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Introduction by the Organisers

The Mini-Workshop Modular Representations of Symmetric Groups and Related

Objects, organized by Susanne Danz (University of Oxford) and David Hemmer
(University at Buffalo, SUNY), and attended by 17 participants was held April
24th–April 30th, 2011.

The representation theory of the symmetric group Sn has been a highly active
field of research for the past century. Whilst the theory over fields of characteristic
0 is rather well understood, the picture changes drastically when working over a
field F of prime characteristic p, where even a number of very basic questions
cannot be answered satisfactorially. In particular, the simple modules as well as
the Specht modules, which play an outstanding role in the representation theory of
the symmetric groups and Hecke algebras, are yet far from being fully understood.
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It is, for instance, still not known which Specht FSn-modules are indecomposable
in characteristic 2; a similar problem arises for Specht modules of Hecke algebras.
Only very recently was the classification of simple Specht modules for FSn com-
pleted by Fayers, while the problem remains open for the corresponding Hecke
algebra.

The goal of this mini-workshop was, thus, to bring together leading experts in
the representation theory of the symmetric groups and related objects (such as
Hecke algebras and Schur algebras) with a broad background, in order to discuss
recent developments, and break the ground for new progress on long-standing
problems in the field.

The meeting addressed, in particular, the following aspects:

• cohomology of symmetric groups, extensions and homomorphisms be-
tween FSn-modules, in particular, Specht modules (Fayers, Hemmer,
Lyle, Nakano);

• vertices and sources of natural classes of FSn-modules (Danz, Külshammer,
Wildon);

• Auslander–Reiten theory (Erdmann);
• computing decomposition numbers for symmetric groups theoretically (Tan)
and algorithmically (Müller);

• block theory of centralizer algebras related to the symmetric groups (Ellers,
Murray);

• classification results concerning quasi-hereditary covers of Hecke algebras
(Ariki);

• the Külshammer–Olsson–Robinson Conjecture on generalized ℓ-blocks of
symmetric groups (Hill);

• generalized hook lengths and hook formulas (Olsson);
• the Foulkes Conjecture (Paget);
• spin fake and generic degrees for symmetric groups (Wang).

Every participant contributed a talk of about 50 minutes, making the work-
shop a very lively and productive event, and yet leaving ample time for informal
discussions. An additional problem session on Thursday afternoon completed the
programme. A summary of the questions raised at the problem session can be
found at the end of this report.

We are delighted to thank the director, the administration, and the staff of the
MFO for their hospitality and support throughout the meeting.
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Abstracts

Quasihereditary Covers of Hecke Algebras of Type B2

Susumu Ariki

It is now well known that integrable modules over a Kac–Moody Lie algebra are
categorified by certain finite-dimensional algebras. In the classical case of the
basic module of the affine Lie algebra in type A, the algebras are block algebras
of Hecke algebras of type A. In our Fock space theory, the integrable module is
embedded into the level one Fock space, and the latter is categorified by using
q-Schur algebras. Let us consider the integrable modules in level two. Then they
are categorified by block algebras of Hecke algebras of type B. Embed the module
into the corresponding level two Fock space. Then, by using the category O for
the rational Cherednik algebra (in type B), Rouquier [4] showed that the Fock
space is categorified by quasihereditary covers of the Hecke algebras again. He
also showed that if the parameters of the Hecke algebra are not equal to −1,
then this quasihereditary cover is 0-faithful. Recall that, assuming the conjectures
(P1)-(P15) by Lusztig, Geck showed that Hecke algebras of type B have various
cellular algebra structures. Then the quasihereditary structures are related with
the cellular algebra structures: the Schur functor sends the standard modules to
Geck’s cell modules [3]. The picture is explained in [2].

Based on these examples, some people have constructed a general theory of
1-faithful covers and the other people study Hemmer–Nakano phenomenon etc.
Hence, it seems that people expect the validity of

(i) the existence of 0-faithful (or even 1-faithful) covers and its uniqueness,
(ii) the Schur functor sending standard modules to cell modules,

for a large class of cellular algebras. In this talk, I have explained the classification
of quasihereditary covers with 5 simple modules (5 is the number of bipartitions
of size 2) for the Hecke algebras in type B2 and how (i) and (ii) fail in the cases
when one of the parameters is −1. There exist quasihereditary covers for each of
the cellular algebra structures, none of which is 0-faithful, and the Schur functor
sends standard modules to cell modules in most cases but the image may be zero,
or a direct sum of simple modules of various multiplicities in some cases.

The idea of the classification is that as we know that block algebras in type B2

are either Nakayama algebras or special biserial algebras of very simple type by [1],
we may compute all the possible quasihereditary covers by brute force calculation.
The computation was carried out by my student Kazumasa Harada.
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The Lie Module of the Symmetric Group — Some Computational

Experiments

Susanne Danz

(joint work with Jürgen Müller)

The Lie module Liep(n) of the symmetric group Sn over a field F of characteristic
p > 0 appears naturally in questions concerning the free Lie algebra, in homology
theory, and in algebraic topology. If p does not divide n then Liep(n) is always
projective, but if p divides n then Liep(n) has a non-zero projective-free part

Liepfp (n). So, what can one say about Liepfp (n) in the latter case? How ‘big’ is
it compared with Liep(n)? And ‘how far’ is it from being projective? There are
some general results known when n is not a p-power, and there are partial results
reducing the case of arbitrary n to the case where n is a p-power. For n being a
p-power, however, almost no information is available in the literature, even when
it comes to very small examples.

In my talk I presented some computational data, obtained in joint work with

JürgenMüller, concerning indecomposable direct summands of Liepf2 (8) and Liepf3 (9)
as well their vertices and sources (for a definition of these notions see Burkhard
Külshammer’s report). Building on the computational data, the following general
questions arise:

Question 1. Let k ≥ 0, and let n := pk.
(a) Is Liepfp (n) indecomposable?

(b) If so, does Liepfp (n) have vertex En — an elementary abelian group of order

n, acting regularly on {1, . . . , n}? Are, moreover, the sources of Liepfp (n) always
endo-permutation modules? What are their isomorphism types?

(c) What happens when n is not a p-power?

Endo-permutation modules for p-groups have been introduced by Dade [3] as
generalizations of permutation modules. Furthermore, for abelian p-groups P ,
a classification of the isomorphism classes of indecomposable endo-permutation
FP -modules has also been obtained by Dade [4].

Our computational data show that for Liepf2 (8) and Liepf3 (9), Parts (a) and (b)
in Question 1 admit a positive answer. In these cases, we have also determined
the explicit isomorphism types of the sources of Liepfp (n) (in the sense of Dade’s
classification).

As for Question 1(c), in ongoing work with R. Bryant, K. Erdmann, and J.
Müller, we have formulated a reduction theorem expressing vertices of indecom-
posable direct summands of Liepfp (n) in terms of vertices of indecomposable direct

summands of Liepfp (pk) (k ≥ 0). The proof of this theorem uses recent results of
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Bryant–Erdmann [1], and of Bryant–Lim–Tan [2], as well as work of Külshammer
[5] on vertices of indecomposable modules for wreath products.
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Representations, Blocks, and Centers of Centralizer Algebras

Harald Ellers

(joint work with John Murray)

If R is a commutative ring, G is a finite group, and H is a subgroup of G, the
centralizer algebra is RGH = {a ∈ RG | ah = ha ∀h ∈ H}. The speaker has a
long-running project with John Murray to try to understand representation theory
of kSn

Sl where k is a field of finite characteristic p, Sn is the symmetric group on
n letters, l ≤ n, and Sl is the subgroup of Sn consisting of all permutations that
fix every number larger than l.

More precisely, assume that (R,F, k) is a sufficiently large p-modular system,
where R is a discrete valuation ring, F is its field of fractions of characteristic 0,
and k is its residue field of characteristic p. We would like to be able to do the
following.

(1) Find the simple FSn
Sl-modules.

(2) Find the simple kSn
Sl-modules.

(3) Find the blocks. (Find a version of Nakayama’s conjecture.)
(4) Find the decomposition matrices (at least in small cases).
(5) Relate all the above to p-local information. This means we want a ver-

sion of Brauer’s First Main Theorem for blocks of kSn
Sl and a version of

Alperin’s weight conjecture for simple kSn
Sl-modules.

The first of these has long been well known — the simple FSn
Sl-modules are all

of the form HomSl
(U, V ↓Sl

), where U and V are simple FSl-modules, and simple
FSn-modules respectively.

For l ≥ (n − 3), the block idempotents of kSn
Sl are all of the form ef , where

e is a block idempotent of kSn and f is a block idempotent of kSl. In these
cases, we also have fairly complete information about decomposition matrices. We
conjecture that blocks of kSn

Sl will arise this way in all cases. This would be a
consequence of a stronger conjecture: we expect that Z(ZSn

Sl) is generated as a
Z-algebra by Z(ZSn) and Z(ZSl). (There are examples of groups G and subgroups
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H for which kGH has block idempotents not in the algebra generated by Z(kG)
and Z(kH). An example was found by Susanne Danz.)

For l = n− 1, we have satisfactory versions of Brauer’s Theorem and Alperin’s
Conjecture.

A key tool is a surjective map Hk
n−l → kSn

Slf/〈J(Z(kSl))f〉, where H
k
n−l is the

degenerate affine Hecke algebra, f is a block idempotent of kSl, and 〈J(Z(kSl))f〉
is the ideal generated by the Jacobson radical of the center of the block associated
to f .

The focus of this talk is the case l = n − 1. Murray’s talk is about l = n − 2
and l = n− 3.

Auslander–Reiten Sequences for Symmetric Groups

Karin Erdmann

(joint work with Susanne Danz)

The Auslander–Reiten quiver Γ(B) of a finite-dimensional algebraB is the directed
graph with vertices labelled by the isomorphism classes [M ] of indecomposable B-
modules M , and where the arrows are defined in terms of irreducible maps (for
details we refer to [1]). This can be thought of as part of a presentation of the
module category.

Assume B is symmetric. Then the stable Auslander–Reiten quiver Γs(B) is ob-
tained from Γ(B) by removing the indecomposable projective modules. When B is
a block of wild representation type of some group algebra FG then by [4] any com-
ponent of Γs(B) is isomorphic to ZA∞, or is a tube (isomorphic to ZA∞/〈Ω2d〉).
If M is indecomposable non-projective, then the quasi-length ql(M) of M is de-
fined to be the distance of [M ] to the end of the component. One expects that
distinguished classes of modules have small quasi-length.

Now assume G = Sn, and let B be a wild block of FG. By [2], all simple
modules in B have quasi-length 1. Consider the quasi-length of Specht modules
Sλ in B. T. Jost has proved that ql(Sλ) = 1 if Sλ has simple socle and simple top
[5]. Extending his technology, we prove

Proposition [3] Assume M is a B-module with simple socle or a simple top.

Then ql(M) ≤ 3. Furthermore, if ql(M) > 1 then the component of M contains a

simple module D which is exceptional.

Here we call a simple module D exceptional if there is a unique simple module
S such that Ext1(D,S) 6= 0. We have further detailed structural information, and
this allows us, using other known results, to prove the following:

Theorem [3] Assume B has p-weight 2, or B has weight 3 and p = 3. Then all

Specht modules in B have quasi-length 1.

The following reduction result applies to many Specht modules when p is large
(the precise definitions can be found in [3]).
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Theorem. [3] Assume B and B̄ are wild blocks of symmetric groups which form

a [w : k]-pair. Suppose Sλ in B corresponds to Sλ̄ in B̄ under the partial Scopes

equivalence. If λ and λ̄ are sufficiently far away from the exceptional part of the

block then ql(Sλ) = ql(Sλ̄).
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Yet Another Talk on Irreducible Specht Modules

Matt Fayers

(joint work with Sinéad Lyle)

We report on some recent progress with the classification of irreducible Specht
modules for the Iwahori–Hecke algebra H in type A. The only outstanding case of
this problem is where the quantum parameter q equals −1. We assume here that
the underlying characteristic is zero. In this case, the author and Mathas have
a conjectured classification of irreducible Specht modules, based upon a strange
combinatorially defined class of partitions which we call FM-partitions. Our result
is that half of this conjecture is true: the conjecturally reducible Specht modules
really are reducible.

Apart from the results in our earlier paper [1] and standard techniques using
induction and restriction of Specht and simple modules, there are two main tools
used to prove reducibility of Specht modules.

Fock space calculations. Let F denote the q-deformed Fock space for the quan-

tum algebra Uv(ŝl2). The submodule V generated by the empty partition has a
Kashiwara–Lusztig canonical basis {G(µ)} indexed by the set of 2-regular par-
titions. Ariki’s Theorem says that when the transition coefficients between the
canonical basis for V and the standard basis for F are specialised at v = 1, the
resulting integers are precisely the decomposition numbers for H. Since these (un-
specialised) coefficients are known to be polynomials with non-negative integer
coefficients, the assumption that a Specht module is irreducible has strong impli-
cations for the canonical basis. We exploit this in the following statement: if we
can find bar-invariant elements X,Y of V in which the coefficients of the standard
basis element λ are different powers of v, then Sλ must reducible. For certain
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partitions λ, we can explictly construct such X,Y by starting with the canonical
basis element G(ν) for ν an ‘alternating’ partition contained in λ and with the
same number of parts as λ. So we obtain reducibility of a large class of Specht
modules.

Homomorphisms between Specht modules. There has been a lot of interest
in recent years in the computation of the space of homomorphisms between two
Specht modules. This has received a boost recently, with the proof by Lyle [3]
of two lemmas first proved by Fayers and Martin [2] for the symmetric group,
which facilitate computation of homomorphisms. If we have an H-homomorphism
Sµ → Sλ, then by using dominance considerations, we can often deduce that Sλ

is reducible.
Using Lyle’s machinery, the author was able to construct explicit homomor-

phisms to prove the reducibility of a certain class of Specht modules. This class is
not particularly natural: it simply consists of the list of all Specht modules which
we were unable to prove reducible by any other means.
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A Variety of Approaches to Specht Module Cohomology

David J. Hemmer

In this talk we discussed two different approaches to determining cohomology
Hi(Σd, S

λ), where Sλ is a Specht module for the symmetric group Σd. Both
approaches work only in odd characteristic.

The first uses Schur functor techniques to translate the problem (for small i) to
the computation of ExtiB(H

0(d), λ), where B is a Borel subgroup of GLd(k). Now
using results of Doty on the structure of H0(d) we can often prove vanishing and
‘generic cohomology’ type theorems. For example:

Theorem 1. [3] Let p be odd and λ ⊢ d. Then:

H1(Σpd, S
pλ) ∼= H1(Σp2d, S

p2λ).

We can also recover James’ computation of H0(Σd, S
λ) using this technique.

At this time we have no explicit realization of the isomorphism in Theorem 1
on the symmetric group side. In search of such a realization, we considered in [2]
a combinatorial approach. The first step is to prove that (again for p odd), given
a nonsplit short exact sequence:

0 → Sλ → U → k
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it must be the case that U embeds in the permutation module Mλ. Now the
existence of such a U depends on finding a complementary vector u ∈ Mλ so
that the span 〈Sλ, u〉 gives the module U . Using James’ famous kernel intersec-
tion theorem, this reduces to a combinatorial condition on u, written as a sum
of tabloids. Using this we can make some computations, for example showing
that H1(Σ2pa , S(pa,pa)) 6= 0 and giving an explicit basis for a nonsplit extension,
together with the symmetric group action.

We close by remarking that almost 30 years after James’ computation of H0(Σd, S
λ),

we still do not have a description of H1(Σd, S
λ), nor do we know if it can be more

than one-dimensional.
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Cartan Invariants of Symmetric Groups and Iwahori–Hecke Algebras

David Hill

(joint work with Christine Bessenrodt)

The theory of generalized blocks of symmetric groups was initiated by Külshammer,
Olsson and Robinson in [8]. Using character-theoretic methods, they showed that
many invariants of the usual block theory of symmetric groups over a field of
characteristic p do not depend on p being a prime. This led the authors to de-
fine ‘ℓ-blocks’ of symmetric groups and a related ℓ-modular representation theory.
They defined an appropriate analogue of the Cartan matrix associated to Sn for
this theory and even conjectured that a certain set of numbers determined the in-
variant factors of this matrix [8, Conjecture 6.4]. In a related paper [3], Bessenrodt
and Olsson conjectured a formula for the determinant of the Cartan matrix.

Using a new method developed in [9, 1], Brundan and Kleshchev [5] calculated
an explicit formula for the determinant of the Cartan matrix of a block of the
Iwahori–Hecke algebra,Hn, with parameter q a primitive ℓth root of unity. Donkin
[6] showed that there is a direct link between ℓ-blocks of Sn and blocks of Hn.
In particular, their respective Cartan matrices have the same determinant and
invariant factors. Using this, together with the results of [5] and [3], Külshammer,
Olsson and Robinson [8] verified the formula conjectured by Bessenrodt and Olsson
[3] (see also the remarks at the end of [3]). It should also be noted that in [4],
Bessenrodt, Olsson and Stanley obtained a more elementary proof of the formula
for the determinant of the full Cartan matrix.

In [7], Hill investigated the invariant factors of the Cartan matrix associated to
an individual block of Hn using the methods developed in [5]. When ℓ = pr is a
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power of a prime satisfying r ≤ p these numbers were computed (see [7, Theorem
1.3]). Moreover, he conjectured that the same formula held for arbitrary r.

In [7] also another result was obtained. Namely, given the prime decomposition
ℓ = pr11 · · · prkk , the Cartan matrix of an ℓ-block of Sn is a product of Cartan
matrices associated to prii -blocks of Sn. Indeed, the invariant factors of the Cartan
matrices of the prii -blocks are nothing but the elementary divisors of the Cartan
matrix of the associated ℓ-block. In particular, the invariant factors of the Cartan
matrix associated to an ℓ-block of Sn can be recovered from the Cartan matrices
associated to the prii -blocks (see [7, Theorem 1.1, 1.2]).

In this talk, we explained recent joint work with C. Bessenrodt [2] in which
we relate Hill’s Conjecture to that of Külshammer, Olsson, and Robinson. In
particular, we describe the precise relationship between [8, Conjecture 6.4], and
the work [7], so that Hill’s Conjecture is a refinement of the Küshammer–Olsson–
Robinson Conjecture to blocks.
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Vertices of Simple Modules for Symmetric Groups

Burkhard Külshammer

Let F be an algebraically closed field of characteristic p > 0, let G be a finite group,
and let M be an indecomposable module over the group algebra FG. A vertex of
M is a subgroup Q of G which is minimal with respect to the condition that the
canonical homomorphism FG⊗FQM −→ M splits. In this case Q is a p-subgroup
of G and unique up to conjugation. Moreover, there exists an indecomposable FQ-
module V such that M is isomorphic to a direct summand of FG⊗FQ V . Then V
is called a source of M ; it is unique up to isomorphism and NG(Q)-conjugation.
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In the first part of my talk, I gave a survey on general properties of vertices and
sources of indecomposable and, in particular, simple modules. Also, I stated Feit’s
finiteness conjecture (1980) on sources of simple modules and a related question
by Puig (1994) on vertices of simple modules and defect groups of blocks.

In the second part of my talk, I concentrated on the special case where G is a fi-
nite symmetric group Sn. In this case the simple FG-modules are parametrized by
p-regular partitions λ of n. So far, there is no general conjecture on the structure of
the vertices of the simple FG-modules Dλ. However, in recent years several special
cases have been attacked successfully: hook partitions, two-part partitions, spin
modules, completely splittable modules and blocks of small weight. I mentioned
results by S. Danz, K. Erdmann, J. Müller, H. Wenzel, M. Wildon, R. Zimmer-
mann and myself. Moreover, I stated several open problems and reported on
computational aspects.

More details can be found in [2] and in the papers in the list of references of
[2]; more recent results are contained in [1], [3], [4].
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Homomorphisms Between Specht Modules

Sinéad Lyle

Let F be a field of characteristic p ≥ 0 and let q ∈ F×. Choose e ≥ 2 to be
minimal such that 1 + q + . . .+ qe−1 = 0, where we assume that such an e exists,
and define H = HF,q(Sn) to be the corresponding Hecke algebra of the symmetric
group Sn. For each partition λ ⊢ n, we may define a module Sλ, known as a
Specht module. In this talk, we discuss a way of computing the homomorphism
space HomH(Sµ, Sλ) for λ and µ partitions of n. We then apply our technique to
define a family of pairs of partitions where the homomorphism space is at least
2-dimensional. The first part of the work appears in [2] and the second in [3].

Recall that for each partition µ of n, we may define an element mµ ∈ H,
a 2-sided right ideal H⊲µ and cyclic right H-modules Mµ = mµH and Sµ =
(H⊲µ + mµ)H. A homomorphism Θ : Mµ → Sλ therefore factors through Sµ if
and only if Θ(mµh) = 0 for all h ∈ H such that mµh ∈ H⊲µ. In fact, for d ≥ 1 and
1 ≤ t ≤ µd+1, we may define an element hd,t ∈ H such that Θ : Mµ → Sλ factors
through Sµ if and only if Θ(mµhd,t) = 0 for all d, t. Now for every semistandard
λ-tableaux T of type µ, we may define a homomorphism ΘT : Mµ → Sλ, where
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these maps form a basis of the homomorphism space if e 6= 2 and are linearly
independent otherwise. We show that we may write ΘT(mµhd,t) as the image of
a linear combination of homomorphisms indexed by row-standard λ-tableaux of
type ν(d, t) acting on mν(d,t). We then provide a result that allows us to rewrite
a homomorphism ΘS as a linear combination of homomorphisms indexed by other
tableaux. It appears (although we do not have a proof) that these results are
always sufficient to compute HomH(Sµ, Sλ). The potential problem is that our
second lemma may not be sufficient to write a homomorphism ΘS in terms of
homomorphisms indexed by semistandard tableaux. However, in practice, the
magic homomorphism calculator of Fayers has never encountered this problem.

The first family of examples of large-dimensional spaces between Specht mod-
ules appeared recently in the work of Dodge [1]. Dodge shows that for p ≥ 5 and
k(k+1)/2+1 < p , there exist partitions µ and λ such that dim(HomFSn

(Sµ, Sλ)) =
k; using the row and column removal theorems, there then exist α, β ⊢ m such
that dim(HomFSm

(Sµ, Sλ)) ≥ l for any integer l. The following result, proved us-
ing the method above, generalizes this last result to Hecke algebras with arbitrary
parameters p ≥ 0 and 2 ≤ e < ∞.

Theorem 1. For a ≥ b ≥ c+ 1 ≥ 4, define partitions

µ = µ(a, b, c, e) = (ae − 3, be− 3, ce− 3, e− 1, e− 1),

λ = λ(a, b, c, e) = ((a+ 2)e− 5, be− 3, ce− 3)),

of some integer n. Then dim(HomH(Sµ, Sλ)) ≥ 2.
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Techniques for Finding Decomposition Numbers

Jürgen Müller

0. Introduction.

The techniques we report on have largely been introduced in the framework of
the Modular Atlas Project [Wilson, Parker et al., ≥1984], aiming at the
determination of the Brauer characters of the finite almost quasi-simple groups in
the Atlas of Finite Groups. In particular, results are almost complete for 18 of
the 26 sporadic groups, and are available electronically in [http://www.math.rwth-
aachen.de/homes/MOC/].

The methods used can be divided into character-theoretic and module-theoretic
ones. Notably, they are of general nature and, for example, applicable to the
symmetric groups and their close relatives as well. More precisely, for Sn and
An results are complete for n ≤ 18 [Benson, 1987; M., 2000; Maas, M. 2011];
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note that blocks of weight ≤ 4 for Sn are known generically [Fayers, 2007]. For

the faithful blocks of the Schur covers Ŝn and Ân results are complete for n ≤ 17,
and n = 18 and p = 3 (at the day of writing) [Maas, 2011]; note that blocks of
cyclic defect for these groups are known generically [M., 2003].

1. Computations with characters. [Hiß, Jansen, Lux, Parker, ∼1985]
Let G be a finite group, and let [K,O, k] be a splitting p-modular system.

Then a Z-basis BS ⊆ Z≥0[IBr] of the Grothendieck group G0(mod-kG) is called
a basic set of Brauer characters, and similarly a Z-basis PS ⊆ Z≥0[IPr] of the
Grothendieck group G0(proj-kG) is called a basic set of projective characters.
While a PS can always be found by induction from proper subgroups [Fong,
1963], it is only conjectured that there always is a BS contained in Irr(G); note
that for G = Sn induction from Sn−1 suffices to find a PS, and the ordinary
characters parametrised by p-regular partitions provide a BS ⊆ Irr(Sn).

The natural pairing Z[IBr]× Z[IPr] → Z, where IBr and IPr = IBr∗ are a pair
of mutually dual bases, leads to the notion of Brauer atoms BA := PS∗ and
projective atoms PA := BS∗. Now the strategy is to consider BS and PS as
approximations to IBr and IPr; to find further Brauer characters and projective
characters, for example by induction, tensoring, or using special techniques such
as modular branching rules, the Jantzen–Schaper formula, or Scopes reduction for
G = Sn; to decompose them into the basic sets; and use positivity or negativity
results to improve the basic sets or to show irreducibility.

2. Computations with modules: condensation.

Let A be a finite-dimensional F -algebra, where F is a field, and let e ∈ A be
an idempotent. Then the exact functor Ce :? ⊗A Ae ∼= HomA(eA, ?) : mod-A →
mod-eAe : V 7→ V e is called the associated condensation functor or Schur

functor [Green, 1978; Auslander, 1974].

Letting Σ be the set of isomorphism classes of simple A-modules, Ce is an
equivalence if and only if Σ = Σe := {S ∈ Σ;Se 6= {0}} [Morita, 1958]. More
generally, letting modΣ′ -A ⊆ mod-A be the full subcategory of A-modules with
constituents in Σ′ ⊆ Σ, and assuming that Σ′ ⊆ Σe ⊆ Σ, then Ce restricts to a
fully faithful functor modΣ′ -A → modΣ′e-eAe, and for any M ∈ modΣ′ -A induces
an isomorphism between the submodule lattices of M and Ce(M) [M., 1998].

The computational workhorse is fixed point condensation: Let A = FG and
e = 1

|K| ·
∑

g∈K g ∈ FG, where K ≤ G such that char(F ) 6 | |K|; then we have

Ce(M) ∼= FixK(M) as F -vector spaces. This has been implemented for permuta-
tion modules [Thackray, Parker, 1981], tensor products [Lux, Wiegelmann,
1994], induced modules [M., Rosenboom, 1997], and for direct condensation of
permutation modules [Parker, Wilson, 1995; Lübeck, Neunhöffer, 1999;
M., Neunhöffer, Wilson, 2003].

Further applications are, for example, condensation with primitive idem-

potents and submodule lattices [Lux, M., Ringe, 1995], socle and radical
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series [Lux, Wiegelmann, 1996], endomorphism rings and direct sum de-
compositions [Szőke, 1998], and condensation of Morita type [Lux, 1997],
. . .

The Characters, Modules and Structure of a Centralizer Algebra in

the Symmetric Group Algebra

John Murray

(joint work with Harald Ellers)

I discussed an ongoing project with Harald Ellers (Allegheny) to understand the
centralizer algebras RSSl

n , where l < n. Fix a p-modular system (R,F, k). Each
centralizer algebra RGH has a basis C+, where C ranges over the orbits of H
on G. For RSSl

n there is another basis which is analogous to a PBW basis for a
Lie algebra, due to A. Olshanskii: σLm1

l+1 . . . L
mn
n C+

λ . Here σ ∈ Sn−l, the Li’s are
Murphy elements, and Cλ is a conjugacy class of Sl. We hope to use this basis
to prove that Z(kSSl

n ) coincides with the polynomials in L2, . . . , Ln symmetric
with respect to Sl × Sn−l. Also this presentation shows that there is a surjective
map Hn−l(Z(RSl)) → RSSl

n , where Hn−l is the degenerate affine Hecke algebra
(daha) of degree n − l. In particular, modules for the centralizer algebra can be
lifted to the daha. This allowed us to describe the simple modules, blocks and
decomposition matrices in the cases l = n− 1, n− 2, n− 3 (and probably n− 4).
We illustrated the method with reference to l = n − 2. There are 3 ‘families’
of simple daha modules, with one or two parameters. Each is defined for an
arbitrary field, and is determined by its formal character. This makes the analysis
of the modular decomposition of simple RSSl

n -modules almost trivial. In addition,
we needed to apply some combinatorics on the abacus with p (not 2!) runners.
Finally, we discussed the ordinary character theory of FSSl

n , using the fact that
FSSl

n
∼= eFSl×Sne, where e = ∆(Sl)

+/|Sl|. So the characters are indexed by pairs
α ⊢ n, β ⊢ (n− l) such that β ⊆ α. This has been exploited in the case l = n−1 by
E. Strahov to produce a Murnaghan–Nakayama formula and an explicit isometry⊕

n Char(FS
Sn−1
n ) → Λ[t], which is an isomorphism as Λ-modules. Here Λ is the

ring of symmetric functions over F and t is an indeterminate over Λ. In particular,
there are ‘Schur’ symmetric functions Sα/β involving t. We hope to generalize this

to understand the characters of FSSl
n .

Cohomology of Symmetric Groups: Old and New Problems

Daniel K. Nakano

One of the most effective ways in studying the cohomology of symmetric groups
has been the use of double centralizer theory. This involves symmetric group
representations and general linear group representations. Let n ≥ d and V be
the natural n-dimensional G := GLn(k) representation. The tensor space V ⊗d

becomes a bimodule for the diagonal action of G and the action of the symmetric
group Σd by place permutation.
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One can now consider the functors

F (−) = HomG(V
⊗d,−) and G(−) = HomΣd

(V ⊗d,−).

The functor F is exact (and known as the Schur functor), and the functor G is left
exact and admits higher right derived functors R•G(−). A spectral sequence (cf.
[2]) can be constructed by using these functors whose E2-page involves cohomology
for the Schur algebra S(n, d). The spectral sequence abuts to the cohomology for
the symmetric group. This approach has yielded a number of applications which
involves stablity results [5] relating cohomology groups, and equivalences between
Weyl and dual Specht filtrations [3].

There are still many open problems. Some of these include:

• Determining precise relationships between Ext1 between simples for G and
Σd.

• Determining whether self-extensions between simple modules of Σd vanish
when the field has characteristic larger than 2.

• Calculating the first cohomology for Specht modules (cf. [4]).

An issue surrounding these questions involves the calculation of the higher right
derived functors of G on specific modules. This was accomplished for the trivial
module in recent work of Cohen, Hemmer and Nakano [1]. The calculation was
used to precisely connect the determination of higher extensions between Young
modules with the decomposition number theory of Schur algebras.
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Generalized Hook Lengths and Relative Hook Degree Formulas

Jørn B. Olsson

(joint work with Christine Bessenrodt and Jean-Baptiste Gramain)

In his work on unipotent degrees in reflection groups (J.Algebra, vol. 177, 1995) G.
Malle used d-symbols as labels, defined hooks in d-symbols and associated lengths
to the hooks. With these he was able to prove a ‘hook formula’ for the degrees.

In the paper ‘Generalized hook lengths in symbols and partitions’ we have
introduced generalized hook length functions for d-symbols. Let d ∈ N. A d-
symbol S is a d-tuple of finite subsets S = (X0, X1, · · · , Xd−1) of N0. A hook in S
is a quadruple (a, b, i, j) where i, j ∈ {0, 1, · · · , d − 1}, a ≥ b ≥ 0, a ∈ Xi, b /∈ Xj
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and in addition if a = b then i > j. Let H(S) denote the set of hooks in S. We
associate to S two other symbols C(S) and Q(S), the core and the (balanced)
quotient symbol, such that |H(S)| = |H(C(S))| + |H(Q((S))|.

We consider a class of real-valued generalized hook length functions h on hooks
(a, b, i, j) in d-symbols and give a decomposition of the multiset H(S) of all gen-
eralized hook lengths h(z), where z ∈ H(S) which is compatible with the mul-
tisets H(C(S)) and H(Q(S)) of the core and quotient of S. In fact, H(S) =
H(C(S))∪H(Q(S)), where H(Q(S)) is obtained in a controlled way from H(Q(S))
by adding multiples of d in conjunction with a possible sign change.

We give several applications of this. For instance, we show that the relative
hook formula obtained by Malle and Navarro in the paper ‘Blocks with equal
height zero degrees’ is in fact the well-known hook formula for the degree of the
irreducible characters of the symmetric groups with the hooks suitably arranged
and prove a generalization. If H(λ) is the multiset of hook lengths for a partition
λ, and λ has d-core partition λ(d) then we have in particular H(λ(d)) ⊂ H(λ).
Furthermore the remaining elements of H(λ) may be seen as modified hook lengths

of a d-quotient partition for λ.

This result for partitions is applied in the paper ‘On bar lengths in partitions’
by Gramain and Olsson to obtain a similar result for the multiset of bar lengths
in partitions with distinct parts (also called a bar partitions). This is possible for
d ≥ 3 odd. The starting point here for a given bar partition µ to consider its
‘doubled’ partition D(µ), as defined by I. Macdonald. The bars of µ is a subset
of the hooks of D(µ). In a suitable setup the doubling process is compatible with
the d-cores and d-quotients, allowing the use of the partition theorem.

Foulkes Modules for Symmetric Groups

Rowena E. Paget

(joint work with Mark Wildon)

For m, n ∈ N, the symmetric group Smn acts naturally on the collection of set
partitions of a set of size mn into n sets each of size m; the resulting permutation
module is the Foulkes module H(mn). We denote its character by φ(mn). In 1950,
H. O. Foulkes conjectured that if m < n, and χλ is an irreducible character of
Smn, then the multiplicity of χλ in φ(mn) is at least as great as the multiplicity of
χλ in φ(nm), a conjecture which remains open.

Foulkes’ Conjecture is concerned only with the ordinary character of H(mn), yet
these modules are also of interest in modular representation theory. For example,
H(2n) is known to possess a filtration by Specht modules and also a filtration by
dual Specht modules. This was proved by the author using explicit homomor-
phisms from Specht modules to quotients of H(2n) defined over any field.

We construct a new family of homomorphisms from Specht modules into Foulkes
modules. A set family of shape (mn) is a collection of n distinct m-subsets of N.
Such a set family P is closed if whenever Y ∈ P and X ≺ Y in the majorization
order on m-subsets, then X ∈ P . For a partition λ, we say that a closed set family
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P has type λ if P has exactly λ′
i sets containing i for each i (where λ′ denotes the

conjugate partition).

Theorem 1. Let m be odd. Let P be a closed set family of shape (mn) and type

λ. Then there is an injective ZSmn- homomorphism fP : Sλ → H(mn).

We use these maps to describe the minimal partitions (in the dominance order)
labelling irreducible constituents of Foulkes characters. A set family P of shape
(mn) and type λ is called minimal if there is no set family Q of shape (mn) and
type µ with µ E λ. A minimal set family is necessarily closed.

Theorem 2. If m is even then the unique minimal constituent of φ(mn) is χ(mn),

occurring with multiplicity one. If m is odd then χλ is a minimal constituent of

φ(mn) if and only if there is a minimal set family of shape (mn) and type λ, and, in
this case, χλ occurs with multiplicity equal to the number of set families of shape

(mn) and type λ.

We observe that the multiplicity of such a minimal constituent may exceed one.
We also give a construction for a class of minimal set families.

Sign Sequences and Decomposition Numbers

Kai Meng Tan

The complete determination of the decomposition numbers of the symmetric group
Sn is a famous and longstanding open problem. In [3], Kleshchev described the
decomposition numbers dλµ, where the partition λ is obtained from µ by moving
one node, in terms of latticed subsets of the sign sequence induced by λ and µ. He
also described the branching coefficient [Dλ↓Sn−1 : Dν ], where ν is obtained from
λ by removing one node, in terms of normal nodes in λ.

In [1], Joseph Chuang, Hyohe Miyachi and the author obtained analogues of
Kleshchev’s formulas for the v-decomposition numbers dλµ(v) and the v-branching
coefficients for the Fock space representation of the quantum affine algebra of sle.

In a recent joint work with Joseph Chuang and Wei Hao Teo [2, 4], we extended
the results of [1] by describing the v-decomposition numbers dλµ(v), where λ is
obtained from µ by moving any number of nodes subject to the condition that no
two such nodes having adjacent e-residues, in terms of well-nested latticed paths
of the sign sequence induced by λ and µ. Assuming only Kleshchev’s branching
coefficients [Dλ↓Sn−1 : Dν ] where ν is obtained from λ by removing a normal node,
we are able to show that when these v-decomposition numbers are evaluated at
v = 1, we obtain the corresponding decomposition numbers. This in particular
provides an alternative proof of Kleshchev’s original decomposition numbers. We
also obtained some other branching coefficients and their analogues in the Fock
space in the process.



1196 Oberwolfach Report 21/2011

References

[1] J. Chuang, H. Miyachi, K. M. Tan, Kleshchev’s decomposition numbers and branching co-
efficients in the Fock space, Trans. Amer. Math. Soc. 360 (2008), 1179–1191.

[2] J. Chuang, K. M. Tan, Canonical bases of tensor products and decomposition numbers of
symmetric groups, in preparation.

[3] A. Kleshchev, On decomposition numbers and branching coefficients of symmetric and spe-
cial linear groups, Proc. London Math. Soc. (3) 75 (1997), 497–558.

[4] K. M. Tan, W. H. Teo, Sign sequences and decomposition numbers, in preparation.

Spin Fake and Generic Degrees for Symmetric Groups

Weiqiang Wang

(joint work with Jinkui Wan)

1. Fake degrees and generic degrees of Weyl groups

Let W be a finite Weyl group and V be its reflection representation. When
W is the symmetric group Sn, take V = Cn. There is an induced action of
W on the symmetric algebra S∗V . Denote by (S∗V )W the coinvariant algebra.
According to Chevalley, (S∗V )W is a graded regular representation of W . The
graded multiplicity of an irreducible W -module λ in (S∗V )W ,

dλ(t) :=
∑

j≥0

tj dimHomW (λ, (SjV )W ),

is called the fake degree of W . When W = Sn, we identify λ as a partition
λ = (λ1, λ2, . . .) of n. Let n(λ) =

∑
i≥1(i − 1)λi and hij be the hook lengths.

Then

dλ(t) = tn(λ)
(1− t)(1 − t2) . . . (1− tn)∏

(i,j)∈λ(1 − thij )
.

Denote by HW the Hecke algebra of W of equal parameter v, with a basis
Tw, w ∈ W . HW is a symmetric algebra with a symmetrizing trace form τ given
by τ(T1) = 1, and τ(Tw) = 0 for w 6= 1. Over C(v), the irreducible HW -modules
are parametrized by λ ∈ Irr(W ). Denote by PW the Poincare polynomial of
W , by cλ the Schur element and by Dλ = Dλ(v) = PW /cλ the generic degree
associated to λ (see [1]). The generic degrees are related to the fake degrees by
Fourier–Lusztig transform for general W (see [2]). When W = Sn, it turns out
that Dλ(t) = dλ(t), for all partitions λ.

2. Spin fake degrees for Sn

Our goal is to formulate and compute the spin fake degree and spin generic
degree (associated to Sn). According to Schur 1911, the symmetric group Sn

affords a double cover S̃n, with a distinguished central element z of order 2. All
the algebras and modules in the remainder are understood to be Z2-graded. It is
known that the representation theory of the spin symmetric group algebra CS−

n =

CS̃n/〈z+1〉 is super-equivalent to its counterpart for Hecke–Clifford algebra Hc
n :=
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Cn ⋊CSn. The simple Hc
n-modules ξ are parametrized by strict partitions ξ of n.

Set δ(ξ) to be 0 or 1 when the length ℓ(ξ) is even or odd, respectively. Define the

spin fake degree of ξ to be dξ−(t) :=
∑

j≥0 t
j dimHomHc

n

(
ξ, Cn ⊗ (SjV )Sn

)
. The

terminology is justified by our basic observation that Cn ⊗ (S∗V )Sn
is a graded

regular representation of Hc
n, and hence dξ−(1) is the degree of ξ. Associated to a

strict partition ξ, there is a notion of shifted diagram ξ∗, content cij and shifted
hook length h∗

ij for each cell (i, j) ∈ ξ∗ (see [3]).

Theorem 1 (Wan–Wang [4]). Let ξ be a strict partition of n. Then,

dξ−(t) = 2−
ℓ(ξ)−δ(ξ)

2

tn(ξ)
∏

(i,j)∈ξ∗(1 + tcij )
∏n

r=1(1− tr)
∏

(i,j)∈ξ∗(1− th
∗

ij )
.

3. Spin generic degrees for Sn

Let Cn be the Clifford algebra generated by c1, . . . , cn with relations c2i =
1, cicj = −cjci, for i 6= j. The Hecke–Clifford algebra Hc

n is a C(v)-algebra gener-
ated by T1, . . . , Tn−1, c1, . . . , cn, subject to the relation of Hecke algebra of Sn for
T1, . . . , Tn−1, the Clifford algebra relation for c1, . . . , cn, and the additional relation
Tici = ci+1Ti, for 1 ≤ i ≤ n− 1. It follows that Tici+1 = ciTi − (v − 1)(ci − ci+1).
For definiteness, let us record that (Ti − v)(Ti + 1) = 0. For a partition µ =
(µ1, µ2, . . . , µℓ) of n, let

Twµj
= Tµ1+...µj−1+1 . . . Tµ1+...+µj−1, 1 ≤ j ≤ ℓ,

Twµ
= Twµ1

Twµ2
· · ·Twµℓ

.

Theorem 2. [5] There exists a unique symmetrizing trace form ג for Hc
n such

that

(1) Twµ)ג
) =

(
v − 1

2

)n−ℓ(µ)

.

for all odd partitions µ of n.

There is a version of Theorem 2 for the spin Hecke algebra introduced in [6].
Associated to the trace form ג and each strict partition ξ, we can define Schur

elements c−ξ in a standard way, and then define the associated spin generic degrees

Dξ
− = 2nPSn

/c−ξ .

Theorem 3. [5] The spin generic degrees for Hecke–Clifford algebra Hc
n coin-

cide with the corresponding spin fake degrees, i.e., Dξ
−(t) = dξ−(t), for all strict

partitions ξ.

The proof of Theorem 3 relies on a Frobenius type character formula for Hc
n

which we develop.
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Vertices of Specht Modules

Mark Wildon

In a highly influential 1959 paper J. A. Green [2] defined the vertex of an inde-
composable representation of a finite group. Vertices have since become a central
object in modular representation theory, and feature in a number of important
conjectures, including Alperin’s Weight Conjecture. Despite this, comparatively
little is known about the vertices of ‘naturally occurring’ modules, such as Specht
modules for symmetric groups. Indeed, for many years, the only published work in
this area was [5] on the vertices of the Specht modules S(n−r,1r) in characteristic 2.

In my talk I discussed two results on vertices of Specht modules obtained using
the Brauer correspondence for modules, as developed by M. Broué in [1].

Theorem 2 ([6, Theorem 2]). The vertex of the Specht module S(n−r,1r), defined

over an arbitrary field of odd prime characteristic p not dividing n, is a Sylow

p-subgroup of Sn−r−1 × Sr.

Theorem 3 ([7, Theorem 1.1]). Let λ be a partition and let t be a λ-tableau. Let

H(t) be the subgroup of the row-stabilising group of t which permutes, as blocks

for its action, the entries of columns of equal length in t. If the Specht module Sλ,

defined over a field of prime characteristic p, is indecomposable, then it has a

vertex containing a Sylow p-subgroup of H(t).

Theorem 2 is of particular significance, because it leads to short proofs of a
number of foundational results in the block theory of the symmetric group. For
example, it implies that the defect group of a weight w block of a symmetric group
in prime characteristic p is a Sylow p-subgroup of Swp.

I ended my talk by surveying some interesting recent results obtained by K. J. Lim
[4] using the idea of the cohomological complexity of a module. For reasons of space
I will only state a special case of one of them here.

Theorem 4 (Lim [4, Theorem 3.2]). Let F be a field of prime characteristic p ≥ 3
and let µ be a partition. Suppose that the Specht module Sµ has an abelian vertex

Q of p-rank m. If c is the complexity of Sµ and w is the weight of its block then
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c = m = w, and Q is an elementary abelian subgroup generated by w disjoint

p-cycles in Sn.

This result is a step towards a classification of all indecomposable Specht mod-
ules with abelian vertex. The easier problem of classifying all Specht modules with
cyclic vertex was solved in [6], where I showed that the Specht module Sλ, defined
over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has
p-weight 1.
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Open Problem Session

Some of the following open problems were collected during the session held Thurs-
day afternoon at the workshop, others were submitted afterward or mentioned
during talks. They are organized by presenter.

Dan Nakano

1. Let Dλ, Dµ be simple kΣd-modules. Express Ext1kΣd
(Dλ, Dµ) in terms of

cohomology of modules for the general linear group GLd. There are usually more
tools available in algebraic groups to compute cohomology.

2. Kleshchev–Martin conjecture: For p ≥ 3, is Ext1kΣd
(Dλ, Dλ) = 0?

3. Linnell conjecture: let G be a finite group, B0 the principal block of kG and
S a simple module in B0. Can it be the case that Hi(G,S) = 0 for all i > 0?
For the case of restricted Lie algebras there is an easy example where this does
happen, but no examples are known for finite groups. Can one verify it perhaps
for symmetric groups?

4. The nucleus for kΣd: let

C = {M ∈ B0 | Hj(G,M) = 0 ∀j > 0.}.

The nucleus is defined as:

Nuc(kG) =
⋃

M∈C

VG(M).



1200 Oberwolfach Report 21/2011

Compute this nucleus for G = Σd.

John Murray

1. Conjecture (Külshammer et al.): Given n ≥ 1 and p = 2, consider λ =
(n+1, n− 1) ⊢ 2n. Then the Cartan invariant Cλλ is odd if and only if n is even.

Murray showed there is some odd Cartan invariant Cµµ in this block. In
Mathas–James later for the Hecke algebra Hn(Σd) it was odd in characteristic
zero for e = 2 (using LLT). Maybe this is evidence. Remark: a group has a real
element of 2-defect zero if and only if kG has an odd diagonal Cartan invariant.
(p = 2).

2. Choose a prime p, non-negative integers n ≥ ℓ (perhaps even fix ℓ = n− 1).
Find an ‘effective method’ for enumerating all pairs of partitions α ⊢ n, β ⊢ ℓ,
α ⊃ β, and such that the diagrams of α, β contain given multisets of p-residues.
This is related to the centralizer algebra kSSℓ

n . These pairs enumerate the ordinary
representations in what are expected to be the p-blocks. By effective we mean
something in the spirit of the p-abacus, you know how many there are and what
they are.

3. Brundan (2008): The centre of degenerate cyclotomic Hecke algebra Z(Hf
n)

is F [x1, . . . , xn]
Sn . Can his proof work to show that the centre Z(kSSl

n ) is the set
of polynomials in the Murphy elements that are symmetric under Sl × Sn−1? Or
any other proof?

4. Let λ ⊢ n be p-regular. Then Sλ ↓Σn−1 has a filtration by Specht modules:

Sλ = Sλ
1 ⊃ Sλ

2 ⊃ · · · ⊃ Sλ
r ⊃ Sλ

r+1 = 0

where r is the number of removable nodes in λ, and Sλ
i /S

λ
i+1

∼= Sλi where λi is the
partition of n− 1 obtained by removing the ith removable node (counting bottom
to top) from λ. Set:

Jλ := Sλ ∩ Sλ⊥

Jλ
i := Jλ ∩ Sλ

i .

Then

Jλ = Jλ
1 ⊇ Jλ

2 ⊇ · · · ⊇ Jλ
r ⊇ Jλ

r+1 = 0.

Is Jλ
i ) Jλ

i+1 if and only if i is a normal node of λ in the sense of Kleshchev? For
details see http://www.maths.nuim.ie/documents/jmurrayactionLn.pdf.

Burkhard Külshammer

1. F a field, G a finite group, H ≤ G. Define (Boltje–Danz–Külshammer)

Ti = FG⊗FH · · · ⊗FH FG

as an (FH,FH)-bimodule. Then T1 | T2 | T3 · · · . We know there is an n such
that Tn and Tn+1 have the same indecomposable summands up to multiplicity.
The general question is what is the minimal n such that this happens. Our paper
includes an answer for the symmetric group (H = Sn−1), where it does not depend
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on the field. What is the answer for the alternating group? The answer is known
for characteristic 0, and bounds exist in prime characteristic. The problem comes
from the theory of von Neumann algebras.

2. Find the vertices and sources of irreducible modules Dλ for the symmetric
group. Only special cases are known. For example the vertices for the case where
λ is a p-regular hook partition are known, except for n = pw, λ = (n−p+1, 1p−1)
where p is odd and w ≡ 1 (mod p). The vertices are expected to be the Sylow
p-subgroups of Sn.

3. Let p = 2, and let λ be a 2-regular partition of n. Let V 6= F be the source
of Dλ. Must V have even dimension?

Susanne Danz

1. Let n = pk. Is the projective-free part of Lie(n) indecomposable? Does it
have an endo-permutation module as a source? Is its vertex a regular elementary
abelian subgroup?

2. Is Lie(n)⊗ (Lie(n))∗ a permutation module?

3. Suppose that p = 2. Does every indecomposable Specht FSn-module that
is not simple restrict indecomposably to An?

Weiqiang Wang

1. Let Dλ be a completely splittable Sn-module. Then it is known that the
vertex of Dλ is just the defect group of the block. Let S̃n be the spin symmetric
group. Then completely splittable representations have been classified (Wan, 2010
Journal of algebraic combinatorics) also independently by Hill et al. Is something
similar true for vertices?

2. A problem in characteristic 0. Spin fake degree and spin generic degree are
related to the spin symmetric group, and the spin Hecke algebra. Removing spin
you add finite group of Lie type. Find a finite group of Lie type interpretation.

3. Let k = k be algebraically closed of characteristic p > 0. Let k[x1, . . . , xn]Sn

denote the coinvariant algebra. What is the graded multiplicity of Dλ in this
coinvariant algebra, or just in the socle of the coinvariant algebra? For the trivial
module the multiplicity in the socle is known.

4. Let G := GLn(q), which acts naturally on k[x1, x2, . . . , xn]. Consider
k[x1, x2, . . . , xn]G, studied by topologists (Mitchell about 1985). This has the
same composition factors as regular representation but is not isomorphic to the
regular representation. In papers of Wan–Wang, two approaches are used, one
is an invariant-theory approach. Can you answer the question as in Number 3
above? The answer is known ‘around the Steinberg’. There is a conjecture about
graded multiplicity in the socle ‘around the trivial module’.

Karin Erdmann

1. Fact: Take M an FSn-module, then there is a finite exact sequence

0 → M → Y0 → · · · → Yd → 0

where the Yi are direct sums of Young modules.
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Def: The Young dimension of M is the minimal such d. What is it? You get
this resolution by taking an injective resolution for the Schur algebra and pushing
it over. Is this the same of the injective dimension of G(M)? Even in blocks of
weight 1 it is interesting. If you know this, perhaps one can obtain consequences
about Ext(M,Y λ).

2. Can a projective indecomposable module P (Dλ) for the symmetric group
have a ‘waist’, i.e., some layer in the radical filtration (other than the top or socle)
that is simple?

3. Classify all λ such that Ext1(Dλ, Dµ) 6= 0 for exactly one µ. We call these
exceptional simple modules. These do appear in RoCK blocks, also in some blocks
of weight 2.

4. Let Hq(n) be the Hecke algebra of type A in prime characteristic. Given a

module M , must there exist a periodic module W with Ext1H(W,M) = 0?

Matthew Fayers

1. Let p be odd. Classify partitions λ such that λ is self-conjugate and Sλ has
exactly two composition factors. (See Fayers’ AMS paper). This would give you
a solution to : ‘Which characteristic zero irreducibles for An remain irreducible in
characteristic p’. His paper has a conjectural answer.

David Hemmer

1. Say a partition µ is p× p if both µ and µ′ are of the form pτ . The Georgia
VIGRE algebra group conjectures the complexity of a Specht module Sµ is maxi-
mal possible (the p-weight of the corresponding block) if and only if µ is not p×p.
We proved the easy direction, that the complexity is not maximal for p×p. Prove
the other direction. More generally, how much does the complexity drop in the
p × p case? Work of Lim shows for the smallest case µ = (pp) the complexity is
p− 1.

2. Which Dλ can occur in the socles of non-projective Young modules? Which
can occur in Specht module socles Sτ for τ not p-restricted. The answer to both
is known in Rouquier blocks.

3. Cossey: Fix a block B and an abacus display for its p-core. Choose a runner.
Give a bijection between p-regular partitions in the block and partitions for which
the term in the p-quotient corresponding to this runner is empty. It is known the
two sets have the same size (James–Kerber 6.2.2).

4. For which λ is the Ext algebra Ext•Σd
(Y λ) a graded commutative algebra?

Is it true for λ maximal in each block? Can one construct a natural action of this
algebra on modules in the block?

5. Does the module Lie(n) have a Specht or dual Specht module filtration?
How about the Foulkes module discussed by Wildon and Paget? (Answered for
Lie(6), p = 3 at the conference by J. Müller: has a dual Specht filtration, but no
Specht filtration.)

6. Suppose H ≤ Σn is such that the permutation character on the cosets
Σn/H is multiplicity free. Wildon has proved the permutation module in prime
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characteristic has a Specht filtration, with a case-by-case analysis. Give a different
proof not using the classification of such H .

Mark Wildon

Despite the importance of vertices to modern conjectures in representation the-
ory, such as Alperin’s Weight Conjecture, comparatively little is known about the
vertices of ‘naturally occurring’ modules, such as Specht modules for recent groups.
An ambitious target in this area would be solve the following problem:

Problem 1. Classify all indecomposable Specht modules whose vertices are abelian.

The easier problem of classifying all indecomposable Specht modules with cyclic
vertex was solved by Wildon, who showed that the indecomposable Specht module
Sλ, defined over a field of prime characteristic p, has a non-trivial cyclic vertex if
and only if λ has p-weight 1.

Two recent results suggest techniques that may help to solve this problem.
First of all Wildon used the Brauer Correspondence for modules, as developed by
M. Broué to prove Theorem 3 in Wildon’s report.

An immediate corollary is that if Sλ has an abelian vertex in characteristic p
then λi − λi+1 < p2 for all i.

Lim used the idea of the complexity of a module to get information about
vertices of Specht modules. His result is stated as Theorem 4 in Wildon’s report.

By combining this theorem with an earlier result of Hemmer, Lim showed that
any partition formed by p×p-blocks has a non-abelian vertex. In particular, S(pp)

has a non-abelian vertex.

Reporter: Susanne Danz
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