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What is missing is a generally accepted mathematical theory of dynamic crack
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provide a trusted starting point to resolve pressing questions about quasi-
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Introduction by the Organisers

The mini-workshop Mathematical Models, Analysis, and Numerical Methods, or-
ganised by Gianni Dal Maso (Trieste), Christopher J. Larsen (Worcester), and
Christoph Ortner (Oxford) was held April 24th–April 30th, 2011. It was attended
by 15 participants representing a broad range of expertise.

The mathematical foundations of fracture mechanics have seen considerable
advances in the last fifteen years. While mathematical modelling of fracture has
been a serious scientific discipline at least since the pioneering work of Griffith,
there had not been a mathematically well-posed model for the prediction of crack
paths until new formulations were proposed, using the framework of the calculus
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of variations in the function spaces BV and SBV . While there had been much
previous progress, and success, in engineering models of fracture, it is the extra
assumptions (e.g., regularity) that often prevent rigorous mathematical analysis.
Aside from establishing a rigorous mathematical theory, the main achievement of
this recent research effort was the creation of models of fracture that surpass all
previous models in their flexibility of predicting crack paths.

While this progress has been substantial, it has been largely limited to quasi-
static evolutions based on global energy minimization, which is known to produce
non-physical results. What has been missing is a generally accepted mathematical
theory of dynamic crack growth, which accounts for inertia. Such a theory would
not only be able to describe the physically most realistic setting, but it would
also provide a trusted starting point to resolve pressing questions about quasi-
static evolutions, in particular, to rigorously justify the quasi-static setting as an
asymptotic limit of inertial dynamics.

This mini-workshop brought together mathematical analysts, numerical ana-
lysts, mechanicians and applied mathematicians with expertise in fracture me-
chanics. Key issues in modelling, analysis, and simulation of dynamic fracture
were identified. Specifically:

• Fundamental experimental results in both quasi-static and dynamic set-
tings, which will serve as benchmarks for models and their simulation

• Comparison of energy minimization and the principle of local symmetry
• Recent progress and fundamental open problems in the mathematical anal-
ysis of quasi-static fracture

• Modeling of the free fracture surface
• Existence and uniqueness results for the wave equation off a growing
straight crack, and formulas for exact solutions, in both quasi-statics and
dynamics

• Issues in applying X-FEM to dynamic fracture
• Comparison of simplified 1-D dynamic models with quasi-static models
• Survey of energy release rates and their relation to Griffith fracture
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Abstracts

Dynamic Fracture in Nominally Brittle Materials

K. Ravi-Chandar

Griffith’s theory of fracture [5] is based on the idea of minimization of the to-
tal energy in the body, usually partitioned into the elastic (strain) energy in the
volume of body and the surface energy associated with the crack geometry; this
represents a necessary condition, but is clearly not sufficient. Consider a simple
example of a stretched plate without a crack; the total energy that can be stored
in such a plate may be brought to zero (minimized) if the plate is broken into at
least two pieces, each with no strain energy; however, this does not occur spon-
taneously and needs a pathway such as an initial crack. A perfectly reversible
system as implied by the Griffith theory is indeed found in cleavage of pure mica
sheets in vacuum, as demonstrated by the experiments of Obreimoff [9]. However,
even the slightest contamination on the newly created fracture surface (such as
oxidation of the fracture surface in ambient environment) is enough to destroy the
reversibility of the fracture process; more generally, there is a region just below the
fracture surface (whose physical dimension depends on the type of material) that
is typically irreversibly deformed, that fracture is not really a reversible process.
Perfect cleavage fracture consumes very little energy typically, the surface energy
is around 2-10J/m2 for most materials; however, due to the inelastic processes
that occur over a small volume just beneath or near the fracture surface, most
materials consume significantly more energy — three to six orders of magnitude
more — in the creation of the fracture surface. Nevertheless, stress analysis based
on elastic or elastic-plastic constitutive models is useful, as long as the dimension
over which the fracture processes occurs is small and the energy for fracture in-
cludes the surface energy plus the energy dissipated within the fracture process
zone. Orowan [10] suggested incorporating the plastic dissipation into the frac-
ture criterion, yielding (G − γP )ȧ ≥ 0. as the fracture criterion. Note that G,
called the energy release rate, is the change in potential energy of the system with
crack extension, and depends on the applied loading, boundary conditions, the
crack length, and the presumed direction of crack extension. In the engineering
literature, following the ideas of Irwin [6] and Williams [13], the fracture criterion
is posed in terms of the singular elastic stress field parameters; the amplitude of
the singular stress field is denoted as the stress intensity factor, and the fracture
criterion becomes KI = KIC , where KI is the opening mode (or Mode I) stress
intensity factor (note: G = K2

I /E, where E is the modulus of elasticity), and
KIC is the fracture toughness for an opening mode of fracture with the loading
condition being symmetric with respect to the crack geometry. This theory works
quite well under quasi-static loading conditions, and management of fracture crit-
ical structures in civil infrastructure, transportation systems, aerospace vehicles,
power generation equipment, microelectronic packaging and many other engineer-
ing endeavors.
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For loading conditions in in-plane antisymmetry with respect to the crack line,
Goldstein and Salganik [4] generalized ideas of Erdogan and Sih [1] and presented
the fracture criterion based on the principle of local symmetry: the crack will
find a path such that at the tip of the growing crack the Mode-I stress intensity
factor on the growing crack is equal to the fracture toughness: KI = KIC , and
the antisymmetric mode (Mode-II) stress intensity factor for the growing crack is
zero: KII = 0. This criterion also works quite well; there are numerous examples
of its successful application, most famously in the oscillating thermal quench crack
experiments of Yuse and Sano [16]; see also Yang and Ravi-Chandar [15].

For loading conditions that introduce anti-plane symmetry with respect to the
crack plane, Goldstein and Salganik [4] suggested a criterion of the formKI = KIC ,
with f(KII ,KIII) = 0, where KIII is the Mode-III or antiplane stress intensity
factor on the growing crack. However, experiments indicate that such a criterion
could not be imposed continuously along the crack front; typically, the crack front
fragments into multiple cracks. Lin et al. [8] suggested that the principle of local
symmetry would also be appropriate to this case, with KI = KIC ,KII = 0, and
KIII = 0 along the growing crack. There are a number of open issues related
to this problem, particularly ones associated with estimating the spacing of the
fragmented cracks. Lazarus [7] has provided a nice review of the mathematical
issues related to calculations of the energy release rates for mixed mode, three-
dimensional problems.

For dynamic fracture problems, the generalization of the ideas of Griffith is
straightforward: incorporate the kinetic energy variation into the energy balance
equation. This is typically done in a rate form: P − (U̇ + K̇) = Ḋ, over any
closed contour surrounding the crack tip, where P is the power input through the
boundaries of the contour, U̇ and K̇ are the rate of change of strain and kinetic
energy, respectively, and Ḋ = γP v is the rate of dissipation at the tip of a crack
moving at a speed v. The sum of terms on the left hand side is typically called
the energy flux to the crack tip region and denoted by F ; a dynamic energy release
rate (per unit crack extension) can be defined as G = F/v. The power-balance
equation then yields the crack tip equation of motion (G(v) − γP )v = 0, or, in
terms of the dynamic stress intensity factor: A(v)K2

I (t, v)/E = γP (see [3] for
details). This equation suggests that the Rayleigh wave speed, CR, sets the upper
limit for a Mode-I crack. There are numerous experiments that address the dy-
namic fracture problem (see [11] for a summary of these investigations). The key
experimental results are summarized here: for crack speeds below about 0.2CR

the crack tip equation of motion above works quite well. However, with increasing
crack speed, a dependence of γP on crack speed, attributed to evolution of the
fracture process even in nominally brittle materials, is observed; numerous investi-
gations have documented γP (v) for different materials (again, see [11] for specific
details). In particular, a large increase in γP at ≈ 0.5CR results in a practical
speed limit for cracks at this value. The fracture surface becomes quite rough, and
cracks branch into multiple cracks beyond this point. Yoffe instability [14] arising
from a redistribution of the dynamic stress field, crack front fragmentation and
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roughening [12], microbranching instability [2], and other mechanisms have been
proposed to explain the limiting speed, crack branching and other dynamic effects;
however, a quantitative theory is not yet available.
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Quasistatic crack growth

Gianni Dal Maso

In recent years there has been a remarkable progress in the mathematical analysis
of several variational models of quasistatic crack growth [12, 8, 9, 4, 11, 6, 5, 1].
The deformed cracked body is described by a time dependent pair (u(t),Γ(t)),
where u(t) is the deforamation at time t (or the dispalcement, in the linearized
models) and Γ(t) is the crack at time t in the reference configuration. It is assumed
that Γ(t) has dimension n − 1 and that the discontinuity set of u(t) is contained
in Γ(t) for every t.

The relevant energetic terms are the stored elastic energy E(u), depending only
on the deformation u, the work done by the loads L(u), and the energy dissipated
by the crack K(Γ), depending only on Γ in the case of brittle cracks.
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The mathematical formulation of these models is based on a stability condition
and on an energy balance. The strongest form of stability is the global minimality
condition:

(1) E(u(t)) +K(Γ(t)) − L(u(t)) ≤ E(u) +K(Γ) − L(u)
for every crack Γ ⊃ Γ(t) and for every deformation (resp. displacement) u satis-
fying the boundary conditions and whose discontinuity set is contained in Γ. The
energy balance requires that

E(u(t)) +K(Γ(t)) = E(u(0)) +K(Γ(0)) + work of the loads in [0, t] .

An approximate solution is usually constructed by solving incremental minimum
problems; passing to the limit as the time step tends to zero one obtains a solution
of the evolution problem.

The main results have been proved for models where the stability is interpreted
as the global minimality condition considered in (1): this simplifies the mathemat-
ics of the problem. Some of these models allow to predict the crack path and to
deal with large deformations in the framework of finite elasticity, taking also into
account the noninterpenetration condition [7].

So far there are only two ways to replace global minimality by a local stability
condition. One is based on the minimization on a set of pairs that are reachable
from the present pair (u(t),Γ(t)) by means of an ε-slide [15]: this is a continuous
path along which the increase of energy is at most ε. Another one is based on a
sort of viscosity approximation, but so far has been applied only to the case of a
prescribed crack path [2, 13, 18, 19, 14, 17], or assuming a priori bounds on the
curvature of the cracks [16]. It would be useful to extend these techniques to the
case of a free crack path.

These models deal with the case of brittle cracks. Similar results for cohesive
zone models, where the crack energy depend also on the opening of the crack, have
been obtained only in the case of a prescribed crack path under special hypotheses
on the cohesive forces [10, 3].
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Variational Models of Dynamic Fracture

Michael Ortiz

Crack fronts play a fundamental role in engineering models of fracture. They
are the location of both the crack growth and the energy dissipation due to growth.
However, there has not been a rigorous mathematical definition of crack front, nor
rigorous mathematical analysis predicting fracture paths using these fronts as the
location of growth and dissipation. Here, we give a natural weak definition of crack
front and front speed, and consider models of crack growth in which the energy
dissipation is a function of the front speed, that is, the dissipation rate potential
at the time t is of the form

∫

F (t)

ψ(v(x, t))dHn−2(x),

where F (t) is the front at time t, and v is the front speed. We show how this
dissipation can be used within existing models of fracture, including dynamics
and inertia.
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A short survey on energy release rates

Dorothee Knees

The energy release rate plays a central role in the modeling of crack propagation
in elastic materials. It quantifies the amount of stored energy that is released at
an infinitesimal crack extension. For a single crack of length s in two dimensions
it is defined as

ERR(s) = − d

ds
E(umin(s), s),

where E(v, s) =
∫
Ωs
Wel(∇v) dx− 〈ℓ, v〉 describes the stored energy for a displace-

ment field v on a body Ωs = Ω\Cs with a crack Cs of length s, and umin ∈
argmin{ E(v, s) ; v ∈ Vadm(Ωs) } is the minimizing displacement or deformation
field. Formulas for the energy release rate are well known since long time. Here,
we describe shortly, which of these formulas are justified rigorously from a math-
ematical point of view. Thereby we discuss linear elasticity, models of power-law
type and finite strain elasticity. We focus on the simple case of a straight crack
and assume that the crack tip is located in (0, 0) and Cs = (−∞, 0] × {0} ∩ Ω.
While the extension to smooth curved cracks is straightforward, only few results
are known for cracks with kinks or even with several branches.

1. Linear elasticity

In the case of linear elastic materials the energy release rate is well defined
and there are basically three equivalent formulas expressing this quantity. The
elastic energy density is of the form Wel(F ) = 1

2CFsym : Fsym, where Fsym ∈
R2×2 stands for the linearized strain tensor and C denotes the positive definite,
symmetric fourth order elasticity tensor, which is assumed to be constant in Ω.
In the following we assume that the volume forces are zero in a neighborhood of
the crack tip. Otherwise, additional terms enter into the formulas presented here
below.

Based on a smooth one-parameter family of spatial transformations, by which
domains Ωs+ρ with a crack extended by ρ are mapped to the domain Ωs, it was
shown in [5] that the energy release rate is well defined and satisfies

ERR(s) =

∫

Ωs

E(∇umin(s)) : e1 ⊗∇θ dx.(1)

Here, θ ∈ C∞
0 (R2) is an arbitrary cut-off function with supp θ ⊂ Ω and θ = 1 in a

neighborhood of the crack tip and e1 = (1, 0)⊤ is tangential to the crack. Moreover,
E(∇u) = ∇u⊤DWel(∇u)−Wel(∇u)I denotes the Eshelby tensor associated with

the energy density Wel. We use the notation A : B =
∑2

i,j=1 aijbij for the inner

product of matrices A,B. In [10] the investigations were extended to cracks with
contact conditions on the crack surface and in [14] continuity properties with
respect to s were added. In the derivation of (1) no higher regularity properties of
the minimizers are needed. Hence, this approach opens the possibility to study the
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existence of the energy release rate also for more general energy densities, where
no additional information about the regularity of minimizers is available.

In the case of linear elasticity, very detailed information on the regularity of
the minimizer umin is known: Let R > 0 such that the ball BR(0) is contained
in Ω. Then, if the datum ℓ is smooth enough, umin(s) belongs to the Besov

space B
3

2

2,∞(BR(0)\Cs) and umin(s) ∈ H2(BR(0)\(BR/2(0)∪Cs)). Based on these

regularity properties the representation formula (1) can be integrated by parts.
Using the fact that minimizers satisfy the Noether equations (derived via inner
variations), one finally obtains the representation of the energy release rate via the
J-integral, also called Cherepanov-Rice-integral:

ERR(s) =

∫

Γ

E(∇umin(s))n · e1dΓ.(2)

Here, Γ is an arbitrary path enclosing the crack tip and n denotes the inner normal
vector.

Finally, the following asymptotic expansion is valid in a neighborhood of the
crack tip

umin(x) = η(x)
( ∑

i∈{1,2}

Kir
1

2 vi(φ)
)
+ ureg(x),

where (r, φ) are polar coordinates and η a cut off function centered at the crack
tip, Ki are the stress intensity factors depending on the applied loading and on the
domain Ωs, and vi are smooth functions and depend on the coefficient tensor C.
These expansions were first described in [20, 21, 9] and mathematically rigorously
justified in [16, 7, 17, 4], to name a few. Inserting this expansion into the J-integral
results in a formula for the energy release rate that is solely based on the stress
intensity factors. It is of the general form

ERR(s) = M
(
K1

K2

)
·
(
K1

K2

)
(3)

with a 2 × 2-matrix M that depends on the coefficient tensor C. In the case of
isotropic materials and assuming a certain normalization for the functions vi it

holds ERR = 1−ν2

E (K2
1 + K2

2 ), where ν is the Poisson ratio and E the Young
modulus, [8].

The above described relations can easily be extended to smooth curved cracks
and to energy densities, where C depends smoothly on x.

In [1, 18, 19] the question of a kinking crack was investigated. It turns out
that again a formula of the type (3) is valid, where the matrix M depends also
on the kink angle. More general crack variations were studied in [3] using Γ-
convergence methods. To the author’s knowledge it is a completely open problem
to characterize the energy release rate for the very general crack geometries that
occur in the Francfort/Marigo model [6].

2. Power-law models

Within the deformation theory of plasticity, power-law models are frequently
used to characterize the stress strain relation. A typical class of such models is
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given by the Ramberg/Osgood or Norton/Hoff models. Here, the stress strain
relation is of the structure

e(u) = Aσ + κ |σD|p−2 σD,(4)

where e(u) = (∇u)sym is the linearized strain tensor, σ the stress tensor, σD =
σ− 1

d tr σI the deviatoric part of σ, A is the inverse of the elasticity tensor C, and
p ∈ (1, 2) and κ > 0 are further material dependent constants. Given some load
ℓ and suitable boundary conditions, the corresponding displacement and stress
fields are determined from (4) and the force balance equation div σ + ℓ = 0 in Ω.
Based on the regularity results for the solutions proved in [2, 11], the formulas (1)
and (2) were justified from a mathematical point of view in [12].

3. Finite strain elasticity

In the case of finite strain elasticity the situation changes completely. Here,
only very little is known about the regularity of minimizers, the energy in general
is not Gateaux differentiable and there might exist several minimizers. Never-
theless, using the method of variations of the domain it can be shown that the
energy has left and right derivatives with respect to the crack length. Due to the
non-uniqueness of the minimizers these derivatives might differ, and hence it is
not clear, which of these generalized energy release rates should occur in a crack
evolution model. A first answer to this question was given in [15].

Let us briefly give some more details. In the finite strain case it assumed
that the energy density Wel : R

2×2 → [0,∞] is frame-indifferent, polyconvex and
coercive. Moreover, a multiplicative stress-control assumption should be satisfied
i.e. for all F ∈ R2×2 with detF > 0 it holds

∣∣F⊤DWel(F )
∣∣ ≤ c(1 +Wel(F )). Let

I(s) := min{ E(ϕ, s) =
∫
Ωs
Wel(∇ϕ) dx− 〈ℓ, ϕ〉 ; ϕ ∈ Vadm(Ωs) }. Then I depends

locally Lipschitz continuously on the crack length s, the left and right derivatives
with respect to s exist and are given by [13, 15]

∂−s I(s) = max{−G(ϕ, s) ; ϕ minimizes E(·, s) },
∂+s I(s) = min{−G(ϕ, s) ; ϕ minimizes E(·, s) }.

Here, G(ϕ, s) =
∫
Ωs

E(∇ϕ) : e1⊗∇θ dx is the same expression as in (1). Moreover,

∂+s I is lower semicontinuous and right continuous and ∂−s I(·) is upper semicontin-
uous and left continuous. The proof relies on a variation of domains in connection
with a weak continuity property of the Eshelby tensor along sequences of weakly
converging deformation fields (ϕn)n with converging energies E(ϕn, s).

References

[1] I. I. Argatov and S. A. Nazarov, Energy release rate caused by the kinking of a crack in a
plane anisotropic solid, J. Appl. Math. Mech. 66 (2002), no. 3, 491–503.

[2] A. Bensoussan and J. Frehse, Asymptotic behaviour of Norton-Hoff’s law in plasticity theory
and H

1 regularity, Boundary value problems for partial differential equations and applica-
tions (J.-L. Lions and C. Baiocchi, eds.), RMA, vol. 29, Masson, Paris, 1993, pp. 3–25.

[3] A. Chambolle, G.A. Francfort, and J.-J. Marigo, Revisiting energy release rates in brittle
fracture, J. Nonlinear Sci. 20 (2010), no. 4, 395–424 (English).



Mini-Workshop: Mathematical Models for Dynamic Fracture 1219

[4] M. Costabel and M. Dauge, Crack singularities for general elliptic systems, Math.
Nachrichten 235 (2002), 29–49.

[5] P. Destuynder and M. Djaoua, Sur une interpretation mathématique de l’intégrale de Rice
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A Continuum Model of Dynamic Steady-State Fracture Incorporating

Interfacial Mechanics

Jay R. Walton

(joint work with Tsvetanka Sendova)

Classical brittle fracture modeling is set in the context of the linearized theory
of elasticity and a crack is modeled as a surface (in 3-dimensions) or a line (in
2-dimensions) across which the displacement can exhibit a jump discontinuity
when the body is placed under an external thermal or mechanical load. Moreover,
classically a crack surface is viewed as a free-surface on which tractions can be freely
imposed as a boundary condition. In this setting, solutions to the corresponding
crack boundary value problem for both the static and dynamic Navier linear system
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of equations for the displacement field in the body exhibit the well-known square-
root stress/strain singularity at a crack-tip (in 2-dimensions) or crack-edge (in
3-dimensions).

In this talk, an alternative fracture modeling paradigm is described in which
crack surfaces are viewed as “dividing surfaces” endowed with “excess” physical
properties (mass, internal energy, stress, entropy, temperature). In similar fashion,
crack edges (the boundaries of crack surfaces) are also modeled as possessing excess
physical properties. One can derive such models by a homogenization procedure
whereby the excess properties on material interfaces (such as fracture surfaces)
arise as an asymptotic limit of an infinitesimally thin interfacial region adjoining
distinct material phases. For a fracture surface, the distinct, adjoined phases are
the intact bulk solid phase and the vacuum (or gas or fluid) phase occupying the
opened crack. In this setting, crack surfaces are no longer free surfaces on which
boundary conditions can be freely imposed. Rather, the appropriate boundary
conditions are prescribed through the jump momentum balance. One must then
impose a constitutive model for stress-deformation behavior within the interface.

In [1], the problem of a single, finite length, static crack in an infinite, linear
elastic body (the classical Griffith crack problem) is analyzed in this new fracture
setting. It is shown that if stresses in the fracture surface are modeled as Eulerian,
i.e. consists only of surface tension, and if surface tension is assumed to have a
linear dependence upon crack-surface mean curvature (in the deformed configura-
tion), then solutions to the corresponding boundary value problem for the static
Navier equations exhibit bounded stresses/strains at a crack tip or edge. That
paper also contains a discussion of thermomechanics for the corresponding dy-
namic, transient crack growth problem, and derives a new necessary condition for
crack growth based upon the second-law of thermomechanics. This new fracture
condition replaces the classical energy release rate based Griffith criterion which
no longer applies since crack-tips (edges) are not singular energy sinks.

The jump momentum balance boundary condition is most simply formulated in
the deformed configuration (opened crack). But elastic boundary value problems
are more simply studied when formulated in the reference configuration (closed,
unloaded crack). However, in the reference configuration, the jump momentum
balance boundary condition with curvature dependent surface tension takes a very
complicated nonlinear form. When linearized under the assumption of infini-
tesimal strains and utilizing the static, linear-elastic Dirichlet-to-Neumann map
on the fracture-surface, the fracture boundary condition becomes a system of
singular, integro-differential equations involving higher-order tangential deriva-
tives of the crack-surface displacement components. For the finite length, static
Griffith crack problem studied in [1], it is shown that given a suitably strong
dependence of surface-tension upon (linearized) mean-curvature, this boundary
integro-differential system possesses smooth solutions resulting in bounded crack-
tip stresses/strains and a cusp-shaped crack-tip opening profile.
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As expected, incorporating dynamics into the fracture problem complicates the
analysis considerably. A useful intermediate problem to study is dynamic, steady-
state fracture in which the (constant) crack-speed is not small relative to the speed
of Rayleigh waves requiring retention of the inertial terms in the balance of linear
momentum, but for which the motion of the body appears static relative to a
coordinate system moving with the crack-tip. The governing equations in the
deformed configuration are the (bulk) balance of linear momentum

ρü = divT+ b in Bt

subject to the jump momentum boundary condition on the crack surfaces

(1) ρ(σ)ü = div(σ)T(σ) + [[T]]n on ∂Bt,

and a uniform tensile traction σ∞ applied at infinity, where u denotes the dis-

placement, T and T(σ) denote the bulk and surface Cauchy stress tensors, div and

div(σ) denote the bulk and surface divergence operators, b denotes the bulk body
force density, and [[T]]n denotes the bulk traction jump across the crack surfaces
(n being the unit normal to the crack surface pointing out of the bulk). Modeling
the surface stress-deformation behavior as purely Eulerian, that is

(2) T(σ) := γ̃P

where γ̃ denotes the surface tension and P := I−n⊗n is the projection operator
onto the crack-surface tangent plane, the surface divergence operator takes the
form

(3) div(σ)T(σ) = grad(σ)γ̃ − 2γ̃Hn

with H denoting the crack-surface mean-curvature in the deformed (open crack)

configuration and grad(σ) is the surface gradient operator.
Surface tension must be specified constitutively. While surface tension is often

taken to be constant, it was shown in [1] that when γ̃ is constant, the solution to
the static Griffith crack boundary value problem exhibits a logarithmic crack-tip
stress singularity and a crack-tip opening angle θ satisfying 0 < θ < π with θ = 0
corresponding to a cusp-shaped crack-surface profile at the tip and θ = π is the
blunt crack-tip profile associated to the classical square-root stress/strain crack-
tip singularity. However, it was further demonstrated in [1] that assuming surface
tension has a dependence upon mean-curvature of the form

(4) γ̃ = γ0 + γ1H,

then the solution to the crack boundary value problem has a cusp-shaped crack-
surface profile and bounded stresses/strains at a crack-tip provided the ratio γ1/γ0
is sufficiently large. In (4), γ0 should be viewed as the (constant) surface tension
on an infinite, flat interface between the bulk solid phase and the vacuum (or gas)
phase occupying the opened crack.

Consider now the dynamic, plane-strain, steady-state problem of a semi-infinite
crack propagating at constant speed V in an infinite, linearly elastic body under the
action of an applied crack-face traction of finite impulse. Relative to a coordinate
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system attached to the crack-tip, the crack lies along the negative, horizontal
coordinate axis and the dynamic, Navier equations take the (static) form

(5) (V/cT )
2w,11 = △w+ (2 + λ/µ)∇divw

where w denotes the displacement (in the moving frame), cT :=
√
µ/ρ is the speed

of transverse waves, and µ and λ are the Lamè parameters. The jump momentum
balance boundary condition on the crack becomes

(6) V 2ρ(σ)w,11 = div(σ)T(σ) + [[T]]n

with T(σ) given by (2), (4). After linearization (under the assumption of infinites-
imal strains), the crack boundary condition (6) takes the form (for z1 < 0)

τ12(z1, 0+) = −γ1w2,111(z1, 0+) + V 2ρ(σ)w1,11(z1, 0+)

τ22(z1, 0+) = −Pφ(−z1/l) + (−γ0 + V 2ρ(σ))w2,11(z1, 0+)

where Pφ(z/l) is the applied crack-face loading (l being a length-scale associated
with the loading) satisfying the finite impulse condition

∫ ∞

0

|φ(z)|dz <∞.

After nondimensionalization and appealing to the Dirichlet-to-Neumann map for
the dynamic, steady-state Navier system (5), the boundary value problem can be
recast as a boundary, singular integrodifferential equation of the form

−p ξω2

β2(ω)
φ′(x)− pH−1

− {φ} =
A(ω)

β2(ω)
v′′′(x) +

R(ω)

ω2γL(ω)
v′(x)

+ ξω2 γT (ω)

ωL(ω)
H−{v′} − (γ0 + ξω2)H−1

− {v′′}(7)

where H{·} denotes the (restricted) Hilbert transform

H−{f}(x) :=
1

π

∫ 0

−∞

f(r)
dr

r − x
,

H−1
− {g}(x) is the (left) inverse

H−1
− {g}(x) := −

√
|x|
π

∫ 0

−∞

g(r)√
|r|

dr

r − x
,

and various (dimensionless) parameters and functions defined through: ω := V/cT ,
p := P/µ, x := z1/L, v := w2/L, τ := ρ(σ)/ρ, ξ := τ/L, γ̃0 := γ0/(µL), γ̃1 :=

γ1/(µL
2), g := (µγ1)/γ

2
0 , k := (τµ)/γ0, γT (ω) :=

√
1− ω2, γL(ω) :=

√
1− (ηω)2,

η2 := (cT /cL)
2 = (1/2−ν)/(2−3ν), β1(ω) := ω2γT (ω)/(1−γL(ω)γT (ω)), β2(ω) :=

ω2γL(ω)/(1− γL(ω)γT (ω)), α(ω) := (2γL(ω)γT (ω)− (2− ω2))/(1− γL(ω)γT (ω)),
A(ω) := gα(ω) + kω2(1 − kω2), and R(ω) := 4γL(ω)γT (ω) − (2 − ω2)2 is the
Rayleigh function with respect to which ωR is the (dimensionless) is the speed of
Rayleigh surface waves given as the unique positive number satisfying R(ωR) = 0.
One should note that τ = ρ(σ)/ρ is a length-scale corresponding to the thickness
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of the interfacial layer. Also, L is any suitably chosen length-scale for the purpose
of nondimensionalization and ν is Poisson’s ratio for the bulk material.

One now concludes from the analysis in [1] that a necessary condition for (7)
to have a continuous solution v′′′(x) (and hence for the boundary value problem
to predict bounded crack-tip stresses and strains) is that the lead coefficient A(ω)
not vanish. Depending upon material parameters this condition places an upper-
bound upon allowable crack-speeds that is strictly below the speed of Rayleigh
waves, the upper bound predicted from the classical fracture problem with singular
crack-tip stresses. This prediction is in agreement with experimental observations
that suggest an upper bound on crack-speeds in most materials of around 40% –
60% of the speed of Rayleigh waves.

There remains the key question of defining a criterion for predicting the dy-
namic, steady-state crack-speed. Two candidate criteria are suggested in [1], one
based upon the thermodynamic analysis presented there together with the crack-
edge jump momentum balance, and the other based upon the notion of the max-
imum crack-tip cleavage stress which is well-defined for the present model due to
its prediction of a finite crack-tip stress. Future work will explore these and pos-
sibly other strategies for devising a physically motivated crack-tip speed selection
criterion appropriate to the modeling paradigm described above, and investigate
the challenge of developing direct numerical procedures, such as the finite element
method, for performing fracture simulations based upon this crack model setting.
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X-FEM level sets methods: application to dynamic crack propagation

Alain Combescure

(joint work with Antony Gravouil, Nicolas Moes, T Elguedj)

The computation of dynamic crack propagation is a difficult topic. The main
issue is due to the fact that crack propagation mechanisms generally use a small
part on the available energy. As a consequence a small error in the global energy
conservation leads to a large error in the crack propagation prediction. Many
attempts have been done in the past to produce good simulations.
One may cite the following methods:

• The element erosion method associated with finite elements: when one
finite element has reached a critical state (excessive strain, critical damage,
too large dissipated energy,...) it is removed from the mesh.

• The EFG method: when one “node” has reached a critical state defined
as in the erosion method, the connections between this node and its neigh-
bours is cut and the “node” is free ([1],[2],[3],[4],[5],[6]).
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• The cohesive zone method: all element sides are initially or progressively
connected by cohesive elements whose fracture energy is the material en-
ergy release rate GC : the connection starts to fracture when the stress in
the cohesive zone exceeds some critical value σC .

The simulations which have encountered the most success until the end of last
century all need a very fine mesh and a local vision of fracture. The cohesive
zone approach first introduced by Needleman for quasistatic prediction and then
extended for dynamic cases (There are many interesting papers on this topic [7] [10]
[9], [8]). These methods allow to predict in the same formalism crack propagation,
branching and well as fragmentation: the brittle cracks are governed by only
two parameters the critical stress and the fracture energy release rate. Some
precautions have to be employed for the success of the predictions. They will
be given later. The second approach is based of EFG or eroding elements in
standard finite elements: these methods also request extremely fine meshes and
ad hoc material models, for instance one has to avoid artificial localization if one
uses damage modeling of fracture. If one does not use damage theory associated
with a critical damage of 1, one removes from the computation the elastic energy
contained in the reference volume around the “broken” “node” each time it occurs.
The X-FEM level set method has developed recently (between 1999 and 2011 [11])
and are based on two concepts:

• The mesh of the interface is independent from that of the structure
• When one element is cut by the interface an extended finite element is
introduced which contains not only the standard continuous degrees of
freedom but also additional degrees of freedom which take into account
the presence of the discontinuity within the element. For instance xhen
this discontinuity is a crack and that this crack cuts the element in two
parts 3 jumps degree of freedom are added to the 3 usual translations.

This contribution is devoted to the X-FEM Level set technology (one may refer to
[13] to get many details of the method) . It will be focused on the essential aspects
and to dynamic crack propagation. The main interest of the method is first the
concept of independant meshing of discontinuity surface and structure. This allows
easy meshing of interfaces like cracks agregates or foams. The level set concept is
still more interesting because it allows to represent the interface by signed distance
to the usual geometrical nodes. This has a very important practical consequence
: when one wants to perform parametric studies on interface shapes (e. g. crack
shapes and or position) one is not required to change the structural mesh but only
the numerical values of the level sets at the nodes of the mesh: hence there is
huge economy in manpower for mesh generation. The second main interest of the
method is that it allows very easy crack propagation simulation with a controlled
precision. If one moves a crack or an interface one only has to change the level
sets values. The discussion on the precision shall be given later.

1. The discontinuity representation.

Two manners can be chosen to represent the interface.
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Figure 1. Semi elliptic crack Level Set representation

• A simple “mesh” (line (resp. surface)for 2D (resp. 3D))
• A level set which is the zero isovalue of a signed distance scalar field. (the
image of geographic maps where the sea level is zero, the deep blue rep-
resents large negative height whereas dark brown represent high positive
alitudes)

A crack is represented by two interfaces: one represents the crack surface and the
second intersects the first one on the crack front. Figure 1 represents the two level
sets which trace a semi elliptic 3D plane crack The values of the level sets are
given on the nodes of the basic mesh. This mesh has to be rather fine to ensure a
“good” and easy computation of level set values changes when crack propagates.
The level set values are propagated using an Hamilton Jacobi equation which is

the simple transport equation of the field Φ with the known velocity field
→

V on
the surface.

(1)
∂Φ

∂t
+

→

V ∇ (Φ) = 0.

The stationary solution of this equation is sought at each time increment: this is
the new Level Set field. Robust simple solutions are only available on structured
meshes. For this reason some authors have chosen to represent the level sets on a
3D auxiliary Cube attached to the structure [14].

2. The X-FEM concept.

One the position of the crack is known one now has to determine how this crack
intersects the basic structural mesh. This is a simple geometric problem when
the structure is meshed with finite elements. This problem is rather simple in
2D and more complex in 3D cases. Figure 2 represents a simple case. One can
observe different three classes of nodes: the nodes belonging to elements whose
intersection with the crack is null, the nodes belonging to elements completely
cut by the crack (blue nodes) and the nodes belonging to elements where the
crack tip is (red nodes). This partition allows to define 3 types of elements. The
first type are elements which are completely cut by the crack on which a jump
displacement field [U ] shall be added to the usual continuous field U . The elements
in which the crack tip is for which an additional singular field is added: this field
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Figure 2. Different types of nodes and elements in case of X-
FEM mesh: blue Jump added DOF, red Singular added DOF

has 4 unknowns and is such that their combination exactly represents the known
singular displacement elastic field around crack tip. The last class of elements
are denoted “blended” elements. These elements contain a mixture of standard
usual nodes and of extended nodes. The displacement field is discretized using the
partition of unity concept and the displacement field within an element writes in
all cases:
(2)

u (x, t) =
∑

i∈Nnodes

Ni (x)ui(t)+
∑

j∈Ncut

Nj (x)Hj (x)aj(t)+
∑

k∈Ntip

Nk (x)
l=4∑

l=1

ψl (x)bkl(t).

In (2) Hj(x) are the Heaviside jump functions whereas ψl(x) are the usual four
singular functions at the crack tip (see for example Black and Belytschko [12]).
Moreover ui(t) is the nodal continuous displacement at node i, aj(t) is the dis-
continuous displacement amplitude at node j and bkl(t) the amplitude of the lth

singular degree of freedom at node k, Ni (x) is the usual shape function of node i.
The four singular functions ψl are:√
rsin

(
θ
2

)
,
√
rcos

(
θ
2

)
,
√
rsin

(
θ
2

)
sin (θ) ,

√
rcos

(
θ
2

)
sin (θ).

The numerical integration scheme has to be adapted for the non standard ele-
ments. The first technique was to subdivide these elements in simple sub elements
(triangles in 2D) and to adopt a simple standard integration rule in each of them.
This technique is simple but leads to field transfer problems in case of crack propa-
pagation simulation when the material is history dependent or for transient cases
for which the velocity state also depends on history. Elguedj [15] introduced a sim-
ple integration law based on a fixed sampling of Gauss integration points within
the element. This method avoids any remeshing when the crack propagates and
consequently is of good quality in case of plasticity damage of transient computa-
tions.

3. Dynamic crack propagation examples.

This section is devoted to the application of X-FEM to the simulation of dy-
namic crack propagation. The numerical integrator must be chosen with care not
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Figure 3. X-FEM Mesh of 2 elements for crack advance between
points A and B

to dissipate energy. The authors have chosen either the implicit mean acceleration
scheme or the central differnce one which is explicit. The se two schemes belong
to the family of the Newmark integrators. A special attention must be paid to
explicit scheme to get efficient algorithms because if no care is taken the stability
time step is close to zero when the crack passes very close to a node. Menouillard
[18] [19] has proposed a simple modification of the mass matrix to solve this issue:
the resulting CFL time step is only one half of the usual standard time step of an
uncracked element. One first explains why X-FEM is a good tool for that purpose
and then develops two examples. X-FEM is especially interesting in case of history
dependent problem because no remeshing is necessary when the crack propagates.

• Energy conservation. Let us suppose that the crack tip is in element 1 at
one time step (position A in Figure 3) and in its neighbor (element 2, tip
B) at the next one.

One will add singular degree of freedom corresponding at crack tip po-
sition B at nodes 2 3 5 6 and jump degree of freedom at nodes 1 and
4. Note that theses nodes (e. g. 1 and 4) will have at the same time the
singular DOF corresponding to crack tip position A (which is no longer ac-
tive) and jump degree of freedom corresponding to crack tip position B. If
one initializes all the newly added degrees of freedom (singular and jump,
displacements and velocities) at zero the energy is not changed and the
new crack segment is closed (opening displacement is zero). The work of
the corresponding forces which are released when the new segment (blue
one) is opened is exactly the energy release rate because the 4 singular
functions exactly represent the singular field at crak tip ([16], [17]). The
same argumentation holds for the kinetic energy change when one adds ex-
tended velocities DOF. This point is crucial for the quality of the dynamic
crack propagation simulations. One can also use this argumentation for
adaptative cohesive modeling of crack propagation but one must take care
of dividing by two the mass of splitted nodes.

• Propagation criteria
The following questions are to be answered:
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Figure 4. Experimental broken specimen

1) can the crack propagate?
There are two criteria to answer to this question: the first one is based
on the energy release rate concept, the second on a stress state near the
crack tip.
-For the energy release rate one considers the available elastic energy in
the structure evaluated for instance with the interaction integral [21] which
gives the two stress intensity factors in 2D (KI and KII). Once these two
numbers are known one computes the available energy in the structure G

(G = 1−ν2

E

(
K2

I +K2
II

)
in plane strain). If this available energy is higher

than the energy release rate GIC (which is a material parameter) the crack
propagates.
-For the local stress state one computes a “mean” stress tensor in a small
half disk ahead the crack tip. Once a measure of this tensor is large
enough the crack propagates. One of these measures is the maximum pos-
sible hoop mean stress. If this stress is higher than a critical stress (which
has to be fitted from material properties as well as mesh size) the crack
propagates.
2) In which direction does the crack propagate?
For brittle fracture this direction is given by the maximum hoop stress
direction which can be computed from the stress invariants of is the cor-
responding direction in case of local crack tip stress field estimation.
3) What is the crack speed?
One uses most often the Kanninen [20] empirical formula which gives the
crack tip velocity (ȧ = cR(1 − KIC

KI
)). Similar expression exists for the

local evaluation of crack propagation. Let us quote that this equation
imposes a crack propagation velocity ȧ which is less than Rayleigh wave
speed cR. This assumption is not so sure: experimentalists have observed
faster cracks.

• Example 1 : stop and restart of a crack: GIC prediction.
This example is fully described in [22]. A PMMA specimen with an initial
crack is impacted in an Hopkinson bar system. The crack tip is loaded
dynamically in mixed mode. It turns stops and restarts: the final broken
plate is shown in Figure 3. The prediction of its path and its velocity
history was an interesting challenge. Figure 3 compares the experimental
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Figure 5. Crack tip velocity: experimental-X-FEM simulation comparison.

Figure 6. Test ring specimen

crack velocities and the predicted one with X-FEM using two different
critical toughnesses KIC one for the initial crack and a second one for the
propagation phase.

• Example 2: Local stress criterion
This example is fully described in [23]. One uses in this example a local
stress propagation criterion which whose parameters are identified using
a CT specimen equiped with a system to measure crack tip velocity. The
ring (Figure 3) is loaded by a quasi static compression and is initially
cracked. Once the loading is large enough the crack starts with a velocity
of about 800m/s and stops. The trajectory was difficult to guess. The
experimental broken ring is displayed in Figure 3.

The comparison of measured and predicted crack trajectories are shown
in Figure 3.
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Figure 7. Broken ring specimen

Figure 8. Crack path: experimental-X-FEM simulation comparison.

[3] Belytschko T., Lu Y.Y. , Gu L., Element-free Galerkin methods, International Journal of
Numerical Methods in Engineering 1994; 37:229-256.

[4] Belytschko T., Gu L., Lu Y.Y. Fracture and crack growth by element-free Galerkin methods,
Modelling and Simulation in Materials Science and Engineering 1994; 2:519-534.

[5] Belytschko T., Tabbara T., Dynamic fracture using element-free Galerkin methods, Inter-
national Journal of Numerical Methods in Engineering 1996; 39:923-938.

[6] Bordas S., Rabczuk T., Goangseup Z., Three-dimendional crack initiation, propagation,
branching and junction in non-linear materials by an extended meshfree method without
asymptotic enrichment, Engineering Fracture Mechanics 2008; 75:943-960.

[7] de Borst R, Remmers J, Needleman A. Mesh-independent discrete numerical representations
of cohesive-zone models. Engineering fracture mechanics 2006; 73:160–177.

[8] Camacho G T, Ortiz M. Computational modelling of impact damage in brittle materials.

International journal of solids and structures 1996; 33(20):2899–2938.
[9] Comi C., Mariani S., Perego U. An extended finite element strategy for transition from con-

tinuum damage to mode I cohesive crack propagation. International journal for numerical
and analytical methods in geomechanics 2007; 31(2):213–238.

[10] Remmers J, de Borst R, Needleman A. A cohesive segments method for the simulation of
crack growth. Computational Mechanics 2003; 31:69–77.

[11] Moes N., Dolbow J., Belytschko T., A finte element method for crack growth without
remeshing, Internation Journal of Numerical Methods in Engineering 1999; 32:133-150.



Mini-Workshop: Mathematical Models for Dynamic Fracture 1231

[12] Black T, BelytschkoT . Elastic crack growth in finite elements with minimal remeshing.
International Journal for Numerical Methods in Engineering 1999; 45:601–620.

[13] S. Pommier, A. Gravouil, N. Moes, A. Combescure, Extended finite elements methods for
crack propagations, ISTE Wiley (2011), ISBN: 978-1-84821-209-1.

[14] Prabel B, Gravouil A, Combescure A, Marie S. Level set X-FEM non matching meshes :
Application to dynamic crack propagation in elastic-plastic media. International Journal
for Numerical Methods in Engineering 2007; 69:1553–1569.

[15] T Elguedj, A Gravouil, A Combescure, A mixed augmented lagrangian-extended finite el-
ement method for modelling elastic-plastic fatigue crack growth with unilateral contact,
International Journal of Numerical Methods in Engineering 2007, Vol 71, 1569–1597
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A toy model for dynamic debonding

Giuliano Lazzaroni

(joint work with Renaud Bargellini, Pierre-Emmanuel Dumouchel, Jean-Jacques
Marigo)

We present a model of peeling test [1, 2] for a one-dimensional inextensible thin
film, subject to a monotonic loading with vanishing speed, under the hypothesis
that the toughness is piecewise constant and assumes only two possible values
γ1 < γ2. This simplified context allows us to highlight the contribution of the
kinetic energy to crack propagation in a heterogeneous material (with variable
toughness). In particular, we compare quasistatic and dynamic models as the
speed of loading tends to zero.

Indeed, even under quasistatic loading (i.e., assuming that the speed of loading
is smaller than the speed of the internal vibrations), the material’s answer is a
priori dynamic, because Griffith’s theory does not provide an absolutely continu-
ous solution if the total quasistatic energy is not a convex function of the crack
length. In this case, an unstable phase of propagation takes place, where Griffith’s
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quasistatic law fails; in the quasistatic framework, this fast propagation is seen as
a jump in time.

In our one-dimensional example, the film is a semi-infinite line (0,+∞). The
debonded (or cracked) region is assumed to be a segment (0, ℓε(T )) and the
debonding front is a point ℓε(T ), which has to be determined in dependence of
the loading level T = ε t, where ε is a small speed and t the time. Griffith’s law,
formulated in terms of the dynamical energy release rate [3], allows to predict the
evolution T 7→ ℓε(T ) in the regions where the material’s toughness is constant;
when the debonding front meets a discontinuity of the toughness (from γ1 to γ2 or
vice versa), further criteria should be provided. The case of a single discontinuity
is analyzed in [4], while in [5] we study the interaction of more discontinuities.

If the toughness has only one discontinuity, the dynamic evolutions T 7→ ℓε(T )
converge, as the loading speed tends to zero, towards an evolution T 7→ ℓ(T ) of
the quasistatic type. If at the discontinuity ℓ1 the toughness is increasing (i.e.,
it passes from γ1 to γ2), ℓ(T ) is absolutely continuous and presents a phase of
arrest after ℓ1. On the contrary, in the decreasing case (from γ2 to γ1), the energy
release rate at ℓ1 turns to be greater than the toughness, so ℓ(T ) presents a jump,
limit of fast propagations for the dynamic evolutions ℓε(T ). The total quasistatic
energy is conserved after the jump; at each continuity point, ℓ(T ) satisfies Griffith’s
quasistatic law, so ℓ(T ) can be determined using only quasistatic quantities under
the assumption of energy conservation after the jump.

The behaviour is very different when the toughness has two discontinuities ℓ1, ℓ2
and equals γ2 in (0, ℓ1), γ1 in (ℓ1, ℓ2), and γ2 again in (ℓ2,+∞) (this corresponds
to a defect in the material). If the size of the defect does not exceed a threshold
depending only on the two possible values of the toughness, we observe for ε > 0
the interaction of two shock waves, originating at the discontinuities and prop-
agating in the debonded part of the film: at each reflection of the shock waves
with the debonding front, the system switches from a phase of arrest to a phase
of motion or vice versa. As a consequence, the limit evolution ℓ(T ) as ε → 0
presents a jump between ℓ1 and ℓ2, while after ℓ2 the evolution is continuous but
Griffith’s quasistatic criterion does not hold. Hence, the dynamic evolutions ℓε(T )
do not converge to a quasistatic one; it is possible to see also that the quasistatic
evolution designed under the principle of energy conservation overestimates the
jump’s length.

This phenomenon is due to the presence of kinetic energy, which cannot be ne-
glected in this case even under slow loading. It turns out that for ε > 0 the kinetic
energy increases during the fast propagation between ℓ1 and ℓ2, then decreases with
oscillations and is transformed in potential energy; finally it reaches the order of
ε, so the system becomes close to the quasistatic regime. The upper and lower
bounds of the oscillations can be characterized in terms of Γ-convergence as ε→ 0,
which allows us to estimate the amount of kinetic energy not yet transformed in
potential.

We study also the case of many defects with a periodic distribution, with tough-
ness γ1 in (id, (i+θ)d) and γ2 in ((i+θ)d, (i+1)d) for every i ≥ 0, where θ ∈ (0, 1)
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Figure 1. Dynamic solutions in the case of many defects. Here,
γ1 = 0.5, γ2 = 2, d = 0.001, ε = 0.001. Solid line: θ = 0.99999.
Squares : θ = 0.97. Triangles : θ = 0.7. Dashed lines : quasistatic
evolution for homogeneous materials of toughness γ1 and γ2, re-
spectively.

and d > 0. In the limit as d → 0 we find a homogenized material; here the
density θ of material with the lowest toughness plays a major role. We consider
the quasistatic model under the assumption of energy conservation: the solutions
show phases of arrest and phases of jump and are then staircase functions in the
space/time plane. The points where the behaviour switches from arrest to jump
or vice versa, lay on two lines whose slope depends on θ. In particular, fixed a
level of load, the length of debonding can be higher than the one corresponding
to a material with a constant low toughness.

Due to the difficulty of controlling the several wave interactions that perturb the
debonding process, in the case of many defects the dynamic problem is treated
using an exact numerical solution of the wave equation. The simulations show
that for d≪ 1 and ε≪ 1 the qualitative aspect of the dynamic solutions depends
strongly on θ, while it is not affected by the choice of the defects’ distribution (e.g.,
the behaviour does not change if one considers a random distribution of defects
with mean density θ). If the density of the lowest toughness is close to one, the
dynamic solutions seem to converge to a quasistatic staircase evolution: indeed,
during the fast propagations the debonding passes through many defects. As this
density decreases, the curves in the space/time plane seem more smooth, showing
a wave trend; if the density is close to 1/2, their shape approaches a line. In
all these situations the behaviour shown as d → 0 is different from the case of a
homogeneous material with the mean toughness γ̄ := θγ1 + (1− θγ2).
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This behaviour reflects the influence of the kinetic energy on the dynamics. In
particular, the mean toughness γ̄ of the material should be substituted by an effec-
tive toughness in order to retrieve the limit of dynamic evolutions by quasistatic
quantities. The effective toughness can be easily determined in the case of a single
defect; on the contrary, the rigorous study of the homogenized material is still an
open problem.
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The Eshelby-Kostrov property in the Theory of Dynamic Fracture

Juan J. L. Velázquez

The asymptotic behaviour of an elastic field near the tip of a moving rectilin-
ear crack Γt = {x = (x1, 0) : −∞ < x1 < λ (t)} can be described by means of a
combination of asymptotic formulas with the form:

(1) u ∼ K (t) r
1

2B
(
θ, λ̇ (t)

)

where r is the distance of a given point to the tip of the crack and θ the angle
with respect to a fixed direction of a line connecting the tip of the crack with the
point under consideration.

A remarkable property of the elasticity equations which was first described in
[1] and [3] and whose meaning was greatly clarified in [2] states that for a given set
of the initial data of the elastic field, the function K (t) in (1) does not depend on

the whole history followed by the crack Γt but only in the values of λ (t) and λ̇ (t) .
Due to this property the study of description of the growth of a crack reduces to
a first order ODE if the energy required to increase the length of a crack moving
at a given speed is known.

A new proof of the Eshelby-Kostrov property in the case of antiplane loading
has been obtained in the paper [5] where some representation formulas for the
elastic field in the whole space has been also obtained for arbitrary initial data.
The proof shows that in the particular case of rectilinear cracks the solutions of
the wave equation have a very peculiar structure. On the other hand, it has been
shown in [4] that this property is not satisfied in the case of nonrectilinear cracks.
This has been proved by means of the study of a kinked crack in which its tip is
followed in two different ways. The particular geometry considered in [4] makes
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possible to compute the dynamic elastic field in explicit form using separation of
variables and integral representation formulas.

However, the geometry and the type of motion considered in [4] is in some
sense too singular, because kinked cracks are considered and part of the motion
takes place at constant speed. It could be relevant to obtain counterexamples of
the Eshelby-Kostrov property for cracks moving at subsonic speeds along smooth
curves, perhaps using perturbative arguments. It could be relevant also to extend
the representation formulas in [5] to general solutions of the elastic equations.
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Crack Propagation by PLS

Matteo Negri

We consider as a reference uncracked configuration an open, bounded Lipschitz
set Ω contained in R2. We assume that the initial crack Γ0 is a closed line segment
with one end point on the boundary ∂Ω. For convenience we will fix a system of
coordinates with the origin in the other end point (the crack tip) with ê1 aligned
with Γ0 (see Figure 1). We will also assume that Ω \ Γ0 is connected and that
Ω \ Γ0 can be represented by the union of a finite number of Lipschitz subsets,
so that Korn’s inequality still holds true. Considering the system of coordinates
introduced above, the crack path will be represented by the graph of a Lipschitz
function y belonging to

(1) Y = {y ∈ C0,1([0, S]) : y(0) = 0 , ‖y′‖∞ ≤ C} ,
where C will be chosen later (sufficiently large). For notational convenience, let
us also introduce the curve γ : [0, S] → Ω \ Γ0 given by γ(s) = (s, y(s)). In this
way, denoting Γs = Γ0 ∪ {(x, y(x)) : x ∈ [0, s]}, the set Ω \ Γs is still connected
and can be represented again as a finite union of Lipschitz sets.

For the elastic displacement u we set a Dirichlet boundary conditions on a subset
∂DΩ of ∂Ω\Γ0 with H1(∂DΩ) > 0. For sake of simplicity this boundary condition
will be of proportional type, i.e. u = cg for c ∈ W 1.1(0, T ) with c(0) = 0 and g ∈
H1/2(∂DΩ,R2). On the rest of the boundary an homogeneous Neumann boundary
condition is set. With proportional boundary conditions it is enough for many
pourposes to consider a reference problem with space of admissible displacements
given by U(Ω\Γs) = {u ∈ H1(Ω\Γs,R

2) : u = g ∂DΩ}. We will employ linearized
elasticity, with densityW e(u) = µ|ǫ(u)|2+(λ/2)|tr ǫ(u)|2. Then, for u ∈ U(Ω\Γs)
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Figure 1. Absolute (left) and local (right) systems of Cartesian
and polar coordinates employed in this work. The local system
translates with the crack.

the energy is Es(u) =
∫
Ω\Γs

W e(u). As the evolution is quasi-static, given Γs it

is sufficient to consider the unique equilibrium configuration for the displacement,
that is {us} = argmin{Es(u) : u ∈ U(Ω \ Γs)}. Clearly, when the boundary
condition is u = cg by linearity it is sufficient to consider the displacement field
cus and the energy c2Es(us).

In general, for a C0,1 path it is not known whether the stress intensity factors
exist, hence we will employ a regularization with a volume integral representation.
Given r > 0 let cr = (2π)−1r−5/2. For i = 1, 2 let

(2)
k1(θ) = cr

(
a1 cos(θ/2) + a3 cos(3θ/2), a2 sin(θ/2) + a4 sin(3θ/2)

)

k2(θ) = cr
(
b1 sin(θ/2) + b3 sin(3θ/2), b2 cos(θ/2) + b4 cos(3θ/2)

)
,

for a suitable choice of the coefficients ai and bi. Let θ̂s denote the argument of
x−γ(s) in the local system of polar coordinates (see Figure 1). Then, for i = 1, 2,
the non-local stress intensity factors are defined by

(3) K̃i(Γs) =

∫

Br\Γs

(us − ůs) · ki(θ̂s − ϑs) dx ,

where Br denotes the ball Br(γ(s)) and ůs is the average of u in a ball Br′(γ(s))
for 0 < r′ ≤ r2. Within this approximation the right SIF are then given by

K̃∗
i (Γs, ϑ) =

∫

Br\Γτ

(u0 − ů0) · ki(θ − ϑ) dx .

For a suitable choice of the coefficients ai and bi the values K̃i(Γs, ϑ) provide a
good approximation of the stress intensity factors and of their right limits, indeed,
for every ε > 0 there exists Cε such that (uniformly with respect to ϑ)

(4) |K̃(Γ0, ϑ)− T̃ (ϑ)K(Γ0)| ≤ Cεr
1/2−ε

where T̃ (ϑ) is an approximation of the transfer matrix suggested in [4] and given
by

(5) T̃ (ϑ) =
1

4

(
3 cos(ϑ/2) + cos(3ϑ/2) −3 sin(ϑ/2)− 3 sin(3ϑ/2)
sin(ϑ/2) + sin(3ϑ/2) cos(ϑ/2) + 3 cos(3ϑ/2)

)
.
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Given y ∈ Y and s ∈ [0, S] let V (Γs) = tgϑs where θs solves K̃II(Γs, ϑs) = 0.
The crack path is found by solving the first order functional differential equation

{
y′(s) = V (Γs) for a.e. s ∈ (0, S)

y(0) = 0 .

Indeed, if y′(s) = V (Γs) = tg ϑs then K̃II(Γs, ϑs) = K̃II(Γs) = 0. In this way, the
path will satisfy the Principle of Local Symmetry for a.e. s ∈ [0, S].

First, it is necessary to prove that V is well defined and that it depends con-
tinuously on s.

Lemma 1. Let S be sufficiently small. For every y ∈ Y and s ∈ [0, S] there

exists a unique ϑs ∈ (−arcos(1/3), 0) such that K̃II(Γs, ϑs) = 0. Moreover ϑs is
continuous in [0, S].

Now, we can state our existence result for the crack path.

Theorem 2. For S > 0 sufficiently small and C sufficiently large there exists a
fixed point for the functional

[F(y)](s) =

∫ s

0

V (Γz) dz .

Moreover, the fixed point is of class C1([0, S]). In other terms, K̃II(Γs) = 0 for

every s ∈ (0, S] and K̃II(Γ0, ϑ0) = 0.

Once the path Γs is given (by Theorem 2) the Principle of Local Symmetry is
true for every parametrization s(t). We are therefore free to choose it in such a way
that the approximated Griffith’s criterion is satisfied. Since the parametrization is
non-decreasing (to model irreversibility) we will define the initiation time tinit =
sup{t : s(t) = 0}. In this way, for t > tinit we have Γt ) Γ0. Then we define

K̃∗
I
(t,Γs) =

{
K̃I(t,Γ0, ϑ0) for Γs = Γ0

K̃I(t,Γs) otherwise.

The precise statement, which characterizes the quasi-static evolution [3], is con-
tained in the next Theorem.

Theorem 3. Given a fixed point y ∈ Y ∩ C1 there exists a non-decreasing, left-
continuous parametrization s(t) such that for Γt = Γs(t) the following Kuhn-Tucker
conditions are satisfied:

K̃∗
I
(t,Γt) ≤ Kc

I
for t ∈ [0, T ]

(
K̃∗

I
(t,Γt)−Kc

I

)
ds(t) = 0 (in the sense of measures) in [0, T ].

Moreover for t ∈ J(s) we have

K̃∗
I
(t, l) ≥ Kc

I
for l ∈ [s−(t), s+(t)] ,

so that discontinuities represents the unstable regimes of the evolution. Finally, if
c(t) is strictly increasing the parametrization s is unique.
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About Numerics

Blaise Bourdin

I will first present a panorama of numerical methods for quasi-static fracture,
and illustrate it with numerical experiments under mechanical and thermal loads.
I will then describe an extension to dynamic fracture and present more experiments
illustrating the properties of the model.

Reporter: Christoph Ortner
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