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Introduction by the Organisers

The workshop Geometric Methods of Complex Analysis attracted 53 researchers
from 16 countries. Both, leading experts in the field and young researchers (in-
cluding five Ph. D. students) were well represented in the meeting and gave talks.
Rather wide spectrum of topics related to Complex Analysis (and this was one
of the aims of the workshop) was covered by the talks and unformal discussions.
All 24 lectures presented on the meeting can be conditionally divided into the
following groups.

Symplectic and Contact Geometry was represented by talks of H. Geiges and
V. Shevchishin. Geiges explained Eliashberg’s idea for proving Cerf’s theorem
which is based on the method of filling with holomorphic discs. Shevchishin gave
a description of the diffeotopy group of a rational or ruled complex surface.

Almost Complex Geometry was represented by the talks of B. Saleur and A.
Gournay (both being young researchers). Saleur described a generalization of the
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classical Borel’s and Bloch’s theorems to the case of a smooth almost complex
structure on P2 which is tamed by the Fubini-Study form. Gournay presented a
generalization of the Runge approximation theorem for the case of (pseudo-) holo-
morphic maps from a compact Riemann surface to a compact (almost-) complex
manifold.

Pluripotential Theory and the Monge-Ampère equation is an important topic
which was well represented on the meeting. Four lectures in this area were given
by V. Guedj, S. Boucksom, L. Lempert and D. Coman. Guedj presented a solu-
tion of the analogue of the Calabi conjecture in a big cohomology class inspired
by viscosity techniques. Boucksom explained a variational approach to complex
Monge-Ampère equations which gives characterization of Kähler-Einstein metrics
and has applications to the Kähler-Ricci flow. Lempert presented a result on
nonexistence (in general) of geodesics connecting two given points in the space
of Kähler metrics. This solves a long standing open problem connected to ex-
tremal metrics on Kähler manifolds. Coman described a result on extension of
plurisubharmonic functions from analytic subvarieties with sharp growth control.

Complex Dynamics was represented by the talks of N. Sibony, H. Peters and
E. Bedford. Sibony presented results on finiteness of entropy of a meromorphic
map of a compact Kähler manifold and of foliations by Riemann surfaces. In the
first case he has also provided a bound for entropy by the maximum of the loga-
rithm of the dynamical degrees. Peters explained the role of limit varieties for a
Fatou component for selfmaps in two complex variables. For holomorphic endo-
morphisms he gave a classification of the Fatou components under the assumption
of uniqueness. Bedford discussed periodicities and positivity of entropy for linear
fractional recurrences in 3-space.

Geometric Questions of Complex Analysis including Theory of Foliations and
Applications were represented by the talks of S. Ivashkovich, H. Samuelsson, F.
Kutzschebauch, D. Popovici, B. Jöricke, J. Globevnik, G. Bharali, G. Henkin, E.
Rousseau and S. Orevkov. Ivashkovich presented (for any given integer d ≥ 1)
an example of a rational self-map f : P2 → P2 of degree d without holomorphic
fixed points. He also described different topologies on the space of meromorphic
maps. Samuelsson described a generalization of classical theorems by Čirka and
Axler-Shields to the multidimensional case. Kutzschebauch gave a complete pos-
itive solution of Gromov’s Vaserstein problem. Namely, he proved the existence
of holomorphic factorization of null-homotopic holomorphic mappings from a re-
duced Stein space into SLn(C) in a product of upper and lower diagonal matrices.
Popovici presented the new concept of “strongly Gauduchon manifold” and ex-
plained how using this concept one can prove a long-standing conjecture: if all
the fibres, except of one, of a holomorphic family of compact complex manifolds
are projective, then the remaining fibre is Moishezon. Jöricke gave a sharp lower
bound of the 4-ball genus of an arbitrary analytic knot L contained in a small
tubular neighborhood of a given smoothly analytic knot K in terms of the 4-ball
genus of K and the “Umlaufszahl” of L with respect to K. Globevnik character-
ized pairs of points a, b in C2 having the property that if a function f ∈ C∞(bB),
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where B is the open unit ball in C2, extends holomorphically inside B along each
complex line passing either through a or through b, then f extends holomorphically
to the whole of B. Bharali explained how to achieve pseudoconvex bumping near
a weakly pseudoconvex boundary point of some finite-type pseudoconvex domains
in C3. Henkin presented recent results in the theory of complex Radon transforms
and their applications. Rousseau described his work on holomorphic mappings
f : Cp → X of generic maximal rank into a projective manifold of dimension n,
such that the image of f is tangent to a foliation F on X . He also discussed a
generalized Green-Griffiths-Lang conjecture and presented several results of alge-
braic degeneracy in the strong sense. Orevkov explained how using the projective
duality of plane projective complex curves one can give a complete solution to the
problem of classification of systems of orthogonal polynomials in two variables.

The ∂̄-equation and Geometry were represented by the talks of T. Ohsawa, J.
Ruppenthal and M. Andersson. Ohsawa presented his results related to pseudo-
convexity, the variation of the Bergman kernels and Levi flat manifolds which were
based on refined L2-theorems. Ruppenthal explained how L2-Dolbeault cohomol-
ogy groups H0,q

(2) (X − SingX) can be described by the cohomology of the sheaf of

germs of meromorphic functions with poles according to a certain effective divi-
sor on a resolution π : N → X of a singular space. Andersson discussed global
division problems on algebraic varieties and presented generalizations to singular
varieties of various results previously known for smooth varieties. He also gave an
analytic proof of the Briançon-Skoda-Huneke theorem and combining the residue
theory with integral formulas he obtained semiglobal Koppelman formulas for ∂̄
on analytic spaces.
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Abstracts

Viscosity solutions to degenerate complex Monge-Ampère equations

Vincent Guedj

(joint work with P. Eyssidieux and A. Zeriahi)

Pluripotential theory lies at the fundation of the approach to degenerate com-
plex Monge-Ampère equations on compact Kähler manifolds as developed in [11],
[9], [15], [5] and many others. This method is global in nature, since it relies on
some delicate integrations by parts.

On the other hand, a standard PDE approach to second-order degenerate ellip-
tic equations is the method of viscosity solutions, see [6] for a survey. This method
is local in nature - and solves existence and unicity problems for weak solutions
very efficiently. Our main goal in this article is to develop the viscosity approach
for complex Monge-Ampère equations on compact complex manifolds.

Whereas the viscosity theory for real Monge-Ampère equations has been devel-
oped by P.L. Lions and others (see e.g.[13]), the complex case has not been studied
until very recently. There is a viscosity approach to the Dirichlet problem for the
complex Monge-Ampère equation on a smooth hyperconvex domain in a Stein
manifold in [12]. This recent article does not however prove any new results for
complex Monge-Ampère equations since this case serves there as a motivation to
develop a deep generalization of plurisubharmonic functions to Riemannian mani-
folds with some special geometric structure (e.g. exceptional holonomy group). To
the best of our knowledge, there is no reference on viscosity solutions to complex
Monge-Ampère equations on compact Kähler manifolds.

There has been some recent interest in adapting viscosity methods to solve
degenerate elliptic equations on compact or complete Riemannian manifolds [2].
This theory can be applied to complex Monge-Ampère equations only in very
restricted cases since it requires the Riemann curvature tensor to be nonnegative.
Using [14], a compact Kähler manifold with a non-negative Riemannian curvature
tensor has an étale cover which is a product of a symmetric space of compact type
(e.g.: Pn(C), Grassmannians) and a compact complex torus. In particular, [2]
does not allow in general to construct a viscosity solution to the elliptic equation:

(DMA)ω,v (ω + ddcϕ)n = eϕv

where ω is a smooth Kähler form and v a smooth volume on a general n-
dimensional compact Kähler manifold X . A unique smooth solution has been
however known to exist for more than thirty years thanks to the work of Aubin
and Yau, [1] [16]. This is a strong indication that the viscosity method should
work in this case to produce easily weak solutions

We confirm this guess, define and study viscosity solutions to degenerate com-
plex Monge-Ampère equations. Our main technical result is:
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Theorem A. Let X be a compact complex manifold, ω a continuous closed real
(1,1)-form with C2 local potentials and v > 0 be a volume form with continuous
density. Then the viscosity comparison principle holds for (DMA)ω,v.

The viscosity comparison principle differs substantially from the pluripotential
comparison principle of [3] which is the main tool in [11], [10], [9]. This technical
statement is based on the Alexandroff-Bakelmann-Pucci maximum principle. We
need however to modify the argument in [6] by a localization technique.

Although we need to assume v is positive in Theorem A, it is then easy to
let it degenerate to a non negative density in the process of constructing weak
solutions to degenerate complex Monge-Ampère equations. We obtain this way
the following:

Corollary B. Assume X is as above, v is merely semi-positive with
∫
X v > 0.

If ω ≥ 0 and
∫
X
ωn > 0, then there is a unique viscosity solution ϕ ∈ C0(X) to

(DMA)ω,v.
If X is a compact complex manifold in the Fujiki class, it cöıncides with the

unique locally bounded ω-psh function ϕ on X such that (ω + ddcϕ)nBT = eϕv in
the pluripotential sense [9].

Recall that ϕ is ω-plurisubharmonic (ω-psh for short) if it is an u.s.c. integrable
function such that ω + ddcϕ ≥ 0 in the weak sense of currents.

It was shown in this context by Bedford and Taylor [3] that when ϕ is bounded,
there exists a unique positive Radon measure (ω + ddcϕ)nBT with the following
property: if ϕj are smooth, locally ω-psh and decreasing to ϕ, then the smooth
measures (ω+ddcϕj)

n weakly converge towards the measure (ω+ddcϕ)nBT . If the
measures (ω+ ddcϕj)

n (locally) converge to eϕv, we say that (ω+ ddcϕ)nBT = eϕv
holds in the pluripotential sense.

Combining pluripotential and viscosity techniques, we can push our results
further and obtain the following:

Theorem C. Let X be a compact complex manifold in the Fujiki class. Let v
is be a semi-positive probability measure with Lp-density, p > 1, and fix ω ≥ 0 a
smooth closed real semipositive (1, 1)-form such that

∫
X
ωn = 1. The unique locally

bounded ω-psh function on X normalized by
∫
X ϕ = 0 such that its Monge-Ampère

measure satisfies (ω + ddcϕ)nBT = v is continuous.

This continuity statement was obtained in [9] under a regularization statement
for ω-psh functions that we were not able to obtain in full generality. It could
have been obtained using [2] in the cases covered by this reference. However,
for rational homogeneous spaces, the regularization statement is easily proved by
convolution [7] and [2] does not give anything new. A proof of the continuity when
X is projective under mild technical assumptions has been obtained in [8].

Let us stress some advantages of our method:

• it gives an alternative proof of Kolodziej’s C0-Yau theorem which does not
depend on [16].
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• it allows us to easily produce the unique negatively curved singular Kähler-
Einstein metric in the canonical class of a projective manifold of general
type, a result obtained first in [9] assuming [4], then in [5] by means of
asymptotic Zariski decompositions.

We hope that the technique developed here will have further applications. In a
forthcoming work it will be applied to the Kähler-Ricci flow.
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Cerf’s theorem and other applications of the filling with holomorphic
discs

Hansjörg Geiges

(joint work with K. Zehmisch)

The abelian group Γn of orientation preserving diffeomorphisms of the (n− 1)-
dimensional sphere Sn−1 modulo those that extend to a diffeomorphism of the
n-ball Dn plays an important role in differential topology. By the classical work of



1056 Oberwolfach Report 19/2011

Kervaire–Milnor on homotopy spheres and Smale’s solution of the higher-dimensio-
nal Poincaré conjecture, Γn can be identified with the set of oriented smooth
structures on the topological n-sphere for n ≥ 5. The correspondence is given
by associating with [f ] ∈ Γn the smooth structure on Sn obtained by using the
diffeomorphism f of Sn−1 to glue two copies of Dn along their boundary.

It is easy to see that Γ1 and Γ2 are trivial. The result Γ3 = 0 is due inde-
pendently to Munkres and Smale. For n ≥ 5, the groups Γn are amenable to
computation by the results of Kervaire–Milnor, for instance Γ5 = Γ6 = 0, and Γ7

is the cyclic group of order 28.
The statement Γ4 = 0 is known as Cerf’s theorem [1]. One consequence of this

result is that there are no exotic smooth structures on S4 that can be obtained by
gluing two 4-discs.

In [3] Eliashberg proposed an ingenious proof of Cerf’s theorem based on his
classification of contact structures on S3 and his method of filling with holomorphic
discs [2].

In this talk I present Eliashberg’s idea for proving Cerf’s theorem and our
alternative approach [4] to the filling with holomorphic discs in a moduli-theoretic
framework. Eliashberg’s key observation is that it suffices to prove the extension
result for contactomorphisms of the standard contact structure on S3. In our
setting, this extension is given ‘explicitly’ by an evaluation map on a suitable
moduli space of holomorphic discs with totally real boundary conditions.

In current work [5] we apply the method of filling with holomorphic discs to a 4-
dimensional symplectic cobordism with the standard contact 3-sphere as a convex
boundary component. The corresponding moduli space of holomorphic discs is
either compact, in which case the symplectic cobordism has to be the 4-ball, or
there is non-compactness caused by bubbling-off of holomorphic discs or breaking,
in which case there have to be periodic Reeb orbits in the concave boundary of
the symplectic cobordism.

As corollaries we can derive a number of classical results in 4-dimensional sym-
plectic resp. 3-dimensional contact topology. These include various instances of
the Weinstein conjecture and, via the definition of a new symplectic capacity,
Gromov’s symplectic non-squeezing.
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Entropy for hyperbolic Riemann surface laminations

Nessim Sibony

(joint work with T.-C. Dinh, V.-A. Nguyên)

Consider the polynomial differential equation in C2

dz

dt
= P (z, w),

dw

dt
= Q(z, w).

The polynomials P and Q are holomorphic, the time is complex. We want to study
the global behavior of the solutions. It is convenient to consider the extension as
a foliation in the projective plane P 2. Our main goal is to introduce a notion of
entropy for possibly singular compact hyperbolic foliations by Riemann surfaces in
complex manifolds. We also study the transverse regularity of the Poincaré metric
and the finiteness of the entropy.

The multidimensional example to have in mind is the case of a polynomial
vector field in Ck. It induces, as above, a foliation by Riemann surfaces in the
complex projective space Pk. We can consider that this foliation is the image of
the foliation in Ck+1 given by the vector field

F (z) :=

k∑

j=0

Fj(z)
∂

∂zj

with Fj homogeneous polynomials of degree d ≥ 2. The singular set corresponds to
the union of the indeterminacy points of F = [F0 : · · · : Fk] and the fixed points of
F in Pk. The nature of the leaves as abstract Riemann surfaces has received much
attention. Glutsyuk [12] and Lins Neto [18] have shown that on a generic foliation
F of degree d the leaves are covered by the unit disc. We then say that the
foliation is hyperbolic. More precisely, Lins Neto has shown that this is the case
when all singular points sing(F ) have non degenerate linear part. He constructs
on Pk \ sing(F ) a metric which has strictly negative curvature along leaves. In [6]
Candel-Gomez-Mont have shown that if all the singularities are hyperbolic, the
Poincaré metric on leaves is transversally continuous.

Some dynamical results on such foliations are obtained in [10, 11, 8]. In partic-
ular, in [8] we obtain a geometric Birkhoff type theorem for harmonic measures.

Concerning the Poincaré metric we give two results about the transverse reg-
ularity. In the first one we show that if (X,L ) is a C 2+δ-Riemann surface lam-
ination without singularities in a complex manifold M, then the Poincaré metric
is transversally Hölder continuous. The result holds also for abstract compact
C 2+δ-hyperbolic Riemann surface laminations. We give an estimate of the expo-
nent of Hölder continuity in geometric terms. When we consider a foliation with
linearizable singularities we give a precise estimate of the modulus of continuity of
the Poincaré metric in the transverse directions. The main tool is to use Beltrami
equation in order to construct the universal covering of any leaf Lb near a given
leaf La. We first construct a non-holomorphic parametrization Φ from La to Lb

with geometric estimates and then modify Φ, using Laplace-Beltrami, to obtain a
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holomorphic map that we can explicitly compare with a universal covering map
τb : D→ Lb.

Our second concern is to define the entropy of hyperbolic foliation possibly with
singularities. A notion of geometric entropy for regular Riemannian foliations was
introduced by Ghys-Langevin-Walczak [13], see also Candel-Conlon [4, 5] and Wal-
czak [19]. It is related to the entropy of the holonomy pseudogroup, which depends
on the chosen generators. The basic idea here is to quantify how much leaves get
far apart transversally. The transversal regularity of the metric on leaves and the
lack of singularities play a role in the finiteness of the entropy. Ghys-Langevin-
Walczak show in particular that when the geometric entropy vanishes, the foliation
admits a transverse measure. The survey by Hurder [15] gives an account on many
important results in foliation theory and contains a large bibliography.

Our notion of entropy joins a universal concept which contains a large number
of classical situations. An interesting fact is that this entropy is related to an
increasing family of distances as in Bowen’s point of view. This allows us for
example to introduce other dynamical notions like local entropies or Lyapounov
exponents.

We first introduce a general notion of entropy on a metric space (X, d). To a
given family of distances (distt)t≥0 is associated an entropy which measures the
growth rate of the number of balls of small radius ǫ in the metric distt needed
in order to cover the space X when t tends to infinity. For hyperbolic Riemann
surface foliations we define

distt(a, b) := inf
θ∈R

sup
ζ∈Dt

distX(τa(e
iθζ), τb(ζ)).

Here, τa, τb are universal covering maps for the leaves through a and b respectively
(i.e. τa(0) = a, τb(0) = b), and Dt is, as usual, the disc of center 0 and of radius
t with respect to the Poincaré metric on D. The metric distt measures how far
two leaves get apart before the hyperbolic time t. It takes into account the time
parametrization. So, we are not just concerned with geometric proximity. We
introduce a general notion of geometric and metric entropy, which permits to
describe some natural situations in dynamics and in foliation theory.

Let X be a metric space and distX a distance on X . Consider a family D =
{distt} of distances on X indexed by t ∈ R+ such that dist0 = distX and distt
is increasing with respect to t > 0. Let Y be a non-empty subset of X . Denote
by N(Y, t, ǫ) the minimal number of balls of radius ǫ with respect to the distance
distt needed to cover Y. Define the entropy of Y with respect to D by

hD(Y ) := sup
ǫ>0

lim sup
t→∞

1

t
logN(Y, t, ǫ).

Observe that N(Y, t, ǫ) is increasing with respect to t > 0, and that

lim sup
t→∞

1

t
logN(Y, t, ǫ)

is increasing when ǫ decreases.
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We will show that our entropy is finite for compact hyperbolic lamination which
are transversally of class C 2+δ for some δ > 0 and also for compact foliations
with hyperbolic singularities in complex surfaces. The notion of entropy can be
extended to Riemannian foliation and a priori it is bigger than or equal to the
geometric entropy introduced by Ghys, Langevin and Walczak.

As for the tranverse regularity of the Poincaré metric, the main tool is to esti-
mate the distance between leaves using the Beltrami equation in order to go from
geometric estimates to the analytic ones needed in our definition. The advantage
here is that the hyperbolic time we choose is canonical. So, the value of the entropy
is unchanged under homeomorphisms between laminations which are holomorphic
along leaves.

The proof that the entropy is finite for singular foliations is quite delicate and
requires a careful analysis of the dynamics around the singularities. If we consider
a neighborhood of a singular point, there are infinitely many leaves which are
geometrically ǫ-apart. But if we use hyperbolic time, they do not get ǫ-apart at a
bounded hyperbolic time. The number of Bowen balls (t-balls) of radius ǫ, close
to the separatrices is finite and it has however to be estimated carefully. Indeed,
we need that the orbits of two points in the same ball stay ǫ-close until time R.
Near a singularity this requires the ball to be of diameter, with respect to the

ambient metric, smaller than ǫe
R

. The shape of balls changes close to separatrices
and away from separatrices; it also changes as R increases.

To overcome this difficulty, at each time R we construct a partition of the space
in a controllable number of cells such that given two points in the same cell we
can define a parametrization from one point to another. The technical point is
the concept of closedness to a family of points. The interesting point here is that
the shape of such a cell reflects how often the orbits of its points travel near the
singularity set of the foliation. Given 0 < ǫ < 1 and R ∈ N, we construct a special
system of flow boxes of diameter smaller than ǫ. They have the property that two
points in the same flow box are (R, ǫ)-close. To such a flow box we associate a
special transversal. Then, we introduce a system of translations on leaves and by
induction on R we construct the subdivision valid until time R + 1 The problem
is the counting of the number of flow boxes needed. We have to take into account
the geometry near a singularity, its influence when the time R increases and also
the fact that the flow boxes have different shape according to their situation with
respect to the separatrices. We get the final estimate using Laplace-Beltrami
equation. So far, we have been able to do this for singular foliations only in
dimension 2.
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On fixed points and convergence of meromorphic mappings

Sergey Ivashkovich

1. Fixed points of meromorphic self-maps

Let U and X be complex manifolds, X will be supposed to be compact. A
meromorphic map f : U → X can be viewed as a holomorphic map f : U \A→ X ,
where A is an analytic subset of U of codimension ≥ 2, such that the graph of f
extends to an analytic subvariety of the product U × X . This extension will be
denoted as Γf and called the graph of the meromorphic mapping f . The smallest
A such that f is holomorphic on U \A is called the indeterminacy set of f and is
denoted as If .
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Let f : X → X be a meromorphic self-map of a compact complex manifold.
The topological degree of f is the number of preimages of a generic point. A
meromorphic fixed point of f is a point p ∈ X such that p ∈ f [p]. Here by f [p]
one means the full image of p by f : f [p] := Γf ∩ ({p} ×X). If X = PN then by
obvious homological reasons Γf intersects the diagonal D in PN × PN . Therefore
meromorphic fixed points for any f : PN → PN always exist.

A point p ∈ X is said to be a holomorphic fixed point of f , if f is holomorphic
in a neighborhood of p and f(p) = p. Our first goal in this talk is to explain the
following:

Theorem 1.1. For any given integer d ≥ 1 there exist rational self-maps f : P2 →
P2 of degree d without holomorphic fixed points.

One of the reasons for the interest in fixed points of meromorphic maps lies in
the attempt to understand what should be an analog of a Lefschetz Fixed Point
Formula in meromorphic case, see [1]. Another one comes from higher dimensional
meromorphic dynamics.

Note. I heard of the question whether any rational self-map of P2 has a holo-
morphic fixed point for the first time in the talk of J.-E. Fornaess on the “Colloque
en l’honneur de P. Dolbeault” in Paris, June 1992.

2. Topologies on the space of meromorphic maps

One might ask what is the structure of the set FFix(X) of holomorphic fixed
point free meromorphic self-maps of X? An attempt to answer this question
confronts with the observation that there are several natural topologies on the
spaceM(U,X) of meromorphic maps between complex manifolds. The first is the
strong one: fn strongly converge to f (s-converge) if their graphs Γfn converge
to the graph Γf of f in Hausdorff metric (or, in the cycle topology, which is
equivalent in this case). Denote by DFix(X) the subset of the spaceM(X,X) of
meromorphic self-maps of X which consists of the maps with a curve of holomorphic
fixed points (i.e., in some sense they are degenerate maps). DFix(X) is a closed
subset ofM(X,X)s. One can prove the following:

Theorem 2.1. The set FFix(X) ∪ DFix(X) is closed in M(X,X) in strong
topology. I.e., a sequence of holomorphic fixed point free meromorphic mapping
converge either to a holomorphic fixed point free meromorphic map, or to a map
with a curve of fixed points.

Notice that by the Theorem 1.1 the set FFix(P2)∪DFix(P2) is a proper subset
ofM(P2,P2). Strong topology has several nice features. A part of Theorem 2.1 one
can prove that for compact U and X the spaceM(U,X)s is a finite dimensional
analytic space in a neighborhood of each of its points. Also s-convergence is well
related with the usual notion of convergence of holomorphic mappings:

Theorem 2.2 (Rouché principle). Let a sequence of meromorphic mappings {fn}
between complex manifolds U and X strongly converge to a meromorphic map f .
Then:
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(a) If f is holomorphic then for any relatively compact open subset U1 ⊂ U all
restrictions fn|U1 are holomorphic for n big enough, and fn → f on compacts in
U .
(b) If fn are holomorphic then f is also holomorphic and fn → f in the usual
sense.

The bad thing about the strong topology is that the domains of strong con-
vergence can be arbitrary, in particular non-pseudoconvex. This can be corrected
in the following way. We say that fn converge weakly to f (w-converge) if there
exists an analytic subset A in X of codimension at least two such that fn converge
strongly to f on U \A.

Remark 2.3. From the Rouché Principle it follows that fn converge weakly to f
if and only if for every compact of U \ If all fn are holomorphic in a neighborhood
of this compact for n big enough and converge there uniformly to f as holomorphic
mappings.

Domains of weak convergence of meromorphic mappings turn to be pseudocon-
vex for a large class of target manifolds. This follows from the following “prop-
agation principle”. Suppose that the compact complex manifold X possesses a
ddc-closed (or Gauduchon) metric form (ex. X is Kähler, or any compact complex
surface).

Theorem 2.4. Let U be a domain in a Stein manifold and let fn : U → X be a
weakly converging to f : U → X sequence of meromorphic mappings.
(a) If all fn meromorphically extend to the envelope of holomorphy ∧U of U then
f extends to ∧U to and these extensions weakly converge on ∧U to the extension
of f ;
(b) And vice versa, if the weak limit f on fn meromorphically extends to ∧U then
all fn extend to ∧U and weakly converge there.

Using certain area-volume estimates for meromorphic graphs one can prove that
the graphs of a weakly converging sequence of meromorphic maps with values in
Gauduchon manifold have uniformly bounded volume (over compacts in U). That
means that the limit Γ := limΓfn naturally decomposes as

Γ = Γf ∪
⋃

j

Γj(1)

where Γf is a graph of some (uniquely defined) meromorphic mapping and each
Γj is an analytic set in U ×X of pure dimension dimU which properly projects
to an analytic subset γj of U of dimension 0 ≤ j ≤ dimU − 2. We call Γj the
exceptional components of the limit.

This leads to one more natural notion of convergence: we say that fn Γ-converge
if the sequence of graphs Γfn converge in the topology of cycles. Then we have the
same decomposition as in (1), only the dimension of γj can reach dimU − 1, i.e.,
the bubbling can occur over a divisor. Moreover one can determine the structure
of the exceptional components of the limit:
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Theorem 2.5. Let fn : U → X converge to f : U → X in Γ-topology, then for
every a ∈ γ :=

⋃
0≤j≤dimU−1 γj the fiber pr|−1

Γ (a) is rationally connected.

3. The case of projective manifolds

It is instructive to understand the various notions of convergence of meromor-
phic mappings on the example X = PN . Every meromorphic mapping f with
values in complex projective space can be locally represented as

f(z) = [f0(z) : ... : fN(z)](2)

with holomorphic f0, ...fN . This representation we call reduced if f j have no
common divisors. In that case

If = {f0(z) = ... = fN (z) = 0}.(3)

Proposition 3.1. (a) A sequence {fn} of meromorphic mappings from a complex
manifold D to PN converge weakly to a meromorphic map f if and only if for
any point x0 ∈ D there exists a neighborhood U ∋ x0 and reduced representations
fn = [f0

n : ... : fN
n ], f = [f0 : ... : fN ] such that for every 0 ≤ j ≤ N the sequence

f j
n converge to f j uniformly on U.
(b) {fn} converge in Γ-topology if the limit f = [f0 : ... : fN ] is not necessarily
reduced.

The convergence as in (b) for the case of PN was studied by H. Fujimoto, see
[2].

4. Fatou sets

The case of special interest is when the family F is the family of iterates fn :=
f ◦ ... ◦ f of some fixed meromorphic self-map of a compact complex manifold X .
The maximal open subset of X where {fn} is relatively compact is called the Fatou
set of f . Depending on the sense of convergence that one wishes to consider one
gets several different Fatou sets: strong, weak or gamma Fatou sets. We denote
them as Φs, Φw and ΦΓ respectively.

Theorem 4.1. Let f be a meromorphic self map of a compact complex surface.
Then the weak Fatou set Φw of f is pseudoconvex. If Φs is different from Φw then:
a) X is bimeromorphic to P2,
b) Φw = P2 \ C, where C is a chain of rational curves;
c) the weak limit of any weakly converging subsequence {fnk

} of iterates is degen-
erate.

It should be pointed out that our Fatou sets are different from the Fatou sets
as they are usually understood in meromorphic dynamics, see ex. [2]. There

the Fatou set of f is the maximal open subset Φ of X \
⋃

n=0∞ f−n(If ) where
the family fn is equicontinuous. If, for example, f : P2 → P2 is the Cremona
transformation [z0 : z1 : z2] 7→ [z1z2 : z0z2 : z0z1] then Φs = Φw = ΦΓ = P2 but
Φ = P2 \ {three lines}.
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Uniform algebras and approximation on manifolds

Hakan Samuelsson

(joint work with E. F. Wold)

Wermer’s classical maximality theorem, [6], can be stated as follows: Let f ∈
C0(∂D) be a continuous function on the boundary of the unit disc D ⊂ C. Then
either f is the boundary value of a holomorphic function or the uniform algebra
[z, f ]∂D generated by z and f on ∂D equals C0(∂D). Closely related is the following
result by Čirka, [1]: Let h ∈ C0(D) be harmonic but non-holomorphic on D. Then
the uniform algebra [z, h]

D
generated by z and h on D equals C0(D).

I will discuss generalizations of these results to several complex variables; this
is a joint work, [5], with Erlend Fornæss Wold. Let Ω ⊂ Cn be a domain such
that Ω is polynomially convex and let h1, . . . , hN ∈ C0(Ω) be pluriharmonic in
Ω. If there is a holomorphic disc ∆ ⊂ Ω such that hj |∆ are holomorphic for all

j, then clearly any function ϕ ∈ C0(Ω) such that ϕ|∆ is not holomorphic cannot
be uniformly approximated on Ω by polynomials in z1, . . . , zn and h1, . . . , hN . On
the other hand, our first result says that this is essentially the only obstruction.
This generalizes results by Izzo, [2], [3], and is in the same spirit as the main result
in [4].

Theorem 1. Let Ω ⊂ Cn be a domain with C1-smooth boundary and such that Ω
is polynomially convex. Let also h1, . . . , hN ∈ C

0(Ω) be pluriharmonic in Ω and
assume that there is no holomorphic disc in Ω where all hj are holomorphic. Then

[z1, . . . , zn, h1, . . . , hN ]Ω = C0(Ω) ∩ [z1, . . . , zn, h1, . . . , hN ]∂Ω.

In the case that the domain is the bidisc D2 ⊂ C2 we have more complete results.

Theorem 2. Let h1, . . . , hN ∈ C1(D
2
) be pluriharmonic in D2. Then either there

is a holomorphic disc in D
2
where all hj are holomorphic or [z1, z2, h1, . . . , hN ]

D
2 =

C0(D
2
).

Theorem 3. Let f1, . . . , fN be continuous functions on the distinguished boundary
T2 ⊂ ∂D2 and assume that the fj have pluriharmonic extensions hj to D2. Then
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either [z1, z2, f1, . . . , fN ]T2 = C0(T2) or there is an algebraic subvariety Z ⊂ C2

such that Z ∩ ∂D2 ⊂ T2, Z ∩ D2 is non-trivial, and all the hj are holomorphic
along Z ∩D2.

The last result generalizes Wermer’s maximality theorem in the sense that an-
alyticity is the only obstruction to the full algebra being generated.

A simple but useful observation when proving our results is the following: Let
Gh = {(z, h(z)); z ∈ Ω)} ⊂ Cn+N be the graph of h = (h1, . . . , hN ) over Ω and let
π : Gh → Ω be the projection. Then a function ϕ is in [z1, . . . , zn, h1, . . . , hN ]Ω if
and only if π∗ϕ can be uniformly approximated on Gh by polynomials in Cn+N .
Our results are thus reduced to polynomial approximation on graphs. Since in
our cases h is a pluriharmonic mapping it is possible to stratify Gh in a certain
way so that each strata essentially is totally real. The technical part of our proofs
is then contained in the following result. It relies on approximation results on
totally real manifolds proved by, e.g., Henkin-Leiterer, Čirka, Berndtsson, and
Manne-Øvrelid-Wold.

Theorem 4. Let X ⊂ Cn be compact and polynomially convex. If there are closed
sets X0 ⊂ · · · ⊂ Xm = X such that Xj \Xj−1, j = 1, . . . ,m, are totally real then
any ϕ ∈ C0(X) ∩ O(X0) can be approximated uniformly on X by polynomials in
Cn.

The proof of Theorem 3 is a bit more involved. One observes that since
C0(T2) = O(T2) one has C0(Gf (T2)) = O(Gf (T2)), where Gf (T2) is the graph
of f = (f1, . . . , fN) over T2. Hence, one has polynomial approximation on Gf (T2)
if and only if Gf (T2) is polynomially convex. Now, if there is a non-trivial ana-
lytic variety Z ′ ⊂ D2 attached to T2 and all the pluriharmonic extensions hj are
holomorphic along Z ′ then clearly the polynomial hull of Gf (T2) must contain the
graph of h over T2 ∪ Z ′. Conversely we show, by using Rossi’s local maximum
principle as well as Wermer’s and Čirka’s results, that if Gf (T

2) is not polynomi-
ally convex then there is such a variety Z ′ ⊂ D2. Theorem 4 then follows from a
result by Tornehave implying that such a variety in fact extends to an algebraic
variety in C2.
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Holomorphic factorization of mappings into SLn(C)

Frank Kutzschebauch

(joint work with B. Ivarsson)

1. Introduction

It is standard material in a Linear Algebra course that the group SLm(C) is
generated by elementary matrices E + αeij , i 6= j, i.e., matrices with 1’s on the
diagonal and all entries outside the diagonal are zero, except one entry. Equiva-
lently, every matrix A ∈ SLm(C) can be written as a finite product of upper and
lower diagonal unipotent matrices (in interchanging order). The same question for
matrices in SLm(R) where R is a commutative ring instead of the field C is much
more delicate. For example, if R is the ring of complex valued functions (contin-
uous, smooth, algebraic or holomorphic) from a space X the problem amounts to
finding for a given map f : X → SLm(C) a factorization as a product of upper
and lower diagonal unipotent matrices

f(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GN (x)
0 1

)

where the Gi are maps Gi : X → Cm(m−1)/2.
Since any product of (upper and lower diagonal) unipotent matrices is homo-

topic to a constant map (multiplying each entry outside the diagonals by t ∈ [0, 1]
we get a homotopy to the identity matrix), one has to assume that the given map
f : X → SLm(C) is homotopic to a constant map or as we will say null-homotopic.
In particular this assumption holds if the space X is contractible.

This very general problem has been studied in the case of polynomials of n
variables. For n = 1, i.e., f : C → SLm(C) a polynomial map (the ring R equals
C[z]) it is an easy consequence of the fact that C[z] is an Euclidean ring that such
f factors through a product of upper and lower diagonal unipotent matrices. For
m = n = 2 the following counterexample was found by Cohn [1]: the matrix

(
1− z1z2 z21
−z22 1 + z1z2

)
∈ SL2(C[z1, z2])

does not decompose as a finite product of unipotent matrices.
For m ≥ 3 (and any n) it is a deep result of Suslin [22] that any matrix in

SLm(C[Cn]) decomposes as a finite product of unipotent (and equivalently ele-
mentary) matrices. More results in the algebraic setting can be found in [22] and
[15]. For a connection to the Jacobian problem on C2 see [26].

In the case of continuous complex valued functions on a topological space X
the problem was studied and partially solved by Thurston and Vaserstein [23]
and then finally solved by Vaserstein [25].

It is natural to consider the problem for rings of holomorphic functions on
Stein spaces, in particular on Cn. Explicitly this problem was posed by Gromov

in his groundbreaking paper [14] where he extends the classical Oka-Grauert

theorem from bundles with homogeneous fibers to fibrations with elliptic fibers,
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e.g., fibrations admitting a dominating spray. In spite of the above mentioned
result of Vaserstein he calls it the
Vaserstein problem: (see [14, sec 3.5.G])

Does every holomorphic map Cn → SLm(C) decompose into a finite product of
holomorphic maps sending Cn into unipotent subgroups in SLm(C)?

Gromov’s interest in this question comes from the question about s-homotopies
(s for spray). In this particular example the spray on SLm(C) is that coming from
the multiplication with unipotent matrices. Of course one cannot use the upper
and lower diagonal unipotent matrices only to get a spray (there is no submersivity
at the zero section!), there need to be at least one more unipotent subgroup to
be used in the multiplication. Therefore the factorization in a product of upper
and lower diagonal matrices seems to be a stronger condition than to find a map
into the iterated spray, but since all maximal unipotent subgroups in SLm(C) are
conjugated and the upper and lower diagonal matrices generate SLm(C) these two
problems are in fact equivalent. We refer the reader for more information on the
subject to Gromov’s above mentioned paper.

The main result of this paper is a complete positive solution of Gromov’s

Vaserstein problem, namely we prove

Main Theorem. Let X be a finite dimensional reduced Stein space and f : X →
SLm(C) be a holomorphic mapping that is null-homotopic. Then there exist a
natural number K and holomorphic mappings G1, . . . , GK : X → Cm(m−1)/2 such
that f can be written as a product of upper and lower diagonal unipotent matrices

f(x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 GK(x)
0 1

)

for every x ∈ X.

The method of proof is an application of theOka-Grauert-Gromov-principle
to certain stratified fibrations. The existence of a topological section for these
fibrations we deduce from Vaserstein’s result.

We need the principle in it’s strongest form suggested by Gromov, completely
proven by Forstnerič and Prezelj [9] and also Forstnerič [8, Theorem 8.3].
After the Gromov-Eliashberg embedding theorem for Stein manifolds (see [2],
[21]) this is to our knowledge the second time this holomorphic h-principle has an
application which goes beyond the classical results of Grauert, Forster and
Rammspott [13], [12], [11], [3], [7], [6], [5], [4].

2. On the number of factors

A natural question to ask is how the number of factors needed in the factor-
ization depends on the space X and the map f . In the algebraic setting there is
no such uniform bound as proved by van der Kallen in [24]. However in the
holomorphic setting (exactly as in the topological setting) it is easy to see that
there is an upper bound depending only on the dimension of the space X (= m)
and the size of the matrix (= n).
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A way to prove the existence of such a uniform bound is the following. Suppose
it would not exist, i.e., for all natural numbers i there are Stein spaces Xi of
dimension m and holomorphic maps fi : Xi → SLn(C) such that fi does not factor
over a product of less than i unipotent matrices. SetX = ∪∞i=1Xi the disjoint union
of the spaces Xi and F : X → SLn(C) the map that is equal to fi on Xi. By our
main result F factors over a finite number of unipotent matrices. Consequently
all fi factor over the same number of unipotent matrices which contradicts the
assumption on fi.

Thus we proved

Theorem 2.1. There is a natural number K such that for any reduced Stein space
X of dimension m and any null-homotopic holomorphic mapping f : X → SLn(C)
there exist holomorphic mappings G1, . . . , GK : X → Cn(n−1)/2 such that

f(x) =M1(G1(x)) . . .MK(GK(x))

for every x ∈ X.

Let us denote by KC(m,n) the number of matrices needed to factorize any null-
homotopic map from a Stein space of dimension m into SLn(C) by continuous
triangular matrices and the number needed in the holomorphic case by KO(m,n).
We know that the Cohn example can be factored as 4 matrices with continuous
entries but if one wants to factor it using matrices with holomorphic entries one
needs 5 matrices. For 2×2 matrices we have the following three preliminary results
which can be in short written as

K(2,m,O) ≤ 2 +K(2,m, C,O), K(2, 1,O) = 4, K(2, 2,O) = 5

Theorem 2.2. Let X be a one-dimensional Stein space and f : X → SL2(C) be a
holomorphic mapping. Then there exists holomorphic mappings g1, . . . , g4 : X → C

such that

f(x) =

(
1 0

g1(x) 1

)(
1 g2(x)
0 1

)(
1 0

g3(x) 1

)(
1 g4(x)
0 1

)
.

Theorem 2.3. Let X be a two-dimensional Stein space and f : X → SL2(C) be a
holomorphic mapping. Then there exists holomorphic mappings g1, . . . , g5 : X → C

such that

f(x) =

(
1 0

g1(x) 1

)(
1 g2(x)
0 1

)(
1 0

g3(x) 1

)(
1 g4(x)
0 1

)(
1 0

g5(x) 1

)
.

Theorem 2.4. Let X be a finite dimensional Stein space and f : X → SL2(C) be a
holomorphic mapping that is null-homotopic. Assume that there exists continuous
mappings g1, . . . , gK : X → C such that

f(x) =M1(g1(x))M2(g2(x)) . . .MK(gK(x)).

Then there exists holomorphic mappings h1, . . . , hK+2 : X → C such that

f(x) =M1(h1(x))M2(h2(x)) . . .MK+2(hK+2(x)).
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Strongly Gauduchon Manifolds and Deformation Limits of Moishezon
Manifolds

Dan Popovici

We shall present the new concept of strongly Gauduchon manifold that we
introduced recently in the resolution of two long-standing conjectures: if all the
fibres, except one, of a holomorphic family of compact complex manifolds are
supposed to be projective (or merely Moishezon, i.e. bimeromorphically equivalent
to projective manifolds), then the remaining fibre is shown to be again Moishezon.
Here are the precise statements.

Definition 1 ([1]). Let ω > 0 be a C∞ (1, 1)-form (i.e. a Hermitian metric) on
a compact complex manifold X with dimCX = n. Then

(a) the form ω is said to be a strongly Gauduchon (sG) metric if ∂ωn−1 is
∂̄-exact;
(b) X is said to be a strongly Gauduchon (sG) manifold if X carries a
strongly Gauduchon metric ω.

Theorem 2 ([1]). Let π : X → ∆ be a complex analytic family (i.e. π is a
proper holomorphic submersion from a complex manifold X to an open disc ∆ ⊂ C
containing the origin) of compact complex manifolds Xt := π−1(t), t ∈ ∆.

If Xt is projective for every t ∈ ∆ \ {0}, then X0 is Moishezon.

Theorem 3 ([2]). Let π : X → ∆ be a complex analytic family of compact complex
manifolds Xt := π−1(t), t ∈ ∆.

If Xt is Moishezon for every t ∈ ∆ \ {0}, then X0 is again Moishezon.

These results are optimal thanks to an example of Hironaka (1962). We shall
briefly outline the two different strategies employed: by means of well-chosen
Kähler metrics on the generic fibres (in the generically projective case), respec-
tively by means of the Barlet space of relative divisors (in the generically Moishezon
case). These two different approaches are finally brought down to the same major
technical difficulty: proving that if the ∂∂̄-lemma (a topological assumption which
implies the strongly Gauduchon metric property) holds on all fibres, except one,
then the remaining fibre is a strongly Gauduchon manifold.

We shall emphasize the interplay between various topological notions (e.g. the
∂∂̄-lemma and the degeneration at E1 of the Frölicher spectral sequence) and
several metric notions (e.g. balanced and strongly Gauduchon compact complex
manifolds) by providing examples (cf. [4]) of
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(1) compact complex manifolds which are not strongly Gauduchon (e.g. all the
Calabi-Eckmann, Hopf and Tsuji manifolds);

(2) compact complex manifolds which are strongly Gauduchon but do not enjoy
either of the stronger ∂∂̄-lemma and balanced properties: they emerge from the
stability of the strongly Gauduchon property under small deformations and from
Nakamura’s calculation of the Kuranishi family of the Iwasawa manifold via a
result of Alessandrini and Bassanelli.

The notion of sG manifold enjoys remarkable stability properties under both
deformations and modifications.

Theorem 4 ([3]). If µ : X̃ → X is a modification of compact complex manifolds,
then the following equivalence holds:

X̃ is an sG manifold if and only if X is an sG manifold.

The property is also open under deformations.

Theorem 5 ([2]). Let π : X → ∆ be a complex analytic family of compact complex
manifolds Xt := π−1(t), t ∈ ∆.

If X0 is an sG manifold, then Xt is an sG manifold for all t ∈ ∆ sufficiently
close to 0.

We hope the notion is also closed under deformations.

Conjecture 6 (see [4]). Let π : X → ∆ be a complex analytic family of compact
complex manifolds Xt := π−1(t), t ∈ ∆.

If Xt is an sG manifold for all t ∈ ∆ \ {0}, then X0 is again an sG manifold.

We shall also indicate how these methods are likely to lead to the resolution of
other long-standing conjectures on holomorphic deformations.
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Coverings of open Riemann surfaces and embeddings into disc bundles
motivated by questions in knot theory

Burglind Jöricke

Call a knot in the unit sphere in C2 analytic (respectively, smoothly analytic) if
it bounds a complex curve (respectively, a smooth complex curve) in the complex
ball. By a deep theorem of Kronheomer and Mrowka its 4-ball genus is the genus
of the complex curve.

Let K be an oriented knot, let N(K) be a tubular neighbourhood of K and P a
projection of N(K) to K. For an oriented link L contained in N(K) the winding
number n = wK(L) with respect to the knot K is the degree of the restriction
P |L. Analytic knots and links are oriented as boundaries of the complex curves
in the ball which are bounded by them.

The following theorem is an analog of Schubert’s classical theorem [3] concerning
the genus of a knot and its satellite.

Theorem 1. Let K be a smoothly analytic knot in ∂B2. There exists a tubular
neighbourhood N(K) ⊂ ∂B2 of K such that the following statements hold. For any
analytic link L ⊂ N(K) the number n = wK(L) is non-negative. If n is positive
then the following lower bound for the 4-ball genus holds

g4(L) ≥ ng4(K)− (n− 1) .

If L is itself a knot then

g4(L) ≥ ng4(K)−

[
n− 1

2

]
.

( [x] denotes the largest integer not exceeding the real number x).
Both estimates are sharp.

Moreover, the links L contained in this tubular neighbourhood can be described.
The theorem is related to ramified holomorphic coverings of open Riemann sur-

faces, embeddings into disc bundles and the closed braid formed by the related
embedding of the boundary of the covering surface. We state some of the cor-
responding theorems for unramified coverings. (The effect of ramification occurs
over a simply connected domain and has been known).

Consider a connected Riemann surface X of positive genus g with smooth or
empty boundary. It is well known that (unramified smooth) coverings p : Y → X
(that fix a base point z and the fiber over it) are in one to one correspondence to
homomorphisms p∗ of the fundamental group π1(X) (with base point z) into the
symmetric group Sn. We always assume that Y is equipped with the structure of
a Riemann surface such that the covering map is holomorphic on Y .

A smooth embedding i : Y → X × D into the disc bundle lifts p if PX ◦ i = p
for the projection PX of the disc bundle to the first factor. We call a smooth
embedding of the closure of a Riemann surface into X × D horizontal if it lifts
certain unramified covering. Smooth horizontal embeddings i : Y → X ×D are in
one to one correspondence to homomorphisms i∗ : π1(X)→ Bn to the braid group
Bn on n strands (again base point and fiber are fixed). Moreover, i lifts p iff i∗
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lifts p∗ (i.e. τn ◦ i∗ = p∗ for the canonical projection τn : Bn → Sn). (For details
on the braid group see e.g. [1].)

Let the base X be of genus g with connected non-empty smooth boundary.
Then the mapping p∗ associated to a covering p : Y → X maps the class [∂X ] of
the boundary ∂X to the product of g commutators in Sn. Respectively, i∗([∂X ])
is a product of g commutators in Bn.

By a theorem of Ore each even permutation is a commutator. We are interested
in the case when the covering surface Y is connected (this case is the building block
for the general case). The following strengthening of Ore’s theorem holds.

Theorem 2. Each even permutation in Sn is the commutator [s1, s2] of two
permutations such that the generated subgroup < s1, s2 > acts transitively on the
set of n elements.

Theorem 2 is due to A.Gleason. The first part of the following corollary is
contained in D.Husemoller, Duke 29(1962),167-174.

Corollary 1. For each natural n and k, with n−k non-negative and even, there
is an unramified n-covering Y → X by a connected surface Y with k boundary
components. The covering can be lifted to a smooth embedding i : Y → X×D such
that the closed braid ∂Y → ∂X × D is represented by a word of minimal length
(i.e. of length n− k) in the generators of Bn and their inverses.

Theorem 1 is related to holomorphic horizontal embeddings into disc bundles
rather than to smooth embeddings. The following proposition holds.

Proposition 1. Each smooth horizontal embedding i : Y → X × D can be
approximated by a holomorphic embedding over a neighbourhood X ′ of a skeleton
of X.

(A skeleton is a bouquet of circles contained in X such that X retracts to this

set.) We may think of X
′
as diffeomorphic to X. The proof of theorem 1 uses

corollary 1 and proposition 1.
The following problem arises. Over which subsets X ′ ⊂ X a given embedding i

is isotopic to holomorphic? The precise formulation of this problem will be given
below in terms of the Teichmüller space T (X) modeled on X (see [2]). Note that
in our case the Riemann surface X has non-empty ideal boundary.

Recall the definition of the configuration space: Cn(C) = {(ζ1, ..., ζn) ∈ Cn :
ζi 6= ζj for i 6= j}. The symmetrized configuration space (the unordered n-tuples
of pairwise different complex numbers) is the factor of Cn(C) by the symmetric
group. It carries a complex structure in the following way. Unordered n-tuples of
complex numbers are in one to one correspondence with the elementary symmetric
functions in n variables, namely, the coefficients of monic polynomials of degree
n. (A polynomial is monic if the highest order term has coefficient equal to one.)
Hence, there is an identification of Cn(C)/Sn with Cn \ V∆n

, where V∆n
denotes

the discriminant set, i.e. the set of coefficients of those monic polynomials which
have multiple zeros. V∆n

is the zero set of the polynomial ∆n in Cn, hence Cn\V∆n

has the structure of a Stein manifold. Note that it is not Brody hyperbolic, in
other words, there are non-constant holomorphic mappings of the complex plane
C into Cn \ V∆n

.
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A smooth (respectively, holomorphic) horizontal embedding i : Y → X × D
can be considered as a smooth (respectively, holomorphic) mapping from X into
symmetrized configuration space. A closed braid is a loop in Cn \ V∆n

and the
braid group Bn can be identified with the fundamental group of Cn \ V∆n

.
Problem. Let ϕ : π1(X) → π1(C

n \ V∆n
) = Bn be a homomorphism. Which

elements X ′ ∈ T (X) have the following property: there is a holomorphic map-
ping from X ′ into n-dimensional symmetrized configuration space which induces
ϕ on fundamental groups (for short, X ′ admits a holomorphic ϕ-mapping into
n-dimensional symmetrized configuration space)?

Theorem 3. Let X be an open Riemann surface with smooth boundary.
1. For every natural number n there exists a nontrivial homomorphism ϕ :
π1(X) → π1(C

n \ V∆n
) = Bn such that each X ′ ∈ T (X) admits a holomorphic

ϕ-mapping into n-dimensional symmetrized configuration space. This is true for
all homomorphisms into B2.
2. For n ≥ 3 there exists a homomorphism ϕ into Bn such that for some
X ′ ∈ T (X) there is no holomorphic ϕ-mapping into n-dimensional configuration
space.

More concrete and stronger statements related to theorem 3 can be given. Many
questions are still open.
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Small families of complex lines for testing holomorphic extendibility
from spheres

Josip Globevnik

Let B be the open unit ball in C2. Let f be a continuous function on bB. If L is a
complex line that meets B then we say that the function f extends holomorphically
into B along L if f |(L ∩ bB) extends holomorphically through L ∩B. We consider
the question about along how many complex lines should f extend holomorphically
into B in order that f extends holomorphically through B. Denote by L(a) the
set of all complex lines passing through a.

We present two recent results.

Theorem 1 Let a, b be two points in C2 such that the complex line through a and
b meets B and such that < a|b > 6= 1 if one of the points is contained in B and the
other in C2 \ B. If a function f ∈ C∞(bB) extends holomorphically into B along
each L ∈ L(a) ∪ L(b) then f extends holomorphically through B.
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When a, b ∈ B and when f is real analytic such a theorem was proved by M.
Agranovsky. Such a theorem fails to hold for functions in Ck(bB). The proof of
Theorem 1 is contained in ”Small families of complex lines for testing holomorphic
extendibility”, to appear in Amer. J. Math., http://arxiv.org/abs/0911.5088.

Our second result deals with continuous functions.

Theorem 2 Let a, b, c be three points in C2 which do not lie in a complex line,
such that the complex line through a, b meets B and such that if one of the points
a, b is in B and the other in C2 \ B then < a|b > 6= 1 and such that at least one of
the numbers < a|c >, < b|c > is different from 1. We prove that if a continuous
unction f on bB extends holomorphically into B along each L ∈ L(a)∪L(b)∪L(c)
then f extends holomorphically through B.

This generalizes the recent result of L. Baracco who proved such a theorem if a, b, c
are contained in B. Our proof is quite different from the one of Baracco and uses
the following one variable result which we also prove and which in the real analytic
case was proved by M. Agranovsky:

Theorem 3 Let ∆ be the open unit disc in C. Given α ∈ ∆ let Cα be the family
of all circles in ∆ obtained as the images of circles centered at the origin under
an automorphism of ∆ that maps 0 to α. Given α, β ∈ ∆, α 6= β, and n ∈ IN, a
continuous function f on ∆ extends meromorphically from every circle Γ ∈ Cα∪Cβ
through the disc bounded by Γ with the only pole at the center of Γ of degree not
exceeding n if and only if f is of the form f(z) = a0(z)+a1(z)z+· · ·+an(z)z

n (z ∈
∆) where the functions aj , 0 ≤ j ≤ n, are holomorphic on ∆.

The proofs of Theorems 2 and 3 are contained in ”Meromorphic extensions from
small families of circles and holomorphic extensions from spheres”,
http://arxiv.org/abs/1101.0136

The proof of Theorem 3, a one variable theorem, uses again analysis in several
complex variables. Via semiquadrics, introduced into this context by M. Agra-
novsky and J. Globevnik in 2003, one transforms the problem to a problem of a
function on a CR submanifold of C2 which consists of two families of semiquadrics,
and then applying, following A.Tumanov, an idea of H.Lewy modified by H.Rossi
to prove that the function extends as a holomorphic function of two variables
which is a polynomial in the second variable.

Model pseudoconvex domains and bumping

Gautam Bharali

The Levi geometry at weakly pseudoconvex boundary points of domains in
Cn, n ≥ 3, is sufficiently complicated that, in general, there are no universal
model domains with which to compare a given domain near such points. On the
other hand, a rather successful strategy, especially in C2, for understanding a
pseudoconvex domain involves carefully deforming its boundary outwards about
some boundary point without destroying pseudoconvexity so that the new domain
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“well approximates” the original but has a much simpler defining function. This
procedure is formalised as follows:

(∗) Given a smoothly bounded pseudoconvex domain Ω ⊂ Cn, n ≥ 2, and ζ ∈
∂Ω, find a neighbourhood Uζ of ζ and a C2-smooth function ρζ ∈ psh(Uζ)
such that
• ρ−1

ζ {0} is a smooth hypersurface in Uζ that is pseudoconvex from the

side U−
ζ := {zρζ(z) < 0}; and

• ρζ(ζ) = 0, but (Ω \ {ζ})
⋂
Uζ  U−

ζ .

We shall call the triple (∂Ω, Uζ , ρζ) a local bumping of Ω about ζ. Diederich and
Fornaess [2] have shown that if Ω is bounded and has real-analytic boundary, then
local bumpings always exist about each ζ ∈ ∂Ω. However, much of the success in
using bumpings relies on a second ingredient: that the bumpings constructed are,
in some sense, well-adapted to the pair (Ω, ζ). To be more specific, it is highly
desirable for a local bumping (∂Ω, Uζ, ρζ) to have the following two properties:

(B1) The orders of contact of ∂Ω ∩ Uζ with ρ−1
ζ {0} at ζ along the various

directions V ∈ Tζ(∂Ω) ∩ iTζ(∂Ω) are the lowest possible.
(B2) The function ρζ is as simple as possible and is explicitly known.

The difficulty with the Diederich–Fornaess construction is that when Ω ⋐ C3 and
n ≥ 3, the order of contact between ∂Ω and ρ−1

ζ {0} at ζ along certain complex-
tangential directions can be very high. Furthermore, the great generality of the
scope of [2] makes it very hard for an explicit equation for ρζ to deduced at the
end of the Diederich–Fornaess construction.

Given a pair (Ω, ζ) as above, let P denote the sum of the lowest-weight (non-
pluriharmonic) terms (depending on the complex-tangential variables) in the
Catlin normal-form for the pair (Ω, ζ). If the point 0 lying in the boundary of
the model domain ΩP := {(w, z) ∈ C× Cn−1 : Rew + P (z) < 0} is of finite type,
then it is known that (B1) and (B2) are very precisely achievable: in fact, after
a holomorphic change of coordinates from (z, w) to (Z,W ), the bumping has the
form {(W,Z) ∈ C× Cn−1 : ReW + (P −H)(Z) < 0}, where H is a function that
is positive away from 0 ∈ Cn−1 and has the same (weighted) homogeneity as P .
Whenever this is possible, we say that (Ω, ζ) is h–extendible. While it is demon-
strably impossible to construct such simple models when the pair (Ω, ζ) is not
h–extendible, the evidence in [1] suggests that models that are only slightly more
complicated can be constructed in C3 in the non-h-extendible case under some
natural restrictions on P . For the pairs (Ω, ζ) that we shall describe/discuss, the
phrase “only slightly more complicated” turns out to mean the defining function
of the bumped model contains an extra, but precisely described, non-homogeneous
term in addition to the term (P −H) mentioned above.
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Given a pair (Ω, ζ) in C3 that is non-h–extendible, and given the P associated to
the Catlin normal-form for (Ω, ζ), set

E(P ) := the set of all irreducible complex curves X ⊂ C2

such that P is harmonic along the smooth part of X,

E0(P ) := the class of irreducible algebraic curves in E(P )

that pass througn 0 ∈ C2.

When (Ω, ζ) is non-h–extendible, E0(P ) 6= ∅. This is the consequence of work
done independently by Diederich–Herbort [3] and Yu [4]. The structure of the
set E(P ) appears to control the ability to construct a bumping at ζ that satisfies
(B1) and (B2). In this talk, we shall consider pairs (Ω, ζ) (in C3) that are almost
h–extendible. By this we mean that (Ω, ζ) is such that, with P as explained above:

• E(P ) = E0(P ); and
• ∪X∈E0(P )X is well-separated (in a sense that will be made precise in the
talk) from all other points at which the complex-Hessian of P is degenerate.

In this talk, we will discuss a theorem to the effect that if the pair (Ω, ζ) is almost
h–extendible, then (Ω, ζ) admits a local bumping at ζ that has the properties
(B1) and (B2) and which has a simple defining function that can be described
explicitly.
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Geodesics in the space of Kähler metrics

László Lempert

(joint work with L. Vivas)

LetX be a connected, compact, complex manifold and ω0 a smooth Kähler form
on it. It was discovered by Mabuchi, and rediscovered by Semmes and Donaldson,
that the set H0 of smooth Kähler forms cohomologous to ω0, and the set H of
smooth, strongly ω0–plurisubharmonic functions on X carry natural Riemannian
manifold structures, see [11, 12, 7]. A function u : X → R is (strongly) ω0–

plurisubharmonic if ω0 + i∂∂u ≥ 0 (resp. > 0). Mabuchi shows that in fact H is
isometric to the Riemannian product H0 × R, and both he and Donaldson point
out that understanding geodesics in these spaces is important for the study of
special Kähler metrics. Donaldson then raises the obvious question whether any
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pair of points in H (or H0) can be connected by a smooth geodesic. In the talk
we gave a negative answer:

Theorem 1. Suppose (X,ω0) is a positive dimensional compact Kähler manifold
and h : X → X is a holomorphic isometry with an isolated fixed point such that
h2 = idX . Then there is a Kähler form ω1 ∈ H0 which cannot be connected to ω0

by a smooth geodesic.

Concretely, one can take X to be a torus Cm/Γ, ω0 a translation invariant
Kähler form, and h induced by reflection z 7→ −z in Cm.

According to Semmes, geodesics in H (and therefore in H0) are related to a
Monge–Ampère equation as follows, [S]. Let S = {s ∈ C : 0 < Im s < 1}, and
ω the pull back of ω0 by the projection S × X → X . With any smooth curve
[0, 1] ∋ t 7→ vt ∈ H associate the smooth function u(s, x) = v Im s(x), (s, x) ∈ S×X .
Set m = dimX . Then t 7→ vt is a geodesic if and only if u satisfies

(ω + i∂∂u)m+1 = 0.(1)

Since ω + i∂∂u, restricted to fibers {s} × X , is positive, (1) is equivalent to
rkω + i∂∂u ≡ m; and so a smooth geodesic connecting 0, v ∈ H gives rise to
an ω–plurisubharmonic u ∈ C∞(S ×X) solving

rk ω + i∂∂u ≡ m,

u(s+ σ, x) = u(s, x) for σ ∈ R, (s, x) ∈ S ×X,

u(s, x) =

{
0, if Im s = 0

v(x), if Im s = 1.

(2)

Therefore Theorem 1 follows from the following more precise result:

Theorem 2. If (X,ω0) and h are as in Theorem 1, there is a v ∈ H for which (2)
admits no real valued solution u ∈ C3(S ×X). One can choose v so that h∗v = v.

When m = 1, the v in Theorem 2 even form an open subset of the space of
h–invariant functions in H, but we do not know if this holds when m > 1.

The idea that symmetries help in the analysis of solutions of Monge–Ampère
equations is not new. The first examples of irregularity of certain boundary value
problems in Cm were constructed by Bedford and Fornaess using symmetries, see
[3]. Our approach, based on the study of the so called Monge–Ampère foliation,
is different from theirs. The symmetry is used to identify a leaf of the foliation
associated to a C3 solution u of (2). By analyzing the first order behavior of the
foliation about this particular leaf we obtain a condition on the Hessian of u at
(1, x0), where x0 is an isolated fixed point of h. The proof is concluded by finding
a boundary value v which is incompatible with this condition.

Studying solutions of the homogeneous Monge–Ampère equation through the
associated foliation is not new, either. This approach first appeared in [1, 2, 9, 10],
and still seems to be the only way to prove smoothness of the solution. More
recently, in [8] Donaldson used the foliation method in a variant of the boundary
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value problem (2) to prove, resp. disprove, regularity, depending on the boundary
data.

Generalized solutions to (2) and to rather more general boundary value prob-
lems for the homogeneous Monge–Ampère equation (1) are known to exist, see [6],
with complements in [5].
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Holomorphic foliations and hyperbolicity

Erwan Rousseau

(joint work with C. Gasbarri and G. Pacienza)

In the last decades, many efforts have been done to understand the geometry
of subvarieties of varieties of general type. One of the main motivation is the
fascinating conjectural relation between analytic aspects and arithmetic ones. On
the geometric side, the philosophy (Green-Griffiths, Lang, Vojta, Campana) is
that positivity properties of the canonical bundle of a projective manifold should
impose strong restrictions on its subvarieties.

One of the first striking results is the following theorem of Bogomolov for sur-
faces.

Theorem 1 (Bogomolov). There are only finitely many rational and elliptic
curves on a surface of general type with c21 > c2.
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In this theorem, the hypothesis c21 > c2 ensures that the cotangent bundle is
big, so that rational and elliptic curves are shown to be leaves of a foliation and
then, one can use results on algebraic leaves of foliations.

Two decades later, this result was extended to transcendental leaves of foliations
by McQuillan.

Theorem 2 (McQuillan). Let X be a surface of general type and F a holomorphic
foliation on X. Then F has no entire leaf which is Zariski dense.

As a consequence he obtains the following.

Corollary 3 (McQuillan). On a surface X of general type with c21 > c2, there is
no entire curve f : C→ X which is Zariski dense.

It is of course of great interest to generalize these results, even partially, to
higher dimension. On the algebraic side, this was investigated by Lu and Miyaoka.

Theorem 4 (Lu-Miyaoka). Let X be a nonsingular projective variety. If X is
of general type, then X has only a finite number of nonsingular codimension-one
subvarieties having pseudoeffective anticanonical divisor. In particular, X has only
a finite number of nonsingular codimension-one Fano, Abelian, and Calabi-Yau
subvarieties.

This can be seen as a generalization to higher dimension of the aforementioned
theorem of Bogomolov.

In a joint work with C. Gasbarri and G. Pacienza, we study holomorphic map-
pings f : Cp → X of generic maximal rank into a projective manifold of dimension
n, such that the image of f is tangent to a holomorphic foliation F on X . We
discuss a generalized Green-Griffiths-Lang conjecture and obtain several results
of algebraic degeneracy in the strong sense (i.e. the existence of a proper closed
subset of X containing all such maps).

Variational characterization of Kähler-Einstein metrics and
application to the Kähler-Ricci flow

Sébastien Boucksom

(joint work with R. Berman, P. Eyssidieux, V. Guedj and A. Zeriahi)

We propose to present a series of joint works with Robert Berman, Philippe
Eyssidieux, Vincent Guedj and Ahmed Zeriahi in which we develop in a systematic
way a variational approach to complex Monge-Ampère equations.

Let X be a smooth projective variety and L be an ample line bundle on X .
For each metric e−φ on L with weight φ denote by ddcφ its curvature current,
whenever it is defined. The Monge-Ampère operator is defined on smooth weights
φ by setting MA(φ) := (ddcφ)n with n := dimX . A basic property of this operator
is the existence of a primitive, i.e. a functional E on smooth weights such that

d

dt

∣∣∣∣
t=0

E(φ + tv) =

∫
vMA(φ)
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for each smooth function v. As a consequence, φ satisfies the Monge-Ampère
equation MA(φ) = µ for some measure µ of mass 1 iff φ is a critical point of
Fµ(φ) := E(φ) −

∫
X φdµ. Similarly, when L = ±KX φ satisfies the Kähler-

Einstein equation MA(φ) = e±φ+c for some constant c ∈ R iff it is a critical point
of F±(φ) := E(φ)−± log

∫
e±φ.

The functional E becomes non-decreasing and concave when restricted to
smooth psh weights, and it may thus be extended by monotonicity to a non-
decreasing, concave and usc function E : psh(X,L) → [−∞,+∞[ of psh weights
on L. The domain E1(X,L) := {E > −∞} of E consists of those φ ∈ psh(X,L)
such that MA(φ) is well-defined as a non-pluripolar probability measure and φ is
integrable with respect to MA(φ).

1. Variational characterization of Monge-Ampère equations

Our first main result is the following:

Theorem 1.1. Let µ be a measure with finite energy, in the sense that the concave
function Fµ is finite valued on E1(X,L). Then Fµ achieves its maximum at φ ∈
E1(X,L) iff MA(φ) = µ. Such a maximizer φ exists and is unique up to a constant.

In case where L = KX is ample we similarly have

Theorem 1.2. The concave functional F+ is bounded above on E1(X,L) and it
achieves its maximum exactly at the Kähler-Einstein metric of X.

The case where L = −KX is ample, i.e. X is Fano, is more involved since the
functional F−, first considered by Ding and Tian, is not concave anymore. It is
however geodesically concave with respect to the L2 metric on psh(X,−KX) as a
consequence on results on psh variations of Bergman kernels. Using this fact we
also obtain a variational characterization in that case.

The strength of these variational characterizations is that in each case any
maximimzing sequence φj of the functional must converge (in the weak topology
and up to an additive constant) to the unique maximizer. Indeed, the functional
F is in each case proper with respect to E in an appropriate sense.

2. Convergence of the Kähler-Ricci flow

Assume now that L = ±KX is ample and let ∂ω
∂t = −Ric(ω)±ω be the (normal-

ized) Kähler-Ricci flow starting at a given Kähler metric ω0 in c1(L). The solution
ω is then C∞ on [0,+∞[×X , and the functional F± is known to be non-decreasing
along the flow.

Our second main result is the following:

Theorem 2.1. Let ±KX be ample, and assume that F− is proper in the Fano case.
Then F± converges to supE1(X,L) F± along the flow as t→ +∞. In particular, the
flow converges weakly to the Kähler-Einstein metric in case the latter exists and
is unique.
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We thus recover a weak form of a theorem of Perelman asserting the C∞ conver-
gence of the flow to the Kähler-Einstein metric on a Kähler-Einstein Fano manifold
with holomorphic vector fields.

This result as well as the previous ones admit appropriate extensions to the
case where X may admit singularities. In particular, the last result hold as well
when X has log-terminal singularities.

Pseudoconvex domains over Kähler manifolds and Bergman kernels
with parameters

Takeo Ohsawa

1. General settings

Let D be a locally pseudoconvex domain with twice continuously differentiable
boundary in a complex manifold X . A general question asked by H. Grauert is
whether or not D admits a plurisubharmonic exhaustion function if X admits
a Kähler metric. Let Y be a complex analytic space such that there exists a
proper surjective morphism π from X to Y . A general program is to extend the
results for compact complex manifolds to X . Given a compact complex manifold
with underlying differentiable manifold M and complex structure J , we consider
a triple (M,J, ω), where ω is the fundamental form of a Kähler metric on M with
respect to J . In the set M of all such triples for fixed M , one naturally defines an
equivalence relation ∼ (resp. ≈) by (M,J, ω) ∼ (resp. ≈) (M,J ′, ω′) ⇔ ”There
exists a diffeomorphism ϕ from M onto itself whose differential commutes with J
and J ′ (resp. pulls back ω′ to ω′)”. Geometry of the triple (M/ ∼←M →M/ ≈)
is of general interest. These three questions are related to each other in a loose
way as one can see below.

2. L2 cohomology and the relative Bergman kernels

Let D and X be as above. Assume that D is relatively compact and X admits
a Kähler form (:= the fundamental form of a Kähler metric) ω. Then there exists
a twice continuously differentiable defining function ρ of D which is smooth on D.
For any such ρ, there exists a positive number c such that ω(ρ) := ω+L(c/ log(ρ))
is a complete Kähler metric on D. Here L(·) denotes the Levi form.

Theorem 1. ∂D is connected unless it is Levi flat.

Proof: If ∂D is not Levi flat, then the L2 Dolbeault cohomology of D with
respect to ω(ρ) vanishes at the bidegree (0,1), which implies that the Hartogs type
continuation holds true.

Combining Theorem 1 with the main result in [5], one has

Theorem 2. If dimX = 2 and ∂D is real analytic in the above situation, then D
is holomorphically convex unless ∂D is Levi flat.
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Let π : X → Y be as in 1, let 0 ∈ Y and let n be the dimension of the preimage
of 0. As well as Theorem 1, a generalization of the following result is contained
in [9], since its proof is based on a principle on the L2 cohomology similarly as in
Theorem 1.

Theorem 3. (cf. [7]). Let E be an effective divisor on X whose support |E| does
not contain any branch of X0, the preimage of 0. (X is not assumed to be Kähler.)
If π(|E|) contains 0, then the stalk at 0 of the n-th direct image by π of the tensor
product of the canonical bundle of X and the line bundle [E] vanishes.

Assuming that π is a submersion, let K[y] denote the diagonalized Bergman
kernel of the preimage of y. The collection of the reciprocal of K[y] (as y runs
through Y ) is naturally identified with a fiber metric of the relative canonical bun-
dle of π. It was shown that the curvature form of this fiber metric is semipositive
by Maitani-Yamaguchi [8] when n = 1 and by Berndtsson [2] when π is a projective
morphism. In [3] it was shown that the curvature form of the direct image by π of
the relative canonical bundle with respect to the L2 metric is Nakano semipositive
provided that X admits a Kähler metric.

3. Deformations of tori

In view of the above mentioned result of Berndtsson in [3], where π is supposed
to be a submersion, we want to study the set of ”Kähler directions” in the space of
infinitesimal deformations H1(X0,Θ), where Θ denotes the holomorphic tangent
bundle of X0. For that, given any compact complex manifold M , we have intro-
duced in [10] a subset KID(M) (KID is for Kähler infinitesimal deformations) of
H1(M,Θ) consisting of the images of the Kodaira-Spencer maps from the Zariski
tangent spaces of the parameter spaces of Kähler deformations ofM . Here Kähler
deformation of M means an analytic family of M such that the total space ad-
mits a Kähler metric. A question on KID(M) arises when M is a complex torus
of dimension ≥ 2 (cf. [6]). In fact, for any complex torus T with dimT ≥ 2,
Berndtsson’s theorem implies that KID(T ) does not coincide with the total space
H1(T,Θ) because the relative canonical bundle of the Kuranishi family of T has
the reciprocal of the diagonalized Bergman kernels of the fibers as the canonical
fiber metric, and its curvature form is easily seen to be indefinite. This phenom-
enon may be regarded as a part of a somewhat vague principle that the Kähler
condition implies pseudoconvexity.

The following provides a more precise information on KID(T ) than what
Berndtsson’s theorem predicts in general.

Theorem 4. Let T be a complex torus of dimension ≥ 2. Then, with respect to a
standard identification of H1(T,Θ) with the set of n×n matrices, KID(T ) coincides
with the set {Ξ|ΞY −1H is symmetric for some positive definite Hermitian matrix
H}, where Y denotes a real matrix Y with detY > 0 such that T has a period
matrix (I,X + iY ) for some real matrix X.

Thus, loosely speaking, KID(T ) is swept out by complex hyperplanes that are
parametrized by a convex cone. The proof of Theorem 4 is done by computing the
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(2,0)-components of the pull-back of Kähler forms by harmonic diffeomorphisms.
Based on this result, it will be observed that KID(T ) is properly contained in the
subset of H1(T,Θ) consisting of the elements for which the curvature of the L2

metric is semipositive.
By analyzing harmonic maps that pulls back a Kähler form to a Kähler form,

the following is obtained, too.

Theorem 5. Let T be a complex torus of dimension ≥ 2 equipped with a Kähler
form ω and let η be any nonzero (2,0) form on T . Then, for any complex structure
on T such that ω is a positive (1,1) form, η + η− is not of type (1,1). Here η−

denotes the complex conjugate of η.

Corollary 6. For any torus Ť of dimension ≥ 4 equipped with a symplectic form
ω, the set of elements of H2(Ť , R) which are represented by (1,1) forms for some
complex structure compatible with ω has a nonempty complement.

As a work preceding to ours, it was known by Calabi [4] that, for any translation
invariant Kähler metric g on a complex torus T and for any nondegenerate trans-
lation invariant real (1,1) form σ of index j on T , there exist exactly n!/(n− j)!j!
complex structures on T for which g is Hermitian and σ is of type (1,1) and of
index j. A work of Bartolomeis [1] describes the deformation of Kählerian tori
from a viewpoint different from ours.
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Almost complex Borel’s and Bloch’s theorems

Benôıt Saleur

The hyperbolicity, in the different acceptations of the term, of the comple-
mentary set in the projective complex plane P2(C) of a union of projective lines,
has been the subject of many studies. The well known Green’s theorem (see [8]),
derived from a result due to E. Borel (see [3]), asserts that the complementary
set of five projective lines in general position is hyperbolic, in both Brody’s and
Kobayashi’s senses. The case of four lines is more complicated. It has been
studied by A. Bloch and H. Cartan, who proved, grounding again in Borel’s result,
that an entire curve missing four lines in general position is linearly degenerate
(see [2] and [5]). According to the heuristic Bloch’s principle, a similar statement
should hold for non normal sequences of holomorphic discs. It has not been
proved until 1928, when H. Cartan perfected a result obtained one year earlier by
A. Bloch, stating that a non normal sequence of holomorphic discs avoiding four
lines in general position has a subsequence that converges in Hausdorff’s sense to
a certain divisor (see again [2], [5]).

Recently, the notion of hyperbolicity in an almost complex context has been the
subject of several studies (see for examples [6], [7], [10]). Given a smooth almost
complex structure J on an even-dimensional manifold M , ie. an automorphism
J : TM → TM such that J2 = −Id, a J-curve is a differentiable map f : (Σ, i)→
(M,J), where (Σ, i) is a Riemann surface, such that df ◦ i = J ◦ df . It can be seen
as a solution of a generalized Cauchy-Riemann equation. Locally, there are many
J-curves: every vector X tangent to M at a point P is tangent to the image of a
J-disc f : D→M . This allows us to define a Kobayashi-Royden pseudometric:

∀P ∈M, ∀X ∈ TPM :

KP (X) = inf

{
1

|λ|
| ∃f : D→M, f(0) = P, d0f(∂/∂z) = λX

}
.

The manifold M is called Kobayashi-hyperbolic if K is non-degenerate. When M
is compact, Brody’s Lemma holds (see [4], [10]) and proves that this notion of
hyperbolicity is equivalent to the non-existence of non constant entire J-curves in
M , ie. of non constant J-curves f : C→M .

A formulation of Green’s theorem in an almost complex context has been
ivestigated by R. Debalme and S. Ivashkovich, and then J. Duval. Given a
smooth almost complex structure J on P2(C) which is tame by the Fubini-Study
2-form ω, ie. such that ωP (X, JPX) > 0 for all point P ∈ P2(C) and all vector
X ∈ TPP

2(C) \ {0}, the triple (P2(C), ω, J) is called an almost complex projective
plane. In this context, a compact 2-dimensional almost complex submanifold
diffeomorphic to P1(C) which has degree one in homology is called a J-line. These
J-lines are the analogue, in the almost complex projective plane, of projective
lines, and M. Gromov prooed that there are many of them (see [9]). More
precisely, the the set of all J-lines can be given a structure of smooth manifold
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of real dimension 4, diffeomorphic to P2(C), called the dual space of (P2(C), J).
Moreover, two distinct points in P2(C) are contained in a unique J-line, and given
any point P in P2(C), a non-zero vector of TPP

2(C) is tangent to a unique J-line.
The set of all J-lines containing the point P is a submaniflod of the dual space,
diffeomorphic to P1(C), and is called a pencil of J-lines.
The existence of such pencils allows us to define, for any point P ∈ P2(C),
the almost complex blow-up of (P2(C), J) and a central projection
πP : P2(C) \ {P} → P1(C). If f : D → P2(C) \ {P} is a J-holomorphic
disc missing the point P , the map: πP ◦ f : D→ P1(C) may not be holomorphic,
but it is always quasiconformal, which is almost as good.

It seems then rather natural to study the hyperbolicity of the complementary set
of a five or four J-lines in general position (ie. such that three of them never inter-
sect in one point). A first step has been made by R. Debalme and S. Ivashkovich,
who proved that the property ”(P2(C) \C, J) is hyperbolic” (in both Kobayashi’s
ans Brody’s senses) is open in the spaces of tame almost complex structures J and
configurations C of five J-lines (see [6]).

Theorem 1. The set

M = {(J, {LK , 1 ≤ k ≤ 5}) |

J is tamed by ω, the J-lines Lk are in general position}

may be given a structure of Banach manifold. The subset

H = {(J, {Lk, 1 ≤ k ≤ 5}) |

(P2(C) \
⋃

1≤k≤5

Lk, J) is hyperbolically embbeded in (P2(C), J)}

is a non-empty open subset of M.

More recently, J. Duval proved that Green’s theorem is actually always true in
an almost complex projective plane (see [7]):

Theorem 2. Let be C =
⋃

1≤j≤5 a configuration of five J-lines Lj in general

position. A J-curve f : C → P2(C) missing these five J-lines must be constant.
Therefore, P2(C) \ C is hyperbolically embedded in (P2(C), J).

It seems natural to investigate the hyperbolicity of the complementary set of
four J-lines. Of course, stricly speeking, the complementary set of four J-line is
never hyperbolic, since it contains non constant entire J-curves. But theese J-
curves are degenarate, like in the standard complex projective plane: this is an
almost complex Borel’s theorem.

Theorem 3. Let C = L1 ∪L2 ∪L3 ∪L4 a configuration o four J-lines in general
position. The diagonal divisor ∆ is defined as the union of the three J-lines ∆1,
∆2 and ∆3 which intersects C in only two points. Then if f : C → P2(C) \ C is
an entire J-line avoiding C, its image f(C) is contained in ∆.
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Bloch’s theorem is the counterpart of Borel’s for sequences of J-discs, and is
generally considered much deeper.

Theorem 4. If for n ∈ N, fn : D→ P2(C) \ C is a J-disc in P2(C) avoiding the
configuration C, then the following alternative is verified:

(1) The sequence (fn) is normal (i.e. every subsequence of (fn) has a subse-
quence that converges to a J-disc uniformly on compact sets).

(2) For all r ∈]0, 1[, the sequence (fn) has a subsequence (fnp
) such that

fnp
(D(0, r)) converges, in Hausdorff’s sense, to the diagonal divisor ∆.

As a consequence, the zero set of the Kobayashi-Royden’s pseudo metric of
the complementary set of the four J-lines Lj is the diagonal divisor ∆. More
precisely, P2(C) \

⋃
1≤j≤4 Lj is hyperbolically embedded in P2(C) modulo ∆.

These two theorems can be seen as geometric versions of their holomorphic
counterparts. To proove them, one must use only geometric tools, such as
central projections and blow-ups. The general idea of the proof is to use central
projections from the double points of the configuration

⋃
1≤j≤4 Lj, in order

to work not with J-curves in P2(C) but with quasiconformal maps from C to
P1(C). This class of functions is very convenient, since Ahlfors’ theory of covering
surfaces gives rise to a value distribution theory for quasiconformal maps. This
theory is the second main tool of the proof. Therefore, Borel’s and Bloch’s
theorems can be reduced to simple expressions of elementary geometric properties
of the projective plane and to Ahlfors’ theory.

Suppose given, for example, an entire curve f : C → P2(C) missing four lines
Lj in general position. The currents [f(D(0, r))] of integration over the image by
f of the disc D(0, r) can be used to build a positive closed current T , obtained as

a limit of currents of the form
(

Tf,R

Tf,R(ω)

)
, where Tf,R is Nevanlinna’s characteristic

current:

Tf,R =

∫ R

0

[f(D(0, r))]
dr

r
.

Using central projections and Ahlfors’ theory, it can be proved that the current T is
singular, supported by the diagonal divisor. This can be seen as a weak formulation
of Borel’s theorem. Then, blowing up the almost complex plane (P2(C), J) at the
double points of the configuration C =

⋃
1≤j≤4 Lj , it can be proved that the image

of the entire J-curve f is contained in the diagonal divisor.
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Classification of systems of orthogonal polynomials in two variables

Stepan Orevkov

(joint work with D. Bakry and M. Zani)

For n = 2 we give a complete solution to the following problem: find all triples
(D, ρ, g) where D = IntD is a domain in Rn, ρ is a smooth positive function in
D, and g = (gij) a smooth metric in D such that the second order differential
operator

L(f) =
1

ρ

∑

i,j

∂iρg
ij∂jf

satisfies the following conditions (here x = (x1, . . . , xn) and dx = dx1 . . . dxn):

(1) R[x] ⊂ L1(D, ρ dx) and R[x] is dense in L2(D, ρ dx);
(2) for any k, the space R[x]k := {P ∈ R[x] | degP ≤ k} is invariant under L;
(3) L is symmetric, i.e.,

∫
D
P LQρdx =

∫
D
QLP ρ dx for any P,Q ∈ R[x].

In this case, the eigenfunctions of L are the orthogonal polynomials.
Given a domain D, one can easily find ρ and g by solving simultaneous linear

equations. The problem is to determine all domains for which a solution exists.
For n = 1, a solution always exists. It gives Jacobi polynomials for D =]−1, 1[,

Laguerre polynomials for D = R+, and Hermite polynomials for D = R.
A complete list of domains admitting a system of orthogonal polynomials for

n = 2 is as follows.
Noncompact domains:

{x3 > y2}, {y > x2}, I1 × I2, I1 =]0, 1[, R+, R, I2 = R+, R

Compact domains:
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Deltoid Swallow tail Nodal cubic
(3-hypocicliod) (dual of {y = x4 − x2}) {y2 = x3 − x2}

parabola with cuspidal cubic cuspidal cubic
tangent and axis with tangent line ith bisecant

parabolic lens rectangle triangle circle
(2 coaxial parabolas)

All solutions are rigid up to affine linear transformations except the parabolic
lens which depends on one real parameter.

Idea of the proof. The condition of the invariance of R[x]k under L implies
gij ∈ R[x]2. The symmetricity condition combined with Stokes’ formula implies

∑

i

gij∂jF = 0, i = 1, . . . , n, (∗)

on the bounfary bD of D where F = 0 is a local equation of bD. In particular,
∆ := det gij vanishes on bD. Hence, D is bounded by a fourth degree curve
C = {∆ = 0} where ∆.
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Let n = 2. Given a power series expansion of ∆ at any point p of C, the
condition (∗) provides a system of simultaneous linear equations on the coefficients
of gij . It can be easily checked that this system has no solution under certain local
conditions on C at p, in particular, if C has a flex point in C2, a flex point at the
infinity with the tangent line different from the line at infinity and in some other
cases.

Combining the local restrictions on C with Plücker formulas for the projectively
dual curve, we obtain a short list of a priori possible domains. Analysing these
domains one by one, we select those ones for which gij can be found.

It remains to find ρ. It is always of the form

ρ = exp(h)
∏

∆ai

i , h ∈ R[x], deg h = 2n−
∑

deg∆i

where
∏

∆i is the facorization of ∆ and ai any constants.

Runge approximation for pseudo-holomorphic maps

Antoine Gournay

The Runge approximation theorem for holomorphic maps (U → C) is a funda-
mental result in complex analysis. We present here a similar result for (pseudo-)
holomorphic maps from a compact Riemann surface to a compact (almost-) com-
plex manifoldM under certain (strong) assumptions. Though the setting is defini-
tively that of pseudo-holomorphic maps, it also covers some complex varieties.

Basic concepts. A manifold M of even real dimension is said to be almost
complex when it is endowed with a section J ∈ EndTM such that ∀x ∈ M, J2

x =
−IdTxM . Complex multiplication gives rise to such a structure, and when M is of
real dimension 2 an almost complex structure is a complex structure (as can be
seen from the vanishing of the Nijenhuis tensor). M will be assumed compact and
Σ will denote a compact Riemann surface whose complex structure will be written
j.

A map u : Σ → (M,J) will be said pseudo-holomorphic or J-holomorphic if
du ◦ j = J ◦ du, or, equivalently, if

∀v ∈ TzΣ, ∂̄Ju(v) :=
1

2
(duz(v) + Ju(z) ◦ duz ◦ jz(v)) = 0.

Problem. The Runge approximation problem can, in this setting, be formu-
lated as follows: given a J-holomorphic map f : U → (M,J) for U an open subset
of Σ, a compact K ⊂ U , some small δ ∈ R>0, under which conditions is it possible
to find a J-holomorphic map h : Σ→ (M,J) such that ‖h− f‖C0 < δ?

Let us say that Runge approximation holds for f : U → (M,J) (where U ⊂ Σ)
if the above question has a positive answer.

Though the interest of the problem lies in the fact that h is defined on the whole
of Σ, this in not actually so much an extension result (which is in general impossible
even for holomorphic maps C→ C) as an approximation result (whence the name).
But even then, there are choices of (M,J) and Σ where it is impossible (see below).
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The subject matter of this article is to show that under certain assumptions on
(M,J), the aforementioned question has a positive answer for any Σ.

Assumption. Let a map u realize the tangent v ∈ TmM if v is in the image of
the differential, u(z) = m and ∂̄Juz = 0, or, as expressed in local charts, if it can
be written as vz + O(|z|2) (see Sikorav’s characterization of local behavior in [9,
Proposition 3]). Obviously, if there is a pseudo-holomorphic map CP1 → (M,J)
realizing v then, ∀λ ∈ C, there is a map realizing λv. Denote by SM the unit
tangent bundle of M .

Furthermore, the almost complex structure has to be assumed regular (as de-
scribed in McDuff and Salamon’s book [7, Theorem 3.1.5]). Regularity is impor-
tant to ensure that the linearization of the ∂̄ operator at a pseudo-holomorphic
curve (CP1 → (M,J)) is surjective, hence invertible. If this is not assumed, then
each grafting might generate additional problem. From an algebraic viewpoint,
this implies that fusion of rational curves (the construction which to two curves
x = 0 and y = 0 associates the curve xy = ǫ) is possible.

Theorem 1: Let (M,J) be an almost complex manifold. Assume J ∈ C1,1 and
is regular. Assume there is a dense set R ⊂ SM such that all v ∈ R is realized
by a pseudo-holomorphic map u : CP1 → (M,J). Then the Runge approximation
holds for f : U → (M,J) (where U ⊂ Σ) if f can be extended C0 to Σ.

It is worth noting that the hypothesis of theorem 1 are as minimal as can be
reasonably expected.

Proposition 2: Let Σ be a Riemann surface. Suppose that J is Lipschitz. Assume
that Runge approximation holds for map f : Dr → (M,J) (for discs Dr which can
be seen as open subsets of Σ). Then there exists a dense subset R ⊂ SM , so that
∀v ∈ R there is a J-holomorphic map gv : CP1 →M realizing the tangent v.

Specializing this proposition at Σ = CP1 shows that the hypothesis of theorem
1 only differ by the assumptions on J with the minimal possible hypothesis.

Examples. A simple example in which the hypothesis in theorem 1 are easily
verified is M = CPn with its usual complex structure (note that the classical
Runge theorem may, of course, directly be applied in this case). The same can be
said of product of projective spaces. If the complex structure is not standard but
is still tamed by the standard symplectic form on CPn then theorem 1 holds (by
Gromov’s results [5]).

On the other hand, M = Tn with their usual complex structures are clearly
cases where it fails, as there can be no holomorphic maps from CP1 → Tn. In
this particular example, this is not only that the hypothesis of Theorem 1 cannot
be fulfilled. The Runge approximation in Tn cannot exist for Σ = CP1; it could
however still be true for other Riemann surfaces Σ, e.g. Σ = T1.

The conditions of Theorem 1) also hold in a Grassmanian G (k,E). Indeed
TAG ≃ Hom(A,B) for B a supplement of A = [a1 ∧ . . . ∧ ak] ∈ G . For p ∈
Hom(A,B), the map u : z 7→ [

(
a1 + zp(a1)

)
∧ . . . ∧

(
ak + zp(ak)

)
] extends to CP1

and realize the tangent p.
For a more general approach to complex varieties that will satisfy the assump-

tions, see Debarre’s book [3, Chapter 4], more precisely the part about rationally
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connected varieties. As such, if there is a “very free” curve (see [3, Definition 4.5];
this is equivalent to being rationally connected, see [3, Definition 4.3 and Corol-
lary 4.17]) in an algebraic compact variety, the conditions will also hold. Over C,
rationally connected varieties are exactly those for which a general pair of points
(outside a subvariety of codimension at least 2) can be joined by a rational curve.

Applications. Compactified moduli spaces of curves of genus g (we speak of
the Deligne-Mumford compactification), Mg, are unirational when g ≤ 14, and
rationally connected for g ≤ 15. As a consequence theorem 1 will apply for these
spaces. However, if g ≥ 24, the moduli space is then of general type (see the survey
of Farkas [4] on the topic).

A case of interest for the application of theorem 1 are Lefschetz fibrations; this
idea is due to S. Donaldson. The aim is to partially recover the results of Auroux
(see [1] and [2]) and Siebert-Tian [8]. A fibration p : V → CP1 can be seen in
terms of its classifying map CP1 → Mc

2 where M2, the moduli space of genus
2 curves, is (almost-)smooth and complex (actually Kählerian). In this context,
the Runge theorem 1 applies: as mentioned above M2 satisfies the hypothesis.
Taking U = ∅, one gets that any Lefschetz fibrations becomes, after sufficiently
many fibred sum (stabilization) and a small deformation, holomorphic. Thence

Corollary 3: Let p : M → CP1 be a genus g ≤ 15 differentiable Lefschetz
fibration. Then, after fiber sum with sufficiently many copies of some holomorphic
Lefschetz fibrations (a.k.a. stabilization), it becomes isomorphic to a holomorphic
Lefschetz fibration.

This is perhaps even more striking in view of [2]. Indeed, Auroux’s method
do not require any hypothesis on the genus of the surface; the methods are in
fact much more direct (the “universal” fibration f0

g is quite explicit). This could,
perhaps, either hint at the fact that there might be a dense set of tangents realized
by rational curves inMg, while this space remains of generic type or that it could

be possible to restrict the problem on a part ofMg having this property.
In the classical Runge theorem, the number of poles of the approximating map

is related to the topology of the set U . Unfortunately, the notion of a pole does
not have a meaning in the compact setting. What will obviously happen however

is that one expects that the energy (the L
2

norm of the differential) of the approx-
imating map may be very big. A consequence of Taubes result [10, Theorem 1.1]

is that the minimal number of necessary connect sums of CP2 required to make
a metric structure anti-self-dual is defined. It is an invariant of the conformal
metric, but not a simple one to compute (LeBrun and Singer [6, §1] gave a bound
of 14 in the case of CP2 with its usual metric). Though again probably not an
easy question to answer, it would, in the context of the present article, be inter-
esting to look for the minimal energy of a J-holomorphic map realizing a given
approximation.
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Radon transform on complex projective varieties and applications

Gennadi Henkin

Radon type transforms on complex projective varieties were introduced in differ-
ent forms and with different purposes in the works of Fantappiè (1943), Martineau
(1962), Andreotti, Norguet (1967, 1971), Penrose (1969, 1977), Gindikin, Henkin
(1978),...

This report gives survey of recent works in the theory of complex Radon trans-
forms.

1. In the work (Henkin, Polyakov, arXiv, dec. 2010) we have shown that
complex Radon transform realizes isomorphism between the space of residual ∂̄-
cohomologies of algebraic (not necessary reduced) locally complete intersections
in a linearly concave domain of CPn and the space of holomorphic solutions of
the associated homogenous system of linear differential equations with constant
coefficients in a dual domain of (CPn)∗.

2. In addition, for algebraic complete intersection V in a linearly concave poly-
hedral domain D ⊂ CPn we have constructed an explicit inversion formula for
Radon transform on V , which implies an explicit formulas for solutions of nat-
ural boundary value problems for the associated system of differential equations
in a dual domain D∗ ⊂ (CPn)∗. This formula develops an ”explicit fundamental
principle” of Berndtsson, Passare (1989).

3. These results can be applied, in particularly,
for characterization in terms of Radon transform of those elements of cohomology
space Hn,n−1(Ω) in a linearly concave domain Ω ⊂ CPn, which can be represented
by residual currents with support in algebraic subvarieties of Ω,
for extension of inverse Abel theorems, Saint-Donat (1975), Griffiths (1976),
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Henkin (1992), Fabre (2007), to the case of datas on arbitrary (not necessary
reduced) complex curves in linearly concave domains of CPn.

1. Introduction and main result.
We consider two related problems: the one is to describe infinite-dimensional

spaces of ∂̄-cohomologies of subvarieties in linearly concave domains of CPn in
terms of the spaces of holomorphic solutions of associated systems of differential
equations in dual linearly convex domains, the inverse problem is to realize the
spaces of holomorphic solutions of systems of linear homogeneous differential equa-
tions with constant coefficients on linearly convex domains of CPn as spaces of
∂̄-cohomologies of associated subvarieties of dual linearly concave domains.

The investigation of these problems was started by Martineau (1962).
The main result of Martineau was interpretated in Gindikin, Henkin (1978) as

the statement about isomorphism by complex Radon transform between the space
of (n, n− 1) ∂̄-cohomology of a linearly concave domain D ⊂ CPn and the space
of holomorphic functions on the dual linearly convex domain D∗ ⊂ (CPn)∗.

The study of these questions in Henkin, Polyakov (1986) and Henkin (1995) for
the case of complex submanifolds in a linearly concave domains of CPn brings to
the following result.

Let (z0, . . . , zn)and (ξ0, . . . , ξn) be the homogeneous coordinates of points z ∈

CPn and ξ ∈ (CPn)∗ such that ξ · z
def
=

n∑
k=0

ξk · zk = 0.

Put CPn−1
ξ = {z ∈ CPn : ξ · z = 0}.

By linearly concave domain in CPn we will call a domain D in CPn, such that
there exists continuous mapping w → ξ(w), w ∈ D, ξ(w) ∈ D∗ with the property
w ∈ CPn−1

ξ(w) ∀ w ∈ D.

Theorem 1.1.
Let D be a linearly concave domain in CPn, n ≥ 2. Let V be a (n-m)-

dimensional algebraic manifold of the form

V = {z ∈ CPn : P1(z) = . . . = Pr(z) = 0},

where homogeneous polynomials P1, . . . , Pr are such that everywhere in V
rank [gradP1, . . . , gradPr] = m. Let Hn−m,n−m−1(D∩V ) denote the cohomology
space Hn−m−1(V ∩D,ωV ), where ωV be canonical bundle on V .

Then:
i) the transform

F 7→ f =

n∑

j=0

∫

z∈CPn−1
ξ

∩V

< ξdz >⌋zjF,

F ∈ Hn−m,n−m−1(D ∩ V ) determines the linear continuous transform
R : Hn−m,n−m−1(D∩V )→ H1,0(P ∗) with finitedimensional kernel, consisting of
restrictions on D ∩ V of ∂̄-cohomologies from Hn−m,n−m−1(V )
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ii) the transform R has the following image
{
f ∈ H1,0(D∗) : f = dϕ,where ϕ ∈ H0,0(D∗) and Pj

(
∂

∂ξ

)
ϕ = 0, j = 1, . . . , r

}

where {Pj} are the homogeneous polynomes defining the manifold V .

Remark. Under condition n−m = 1 statement i) of Theorem 1.1 is a conse-
quence of inverse Abel theorem (see Saint-Donat (1975), Griffiths (1976)). Under
conditions: n−m > 1 and V is complete intersection, statement i) of Theorem 1.1
is a consequence of Theorem 3.3 from Henkin, Polyakov (1986). In the complete
form Theorem 1.1 was obtain in Henkin (1995).

The goal of this research is to obtain natural generalization of Theorem 1.1 to
the case of arbitrary locally complete intersections in linearly concave domains.

Definition 1.1 (locally complete intersections).
An analytic subvariety V ⊂ CPn is called locally complete intersection subva-

riety in CPn of pure dimension n−m, if there exists a finite open cover {Uα}Nα=1

of CPn and collection of holomorphic functions {F
(α)
k } in Uα such that

V ∩ Uα = {z ∈ Uα : F
(α)
1 (z) = . . . = F (α)

m (z) = 0}. (1)

In our construction of ∂̄-closed residual currents on a locally complete intersection
variety V ∩D we will use conormal bundle N(V ) and dualizing bundle ω0

V on V .

Definition 1.2 (conormal bundle and dualizing bundle).
Conormal bundle N(V ) on V is defined by the nondegenerate holomorphic

transition matrices ∆αβ(z) ∈ H(Uα ∩ Uβ) such that

F (α)(z) = AαβF
(β)(z) on Uα∩Uβ, where F (α) is column t(F

(α)
1 , . . . , F (α)

m ). (2)

By dualizing bundle following Grothendieck (1958) and Hartshorne (1977) we
will call line bundle
ω0
V = ωCPn × det N(V )−1, where det N(V ) = ∧mN(V ).
We define further the spaces of residual currents and of residual ∂̄-cohomologies

on V ∩D, where D is linearly cncave domain in CPn.

Definition 1.3 (residual currents).
For a subvariety V ∩D of pure dimension n−m locally satisfying (1) develloping

Coleff, Herrera (1978) and Passare (1988) we will write that a ∂̄-closed current ϕ
with support in V ∩ D is a ∂̄-closed residual current, belonging to Zn−m−1(V ∩
D,ω0

V ), if there exists a finite collection of open neighborhood {Uα ⊂ CPn}Nα=1

and of differential forms Φα ∈ C
(∞)
n,n−m−1(Uα ∩D) such that ∪Nα=1Uα ⊃ V and for

any (0,1)-form ψ ∈ C
(∞)
0,1 with compact support in Uα ∩D we have

< ϕ,ψ >=

∫

Uα

ψ∧Φα∧ ∂̄(
1

F
(α)
1

)∧ . . .∧ ∂̄(
1

F
(α)
m

)
def
= lim

t→0

∫

T ε

{F (α)}
(t)

ψ ∧ Φα

F
(α)
1 . . . F

(α)
m

, (3)
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where

∂̄Φα =

m∑

k=1

F
(α)
k Ω

(α)
k on Uα ∩D,

Φα = (det Aα,β)
−1Φβ +

m∑

k=1

F
(α)
k Ω

(αβ)
k on Uα ∩ Uβ ∩D,

Aα,β are holomorphic matrices from (2),

T ε
{F (α)}(t) = {z : |F

(α)
1 (z)| = ε1(t), . . . , |F

(α)
m (z)| = εm(t)}

is a family of tubular varieties depending on the real parameter t, and the limit in
the right-hand side of (3) is taken along an admissible path ε = {εk(t)}

m
1 in the

sense of Coleff-Herrera (1978), i.e. ε is analytic map ε : [0, 1]→ Rm satisfying the
conditions

lim
t→0

εm(t) = 0, lim
t→0

εj(t)
/
εqj+1(t) = 0, j = 1, . . . ,m− 1, ∀ q ∈ Z. (3′)

The collection {Φα}
N
α=1 define a ∂̄-closed (n,n-m-1) differential form on V ∩D

with coefficients in det N(V )−1. Looking very technical condition (3′) can not be
replaced by simpler condition εj(t)→ 0, t → 0, j = 1, . . . ,m, (see Passare, Tsikh
(1996)).

Definition 1.4 (residual ∂̄-cohomologies).
For n −m ≥ 2, a ∂̄-closed residual current ϕ ∈ Zn−m−1(V ∩ D,ω0

V ) is called
∂̄-exact with notation ϕ ∈ Bn−m−1(V ∩D,ω0

V ), if there exists a residual current
g ∈ Zn−m−2(V ∩D,ω0

V ) such that ∂̄g = ϕ on V . Therefore the spaces of residual
∂̄-cohomologies

Hn−m−1(V ∩D,ω0
V ) = Zn−m−1(V ∩D,ω0

V )
/
Bn−m−1(V ∩D,ω0

V ) (4)

are well defined if n−m ≥ 2. For the case n−m = 1 we put
H0(V ∩D,ω0

V ) = Z0(V ∩D,ω0
V ).

Before defining the complex Radon transform we introduce additional notations.
We denote by H0,0(D∗) and H1,0(D∗) the spaces of holomorphic functions and
respectively holomorphic 1-forms on D∗.

Let V 0 denote the reduced version of the variety V . Let S∗
V 0 denote the subset of

D∗, corresponding to the hyperplanes CPn−1
ξ , having tangency points with Reg V 0

or having intersection with Sing V 0. This notation implies that S∗
V 0 is analytic

subset in D∗ of dimension less than n and ∀ξ ∈ D∗\S∗
V 0 dimC(V

0 ∩ CPn−1
ξ ) =

n−m− 1.

Definition 1.5 (complex Radon transform).
Let V ⊂ CPn be a locally complete intersection subvariety of pure dimension

n−m. Then we define Radon transform

RV : Zn−m−1(V ∩D,ω0
V )→ C1,0(D∗\S∗

V 0)
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for ∂̄-closed residual currents ϕ ∈ Zn−m−1(V ∩D,ω0
V ) by the formula

RV [ϕ](ξ) = (
1

2πi
)n+1

n∑

j=0

( N∑

α=1

∫

V ∩D

θα(z)zjΦα∂̄
1

< ξ, z >
∧ ∂̄

1

F
(α)
1

∧ . . .∧ ∂̄
1

F
(α)
m

)
dξj ,

(5)
where {θα}N1 is a partition of unity subordinate to a cover {Uα}N1 of D by open
subdomains in CPn, ξ ∈ D∗\S∗

V 0 , the forms Φα ∧ ∂̄
1

F
(α)
1

∧ . . .∧ ∂̄ 1

F
(α)
m

are the local

representatives of the current ϕ.

The main result. Theorem 1.2. (Henkin, Polyakov, arXiv, dec.2010)
Let V = {z ∈ CPn : P1(z) = . . . = Pr(z) = 0} be a locally complete intersec-

tion subvariety of pure dimension (n-m), defined by the homogeneous polynomials
{Pk}rk=1, r ≥ m. Let D ⊂ CPn be a linearly concave domain and D∗ be a dual
domain. Then the Radon transform RV defined by (5) induces a continuous linear
operator on the space of cohomologies:

RV : H0,n−m−1(V ∩D,ω0
V )→ H1,0(D∗).

Moreover, the following properties are satisfied:
1) the KerRV is the finite-dimensional subspace in H0,n−m−1(V ∩ D,ω0

V ), con-
sisting of restrictions to V ∩D of classes of cohomologies from H0,n−m−1(V, ω0

V )
ii) the image RV is the following subspace in H1,0(D∗):

{f ∈ H1,0(D∗) : f = dg with g ∈ H0,0(D∗) such that Pj(
∂

∂ξ
)g = 0, j = 1, ...,m}.

Remark. Under condition m = n − 1 the statement i) of Theorem 1.2 is a
consequence of result of B.Fabre (2007).

On the effective membership problem on algebraic varieties

Mats Andersson

(joint work with E. Wulcan)

Let X be a, not necessarily smooth, n-dimensional subvariety of PN and let
Xaff = X ∩ CN be the affine part. If F1, . . . , Fm are polynomials on Xaff of
degree (at most) d with no common zeros on Xaff , then one can find polynomials
Qj such that F1Q1 + · · ·+ FmQm = 1 on Xaff and

deg(FjQj) ≤ cmd
µ degX,

where cm = 1 if m ≤ n, cm = 2 if m > n, and

µ := min(m,n).

This estimate was proved by Kollár, [13], in case X = Pn (even without the factor
2), and by Jelonek, [12], in general, and it is (almost) optimal.
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For any given polynomials Fj of degree (at most) d and a polynomial Φ in the
ideal (Fj) generated by Fj the best degree estimate of a solution

(1) F1Q1 + · · ·+ FmQm = Φ

is doubly exponential in d, i.e., like d2
n

. However, in more special situations one
can obtain sharper results.

In an ongoing joint work with E. Wulcan, [7], we study global division problems
on algebraic varieties, and obtain generalizations to singular varieties of various
results previously known for smooth varieties, due to Hickel, Ein-Lazarsfeld, and
others. For instance we have:

Theorem 1. Assume that X is an n-dimensional projective subvariety of PN and
let Xaff = PN ∩ CN .
There exists a number µ0 such that if F1, . . . , Fm are polynomials of degree ≤ d on
Xaff and Φ is a polynomial such that

(2) |Φ| ≤ C|F |µ+µ0

locally on Xaff , then one can solve (1) on Xaff with

(3) deg(FjQj) ≤ max
(
degΦ + (µ+ µ0)d

c∞ degX, β).

Here µ = min(m,n), c∞ is a number that depends on the common zero set
Z∞ of Fj at infinity, it always holds that c∞ ≤ µ. Moreover, β is a number that
is usually small compared to the first entry. If Fj have no common zeros at all
at infinity, then c∞ = −∞, and in that case we get an extension of the classical
results of Max Noether and Macaulay. If X is smooth one can take µ0 = 0, and if
X = Pn, one then gets back the theorem of Hickel in [10].

This result can be seen as a global Briançon-Skoda-Huneke theorem, see below.

We also have a more abstract variant, generalizing the effective Nullstellensatz
of Ein-Lazarsfeld in [9] to a non-smooth X . Recall that if L→ X is an ample line
bundle then there is a (smallest) number νL such that Hi(X,L⊗s) = 0 for i ≥ 1
and s ≥ νL. (If X is smooth then, in view of Kodaira’s theorem, νL is less than
or equal to the least number ν such that Lν ⊗K−1

X is positive.)

Theorem 2. Let X be a projective variety. There is a number µ0, only depending
on X, such that the following holds:

Let f1, . . . , fm be global holomorphic sections of an ample line bundle L → X,
and let φ be a section of L⊗s, where s ≥ νL +min(m,n+ 1). If

(4) |φ| ≤ C|f |µ+µ0

on X, then there are holomorphic sections qj of L⊗(s−1) such that

(5) f1q1 + · · ·+ fmqm = φ.

If X is smooth one can take µ0 and then one gets back the corresponding result
in [9].

To begin with, via homogenization one can reformulate Theorem 1 on a similar
form as Theorem 2, with L as the pull-back to X of O(d)PN → PN . The starting
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point for the proof of Theorem 2 is the geometric set-up introduced in [2] to solve
global membership problems by means of residue theory. As long as X is smooth,
the proof is reduced to two things: The first one is to show that the right hand
side φ annihilates a certain residue current obtained from the generators fj . One
then obtains the desired global holomorphic solution qj after solving a sequence
of ∂̄-equations on X .

However, this approach breaks down when X is not smooth because the residue
current must be defined in an embedding of X in a smooth manifold Y . Moreover,
we cannot assume in general that fj and φ admit holomorphic extensions to Y so
we must introduce a surrogate for that. Come so far we then have to use some
recent ideas to show that the residue current that appears in Y is annihilated by
φ. By a regularization principle the problem then boils down to a ∂̄-problem on
X itself that can be solved. To perform these steps we make use of some quite
recent results on residue theory:

Together with Wulcan we introduced in [5], to any ideal sheaf J , a (vector-
valued) residue current RJ , such that the annihilator ideal of RJ , i.e., the ideal of
holomorphic functions φ such that the current φRJ vanishes, is precisely the ideal
J itself. This is a generalization of the classical duality principle for a complete
intersection ideal, due to Passare and Dickenstein-Sessa.

With Wulcan, [6], we also introduced the class (sheaf) of pseudomeromorphic
currents; this class includes all principal value currents like 1/f where f is holo-
morphic as well as ∂̄(1/f), it is closed under multiplication with smooth forms
and under push-forwards by proper mappings. In particular all Coleff-Herrera
currents and the current RJ above are pseudomeromorphic. There is a very use-
ful analogue for pseudomeromorphic currents of the dimension principle for normal
(p, p)-currents:

If µ is a pseudomeromorphic current of bidegree (∗, p) that has support on a variety
of codimension greater than p, then µ must vanish.

By means of this residue theory we (together with Samuelsson and Sznajdman)
found, [4], an analytic proof of the Briançon-Skoda-Huneke theorem, [11]:

Let X be a germ of an analytic space. Then there is a number µ0 = µ0(X) such
that the following holds: If a ⊂ OX is an ideal and φ ∈ OX , then

|φ| ≤ C|a|ℓ+1−µ0

implies that φ ∈ aℓ.

Together with Samuelsson we have combined the residue theory in [5], [6], with
integral formulas, [1], and obtained semiglobal Koppelman formulas for ∂̄ on an
analytic space X . By means of such formulas we have found sheaves Aq of (0, q)-
currents on X with the following properties: Aq coincide with the sheaves of
smooth (0, q)-forms on the regular part Xreg of X , Aq is closed under multiplica-
tion by smooth (0, ∗)-forms, and the sequence

0→ OX → A0
∂̄
−→ A1

∂̄
−→ A2

∂̄
−→
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is exact, i.e., it is a fine resolution of OX . As a consequence we get a generalization
of the classical Dolbeault isomorphism to a singular space, [3].
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Extension of plurisubharmonic functions with growth control

Dan Coman

(joint work with V. Guedj and A. Zeriahi)

Let X ⊂ Cn be a (closed) analytic subvariety. In the case when X is smooth
it is well known that a plurisubharmonic (psh) function on X extends to a psh
function on Cn [5]. Using different methods, Colţoiu generalized this result to the
case when X is singular [2]. We recall that a function ϕ : X → [−∞,+∞) is called
psh if ϕ 6≡ −∞ on X and if every point z ∈ X has a neighborhood U in Cn so
that ϕ extends to a psh function on U .

Following Colţoiu’s approach we show here that it is possible to obtain exten-
sions with global growth control:

Theorem A. Let X be an analytic subvariety of a Stein manifold M and let ϕ
be a psh function on X. Assume that u is a continuous psh exhaustion function
on M so that ϕ(z) < u(z) for all z ∈ X. Then for every c > 1 there exists a psh
function ψ = ψc on M so that ψ |

X
= ϕ and ψ(z) < cmax{u(z), 0} for all z ∈M .
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We then look at a similar problem on a compact Kähler manifold V . Given a
Kähler form ω, let

PSH(V, ω) =
{
ϕ ∈ L1(V, [−∞,+∞)) : ϕ upper semicontinuous, ddcϕ ≥ −ω

}

denote the set of ω-plurisubharmonic (ω-psh) functions. If X ⊂ V is an analytic
subvariety, we define similarly the class PSH(X,ω |

X
) of ω |

X
-psh functions on X :

a function ϕ : X → [−∞,+∞) is called ω |
X
-psh if ϕ 6≡ −∞ on X and if there

exist an open cover {Ui}i∈I of X and psh functions ϕi, ρi defined on Ui, where ρi
is smooth and ddcρi = ω, so that ρi + ϕ = ϕi holds on X ∩ Ui, for every i ∈ I.

By restriction, ω-psh functions on V yield ω |
X
-psh functions on X . If ω is a

Hodge form, i.e. a Kähler form with integer cohomology class, our second result
is:

Theorem B. Let X be a subvariety of a projective manifold V equipped with a
Hodge form ω. Then any ω |

X
-psh function on X is the restriction of an ω-psh

function on V .

Note that in the assumptions of Theorem B there exists a positive holomorphic
line bundle L on V whose first Chern class c1(L) is represented by ω. In this case
the ω-psh functions are in one-to-one correspondence with the set of (singular)
positive metrics of L (see [4]). Thus an alternate formulation of Theorem B is the
following:

Theorem B’. Let X be a subvariety of a projective manifold V and L be an ample
line bundle on V . Then any (singular) positive metric of L |

X
is the restriction of

a (singular) positive metric of L on V .

Recall that it is possible to regularize quasipsh functions on Pn, since it is a
homogeneous manifold. Hence Theorem B has the following immediate corollary:

Corollary C. Let X be a subvariety of a projective manifold V equipped with
a Hodge form ω. If ϕ ∈ PSH(X,ω |

X
) then there exists a sequence of smooth

functions ϕj ∈ PSH(V, ω) which decrease pointwise on V so that lim ϕj = ϕ on
X.

When X is smooth this regularization result is well known to hold even when
the cohomology class of ω is not integral (see [3], [1]).

As an application of Theorem B, we conclude by discussing the extension prob-
lem for psh functions in the Lelong classes. If X is an analytic subvariety of Cn

and γ > 0, we denote by Lγ(X) the Lelong class of psh functions ϕ on X which

verify ϕ(z) ≤ γ log+ ‖z‖+O(1) on X . By Theorem A, functions ϕ ∈ L(X) admit
a psh extension in each class Lγ(Cn), for every γ > 1.

We assume next thatX is an algebraic subvariety of Cn and address the question
whether it is necessary to allow the arbitrarily small additional growth. Consider
the standard embedding z ∈ Cn →֒ [1 : z] ∈ Pn, where [t : z] denote the homo-
geneous coordinates on Pn. Let X be the closure of X in Pn. It is well known
that the class PSH(Pn, ω), where ω is the Fubini-Study form, is in one-to-one
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correspondence with L(Cn). Similarly, a function η ∈ L(X) induces a function η̃
on X defined by

η̃([t : z]) =






η(z)− log
√
1 + ‖z‖2, if t = 1, z ∈ X,

lim sup
[1:ζ]→[0:z],ζ∈X

(η(ζ)− log
√
1 + ‖ζ‖2), if t = 0, [0 : z] ∈ X \X.

The function η̃ is in general only weakly ω-psh on X, i.e. it is bounded above on X
and ω-psh at the regular points of X. Theorem B has the following consequence:

Proposition. Let η ∈ L(X). The following are equivalent:
(i) There exists ψ ∈ L(Cn) so that ψ = η on X.
(ii) η̃ ∈ PSH(X,ω |

X
).

(iii) For every point a ∈ X \X the values

lim sup
Xj∋[1:ζ]→a

(η(ζ) − log
√
1 + ‖ζ‖2)

are independent of j, where Xj are the irreducible components of the germ (X, a).

In view of this proposition, it is easy to construct examples of algebraic curves
X ⊂ C2 and functions in L(X) which do not admit an extension in L(C2).
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L
2-cohomology of singular spaces

Jean Ruppenthal

In the 1960s, the L2-theory for the ∂-operator has become an important, indis-
pensable part of complex analysis through the fundamental work of Hörmander on
L2-estimates and existence theorems for the ∂-operator and the related work of An-
dreotti and Vesentini. One should also mention Kohn’s solution of the ∂-Neumann
problem, which implies existence and regularity results for the ∂-complex, as well.
But whereas the theory is very well developed on complex manifolds, it has been
an open problem ever since to create an appropriate L2-theory for the ∂-operator
on singular complex spaces. We will report on the latest developments in this
direction.

When we consider the ∂-operator on singular complex spaces, the first problem
is to define an appropriate Dolbeault complex in the presence of singularities. It
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turns out that it is very fruitful to investigate the ∂-operator in the L2-category
(simply) on the complex manifold consisting of the regular points of a complex
space. One reason lies in Goresky and MacPherson’s notion of intersection (co-)
homology and the conjecture of Cheeger, Goresky and MacPherson, which states
that the L2-deRham cohomology on the regular part of a projective variety Y (with
respect to the restriction of the Fubini-Study metric and the exterior derivate in
the sense of distributions) is naturally isomorphic to the intersection cohomology
of middle perversity IH∗(Y ) of Y :

Conjecture 1. (Cheeger-Goresky-MacPherson)
Let Y ⊂ CPN be a projective variety. Then there is a natural isomorphism

Hk
(2)(Y − Sing Y ) ∼= IHk(Y ).

The early interest in this conjecture was motivated in large parts by the hope
that one could then use the natural isomorphism and a classical Hodge decom-
position for Hk

(2)(Y − Sing Y ) to put a pure Hodge structure on the intersection

cohomology of Y . The conjecture was proved by Ohsawa in the case of isolated
singularities (see [2]), while it is still open in general.

It is also interesting to have a look at the arithmetic genus of complex varieties.
When M is a compact complex manifold of dimension n, the arithmetic genus

χ(M) :=

n∑

q=0

(−1)q dimHn,q(M)

is a birational invariant of M . The conjectured extension of the classical Hodge
decomposition to projective varieties led MacPherson also to ask whether the
arithmetic genus χ(M) extends to a birational invariant of all projective varieties.

This turns out to be actually true if we consider the L2-arithmetic genus

χ(2)(X) :=

n∑

q=0

(−1)q dimHn,q
(2) (X − SingX),

because the L2-Dolbeault cohomology groups with respect to the ∂-operator in the
sense of distributions Hn,q

(2) (SingX) themselves are invariant under modifications

for all 0 ≤ q ≤ n:

Theorem 2. (Pardon-Stern [4], R. [8]) Let X be a Hermitian compact complex
space of pure dimension, and 0 ≤ q ≤ n = dimX. Then

Hn,q
(2) (X − SingX) ∼= Hn,q(M)(1)

for any resolution of singularities π : M → X.

This settles MacPherson’s conjecture in the more general setting of Hermitian
compact complex spaces. The proof is due to Pardon-Stern in the case of projective
varieties and can be deduced from Takegoshi’s vanishing theorem (and arguments
due to Donelly-Fefferman, Ohsawa, Pardon-Stern) in the general situation (see
[8]).
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On the contrary, the L2-Dolbeault cohomology groups H0,q
(2) (X − SingX) of a

singular Hermitian complex space are not birational invariant. Nevertheless, it
seems possible to determine also the behavior of these groups under modifications,
and to describe them by use of a resolution of singularities. This seems very
interesting in context of the Cheeger-Goresky-MacPherson Conjecture 1 or maybe
the minimal model program.

For spaces with only isolated singularities, the task of characterizing the L2

Dolbeault cohomology groups H0,q
(2) (X − SingX) by use of a resolution of singu-

larities has been completed very recently by Øvrelid-Vassiliadou ([3]). Their final
result is based on intermediate steps due to Pardon-Stern [4, 5], Fornæss-Øvrelid-
Vassiliadou [1] and Ruppenthal [6, 7, 8].

To explain the results, let X be a Hermitian compact complex space of pure
dimension n with isolated singularities only. For reasons of simplicity of the ex-
position, we restrict the presentation here to compact complex spaces, though the
most techniques are of local nature and allow to treat much more general situa-
tions. Let π : M → X be a resolution of singularities with only normal crossings
(of the exceptional divisor). We denote by Z := π∗(SingX) the unreduced excep-
tional divisor and by |Z| the underlying reduced divisor (i.e. the reduced divisor
associated to the exceptional set E). Then:

Theorem 3. (Øvrelid-Vassiliadou [3])
Under the assumptions as above:

H0,q
(2) (X − SingX) ∼= Hq(M,O), 0 ≤ q ≤ n− 2,

H0,n
(2) (X − SingX) ∼= Hn(M,O(Z − |Z|)),

and there exists a surjective homomorphism

Ψ : Hn−1(M,O(Z − |Z|))→ H0,n−1
(2) (X − SingX)

such that

kerΨ ∼= Hn−1
E (M,O(Z − |Z|)),

where Hq
E denotes the cohomology with support on the exceptional set E.

If the sheaf O(Z − |Z|) is locally semi-negative with respect to the base-space
X , i.e. if each point x ∈ X has a neighborhood Ux such that O(Z − |Z|) is semi-
negative on π−1(Ux), then kerΨ = 0. This situation has been treated already
before in [8]. It occurs especially (trivially) if the divisor Z has multiplicity 1,
yielding that Z = |Z|. This is the case for conical singularities which can be
resolved by a single blow-up (see also [6, 7]). Another interesting special situation
is the case of complex surfaces, dimX = 2. Then, also kerΨ = 0 in Theorem 3
(see [3]).

One of the key ideas in the proof of Theorem 3 – and for an L2-theory for
the ∂-operator on singular spaces in general – is to consider different closed L2-
extensions of the ∂-operator. Besides the ∂-operator in the sense of distributions,
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one also considers the minimal closed extension ∂s given by the L2-closure of the
graph of the ∂-operator acting on smooth forms with compact support

∂cpt : C
∞
∗,cpt(X − SingX)→ C∞

∗,cpt(X − SingX).

One can then use L2-Serre duality

H0,q
(2) (X − SingX) ∼= Hn,n−q

(2),s (X − SingX)(2)

to relate the L2-cohomology groups with respect to the ∂-operator in the sense of
distributions H0,q

(2) to the L2-cohomology with respect to the ∂s-operator H
n,n−q
(2),s .

A crucial idea introduced in [8] is then that the ∂s-operator can be localized,
and that this operator ∂s,loc is locally exact in the L2-sense for (n, q)-forms on a
Hermitian space with isolated singularities. One can then deduce

Hn,n−q
(2),s (X − SingX) ∼= Hn−q(X,Ks

X)(3)

where Ks
X := ker∂s,loc ⊂ L2

n,0(X − SingX) is a new kind of canonical sheaves
introduced in [8]. By use of (3), it is then possible to express (2) in terms of a
resolution of singularities.
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Invariant Fatou components in 2 complex variables

Han Peters

(joint work with M. Lyubich)

The Fatou set F of a holomorphic map f : X → X is the set of all points z ∈ X
for which the family of iterates {f◦n} is a normal family in a neighborhood of z.
A connected component of the Fatou set is called a Fatou component.

For rational self-maps of the Riemann sphere, the behavior of the orbits on
Fatou components is very well understood. It was proved by Sullivan [4] that
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every Fatou component is preperiodic, and periodic Fatou components have been
completely classified.

Our understanding of Fatou components in 2 and more complex dimensions
is much smaller. In this presentation we will focus on the case of (generalized)
Hénon maps, a family of polynomial automorphisms of C2 whose dynamics have
been studied extensively in the last two decades. In general it is not known whether
a Fatou component is necessarily preperiodic, we will consider the classification of
invariant Fatou components.

Following Bedford-Smillie [1] we say that an invariant Fatou component Ω =
f(Ω) is recurrent if there exists an orbit in Ω that accumulates at a point in Ω.
The following result combines the work of Bedford-Smillie [1], Fornæss-Sibony [2]
and Ueda [5]:

Theorem 1. Let f : C2 → C2 be a Hénon map and let Ω be a recurrent Fatou
component. Then Ω is one of the following types:

(1) There is an attracting fixed point p ∈ Ω and Ω is biholomorphic to C2,
(2) there exists a one-dimensional closed complex submanifold Σ of Ω and

fn(K) 7→ Σ for any compact set K in Ω. The Riemann surface Σ is
biholomorphic to a disc or an annulus and f |Σ is conjugate to an irrational
rotation, or

(3) the domain Ω is a Siegel domain and all convergent subsequences of {fn}
converge to an automorphism of Ω.

Although there are still a few important open questions regarding recurrent
Fatou components, for example whether the annulus in case 2 can really occur,
Theorem 1 gives a relatively clear picture of the possible recurrent Fatou compo-
nents that can occur for Hénon maps.

Much less understood are the non-recurrent Fatou components. Such compo-
nents have been studied by Weickert [6] and Jupiter-Lilov [3], but many funda-
mental questions remain unanswered. The main problem with these components
is that it is not known whether the limit set is unique.

If Ω is a non-recurrent Fatou component then all orbits converge to the bound-
ary of Ω. By normality there exists a sequence of iterates {fnj} that converges
on Ω to a limit map h : Ω → ∂Ω. It is clear that the map h does not need to be
unique and may depend on the sequence {nj}. It is unknown whether the limit
set h(Ω) is unique. If we do assume that the limit set h(Ω) is unique, then we can
give the following accurate description of the Fatou component Ω.

Theorem 2. Let Ω be a non-recurrent Fatou component, let h = lim fnj |Ω and
suppose that the limit set h(Ω) does not depend on the sequence {nj}. Then h(Ω)
is a fixed point p. Moreover, the eigen values λ1, λ2 of Df(p) satisfy |λ1| < 1 and
λ2 = 1.

The proof of Theorem 2 relies upon several subresults, most of which hold in
greater generality. First we show that if the generic rank of h is 1, then h(Ω) is
a smoothly embedded Riemann surface. Then, we introduce a (not necessarily
anti-symmetric) partial ordering on the set of all possible limit maps h : Ω→ ∂Ω
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and show that there must exist a minimal limit map hmin. Then we show that
hmin must have rank 0, so its image is a single point p. Here we use the fact that
a Hénon map with a non-recurrent Fatou component is volume-decreasing. The
first part of Theorem 2 is now proved.

It follows immediately that p is a semi-attracting fixed point, that is, the eigen-
values λ1, λ2 of Df(p) satisfy |λ1| < 1 and |λ2| = 1. To show that λ2 = 1 we prove
a two-dimensional version of the snail lemma, which is a local statement and only
uses the existence of an invariant connected open set on which the orbits converge
uniformly to the fixed point.

It follows from the characterization of the eigenvalues means that we obtain a
precise picture of the behavior of orbits on the Fatou component.
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The diffeotopy group of rational or ruled 4-manifolds

Vsevolod Shevchishin

A 4-manifold X is rational or ruled if it is diffeomorphic to a rational or resp.
ruled complex surface, possibly blown-up several times. In particular, CP2 and
CP1×CP1 = S2×S2 are rational, and the product Y×S2 of a Riemann surface Y
with the sphere is ruled. Such manifolds can be characterized from the point of
view of the symplectic geometry [5]: A compact symplectic 4-manifold (X,ω) is
rational or ruled if and only if it contains a symplectic surface Σ ⊂ X such that
c1(X)·[Σ] > 0 and Σ is not an exceptional sphere. Further “symplectic” properties
of rational or ruled manifolds are [1, 2, 4, 3]: For every symplectic form ω on such
X there exists an integrable complex structure J such that ω is a Kähler form for
J . For every pair of symplectic forms ω1, ω2 on such X with equal cohomology
class [ω1] = [ω2] there exists a diffeomorphism F : X → X with F∗ω1 = ω2.

The main result of my talk is [6]:

Theorem 1. Let (X,ω) be a rational symplectic 4-manifold and F : X → X a
symplectomorphism which is homotopically trivial, ie., acts trivially on the ho-
mology group H2(X,Z). Then F is isotopic to identity.
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The meaning of the result is that the smooth isotopy class of a symplectomor-
phism of some rational complex surface is determined by its action in homology.
It allows to give an almost complete description of the diffeotopy group Γ = Γ(X)
of rational 4-manifolds X , ie., the quotient group Γ(X) := Diff(X)/Diff0(X) of all
diffeomorphisms of X by the group of isotopies.

Corollary 2. Let (X,ω) be a rational symplectic 4-manifold and Γ the group
of isotopy classes of homotopically trivial diffeomorphisms. Then Γ acts simply
transitively on the set of connected components of symplectic forms having given
cohomology class [ω0].

The latter result can be formulated as follows: On a rational complex surface
there are as many mutually non-isotopic homotopically trivial diffeomorphisms as
many mutually deformationally non-equivalent Kähler structures.

Theorem 3. The group Γ remains unchanged under blow-ups. In particular,
Γ (CP2) = Γ (S2×S2) = Γ (X) for every rational 4-manifold X.

The proof of the results is given in the preprint [6]. It contain also the descrip-
tion of the action of the diffeomorphism group Diff(X) on the homology. Here we
recall that the intersection form on H2(X,R) has Lorentz signature and therefore
the set K := {[A] ∈ H2(X,R) : [A]

2 > 0} is a quadratic cone, called the positive
cone of X .

Theorem 4. Let X be a rational 4-manifold and ΓH2 the image of the diffeo-
morphism group Diff(X) in the group Aut(H2(X,Z)). Further, let L;E1, . . . ,Eℓ ∈
H2(X,Z) be the homology classes of the line and resp. the exceptional spheres
with respect to some contraction map π : X → CP2. Then ΓH2 is generated
by reflections with respect to hyperplanes in H2(X,R) orthogonal to the classes
L− (E1 +E2 +E3), Ei −Ei+1 with i = 1, . . . , ℓ− 1, and Eℓ.

Moreover, the action of ΓH2 on the positive cone K admit a fundamental domain
consisting of those classes [A] ∈ K which have non-negative intersection with the
classes L− (E1 +E2 +E3), Ei −Ei+1 with i = 1, . . . , ℓ− 1, and Eℓ.

The meaning of the latter result is as follows. Let X be a rational complex
surface and D an ample divisor on X . Then there exists a (holomorphic) con-
traction map π : X → CP2 whose exceptional divisor E is the sum E1 + · · ·+ El

of rational curves with the homology classes E1, . . . ,Eℓ such that the divisors
L− (E1 +E2 +E3), Ei −Ei+1 have positive intersection with D.

The preprint [6] contains also a description of the diffeotopy group Γ(X) =
Diff(X)/Diff0(X) of irrational ruled 4-manifolds X . The main difference from
the rational case is appearance of a new differential invariant, secondary Stiefel-
Whitney class w̃2(F ) of homotopically trivial diffeomorphisms. The main result is
generalized in the following form:

Theorem 5. Let (X,ω) be a ruled symplectic 4-manifold and F : X → X a
symplectomorphism. Then F is isotopic to the identity if and only if F is homo-
topically trivial, ie., acts trivially on the groups H2(X,Z), π1(X), π2(X), and has
trivial secondary Stiefel-Whitney class w̃2(F ).
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One also obtains the counterparts of Corollary 2 and Theorems 3, 4.
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Periodicities and Positive Entropy for Linear Fractional Recurrences
in 3-space

Eric Bedford

(joint work with K. Kim)

We consider the family of birational maps of 3-space which may be written in
affine coordinates as

fα,β : (x1, x2, x3) 7→

(
x2, x3,

α0 + α1x1 + α2x2 + α3x3
β0 + β1x1 + β2x2 + β3x3

)
. (1)

The algebraic iterates fn
α,β := fα,β ◦ · · · ◦ fα,β are rational maps for all n ∈ Z.

Here we study the dynamics of f = fα,β, by which we mean the behavior of fn

as n → ±∞. We have invertible dynamics since f has a rational inverse, but it
does not behave like a diffeomorphism (or even a homeomorphism). There are
two difficulties if we want to regard f as a mapping of points. First, there is the
set of indeterminacy I(f); f blows up each point of I(f) to a variety of positive
dimension. Second, there can be hypersurfaces E which are exceptional, in the
sense that the codimension of f(E − I(f)) is at least 2. We will say that f is
a pseudo-automorphism if neither f nor f−1 has an exceptional hypersurface. In
dimension 2, every pseudo-automorphism is in fact an automorphism. However, for
pseudo-automorphisms, indeterminate behaviors are possible in higher dimension
which have no analogue in dimension 2.

Given a rational map f : X 99K X there is a well-defined pullback map on
cohomology, f∗ : H∗(X)→ H∗(X). Passage to cohomology, however, may not be
compatible with iteration because the identity (f∗)n = (fn)∗ may not be valid.
Given a birational map f in dimension 2, Diller and Favre [7] showed that there is
a new manifold π : Y → X such that the iterates of the induced map fY behave
naturally on cohomology, in the sense that (f∗

Y )
n = (fn

Y )
∗. In dimension greater

than 2, however, no such theorem is known.
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Given a rational map of Pn we may consider modifications π : X → Pn, where
π is a morphism which is birational. This induces a rational map fX := π−1 ◦f ◦π
of X , which might have pointwise properties which are different from those of the
original f . If fX is a pseudo-automorphism, then fX acts naturally on H1,1(X).
The exponential rate of growth of fn on Hp,p: δp(f) := limn→∞ ||fn∗|Hp,p(X)||

1/n

is known as the pth dynamical degree and is a birational invariant (see [8]).
Within the family (1) we find the first known examples of pseudo-automor-

phisms of positive entropy on blowups of P3:

Theorem 1. Suppose that α = (a, 0, ω, 1) and β = (0, 1, 0, 0) where a ∈ C \ {0}
and ω is a non-real cube root of the unity. Then there is a modification π : Z → P3

such that fZ is a pseudo-automorphism. The dynamical degrees δ1(f) = δ2(f) ∼=
1.28064 > 1 are equal and are given by the largest root of t8− t5− t4− t3 +1. The
entropy of fZ is the logarithm of the dynamical degree and is thus positive.

Theorem 2. For the mappings in Theorem 1, there is a 1-parameter family of
surfaces Sc ⊂ Z, c ∈ C which have the invariance fSc = Sωc. For generic c, Sc

is K3, and the restriction f3|Sc
is an automorphism. For generic c and c′, the

surfaces Sc and Sc′ are biholomorphically inequivalent, and the automorphisms
f3|Sc

and f3|Sc′
are not smoothly conjugate.

The surface S0 is invariant, and the restriction fS0 is an automorphism which
has the same entropy as f . This is smaller than the entropy of the automorphism
constructed in [15, Theorem 1.2] and is thus the smallest known entropy for a
projective K3 surface automorphism.

The following mappings have quadratic degree growth and complete integrabil-
ity:

Theorem 3. Suppose that β = (0, 1, 0, 0) and either α = (0, 0, ω, 1) or α =
(a, 0, 1, 1) where a ∈ C \ {1}, ω 6= 1, and ω3 = 1. Then the degree of fn grows
quadratically in n. Further, there is a modification π : Z → P3 such that fZ
is a pseudo-automorphism. There is a two-parameter family of surfaces Sc, c =
(c1, c2) ∈ C2 which are invariant under f3. For generic c and c′, Sc is a smooth
K3 surface, and Sc ∩ Sc′ is a smooth elliptic curve.

For the mappings in Theorems 1 and 3, f is reversible on the level of coho-
mology: f∗

Z is conjugate to (f−1
Z )∗ = (f∗

Z)
−1. The identity δ1(f) = δ2(f) for

such maps is a consequence of the duality between H1,1 and H2,2, so they are not
cohomologically hyperbolic, in the terminology of [10]. For each of these maps,
the family of invariant K3 surfaces becomes singular at an invariant 8-cycle R of
rational surfaces (see (7.2)).

Theorem 4. Let f be a map from Theorems 1 and 3. If a 6= 1, then the restriction
f8|R is not birationally equivalent to a surface automorphism. Thus there is no
proper modification π : W → P3 such that the induced map fW is an automor-
phism.

We will also determine which mappings fα,β are periodic, or finite order, in the
sense that fp = id for some p > 0. In contrast to Theorem 4, it was shown by
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de Fernex and Ein [6] that if f is a rational map of finite order, then there is a
modification fX as above, which is an automorphism of X . If fX is periodic, then
f∗
X will also be periodic.
In (4.1) and (4.2) we identify conditions which are necessary for f to be periodic

and are sufficient for the existence of a space Z = Zα,β such that fZ is a pseudo-
automorphism. We show that for a map in (1), if f∗

Z is periodic, then f also turns
out to be periodic. The birational map (1) may also be considered as a 3-step
linear fractional recurrence: given z0, z1, z2, we define a sequence {zn} by

zn+3 =
α0 + α1zn + α2zn+1 + α3zn+2

β0 + β1zn + β2zn+1 + β3zn+2
. (2)

The recurrence (2) is said to be periodic if the sequence {zn} is periodic for all
choices of initial terms z0, z1 and z2. Equivalently, fp

α,β = id for some p. For

all r > 0 there are r-step recurrences of the form (2). In [1] we determined
the possible periods for 2-step linear fractional recurrences. McMullen [14] has
explained the periods that arise by showing that the corresponding (2-dimensional)
fα,β represent certain Coxeter elements.

Here we determine all possible periods for 3-step recurrences (2). To rule out
trivial cases, we assume that the coefficients satisfy (2.3), and we have:

Theorem 5. The only nontrivial periods for (2) are 8 and 12. Each periodic
recurrence is equivalent to one of the following:

zn+3 =
1 + zn+1 + zn+2

zn
zn+3 =

−1− zn+1 + zn+2

zn
(period 8)

zn+3 =
η/(1− η) + ηzn+1 + zn+2

η2 + zn
η3 = −1 (period 12)

In the notation of (1), the first case corresponds to β = (0, 1, 0, 0), α = (±1, 0,
±1, 1), and the second case to β = (η2, 1, 0, 0), α = (η/(1 − η), 0, η, 1).

Each of these mappings has a different structure; these structures are described
in Theorems 6.10 and 6.11. The first period 8 recurrence above was found by
Lyness [13], and the second one was found by Csörnyei and Laczkovic [5] (see also
[4]). We note that the period 12 recurrences are the case k = 3 of a general phe-
nomenon exhibited in [2]: For each k, there are k-step linear fractional recurrences
with period 4k. There is a literature dealing with r step recurrences of the form
(2). We refer to the books [11], [12], [9], [3] and the extensive bibliographies they
contain. That direction of research is largely concerned with the case where the
structural parameters α, β, as well as the dynamical points, are real and posi-
tive. This avoids the difficulty that the denominator in (2) might vanish, causing
the expression to be undefined; but the restriction to positive numbers leads to a
subdivision into a large number of distinct cases to be treated separately.

In working with the family fα,β, we work with the pointwise iterates as much as
possible, but this runs into difficulties if the orbit enters the indeterminacy locus.
We can often deal with this by blowing up certain subsets. In this way we convert
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these subsets into hypersurfaces, and we then deal with the hypersurfaces by pass-
ing to f∗ on Pic. This allows us to convert many difficulties with indeterminate
orbits into more tractable problems of Linear Algebra.

References

[1] E. Bedford and KH Kim, Periodicities in linear fractional recurrences: Degree growth of
birational surface maps, Michigan Math. J. 54 (2006), 647-670.

[2] E. Bedford and KH Kim, Linear fractional recurrences: periodicities and integrability,
arXiv:0910.4409

[3] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations with
Open Problems and Conjectures, Chapman and Hall/CRC Press, 2008.

[4] A. Cima, A. Gasull and F. Mañosas, On periodic rational difference equations of order k,
J. Difference Equ. Appl. 10 (2004), no. 6, 549–559.

[5] M. Csörnyei and M. Laczkovich, Some periodic and non-periodic recursions, Monatshefte
für Mathematik 132 (2001), 215-236.

[6] T. de Fernex and L. Ein, Resolution of indeterminacy of pairs, Algebraic geometry, 165–177,
de Gruyter, Berlin, 2002.

[7] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. of Math.,
123 (2001), 1135–1169.

[8] T.-C. Dinh and N. Sibony, Une borne supérieure pour l’entropie topologique d’une applica-
tion rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644.

[9] E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Kluwer Aca-
demic Publishers, 2005.
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