy) ∈ ΩR with Î being given in (2). The digital shearlet

transform, together with many quantitative measures for quantifying and compar-
ing performances of different directional systems, has been implemented in the
ShearLab package, which can be accessed through the website: www.shearlab.org.
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Operator representation: from time-frequency multipliers. . . to sound
design

Bruno Torrésani

(joint work with Monika Dörfler, Anäık Olivero, and Richard Kronland-Martinet)

Gabor multipliers. This talk is concerned with the representation of linear op-
erators on, say L2(R), as superpositions of elementary time-frequency building
blocks, namely rank one projection operators associated with fonctions (called
atoms) labelled by time-frequency index. Such operators, called Gabor multipli-
ers, can be written as

Mm g,hx(t) =

∞∑

m,n=−∞
m(m,n)〈x, gmn〉hmn ,

where gmn(t) = e2iπmν0tg(t − mb0) are copies of a reference function (window),
obtained by time and frequency shifts on a lattice Λ = Zb0 × Zν0, and m, called
mask or upper symbol is a bounded sequence on Λ. Such multipliers are of frequent
use in signal processing applications.

Such operators and their approximation properties, have been studied by vari-
ous authors (see for example [2,4,7] and references therein). A main result states
that when the windows g, h and the sampling lattice Λ are suitably chosen, then
the optimal Hilbert-Schmidt approximation by Gabor multipliers is well-defined.
The result relies on the so-called spreading function representation (see [8] for
example).
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Theorem 1. (1) Let H ∈ H be a Hilbert-Schmidt operator on L2(R). Then
there exists a function η = ηH ∈ L2(R2), called the spreading function,
such that

H =

∫ ∞

−∞

∫ ∞

−∞
ηH(t, ξ)π(t, ξ) dtdξ .

the integral being interpreted in the weak operator sense.
(2) The relation ηH ∈ L2(R) ←→ H ∈ H extends to a Gel’fand triple iso-

morphism (S0(R), L
2(R), S′

0(R)) ←→ (B,H,B′), where S0(R) is the Fe-
ichtinger algebra, S′

0(R) is its dual, and B and B′ denote respectively the
space of bounded operators S′

0 → S0 and its dual.

Then, denoting by Λ◦ = Z/ν0 × Z/b0 the adjoint lattice, and by �
◦ the corre-

sponding fundamental domain, introduce the (ν−1
0 , b−1

0 ) periodic function

U(t, ξ) =
∞∑

k,ℓ=−∞
|Vgh (t+ k/ν0, ξ + ℓ/b0)|2 .

One then proves

Theorem 2 ( [2, 4]). Assume g, h, b0 and ν0 are chosen so that

A ≤ U ≤ B a. e. on �
◦ ,

for some constants 0 < A ≤ B < ∞. Then the best GM approximation (in
Hilbert-Schmidt sense) of H ∈ H is defined by the mask

m(m,n) =

∫ ∞

−∞

∫ ∞

−∞
M(t, ξ)e2iπ(nν0t−mb0ξ) dtdξ

whose discrete symplectic Fourier transform reads

M(t, ξ) =

∑
k,ℓ Vgh (t+ k/ν0, ξ + ℓ/b0) ηH (t+ k/ν0, ξ + ℓ/b0)

U(t, ξ)
The approximation error can be computed explicitly. This yields for example [5]

Corollary 3. Assume that η is supported inside �
◦. Then

‖H −Mm;g,h‖2H ≤ ‖H‖2H
[
1− inf

(t,ξ)∈�◦

|Vgh(t, ξ)|2
U(t, ξ)

]
.

This means that the approximation quality depends heavily on the concentra-
tion of Vgh inside the fundamental domain �

◦.
Multiple Gabor Multipliers (MGM). When the spreading function ηH of H
is not well enough localized, it is still possible to seek approximations as sums of
Gabor multipliers. Multiple Gabor multipliers are linear combinations of Gabor
multipliers, with a fixed analysis window g, several different synthesis windows
(with different time-frequency localizations) h(j), j ∈ J , and corresponding masks
mj. They can be written as

M{mj ;g,h(j)} =
∑

j∈J
Mmj ;g,h(j) .
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Optimal MGM approximations for Hilbert-Schmidt operators can be obtained
as in the GM case. For (t, ξ) ∈ �

◦, set

U(t, ξ)jj′ =
∑

k,ℓ

Vgh(j)(t+ k/ν0, ξ + ℓ/b0)Vgh(j
′)(t+ k/ν0, ξ + ℓ/b0).

Theorem 4. Let g ∈ S0(R) and h(j) ∈ S0(R), j ∈ J be such that the matrix
U(t, ξ) is invertible a.e. on �

◦. Let H ∈ (B,H,B′) be an operator with spreading
function η ∈ (S0,L

2, S′
0). Then the functions M = {Mj , j ∈ J } yielding the

optimal MGM approximation of may be obtained as

M(t, ξ) = U(t, ξ)−1 ·V(t, ξ) ,

where V is the vector whose entries read

Vj0(t, ξ) =
∑

k,ℓ

η(t+ k/ν0, ξ + ℓ/b0)Vghj0(t+ k/ν0, ξ + ℓ/b0).

As in the GM case, explicit error estimates can be obtained [5].
Application: Gabor multiplier estimation. We now address the following
more concrete problem, in view of signal processing applications: given two func-
tions x0, x1 ∈ L2(R), under which assumptions can one find a mask m such that
x1 ≈Mmx0 ?

In signal processing applications, x0 would be some input signal, x1 the out-
put signal of some linear system, which one would like to estimate. Potential
applications include among others channel identification for mobile phone signal
transmission, room estimation for acoustic de-reverberation, or musical instrument
classification and sound morphing, which is our domain of interest.

In such a context, it is natural to turn to variational formulations and seek a
solution by minimizing in ℓ2(Z2) a quantity such as

Φ[m] =
1

2
‖x1 −Mm;g,gx0‖22 +

λ

p
‖m− 1‖pp ,

with λ ∈ R+ a Lagrange parameter introduced to control the norm of the mask
m.

The minimization problem can be solved for p = 2, and yields a nice, closed
form. . . but huge matrix equation, not suitable for numerical purpose. However
one can reformulate the problem as an inverse problem [10]

min
m∈ℓ2

[
1

2
‖x1 − Tm‖22 +

λ

p
‖m− 1‖pp

]

where the linear operator T represents pointwise multiplication with Vgx0 followed
by Gabor synthesis V∗

h, and resort to efficient numerical algorithms, for instance
Landweber type iterations in the spirit of [3], or accelerated versions [1].

The same approach is extended to multiple input-output signal pairs

x
(k)
0 ≈Mmx

(k)
0 , k = 1, . . .K

or to multiple Gabor multipliers estimation. The same algorithmic structure can
be used in these two contexts, with increased complexity.
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Application to sound design. One motivation for studying such questions was
the sound design problem, which can be roughly stated as follows: how can one
construct methods that would produce sound signals that make sense, i.e. that
would sound natural to a listener, and convey some specific information ?

We are very far from being able to answer such a question, and a first step is
to better understand the nature and structure of sound signals. It turns out that
Gabor multipliers provide a sensible way to perform pairwise comparisons between
sounds in a given database, and that the estimated masks yield interpretable
information. During the talk, we presented two applications, limiting to simple
sounds (namely, single note signals from different wind instruments):

• Sound categorization: starting from estimated multipliers, use the infor-
mation contained in the masksm to generate divergence measures, further
exploited via classification algorithms.
• Sound morphing: given a pair of sound signals, estimate a Gabor mul-
tiplier, and use it to synthesize families of sound signals that interpolate
between the input and the output.

The results presented during the workshop are part of the PhD project of Anäık
Olivero. Practical implementations (in the Ltfat package software, see [11]) and
sound examples will be made available soon.

References

[1] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM Journal on Imaging Sciences, 2:1 (2009), pp. 183–202.

[2] J. Benedetto and G. Pfander. Frame expansions for Gabor multipliers. Applied and Com-
putational Harmonic Analysis 20:1 (2006), pp 26-40.

[3] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Communications on Pure and Applied Mathe-
matics, 57:11 (2004), pp. 1413–1457.

[4] M. Dörfler and B. Torrésani. On the time-frequency representation of operators and gener-
alized Gabor multiplier approximations. Journal of Fourier Analysis and Applications 16
(2010), pp. 261-293.

[5] M. Dörfler and B. Torrésani. Representation of operators by sampling in the time-frequency
domain. Sampling Theory in Signal and Image Processing, to appear (2011).

[6] H.G. Feichtinger and T. Strohmer Eds., Gabor analysis and algorithms, Series in Applied
and Numerical Harmonic Analysis, Birkhäuser Boston Inc. (1998).
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Lipschitz equivalence of Cantor sets

Yang Wang

(joint work with Hui Rao and Huo-Jun Ruan)

Let E,F be compact sets in Rd. We say that E and F are Lipschitz equivalent,
and denote it by E ∼ F , if there exists a bijection ψ : E−→F which is bi-Lipschitz,
i.e. there exists a constant C > 0 such that

C−1|x− y| ≤ |ψ(x)− ψ(y)| ≤ C|x− y|
for all x, y ∈ E.

An area of interest in the study of self-similar sets is the Lipschitz equivalence
property. With Lipschitz equivalence many important properties of self-similar
sets are preserved. There is an extensive literature on Lipschitz equivalence of
self-similar sets, see e.g. [2] for a comprehensive discussion.

This talk concerns with the Lipschitz equivalence of dust-like self-similar sets
in Rd. Recall that in general we characterize a self-similar set as the attractor of
an iterated functions system (IFS). Let {φj}mj=1 be an IFS on Rd where each φj
is a contractive similarity with contraction ratio 0 < ρj < 1. The attractor of the
IFS is the unique nonempty compact set F satisfying F =

⋃m
j=1 φj(F ), see [3].

We say that the attractor F is dust-like, or alternatively, the IFS {φj} satisfies
the strong separation condition (SSC), if the sets {φj(F )} are disjoint. It is well
known that if F is dust-like then the Hausdorff dimension s = dimH(F ) of F
satisfies

∑m
j=1 ρ

s
j = 1. It is well known that two dust-like self-similar sets with

the same contraction ratios are Lipschitz equivalent. For any ρ1, . . . , ρm ∈ (0, 1)
with

∑m
j=1 ρ

d
j < 1, we will call ρ = (ρ1, . . . , ρm) a contraction vector, and use the

notation D(ρ) = D(ρ1, . . . , ρm) to denote the set of all dust-like self-similar sets
that are the attractor of some IFS with contraction ratios ρj , j = 1, . . . ,m on Rd.
We use s = dimH D(ρ) to denote the Hausdorff dimension of sets in D(ρ). Let
ρ = (ρ1, . . . , ρm) and τ = (τ1, . . . , τn) be two contraction vectors. We say D(ρ)
and D(τ ) are Lipschitz equivalent, and denote it by D(ρ) ∼ D(τ ), if E ∼ F for
some (and thus for all) E ∈ D(ρ) and F ∈ D(τ ). Note that if τ is a permutation
of ρ then we clearly have D(τ ) = D(ρ). One of the most fundamental results in
the study of Lipschitz equivalence is the following theorem, proved by Falconer
and Marsh [2], that establishes a connection to the algebraic properties of the
contraction ratios:

Theorem 1 ( [2], Theorem 3.3). Let D(ρ) and D(τ ) be Lipschitz equivalent,
where ρ = (ρ1, . . . , ρm) and τ = (τ1, . . . , τn) are two contraction vectors. Let
s = dimH D(ρ) = dimH D(τ ). Then

(1) Q(ρs1, . . . , ρ
s
m) = Q(τs1 , . . . , τ

s
n), where Q(a1, . . . , am) denotes the subfield

of R generated by Q and a1, . . . , am.
(2) There exist positive integers p, q such that

sgp(ρp1, . . . , ρ
p
m) ⊆ sgp(τ1, . . . , τn),

sgp(τq1 , . . . , τ
q
n) ⊆ sgp(ρ1, . . . , ρm),
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where sgp(a1, . . . , am) denotes the subsemigroup of (R+,×) generated by
a1, . . . , am.

Using this theorem, it was shown in [1, 2] that there exist dust-like self-similar
sets E and F such that dimH E = dimH F but E and F are not Lipschitz equiv-
alent. Also, from this theorem, the following question arises naturally:

Question 1. Can we present nontrivial sufficient conditions and necessary condi-
tions on ρ and τ such that D(ρ) ∼ D(τ )?

Since the above work by Falconer and Marsh, there have been little progress
in this direction as we know of. In this talk we present some recent progresses in
this direction. To answer the question in general is likely to be extremely hard.
We present several important special cases that should allow us to gain some
deep insight into the problem. Our results establish further connections between
algebraic properties of contraction ratios and Lipschitz equivalence of dust-like
self-similar sets.

We introduce the notion of rank for a contraction vector ρ = (ρ1, . . . , ρm), which
is the rank (the number of generators) of the free subgroup of (R+,×) generated
by ρ1, . . . , ρm. According to Theorem 1 (2), if D(ρ) ∼ D(τ ), then rank〈ρ〉 =
rank〈τ 〉 = rank〈ρ, τ 〉, where 〈ρ, τ 〉 := 〈ρ1, . . . , ρm, τ1, . . . , τn〉 for ρ = (ρ1, . . . , ρm)
and τ = (τ1, . . . , τn). One of our main theorems is:

Theorem 2. Let ρ = (ρ1, . . . , ρm) and τ = (τ1, . . . , τm) be two contraction vectors
such that rank〈ρ〉 = m. Then D(ρ) and D(τ ) are Lipschitz equivalent if and only
if τ is a permutation of ρ.

A special case we study involve self-similar sets with two branches. This seem-
ingly simple case turns out to be rather challenging. We show that Theorem 2
and a result on the irreducibility of certain trinomials by Ljunggren [4] allows us
to completely characterize the Lipschitz equivalence of dust-like self-similar sets
with two branches. We prove:

Theorem 3. Let (ρ1, ρ2) and (τ1, τ2) be two contraction vectors with ρ1 ≤ ρ2,
τ1 ≤ τ2. Assume that ρ1 ≤ τ1. Then D(ρ) ∼ D(τ ) if and only if one of the two
conditions holds:

(1) ρ1 = τ1 and ρ2 = τ2.
(2) There exists a real number 0 < λ < 1, such that

(ρ1, ρ2) = (λ5, λ) and (τ1, τ2) = (λ3, λ2).

Another case where the Lipschitz equivalence of dust-like self-similar sets can
be characterized completely is when one of them has uniform contraction ratio.

Theorem 4. Let ρ = (ρ1, · · · , ρm) = (ρ, . . . , ρ) and τ = (τ1, . . . , τn). Then D(ρ)
and D(τ ) are Lipschitz equivalent if and only if the following conditions hold:

(1) dimH D(τ ) = dimH D(ρ) = logm/ log ρ−1.
(2) There exists a q ∈ Z+ such that m1/q ∈ Z and

log τj
log ρ

∈ 1

q
Z for all j = 1, 2, . . . , n.
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The results of this talk along with many other results can be found in the
paper [5].
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Unions of subspaces models: theory and applications

Akram Aldroubi

Let H be a Hilbert space, F = {f1, . . . , fm} a finite set of vectors in H, C a family
of closed subspaces of H, V the set of all sequences of elements in C of length l (
i.e., V = V(l) =

{
{V1, . . . , Vl} : Vi ∈ C, 1 ≤ i ≤ l

}
). The following problem has

several applications in mathematics, engineering, and computer science:

Problem 1 (Non-Linear Least Squares Subspace Approximation).

(1) Given a finite set F ⊂ H and a fixed integer l ≥ 1, find the infimum of the
expression

e(F,V) :=
∑

f∈F

min
1≤j≤l

d2(f, Vj),

over V = {V1, . . . , Vl} ∈ V , and d(x, y) := ‖x− y‖H.
(2) Find a sequence of l-subspaces Vo = {V o1 , . . . , V ol } ∈ V (if it exists) such

that

(1) e(F,Vo) = inf{e(F,V) : V ∈ V}.
This is a nonlinear version of the least squares problem (l = 1), and it has many

applications in mathematics and engineering. For example, in finite dimensions,
the subspace segmentation problem in computer vision (see e.g., [18] and the refer-
ences therein), the problems of face recognition, and motion tracking in videos (see
e.g., [6,10,12,18,19]), and the problem of segmentation and data clustering in Hy-
brid Linear Models (see e.g., [8,14] and the reference therein). Compressed sensing
is another related area where s-sparse signals in Cd can be viewed as belonging to
a union of subspacesM = ∪i∈IVi, with dimVi ≤ s [9].

Examples whereH is infinite-dimensional occurs in signal modeling. The typical
situation is H = L2(Rd), F ⊂ L2(Rd) is a set of finite signals, and C is the set
of all finitely-generated shift-invariant spaces of L2(Rd) [5, 15, 21]. Subspaces in
C are infinite-dimensional as well but they are shift-invariant, i.e., for V ∈ C,
f ∈ V implies that f(· − k) ∈ V for all k ∈ Z (see e.g., [7]). The class of signals
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with finite rate of innovation is another situation where the space H is infinite-
dimensional [16]. Applications where a union of subspaces underly the signal model
in infinite dimensions can be found in [4, 15, 16].

The Minimal Subspace Approximation Property. It has been shown that,
given a family of closed subspaces C, the existence of a minimizing sequence of
subspaces Vo = {V o1 , . . . , V ol } that solves Problem 1 is equivalent to the existence
of a solution to the same problem but for l = 1 [4]:

Theorem 2. Problem 1 has a minimizing set of subspaces for any l ≥ 1 if and
only if it has a minimizing subspace for l = 1.

This suggests the following definition:

Definition 3. A set of closed subspaces C of a separable Hilbert space H has the
Minimum Subspace Approximation Property (MSAP) if for every finite subset
F ⊂ H there exists an element V ∈ C that minimizes the expression e(F, V ) =∑

f∈F
d2(f, V ) over all V ∈ C. We will say that C has MSAP (k) for some k ∈ N

if the previous property holds for all subsets F of cardinality m ≤ k.
Using this terminology, Problem 1 has a minimizing sequence of subspaces if

and only if C satisfies the MSAP.

Remark 4. We will see that, in general, MSAP (k + 1) is strictly stronger than
MSAP (k). Obviously, MSAP is stronger than MSAP (k) for any k ∈ N.

There are some cases for which it is known that the MSAP is satisfied. For
example, if H = Cd and C = {V ⊂ H : dim V ≤ s}, the Eckhard-Young theorem
[11] implies that C satisfies MSAP. Another example is when H = L2(Rd) and

C = span{φ1, . . . , φr} is the set of all shift-invariant spaces of length at most r.
For this last example, a result in [3] implies that C satisfies the MSAP.

The general approach for the existence of a minimizer has been recently consid-
ered in [1]. The family C is viewed as a set of projectors and the characterization is
in terms of the augmented set C+ consisting of C together with the positive opera-
tors added to it. In finite dimensions, the necessary and sufficient condition is that
C+ is closed [1] . An equivalent characterization is that the convex hull co(C+) of
C+ is equal to the convex hull co(C+) of its closure [1] . A third characterization
for a finite d-dimensional space H is that C satisfies the MSAP (d − 1) [1] (see
Definition 3).

The infinite dimensions is different. For this case, the necessary and sufficient
conditions are in terms of the set of contact half-spaces τ(C+), and τ

(
C+
)
of

C+ and C+, respectively. Specifically, Problem 1 has a minimizer if and only if
τ(C+) = τ

(
C+
)
where the closure is in the weak operator topology [1].

Algorithms and Dimensionality Reduction. Search algorithms for finding
solutions to Problem 1 are often iterative. A general abstract algorithm of this
kind is described in [4]. Iterative algorithms often need a good initial approxima-
tion to a solution. Thus there are several important related problems including
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1) Finding a good initial approximate solution; 2) Dimensionality reduction for
efficient computations.

Often, the search for the optimal model from observed data F involves heavy
computations that dramatically increase with the dimensionality of H. However,
the effective dimension of the space S = V1 + · · · + Vl associated with the model
M = ∪iVi is much smaller than the dimension of the ambient space H. Thus one
important feature is to map the data into a lower dimensional space, and solve the
transformed problem in this lower dimensional space. If the mapping is chosen
appropriately, the original problem can be solved exactly or approximately using
the solution of the transformed data. For example, when the model M = ∪iVi
inside H = RN is of dimension dimM = k << N then it is possible to transform
Problem 1 into a problem in which the ambient space H′ has dimension k+1 and
obtain an exact solution to the original problem provided no noise is present [2].

However, when noise is present, the mapping to low dimensional subspace are
more constrained and the solution in the reduced space can only be used to ap-
proximate the real solution. The type of mapping that needs to be used for the
noisy case and an estimate of the error can be found in [2].

Application to motion segmentation. Consider a moving affine camera that
captures N frames of a scene that contains multiple moving objects. Let p be a
point of one of these objects and let xi(p), yi(p) be the coordinates of p in frame i.
Define the trajectory vector of p in R2N as w(p) = (x1(p), y1(p) . . . , xN (p), yN (p))t.
It can be shown that the trajectory vectors of all points of an object in a video
belong to a vector subspace in R2N of dimension no larger than 4 [13]. Thus,
trajectory vectors in videos can be modeled by a unionM = ∪i∈IVi of l subspaces
where l is the number of moving objects (background is itself a motion).

A precise description of the motion tracking in video can be found in [6]. Finding
the nearest unions of subspaces to a set of trajectory vectors as in Problem 1 allows
for segmenting and tracking the moving objects. Techniques for motion tracking
can be compared to state of the art methods on the Hopkins 155 Data set [VMS10] .
The Hopkins 155 Dataset was created as a benchmark database to evaluate motion
segmentation algorithms. The ground truth segmentations are also provided for
comparison. Our algorithm’s recognition rates for two and three motion video
sequences are 99.15% and 98.85%, respectively [6] which are best to date.
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Shearlet coorbit spaces I: General setting (in arbitrary space
dimensions)

Stephan Dahlke

(joint work with Gabriele Steidl and Gerd Teschke )

Multivariate Continuous Shearlet Transform. Let us start by introducing
the continuous shearlet transform on L2(R

n). This requires the generalization of
the parabolic dilation matrix and of the shear matrix. Let In denote the (n, n)-
identity matrix and 0n, resp. 1n the vectors with n entries 0, resp. 1. For
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a ∈ R∗ := R \ {0} and s ∈ Rn−1, we set

Aa :=

(
a 0T

n−1

0n−1 sgn (a)|a| 1n In−1

)
and Ss :=

(
1 sT

0n−1 In−1

)
.

Lemma 1. The set R∗ × Rn−1 × Rn endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1−1/n s′, t+ SsAat
′)

is a locally compact group S which we call full shearlet group. The left and right
Haar measures on S are given by

dµl(a, s, t) =
1

|a|n+1
da ds dt and dµr(a, s, t) =

1

|a| da ds dt.

For f ∈ L2(R
n) we define

(1) π(a, s, t)f(x) = fa,s,t(x) := |a|
1
2n−1f(A−1

a S−1
s (x− t)).

Theorem 2. The mapping π defined by (1) is a unitary representation of S.
Moreover, a function ψ ∈ L2(R

n) is admissible if and only if

(2) Cψ :=

∫

Rn

|ψ̂(ω)|2
|ω1|n

dω <∞.

Then, for any f ∈ L2(R
n), the following equality holds true:

(3)

∫

S

|〈f, ψa,s,t〉|2 dµl(a, s, t) = Cψ ‖f‖2L2(Rn).

Multivariate Shearlet Coorbit Theory. We consider weight functions w(a, s, t)
= w(a, s) that are locally integrable with respect to a and s, i.e., w ∈ Lloc1 (Rn)
and fulfill w ((a, s, t) ◦ (a′, s′, t′)) ≤ w(a, s, t)w(a′, s′, t′) and w(a, s, t) ≥ 1. Let

Lp,w(S) := {F : ‖F‖Lp,w(S) :=

(∫

S

|F (g)|p w(a, s, t)pdµ(a, s, t)
)1/p

<∞}.

In order to construct the coorbit spaces related to the shearlet group we have to
ensure that there exists a function ψ ∈ L2(R

n) such that

(4) SHψ(ψ) = 〈ψ, π(a, s, t)ψ〉 ∈ L1,w(S).

Theorem 3. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0] ∪
[a0, a1])× [−b1, b1]× · · · × [−bn−1, bn−1]. Then we have that SHψ(ψ) ∈ L1,w(S).

For ψ satisfying (4) we can consider the space

(5) H1,w := {f ∈ L2(R
n) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)},

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dualH∼
1,w. The spacesH1,w and

H∼
1,w are π-invariant Banach spaces with continuous embeddings H1,w →֒ H →֒
H∼

1,w, and their definition is independent of the shearlet ψ. Then the inner product
on L2(R

n)× L2(R
n) extends to a sesquilinear form on H∼

1,w ×H1,w, therefore for
ψ ∈ H1,w and f ∈ H∼

1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼

1,w×H1,w
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are well-defined. The next step is to consider an additional weight function m
which is moderate with respect to w, i.e., m((a, s, t) ◦ (a′, s′, t′) ◦ (a′′, s′′, t′′)) ≤
w(a, s, t)m(a′, s′, t′)w(a′′, s′′, t′′). Then, with respect to the new weight m, we de-
fine the shearlet coorbit spaces

(6) SCp,m := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,m(S)}

with norms ‖f‖SCp,m
:= ‖SHψf‖Lp,m(S).

The Feichtinger-Gröchenig theory provides us with a machinery to construct
atomic decompositions and Banach frames for our shearlet coorbit spaces SCp,w. A
(countable) family X = ((a, s, t)λ)λ∈Λ in S is said to be U -dense if ∪λ∈Λ(a, s, t)λU
= S, and separated if for some compact neighborhood Q of e we have (ai, si, ti)Q∩
(aj , sj , tj)Q = ∅, i 6= j, and relatively separated if X is a finite union of separated
sets.

Lemma 4. Let U be a neighborhood of the identity in S, and let α > 1 and β, γ > 0

be defined such that [α
1
n−1, α

1
n )× [−β2 ,

β
2 )
n−1 × [− γ2 ,

γ
2 )
n ⊆ U. Then the sequence

{(ǫαj , βαj(1− 1
n )k, S

βαj(1− 1
n

)k
Aαjγm) : j ∈ Z, k ∈ Zn−1,m ∈ Zn, ǫ ∈ {−1, 1}}

is U -dense and relatively separated.

Next we define the U–oscillation as

(7) oscU (a, s, t) := sup
u∈U
|SHψ(ψ)(u ◦ (a, s, t))− SHψ(ψ)(a, s, t)|.

Then, the following decomposition theorem, which was proved in a general setting
in [3–5], says that discretizing the representation by means of an U -dense set
produces an atomic decomposition for SCp,w.
Theorem 5. Assume that the irreducible, unitary representation π is w-integrable
and let an appropriately normalized ψ ∈ L2(R

n) which fulfills

(8) M〈ψ, π(a, s, t)〉 := sup
u∈(a,s,t)U

|〈ψ, π(u)ψ〉| ∈ L1,w(S)

be given. Choose a neighborhood U of e so small that ‖oscU‖L1,w(S) < 1. Then for
any U -dense and relatively separated set X = ((a, s, t)λ)λ∈Λ the space SCp,m has
the following atomic decomposition: If f ∈ SCp,m, then

(9) f =
∑

λ∈Λ

cλ(f)π((a, s, t)λ)ψ

where the sequence of coefficients depends linearly on f and satisfies

(10) ‖(cλ(f))λ∈Λ‖ℓp,m ∼ ‖f‖SCp,m
.

Given such an atomic decomposition, the problem arises under which conditions
a function f is completely determined by its moments 〈f, π((a, s, t)λ)ψ〉 and how
f can be reconstructed from these moments.

Theorem 6. Impose the same assumptions as in Theorem 5. Choose a neighbor-
hood U of e such that ‖oscU‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). Then {π((a, s, t)λ)ψ :
λ ∈ Λ} is a Banach frame for SCp,m. This means that
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i) f ∈ SCp,m if and only if (〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ ∈ ℓp,m;
ii)

‖f‖SCp,m ∼ ‖(〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w )λ∈Λ‖ℓp,m ;

iii) there exists a bounded, linear operator S from ℓp,m to SCp,m such that

S
(
(〈f, ψ((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ

)
= f.

To apply the whole machinery it remains to prove that ‖oscU‖L1,w(S) becomes
arbitrarily small for a sufficiently small neighborhood U of e.

Theorem 7. Let ψ be a function contained in the Schwartz space S with supp ψ̂ ⊆
([−a1,−a0] ∪ [a0, a1]) ×b [−b1, b1] × · · · × [−bn−1, bn−1]. Then, for every ε > 0,
there exists a sufficiently small neighborhood U of e so that

(11) ‖oscU‖L1,w(S) ≤ ε.

Further information concerning the coorbit and group theory related with the
continuous shearlet transform can be found in [1, 2].
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[4] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representa-

tions and their atomic decomposition II, Monatsh. Math. 108 (1989), 129–148.
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Shearlet coorbit spaces II: compactly supported shearlets, traces and
embeddings

Gerd Teschke

(joint work with Stephan Dahlke and Gabriele Steidl)

We show that compactly supported functions with sufficient smoothness and enough
vanishing moments can serve as analyzing vectors for shearlet coorbit spaces. We
use this approach to prove embedding theorems for subspaces of shearlet coorbit
spaces resembling shearlets on the cone into Besov spaces. Furthermore, we show
embedding relations of traces of these subspaces with respect to the real axes.

The Shearlet group and the continuous Shearlet transform. The (full) shearlet
group S is defined to be the set R∗ × R × R2 endowed with the group operation
(a, s, t) (a′, s′, t′) = (aa′, s+s′

√
|a|, t+SsAat′). A right–invariant and left-invariant
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Haar measures of S is given by µS,r = da/|a| ds dt and µS,l = da/|a|3 ds dt, respec-
tively and the modular function of S by △(a, s, t) = 1/|a|2. For the shearlet group
the mapping π : S→ U(L2(R

2)) defined by

(1) π(a, s, t)ψ(x) := |a|− 3
4 ψ

(
1

a
(x1 − t1 − s(x2 − t2)) ,

sgna√
|a|

(x2 − t2)
)

is a unitary representation of S, see [1, 2]. With the help of [2] it follows that the
unitary representation π defined in (1) is a square-integrable representation of S.
The transform SHψ : L2(R

2) → L2(S) defined by SHψf(a, s, t) := 〈f, ψa,s,t〉 is
called Continuous Shearlet Transform.

Shearlet coorbit spaces from Shearlets with compact support. Let w be a positive,
real-valued, continuous submultiplicative weight on S. To define our coorbit spaces
we need the set Aw := {ψ ∈ L2(R

2) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w} of analyzing
vectors, see [3–5, 7]. In the following, we assume that our weight is symmetric
with respect to the modular function, i.e., w(g) = w(g−1)△(g−1). Let QD :=
[−D,D]× [−D,D]. The following theorem shows that Aw contains shearlets with
compact support.

Theorem 1. Let ψ(x) ∈ L2(R
2) fulfill suppψ ∈ QD. Suppose that the weight

function satisfies w(a, s, t) = w(a) ≤ |a|−ρ1 + |a|ρ2 for ρ1, ρ2 > 0 and that

(2) |ψ̂(ω1, ω2)| ≤ C
|ω1|n

(1 + |ω1|)r
1

(1 + |ω2|)r
with n ≥ max(14 + ρ2,

9
4 + ρ1) and r > n+max(74 + ρ2,

9
4 + ρ1). Then we have that

SHψ(ψ) ∈ L1,w(S).

For an analyzing ψ we can consider

H1,w := {f ∈ L2(R
2) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼
1,w. As the inner prod-

uct on L2(R
2) × L2(R

2) extends to a sesquilinear form on H∼
1,w × H1,w, the ex-

tended representation coefficients SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼

1,w×H1,w are

well-defined. Let m be a w-moderate weight on S, i.e. m(xyz) ≤ w(x)m(y)w(z)
for all x, y, z ∈ S. Then we can define the called shearlet coorbit spaces

(3) SCp,m := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,m(S)}, ‖f‖SCp,m

:= ‖SHψf‖Lp,m(S).

Atomic decompositions and Shearlet Banach frames. To construct atomic decom-
positions and Banach frames the subset Bw of Aw,

Bw := {ψ ∈ L2(R
2) : SHψ(ψ) ∈ W(C0, L1,w)}

has to be non-empty. Here W(C0, L1,w) := {F : ‖(LxχQ)F‖∞ ∈ L1,w} and Q
is a relatively compact neighborhood of the identity element in S, see [7]. It can
be shown, for a classes of weights w sufficiently smooth and compactly supported
ψ(x) ∈ L2(R

2) belong to Bw. As it was shown in [2] that for α > 1 and σ, τ > 0
the set X := {(ǫα−j , σα−j/2k, Sσα−j/2kAα−j τl) : j ∈ Z, k ∈ Z, l ∈ Z2, ǫ ∈ {−1, 1}}
forms a U -dense and relatively separated family, we can deduce by Theorem 3.1
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and 3.2 in [2] that we can establish atomic decompositions and Banach frames for
the shearlet coorbit spaces.

Structure of Shearlet Coorbit Spaces. We now establish relations between scales
of Shearlet coorbit spaces and relations to Besov spaces. To establish relations
to Besov spaces we apply the characterization of homogeneous Besov spaces Bσp,q
from [6], see also [8,10]. For inhomogeneous Besov spaces we refer to [9]. The full
analysis is restricted to weights m(a, s, t) = m(a) := |a|−r, r ≥ 0, suggesting to use
the abbreviation SCp,r := SCp,m. For simplicity, we further assume that we can
use σ = τ = 1 in the U -dense, relatively separated set X and restrict ourselves to
the case ǫ = 1. Therefore, we assume that f ∈ SCp,r can be written as

f(x) =
∑

j∈Z

∑

k∈Z

∑

l∈Z2

c(j, k, l)α
3
4 jψ(αjx1 − αj/2kx2 − l1, αj/2x2 − l2).(4)

To derive reasonable trace and embedding theorems, it is necessary to introduce
the following subspaces of SCp,r. For fixed ψ ∈ Bw we denote by SCCp,r be the
closed subspace of SCp,r consisting of those functions which are representable as

in (4) but with integers |k| ≤ αj/2. As we shall see in the sequel for each of these
ψ the resulting spaces SCCp,r embed in the same scale of Besov spaces, and the
same holds true for the trace theorems.

In most of the classical smoothness spaces like Sobolev and Besov spaces dense
subsets of ‘nice’ functions can be identified.

Theorem 2. Let S0 := {f ∈ S : |f̂(ω)| ≤ ω2α
1 (1 + ‖ω‖2)−2α ∀ α > 0} and

m(a, s, t) = m(a, s) := |a|r(1/|a|+ |a|+ |s|)n for some r ∈ R, n ≥ 0. Then the set
of Schwartz functions forms a dense subset of the shearlet coorbit space SCp,m.

We now investigate the traces of functions lying in SCCp,r with respect to the
horizontal and vertical axes, respectively.

Theorem 3. Let Trhf denote the restriction of f to the (horizontal) x1-axis, i.e.,
(Trhf)(x1) := f(x1, 0). Then Trh(SCCp,r) ⊂ Bσ1

p,p(R) +Bσ2
p,p(R), where

Bσ1
p,p(R) +Bσ2

p,p(R) := {h | h = h1 + h2, h1 ∈ Bσ1
p,p(R), h2 ∈ Bσ2

p,p(R)}
and the parameters σ1 and σ2 satisfy the conditions σ1 = r− 5

4+
3
2p , σ2 = r− 3

4+
1
p .

Corollary 4. For p = 1, the embedding Trh(SC1,r) ⊂ Bσ1,1(R) with σ = r− 3
4 +

1
p

holds true.

Theorem 5. Let Trvf denote the restriction of f to the (vertical) x2-axis, i.e.,
(Trvf)(x2) := f(0, x2). Then the embedding Trv(SCCp,r) ⊂ Bσ1

p,p(R) + Bσ2
p,p(R),

holds true, where σ1 is the largest number such that σ1 + ⌊σ1⌋ ≤ 2r − 9
2 + 3

p , and

σ2 = 2r − 3
2 + 1

p .

We turn now to embedding results.

Corollary 6. For 1 ≤ p1 ≤ p2 ≤ ∞ the embedding SCp1,r ⊂ SCp2,r holds true. In-
troducing the ’smoothness spaces’ Grp := SCp,r+d( 1

2− 1
p )
. This implies the continuous

embedding Gr1p1 ⊂ Gr2p2 , if r1 − d
p1

= r2 − d
p2
.
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Theorem 7. The embedding SCCp,r ⊂ Bσ1
p,p(R

2) +Bσ2
p,p(R

2), holds true, where σ1

is the largest number such that σ1+ ⌊σ1⌋ ≤ 2r− 9
2 +

4
p , and σ2−

⌊σ2⌋
2 = r+ 3

2p +
1
4 .
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[4] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group repre-
sentations and their atomic decomposition I, J. Funct. Anal. 86, 307 - 340 (1989).
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Generalized sampling and infinite-dimensional compressed sensing

Anders C. Hansen

(joint work with Ben Adcock)

We will discuss a generalization of the Shannon Sampling Theorem that allows
for reconstruction of signals in arbitrary bases in a completely stable way. When
extra information is available, such as sparsity or compressibility of the signal in
a particular bases, one may reduce the number of samples dramatically. This is
done via Compressed Sensing techniques, however, the usual finite-dimensional
framework is not sufficient. To overcome this obstacle I’ll introduce the concept
of Infinite-Dimensional Compressed Sensing.

The well known Shannon Sampling Theorem states that if

f = Fg, g ∈ L2(R),

(note that F is the Fourier Transform) and supp(g) ⊂ [−T, T ] for some T > 0,
then both f and g can be reconstructed from point samples of f . In particular, if
ǫ ≤ 1

2T (the Nyquist rate) then

(1) f(t) =

∞∑

k=−∞
f(kǫ)sinc

(
t+ kǫ

ǫ

)
, L2 and unif. conv.,
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(2) g = ǫ

∞∑

k=−∞
f(kǫ)e2πiǫk·, L2 convergence.

In practice, one cannot process nor acquire the infinite amount of information
{f(kǫ)}k∈Z that is needed to fully reconstruct f and g and thus one must resort
to forming, for some N ∈ N, the approximations

fN =

N∑

k=−N
f(kǫ)sinc

(
t+ kǫ

ǫ

)
, gN = ǫ

N∑

k=−N
f(kǫ)e2πiǫk·.

The question on how well these functions approximate f and g is related to the
speed of convergence of the series in (1) and (2). Which again is related to how
suitable the functions {sinc ((·+ kǫ)/(ǫ))}k∈Z and {e2πiǫk·}k∈Z are in series expan-
sions of f and g. In particular, there may be L2 functions {ϕk}k∈N and coefficients
{βk}k∈N such that the series

f =
∑

k∈N

βkFϕk, g =
∑

k∈N

βkϕk

converge faster than the series in (1). There are therefore two important questions
to ask:

(i) Can one obtain the coefficients {βk}k∈N (or at least approximations to
them) in a stable manner, based on the same sampling information
{f(kǫ)}k∈N, and will this yield better approximations to f and g?

(ii) Can one subsample from {f(ǫk)}k∈N (e.g. not sampling at the Nyquist
rate) and still get recovery of {βk}k∈N and hence f and g?

The final answer to the first question YES! and can be summarized in the
following generalization of the Shannon Sampling Theorem below.

The answer to the second question is also YES! (given some extra requirements
on the signals f and g). This is done via the concept of Infinite-Dimensional
Compressed Sensing.

Theorem 1. Let F denote the Fourier transform on L2(Rd). Suppose that {ϕj}j∈N

is an orthonormal set in L2(Rd) such that there exists a T > 0 with supp(ϕj) ⊂
[−T, T ]d for all j ∈ N. For ǫ > 0, let ρ : N → (ǫZ)d be a bijection. Define the
infinite matrix

(3) U =




u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .


 , uij = (Fϕj)(ρ(i)).

Then, for ǫ ≤ 1
2T , we have that ǫd/2U is an isometry. Also, set

f = Fg, g =
∞∑

j=1

βjϕj ∈ L2(RN ),
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and let (for l ∈ N )Pl denote the projection onto span{e1, . . . , el}. Then, for every
K ∈ N there is an n ∈ N such that, for all N ≥ n, the solution to

(4) A




β̃1
β̃2
β̃3
...

β̃K




= PKU
∗PN




f(ρ(1))
f(ρ(2))
f(ρ(3))

...


 , A = PKU

∗PNUPK |PK l2(N),

is unique. If

g̃K,N =

K∑

j=1

β̃jϕj , f̃K,N =

K∑

j=1

β̃jFϕj ,

then

‖g − g̃K,N‖L2(Rd) ≤ (1 + CK,N )‖P⊥
Kβ‖l2(N), β = {β1, β2, . . .},

and

‖f − f̃K,N‖L∞(Rd) ≤ (2T )d/2(1 + CK,N )‖P⊥
Kβ‖l2(N),

where, for fixed K, the constant CK,N → 0 as N →∞.

The results can be found in [1–3], and the ideas stem from [4].
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An infinite dimensional extension of the Schur-Horn theorem for
operators with finite spectrum

Marcin Bownik

(joint work with John Jasper)

The purpose of this talk is to outline a recent progress in extending the Schur-
Horn theorem for operators on an infinite dimensional Hilbert space with finite
spectrum. That is, we are interested in giving necessary and sufficient conditions
for a sequence {di} to be the diagonal of a self-adjoint operator with specified list
of eigenvalues. The classical Schur-Horn theorem [12, 19] can be formulated as
follows.



950 Oberwolfach Report 17/2011

Theorem 1. Let {λi}Ni=1 and {di}Ni=1 be real sequences with nonincreasing order.
There exists N × N hermitian matrix with eigenvalues {λi} and diagonal {di}
⇐⇒

∀n = 1, . . . , N,

n∑

i=1

di ≤
n∑

i=1

λi and

N∑

i=1

λi =

N∑

i=1

di.

This line of research is motivated partly by the frame theory, where the prob-
lem of characterizing norms of frames with prescribed frame operator attracted
a significant number of researchers, see [6–9, 17]. Antezana, Massey, Ruiz, and
Stojanoff [1] established the connection of this problem with infinite dimensional
Schur-Horn problem and gave refined necessary conditions and sufficient condi-
tions. Indeed, we have the following extension of the well-known dilation theorem
for Parseval frames due to Han and Larson [11].

Theorem 2. {fi}i∈I is a frame on a Hilbert space H with a frame operator S
⇐⇒ there exists an orthonormal basis {ei}i∈I of some larger Hilbert space K ⊃ H
such that fi = Eei, where E = S1/2

⊕
0 and the zero operator 0 acts on K ⊖H.

In the special case of Parseval frames {fi}, the frame operator S = Id. Thus, a
sequence of frame norms {||fi||2} corresponds to a diagonal of a certain orthogonal
projection. In this case, Kadison [14, 15] gave the complete characterization of
sequences which are diagonals of projections.

Theorem 3. Let {di}i∈I be a sequence in [0, 1] and α ∈ (0, 1). Define

a =
∑

di<α

di, b =
∑

di≥α
(1− di).

There is a projection with diagonal {di}i∈I if and only if a = ∞, or b = ∞, or
both a, b <∞ and a− b ∈ Z.

Kadison’s theorem can be considered as an infinite dimensional extension of the
Schur-Horn Theorem for operators with two points in the spectrum. It falls into
a broader category of research that aims at finding an analogue of the Schur-Horn
theorem for operators on an infinite dimensional Hilbert space. Recently there has
been a great deal of progress by a number of authors. The work of Gohberg and
Markus [10] and Arveson and Kadison [4] extended the Schur-Horn theorem to
positive trace class operators. More recently Kaftal and Weiss [16] have extended
this to all positive compact operators. Other work in this area includes the study
of II1 factors by Argerami and Massey [2] and normal operators by Arveson [3].
Neumann [18] proved what may be considered an approximate Schur-Horn theorem
since it is given in terms of the ℓ∞-closure of the set of diagonal sequences. Bownik
and Jasper [5] established a variant of the Schur-Horn theorem for the set of locally
invertible positive operators.

Theorem 4. Let 0 < A < B < ∞ and {di}i∈I be a nonsummable sequence in
[0, B]. Define

(1) C =
∑

di<A

di and D =
∑

di≥A

(
B − di).
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Then, there is a positive operator E on a Hilbert space H with {A,B} ⊆ σ(E) ⊆
{0} ∪ [A,B] and diagonal {di} ⇐⇒ one of the following holds: (i) C = ∞, (ii)
D =∞, (iii) both C,D <∞ and there exists n ∈ N ∪ {0} such that

nA ≤ C ≤ A+ B(n− 1) +D.

The natural next step after Kadison’s theorem is to consider operators with
three points in the spectrum. Jasper [13] has recently shown the following result.

Theorem 5. Let 0 < A < B < ∞ and {di}i∈I be a sequence in [0, B] with∑
di =

∑
(B − di) =∞. Define

C =
∑

di<A

di and D =
∑

di≥A
(B − di).

There is a self-adjoint operator E with diagonal {di}i∈I and σ(E) = {0, A,B}
⇐⇒ one of the following holds: (i) C =∞, (ii) D = ∞, or (iii) both C,D < ∞
and there exist N ∈ N and k ∈ Z such that

C −D = NA+ kB and C ≥ (N + k)A.

One should add that the assumption that
∑
di =

∑
(B − di) = ∞ is not a

true limitation. Indeed, the summable case
∑
di < ∞ requires more restrictive

conditions which can be deduced from a more precise variant of Jasper’s theorem
[13]. In fact, the main result in [13] gives a complete list of characterization
conditions of diagonals of operators with prescribed multiplicities.

In the final part of the talk we describe the current joint work with Jasper on
characterizing diagonals of operators with finite spectrum. It turns out that the
key role is played by the two extreme eigenvalues with infinite multiplicity. The
full characterization result involves 3 ingredients:

(1) the lower exterior majorization of diagonal terms below the smallest eigen-
value with infinite multiplicity,

(2) the upper exterior majorization above the largest eigenvalue with infinite
multiplicity, and

(3) the interior majorization for diagonal terms lying between those two ex-
treme infinite multiplicity eigenvalues.

The last condition involves both the trace condition and majorization inequal-
ities similar as in Theorem 5. Finally, an interesting feature of the interior ma-
jorization is the fact all of these numerical conditions disappear completely in the
case of more than two eigenvalues with infinite multiplicity.
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Spanning and independence properties of frame partitions

Bernhard G. Bodmann and Darren Speegle

(joint work with Pete G. Casazza and Vern I. Paulsen)

Introduction. Over the last decades, frame theory has developed into a vibrant
subject including contributions in time-frequency analysis [7–10,12,18] and appli-
cations in engineering such as wireless communications or other types of signal and
image processing techniques, see the survey papers [14,15] and the many references
therein. In pure mathematics, frame theory has opened up new approaches to one
of the significant open problems in analysis today - the notoriously intractable
1959 Kadison-Singer Problem [2, 5, 6].

Formally, a frame is a family of vectors {fi}i∈I in a real or complex Hilbert
space H so that there are constants 0 < A ≤ B <∞ (called the lower and upper
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frame bounds, respectively) satisfying

(1) A‖x‖2 ≤
∑

i∈I
|〈x, fi〉|2 ≤ B‖x‖2, for all x ∈ H.

We refer the reader to [7] for the requisite background in frame theory.
What makes frames so useful in practice is their redundancy. That is, in general

a frame might have smaller subsets, each with a dense linear span in the space
H. The flexibility in choosing representations is key to many applications [14,
15]. One of the most important problems in frame theory today is therefore to
understand redundancy and its role in these applications. This includes a long list
of fundamental questions concerning the behavior of subsets of a frame such as
how many (disjoint) spanning sets does a frame contain? Or, how many (disjoint)
linearly independent subsets does it contain? Or, putting these together, how
many disjoint linearly independent spanning sets does our frame contain? Can
we partition any unit norm frame into a finite number of subsets with specialized
properties such as each subset being nearly tight for its span, i.e. with B

A ≈ 1?
This innocent looking problem in frame theory is now known to be equivalent to
the 1959 Kadison-Singer Problem [3, 6].

One of the first results concerning the decomposition of frames into linearly
independent sets is in [2] where it is shown that a frame can be partitioned into
⌈B⌉-linearly independent sets. In [6] it is shown that a unit norm tight frame
{fi}KMi=1 in anM -dimensional space can be partitioned into K linearly independent
spanning sets. It has been an open question since [6] appeared whether there is

a similar result for unit norm frames {fi}KM+r
i=1 for 0 < r < M . This is one of

the questions we will answer in this paper. Recently, an intuitive, quantitative
measure for redundancy was given for finite frames [1]. It is interesting to note
that it relates to independence and spanning properties of frame partitions which
we explore here. We expect that such a systematic refinement of our understanding
of redundancy will have an important impact on applications.

We will concentrate on Parseval frames here since with respect to independence
and spanning properties, this is really the general case in the sense that every
frame {fi}i∈I is isomorphic to the Parseval frame {S−1/2fi}i∈I , where S is the
frame operator. That is, S−1/2 is an invertible operator mapping our frame to a
Parseval frame and hence it maintains linearly independence properties, spanning
properties and Riesz basic sequences. Many of our results rely on the assumption
that the norms of the Parseval frame vectors are uniformly bounded away from
1. This is a necessary assumption since for a Parseval frame {fi}i∈I , Equation 1
quickly yields that if ‖fj‖ = 1, then fj ⊥ span {fi}i6=j .
Results. First, we establish a dichotomy between independence properties of sub-
sets of a finite Parseval frame and spanning properties of complementary subsets
of its Naimark complement. This gives a new approach to the Kadison-Singer
Problem which is complementary to the standard equivalences of the problem.

Proposition 1. Let H be a Hilbert space with orthonormal basis {ej}j∈S , let P
be the orthogonal projection onto a closed subspace of H, and let B ⊆ S. Then
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the linear span of {Pej}j∈B is dense in P (H) if and only if the operator (〈(I −
P )ej , (I − P )ei〉)i,j∈Bc on ℓ2(Bc) is one-to-one.

Next, we apply this result to show that given a Parseval frame {fn}n∈N with
‖fn‖2 ≤ 1−δ we can partition N into r-subsets (r only depending upon δ) {Aj}rj=1

so that span {fn}n∈Ac
k
= H, for all 1 ≤ k ≤ r.

Theorem 2. Let 0 < δ < 1, and set r = 2⌈ 1δ ⌉. If {fn}n∈N is a Parseval frame for

a Hilbert space H, with ‖fn‖2 ≤ 1 − δ for all n ∈ N, then there exists a partition
of N into r disjoint sets, A1 ∪ · · · ∪Ar = N, such that HAc

k
= H, for k = 1, . . . , r.

Until now, we have considered the problem of partitioning Parseval frames into
spanning sets or linearly independent sets. Now we will examine the much deeper
problem of partitioning a Parseval frame into linearly independent spanning sets.
This is a fundamental problem in the field which until now has had only one case
that has been answered. Namely, in [6] it is shown that a equal norm Parseval
frame {fi}KMi=1 for HM can be partitioned into K-linearly independent spanning
sets. This proof relies on the Rado-Horn Theorem and to prove our result, we
have to first strengthen the Rado-Horn Theorem itself.

Theorem 3. Let {fi}i∈I be an equal norm Parseval frame for an N dimensional
Hilbert space HN with |I| = rN + k with 0 ≤ k < N . Then there is a partition
{Ii}r+1

i=1 of I so that for i ∈ {2, . . . , r + 1}, {fj}j∈Ii is a linearly independent
spanning set and {fj}j∈I1 is linearly independent.
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The Bourgain Tzafriri restricted invertibility theorem in infinite
dimensions

Götz E. Pfander

(joint work with Peter G. Casazza)

We give a generalization of the Bourgain Tzafriri restricted invertibility theorem [3]
to infinite dimensional Hilbert spaces. Our approach is based on notions of localized
frames and density similar to those used in the work of Balan, Casazza, Heil,
and Landau [1, 2], respectively Gröchenig [5]. Here, we streamline the notion of
density to avoid having to specify an index map for a frame localized with respect
to a (possibly overcomplete) reference system. Our work is available in detail as
preprint [4].

Restricted invertibility refers to restricting a non injective real or complex valued
matrix to a subspace of its domain so that the restricted map becomes injective.
Clearly, we can always restrict to a subspace of dimension being the rank of the
matrix. The strength of the restricted invertibility theorem is that it allows to
select a (generally smaller) subspace while controlling the operator norm of the
left inverse of the matrix. In this extended abstract, we will use an equivalent
formulation of restricted invertibility based on terms from frame theory. Then,
given a family of vectors in a finite / infinite dimensional Hilbert space, the goal
is to choose a large subset from that family so that the subset forms a Riesz basis
with sufficiently large lower Riesz bound.

Recall that F = {fi}i∈I ⊂ H is Bessel with Bessel bound 0 < B <∞ if

‖
∑

i∈I
aifi‖2 ≤ B

∑

i∈I
|ai|2, {ai}i∈I ,

it is a Riesz sequence with Riesz bounds 0<A≤B<∞ if

A
∑

i∈I
|ai|2 ≤ ‖

∑

i∈I
aifi‖2 ≤ B

∑

i∈I
|ai|2, {ai}i∈I

The restricted invertibility theorem in finite dimensions has recently been re-
proven (with improved constants) by Spielman, Srivastava [6].
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Theorem 1. For every n ∈ N and set of n vectors fi in Cn with Bessel bound B
and ‖fi‖ = 1 for all i, exist subsets Jα ⊆ {1, 2, . . . , n}, α ∈ (0, 1), satisfying

(1) |Jα| ≥ α2 n

B
, and

(2) For all {bj}j∈Jα we have (1 − α)2
∑

j∈Jα

|bj|2 ≤ ‖
∑

j∈Jα

bj fj‖2.

Simple examples illustrating the appearance of n/B in (1) include the cases (i)
{fi}i=1,...,n is an orthonormal basis, (ii) all fi are identical, or (iii) {fi}i=1,...,n is
the union of two identical orthonormal bases. Also consider (iv) {fi}i=1,...,n−1 is
an orthonormal set and fn = f1.

To generalize the finite dimensional restricted invertibility theorem we must es-
tablish a notion of density which is based on a coordinate / reference system. We
aim to replace (1) by

(1’)
Density of Jα with respect to a coordinate system G
Density of I with respect to a coordinate system G ≥

α2

‖T ‖2 .

The herein proposed notions of localization and density are stated in loose
terms. Similarly to the concept of Beurling density, a precise statement of the
proposed notion of density must employ lim sup and lim inf. The definition below
coincides with the precise definition in canonical examples.

Definition 2. The density of F with respect to G is given by

D(F ;G) = lim
R→∞

∑
f∈F af

∑
n∈BR

|〈f, gn〉|2
|BR|

,

where af =
(∑

n∈G |〈f, gn〉|2
)−1

, f ∈ F .
(If G is a Parseval frame, then all af = 1.)

Definition 3. For 0 < D(F ;G) <∞, the relative density of F ′ ⊆ F with respect
to G is

R(F ′,F ;G) = D(F ′;G) / D(F ;G).
Definition 4. F is ℓ1-localized with respect to G = {gk}k∈G if there exists a
sequence r ∈ ℓ1(G) so that for all f∈F there is k∈G with |〈f, gn〉| ≤ r(n−k),
n∈G.

These concepts lead to the following infinite dimensional version of the Bourgain-
Tzafriri restricted invertibility theorem.

Theorem 5. Let F be ℓ1-localized with respect to the frame G and assume that
‖f‖ ≥ u, f ∈ F , and F Bessel with bound BF . Assume
G = {gk : k ∈ G} is a frame for H with ℓ1- self-localized dual frame

If (F ;G) is ℓ1-localized, then for every α ∈ (0, 1) and δ > 0 there is a subset
Fαδ ⊆ F with
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(1) R(Fαδ,F ;G) ≥
α2u2

BF
,

(2) Fαδ is a Riesz sequence with Riesz bounds (1− α)2(1− δ)u2, BF .

We will now present an application of the infinite dimensional restricted invert-
ibility theorem to Gabor analysis.

For λ=(y, ω)∈R2d, ϕ∈L2(Rd), set π(λ)ϕ(x)=π(y, ω)ϕ=e2πixωϕ(x−y) and con-
sider the Gabor system (ϕ,Λ) = {π(λ)ϕ}λ∈Λ. In this case, relative density of
Λαδ as subset of Λ ⊆ R2 can be expressed by D(Λαδ)/D(Λ) where D denotes
the classical Beurling density. Note that in order to obtain ℓ1-localization of the
Gabor system with respect to a reference system, we must choose the reference
system to be overcomplete. In this sense, we are using a redundant coordinate sys-
tem, as permitted by the infinite dimensional version of the restricted invertibility
theorem.

Theorem 6. Let α ∈ (0, 1), δ > 0. Let ϕ ∈ S0(R) and let the Gabor system (ϕ,Λ)
have Bessel bound B <∞. Then exists Λαδ ⊆ Λ with uniform density and

(1)
D(Λαδ)

D(Λ)
≥ α2

B
‖ϕ‖2,

(2) For all {bλ}λ∈Λ ∈ ℓ2(Λ),

(1− α)2(1− δ)‖ϕ‖
∑

λ∈Λαδ

|bλ|2 ≤ ‖
∑

λ∈Λαδ

bλπ(λ)ϕ‖2 ≤ B
∑

λ∈Λαδ

|bλ|2

If (ϕ,Λ) is a tight frame, then D(Λ) = B
‖ϕ‖2 , and for α < 1 exists Λαδ with

(1) D(Λαδ) ≥ α2.
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Sampling of band-limited functions for Gelfand pairs

Jens Gerlach Christensen

(joint work with Azita Mayeli and Gestur Ólafsson)

We recall the definition of a Gelfand pairs (G,K) and the basic facts about the
Fourier transform on the associated commutative space G/K. Details and more
discussion can be found in [5]. We then derive sampling results for band-limited
functions on G/K.

Let G be a Lie group and K ⊂ G a compact subgroup. Denote by ℓ the
left regular representation ℓ(a)f(x) = f(a−1x) Since K is compact we identify
functions on G/K with right invariant functions on G such that Lp(G/K) ⊆
Lp(G). Define convolution of functions by

f ∗ g(x) =
∫

G

f(y)g(y−1x) dx

whenever it makes sense. The left K-invariant and integrable functions are de-
noted by L1(G/K)K and forms an algebra under convolution. (G,K) is a Gelfand
pair if L1(G/K)K is commutative. In this case we also say that G/K is a commu-
tative space. Equivalently (G,K) is a Gelfand pair if the algebra of left invariant
differential operators D(G/K) is commutative. If G/K is a commutative space,

then there exists a measurable set Λ ⊆ Ĝ, where Ĝ is the unitary dual of G, such
that

(1) (ℓ, L2(G/K)) ≃
∫ ⊕

Λ

(πλ,Hλ) dµ(λ) .

From this can be defined the vector valued Fourier transform for functions f ∈
L1(G/K)

(2) f̂(λ) = F(f)(λ) := πλ(f)pλ

where pλ ∈ HKλ is a unit vector. Note, if f ∈ L1(G) and g ∈ L2(G/K) then

F(f ∗ g)(λ) = πλ(f)ĝ(λ) .

For f ∈ C∞
c (G/K) it follows that

‖f‖22 =
∫
‖f̂(λ)‖2Hλ

dµ(λ) .

and

f(x) =

∫
(f̂(λ), πλ(x)pλ)Hλ

dµ(λ)

Hence, the vector valued Fourier transform extends to an unitary isomorphism

L2(G/K) =

∫ ⊕
(πλ,Hλ) dµ(λ) .

The vectors pλ are eigenvectors for πλ(D) when D ∈ D(G/K). By [2] the topology
on the spectrum Λ is equivalent to the Euclidean topology on the eigenvalues of

All authors were partially supported by NSF grant DMS-0801010.
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left invariant differential operators. Let Ω ⊆ Λ be compact. A continuous function

f ∈ L2(G/K) is Ω-band-limited if supp(f̂) ⊆ Ω and the space of such functions
is denoted PW (Ω). The eigenvalues of πλ(∆), where ∆ is the Laplacian on G/K,
are uniformly bounded for λ ∈ Ω and thus there is a constant C(Ω) such that

(3) ‖(I −∆)nf‖L2 ≤ C(Ω)n‖f‖2L
for functions f ∈ PW (Ω).

Let (G,K) be a Gelfand pair and fix an Ad(K)-invariant Riemannian metric
on G. Fix an orthonormal basis X1, . . . , Xn for g. We investigate how functions
in Paley-Wiener space vary inside neighborhoods of the form

Uǫ = {et1X1et2X2 · · · etnXn | −ǫ ≤ tk ≤ ǫ for all 1 ≤ k ≤ n}
and find that the local oscillations

oscǫ(f)(x) = sup
u∈Uǫ

|f(x)− f(xu−1)|

have norm estimated by

‖oscǫ(f)‖2L2(G) ≤ Cǫ
n∑

k=0

‖(I −∆)kf‖L2(G)‖f‖L2(G) ≤ Cǫ‖f‖2L2(G)

for f ∈ PW (Ω). The constant Cǫ tends to zero as ǫ → 0 and in the last step we
used the Bernstein inequality (3).

Let φ be the continuous representative in L2(G/K)K for which

φ̂(λ) = 1Ω(λ)pλ.

Along the same lines as [1, 3, 4] we obtain the following sampling results

Main theorem. Let Ω ⊆ Λ be a compact set, then it is possible to choose ǫ small
enough that for any Uǫ-relatively separated family xi

• the functions ℓxiφ form a frame for L2
Ω,

• the operator T1f =
∑

i f(xi)ψi ∗ φ is invertible on PW (Ω)

• T−1
1 (ψi ∗ φ) is a dual frame for ℓxiφ.
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Fourier series on Cantor sets

Dorin Ervin Dutkay

Everybody knows about Fourier series on the interval: the set of functions

{e2πinx : n ∈ Z}
forms an orthonormal basis for L2[0, 1], where the interval [0, 1] is endowed with
Lebesgue measure. But how about some other measures? Can one have orthonor-
mal bases of exponentials on some singular measure? In 1998 Jorgensen and
Pedersen [3] discovered a surprising example: a wonderful Cantor type set which,
when endowed with the appropriate Hausdorff measure, possesses an orthonormal
basis of exponential functions. It is not the usual middle-third Cantor set; Jor-
gensen and Pedersen’s example is obtained from the unit interval, dividing it into
4 equal pieces and keeping the first and the third and then repeating the procedure
ad infinitum. The resulting Cantor set X4 has Hausdorff dimension 1

2 . Consider

µ4 the Hausdorff measure of dimension 1
2 restricted to the set X4. Jorgensen and

Pedersen proved that for the following very sparse set

Λ :=

{
n∑

k=0

4klk : lk ∈ {0, 1}, n ∈ N

}
,

the set of exponential functions {e2πiλx : λ ∈ Λ} is an orthonormal basis. Such a
measure is called spectral and Λ is called a spectrum.

Spectral measures appear also in the Fuglede conjecture which states that a the
normalized Lebesgue measure on some Borel subset Ω of Rd is a spectral measure
if and only if Ω tiles Rn by translations. The conjecture was disproved in one
direction first by Tao for dimensions d ≥ 5, then down to dimension d ≥ 3 in both
directions by Matolcsi et. al.

Jorgensen and Pedersen’s example was further generalized for various affine
iterated function systems or infinite convolution measures, see e.g [1, 2, 4, 5]. For
example, consider the affine iterated function system τb(x) = R−1(x + b), b ∈ B,
on Rd, where R is an expansive integer matrix and B is a subset of Rd. Let µB
be the invariant measure associated to this IFS in the sense of Hutchinson. In [2]
we proposed the following conjecture:

Suppose there exist a set L ⊂ Zd such that (R,B,L) forms a Hadamard system,
i.e. #B = #L and the matrix

1√
#B

(
e2πiR

−1b·l
)
b∈B,l∈L

is unitary. Then the measure µB is spectral.
The conjecture was proved in dimension 1 [1], for many cases in dimension 2 by

Bengt Alrud in his thesis and under a certain “reducibility assumption” for higher
dimensions [2].

In their paper [3], Jorgensen and Pedersen also proved that the more familiar
middle-third Cantor set with its Hausdorff measure µ3 of dimension ln 2

ln 3 is far from
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being spectral. Actually, no three exponential functions are mutually orthogonal
in L2(µ3). Following this Strichartz [5] raised the following question:

Is there a frame of exponentials on the middle-third Cantor set?
The problem turned out to be quite difficult and it still open. Some researchers

believe that, because of this complete lack of orthogonality for exponentials on the
middle-third Cantor set, this could be a good ground to look for a counterexample
to the Feichtinger conjecture.

We were able to construct Bessel sequences and Riesz basis sequences of positive
Beurling dimension, but no frames yet.
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Shearlets and representation theory (and the Wick calculus)

Emily J. King

(joint work with Wojtek Czaja)

In what follows a new multi-dimensional transformation which contains directional
components and which generalize the concepts of the L2(R2) shearlet transform
with isotropic dilations is presented. Some of the properties of this new family of
isotropic shearlet transformations and of their associated Lie groups are shown.
Under the wavelet representation, these groups are square-integrable over general-
ized Hardy Spaces. Some new structural results using Calderón-Toeplitz (TDS)k
multiplication operators and the Wick Calculus will be presented.

We begin by fixing our notation. For f : L2(Rk), y ∈ Rk, and A ∈ GL(R, d) de-
fine the following (unitary) operatorsDAf(x) = | detA|−1/2f(A−1x) and Tyf(x) =
f(x − y). Shearlets were created in order to analyze directional information
in 2-dimensional images [9] [13]. The continuous shearlet group is the group
{(y, (SℓAa)−1) : a > 0, ℓ ∈ R, y ∈ R2}, where Aa is the parabolic diagonal dilation
matrix with diagonal values a and

√
a and Sℓ is the upper triangular matrix which

shears by ℓ. The representation ν which maps each (y, (SℓAa)
−1) to TyD(SℓAa)−1

is the wavelet representation. As real-life data sets are more and more commonly 3
dimensions or more, we would like to generalize the concept of shearlets to higher
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dimensions. We would like this generalization to have an underlying group struc-
ture that is reproducing; that is, for all f ∈ L2(Rd), there exists a φ ∈ L2(Rd)
such that f =

∫
G〈f, ν(g)φ〉ν(g)φdg holds weakly where ν is the wavelet represen-

tation and dg is a Haar measure for G. We would also like the representation
to be square-integrable. A unitary representation π mapping a locally compact
group G with Haar measure to a Hilbert space H is called square-integrable if it
is irreducible and there exists an f ∈ H such that

∫
G
|〈f, π(g)f〉|2 dg <∞.

There exist a few generalizations of shearlets to L2(Rk) which include traditional
shearlets as the case k = 2 [3] [5] [6] [11] [12] [10]. One may also generalize shearlets
using isotropic dilations, which include traditional wavelets as the case k = 1.

Definition 1. Consider the matrix group M = {t−1(Stℓ) : ℓ ∈ Rk−1, t > 0} where
Sℓ is formally defined to be 1 when k = 1 and for k ≥ 2 is the shearing matrix
{(aij)i,j : aii = 1, 1 ≤ i ≤ k; aik = ℓi, 1 ≤ i ≤ k−1; 0, else}. Set (TDS)k = Rk⋉M .

Theorem 2. (TDS)k is a reproducing group under the wavelet representation and

square integrable over H±(Rk) = {f ∈ L2(Rk) : supp f̂ ⊆ Ṙk±}, where Ṙk± =
{(x1, . . . , xk) : x1, . . . , xk−1 6= 0,±xk > 0}.

The only other isotropic generalization in the literature uses a Toeplitz shearing
matrix [7] or is only for the case k = 2 [1] [2].

In analogy with the structural results found in [8] [14], we have the following
results concerning Calderón-Toeplitz (TDS)k operators and their corresponding

Wick Calculus [3]. In what follows, let a be a bounded function on Ṙk+ and ψ be
a reproducing function for the wavelet representation of (TDS)k.

Definition 3. The Calderón-Toeplitz (TDS)k operator Ta acting on L2(Rk) is
given weakly by

Taf =

∫

(TDS)k

a(ℓ, t)〈f, TyDt−1(St
ℓ)
ψ〉TyDt−1(St

ℓ)
ψ
dt

tk+1
dydℓ.

Its Wick symbol ã is defined as

ã(y, ℓ, t) =
〈Ta(TyDt−1(St

ℓ)
ψ), TyDt−1(St

ℓ)
ψ〉

〈TyDt−1(St
ℓ)
ψ, TyDt−1(St

ℓ)
ψ〉 .

Theorem 4. Calderón-Toeplitz (TDS)k operator Ta is unitarily equivalent to a
multiplication operator acting on L2(Rk). Furthermore, the operator TaTb has
Wick symbol

ã ⋆ b̃(t, ℓ) = c̃(t, ℓ) = tk
∫

Rk

γa(ξ)γb(ξ)|ψ̂(tS−ℓξ)|2dξ.

Further work can be done to relate Calderón-Toeplitz (TDS)k operators to
results known for Fourier multipliers. The methods used to prove these results
concerning the (TDS)k operators do not work for (CSG)k operators.
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New and improved Johnson-Lindenstrauss embeddings via the
restricted isometry property

Felix Krahmer

(joint work with Rachel Ward)

The Johnson-Lindenstrauss (JL) Lemma [1] states that any set E of p points in
high dimensional Euclidean space can be embedded into O(ε−2 log(p)) dimensions,
without distorting the distance between any two points by more than a factor
between 1 − ε and 1 + ε. We establish a new connection between the JL Lemma
and the Restricted Isometry Property (RIP), a well-known concept in the theory
of sparse recovery often used for showing the success of ℓ1-minimization.
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More precisely (see for example [2]), a matrix Φ ∈ Rm×N is said to have the
Restricted Isometry Property of order k and level δ ∈ (0, 1) (equivalently, (k, δ)-
RIP) if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 for all k-sparse x ∈ RN .

Here a vector is k-sparse if it has only k non-zero entries.
Our main result is the following.

Theorem 1 ( [3]). Fix η > 0 and ε ∈ (0, 1), and consider a finite set E ⊂
RN of cardinality |E| = p. Set k ≥ 40 log 4p

η , and suppose that Φ ∈ Rm×N

satisfies the Restricted Isometry Property of order k and level δ ≤ ε
4 . Let ξ ∈ RN

be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}N. Then with
probability exceeding 1− η,

(1 − ε)‖x‖22 ≤ ‖ΦDξx‖22 ≤ (1 + ε)‖x‖22
uniformly for all x ∈ E.

Applying this result to the set of distances E′ = {x − y : x, y ∈ E}, we
obtain that RIP matrices with randomized column signs satisfy the Johnson-
Lindenstrauss Lemma. In a sense, this is a converse to a recent result by Baraniuk
et al. [4], who show that the Restricted Isometry Property is implied by a concen-
tration inequality closely related to the JL Lemma.

Consequently, matrices satisfying the Restricted Isometry Property of optimal
order provide optimal Johnson-Lindenstrauss embeddings up to a logarithmic fac-
tor in N . In particular, combining Theorem 1 with results on RIP matrices (see for
example [5]) yields the best known bounds on the necessary embedding dimension
m for matrices with fast multiplication properties. More specifically, for partial
Fourier and partial Hadamard matrices, our method optimizes the dependence of
m on the distortion ε: We improve the recent bound m = O(ε−4 log(p) log4(N))
of Ailon and Liberty [6] to m = O(ε−2 log(p) log4(N)), which is optimal up to the
logarithmic factors in N .

The proof of the theorem is based on concentration inequalities for Rademacher
sums and Rademacher chaos combined with matrix norm estimates as they com-
monly appear in the compressed sensing literature.

Applications of our results include compressed sensing for redundant dictionar-
ies and matrix recovery.
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Shearlets and sparse approximations in L2(R3)

Jakob Lemvig

(joint work with Gitta Kutyniok and Wang-Q Lim)

In this report, we introduce generalized three-dimensional cartoon-like images, i.e.,
three-dimensional functions which are Cβ except for discontinuities along Cα sur-
faces for α, β ∈ (1, 2], and consider sparse approximations of such for β ≥ α. We
first derive the optimal rate of approximation which is achievable by exploiting
information theoretic arguments. Then we introduce three-dimensional pyramid-
adapted shearlet systems with compactly supported generators and prove that
such shearlet systems indeed deliver essentially optimal sparse approximations of
three-dimensional cartoon-like images. Finally, we even extend this result to the
situation of surfaces which are Cα except for zero- and one-dimensional singulari-
ties, and again derive essential optimal sparsity of the constructed shearlet frames.

We start by defining the 3D cartoon-like image class. Fix µ, ν > 0. By E22 (R3) we
denote the set of functions f : R3 → C of the form

f = f0 + f1χB,

where B ⊂ [0, 1]3 with ∂B a closed C2-surface for which the principal curvatures
are bounded by ν and fi ∈ C2(R3) with suppfi ⊂ [0, 1]3 and ‖fi‖C2 ≤ µ for
each i = 0, 1. We enlarge this cartoon-like image model class to allow less regular
images as follows. Let 1 < α ≤ β ≤ 2. We then only require that ∂B is a Cα-
surface and that fi ∈ Cβ(R3) with ‖fi‖Cβ ≤ µ for each i = 0, 1. We speak of

Eβα(R3) as consisting of generalized cartoon-like 3D images having Cβ smoothness
apart from a Cα discontinuity surface.

In [3], it was shown that the optimal approximation rate for generalized 3D
cartoon-like images f ∈ Eβα(R3) which can be achieved for almost any frame rep-
resentation systems is

‖f − fn‖22 = O(n−α/2), n→∞,

where fn is the nonlinear n-term approximation obtained by choosing the n largest
coefficients of f in the canonical frame expansion. In the case of a basis, fn
will correspond to the best n-term approximation.In the following paragraphs we
introduce shearlet systems for L2(R3) which nearly deliver this approximation rate
for all 1 < α ≤ β ≤ 2.
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Let α ∈ (1, 2]. We scale according to the scaling matrix A2j , j ∈ Z, and
represent directionality by the shear matrix Sk, k = (k1, k2) ∈ Z2, defined by

A2j =



2jα/2 0 0
0 2j/2 0

0 0 2j/2


 , Sk =



1 k1 k2
0 1 0
0 0 1


 ,

respectively. The translation lattices will be generated by the matrix Mc =
diag(c1, c2, c2), where c1 > 0 and c2 > 0.

With the notation in place, we are ready to introduce our 3D shearlet system.
For fixed α ∈ (1, 2] and c = (c1, c2) ∈ (R+)

2, the pyramid-adapted 3D shearlet

system generated by φ, ψ, ψ̃, ψ̆ ∈ L2(R3) is defined by

SH(φ, ψ, ψ̃, ψ̆) = Φ(φ) ∪Ψ(ψ) ∪ Ψ̃(ψ̃) ∪ Ψ̆(ψ̆),

where

Ψ(ψ) = {2j(2+α)/4ψ(SkA2j · −m) : j ≥ 0, |k1|, |k2| ≤ ⌈2j(α−1)/2⌉,m ∈McZ
3},

and similar for Ψ̃(ψ̃; c) and Ψ̆(ψ̆; c) (switching the role of the variables), and

Φ(φ; c1) = {φ(· −m) : m ∈ c1Z3}.
The functions φ, ψ, ψ̃, ψ̆ ∈ L2(R3) are called shearlets, and the function φ is a
scaling function. The case α = 2 correspond to paraboloidal scaling; allowing
α = 1 would yield isotropic scaling. Hence as α approaches 1, the shearlet system
becomes more and more wavelet-like (and less and less ‘directional’).

In [3], it is shown that one can construct frames of the form SH(φ, ψ, ψ̃, ψ̆),

where the generators φ, ψ, ψ̃, ψ̆ ∈ L2(R3) are compactly supported. The following
result tells us that compactly supported pyramid-adapted shearlets provide nearly
optimal approximation rate for the class of generalized 3D cartoon-like images.

Theorem 1 ( [3]). Let α ∈ (1, 2] and c ∈ (R+)
2, and let φ, ψ, ψ̃, ψ̆ ∈ L2(R3) be

compactly supported. Suppose that, for all ξ = (ξ1, ξ2, ξ3) ∈ R3, the function ψ
satisfies:

(i) |ψ̂(ξ)| ≤ C ·min{1, |ξ1|δ} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ} ·min{1, |ξ3|−γ},
(ii)

∣∣∣ ∂∂ξi ψ̂(ξ)
∣∣∣ ≤ |h(ξ1)| ·

(
1 + |ξ2|

|ξ1|

)−γ
·
(
1 + |ξ3|

|ξ1|

)−γ
, for i = 1, 2,

where δ > 8, γ ≥ 4, h ∈ L1(R), and C a constant, and suppose that ψ̃ and ψ̆ satisfy
analogous conditions with the obvious change of coordinates. Further, suppose that

the shearlet system SH(φ, ψ, ψ̃, ψ̆) forms a frame for L2(R3).

Then, for any β ≥ α and µ, ν > 0, the frame SH(φ, ψ, ψ̃, ψ̆) provides nearly
optimally sparse approximations of functions f ∈ Eβα(R3) in the sense that:

‖f − fn‖22 = O(n−α/2+τ ) as n→∞,
where τ = τ(α) satisfies τ < 0.04.

For α = 2, we even have ‖f − fn‖22 = O(n−α/2 (logn)2) in Theorem 1 which is
optimal (up to a log-factor). As α approaches 1 we have less and less directional
information of the Cα discontinuity surface. Theorem 1 tells us that, as α → 1,
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the ‘optimal’ shearlet system should become more and more wavelet-like. We also

remark that a large class of generators ψ, ψ̃, and ψ̆ satisfy the conditions (i) and
(ii) in Theorem 1.

Theorem 1 deals with discontinuity surfaces, but, as opposed to the two-dimen-
sional setting, anisotropic structures in three-dimensional data comprise of two
morphologically different types of structure, namely surfaces and curves. It would
therefore be desirable to allow our 3D image class to also contain cartoon-like
images with certain curve singularities. To achieve this we allow our discontinuity
surface ∂B to be a closed, continuous, piecewise Cα smooth surface. We denote

this function class Eβα,L(R3), where L ∈ N is the maximal number of Cα pieces.
The pyramid-adapted shearlet systems still deliver the same nearly optimal rate

for this extended image class Eβα,L(R3) [3].
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Uncertainty principles and localization measures

Peter Maass and Nir Sochen

(joint work with Chen Sagiv and Hans-Georg Stark)

The construction of bases {ϕi|i ∈N}, which allow an efficient representation of
signals or images f , such that the coefficients {ci} in

f =
∑

i∈N
ciϕi

determine the phase space characteristics of f is one of the most basic tasks in
signal and image processing. The basis functions ϕi should be somehow optimal in
terms of their localization properties in a given phase space such as time-frequency
or location-scale phase spaces. A classical approach links this optimality concept
to so-called uncertainty principles:

For the classical time-frequency phase space, the uncertainty principle reads as
(‖ϕ‖ = 1)

min
ϕ

∫
ξ2 |ϕ(ξ)|2 dξ

∫
ω2 |ϕ̂(ω)|2 dω ≥ 1/4 .

If we measure the localization properties of f in the time-frequency phase space
by the quantity on the left, then optimal localization in this case is obtained
by functions, which attain equality in this uncertainty principle. These are the
Gaussian functions.
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This concept has been generalized in the 1960’s, see e.g. [3], which leads to
general uncertainty principles related to Lie algebras with non-vanishing commu-
tators: Let Ak, k = 1, 2 be selfadjoint operators and define eA(f) = 〈Af, f〉 and
varA(f) = 〈(A − eA)2f, f〉 If ‖f‖2 = 1 then

varA1(f) varA2(f) ≥ 4 e[A1−e1,A2−e2](f)
2 .

Again, bases functions, which are ’optimal’ with respect to the underlying phase
space were usually constructed by determining functions, which obtain an equality
in this uncertainty principle. This typically leads to some system of ordinary
differential equations, see e.g. [1, 2] for such constructions related to the wavelet
and shearlet transforms.

However, the right hand side of the general uncertainty principle depends on f
itself. It is no longer obvious that functions with optimal localization properties in
terms of minimizing the joint product of variances, are obtained by this procedure.
In fact it was shown in [4], that in case of the wavelet transform and the underlying
affine group, there exists a sequence of functions fn, such that (‖fn‖ = 1)

lim
n→∞

varA1(fn) varA2(fn) = 0 .

Hence, the ’uncertainty minimizers’ obtained by the classical approach, which do
have a non-zero value of the variance product, do not have optimal localization
properties. Conversely, neither of these functions fn obtain an equality in the
uncertainty principle.

This observation results in two problems:

(1) Can we characterize Lie algebras, where the ’product of variances’ have a
vanishing infimum?

(2) Which localization concepts should be used as a replacment of the uncer-
tainty principle?

The first question was answered in [5], where a complete characterization was ob-
tained in terms of the structure of the commutator [A1, A2]. The second question
is being presently investigated in the UnLocX project. This project aims at de-
veloping a general concept of optimal localization concepts in phase space and at
the development of related signal and image processing algorithms.
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Ideally, we will start with a phase space definition and a localization concept,
which arises from some specific application. We then determine reated optimal
function systems as well as efficient decomposition and synthesis operators. his
project started last September and lasts unil August 2013. It involves researchers
from Vienna, Marseille, Tel Aviv, Lausanne, Aschaffenburg and Bremen.
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Frames for group representations: A duality principle and
Feichtinger’s frame conjecture

Deguang Han

We examine the duality principle and the Feichtinger’s frame conjecture for frames
induced by (projective) unitary representations of infinite countable groups. Our
focus is on the infinite conjugate class (ICC) groups with special interests in the
free groups.

A general duality principle: One of the well studied classes of frames is the
class of Gabor (or Weyl-Heisenberg) frames: Let K = AZd and L = BZd be two
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full-rank lattices in Rd, and let g ∈ L2(Rd) and Λ = L × K. Then the Gabor (or
Weyl-Heisenberg ) family is the following collection of functions in L2(Rd):

G(g,Λ) = G(g,L,K) := {e2πi<ℓ,x>g(x− κ)
∣∣∣ ℓ ∈ L, κ ∈ K}.

For convenience, we write gλ = gκ,ℓ = e2πi<ℓ,x>g(x − κ), where λ = (κ, ℓ). If Eℓ
and Tκ are the modulation and translation unitary operators defined by

Eℓf(x) = e2πi<ℓ,x>f(x)

and

Tκf(x) = f(x− κ)
for all f ∈ L2(Rd). Then we have gκ,ℓ = EℓTκg. The well-known Ron-Shen duality
principle states that a Gabor sequence G(g,Λ) is a frame (respectively, Parseval
frame) for L2(Rd) if and only if the adjoint Gabor sequence G(g,Λo) is a Riesz
sequence (respectively, orthonormal sequence), where Λo = (Bt)−1Zd × (At)−1Zd

is the adjoint lattice of Λ.
The duality principle [2, 7, 10] for Gabor frames states that a Gabor sequence

G(g,Λ) is a frame for L2(Rd) if and only if the associated adjoint Gabor sequence
G(g,Λo) is a Riesz sequence. We prove that this duality principle extends to any
dual pairs of projective unitary representations of countable groups. We examine
the existence problem of dual pairs and establish some connection with classifica-
tion problems for II1 factors. While in general such a pair may not exist for some
groups, we show that such a dual pair always exists for every subrepresentation
of the left regular unitary representation when G is an abelian infinite countable
group or an amenable ICC group. For free groups with finitely many generators,
the existence problem of such a dual pair is equivalent to the well known problem
about the classification of free group von Neumann algebras.

Two (projective) unitary representationsπ and σ) of G on a Hilbert space H
are called to form a dual pair if they satisfy the following three conditions:

(i) π(G)′ = σ(G)′′

(ii) π and σ share the same Bessel vectors
(iii) π admits a frame vector for H and σ admits a Riesz sequence vector

Theorem 1 ( [3]) Let (π, σ) be a dual pair. Then {π(g)ξ}g∈G is a frame for H if
and only if {σ(g)ξ}g∈G is a Riesz sequence.

It has been a longstanding unsolved problem to decide whether the factors
obtained from the free groups with n andm generators respectively are isomorphic
if n is not equal to m with both n,m > 1. This problem can be rephrased as:
Let Fn (n > 1) be the free group of n-generators and P ∈ λ(Fn)′ is a nontrivial
projection. Is λ(Fn)′ ∗-isomorphic to Pλ(Fn)′P? The following result shows that
this problem is equivalent to the existence problem of dual pairs for free groups:

Theorem 2 ( [3]) Let π = λ|P be a subrepresentation of the left regular represen-
tation of an ICC (infinite conjugate class) group G and P ∈ λ(G)′ be a projection.
Then the following are equivalent:
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(i) λ(G)′ and Pλ(G)′P are isomorphic von Neumann algebras;
(ii) there exists a group representation σ such that (π, σ) form a dual pair.

Corollary 3( [3]) Let G be a countable group and λ be its left regular unitary
representation (i.e. µ ≡ 1). Then we have

(i) If G is either an abelian group, then for every projection 0 6= P ∈ λ(G)′,
there exists a unitary representation σ of G such that (λ|P , σ) is a dual pair ( [3]).

(ii) If G is an amenable ICC group, then for every projection 0 6= P ∈ λ(G)′,
there exists a unitary representation σ of G such that (λ|P , σ) is a dual pair ( [1]).

(iii) There exist ICC groups such that none of the nontrivial subrepresentations
λ|P admits a dual pair ( [8]).

(iv)If G = F∞ ⇒ λ|P admits a dual pair for every nontrivial projection P ∈
λ(G)′ ( [9]).

Feichtinger’s frame conjecture: Feichtinger’s frame conjecture states that ev-
ery norm bounded (from below) frame is a finite union of Riesz sequences. This
conjecture turns out to be equivalent to several well-known open problems in math-
ematics including Kadison-Singer pure state extension problem, Bourgain-Tzafriri
restricted invertibility conjecture and Anderson’s paving conjecture. For group
representation frames we parametrize the set of all such Parseval frames by opera-
tors in the commutant of the corresponding representation. We characterize when
two such frames are strongly disjoint. We prove an undersampling result showing
that if the representation has a Parseval frame of norm 1√

N
, the Hilbert space is

spanned by an orthonormal basis generated by a subgroup. As applications we
obtain some sufficient conditions under which a unitary representation admits a
Parseval frame which is spanned by an Riesz sequences generated by a subgroup.
In particular, every subrepresentation of the left regular representation of a free
group has this property.

Theorem 4 ( [4]) Let G be a countable ICC group and let π be a unitary repre-
sentation of the group G on the Hilbert space H. Suppose there exists a Parseval
frame vector ξ ∈ H with ‖ξ‖2 = 1

N , N ∈ Z. Assume in addition that H is a
normal ICC subgroup of G with index [G : H ] = N , and H contains elements of
infinite order. Then there exist a strongly disjoint N -tuple η1, . . . , ηN of Parseval
frame vectors for H such that for all i = 1, . . . , N , the family

√
N{π(h)ηi |h ∈ H}

is an orthonormal basis for H.

As a consequence of Theorem 1 we obtain

Theorem 5 ( [4]) Let G = Fn be a free group with more than one generator.
Then every frame representation admits a frame satisfying the Feichtinger’s frame
conjecture.

Question. For free group G = Fn (n > 1), does every frame vector satisfy the
Feichtinger’s frame conjecture.
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Remark. An affirmative answer to the above question will yield that every expo-
nential frame {e2πint|E}n∈Z satisfies the Feichtinger’s frame conjecture, where E
is any subset of [0, 1] with positive Lebesgue measure.
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Sampling for time- and bandlimited signals

Joseph D. Lakey

(joint work with Jeffrey A. Hogan and Scott Izu)

The classical sampling theorem provides a formula by which bandlimited signals
can be recovered by sinc-interpolating their integer samples. Usually, signals of
interest have finite duration. The “Bell Labs” theory of time- and bandlimiting,
developed by Landau, Slepian and Pollak starting in the 1960s, identified those
bandlimited signals having most of their energies concentrated in a given time
interval. However, the theory of time- and bandlimiting was never really reconciled
with the classical sampling theorem until 2003 when Walter and Shen [1] as well
as Khare and George [2] observed, independently, a sense in which approximately
time- and bandlimited signals might be recovered, locally, from sinc series built
from samples within the time interval of interest. We discuss here a quantitative
estimate of the error between a member of a suitably defined class of approximately
time- and bandlimited signals and a corresponding sampling series.

To fix ideas, for f ∈ L1 ∩ L2(R), let f̂(ξ) =
∫
R
f(t) e−2πitξ dt, and let Pf =

(f̂ 1[−1/2,1/2])
∨ denote the orthogonal projection onto the Paley-Wiener space

PW(R) of L2-signals bandlimited to [−1/2, 1/2]. The sampling theorem says
that if f ∈ PW then f(t) =

∑∞
k=−∞ f(k) sinc (t − k). Let QT f = f 1[−T,T ]
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denote the orthogonal projection onto the subspace of L2(R) consisting of sig-
nals supported in [−T, T ]. The time- and bandlimiting operator PQT is self-
adjoint on PW(R). Its eigenvalues form a discrete subset of (0, 1). Landau and
Widom [3] proved that the number N(α) of its eigenvalues larger than α satisfies
N(α) = 2T + log((1 − α)/α) log(2T )/π2 + o(logT ). In particular, if λn denotes
the nth eigenvalue of PQT when listed in decreasing order—PQT has a simple
spectrum—then λn is close to one for n < [2T ]− log(2T ).
The eigenfunctions of PQT are called prolate spheroidal wave functions (PSWFs).
For f ∈ PW let

fN(t) =

N∑

n=0

(∑

k

f(k)ϕn(k)
)
ϕn(t)

denote the projection onto the span of the first N PSWFs and let

fN,T =

N∑

n=0

( ∑

|k|≤M(T )

f(k)ϕTn (k)
)
; ϕTn (t) =

∑

|k|≤M(T )

ϕn(k) sinc (t− k)

for a suitable value of M(T ). We show that if M(T ) = T (1 + π2)(1 + logγ T )
where γ > 1 is fixed, then

‖QT
(
fN − fN,T

)
‖2 ≤

N∑

n=0

λn|〈(fN − fN,T ), ϕn〉|2 ≤ C‖f‖2
N∑

n=0

λn(1− λn).

This estimate shows that if f lies in the span of the first N PSWFs where N is a
bit smaller than 2T then f can be approximated accurately, over [−T, T ], by its
classical sampling series. The result improves a bound due to Walter and Shen [1]
in which the terms 1−λn on the right hand side are replaced by their square roots.
However, in Walter and Shen’s estimates M(T ) is also replaced by T . Methods
for estimating numerically the samples of the PSWFs are also presented here.

Applications of multiband signals are growing. By a multiband signal we mean a
signal in L2(R) whose Fourier transform is supported on a finite union of bounded,
pairwise disjoint intervals. Building on the observation that time- and bandlimited
signals can be approximated locally by their sinc interpolated samples, we give
a result for constructing eigenfunctions for time- and bandlimiting to unions of
frequency supports from the separate supports that is consistent with building
sampling expansions for unions. For a compact set Σ ⊂ R, let PΣf = (f 1Σ)

∨

and, for S ⊂ R, set QSf = f 1S . Now let Σ1 and Σ2 be disjoint, compact sets and
let λΣi

n ∼ ϕΣi
n , i = 1, 2 denote the nondegenerate eigen–pairs of PΣiQSPΣi . Denote

by ΛΣi = diag λΣi
n the diagonal matrix whose diagonal entries are the eigenvalues

of PΣiQSPΣi expressed in decreasing order of magnitude and by Γ = {γnm} the
matrix whose entries are the inner products of the time-localizations of ϕΣ1

n with
ϕΣ2
m , that is, γnm = 〈QSϕΣ1

n , ϕΣ2
m 〉. We show then that any eigen–pair ψ ∼ λ for

PΣ1∪Σ2QS can be written ψ =
∑∞

n=0(αnϕ
Σ1
n +βnϕ

Σ2
n ) where the vectors α = {αn}

and β = {βn} together form a discrete eigenvector for the block matrix eigenvalue
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problem

λ

(
α

β

)
=

(
ΛΣ1 Γ̄
ΓT ΛΣ2

)(
α

β

)
.
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