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Introduction by the Organisers

The workshop Real Enumerative Questions in Complex and Tropical Geometry,
organized by Grigory Mikahlkin (Genève), Eugenii Shustin (Tel Aviv), Johannes
Walcher (Genève), and Jean-Yves Welschinger (Lyon), was held April 18th–April
23rd, 2011. This meeting was well attended by with about 50 participants from
around the world. The program of the workshop consisted of 18 one-hour talks
given by leading experts in the subject as well as by perspective young researchers.
In addition, four informal discussions on open problems and on questions related
to the main topics of the workshop were ran during this week. Extended abstracts
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of the talks and reports on the discussions follow these introductory notes. A spe-
cial feature of the workshop was a dialog between mathematicians and physicists
around the main subject.

The idea of the workshop was to put in the center the enumeration of real curves,
which, on one side, appeared as a natural counterpart of the complex Gromov-
Witten theory and which largely motivated the development of tropical geometry,
and, on the other side, is deeply linked with counting pseudoholomorphic curves
with Lagrangian boundary conditions in symplectic geometry and mathematical
physics. Despite a number of striking results in this direction, serious problems
remain open on the way to a systematic theory in real enumerative geometry. We
shortly comment on these problems and on how they were reflected in the talks
and discussions during the workshop.

About 15 years ago a huge breakthrough in Mathematics happened when Kont-
sevich suggested a way to enumerate complex rational curves in the framework
of String Theory. Real algebraic geometry is almost always a much more del-
icate subject then its complex counterpart. Nevertheless, a significant progress
in understanding real enumerative geometry was done recently. A breakthrough
was provided by the discovery by J.-Y. Welschinger (one of the organizers) of a
way to invariantly enumerate rational curves in two and three dimensions passing
through point constraints. In the same time a technique of tropical enumeration
was developed (G. Mikhalkin). It allows to enumerate real and complex curves
simultaneously which eventually amounts in the enumeration of certain graphs
matching given constraints and equipped with “complex” or “real” combinatorial
weights. Among arising key problems we mention (i) the understanding of real
tropical enumerative invariants and related ”cycles” in moduli spaces of tropical
curves, (ii) The lack of appropriate correspondence theorems for the Kontsevich
WDVV equation, computation of ψ-classes and some other problems of the com-
plex enumeration, which could indicate their possible real enumerative analogues,
(iii) the search for real enumerative invariants matching recently discovered real
tropical invariants of positive genus. Particularly, the last problem reduces to a
rigorous definition of the correction term to the Welschinger count, which is one
of the main problem of the area. Considerations coming from Physics support the
approach that includes enumeration of both type I and type II curves. In turn,
enumeration of type II curves lies outside of a well-established Symplectic geom-
etry approach of enumerating holomorphic curves with boundary on Lagrangian
submanifolds (open Gromov-Witten theory). From the physical point of view,
the real and complex enumerative geometry appears in topological quantum field
theories and topological string theory, mirror symmetry and open Gromov-Witten
theory.

Four survey lectures opened the workshop and presented the state of the art
in the topological aspects of real and complex enumerative geometry (O. Viro),
Lagrangian Floer theory as a symplectic side of the story (K. Ono), (p, q)-branes
in string theory with relations to tropical and enumerative geometry (A. Hanany),
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recent developments in the tropical enumerative geometry (I. Itenberg). The trop-
ical theory has been in the focus of the talks by E. Brugallé, A. Gathmann, K.
Shaw, I. Tyomkin. Among them we especially mention the contribution by E.
Brugallé, where the use of tropical modifications allowed to extend the tropical
techniques beyond the range of toric examples, and the results presented by A.
Gathmann, which resolve the lack of local non-invariance of tropical Welschinger
invariants for configurations with imaginary points. The latter talk surprisingly
resembles the approach to a correct definition of relative open Gromov-Witten in-
variants presented by R. Rasdeaconu. A common idea, which potentially can shed
light on the problem of counting real curves of higher genus (cf. the discussion
led by G. Mikhalkin), is to combine enumeration of real, resp. tropical curves of
different kinds which together constitute an invariant. Very interesting topological
ideas in the enumerative geometry have appeared in the talk by M. Polyak and
in the informal discussion led by M. Kazarian. The promising picture of physical
predictions in counting real holomorphic curves in Calabi-Yau three-folds was de-
veloped in the talk by D. Krefl, which also presented a physical intuition behind
the invariant count of real curves. The lectures by N. C. Leung and K. Fukaya
were devoted to the mirror symmetry of toric Calabi-Yau varieties, where the
counting of signed (pseudo)holomorphic discs with suitable Lagrangian boundary
conditions naturally enters the story. In its turn, the talk by M. Mariño linked the
mirror symmetry of toric Calabi-Yau with spectral curves and their tropical limits,
which opens a perspective application of tropical geometry. The algebra-geometric
theory of mirror symmetry was discussed in the talk by L. Katzarkov. The talk by
Y.-H. He exposed a wide physical picture involving quantum field theories, quiver
gauge theories, dimer models, leading to amoebas and the tropical curves as their
limits. The superpotentials describing interactions in the considered there field
theories appeared a subject of a special discussion led by J. Walcher. In its turn,
the complex-analytic point of view on amoebas and co-amoebas showed up in the
discussion led by M. Passare. The symplectic problematic in the lecture by V.
Shevchishin shares techniques and ideas with main problems of the workshop.

We believe that a very intensive and substantial exchange of a broad spectrum
of ideas during the workshop will really stimulate a further research in the main
discussed problems, which still are far from being completely settled.
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Enumeration of Tropical Curves in Tropical Surfaces . . . . . . . . . . . . . . . . . 1133

Marcos Mariño
Spectral curves and tropical geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
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Abstracts

Enumerative Real Algebraic Topology and its Encomplexing

Oleg Viro

Many classical invariants studied in algebraic topology are involved in solutions of
enumerative problems. For example, the linking number of two oriented circles in
the 3-space can be interpreted as the number of lines passing through a fixed point
and meeting the circles. The lines are counted with signs. In the talk many other
similar invariants and enumerative problems were considered. In these problems
the setup is mixed: on one hand, the initial objects are purely topological, like
the circles in the example above, on the other hand, the objects that are to be
counted (like the lines in the example above) belong to the algebraic geometry.
If the original objects are real algebraic varieties, then new opportunities related
to existence of their complexification emerge. This allows one to formulate new
problems which have similar formulations but admit a more robust solution. For
example, the interpretation of the Whitney number of a planar curve in terms of
the complexification of the curve (possible, if the curve is real algebraic and its
real part is zero homologous in its complexification) a C1-invariant turns into a
C0-invariant. This transition from invariants originating in the algebraic topology
to similar invariants of real algebraic varieties is called an encomplexing. In the
talk many similar examples were presented.

Lagrangian Floer Theory for Compact Toric Manifolds

Kaoru Ono

I gave an introductory talk on Floer thoery for Lagrangian intersections and ex-
plained some of my joint work with Kenji Fukaya, Yong-Geun Oh and Hiroshi
Ohta.

Firstly, we sketch Floer’s original construction. Let (X,ω) be a closed sym-
plectic manifold. For a pair (L0, L1) of Lagrangian submanifolds, which intersect
transversally, consider the free module C(L1, L0) generated by the intersection
points. Define the operator δ : C(L1, L0) → C(L1, L0), which shifts the degree by
+1 by counting isolated pseudo-holomorphic strips u : R× [0, 1] → X joining two
intersection points p± such that

u(R× {0}) ⊂ L0, u(R× {1}) ⊂ L1,

lim
τ→±∞

u(τ, t) = p±.

When L0 and L1 are Hamiltonian isotopic and π2(X,L0) = 0, Floer proved that
δ ◦ δ = 0 (with Z/2-coefficients), hence constructed what is now called Floer coho-
mology HF (L1, L0). Moreover, under the same assumption, he showed that Floer
cohomology is invariant under deformations L0 and L1 by distinct Hamiltonian
diffeomorphisms. In fact, HF (L1, L0) is isomorphic to the ordinary cohomology
of L0 (with Z/2-coefficients).
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Oh extended the construction to wider situation:L0 and L1 are monotone La-
grangian submanifolds with minimal Maslov number ≥ 3. (Later, if, in addition,
L1 is Hamiltonian isotopic to L0, he weakened the hypothesis that the minimal
Maslov number ≥ 3 to ≥ 2.)

However, the statement that δ ◦ δ = 0 fails to hold, in general. We presented
an easy example, in which it fails, and observed that such a defect is caused by
bubbling-off of pseudo-holomorphic discs with boundary on L0 or L1. Therefore we
were forced to study all pseudo-holomorphic discs systematically. Before proceed-
ing, we would like to mention that there are two kinds of bubbling-off phenomena.
One is bubbling-off of pseudo-holomorphic spheres and the other is bubbling-off of
pseudo-holomorphic discs. Using the virtual fundamental cycle/chain techinque,
e.g., the theory of Kuranishi structures, we can exclude the former possibility by
“perturbation by multi-valued sections”, since such phenomena occur in (formal)
real codimension 2. However, the bubbling-off phenomena of pseudo-holomorphic
discs occur in (formal) real codimension 1. Thus the virtual fundamental cy-
cle/chain technique cannot exclude such possibility, in general. When we use the
technique of multi-valued perturbations, we need signs, i.e., orientations of the
moduli spaces and works with Q (not Z/2 as in previous Floer’s and Oh’s works).

We compactify the moduli space of pseudo-holomorphic discs in the spirit of
stable maps due to Kontsevich. For each β ∈ H2(X,L;Z), we consider the moduli
space Mk+1(β) of bordered stable maps of genus 0 with k + 1-marked points
on the boundary, which is required connected. Using the evaluation maps evi :
Mk+1(β) → L, we consider the following operation on differential forms on L:

mk,β : (η1, . . . , ηk) 7→ ev0!(ev
∗
1η1 ∧ · · · ∧ ev∗kηk) for (β, k) 6= (0, 1).

The evaluation map ev0 may not be a submersion, but weakly submersive in the
sense of Kuranishi structure. Therefore the operation “integration along fibers”
makes sense. When (β, k) = (0, 1), the moduli space Mk+1(β) is empty, since the
automorphism group of a constant disc with two boundary marked points is not
finite. So we define the operation in this case separately:

m1,0 : η 7→ dη.

Let R be a commutative ring with the unit, e.g., Q, C. We introduce the
universal Novikov ring with the ground ring R.

Λnov =

{
∞∑

i=0

aiT
λieµi |ai ∈ R, λi ∈ R, ni ∈ Z, lim

i→∞
λi = ∞

}
.

We set the degree of T , resp. e, to 0, resp. 2. If we require all exponents
λi are non-negative, resp. positive, we obtain Λ0,nov, resp. Λ+,nov. Set mk =∑

β mk,βT
∫
β
ωeµ(β)/2. We extend them to coderivations m̂k on the bar complex

BΩ(L; Λ0,nov)[1] and write d̂ =
∑∞

k=0 m̂k. The stable map compactification of
the moduli spaces Mk+1(β) and (relative version of) Stokes’ formula imply that

d̂ ◦ d̂ = 0, i.e., the filtered A∞-relations.
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If m0 6= 0, we may not have m1 ◦ m1 = 0. If there exists Λ0-valued form b of
shifted degree 0 such that

m∗(e
b) = m0(1) +m1(b) +m2(b, b) + · · · = 0,

which is called the Maurer-Cartan equation, we can deform {mk} to {mb
k} such

that mb
1 ◦m

b
1 = 0. More generally, if there exists b such that

m∗(e
b) = m0(1) +m1(b) +m2(b, b) + · · · = C1L,

where C ∈ Λ+ and 1L the constant function 1 on L, we also find that mb
1 ◦ m

b
1 =

0. On the space of such b’s, weak solutions of the Maurer-Cartan equation, we
consider the gauge equivalence relation and denote by Mweak(L). We define the
potential function PO : Mweak(L) → Λ+ by

m∗(e
b) = PO(b)1L.

(It is more appropriate to write the RHS as PO(b)e1L, where e is the formal
generator of Λnov.)

We can further deform the filtered A∞-algebra structure using a cycle b in X
with coefficients in Λ+ (bulk deformations). For this purpose, we use the moduli
space of bordered stable maps with interior marked points in addition to the
boundary marked points and cut out the moduli space by the constraints that
the interior marked points are mapped to b (we need to take care of coefficient in
Λ+, when we cook up the operations mb

k). We also consider the Maurer-Cartan
equation on the filtered A∞-algebra deformed by b and obtain Mdef,weak(L) and
the potential function PO on it.

We have the following result, which covers Oh’s discovery that Floer complex
is defined for monotone L and its Hamiltonian deformation if the minimal Maslov
number of L is at least 2.

Theorem. Let (L0, L1) be a relative spin pair of Lagrangian submanifolds, which
intersects cleanly, e.g., transversally. Suppose that there is a cycle b in X with
coefficients in Λ+ such that bi ∈ Mb,weak(Li), i = 0, 1 with POL0

(b, b0) =

POL1
(b, b1). Then Floer’s operator δ is δbb0,b1 such that

δbb0,b1 ◦ δ
b

b0,b1 = 0.

The resulting cohomology group HFb((L1, b1), (L0, b0); Λnov) is invariant under
Hamiltonian deformations of L0 and L1.

When L0 = L1, there is a spectral sequence converging toHFb((L, b), (L, b); Λ0,nov)
with E2-term H(L; Λ0,nov).

When POL0
(b, b0) 6= POL1

(b, b1), we find that

δbb0,b1 ◦ δ
b

b0,b1 = POL0
(b, b0)−POL1

(bb1).

In general, computation is difficult. However, in the case of Lagrangian torus
fibers, i,e,, the inverse image of a point by the moment map, in a compact toric
manifold, we can obtain satisfactory information from the leading order terms of
the potential function, which I planned to explain, but did not have time in the
talk.
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(p, q)-branes

Amihay Hanany

The significance of branes in string theory became very clear by the mid 90’s.
One can observe a significant change of attention in the line of research of string
theorist aiming most of the focus on various aspects of brane physics. One natural
direction was the study of bound states of branes. It is pointed out that strings in
Type IIB superstring theory can form bound states of (p, q) type. The description
goes as follows. There are two 2-form gauge fields in Type IIB, traditionally named
NS 2-form and the RR 2-form. The names originate from the natural construction
as a perturbative string theory but the difference between them is just an artifact
of the construction. One should really think of these two 2-forms as forming a
doublet of some underlying SL(2) symmetry. Under each of such 2-form there is
a conserved electric charge and a conserved magnetic charge. Strings are said to
carry the electric charge, while 5 branes are said to carry the magnetic charge.
The bound states are formed by combining branes of the same dimension in such
a way that they carry charges under both 2-form gauge fields. We say that a (p, q)
string carries an electric charge p under the NS 2-form and an electric charge q
under the RR 2-form. Similarly, a (p, q) 5-brane carries a magnetic charge p under
the RR 2-form and a magnetic charge q under the NS 2-form.

An important ingredient into the construction of (p, q) webs is played by the
notion of ”branes ending on branes”. It is said that a brane A can end on brane
B, if the boundary of brane A carries a charge with respect to the gauge field that
lives on the world volume of brane B. A typical example of a brane ending on
brane is the case of a Dp brane that ends on a NS5 brane. The Dp brane is a p+1-
dimensional object, standing for p space and 1 time directions, and its boundary
is a (p− 1) + 1-dimensional object. When it ends on a NS5 brane, the boundary
becomes an object which spans p− 1 space directions inside 5, and therefore it is
a codimension 6− p object on the world volume of the NS5 brane, which is 5 + 1
dimensional. For example, a D1 brane which ends on a NS5 brane has a boundary
which is a codimension 5 object, namely a particle which propagates in 5 + 1
dimensions. Similarly, a D5 brane which ends on a NS5 brane is a codimension 1
object. In physics, we tend to call such objects in different names, depending on
the codimension. The names which are given refer typically to the first time such
an object appears in physical phenomena. Concretely, one calls a domain wall,
vortex, monopole, instanton to a codimension 1, 2, 3, 4 object, respectively. We
are interested in the domain wall case, as this is going to form the (p, q) web.

Consider a D5 brane that ends on a NS5 brane. It forms a domain wall on the
world volume of the NS5 brane. Being codimension 1, it divides the world volume
of the NS5 brane into 2 regions. If we sketch the world volume of the NS5 brane
as a vertical line, then the two regions are one above and one below this wall,
hence the name ”domain wall”, as it divides into domains. As in a traditional
electrostatic problem, there is an elecric field that jumps across the domain wall,
and the value of the jump is equal to the charge carried by the wall. Say if the
electric field below a single D5 brane is 0, then the electric field above it is 1.



Real Enumerative Questions in Complex and Tropical Geometry 1127

It is convenient to think of a (p, q) 5-brane as a collection of q NS5 branes that
carry an electric field which is equal to p. This is an alternative way of thinking
about a (p, q) 5-brane. With this information at hand, we can form the simplest
(p, q) web that consists of a D5 brane that ends on a NS5 brane. Below the end
of the D5 brane we have a (0, 1) brane and above it we have a (1, 1) brane which
corresponds to a NS5 brane that carries one unit of electric field. We can also
view this configuration as an intersection of 3 types of branes: The D5 brane or
a (1, 0) brane, with the NS5 or (0, 1) brane, together with the (1, 1) brane. All
meet such that the total charge at the vertex of intersection is equal to 0. We thus
learn, that at the intersection of branes there is a charge conservation which states
that if all orientations of the branes are chosen such that they are all incoming,
say a collection of branes with charges (pi, qi), then the sum is equal to zero,∑

i pi = sumiqi = 0.
Supersymmetry plays a crucial role in string theory. It simplifies the discussion

while keeps the results exact, protecting from possible quantum corrections and
other complicated issues which arise upon quantization of the system. For the case
at hand, supersymmetry implies that at a special value of the Type IIB scalar,
τ = i, the (p, q) branes are oriented in a slope which is proportional to p : q. Thus
we arrive at the formulation of (p, q) webs as the collection of all possible (p, q)
5-branes that meet at vertices with charge conservation and are oriented in space
according to the slope condition. This web is well known in tropical geometry as
the tropical curve.

The first use of (p, q) webs of 5 branes was in the context of (4+1)-dimensional
gauge theories as described in detail in [1, 2]. One can form a (p, q) web of genus g
with e external legs, which corresponds to a gauge theory of rank g and a collection
of parameters equal to e − 3. There are two types of deformations - those which
preserve the form on the external legs and do not move them, and those which do
move the external legs. They are called local and global deformations. In the gauge
theory this distinction is important and corresponds to parameters that control
the strength of interactions and kinetic terms in the lagrangian, or to vacuum
expectation values of scalar fields.

The typical 5-dimension theory is described by an object called quiver, which
turns us into the link between (p, q) webs and quiver gauge theories. The quiver
is constructed out of nodes, say d of them, which are connected by lines. There
are two types of nodes. They are called gauged and ungauged, or local and global.
The difference between them refers to the length of the corresponding segment in
the (p, q) web. If the length is finite, then the quiver node is gauged or local. If the
length is infinite, then the corresponding node is global or ungauged. A typical
problem in quiver gauge theory is to find the space of all invariants with respect
to the local gauge groups, while keeping all objects which transform covariantly
under the global groups. A quiver which seems very relevant to the count of curves
on P 2 is the line quiver that starts with d−1 gauged nodes, with ranks that admit
an increasing order starting from 1 up to d − 1, together with another ungauged
node of rank d. It appears that singularities on the moduli space of this quiver
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reproduces the Gromov-Witten invariants on P 2. This statement requires further
study and it is our hope to get back to it in the near future.
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Tropical aspects of enumerative geometry

Ilia Itenberg

The talk is an attempt to make a brief overview of the tropical approach to real
and complex enumerative questions. The main accent is put on applications of
tropical geometry in real enumerative geometry.

1. Mikhalkin’s correspondence theorem. Passing to the tropical limit for
counting holomorphic curves and holomorphic disks was suggested by M. Kont-
sevich and K. Fukaya in 2002. Then, the tropical approach to enumerative ques-
tions was started by G. Mikhalkin [22, 23] who proved in 2002 the correspondence
theorem concerning enumeration of curves in toric surfaces. We formulate here
Mikhalkin’s correspondence theorem only in the case of the projective plane. For
any positive integer d and any non-negative integer g, denote by Nd(g) the num-
ber of irreducible curves of degree d and genus g which pass through 3d − 1 + g
given points in general position in the complex projective plane. Mikhalkin’s cor-
respondence theorem states in particular that the number of irreducible tropical
curves (counted with appropriate multiplicities) of degree d and genus g which pass
through 3d−1+g points in general position in the tropical projective plane is equal
to Nd(g).

In the talk, we mention various versions of this theorem which are due to
G. Mikhalkin [22, 23, 24, 26, 27], E. Shustin [32, 33, 34], T. Nishinou - B. Siebert
[28], I. Tyomkin [35], and B. Parker [29]. Mikhalkin’s correspondence theorem and
its modifications allow one to calculate Gromov-Witten type invariants in many
situations. Expanding the tropical correspondence is an active topic of the current
research.

2. Tropical calculation of Welschinger invariants. The Welschinger in-
variants [36, 37] can be seen as real analogs of genus zero Gromov-Witten invariants
and are designed to bound from below the number of real rational curves passing
through a given generic real collection of points on a real rational surface. In some
cases these invariants can be calculated using the tropical approach (Mikhalkin’s
correspondence theorem or its modifications). In certain situations (for example,
in the case of generic collections of real points on a real toric Del Pezzo surface
with non-empty real part and in the case of the plane blown up at 4, 5 or 6 real
points in general position), the tropical approach leads to a proof of positivity of
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Welschinger invariants and their logarithmic asymptotic equivalence with genus
zero Gromov-Witten invariants [5, 15, 16, 17, 19, 20].

The tropical approach can be used as well to calculate Welschinger invariants of
P3 (see [6]). Other applications in real enumerative geometry include, for example,
the study of sharpness of known upper and lower bounds for the number of real
solutions in various enumerative problems [30, 7, 3, 4].

3. Tropical enumerative problems. Tropical enumerative geometry was
initiated by G. Mikhalkin [22, 23] who proposed the so-called lattice paths algorithm
for enumeration of tropical curves. Other important steps in the development of
tropical enumerative geometry are the results on

• tropical moduli spaces (G. Mikhalkin [24, 25, 26], A. Gathmann - M. Ker-
ber - H. Markwig [10], M. Herold [14]),

• tropical intersection theory (G. Mikhalkin [24, 26], L. Allerman - J. Rau
[1], K. Shaw [31], G. François - J. Rau [9]),

• recursive formulas for tropical invariants (A. Gathmann - H. Markwig
[11, 12], I. Itenberg - V. Kharlamov - E. Shustin [18, 19], A. Arroyo -
E. Brugallé - L. Lopez de Medrano [2]).

We discuss here in more details certain results concerning recursive formulas.
Several recursive formulas known is the complex algebraic world (Kontsevich’s for-
mula [21] for genus zero Gromov-Witten invariants of P2 and Caporaso-Harris for-
mula [8] for relative Gromov-Witten invariants of P2) were translated to the tropi-
cal language by A. Gathmann and H. Markwig (see [11, 12]). A real version of the
Caporaso-Harris formula in the tropical setting was proposed in [18]. The formula
involves a series of relative tropical Welschinger-type invariants that can be seen as
real tropical analogs of relative Gromov-Witten invariants and gives a possibility to
calculate purely real Welschinger invariants (i.e., Welschinger invariants in the sit-
uation where all the chosen points are real) of toric Del Pezzo surfaces equipped the
standard real structure. A similar formula was proved by A. Arroyo, E. Brugallé,
and L. Lopez de Medrano [2] in the case of Welschinger invariants counting real
rational curves through real configurations containing pairs of imaginary points.
A combinatorial proof of the invariance of the tropical Welschinger numbers ap-
pearing in [2] was proposed by A. Gathmann, H. Markwig, and F. Schroeter [13]
who introduced for this purpose the concept of broccoli curves.

The technique of floor diagrams for enumeration of tropical objects was de-
veloped by E. Brugallé and G. Mikhalkin [6]. This technique is very close to
the Caporaso-Harris approach and is the most efficient known way to calculate
Gromov-Witten type invariants and Welschinger invariants in the tropical world.
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SYZ transformations for toric varieties

Naichung Conan Leung

In physics, the string theory on a space X can be loosely regarded as the quan-
tum mechanics on the space of loops in X . There are two different sectors of
string theory, called the A-model and B-model. Mathematically, A- and B-models
correspond to symplectic and complex geometries respectively. Mirror symmetry
asserts that these two seemingly very different geometries are equivalent to each
other, but on different manifolds. Kontsevich [3] formulates mirror symmetry
as an equivalence between categories. More precisely, Kontsevich’s homological
mirror symmetry (HMS) conjecture says that the (derived) Fukaya category of
Lagrangians in X is equivalent to the derived category of coherent sheaves on Y ,
and vice versa.

The important question remains as to why such an amazing duality exists. Is
there an explicit transformation that interchanges these two kinds of geometries?

In 1996, Strominger-Yau-Zaslow (SYZ) [7] has a ground breaking proposal
which says that mirror symmetry is a form of Fourier transformation, called T-
duality. Namely, when X and Y are mirror Calabi-Yau manifolds, then

(i) X should admit a special Lagrangian T n-fibration and Y is the dual torus
fibration, and

(ii) there is a fiberwise Fourier transformation which interchanges the symplec-
tic geometry (resp. complex geometry) of X with the complex geometry
(resp. symplectic geometry) of Y .

In this talk, I will give a heuristic reasoning for the SYZ proposal. This proposal
has been tested successfully [6] in the semi-flat setting. For instance when the
symplectic manifold X is given as X = T ∗B/Λ∗, where Λ is a fiberwise lattice in
the tangent bundle TB, with canonical symplectic form ωX =

∑
j dx

j ∧ dyj . Its

mirror Y is given by Y = TB/Λ with canonical complex coordinate z1, · · · , zn

with zj = xj + iyj and holomorphic volume form ΩY =
∏

j

(
dxj + idyj

)
. Then

ΩY =

∫

T∗

eωX · ei
∑

j dyj∧dyj , eωX =

∫

T

ΩY · e−i
∑

j dyj∧dyj .

This can be naturally interpreted as a Fourier-Mukai transformation. We will
combine this with the Fourier transformation to define the SYZ transformaton
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F which transforms differential forms on T × Λ to those on T ∗ × Λ∗ on each
Lagrangian fiber. Notice that T × Λ is the space of geodesic (or affine) loops in
T inside the loop space of T , i.e. T × Λ = LminT ⊂ LT , and the loop space
certainly plays important roles in string theory. We are going to describe how
such a transformation FSY Z , called SYZ transformation, interchanges symplectic
and complex geometries, with quantum corrections included, in the toric case.

When X∆ is a Fano toric variety with the open orbit X ≃ (C×)
n
. Symplecti-

cally, X = T ∗B/Λ∗ and we denote by X̃ = X × Λ∗ ⊂ LX∆ the space of fiberwise

geodesics/affine loops in X∆. On X̃, we consider ω̃X = ωX + Ψ, where Ψ is
a generating function which counts holomorphic disks with boundaries lying on
fiber Lagrangians. In [2], we show that (i) The SYZ transformation carries the

corrected symplectic structure on X̃ to the holomorphic volume form of the pair
(Y,W ): FSY Z

(
eωX+Ψ

)
= eWΩ. (ii) FSY Z : QH∗ (X∆) → Jac (W ) gives an iso-

morphism between the quantum cohomology of X∆ with the Jacobian ring of the
superpotentialW . These are proven by describing holomorphic spheres as suitable
gluing of holomorphic disks.

Next we look at toric Calabi-Yau manifolds, say X∆ = KPn−1. Instead of the
toric fibration, we consider another Lagrangian fibration on X∆ which is con-
structed by Gross and Goldstein independently. The affine structure on the base
B is the upper half space but there are interior singular points lying on a hyper-
plane called the wall. As a point moves across the wall, the (virtual) number of
holomophic disks bounded by the corresponding Lagrangian fiber jumps. This is
called the wall-crossing phenomenon, as have been studied by Auroux.

Because of the presence of the wall in B, one needs to apply SYZ dual fibration
construction on each connected component in the complement of the wall, with
quantum corrections included. Then the wall-crossing formula let us glue the
resulting pieces together to obtain a complex manifold Y (see Chan-Lau-Leung [1]
for details). For instance, in the case of X = KP2 , we have

Y =
{
(z, w, u, v) ∈

(
C×

)2
× C2 : uv = h (q) + z + w +

q

zw

}
,

which belongs to the mirror family as constructed by Hori-Iqbal-Vafa from physical
considerations.

The SYZ construction naturally gives us a map from the symplectic moduli
space of X to the complex moduli space of Y . We call this the SYZ map fSYZ.
In [1], we indicate that the SYZ map coincides with the mirror map fmirror for
certain toric Calabi-Yau threefolds of the form KZ . This explains the mysterious
integrality property of the mirror map: its coefficients come from the counting of
holomorphic disks with Lagrangian fibers boundary conditions.

The main step in proving these results is to compute certain open Gromov-
Witten invariants in an obstructed situation. In this talk, I will explain how to
relate these open GW invariants with closed GW invariants and how to compute
them via algebraic geometry.
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Enumeration of Tropical Curves in Tropical Surfaces

Erwan Brugallé

The goal of this talk is to discuss tropical enumerative geometry of non-singular
tropical surfaces, and its relation to real and complex enumerative geometry.

Tropical enumerative geometry in R2 has been developed by G. Mikhalkin in
[Mik05]. In this celebrated paper, Mikhalkin proved a Correspondence between
tropical curves in R2 of a given genus and Newton polygon passing through a
generic configuration of (the expected number of) points on one side, and complex
and real algebraic curves in (C∗)2 of the same genus and Newton polygon passing
through some special configuration of points on the other side.

In the enumeration of tropical curves in a general non-singular tropical surface
X , one sees immediately that tropical (i.e. purely combinatorial) enumerative
problems can have a space of solutions of the wrong dimension, even in very
simple cases. The reason for that is that some combinatorial types of tropical
curves in X have a dimension bigger than the expected one (more precisely, their
image by the evaluation map has dimension bigger than the expected one). Hence,
it is necessary to find combinatorial properties fulfilled by approximable tropical
curves in X , in addition to the balancing condition. In collaboration with G.
Mikhalkin ([BMb]) on one hand and K. Shaw ([BS]) on the other hand, I obtained
some local combinatorial obstructions to such an approximation. The strategy to
obtain these obstructions is to use tropical intersection theory and its relation to
classical intersection theory.

These local obstructions are enough to reduce the dimension of the moduli
space of tropical curves to the expected one in some simple cases. Namely, when
X is R2 modified along a tropical non-singular rational curve. As an application,
I managed to work out tropically the deformation of the Hirzebruch surface Σn+2

to Σn and to relate their enumerative invariants (joint with H. Markwig, [BMa]),
and to enumerate real and complex algebraic curves in CP 2 by specializing the
points of the configuration to a conic ([Bru]).
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In this latter work, working in the standard tropical projective plane modified
along a non-singular conic, I found again some results from [Wel] and I computed
enumerative invariants of the projective plane blown up in 6 points lying on a
conic. Using the work of R. Vakil ([Vak00]), I could then deduce Gromov-Witten
and Welschinger invariants of CP 2 blown up in 6 generic real points.

Example. Let us denote by S the projective plane blown up at 6 real points, by
L the pullback of a line not passing through the blown up points, by E1, . . . , E6 six
disjoint (−1)-curves disjoint form L, and by WS(6, 2, 2, 2, 2, 2, 2) the purely real

Welschinger invariant of S of class 6L− 2
∑6

i=1Ei. Then

WS(6, 2, 2, 2, 2, 2, 2) = 1000.

Note that purely Weslchinger invariants (i.e. for configurations of real points)
of the surface S were also computed independently and by other methods by I.
Itenberg, V. Khalramov and E. Shustin.
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Spectral curves and tropical geometry

Marcos Mariño

There are two contexts in modern mathematical physics in which algebraic curves
play an important role:

(1) In local mirror symmetry, the mirror to a toric Calabi–Yau geometry is
encoded in an algebraic curve H(U, V ) = 0 in C∗ × C∗.

(2) In random matrix theory, the large N limit is encoded in a curveH(x, y) =
0 usually called the spectral curve.

These two contexts are not unrelated, since the spectral curve of some matrix
models is a mirror curve. For example, the Chern–Simons matrix model introduced
in [3] has as its large N limit the mirror curve to the resolved conifold

O(−1)⊕O(−1) → P1.

In recent years, it has been found that some quantities in U(N) supersymmet-
ric quantum field theories reduce to matrix integrals. The large N limit of these
models is encoded sometimes in spectral curves closely related to the mirror curves



Real Enumerative Questions in Complex and Tropical Geometry 1135

appearing in local mirror symmetry. For example, the spectral curve of the matrix
integral describing the partition function of ABJM theory on S3 [1] (which a par-
ticular example of supersymmetric Chern–Simons-matter theories) is the mirror
curve to local P1 × P1.

A natural question is then what is the meaning of the tropical limit of these
curves. In the case of local mirror symmetry, it seems to be a not very interesting
limit, since strictly speaking the contribution of non-trivial holomorphic maps
goes to zero. However, when the spectral curve is related to the large N limit of
a Chern–Simons-matter theory, this limit is nothing but the strong coupling limit,
and many results coming from tropical geometry can be used to derive interesting
results for these theories [2].
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Relative Open Gromov-Witten Invariants

Rareş Răsdeaconu

(joint work with Jake Solomon)

We introduce a theory of relative open Gromov-Witten invariants. This theory
counts J−holomorphic disks with Lagrangian boundary in symplectic 4-manifolds
endowed with an anti-symplectic involution with non-empty fixed locus. The disks
are subject to tangency conditions with an invariant smooth divisor, also with non-
empty fixed locus.

The complex enumerative geometry benefitted in the 90’s from the new perspec-
tive of the Gromov-Witten theory and many classical old problems have been ele-
gantly solved. Meanwhile, in the real enumerative geometry many basic questions
were wide open. For example, while the number of complex rational plane curves
was found in arbitrary degree [KM94], the existence of a real rational plane quartic
through 11 generic real points was still an open problem. In 2003, Welschinger
[W05] introduced in the mainstream the notion of real symplectic manifolds and his
numerical invariants in dimension four and six, counting real rational curves with
signs. His theory developed in several directions. In one direction, the Welschinger
invariants were interpreted in tropical geometry and the existence question of plane
real rational curves was given a positive answer in arbitrary degree. A second ap-
proach, via the symplectic field theory, was undertaken by Welschinger [W07] who
provided precise computations for some of his invariants. The second author [S06]
interpreted the Welschinger invariants as open Gromov-Witten invariants, and ex-
tended their definition to six-dimensional real Calabi-Yau manifolds. Together
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with Pandharipande and Walcher, he proved mirror symmetry for the real quin-
tic threefold [PSW08]. Also, the second author found an analog of the WDVV
equation in open Gromov-Witten theory [S]. In particular, this equation leads to
recursive formulae computing the Welschinger invariants for plane real rational
curves.

Despite the recent advances in the study of the real enumerative invariants,
many foundational aspects are still to be settled. However, the interpretation of
the Welschinger’s invariants as open Gromov-Witten invariants suggests a par-
allelism with the Gromov-Witten theory which nowadays is considerably more
developed. We are trying to fill some of the gaps by developing a theory of relative
open Gromov-Witten invariants for four-dimensional real symplectic manifolds, in
analogy with the relative Gromov-Witten theory [IP03, LR01]. The goal is to
extract numerical invariants responsible for the counting of pseudo-holomorphic
disks subject to tangency conditions with respect to a smooth real symplectic divi-
sor. The tropical analog of such invariants has already been found in the tropical
setting [IKS09] together with an appropriate Caporaso-Harris type formula.

To introduce our results, let (X,ω, φ) be real symplectic 4-manifold. That is
X is a closed differentiable 4−manifold endowed with a non-degenerate 2-form ω
with dω = 0, and an involution φ on X satisfying φ∗ω = −ω. We assume RX :=
Fix(φ) 6= ∅. Let V ⊂ X be a smooth symplectic divisor, invariant under the real
structure φ, such RV := V

⋂
RX 6= ∅. Fix d ∈ H2(X,RX ;Z) such that d = −φ∗d.

We want to define open Gromov-Witten-type invariants of X with respect to V,
counting (with signs) pseudo-holomorphic disks of degree d with boundary in RX.
These disks are subject to fixed/moving, boundary/interior tangency conditions
(TC) with V. We impose that all of the boundary contact points of the disks with
the divisor have odd multiplicities.

We define the moduli space of relative disks as a subspace of the moduli space of
pseudo-holomorphic disk maps with lagrangian boundary conditions. This is done
by imposing the vanishing of the normal jets at all of the contact points of the
disks with V. The Gromov-compactification of this moduli space comes naturally
equipped with a total evaluation map at all of the marked points, including the
fixed tangency points. One would like to define relative numbers as the degree of
this evaluation map, under a dimension condition.

There are two major difficulties to overcome in defining such invariants which do
not occur in the more familiar Gromov-Witten theory. In general, the spaces in-
volved are not orientable. The second big problem consists in overcoming the
presence of the codimension one boundary strata introduced in the Gromov-
compactification of the moduli spaces of relative stable maps. This issue occurs
when trying to prove the independence of the numbers defined of the choices made.

The orientation issue is dealt with by providing a canonical relative orientation
for the total evaluation map. Recall that a relative orientation of a map f :M → N
is an isomorphism TM ≃ f∗TN. The relative numbers are defined as the degree
of the evaluation map with respect to its relative orientation.
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The independence of the numbers defined above of the choices made usually re-
lies on Stokes’ theorem. For moduli spaces of disks, this argument must be treated
carefully due to the presence of codimension one strata. In the open Gromov-
Witten theory, this issue is overcome by using the flipping procedure [S06] which
sends one component of a multi-disk map to its conjugate and leaving the other
components unchanged. This procedure shows that the codimension one strata of
the moduli space come in pairs of opposite relative orientations. The new phenom-
enon which occurs in our relative setting is that the flipping procedure preserves
the canonical relative orientation on some codimension one strata. Since the full
cancelling of the codimension one phenomena does not occur, the signed counting
depends on the choices made. A different approach to cancelling is necessary.

For each boundary surviving the flipping procedure, we identify a suitable carte-
sian product of moduli spaces of relative disks equipped with relative orientations
with respect to an evaluation map (and hence an associated relative number)
having the same boundary, but with the reversed relative orientation as one of
the boundaries. This suggested a combinatorial approach based on gluing vari-
ous moduli spaces along appropriate codimension one strata. We define a finite
connected graph GTC = (V , E) with a distinguished vertex v0 ∈ V . The root v0

represents the moduli space of relative maps with the tangency conditions (TC).
The vertices v ∈ V represent the cartesian products of moduli spaces discussed,
and the edges e ∈ E represent the codimension one phenomenon cancelled. The
graph GTC is inductively defined. Its main property is that the valence of each
vertex is the number of the surviving codimension one strata of the corresponding
moduli space. Moreover, to each vertex we can associate a relative number nv ∈ Z,
and a weight w(v) ∈ Q. The main result is

Theorem [RS10a]. The numbers

RTC =
∑

v∈V

w(v)nv

are independent of the choices made. Moreover, RTC are integers.
The proof relies on gluing results which will appear in our joint work [RS10b]. The
result extends the relative invariants introduced by Welschinger [W06].

In our talk, we described how this graph is constructed for some interesting
cases. The first one is the case when there are no tangency conditions imposed,
and we recover the original Welschinger invariants. In this case, the graph is linear.
In the second case, we impose a third order boundary moving tangency. We will
use this example to illustrate the difficulties in constructing the graph in general.
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Degenerations and Wall Crossings

Ludmil Katzarkov

(joint work with C. Diemer and G. Kerr)

Homologocal Mirror Symmetry and its connection with Hodge theory has been
studied by many researchers - see references in [KKP]. In this paper we bring
this connection to a new prospective - the prospective of degenerations. It goes
back to an approach by B. Moishezon and M. Teicher based on so called braid
factorizations. A lot of work in this direction was done by Auroux, Donaldson,
Yotov and the author - see [ADKY].

In this talk we connect braid factorizations with invariants of categories. Com-
plete details will appear in [DKK] - we outline a program.

We employ the following principle. We start with a manifold X (Fano, CY,
general type) embedded in a toric variety Y . All toric degenerations of Y are
parameterized by stack Z with a discriminant loci D. Connecting two (or more)
degeneration by a path or a simplex in Z we get a master space of degenerations.
To such a master space we associate a “master space of categories”. The end
points of the corresponding simplex relate to categories obtained via birational
(cluster) transformations. These “master spaces” produce relations in the group
of autoequivalences and as a result ghost sequences and generators - see e.g. [BFK].

We summarize our findings in the following:

Theorem. The combinatorics of Z \D determines spectra of the category.
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In particular this leads to the fact that for Riemann surface C

Spec(Fuk(C)) = 1, ...., 4g .

We also formulate two conjectures:

Conjecture 1. The rational homotopy type of Z \D determines gap of spectra
of the category.

Conjecture 2. The “big” loops in π1(Z \ D) determine wall-crossings for the
category.
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Broccoli curves and the tropical invariance of Welschinger numbers

Andreas Gathmann

(joint work with Hannah Markwig and Franziska Schroeter)

Welschinger invariants of real toric unnodal Del Pezzo surfaces count real rational
curves belonging to an ample linear system D and passing through a generic
conjugation invariant set P of −KΣ ·D − 1 points, weighted with ±1, depending
on the nodes of the curve. It was shown in [Wel03, Wel05] that these numbers
are invariant, i.e. do not depend on the choice of P . They can be computed via
tropical geometry: one can define a certain count of tropical curves and prove a
Correspondence Theorem stating that this tropical count equals the Welschinger
invariant [Mik05, Shu06].

It follows from the Correspondence Theorem and the fact that Welschinger
invariants are independent of the point conditions that the corresponding tropical
count is also invariant of the chosen points.

Still, it is interesting to find an argument within tropical geometry that proves
the invariance of the tropical numbers. For the case when P consists of only real
points, such a statement follows easily since the corresponding tropical count can
be shown to be locally invariant, i.e. invariant around a codimension-1 cone of
the corresponding moduli space of curves. In the general case however this is no
longer true, and thus there was no known tropical proof for the (global) invariance
of the tropical count. Even worse, if we try to generalize the tropical count to
relative numbers, i.e. to curves with ends of higher weight, then these numbers are
no longer invariant.
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The goal of this talk is to introduce broccoli curves, a technique to prove the
invariance of tropical Welschinger numbers for real and complex conjugate points
entirely within tropical geometry. As an additional result this will allow us to con-
struct corresponding tropical invariants in the relative setting (or more generally
for any choice of directions for the ends of the curve). Using this result, we can
then establish a Caporaso-Harris formula for rational curves in a much simpler
way than in [ABLdM10].

The key idea to achieve this is to modify (and in fact also simplify) the class of
tropical curves that we count in order to obtain the invariants. This modification
is small enough so that the (weighted) number of these curves through given points
remains the same in the toric Del Pezzo case, but big enough so that their count
becomes locally invariant in the moduli space.

Let us explain this modification in more detail. For this it is important to
distinguish between odd and even edges of a tropical curve, i.e. edges whose weight
is odd resp. even. In the picture below we will draw odd edges as thin lines and
even edges as thick lines. Moreover, we will draw real points as thin dots and
complex points (i.e. those corresponding to a pair of complex conjugate points in
the algebraic case) as thick dots.

The tropical curves that are usually counted to obtain the Welschinger invari-
ants — we will call them Welschinger curves — then have the property that each
connected component of even edges is connected to the rest of the curve at exactly
one point (we can think of such a component as an end tree). Moreover, real
points cannot lie on end trees, and each complex point is either on an end tree or
on a vertex in the odd part of the curve [Shu06]. Below on the left we have drawn
a typical (schematic) picture of such a Welschinger curve.

A Welschinger curve A broccoli curve

We now change this condition slightly to obtain a different class of curves that
we call broccoli curves: each connected component of even edges can now be
connected to the rest of the curve at several points, of which exactly one is a 3-
valent vertex without marking as before (the “broccoli stem”), and the remaining
ones are complex points (the “broccoli florets”). The even part of the curve (the
“broccoli part”) may not contain any points in its interior, whereas away from this



Real Enumerative Questions in Complex and Tropical Geometry 1141

part we can have real points on edges and complex points on vertices as before.
The picture above on the right shows a typical schematic example of a broccoli
curve. Note that, in contrast to Welschinger curves, complex points are always on
vertices in broccoli curves.

Broccoli curves have the advantage that their count (with suitably defined mul-
tiplicities) is locally invariant in the moduli space, similarly to the situation men-
tioned above when we count complex curves or Welschinger curves through only
real points. Hence counting these curves we obtain well-defined broccoli invari-
ants — even for curves with directions of the ends for which the corresponding
Welschinger count would not be invariant of the position of the points.

In addition, we show that in the toric Del Pezzo case broccoli invariants equal
Welschinger numbers, thereby giving a new and entirely tropical proof of the
invariance of Welschinger numbers. We prove this by constructing certain bridges
between broccoli curves and Welschinger curves which show that their numbers
must be equal.

It would certainly be very interesting to see if one could prove a Correspondence
Theorem for broccoli curves that relates these tropical curves directly to certain
real algebraic ones. So far there is no such statement known; in particular there
is no algebraic counterpart to broccoli invariants for directions of the ends of the
curves when the corresponding Welschinger number is not an invariant.
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Real curve counting via topological strings

Daniel Krefl

(joint work with Johannes Walcher)

As is by now well known, topological string theory constitutes a very powerful
machinery to make predictions about enumerative questions in complex geometry.
This is so because the closed topological string amplitudes F (g) are, mathemati-
cally, generating functions for the number of (stable) holomorphic maps

f : Σ(g) → X ,

where Σ(g) denotes a genus g Riemannian surface (the world-sheet of the string)
and X the target space, a Calabi-Yau 3-fold. Hence, the (closed) topological string
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computes Gromov-Witten invariants of X . Physicists have developed powerful
techniques to explicitly calculate the amplitudes F (g) for given X , allowing them
to make many non-trivial enumerative predictions. The most notably machineries
are the holomorphic anomaly [1] and the topological vertex [2].

Similarly, the open topological string amplitudes F (g,h) are generating functions
for the number of maps

f : Σ(g,h) → (X,Li) ,

of a genus g Riemannian surface Σ(g,h) with h boundary components into the
target space X , where the boundaries of the surface map onto special Lagrangian
3-cycles Li ⊂ X (for simplicitly, we only consider a single L in the following).
Physically, such 3-cycles Li are important because open strings can end on them,
thereby defining non-perturbative objects called D-branes wrapped on Li. Along
the known L’s, there is one general class which shows intriguing features. Namely,
the class of L’s defined by the fixed-point locus of an anti-holomorphic involution
I : X → X . For example, for the quintic (at the Fermat point) we can find a
L ∼= RP3, and ask (at tree-level, i.e., g = 0, h = 1) the real enumerative question of
how many maps of disks at given degree ending on the real locus exist. Based on an
open string (or real) generalization of mirror symmetry, a first prediction has been
put forward in [3] and latter verified and discussed in [4]. Similar predictions have
been made for the other three 1-parameter Calabi-Yau hypersurfaces in (weighted)
projective space in [5, 6].

An implicit result of these works was that disks of even degree do not contribute.
An explanation was latter offered in [7], where the notion of ‘topological tadpole
cancellation’ was introduced. Physically, tadpole cancellation refers to the fact
that a D-brane carries a charge and the total charge with compact support has
to cancel. The for the cancellation needed opposite charges are provided by O-
planes, which arise due to an orientifold projection. Orientifold projection refers
to modding out the theory by the simoultaneous action of an anti-holomorphic
involution σ : Σ(g) → Σ(g) on the world-sheet and an anti-holomorphic space-time
involution I. Hence, we have not only a D-brane on our L defined via I, but also an
O-plane, which together form a chargeless object, sometimes called an O0-plane.
But this indicates that we should consider in our open topological string theory,
and hence also in our counting of maps, all real structures, that is, we should count
maps f which are equivariant with respect to the action of σ and I, and sum over
the real structures of the world-sheet. Hence, the well-defined counting problem
is actually the sum of maps

fχ : Σ(χ) → (X/I,L) ,

with fixed χ. Here Σ(χ) denotes a Riemannian surface with Euler number χ.
In particular, Σ(χ) may be unoriented (that is, has cross-caps). As before, the
boundaries are required to end on L. At tree-level, this means that we have to
take the sum of disks and cross-caps. Mathematically, this incorporates that as
we vary the complex structure of X , we may loose disks and gain cross-caps, and
vice versa. Hence, to have an invariant count, we have to add both. If we choose
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signs appropriately, this leads to the observed absence of even degree disks due to
a cancellation with cross-caps. In physics, there are indications that this choice of
sign is the only consistent one. Mainly, because for this choice of sign one can find
a multi-covering formula yielding integer invariants, corresponding to the count of
certain BPS states. However, mathematically it is not obvious that this sign choice
is a necessity, as physics indicates, and it would be interesting to understand this
better from a mathematical point of view.

Beyond tree-level, things become even more interesting. For example, at 1-loop
we have now to consider the sum of the Annulus, Möbius-strip and Klein-bottle.
Physicists have developed techniques to calculate the individual number of maps fχ
for general χ via a generalization of Kontsevich’s work [8] to include the unoriented
sector [7, 9], and also to directly calculate the sum over the real structures via
generalizing the holomorphic anomaly [7] and via an extended (real) version of
the topological vertex [9, 10]. There as the first approach and the real version
of the topological vertex involve certain choice of signs to achieve cancellations
similar as described at tree-level above, the holomorphic anomaly approach gives
a basically unique result. However, what has been found is that the signs can be
chosen in a way that all three calculations yield the same results, i.e., the same
enumerative predictions.

The upshot is, physics provides us with very efficient techniques to explicitly
make real enumerative predictions. In particular, the most basic predictions we
can infer from physics is that only the sum over all real structures gives a well-
defined counting problem and that there appears to be a single consistent sign
choice, perhaps leading to a mathematical notion of ‘tadpole cancellation’ in real
enumerative geometry.
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Local obstructions to approximating tropical curves in surfaces

Kristin Shaw

(joint work with Erwan Brugall’e)
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C

Figure 1. The tropical hyperplane P ⊂ R3 containing a trivalent
fan tropical curve C of degree d.

For simplicity, we will only consider fan tropical curves in the standard tropical
plane P ⊂ R3. This tropical plane, P is the tropical hypersurface defined by
“x + y + z + 1” = max{x, y, z, 0} see Figure 1. In addition throughout we will
fix P ⊂ (C∗)3 the complex plane given by the equation x + y + z + 1 = 0. We
remark that P is CP 2 minus four lines. Then P approximates P in the sense that
limt→∞ Logt(P) = P . A fan tropical curve C contained in P is a tropical curve
with a single vertex which is also the vertex of P . We are concerned with the
following question:

Question. Given a fan tropical curve C ⊂ P does there exist an irreducible
algebraic curve C ⊂ P approximating C, i.e.

lim
t→∞

Logt(C) = C

and for each edge of C the natural weight from Section 6 of [2] is equal to the
weight of the edge of the curve?
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It is known that the answer is not always positive. As a first example, Vigeland
exhibited families of tropical lines on generic tropical surfaces in R3 of degree
greater than two [6]. By an integer affine linear map these lines in surfaces can be
transformed to fan curves in the plane P. From complex geometry it is known that
these families of lines on surfaces cannot be approximated. However, until recently
it was not known how to forbid these curves based only on the tropical data. In [1]
the authors provide some necessary conditions to approximating tropical curves
contained in P and an affine hyperplane which can rule out some, but not all, of
Vigeland’s forbidden curves. In [5] more examples of non-approximable curves in P
are given, here the reasons for ruling out the curves come from tropical intersection
theory. Moreover, conditions for approximating curves using the Riemann-Hurwitz
formula have been given by Brugallé and Mikhalkin.

The above question is also of broader interest than just lifting curves in P .
The standard tropical plane is one of the local models for tropical surfaces, for
example, all smooth tropical surfaces in R3 are locally P up to a integer affine
transformation. A curve which is not everywhere locally approximable in a surface
cannot be globally approximated. However, local approximability still does not
imply global approximability. The general conditions to approximating curves in
P generalise to other local models of smooth tropical surfaces, in this talk we stick
to the tropical plane P purely for simplicity.

To tackle the problem of local approximation we invoke two tools of complex
geometry, intersection with the Hessian curve and the adjunction formula. The
main tool allowing us to translate to the tropical world is tropical intersection
theory from [5]. At the end we return to the case of fan tropical curves C ⊂ P
and contained in an affine plane as considered in [1].

Intersection with the Hessian curve.
Given a curve C ⊂ CP 2 defined by a homogeneous polynomial P (x, y, z) of

degree d ≥ 3, the Hessian curve HC is the zero set of the degree 3(d−2) polynomial
det(Hess(P )). If C does not have a component which is a line then C and HC

intersect in 3d(d−2) points counted with multiplicity. Suppose [1 : 0 : 0] ∈ C∩HC ,
the Newton polytope for C with respect to coordinates x and y gives a lower bound
for the multiplicity of the intersection at [1 : 0 : 0]. As there is a duality between
the fan tropical curve and Newton polytope this bound can be expressed in terms
of some unbounded rays of the tropical curve. As mentioned above, P can be
viewed as CP 2 minus four lines, the intersections of which yield exactly six points.
For each of these six points we are able to extract from the tropical curve C a
lower bound on the intersection of C and HC where C is a potential approximation
of C. The sum of the six multiplicities must be less than 3d(d− 2). We translate
this condition to the level of the tropical curve to obtain an inequality with terms
involving the degree and tropical self intersection of the curve along with the
weights of edges, but the full formula is too technical to be included here. By
applying this formula we are able to forbid all members of Vigeland’s families of
lines on surfaces of degree greater than two.



1146 Oberwolfach Report 20/2011

The adjunction formula.
If C is approximated by a smooth embedded curve C then we may also ask about

the genus of a parameterisation of C. Using the tropical intersection product given
in [5] it is possible to translate the classical adjunction formula to the following
formula, where C2 is the tropical self intersection, deg(C) is the projective degree
of C and wE denotes the weight of an edge E ⊂ C.

Theorem. If C ⊂ P is approximated by an embedded irreducible curve C ⊂ P
which is parameterised by f : S −→ P then

g(S) ≤ C2 + deg(C)−
∑

Ei⊂C

wEi
+ 2.

In particular, if the right hand side is negative then C is not approximated by any
irreducible curve.

Classification of fan curves in P ∩H.
Now we return to the situation considered in [1]. Here H will denote an affine

hyperplane, and the tropical fan curve C is will be contained in P ∩ H . As
mentioned above Bogart and Katz provide necessary conditions to approximating
such curves. After strengthening their conditions and constructing some curves
we obtain a complete classification of such tropical curves. Once again the main
tool allowing us to extend the conditions is the tropical intersection product.

Theorem. An tropical curve C ⊂ P ∩ H of degree d is approximable by a
reduced and irreducible complex algebraic curve C ∈ P if and only if C is one of
the following:

(1) C is the stable intersection of P and H (see [4] or [3]);
(2) C is the curve depicted in Figure 1 up to symmetry of P .

In case (2) when d = 1 the curve is an affine line (not trivalent) which bisects
two faces of P . In general, the curve from case (2) is unique in each degree,
moreover it is real, rational and has d + 1 punctures. Note that C2 = 0 in case
(1), and C2 = −1 in case (2).
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Enumerating real rational curves with tangency conditions

Michael Polyak

(joint work with Sergei Lanzat)

A classical problem in enumerative geometry is the study of the number of algebraic
curves of degree d and genus g, passing through some number of points in the affine
or projective plane. The major difficulty in real enumerative problems is that such
numbers usually depend on a configuration of geometrical objects. A natural way
to overcome this difficulty is to count curves with signs and multiplicities so that
the resulting algebraic numbers do not depend on a configuration. For rational
curves such signs were proposed by J.-Y. Welschinger [1]. Welschinger’s sign wC

of a real rational curve C is defined as wC = (−1)m(C), where m(C) is the number
of solitary points of C. The next step is to ask about the number of algebraic
curves passing through some number of points and tangent to some given curves.
J.-Y. Welschinger [2] considered projective curves in RP2 passing through a generic
set P of 3d−2 points and tangent to a non-oriented smooth simple zero-homologous
curve. In the present work we consider tangency with generic immersed oriented
curves in R2. In contrast with [2], where the author used 4-dimensional symplectic
geometry and hard-core techniques from the theory of moduli spaces of pseudo-
holomorphic curves, we use down to earth classical tools of differential topology. In
this way we also get a clear geometric interpretation of Welschinger’s number wC

as the orientation of a certain surface in the manifold of oriented contact elements
in R2, which parameterizes real rational curves passing through P . We interpret
the desired number of curves as a certain intersection number; the main claim
follows from different ways of its calculation. Finally, we relate the dependence on
a chosen configuration to the theory of finite type invariants. We count rational
nodal curves with certain signs and add correction terms coming from degenerate
cases of nodal, reducible and cuspidal curves. The desired number of curves is
interpreted as a certain intersection number; the main claim follows from different
ways of its calculation.

Main results. In what follows we only consider real rational algebraic curves of
degree d in R2. Let P = {p1, . . . , p3d−2} be a (3d − 2)-tuple of points in R2 in
general position. Define the following sets CP and RP in R2 \P and multiplicities
ιp:

(i) Let p ∈ CP , if there exists an irreducible curve C, which passes through
P , and has a cusp at p; define ιp = −wC .

(ii) Let p ∈ RP , if there exists a reducible curve C = C1∪C2 with p ∈ C1∩C2,
which passes through P ; define ιp = wC .

For p ∈ P denote by D(p) the set of all irreducible nodal curves, which pass through

P and have a crossing node at p; for p ∈ P we define ιp = −Wd + 2
∑

C∈D(p)

wC .

Denote S = P ∪ CP ∪RP .
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Let Γ be a generic immersed oriented curve in R2 in general position w.r.t. P .
Denote by Md(P ,Γ) the set of nodal curves passing through P and tangent to Γ.
For each C ∈ Md(P ,Γ) we define the sign εC of C by εC = wC · τC . Here wC is
the Welschinger’s sign of C, and τC is a sign of tangency of C with Γ, defined as
shown in Figure 1.

n

C

Γ

−1

t

n

C

Γ

+1

t

1

2

pp

Figure 1. Signs of tangency τC .

Let Nd(P ,Γ) be the algebraic number Nd(P ,Γ) =
∑

C∈Md(P,Γ)

εC of nodal curves

passing through P and tangent to Γ.
Theorem 1. Let P = {p1, . . . , p3d−2} ⊂ R2 and Γ be an immersed oriented

curve in R2, all in general position. Then

(1) Nd(P ,Γ) = 2


Wd · ind(Γ) +

∑

p∈S

ιp · indp(Γ)


 .

The idea of the proof. Consider a solid torus M = D2 × S1, where D2 is a
sufficiently large closed disk containing S. We show that the number Nd(P ,Γ) in
Theorem 1 is the intersection number I(L,Σ;M) of an oriented smooth curve L
with a compactification Σ of an open two-dimensional surface Σ inM . The surface
Σ is constructed as follows. For each p ∈ D2 \S, we use a contact element (line) of
curves passing through {p} ∪ P to get Σ as a lift of D2 \S into M . Lifting Γ into
M in a similar way we get L. Welschinger’s sign wC gives rise to the orientation
on Σ, and the orientation of Γ defines the orientation of L.
In order to define the intersection number, we compactify Σ to get a compact
surface Σ with boundary by blowing up punctures S on D2. Due to generality of
(P ,Γ), L transversally intersects Σ in a finite number of points. Each point (p, ξ) ∈
L ⋔ Σ corresponds to a curve passing through P and tangent to Γ. We prove that
the local intersection number I(p,ξ)(L,Σ;M) equals to τC ·wC , and thus Nd(P ,Γ) =

I(L,Σ;M). Now to get the RHS of (1) we use the homological interpretation of the
intersection number. We homotope Γ in the class of immersions to Γ′ = ind(Γ) ·T ,
where T is a small circle near ∂D2. Hence [Γ]−[Γ′] = ∂K for some 2-chainK. Then
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for the lifts L′ and K of Γ′ and K, respectively, into M we have [L] − [L′] = ∂K
in C1(M ;Z), and hence

I(L,Σ;M) = I(L′,Σ;M) + I(∂K,Σ;M).

It is easy to verify that I(L′,Σ;M) = 2Wd · ind(Γ′) = 2Wd · ind(Γ). Finally, to
complete the proof we show that

I(∂K,Σ;M) = I(K, ∂Σ;M) = 2
∑

p∈S

ιp · indp(Γ).
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The diffeotopy group of rational or ruled 4-manifolds

Vsevolod Shevchishin

A 4-manifold X is rational or ruled if it is diffeomorphic to a rational or resp.
ruled complex surface, possibly blown-up several times. In particular, CP 2 and
CP 1×CP 1 = S2×S2 are rational, and the product Y×S2 of a Riemann surface Y
with the sphere is ruled. Such manifolds can be characterized from the point of
view of the symplectic geometry [5]: A compact symplectic 4-manifold (X,ω) is
rational or ruled if and only if it contains a symplectic surface Σ ⊂ X such that
c1(X)·[Σ] > 0 and Σ is not an exceptional sphere. Further “symplectic” properties
of rational or ruled manifolds are [1, 2, 4, 3]: For every symplectic form ω on such
X there exists an integrable complex structure J such that ω is a Kähler form for
J . For every pair of symplectic forms ω1, ω2 on such X with equal cohomology
class [ω1] = [ω2] there exists a diffeomorphism F : X → X with F∗ω1 = ω2.

The main result of my talk is [6]:
Theorem 1. Let (X,ω) be a rational symplectic 4-manifold and F : X →

X a symplectomorphism which is homotopically trivial, ie., acts trivially on the
homology group H2(X,Z). Then F is isotopic to identity.

The meaning of the result is that the smooth isotopy class of a symplectomor-
phism of some rational complex surface is determined by its action in homology.
It allows to give an almost complete description of the diffeotopy group Γ = Γ(X)
of rational 4-manifolds X , ie., the quotient group Γ(X) := Diff(X)/Diff0(X) of all
diffeomorphisms of X by the group of isotopies.

Corollary 2. Let (X,ω) be a rational symplectic 4-manifold and Γ0 the group
of isotopy classes of homotopically trivial diffeomorphisms. Then Γ0 acts simply
transitively on the set of connected components of symplectic forms having given
cohomology class [ω0].
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The latter result can be formulated as follows: On a rational complex surface
there are as many mutually non-isotopic homotopically trivial diffeomorphisms as
many mutually deformationally non-equivalent Kähler structures.

Theorem 3. The group Γ0 remains unchanged under blow-ups. In particular,
Γ0(CP

2) = Γ0(S
2×S2) = Γ0(X) for every rational 4-manifold X .

The proof of the results is given in the preprint [6]. It contain also the descrip-
tion of the action of the diffeomorphism group Diff(X) on the homology. Here we
recall that the intersection form on H2(X,R) has Lorentz signature and therefore
the set K := {[A] ∈ H2(X,R) : [A]

2 > 0} is a quadratic cone, called the positive
cone of X .

Theorem 4. Let X be a rational 4-manifold and ΓH2
the image of the diffeo-

morphism group Diff(X) in the group Aut(H2(X,Z)). Further, let L;E1, . . . ,Eℓ ∈
H2(X,Z) be the homology classes of the line and resp. the exceptional spheres
with respect to some contraction map π : X → CP 2. Then ΓH2

is generated
by reflections with respect to hyperplanes in H2(X,R) orthogonal to the classes
L− (E1 +E2 +E3), Ei −Ei+1 with i = 1, . . . , ℓ− 1, and Eℓ.

Moreover, the action of ΓH2
on the positive cone K admit a fundamental domain

consisting of those classes [A] ∈ K which have non-negative intersection with the
classes L− (E1 +E2 +E3), Ei −Ei+1 with i = 1, . . . , ℓ− 1, and Eℓ.

The meaning of the latter result is as follows. Let X be a rational complex
surface and D an ample divisor on X . Then there exists a (holomorphic) con-
traction map π : X → CP 2 whose exceptional divisor E is the sum E1 + · · ·+ El

of rational curves with the homology classes E1, . . . ,Eℓ such that the divisors
L− (E1 +E2 +E3), Ei −Ei+1 have positive intersection with D.

The preprint [6] contains also a description of the diffeotopy group Γ(X) =
Diff(X)/Diff0(X) of irrational ruled 4-manifolds X . The main difference from
the rational case is appearance of a new differential invariant, secondary Stiefel-
Whitney class w̃2(F ) of homotopically trivial diffeomorphisms. The main result is
generalized in the following form:

Theorem 5. Let (X,ω) be a ruled symplectic 4-manifold and F : X → X
a symplectomorphism. Then F is isotopic to the identity if and only if F is
homotopically trivial, ie., acts trivially on the groups H2(X,Z), π1(X), π2(X),
and has trivial secondary Stiefel-Whitney class w̃2(F ).

One also obtains the counterparts of Corollary 2 and Theorems 3, 4.
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Homological Mirror symmetry of toric manifolds

Kenji Fukaya

(joint work with M. Abouzaid, Y.-G. Oh, H. Ohta, and K. Ono)

For any relatively spin Lagrangian submanifold L of a compact symplectic manifold
(M,ω) and b ∈ Heven(M ; Λ0), we ([FOOO1]) associated a set

Mweak(L; Λ0) ⊂ Hodd(L; Λ0)

together with a map
PO : Mweak(L; Λ0) → Λ+

such that if bi ∈ Mweak(Li; Λ0) and L1 is transversal to L2 we have an operator
∂b1,b2

∂b1,b2 : CF (L1, L2; Λ) → CF (L1, L2; Λ)

with
∂2b1,b2 = (PO(b1)−PO(b2))id.

In particular the homology of ∂b1,b2 , that is the Floer homology

HF ((L1, b1), (L2, b2); Λ)

is defined if PO(b1) = PO(b2).
Here CF (L1, L2; Λ) is a Λ vector space of rank #L1 ∩ L2.
The universal Novikov ring Λ0 is defined by

Λ0 =

{
∞∑

i=1

aiT
λi | ai ∈ C, λi ∈ R≥0, lim

i→∞
λi = +∞

}
.

The universal Novikov field Λ is its field of fractions. Namely :

Λ =

{
∞∑

i=1

aiT
λi | ai ∈ C, λi ∈ R, lim

i→∞
λi = ∞

}
∼= Λ0[T

−1].

Λ+ is the maximal ideal of Λ0. Namely

Λ+ =

{
∞∑

i=1

aiT
λi | ai ∈ C, λi ∈ R>0, lim

i→∞
λi = +∞

}
.

We defined also a map

p∗ : HF ((L, b), (L, b); Λ) → QHb(M ; Λ)

which is a deformation of the Gysin homomorphism. (Here the right hand side is
b deformed quantum cohomology ring.)

Theorem 1. If ai ∈ HF ((Li, bi), (Li, bi); Λ) with

〈p∗(a1), p∗(a2)〉 6= 0
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then

PO(L1, b1) = PO(L2, b2).

Theorem 2. Let Li, bi ∈ Mweak(Li; Λ0). We assume that the union of

Im (p∗ : HF ((Li, bi), (Li, bi); Λ) → QHb(M ; Λ))

for i = 1, . . . , N generates QHb(M ; Λ).
Then for any (L, b) with HF ((L, b), (L, b); Λ) 6= 0 there exists (Li, bi), such that

(1) PO(L, b) = PO(Li, bi).

Moreover (L.b) is ‘Floer theoretically equivalent’ to a direct summand of the sum
of copies of (Li, bi) satisfying (1).

There is a version using Hoshchild cohomology of HF ((Li, bi), (Li, bi); Λ0) in-
stead of HF ((Li, bi), (Li, bi); Λ0) itself.

A similar result in the exact case was proved by M. Abouzaid [A].
Theorem 3. Let (X,ω) be a compact toric manifolds such that QHb(X ; Λ) is

semi-simple. Then there exists (Li, bi) i = 1, . . . , B (B is the Betti number of X)
such that they satisfy the assumption of Theorem 2 and that Li are toric fiber,
bi ∈ H1(Li,Λi).

In the case QHb(X ; Λ) is not semi-simple we can still find toric fibers which
splits generates Fukaya category of (X,ω) using Hoshchild cohomology version.

Theorem 3 follows from the main result of [FOOO2].
We can use these theorems to show that the Fukaya category of a compact toric

manifold (X,ω) is equivalent to the category of matrix factorization of PO after
taking split generation.
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Gauge Theories: Dessins of Quivering Amoebae

Yang-Hui He

Our beginning point is the class of quantum field theories, obviously of great phys-
ical interest, in 3+1-dimensions, with N = 1 space-time supersymmetry and gauge
group comprising of a product

∏
i SU(Ni) of special unitary groups. Our ensuing

discussions may also be readily generalized to other dimensions and supersymme-
tries. In particular, we focus on theories whose matter are bi-fundamental fields,
Φij , which are charged under two factors, say SU(Ni) and SU(Nj), and being
fundamentals of one and anti-fundamentals of the other, as well as adjoint fields,
Φii, which are in the adjoint representation of a single gauge group factor. Our
matter fields, therefore, can be thought of as Ni ×Nj complex matrices (allowing
for i = j). In addition, there will be a holomorphic and usually polymonomial
function called the superpotential, W , in terms of the above fields, which governs
the interactions in this field theory.

The above structure affords an elegant and graphical encoding: letting each
gauge group be represented by a node with label Ni and each field, a directed
arrow from the i-th to the j-th node; the critical values of W , obtained by partial
derivatives with respective to the various fields, impose formal relations dubbed
F-terms on the arrows. The resulting directed graph with nG nodes and nE edges,
together with the F-terms, is called a quiver gauge theory. For convenience, we
henceforth take all labels Ni to be 1 so that our gauge goup is U(1)nG and our
fields are simply complex numbers. The most fundamental quantity of a field
theory is its vacuum. For our purposes, we will define the vacuum M (also known
as a vacuum moduli space because of the generically continuous and non-zero
dimensionality) as the quiver variety obtained by the (maximal spectrum of) the
polynomial algebra formed by the space of loops in the quiver diagram quotiented
by the ideal of F-terms.

In string theory, the aforementioned situation is prescribed by the AdS/CFT
correspondence, wherein a D3-brane has, on its world-volume, the quiver gauge
theory, and M is an affine Calabi-Yau variety of complex dimension 3 (which is
itself a real cone over some real Sasaki-Einstein 5-fold). The prototypical example
is, of course, when M = C3, where the quiver is the “clover”, consisting of a single
node labeled N , with 3 adjoining arrows which we denote as x, y, z, together with
W = Tr(x[y, z]). Indeed, at N = 1, W = 0, and M = Spec(C[x, y, z]) ≃ C3 as
required.

When M is a toric variety (note that M is non-compact) extraordinary struc-
tures exist and the purpose of this talk is draw an intricate web of inter-connections
amongst them. We emphasize that the toric case is not merely of academic interest
since almost all theories, especially the infinite families, studied in the AdS/CFT
context fall into this category. An immediate toric constraint is that to ensure the
F-terms give a binomomial ideal, such that each generator is of the form “monomial
- monomial”, we must have each field appearing in W exactly twice with opposite
signs. Moreover, it turns out that for all such theories, nG − nE + nW = 0 where
nW is the number of terms in W .
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We thus have a remarkable topological condition, dictating that - as suggested
by the Euler character of a torus - our quivers should be drawn periodically on a
plane. Thus drawn, the F-terms are automatically incorporated as oriented loops,
of which, due to the plus or minus sign of the corresponding term in W , there
are only two types: counter-clockwise and clockwise. Upon graph-dualization,
associating, say, counter-clockwise and clockwise loops to black and white nodes
respectively, we arrive at a dimer model, a bipartite graph, on T 2, or equivalently a
periodic brane tiling of the plane (cf. reviews in [2]). Hence, the study of D3-branes
probing toric Calabi-Yau threefolds, an old subject dating to the first systematic
analysis in [1], is reduced to the examination of dimers on a torus.

The key to dimer models is the so-called Kasteleyn matrix, a weighted ad-
jacency matrix K(z, w), whose determinant gives the generating polynomial of
perfect matchings. Interestingly, P (z, w) = detK(z, w) is precisely the Newton
polynomial of the toric diagram of M, which, by the Calabi-Yau condition, is here
a planar grid of lattice points. One could take two projections [3] of P (z, w), the
amoeba projection (z, w) → (log |z|, log |w|) and the alga or co-amoeba projection
(z, w) → (arg |z|, arg |w|). The former gives a point-set in R2 whose “spine” is a
tropical curve called (p, q)-webs in the physics literature. This is the graph dual of
the resolution of the toric diagram of M; moreover, the direction vectors (pi, qi)

give rise to the matrix aij = det

∣∣∣∣
pi qi
pj qj

∣∣∣∣, which is the anti-symmetrized adja-

cency matrix of the original quiver diagram. The latter, gives a shaded regions in
[−π, π)2 ∈ R2, and in clean cases, contract to precisely the dimer model diagram.

The mirror picture to the above is also enlightening [3]. The local mirror man-
ifold to M is given by P (z, w) = uv so that special Lagrangian 3-cycles Si therein
intersect to give aij = Si ◦Sj and the T 2 on which the dimer lives is in the T 3-fibre
upon which one performs thrice T-duality for mirror symmetry. Furthermore, the
zigzag cycles on the dimer can be untwisted - in a Seifert sense - to render a
covering of the Riemann surface given by P (z, w).

A final connection suggests itself [4] and adds an elegant number-theoreical
touch to our geometrical story. The dimers are naturally interpreted as Groethen-
dieck’s dessins d’enfants where we form a ramified holomorphic branched cover
map from the torus to P1, with black (resp. white) nodes mapped to 0 (resp. 1)
and faces on the dimer, to ∞. The valency, i.e., the number of adjacent edges, of
each node is then the ramification index of the pre-image of 0 or 1 while the number
of edges per face is twice that of ∞. Specifically, we can assign, to each term of W
(corresponding to a node in the dimer), a permutation tuple by associating edges
to elements in ΣnE

, the symmetric group on nE elements. By Riemann existence
theorem, this assignment uniquely determines our branched covering. Moreover,
Belyi’s theorem states that when the ramifications are only over 0, 1,∞, as in
our case, the T 2 can be realized as an algebraic curve in Q. Thus, the elliptic
curve with algebraic numbers as coefficients, together with the rational function
which prescribes the branched cover over P1, known as a Belyi pair, completely
encaptures the physics of the original quiver gauge theory.
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Wall Crossings in Hurwitz Theory

Renzo Cavalieri

(joint work with P. Johnson and H. Markwig)

1. Introduction

Hurwitz theory studies holomorphic maps between Riemann surfaces with spec-
ified ramification. Double Hurwitz numbers count covers of P1 with assigned ram-
ification profiles over 0 and ∞, and simple ramification over a fixed branch divisor.

A systematic study of double Hurwitz numbers in [1] shows double Hurwitz
numbers are piecewise polynomial in the entries of the partitions defining the
special ramification. In [2], this result was investigated further in genus 0; the
regions of polynomiality are determined, and a recursive wall crossing formula for
how the polynomials change is obtained. This paper gives a unified approach to
these results that strengthens them in several ways - the most important being
the extension of the results of [2] to positive genus.

This extended abstract is based on [3].

2. Statement of Results

The double Hurwitz number Hg(x) (where x = (x1, . . . , xn)) counts the number
of maps π : C → P1, where C is a connected, genus g curve and π has profiles
x0 := {xi|xi > 0} (resp. x∞ := {xi|xi < 0}) over 0 (resp. ∞), and simple
ramification over r = 2g− 2+n fixed other points. The preimages of 0 and ∞ are
marked. Furthermore, each cover is counted with weight 1/|Aut(π)|. Frequently
the natural numerical invariant is r, the number of simple ramifications, rather
than the genus g. Since these are equivalent by the Riemann-Hurwitz formula (in
this case, r = 2g−2+n), we will also sometimes use Hr(x) to denote Hg(x) when
it makes formulas more attractive.
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A ramified cover is essentially equivalent information to a monodromy represen-
tation it induces; thus, an equivalent definition of Hurwitz number counts the num-
ber of homomorphisms ϕ from the fundamental group Π1 of P1 \{0,∞, p1, . . . , pr}
to the symmetric group Sd such that:

• the image of a loop around 0 has cycle type x0;
• the image of a loop around ∞ has cycle type x∞;
• the image of a loop around pi is a transposition;
• the subgroup ϕ(Π1) acts transitively on the set {1, . . . , d}.

This number is divided by |Sd|, to account both for automorphisms and for differ-
ent monodromy representations corresponding to the same cover. One can organize
this count in terms of graphs as in [4, Lemma 4.1], a fact which is the starting
point of our investigation.

Let H be the hyperplane H = {
∑

i xi = 0} ⊂ Rn. We think of Hg (resp. Hr)
as a map

Hg : H ∩ Zn → Q : x 7→ Hg(x).

Our first result is a new proof of the following theorem in [1]:
Theorem 1. The function Hg(x) is a piecewise polynomial function of degree

4g − 3 + n.

Our techniques allow us to extend this result and answer a question implicit in
the work of Goulden, Jackson and Vakil:

Theorem 2. Hg(x) is either even or odd, depending on the parity of the
leading degree 4g − 3 + n.

Further techniques allow us to extend the results of [2] to all genera. First, we
determine the regions on which Hg(x) is polynomial:

Theorem 3. The chambers of polynomiality of Hg(x) are bounded by walls
corresponding to the resonance hyperplanes WI , given by the equation WI ={
xI =

∑
i∈I xi = 0

}
, for any I ⊂ {1, . . . , n}.

Finally, we extend the wall crossing formula of [2] to all genera. We will denote
the chambers of the resonance arrangement as H-chambers;

Definition 1. Let C1 and C2 be two H-chambers adjacent along the wall WI ,
with C1 being the chamber with xI < 0. The Hurwitz number Hr(x) is given
by polynomials, say P1(x) and P2(x), on these two regions. By a wall crossing
formula, we mean a formula for the polynomial

WCr
I (x) = P2(x)− P1(x).

Note that with the notation WCr
I (x) there is no ambiguity about which direc-

tion we cross the wall. Since x lies on the hyperplane
∑n

i=1 xi = 0, each wall has
two possible labels: WI and WIc both denote the same hyperplane. We always
choose the name so that xI is increasing.

We useHr•(x) to denote Hurwitz numbers with potentially disconnected covers.
Our main theorem is the following wall crossing formula:
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Theorem 4.

WC
r
I (x) =

∑

s+t+u=r

∑

|y|=|z|=|xI |

(−1)t
(

r

s, t, u

)

∏

yi

ℓ(y)!

∏

zj

ℓ(z)!
H

s(xI ,y)H
t•(−y, z)Hu(xIc ,−z)

Here y is an ordered tuple of ℓ(y) positive integers with sum |y|, and similarly
with z.

Observe that the walls WI correspond to values of x where the cover could
potentially be disconnected, or where when xi = 0. Crossing this second type of
wall corresponds to moving a ramification between 0 and ∞. In the traditional
view of double Hurwitz numbers, these were viewed as separate problems: the
number of ramification points over 0 and ∞ were fixed separately, rather than just
the total number of ramification points. However, Theorem 4 suggests that it is
natural to treat them as part of the same problem: the wall crossing formula for
xi = 0 is identical to the other wall crossing formulas.

We would like to thank Federico Ardila and Michael Shapiro for helpful discus-
sions.
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Tropical geometry and correspondence theorems via toric stacks

Ilya Tyomkin

Introduction

Recently, tropical varieties appeared in various fields of study, such as string
theory, mirror symmetry, and enumerative geometry. Roughly speaking, tropical
variety (locally) is an integral piece-wise linear polyhedral complex equipped with
an integral affine structure. One can also think about tropical varieties as algebraic
varieties over the (max,+) semi-ring. Till now several applications of tropical
geometry to algebraic geometry have been found.

In 2005 Mikhalkin [2] discovered a “tropical” formula for enumeration of curves
of genus g in a linear system L on a toric surface X passing through an appro-
priate number of points in general position. The main ingredient in the proof of
Mikhalkin’s formula was a “Correspondence Theorem” that provided a relation
between enumeration of algebraic and parameterized tropical curves. Mikhalkin
showed that any algebraic curve on a toric surface defines a parameterized tropical
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curve in R2, and that under certain conditions one can compute the number of
algebraic curves defining a given parameterized tropical curve.

To assign a parameterized tropical curve to an algebraic curve, Mikhalkin ana-
lyzed the Hausdorff limits of logarithmic degenerations of algebraic curves in the
logarithmic image R2 of the complex torus (C∗)2, and showed that these limits
are piece-wise linear immersed graphs in R2 that can be equipped with weights
turning them into parameterized tropical curves. Then he introduced the notion
of a complex tropical curve, counted the number of such curves corresponding
to a given parameterized tropical curve, and used analytic and symplectic tech-
niques to prove that under certain assumptions there exists unique algebraic curve
defining a given complex tropical curve. In his ICM paper [3] Mikhalkin presents
the “Correspondence Theorem” (Theorem 2) as an application of a result about
realization of regular parameterized tropical curves by complex algebraic curves
(Theorem 1), which holds true in arbitrary dimension.

Since 2005 several other correspondence theorems for real and complex curves
have been established by Mikhalkin, Shustin, Nishinou and Siebert, and oth-
ers. The approaches of Shustin and of Nishinou and Siebert are different from
Mikhalkin’s original approach. Shustin’s approach is based on Viro’s patchwork-
ing method, and the approach of Nishinou and Siebert is based on log-geometry.
However, in all these approaches the parameterized tropical curve Γ corresponding
to an algebraic curve C was constructed in terms of the morphism from C to the
toric variety. As a result, the underlying tropical curve (i.e. the metric graph)
depended and on the immersion of the curve into the toric variety.

The goals of the lecture

This lecture gives a brief overview of the results and ideas of our paper [6],
and we refer the reader to the paper for details, precise statements, and complete
proofs.

Canonical tropicalization. The first goal of the lecture is to describe a canonical
procedure associating a tropical curve Γ to an algebraic curve with marked points
(C,D) over the separable closure F of the field of fractions F of a complete discrete
valuation ring R. We define the underlying graph of Γ to be the dual graph of the
stable reduction of (C,D), and we define the metric on Γ in a natural way in terms
of the singularities of the total space of the stable model. If, in addition, we are

given a morphism f from C \D to the algebraic torus (F
∗
)n, then we construct a

natural parameterized tropical curve h : Γ → Rn. Our construction is canonical,
and the parameterized tropical curves constructed in [2, 4, 5] are obtained from Γ
above by contraction of maximal connected subgraphs contracted by h.

We shall mention that there is an alternative description of Γ. Namely, given
a curve with marked points (C,D), one considers the corresponding Berkovich
analytification (B,D). If (C,D) is stable then B contains a distinguished skeleton,
which is a metric graph; and it is possible to show that this graph is naturally
isometric to Γ.
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An algebraic approach to correspondence theorems. The second goal of
the lecture is to present an algebra-geometric approach to various correspondence
theorems. It can be used to give proofs of known correspondence theorems, as well
as to prove new correspondence theorems for rational curves satisfying cross-ratio
constraints, and for elliptic curves having given j-invariant [6]. Our methods are
purely algebraic and work in sufficiently big positive characteristics. The case of
small characteristic is more subtle, but we hope to adjust our approach to this
case soon. Let us describe the approach in more detail:

Assume that the residue field k of R is algebraically closed. Let (C,D, f) be
a triple, where (C,D) is a smooth curve with marked points over F and f is a

morphism from C \D to the algebraic torus (F
∗
)n. Then there exists the minimal

partial toric compactification XF of (F
∗
)n such that f extends to a morphism

C → XF. Furthermore, for a sufficiently ramified separable extension L/F, there
exists a canonical (minimal) commutative diagram

Ck

� � //

��

CRL

��

CL
? _oo

��

Xk

� � // XRL
XL

? _oo

where RL is the ring of integers of L, XRL
is a stacky toric degeneration of

XL := XF×Spec(F)Spec(L), (CRL
, DRL

) is a semistable model equipped with an ap-
propriate stacky structure, and Ck → Xk is the reduction of CRL

→ XRL
. Note that

the stacky toric degenerations are generalizations of toric stacks of Borisov, Chen,
and Smith [1]. In [1], the authors introduce smooth Deligne-Mumford stacks as a
global quotients of quasi-affine toric varieties by the actions of certain subtori. We
present a modification of their construction that produces a reacher class of toric
stacks, in particular those that appear naturally in the tropicalization procedure.

If the triple (C,D, f) satisfies tropicalizable constraints (e.g. passing through
given points, having given cross-ratios of certain quadruples of marked points if
pg(C) = 0, having given j-invariant if pg(C) = 1, etc.) then the constraints can
be included naturally in the diagram. Keeping this in mind, one can think about
correspondence theorems as statements about one-to-one correspondences between
algebraic triples (C,D, f) satisfying an appropriate number of tropicalizable con-
straints and solid parts of the diagrams

(1) Ck

� � //___

��

CRL

��
�

�

�

�

CL
? _oo_ _ _

��
�

�

�

�

Xk

� � // XRL
XL

? _oo

(plus constraints that we omit here for the sake of simplicity). Thus, in order to
prove a correspondence theorem, it is sufficient (i) to describe all possible solid
parts of the diagram that may correspond to an algebraic triple (C,D, f), and (ii)
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to show that the deformation problem described by the diagram is zero-dimensional
and unobstructed. Note that if one considers the diagrams of coarse moduli-spaces
(the naive diagrams without the stacky structure) then, usually, the corresponding
deformation problem is zero-dimensional, but obstructed.

Finally we would like to mention that there exists a mysterious complex LΓ of
length two of free abelian groups that controls the algebraic-tropical correspon-
dence. Namely, the group H1(LΓ ⊗Z R) is the versal deformation space of the
parameterized tropical curve Γ, and the versal deformation space of Γ has ex-
pected dimension if and only if H2(LΓ ⊗Z R) = 0. The group H1(LΓ ⊗Z k) is
the space of first order deformations of the solid part of diagram (1), and the
deformation space is unobstructed if and only if H2(LΓ ⊗Z k) = 0. The group
H1(LΓ ⊗Z k∗) acts simply-transitively on the set of all possible solid parts of dia-
gram (1) for a given parameterized tropical curve (if this set is not empty), and if
H2(LΓ ⊗Z k∗) = 1 then the set of stacky tropical limits is not empty.
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Informal discussion: Enumeration of real elliptic curves

Grigory Mikhalkin

1. Objective of the discussion

1.1. Gromov-Witten theory viewpoint. Recall the current state of the real
enumerative geometry viewed from the Gromov-Witten theory approach. Ac-
cording to this approach the number of curves in an algebraic variety X passing
through some constraints is defined through an intersection theory in the moduli
space Md

g,k(X) of stable curves of degree d (d can be considered as an element of

H2(X ;Z)) of denus g with k marked points (here k is the number of constraints).

For example, if X is CP 2 then the space M
d

g,k(CP
2) is a 3d − 1 + g + k-

dimensional complex variety (once we restrict only to stable curves h : S → CP 2

that are approximable by holomorphic immersions of Riemann surfaces and make
the usual identification H2(CP

2;Z) = Z). The simplest example of a constraint is
given by fixing a point p and requiring that the jth marked point qj ∈ S of the curve
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is mapped to p. In the Gromov-Witten paradigm such constraint can be rewritten

as a pullback of p ∈ CP 2 under the evaluation map evj : M
d

g,k(CP
2) → CP 2 that

takes a curve h to h(qj). Furthermore, as p is a zero-dimensional oriented manifold
it defines (by the Poincaré duality) a cohomology class ξp ∈ H4(CP 2) and thus

we get ev∗(ξp) ∈ H4(M
d

g,k(CP
2) → CP 2).

If we fix k points p1, . . . , pk ∈ CP 2 and twice this number is equal to

dimM
d

g,k(CP
2) = 3d − 1 + g + k, i.e. k = 3d − 1 + g then the cup-product

of all ξpj
has top dimension and we may evaluate it against the fundamental class

of M
d

g,k(CP
2). The result in this case is the so-called Gromov-Witten number

corresponding to a given enumerative.
In general these numbers are quite different from the original problem. However

in the case we consider the meaning is indeed enumerative. With the help of the
Poincaré duality we see that (in the case when the points are chosen so that the
corresponding number of curves is finite) that this is just a way to associate a
multiplicity to each curve passing through our configuration of 3d− 1 + g points
in CP 2. Note that by the maximum principle the multiplicity prescribed to each
curve in this way is positive. If the points are chosen in general position then each
curve gets counter with multiplicity +1.

The situation changes radically once we pass from complex to real numbers in
this problem as there is no natural orientation of real varieties and furthermore
they are not even orientable. Already the target space RP 2 of the evaluation map
is nonorientable.

Nevertheless, a solution in the case g = 0 was suggested by Welschinger in 2003
[4]. He noted esentially that the evaluation map

ev : M
d

0,3d−1(RP
2) → (RP 2)3d−1

preserves the Stiefel-Whitney class w1, i.e.

ev∗(w1((RP
2)3d−1)) = w1(M

d

0,3d−1(RP
2)).

Because of this one may define the number of real curves in this case staying
within the Gromov-Witten paradigm once we use Z-coefficients twisted by w1. As
in the complex case for a generic choice of 3d− 1 points in RP 2 we have a finite
collection of real rational curves of degree d through these points and every curve
will have multiplicity of absolute value 1. But as we no longer have positivity of
intersections in the real case each real curve in this collection contributes ±1 to
the corresponding enumerative number.

The sum of these multiplicities is known as the Welschinger invariant. It was
defined for g = 0 curves through collection of points in RP 2 (as well as other real
Dell Pezzo surfaces) in [4]. It was generalized to g = 0 curves through collection
of points in RP 3 (as well as other real Fano 3-folds) in [5], but no essential gener-
alizations of these invariants were found since then. Furthermore, as it was noted
by Welschinger himself the rule of signs that he defined is non-invariant already
in RP 2 once we pass to curves of higher genus.
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1.2. Tropical geometry viewpoint. Tropical geometry provides other tools
for solving enumerative questions in addition to the compactification+localization
technique (introduced by Kontsevich almost 20 years ago and still in active use
as a principal tool by many complex enumerative geometers today). It allows to
answer an enumerative algebro-geometric problem direclty in a combinatorial way
after tropicalization of the problem, see [2] for the case of CP 2 and RP 2.

Furthermore, a tropical approach provides not only the number of solutions
but topology and geometry of all curves solving a given enumerative problem.
The tropical technique is applicable to constraints in tropically general position
which is an asymptotic condition.

One may note (see e.g. [1]) that the number of curves of genus g and degree d
through 3d − 1 + g points in tropically general position in RP 2 and counted ac-
cording to the (non-invariant in the classical set-up) Welschinger rule is invariant,
i.e. does not depend on the choice of configuration. Furthermore, one can apply
the technique developed in [2] to compute this number (e.g. for d = 4 and g = 1
one gets 93, recall that the corresponding number of complex curves is 225).

Thus our experimental data in enumeration of algebraic curves of degree d and
genus g > 0 through 3d − 1 + g points in RP 2 that can be summarized as the
following mysterious-looking observation.

The Welschinger rule of signs is decidedly non-invariant for g > 0 in the clas-
sical set-up, nevertheless it produces an invariant in the tropical set-up.

2. Explanation of the “mystery”

In the case of g > 0 the map

ev : M
d

g,3d−1+g(RP
2) → (RP 2)3d−1+g

does not preserve w1. The distortion is given by the hypersurface

W = {h : (C; q1, . . . , q3d−1+g → RP 2 : |KC − h∗(KRP 2)−

3d−1+g∑

j=1

qj | 6= ∅}

The hypersurface W ⊂ M
d

g,3d−1+g(RP
2) is not homologous to zero mod 2 for

g = 1 already because it has odd intersection number with the universal curve.
Nevertheless its image under ev is always homologous to zero mod 2 (and even over
Z coefficients in the w1-twisted coefficients) as this is the locus on non-invariance
of the Welschinger rule of signs.

Note that the degree of the line bundle (KC − h∗(KRP 2)−
3d−1+g∑

j=1

qj) is g − 1.

Thus the locus W is determined as the intersection with the Theta-divisor which
can be easily approached tropically, see [3].

Thus for a generic (in the classical sense) configuration P composed of points
p1, . . . , p3d−1+g we can define the numberWg,d as the sum of the Welschinger signs
for all genus g degree d curves passing through P and the correction term obtained
as twice the linking number of ev(W ) with the 0-cycle in (RP 2)3d−1+g obtained
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as a difference of P and Q, where Q is any configuration of 3d − 1 + g points in
tropically general position.

By the very definition Wg,d coincides with the tropical real enumerative invari-
ant obtained by applying the Welschinger rule of signs in the tropical situation.
This makes it interesting to investigate the hypersurface W (in particular its ho-
mology class) which can be studied by tropical means. This is subject of a future
research.

In particular the image ev(W ) has to degenerate in the tropical limit as trop-
ically generic configurations become dense and this explains tropical invariance.
One can add that this can be seen very explicitly in the case g = 1.
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Informal discussion: Superpotentials

Johannes Walcher

Mathematicians that interact with physicists studying supersymmetric gauge the-
ory and string theory sometimes find themselves confronted with seemingly inpen-
etrable jargon. Much of the physicists’ terminology is rooted in concepts designed
to describe fundamental particles and their interactions. Over the years, mathe-
maticians have been able to translate some of the statements into more familiar
language, and to attach their own meaning to the new words, see [1]. The liberty
with which this happens is sometimes disconcerting for physicists who then find
themselves unable to understand even the relevance of the mathematicians’ reply
to their original question.

The purpose of this session was to present one of those concepts, the so-called
“superpotential” in its original physical context, and to discuss some of its appli-
cations for topics relevant to this workshop.

A starting point for the construction of models of Quantum Field Theory are
action principles based on Lagrangians (local functionals of space-time fields),
that implement physical principles of the mathematical description of reality. The
simplest possible model is the free massive real scalar field, say in 3+1 dimensions:

(1) S[φ] =

∫
d4x

(1
2
ηµν∂µφ∂νφ−

1

2
m2φ2

)
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The arena is Minkowski space R3,1 ∋ (xµ)µ=0,...3 with its metric ηµν , φ : R3,1 → R

is the scalar field, of mass m. Of importance is the invariance under the Poincaré
group G = L⋉R3,1, the semi-direct product of the Lorentz group L = O(3, 1) with
translations, generated geometrically by the action of the vector fields Pµ = ∂

∂xµ .
This is not the place to discuss the purpose of writing actions like (1). Suffice it

to mention some generalizations. Keeping with scalars, one may consider complex
fields, φ : R3,1 → C, or have several fields. In certain cases, those may live in a
curved target spaceM (a Riemannian manifold), which could also be endowed with
a potential function V : M → R, with suitable conditions. One may also enrich
the model with fields in other representations of L, internal symmetry groups, that
could be gauged, etc., etc. For a sensible physical model, one usually requires the
Lagrangian to be a real scalar with no explicit dependence on the coordinates xµ,
so as to preserve Poincaré invariance, locality, and unitarity.

For appreciating the possibility of a superpotential, one should be aware also
of the option of an additional modification, known as dimensional reduction. The
obtuse way of doing this is to declare some of the fields to be independent of one
of the coordinates, say x3. If ∂x3ϕ = 0, then we may consider actions

S[φ, ϕ] =

∫
d4xL(4)(φ, ϕ) +

∫
d3xL(3)(ϕ)

consisting of a 4-dimensional, and a 3-dimensional part. Note that such La-
grangians preserve 4-dimensional translational symmetry, but break the Lorentz-
group to its 3-dimensional version, and cannot be written as

∫
d4x without in-

troducing x3-dependence. The smarter way of going about dimensional reduction
is Kaluza-Klein compactification: One imagines that physical space is a product
R2,1 × S1, expands all fields in Fourier modes, and studies the physics at low
energies.

The very smart modification, of course, is supersymmetry, which is an extension
of the symmetry group by certain “odd square-roots” of the translations. Geomet-
rically, this can be achieved by replacing R3,1 with superspace R3,1|4 ∼= V ⊕ΠS, the
odd component of which carries a copy of the spin representation, S, of L = O(3, 1)
(V being the vector representation). One may use 4 real or 2 complex coordinates
for this, collectively denoted θ. The key to the geometry of supersymmetry are
the odd vector fields Q = ∂θ + θ /∂x, implementing supersymmetry according to
{Q,Q} = 2/P (using some hopefully suggestive notation).

The simplest models of supersymmetric quantum field theory are now based
justly on scalar superfields, Φ : R3,1|4 → C (the necessity to work with complex
fields will become clear momentarily), and an action ∼

∫
d4xd4θK(Φ, Φ̄). The

supersymmetry is obvious if K does not depend explicitly on the x and θ. A
feature of supersymmetry is that derivatives are already built into the supermulti-
plet structure, so an ordinary function K (with non-degenerate second derivative
∂Φ∂̄Φ̄K) will serve as kinetic term for Φ.

Now the key to the superpotential is to realize that the decomposition
S × C = S+ ⊕ S− and S+ ∧ S+ ∼= C allows splitting the invariant measure
d4θ = d2θd2θ̄ (using complex coordinates) into two measures that are separately
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Lorentz-invariant (albeit complex). The “obtuse” option of dimensional reduction
mentioned above now becomes acute. If W is a superfield independent of the anti-
holomorphic θ̄ (in an appropriate way, compatible with the torsion on R3,1|4), the
action

S[Φ] =

∫
d4xd4θK(Φ, Φ̄) +

∫
d4xd2θW(Φ) +

∫
d4xd2θ̄ W̄(Φ̄)

is also supersymmetric (i.e., invariant under Lorentz transformations, and super-
translations). Here we anticipated that W can only depend on Φ in a holomorphic
way, Φ itself must be a chiral field (i.e., independent of θ̄), and we have added the
complex conjugate of W to ensure that the action is real. Note that the superpo-
tential term in the action cannot be written as an integral over full superspace. In
general then, Φ takes values in a Kähler manifold, and K is the Kähler potential.

The superpotential is one of the central quantities in the study of supersym-
metric theories with 4 real supercharges, such as minimal supersymmetry in 4 di-
mensions. The other options of modifying the theory of course remain open. For
instance, we may reduce from 4 to 2 dimensions, thus obtaining the worldsheet
theory of the superstring. The target M in this case is the physical space-time
manifold, which must be ten-dimensional for consistency of the theory. Using
constructions of string theory, such as compactification, D-branes, fluxes, etc., we
may land back with an effective theory in 4-dimensions that has scalar fields and
supersymmetry, so may again carry a superpotential. In this situation, it is re-
warding to differentiate between the superpotential of the 2-dimensional theory
(called world-sheet superpotential, often denoted by W ), from the superpotential
of the 4-dimensional theory (called space-time superpotential, often denoted by
W).

Before proceeding with examples, some remarks are in order:
(i) The relation between Lagrangians and physical theories is just that—a relation.
One and the same physical theory may have different Lagrangian definitions, and
some physical theories have no Lagrangian description at all. Sometimes, infor-
mation encoded in the superpotential in one description is encoded in other data
in a dual description.
(ii) Mathematically of course, the superpotential is just a holomorphic function
(or, more often than not, a section of a line bundle), sometimes with additional
properties such as a degree of homogeneity, or other symmetries. The critical struc-
ture of this function (in the sense of singularity theory) determines the vacuum
structure of the physical theory.
(iii) Of interest to this workshop, interesting enumerative information is encoded
in the expansion of the superpotential around certain limit, often singular, points
in field space.

There is clearly a certain tension between (i) and (iii), from which much of the
richness of the superpotential derives. A few examples of this include:
1. The sigma model with target space CP1, and Kähler potentialK(z, z̄) = t ln(1+
|z|2) (no superpotential being possible in this case) is, according to Hori-Vafa,
mirror dual to the Landau-Ginzburg model on C∗ ∋ Y with superpotential W =
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Y + et/Y . This superpotential can be interpreted [2] as encoding the holomorphic
disks ending on a latitudinal circle on CP1 ∼= S2 (Y being the exponentiated area
of the disk on the North cap, et/Y that of the South cap).

2. The sigma model with target space the resolved conifold OP1(−1)⊕OP1(−1)
is mirror dual to a conic bundle over the plane C∗ × C∗ ∋ (X,Y ) defined by
F (X,Y ) = Y + etX/Y − 1 − X = UV , where (U, V ) ∈ C2. D-branes wrapped
on components of reducible fibers are mirror duals of Lagrangian submanifolds
invariant under a torus action on the conifold. According [3], the spacetime su-
perpotential associated with such a D-brane construction is W =

∫ p
lnX d lnY

given by the Abel-Jacobi map of the point p ∈ {F (X,Y ) = 0} on the spectral
curve over which the reducible fiber resides. This superpotential can be written as
W = Li2(Y ) + Li2(e

t/Y ), again counting the same disks as under 1., albeit with
slightly different weight.

3. Finally, consider the space-time superpotential W(a;ψ) = a3

3 − ψa. Ac-
cording [4], this is the space-time superpotential encoding the vacuum structure
on a D-brane wrapped on the real Fermat quintic threefold. The dynamical field
is a, and ψ is a parameter (related to the Kähler class of the quintic). The
only invariant information in this superpotential is the difference of critical values
W+ −W− ∼ ψ3/2, which encodes nothing less than the numbers of real rational
curves on the generic real quintic threefold.
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Informal discussion: Enumeration of nodal curves on surfaces in
non-linear systems

Maxim Kazarian

Let Nn(d) be the number of plane curves of degree d having n nodes and passing

through an appropriate number (to be precise,
(
d+2
2

)
− 1−n) of generic points on

the plane CP 2. Counting these numbers was one of the first non-trivial compu-
tations both in Gromov-Witten theory (Kontsevich and Manin [2], Caporaso and
Harris [3]) and in tropical geometry (Mikhalkin [4]). Consider the projective space

B = |O(d)| = CP (
d+2

2 )−1 of all degree d curves. Then Nn(d) is the degree of the
subvariety ∆n parameterizing all curves with n double points. In other terms, the
cohomology class represented by this subvariety is equal to

[∆n] = Nn(d)h
n ∈ H∗(B) = Z[h]

where h ∈ H2(B) is the class of the hyperplane.



Real Enumerative Questions in Complex and Tropical Geometry 1167

The subvariety ∆n is invariant under the natural action of the group PGL(3) of
projective linear transformations of the plane. One of the problems that we address
to in our discussion is the computation of the cohomology class represented by the
subvariety ∆n ⊂ B in the equivariant setting:

[∆n]PGL(3) ∈ H∗
PGL(3)(B).

The equivariant cohomology group H∗
PGL(3)(B) is much bigger then the usual

one and the above cohomology class carries much more information than just the
number Nn(d).

One of the reformulations of the problem is as follows. Replace the plane CP 2

by the total space of the projective bundle PE where E is a given rank 3 vector
bundle over some nonsingular base. Replace B by the total space of the projective
bundle P SymdE∨. This space parameterizes degree d curves on the fibers of PE.
We compute the cohomology class represented by the subvariety ∆n in P Symd E∨

consisting of n-nodal curves. This cohomology class [∆n] ∈ H∗(P Symd E∨) can
be written as a polynomial in the class h = c1(O(1)) and the Chern classes of the
bundle E. The coefficient of hn in this polynomial is equal to Nn(d), while the
other coefficients are subject to our computation.

In a more general setting, we consider an arbitrary generic family of curves
on surfaces, that is, a diagram of the form

H
j

−→W
π

−→ B,

where π is a locally trivial fibration with compact smooth 2-dimensional fibers
and j is an embedding of codimension 1. The genericity condition means that H
is smooth and generally embedded. We regard B as the parameter space: to each
parameter value we associate a surface (the fiber of π) and a curve on it (the one
cut off by the hypersurface H).

The Kleiman-Piene conjecture [5] is an explicit formula for the cohomology
class [∆n] represented by the cycle of n-nodal curves ∆N ⊂ B in this general
setting. This formula involves a sequence of universal polynomials Rn(u, c1, c2)
with rational coefficients, n = 1, 2, . . . . The polynomial Rn is called the residual
polynomial. It has the quasihomogeneous degree n−1 with respect to the grading
with deg u = 1, deg ci = i. In fact, the conjecture postulates the existence of these
polynomials, while their explicit values are subject to further computations.

The variables u, c1, c2 have the meaning of certain cohomology classes on W
related to the problem. Namely, u = [H ] is the class of the divisor H , and ci are
the Chern classes of the relative tangent bundle for the fibration π.

We propose [1] an algorithm for the explicit computation of the residual
polynomials. The idea is to restrict the Kleiman-Piene formula to the universal
unfoldings of quasihomogeneous plane curve singularities. One can list explicitly
the cases when ∆n is empty and thus deg∆n = 0. Every such case provides a
linear equation on the (unknown) coefficients of Rn. Resolving these equations
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one gets explicitly the coefficients of Rn:

R1 = 1,

2R2 = − u+ 6 (c1 − u),

3R3 = u
2 + (60 c1 − 68 u) (c1 − u),

4R4 = − u
3 + (840 c21 − 156 c2 − 1582 c1u+ 803 u2) (c1 − u),

. . .

Substituting the found polynomials to the Kleiman-Piene formula one gets the
answer in the particular enumerative problems, for example, in the one formulated
at the beginning of this abstract.

The proposed algorithm has the following peculiar properties:
1) The algorithm is simple, efficient, and reliable. It is interesting that it

gets an answer in a huge variety of geometric problems without detailed geometric
study of any of them! The computation is absolutely formal. There is no place
in it to miss strata or miscalculate multiplicities or signs: it uses just a simple
combinatorics of the Newton polygons of the quasihomogeneous singularities. The
actual code of the implemented (Mathematica) program contains about 10 lines.
It reduces essentially to solving a linear system of equations of big size. The
obtained system of equations is highly overdetermined, and the very its consistency
is surprising enough. Some impression about these systems can be obtained from
the following table.

n 2 3 4 5 6 7 8 9 10 · · · 19 20
# of unknown
coefficients of Rn

1 2 4 6 9 12 16 20 25 90 100

# of equations on
these coefficients

1 3 8 14 18 27 36 41 51 143 157

2) The algorithm is not completely justified since it is based on a conjec-
ture which is not yet proved in its full generality (Kleiman and Piene announced
its proof for n ≤ 8 [5]). This fact does not contradict to the mentioned above reli-
ability of the algorithm since numerous computational, geometric, and topological
evidences leave no doubts in the validity of the conjecture.

3) The algorithm leads to the answer for ≤ 19 only. For n ≥ 20 the
obtained linear system has no full rank (for some unclear reason) leaving several
coefficients of Rn undetermined.

Remarks. 1. For the case of a linear system of divisors on a fixed surface, the
degree of the ∆n-stratum is uniquely determined by the first four coefficients a0,0,
a1,0, a2,0, and a0,1 in the polynomial

Rn = a0,0u
n−1 + a1,0c1u

n−2 + a2,0c
2
1u

n−3 + a0,1c2u
n−3 + . . . ,

and the Kleiman-Piene conjecture reduces in this case to the Göttsche con-
jecture [6]. Thus, all known results on enumeration of nodal curves on fixed
surfaces determine only 4 out of all coefficients in each residual polynomial Rn.
It shows that the problem of counting of nodal curves in general families cannot
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be reduced, in general, to the special case of counting nodal curves in a linear
system on a fixed surface. Combining the above mentioned algorithm with the
known results on nodal curves in linear systems one can extend the computation
of the polynomials Rn up to n = 23. Starting from n = 24 the knowledge of the
coefficients a0,0, . . . , a0,1 is not sufficient to identify all coefficients of Rn.

2. The genericity condition is essential. It is an open condition but its verifi-
cation is in general not so simple. For example, for counting plane nodal curves
the universal formula predicts Nn(d) as a polynomial in d for each fixed n. This
polynomial provides a correct answer if d is big enough (presumably, for d > n/2).
For small d the value of the polynomial does not equal to Nn(d) and even can
be negative. This remark shows that the formula of Kleiman and Piene does not
pretend to cover the enumeration of nodal curves in all known cases.
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Informal discussion: Amoebas, coamoebas, and hypergeometric
monodromy

Mikael Passare

We present some results, obtained with Lisa Nilsson and August Tsikh, on the rep-
resentation of A-hypergeometric functions in terms of Γ-series and Mellin–Bernes
integrals.

TheA-hypergeometric systemHA(β) is determined by an integer (n×N)-matrix
A and a homogeneity vector β ∈ Cn. We assume the columns of A generate the
lattice Zn, and the rows of A contain the vector (1, 1, . . . , 1) in their span. The
vector β is assumed to be generic. One fixes a Gale dual of A, that is, an integer
(N × d)-matrix B, where d = N − n, whose columns give a basis for the kernel of
A. The rows of B are denoted b1, b2, . . . , bN .

By choosing suitable vectors γ ∈ CN , with Aγ = β, one can produce Γ-series
solutions to HA(β) of the form

Φγ(z) =
∑

k∈Zd

N∏

j=1

z
γj+bjk
j

Γ(1 + γj + bjk)
,
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and since d of the γj are chosen to be integers, the summation actually only takes
place in a convex subcone of the lattice Zd. For any choice of maximal minor AI

of A, there will be µI = | detAI | different such Γ-series, and we describe their
convergence domains in terms of the connected components of the complement
RN \AEA

of the amoeba of the full A-discriminant EA, also known as the principal
A-determinant.

More precisely, each connected component corresponds to a regular triangula-
tion of the convex hull Q(A) of the point configuration A, and a Γ-series corre-
sponding to a simplex AI converges in the union of those complement components
for which the associated triangulations contain the simplex AI .

An alternative representation of solutions to the system HA(β) is in terms of
Mellin–Barnes integrals of the form

MB(z) =

∫

iRd

N∏

j=1

Γ(−γj − bjs) z
γj+bjs
j ds1 ∧ ds2 ∧ . . . ∧ dsd .

Here we assume that all the γj have negative real part. This can be achieved
by adding an integer vector to the homogeneity vector β if necessary, and such a
translation does not change the monodromy properties of the system HA(β).

A key observation is that the above Mellin–Barnes integral has quite a large
domain of convergence, determined by the arguments θj of the variables zj. In
fact, letting the row vectors bj also denote the line segments connecting the origin
to the point bj ∈ Zd, we form the zonotope ZB = πb1+ . . .+πbN as the Minkowski
sum of the dilated segments. The convergence domain of the integral MB(z) is
then given by all argument vectors θ for which the product θB is contained in the
interior of the zonotope ZB.

There is a close relation, so far only proved for d ≤ 2, between the zonotope and
the coamoeba A′

DB
of the reduced discriminant DB. Namely, the coamoeba A′

DB

and the zonotope ZB, when considered as chains, together give a µ-fold cover of the
torus Td. Here µ is the normalized volume of Q(A), which is also known to be the
dimension of the solution space to the system HA(β). This implies in particular
that if the complement of the coamoeba is non-empty, then the Mellin–Barnes
integral produces a full basis of solutions to HA(β).

In a recent paper Frits Beukers has made use of the existence of such Mellin–
Barnes bases of solutions as a combinatorial approach to the study of the mon-
odromy of A-hypergeometric functions. His idea is to let the Mellin–Barnes basis
connect the various local monodromy groups, obtained by letting ZN act by co-
ordinatewise angular loops on the Γ-series Φγ . Since this action just amounts to
multiplying each series with a suitable exponential, and since the transition from
one Mellin–Barnes basis element to another is also effectuated by purely angular
moves, it is possible in this way to get a grip on the transition matrices between
the Γ-series bases and the Mellin–Barnes integral bases. Beukers conjectures that
the group generated by such transitions is in fact the full monodromy group for
the system HA(β).
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