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Introduction by the Organisers

The workshop was successful in bringing together experts in three related fields:
random matrix theory, geometric functional analysis and theoretical computer
science. It was the opportunity to encourage further cooperation between people
within and across these areas. 28 talks were delivered during the conference.
Special efforts were made by the speakers from the three different communities
to make their works accessible by the others in order to favor exchanges and
discussions.

Among the specific areas discussed during the workshop, random matrix devel-
opments took an important part, as one of the hot topics of the current research.
R. Vershynin presented new important results on invertibility of symmetric matri-
ces based on Littlewood-Offord problems for quadratic forms. His talk emphasized
the connection between the areas covered by the workshop, with problems coming
from the random matrix theory, and methods coming from geometric functional
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analysis. This number-theoretic aspect was further developed by K. Costello link-
ing probabilistic and arithmetic properties of homogenous polynomials. V. Vu
and J. Yin presented some of the most striking recent achievements on univer-
sality of the eigenvalue spacing distribution (works of T. Tao and V. Vu on one
side and L. Erdös, H. T. Yau and collaborators on the other). Sharp bounds for
singular values for matrices in log-concave ensembles with applications to approx-
imate reconstruction was another highlight (talks by R. Lata la, A. Litvak and
N. Tomczak-Jaegermann). This series of works applies delicate geometric proper-
ties of log-concave measures to random matrices, and finds further application in
signal reconstruction. M. Krishnapour presented a joint work with A. Guionnet
and O. Zeitouni proving a long-standing single ring conjecture. This conjecture
asserted that the empirical spectra of a unitary invariant ensemble of matrices con-
verges to a measure, whose support is one ring, regardless of the potential. Other
talks on random matrices included polynomials, tail bounds on sums of random
matrices, heavy tail models, log-gases, etc. Connections between random matrix
theory and quantum information theory, free probability and statistics completed
the picture.

Recent developments in high dimensional convex geometry included results on
tight embeddings in non-Euclidean spaces. Concentration inequalities and sharp
bounds on log-concave measures with geometric applications to log-concave ensem-
bles were presented by O. Guédon and R. Lata la. B. Klartag presented a result
on the vector in subspace problem which gives an application of convex geometry
to the computer science area of communication complexity.

Advances in theoretical computer science are intimately related to both random
matrices and high dimensional convex geometry. A talk of N. Srivastava described
how a solution of a computer science problem of graph sparsification led to an
unexpected improvement of several old results in geometric functional analysis.
Algorithms and complexity theory figured in the talk of S. Khot on games with
strong soundness, and in the talk of the structure of Y. Xiao on local optima. A talk
by A. Barvinok discussed arithmetic properties of random matrices with prescribed
row and column sums. Such matrices, called random contingency tables, appear
in statistical analysis of large data arrays.
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Stein’s method and multivariate normal approximation for random
matrices from the compact classical groups . . . . . . . . . . . . . . . . . . . . . . . . . . 1354



Random Matrices, Geometric Functional Analysis and Algorithms 1291

Abstracts

Covariance estimation and invertibility of random matrices

Roman Vershynin

Estimation of covariance matrices is a basic problem in statistics and its appli-
cations. Consider a mean zero random vector X valued in Rn. The covariance
matrix of X is the n× n positive semidefinite matrix

Σ = EXXT .

Our goal is to estimate Σ from a sample X1, . . . , XN taken from the same dis-
tribution as X . A classical unbiased estimator for Σ is the sample covariance
matrix

ΣN =
1

N

N
∑

i=1

XiX
T
i .

A basic question is to determine the minimal sample size N which guarantees that
Σ is accurately estimated by ΣN . More precisely, for a given accuracy ε > 0 we
are interested in the minimal N = N(n, ε) so that

E ‖ΣN − Σ‖ ≤ ε‖Σ‖
where ‖ · ‖ denotes the spectral (operator) norm.

It follows from Rudelson’s theorem [5] that N = O(n log n) for general distri-
butions supported in a ball of radius O(

√
n), see [8, Section 4.3]. In general the

logarithmic oversampling is needed. It is an open problem to describe the distri-
butions for which no logarithmic oversampling is needed, i.e. for which N = O(n).
Such are sub-gaussian distributions (this follows from a standard covering ar-
gument [8, Section 4.3]) and even sub-exponential distributions (this is a recent
result of Adamczak, Litvak, Pajor and Tomczak [1] that answered Kannan-Lovasz-
Simonovits question). A conjecture is that the logarithmic oversampling is almost
never needed; in particular that N = O(n) for distributions with 2 + ε moments.

If the distribution has some structure then it may happen that N = o(n),
which is the regime preferred in modern applications. Sparsity can manifest itself
differently. For example, suppose the distribution is approximately k-dimensional
where k = o(n), i.e. the covariance matrix Σ has effective rank k. In this case, one
can deduce from Rudelson’s theorem that N = O(k logn), so for low-dimensional
distributions one has the desired bound N = o(n), see [8, Section 4.3]. A different
form of structure appears if the covariance matrix Σ is sparse, i.e. most of the
coordinates are uncorrelated. Levina and Vershynin [4] proved that if Σ has k
non-zeros per row then N = O(k log6 n), so one again may have the desired bound
N = o(n).

The second part of this talk addresses the invertibility problem of random ma-
trices. At the heart of random matrix theory lies the realization that the spectrum
of a random matrix H tends to stabilize as the dimensions of H grow to infinity.



1292 Oberwolfach Report 24/2011

This phenomenon is captured by the limit laws of random matrix theory, in par-
ticular by Wigner’s semicircle law, the circular law, and Marchenko-Pastur law.
One can think of these laws as relatives of the central limit theorem, although the
way the random entries of H determine the spectrum is more complicated than
the sum of the entries studied in the central limit theorem.

The limit laws offer us a clear global and asymptotic picture of the spectrum of
H . In the last few years, a considerable progress was made on the more difficult
local and non-asymptotic regimes. In the non-asymptotic regime, the dimensions
of H are fixed rather than grow to infinity. In the local regime, one zooms in on a
small part of the spectrum of H , ideally until one sees individual eigenvalues. As an
important example, suppose one zooms in on zero. The location of the eigenvalue
nearest zero determines the invertibility properties of H , i.e. the probability that a
random matrix H is non-singular, and the typical value of the spectral norm of the
inverse of H . The invertibility properties determine in turn whether the matrix
H is well conditioned, which is a matter of importance in numerical analysis.

We report on the recent progress on the invertibility problem for general Wigner
matrices H , which are symmetric n × n matrices with iid above-diagonal entries
that have zero mean, unit variance and sub-gaussian moments (the latter can be
relaxed). A result in [9] shows that the eigenvalues λk(H) satisfy for each z ∈ R

and ε ≥ 0 that

P

{

min
k

|λk(H) − z| ≤ εn−1/2
}

≤ Cε1/9 + 2e−n
c

.

where C, c > 0 are constants that depend only on the subgaussian moments of the
entries of H .

This result shows that H is singular with an exponentially small probability,
that ‖H−1‖ = O(n) and hence the condition number of H is linear in the di-
mension n, and that the spectrum of H is fully delocalized – the eigenvalues are
spread out, they do not tend to stick to any particular point at scales comparable
to their average gap. This result improves upon the polynomial singularity bound
O(n−1/8+ε) due to Costello, Tao and Vu [2], and it generalizes, up to constant
factors, previous results for distributions whose first few moments match the mo-
ments of the normal distribution (due to the universality results of Tao and Vu
[6, 7]) and for continuous distributions in the bulk of the spectrum (due to Erdös,
Schlein and Yau [3]).
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The Vector in Subspace Problem

Bo’az Klartag

(joint work with Oded Regev)

Suppose A ⊆ Sn−1 is a fixed measurable set and let E ⊂ Rn be a random k-
dimensional subspace. We consider the random variable

σE(A ∩E)

where σE denoted the uniform probability measure on the sphere Sn−1 ∩ E. We
show that the random variable σE(A ∩ E) is rather concentrated, even when the
set A is quite small. Denote R = log(1/σn−1(A)), where σn−1 is the uniform
probability measure on the sphere Sn−1. We show that for any 0 ≤ t ≤ 1,

P

{∣

∣

∣

∣

σE(A ∩ E)

σn−1(A)
− 1

∣

∣

∣

∣

≥ t

}

≤ C exp(−ckt2/R2)

where C, c > 0 are universal constants. The estimate is in general sharp for
k ≤ 9n/10 (better estimates exists when k is very close to n).

We view this inequality as a “sampling inequality”. Suppose we have a subset
of the sphere that, say, occupies only exp(−n1/3)-fraction of the sphere. We would
like to estimate its exact measure, with an error of at most 1%. Our only access to
the set is via its intersection with a random n/2-dimensional subspace E ⊂ R

n, and
we use the measure of the intersection as an unbiased estimator for the measure
of the set. The inequality above states that this is a pretty accurate estimator,
in high dimension: The chances of an error of more than 1% is very small, only
C exp(−cn1/3).

The main application of the inequality we present is related to the field of
Quantum Communication. Specifically, a decade ago Ran Raz presented a (partial)
function for which there is a quantum protocol communicating only O(log n)
qubits, but for which any classical (randomized, bounded-error) protocol requires
poly(n) bits of communication. That quantum protocol requires two rounds of
communication. Ever since Raz’s paper it was open whether the same exponential
separation can be achieved with a quantum protocol that uses only one round
of communication. We settle this question in the affirmative, using our sampling
inequality as a central technical tool.
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Partial transposition of random matrices

Guillaume Aubrun

In the recent years, very fruitful connexions were discovered between Random
Matrix Theory and Quantum Information Theory. The most prominent example
is Hastings’s use of the probabilistic method to obtain counterexamples to a long-
standing problem: the additivity conjecture [2].

A basic object in Quantum Information Theory is a quantum state. We stick
to the finite-dimensional case, and we consider a quantum state to be simply a
positive operator with trace one. We denote by D(Cn) the set of states on Cn.
There is a natural family of probability measures on D(Cn) which is obtained by
normalizing (Gaussian) Wishart matrices. Let G be a n× p random matrix with
i.i.d. entries with distribution NC(0, 1), and define

ρ =
GG†

tr GG† ,

which is a random quantum state on Cn. We call µn,p the distribution of ρ. When
p ≥ n, the measure µn,p has a simple density with respect to the Lebesgue measure
on the hyperplane of trace one operators:

dµn,p(ρ) ∝ (det ρ)p−n1{ρ≥0}dρ.

This family of random states has also a physical interpretation in terms of open
quantum systems. The statistical repartition of their eigenvalues is described by
the Marčenko–Pastur distribution, in the asymptotic limit when n, p go to infinity
with lim p/n = α ∈ (0,∞).

Usually in Quantum Information Theory, we are interested in the case when
the Hilbert space carries an extra tensor product structure, which corresponds to
the description of a shared quantum system. We consider for simplicity the case
of states on Cd⊗Cd (which we identify with Cn for n = d2). If we think of states
as matrices, this corresponds to adding a block structure.

An fundamental operation which plays an important role in Quantum Informa-
tion Theory is the partial transposition. The partial transposition ρΓ of a state
ρ ∈ D(Cd ⊗Cd) is defined as

ρΓ = (Id ⊗ T )(ρ),

where T is the usual transposition on d× d matrices. In the block-matrices repre-
sentation, this corresponds to applying the usual transposition inside each block.
A state ρ is called PPT (Positive Partial Transpose) if ρΓ is a positive operator.
This notion is useful since non-PPT states are necessary entangled (the converse is
false beyond very small dimensions), and this is a very practical (polynomial time)
criterion, while deciding whether a state is entangled or not is computationnally
hard.

It is therefore relevant to ask what the spectrum of the partial transposition
of random states looks like, and especially whether it is entirely positive. We
answer both questions: the spectral distribution of ρΓ is given by a non-centered
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semicircular distribution, and there is a phase transition from PPT to non-PPT
when the Wishart parameter α equals 4. Here are more precise statements.

Theorem 1. Let ρ be a random state on Cd ⊗ Cd, distributed according to
the measure µd2,p. Assume that d, p go to infinity and that the ratio p/d2 tends to

a limit α ∈ (0,∞). Then the empirical spectral distribution of d2ρΓ approaches a
semicircular distribution with mean 1 and variance 1/α, supported in the interval
[1 − 2/

√
α, 1 + 2/

√
α].

Theorem 2. Under the same hypotheses, the largest eigenvalue of d2ρΓ ap-
proaches 1 + 2/

√
α and the smallest eigenvalue approaches 1 − 2/

√
α.

Both proofs are based on the moments method. See [1].
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Random matrices with group-theoretic linear structure

Mark Meckes

The most obvious way to devise a model of a random matrix is simply to choose
each of the matrix entries independently. Since the work of Wigner in the 1950s,
a great deal of attention has focused on random matrices lying in the linear sub-
spaces of real symmetric or complex Hermitian matrices; to generate such random
matrices one may pick all the above-diagonal entries independently. In a 1999
survey paper [2], Bai raised the possibility of investigating random matrices which
lie in other important linear subspaces of matrix space, in particular mention-
ing Toeplitz, Hankel, and Markov matrices. Several years later Bryc, Dembo, and
Jiang [4] and Hammond and Miller [5] proved that (appropriately normalized) ran-
dom real symmetric Toeplitz matrices have a limiting spectral distribution (LSD);
[4] proved the same about the other two models and determined the order of the
spectral norm in the Markov case. Meckes [7] and Adamczak [1] determined the
order of the spectral norm of random Toeplitz and Hankel matrices.

Beginning with Bose and Mitra [3], a number of authors considered random
circulant matrices, which are a further restriction of random Toeplitz matrices.
Bose and Mitra showed that real symmetric random circulant matrices have an
LSD which is normal. Meckes [8] showed that without the symmetry constraint,
random circulant matrices have a complex normal LSD.

Here we propose to investigate a different random matrix model which general-
izes circulant matrices. Let G be a finite abelian group. (The case of nonabelian
G will be the subject of future study.) Let {Yg | g ∈ G} be random variables
and define a random matrix X ∈ CG×G by Xg,h = Ygh−1 . A matrix of this form
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is sometimes called a G-circulant matrix; when G is a cyclic group one obtains a
classical circulant matrix. The action of such a matrix is the same as convolution
with the vector (Yg)g∈G. Thus this may equally well be thought of as a model of
a random convolution operator on G, and its spectrum may be studied by means
of Fourier analysis on G, which turns this into a question about the distribution
of values of a random Fourier series on G. Then in particular the order of the
spectral norm of X follows as a special case of results of Marcus and Pisier [6].

The new results about LSDs are more sensitive than in previously studied con-
texts to details both of the structure of G and whether the Yg are real or (say)
complex with uncorrelated real and imaginary parts, and the real symmetric and
complex Hermitian cases may even exhibit different behavior from each other. In
general, the LSD is a mixture of two Gaussian distributions, either both real or
one real and one complex. The parameters of the mixture depend on whether we
are in the complex or real setting, and on the fraction of elements of G which are
of order 2. (The strange behaviors that may arise in this model do not appear for
classical circulant matrices precisely because large cyclic groups have a negligible
fraction of such elements.)
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Probability inequalities for sums of random matrices

Joel A. Tropp

1. Overview

Let X1, . . . ,Xn be independent, self-adjoint random matrices with dimension
d× d. Our goal is to provide bounds for the probability

(1) P

{

λmax

(

∑n

k=1
Xk

)

≥ t
}

.
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The symbol λmax denotes the (algebraically) maximum eigenvalue of a self-adjoint
matrix. We wish to harness properties of the individual summands to obtain
information about the behavior of the sum. The approch here leads to simple
estimates that are relatively general and easy to use in applied settings. The cost
is that the results are not quite sharp for every example.

This research begins with the observation that controlling (1) resembles the
classical problem of developing tail bounds for a sum of independent real random
variables. There are some compelling analogies between self-adjoint matrices and
real numbers that suggest it may be possible to extend classical techniques to the
matrix setting. Indeed, this dream can be realized.

In a notable paper [1], Ahlswede and Winter show that elements from the
Laplace transform technique generalize to the matrix setting. Further work in this
direction includes [10, 4, 8, 9]. These techniques are closely related to noncom-
mutative moment inequalities [7, 3, 5] and their applications in random matrix
theory [11, 12].

2. The Matrix Laplace Transform Method

To begin, we show how Bernstein’s Laplace transform technique extends to
the matrix setting. The basic idea is due to Ahlswede–Winter [1], but we follow
Oliveira [9] in this presentation. Fix a positive number θ. Observe that

P

{

λmax

(

∑

k
Xk

)

≥ t
}

= P

{

exp
{

λmax

(

∑

k
θXk

)}

≥ eθt
}

≤ e−θt · E exp
{

λmax

(

∑

k
θXk

)}

= e−θt · Eλmax

(

exp
{

∑

k
θXk

})

< e−θt · E tr exp
{

∑

k
θXk

}

.(2)

The first identity uses the positive homogeneity of the eigenvalue map; the second
relation is Markov’s inequality; the third line is the spectral mapping theorem;
and the last part holds because the exponential of a self-adjoint matrix is positive
definite.

At this point, previous authors interpreted the quantity

E tr exp
{

∑

k
θXk

}

as a matrix extension of the classical moment generating function (mgf). They
attempted to generalize the fact that the mgf of an independent sum is the product
of the mgfs of the summands. Roughly, the hope seemed to be that

〉〉 E tr exp{
∑

k
θXk} = tr

∏

k
E eθXk . 〈〈

This ostensible identity fails completely. Why? In the matrix setting, it is generally
not true that eX+Y 6= eXeY . The Golden–Thompson inequality [2, Ch. IX] can
be used as a limited substitute: tr eX+Y ≤ tr eXeY . But the obvious extension to
three matrices is false: tr eX+Y +Z 6≤ tr eXeY eZ . On reflection, it becomes clear
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that results like this cannot be true because the trace of a product of three positive
matrices can be a negative number. In the past, researchers have circumvented
this problem using some clever iterative procedures.

Nevertheless, we need a new idea if we want to find the natural extension the
classical approach. The key observation is that we should try to extend the
additivity rule for cumulants. To do so, we need more tools. The following
result is one of the crown jewels of matrix analysis.

Theorem 1 (Lieb [6]). Let H be a self-adjoint matrix. Then the map

A 7−→ tr exp {H + logA}
is concave on the positive-definite cone.

We apply Lieb’s theorem through the following simple corollary.

Corollary 2 (Tropp 2010). Let H be a fixed self-adjoint matrix, and let X be a
random self-adjoint matrix. Then

E tr exp {H + X} ≤ tr exp
{

H + logE eX
}

.

When we apply the corollary iteratively, we obtain the following inequality in
our setting.
(3)

tr exp
{

logE exp
{

∑

k
θXk

}}

= E tr exp
{

∑

k
θXk

}

≤ tr exp
{

∑

k
logE eθXk

}

.

The bound (3) states that the cumulant generating function (cgf) of a sum of
independent random matrices is controlled by the sum of the cgfs of the individual
matrices. Introducing (3) into (2), we reach

(4) P

{

λmax

(

∑

k
Xk

)

≥ t
}

≤ inf
θ>0

[

e−θt · tr exp
{

∑

k
logE eθXk

}]

.

The latter inequality is the natural matrix extension of the classical Laplace trans-
form approach.

3. Example: Matrix Rademacher series

The simplest application of (4) concerns Rademacher series with matrix coeffi-
cients. Let {Ak} be a finite sequence of fixed, self-adjoint matrices with dimension
d. Let {εk} be a sequence of independent Rademacher random variables. We claim
that

(5) P

{

λmax

(

∑

k
εkAk

)

≥ t
}

≤ d · e−t
2/2σ2

where σ2 =
∥

∥

∥

∑

k
A

2
k

∥

∥

∥ .

The symbol ‖·‖ denotes the spectral norm, or Hilbert space operator norm, of a
matrix. A related calculation, which we omit, yields

Eλmax

(

∑

k
εkAk

)

≤ σ ·
√

2 log d.

For every example, this bound on the expectation is sharp up to the square-root
log factor.
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The inequality (5) has some interesting relations to earlier results. An alter-
native proof uses sharp noncommutative Khintchine inequalities [3] to bound the
matrix mgf. In comparison, the approach described by Ahlswede and Winter [1]
leads to the weaker inequality

P

{

λmax

(

∑

k
εkAk

)

≥ t
}

≤ d · e−t
2/2ρ2 where ρ2 =

∑

k

∥

∥A
2
k

∥

∥ .

The latter estimate also follows from Tomczak-Jaegermann’s moment bounds [13]
for Rademacher series in the Schatten classes.

To establish the claim (5), we need to study the cgf of a fixed matrix modulated
by a Rademacher variable. Note that

logE eεθA = log cosh(θA) 4
θ2

2
A

2.

The semidefinite relation follows from the scalar inequality log cosh(x) ≤ x2/2.
Introduce this estimate (with appropriate justifications!) into the tail bound (4)
to reach

P

{

λmax

(

∑

k
εkAk

)

≥ t
}

≤ inf
θ>0

e−θt · tr exp

{

θ2

2

∑

k
A

2
k

}

≤ inf
θ>0

e−θt · exp

{

θ2

2
· λmax

(

∑

k
A

2
k

)

}

= inf
θ>0

e−θt · eθ
2σ2/2.

Optimize with respect to θ to complete the proof of (5).
Finally, let us mention that these ideas can be extended to study rectangular

matrices. Consider a finite sequence {Bk} of fixed d1 × d2 matrices. Then

P

{∥

∥

∥

∑

k
εkBk

∥

∥

∥
≥ t

}

≤ (d1+d2)·e
−t2/2σ2

where σ
2 =

∥

∥

∥

∑

k
BkB

∗

k

∥

∥

∥
∨
∥

∥

∥

∑

k
B

∗

kBk

∥

∥

∥
.

Remarkably, this estimate follows immediately from (5) by applying that result
to the self-adjoint matrices

Ak =

[

0 Bk

B
∗
k 0

]

.

See [14] for further details.
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Concentration inequalities for log-concave measures

Olivier Guédon

(joint work with Emanuel Milman)

I have presented several questions from the high dimensional geometry of convex
bodies or log-concave measures. Let X be a random vector uniformly distributed
on a convex bodyK in R

n or more generally distributing according to a log-concave
density of probability f where log-concavity means that for any λ ∈ (0, 1) and any
x, y ∈ Rn, f((1 − λ)x + λy) ≥ f(x)1−λf(y)λ. This random vector is said to be
isotropic if EX⊗X = Id. In all this report, X will denote an isotropic log-concave
random vector in Rn and its density with respect to the Lebesgue measure in Rn

will be denoted by f . Every letters C, c will denote universal constants which
occurrence may change from line to line.

In [12], Kannan, Lovasz and Simonovits asked about a variant of the isoperi-
metric inequality for an isotropic convex body, that is about the worse constant
in Cheeger inequality where the measure is uniformly distributed on an isotropic
convex body. More generally, in a log-concave setting, what is h such that for any
S ⊂ Rn,

(1) P
+(S) ≥ h1/2P(X ∈ S)(1 − P(X ∈ S))

where the unit Euclidean ball is denoted by Bn2 and

P
+(S) = lim inf

ε→0

P(X ∈ S + εBn2 ) − P(X ∈ S)

ε
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They conjectured that up to a universal constant, the extremal sets in this in-
equality are the half-spaces, hence h is a universal constant.

In the middle of the nineties, Ball asked the following : does |X |2 concentrate
around its expectation significantly smaller than the trivial bound suggested by
Var|X |2 ≤ E|X |22 ? More precisely, in [1], they asked if there exists a sequence
εn going to zero when n goes to infinity such that for any log-concave isotropic
random vector X ,

(2) P(||X |2 −
√
n| ≥ εn

√
n) ≤ εn?

This question was motivated by the fact that a positive answer to this question
implies a central limit theorem for log-concave measures, a question independently
asked in [4] and [1].

A stronger version of this conjecture was put forth by Bobkov and Koldobsky
in [3] : can we prove that

(3)
√

Var|X |2 ≤ C or σ2
f =

Var|X |22
E|X |22

=
Var|X |22

n
≤ C ?

Another important problem from the high dimensional geometry of convex bod-
ies is the hyperplane conjecture [18]: does there exist a universal constant c such
that for any convex body K ⊂ Rn of volume 1, you may find a direction θ ∈ Sn−1

such that Voln−1(K∩θ⊥) ≥ c ? Equivalently, for any log-concave isotropic density
f in Rn,

(4) f(0)1/n ≤ C ?

It is well known [16] that (1) implies that for any smooth function F ,

VarF (X) ≤ C

h
E|∇F (X)|22

In the talk, I have presented some of the recent results around these questions.
I will try to describe some of them, not in chronological order. Milman in [17]
proved that (1) with h being a universal constant is equivalent to proving that
for any 1-Lipschitz function F , VarF (X) ≤ C. It is then easy to observe that
(3) is just a particular case of (1) with F (X) = |X |2 or F (X) = |X |22. In their
original paper, Kannan, Lovasz and Simonovits [12] proved that (1) holds true
with 1/h ≤ CE|X |2 ≤ C

√
n while Bobkov [2] improved it by showing that 1/h ≤

C
(

Var|X |22
)1/4

. Moreover, it is well known [16] that (1) implies that for every
t > 0,

P
(∣

∣|X |2 −
√
n
∣

∣ ≥ t
√
n
)

≤ C exp(−C t√n).

Ball announced in his series of lectures during the semester Phenomena in High
Dimensions organized at the Institut Henri Poincaré in 2006 that a positive answer
to (1) with h being a universal constant implies the hyperplane conjecture (4). In
[5], Eldan and Klartag proved a stronger version:

sup f(0)1/n ≤ C supσf

where the suprema are taken over f being isotropic log-concave probability densi-
ties in Rn. This means that a positive answer to (3) implies a positive answer to
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(4). Fleury in [6] observed that a positive answer to (1) with h being a universal
constant implies that

∀ 2 ≤ p ≤ c
√
n, (E|X |p2)

1/p
(

1 +
c p

n

)

(

E|X |22
)1/2

and proved for example that this inequality holds true when X is uniformly dis-
tributed on any isotropic generalized Orlicz ball.

A main breakthrough in this type of question was made by Paouris [19] where
he proved a large deviation result. For every t ≥ C, we have

(5) P(|X |2 ≥ t
√
n) ≤ exp(−C t√n).

While positive answers to (1) with h being a universal constant are given by
Sodin [20] when X is uniformly distributed on Bnp for 1 ≤ p ≤ 2, by Lata la and
Wojtaszczyk [15] for p ≥ 2, by Huet [11] when X is uniformly distributed on a
body of revolution. Fleury [8] studied the case when X is uniformly distributed
on a random Gaussian polytope and proved such type of results in average.

In a breakthrough paper, Klartag [13] proved the conjecture of Anttila, Ball
and Perissinaki (2) with εn being decreasing like negative power of logn. Indepen-
dently, following Paouris’ approach, Fleury, Guédon and Paouris [9] proved also
the result with the same type of dependence for εn. Slightly after, Klartag [14]
proved the result with polynomial dependence in the dimension for εn. Precisely,
he proves that for every t ∈ (0, 1),

P
(∣

∣|X |2 −
√
n
∣

∣ ≥ t
√
n
)

≤ C exp(−C t3.33n0.33)

which implies that
√

Var|X |2 ≤ Cn0.41 Recently in [7], Fleury improved Klartag’s

thin-shell estimate to
√

Var|X | ≤ Cn
1
2− 1

8 by obtaining the following deviation
estimates:

P(|X | ≥ (1 + t)
√
n) ≤ C exp(−cn 1

4 t2) ∀t ∈ [0, 1] ;

P(|X | ≤ (1 − t)
√
n) ≤ C exp(−cn 1

8 t) ∀t ∈ [0, 1] .

Note, however, that when t = 1/2, Fleury’s positive and negative large-deviation
estimates are both inferior to those of Klartag, and so in the mesoscopic scale
t = n−δ (δ > 0 small), Klartag’s estimates still outperform Fleury’s (and Paouris’
ones are inapplicable). In addition, note that both Klartag and Fleury’s estimates
do not seem to improve under a ψα condition, contrary to the ones of Paouris [19].
Recall that X (and its density) is said to be “ψα with constant bα” if:

(E|〈X, y〉|p)1/p ≤ bαp
1/α
(

E|〈X, y〉|2
)1/2 ∀p ≥ 2 ∀y ∈ R

n .

All of this suggests that one might hope for a concentration estimate which
recovers Paouris’ sharp positive large-deviation estimate (5), improves if X is ψα,
improves the best-known thin-shell estimate of Fleury, improves the best-known
mesoscopic-deviation estimate of Klartag, interpolates continuously between all
scales of t (bulk, mesoscopic, large-deviation). The aim of our work is to provide
precisely such an estimate.
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Theorem 1. Let X denote an isotropic random vector in R
n with log-concave

density, which is in addition ψα (α ∈ [1, 2]) with constant bα. Then:

P(
∣

∣|X |2 −
√
n
∣

∣ ≥ t
√
n) ≤ C exp

(

−cn
α/2

bαα
min(t2+α, t)

)

∀t ≥ 0 .

In particular, we obtain the following thin-shell estimate:
√

Var(|X |2) ≤ Cn
1
2n− α

2(2+α) b
α

(2+α)
α .

I refer to [10] for more details and general formulation of the result, allowing
an application of a linear transformation to X .
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Random matrices: The Universality phenomenon and the Four
Moment theorem

Van Vu

Random matrix theory is a central topic in probability and mathematical physics,
with many connections to various areas such that statistics, number theory, com-
binatorics, numerical analysis and theoretical computer science.

The main goal of random matrix theory is to derive limiting laws for the eigen-
values and eigenvectors. For the sake of presentation, in most of this survey we
restrict ourself to Wigner matrices, although the results hold for more general
models such as symmetric real matrices and sample covariance matrices [6, 7, 8].

Definition 1 (Wigner matrices). Let n be a large number. A Wigner Hermitian
matrix (of size n) is defined as a random Hermitian n× n matrix Mn with upper
triangular complex entries ζij := ξij +

√
−1τij (1 ≤ i < j ≤ n) and diagonal real

entries ξii (1 ≤ i ≤ n) where

• For 1 ≤ i < j ≤ n, ξij , τij are iid copies of a real random variable ξ with
mean zero and variance 1/2.

• For 1 ≤ i ≤ n, ξii are iid copies of a real random variable ξ̃ with mean
zero and variance 1.

• ξ, ξ̃ have exponential decay, i.e., there are constants C,C′ such that P(|ξ| ≥
tC) ≤ exp(−t),P(|ξ̃| ≥ tC) ≤ exp(−t), for all t ≥ C′.

We refer to ξ, ξ̃ as the atom distributions ofMn, and ξij , τij as the atom variables.
We refer to the matrix Wn := 1√

n
Mn as the coarse-scale normalized Wigner Her-

mitian matrix, and An :=
√
nMn as the fine-scale normalized Wigner Hermitian

matrix.

Example 2. An important special case of a Wigner Hermitian matrix is the gauss-
ian unitary ensemble (GUE), in which ξ, ξ̃ are gaussian random variables with
mean zero and variance 1/2, 1 respectively.

Given an n× n Hermitian matrix A, we denote its n eigenvalues as

λ1(A) ≤ . . . ≤ λn(A),

and write λ(A) := (λ1(A), . . . , λn(A)).
A cornerstone of this theory is the Wigner semicircular law. Denote by ρsc the

semi-circle density function with support on [−2, 2],

(1) ρsc(x) :=

{

1
2π

√
4 − x2, |x| ≤ 2

0, |x| > 2.
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Theorem 3 (Semi-circular law). Let Mn be a Wigner Hermitian matrix. Then
for any real number x,

lim
n→∞

1

n
|{1 ≤ i ≤ n : λi(Wn) ≤ x}| =

∫ x

−2

ρsc(y) dy

in the sense of probability (and also in the almost sure sense, if the Mn are all
minors of the same infinite Wigner Hermitian matrix), where we use |I| to denote
the cardinality of a finite set I.

Example 4. Wigner[10] proved this theorem for special ensembles. The general
version above is due to Pastur (see [1] for a detailed discussion). The semi-circular
law in fact holds under substantially more general hypotheses than those given in
Definition 1, but we will not discuss this matter further here.

Theorem 3 addressed the global behavior of the eigenvalues. One of the main
open problems in the field is to understand the local behavior. For instance, what
can we say about the limiting law of an individual eigenvalue λi or that of the gap
λi+1 − λi, for some 1 ≤ i ≤ n.

It has been generally believed (and in many cases explicitly conjectured; see
[4, page 9] for an example)) that the local statistics (such as the above limiting
distributions) are universal, in the sense that the limiting laws do not depend
on the distribution of the atom variables (at the entries of the matrix). This
phenomenon was motivated by similar phenomena in physics, such as the same
laws of thermodynamics, which should emerge no matter what the details of atomic
interaction and have been discussed in numerous books and surveys (see [4, 2, 3]).

It is clear that if one is able to prove the universality of a limiting law, then
the problem of determining this law reduces to computing it for a specific model.
This is usually doable in the GUE model, thanks to the availability of an explicit
formula for the joint distribution of the eigenvalues (Ginibre’s formula) and the
fact that GUE is unitary invariance.

Recently, Tao and Vu [6, 7, 8] proved the following theorem, which roughly
states that the joint distribution of any set of k eigenvalues (for any fixed k)
depends only on the first four moment of the atom variable.

Theorem 5 (Four Moment Theorem). For any small positive constant c, there
is a small positive constant c0 such that for integer k ≥ 1 the following holds.
Let Mn = (ζij)1≤i,j≤n and M ′

n = (ζ′ij)1≤i,j≤n be two random matrices where
the atom distributions have exponential decay. Assume furthermore that for any
1 ≤ i < j ≤ n, ζij and ζ′ij match to order 4 (their first four mixed moments are

equal) and for any 1 ≤ i ≤ n, ζii and ζ
′
ii match to order 2. Set An :=

√
nMn and

A′
n :=

√
nM ′

n, and let G : Rk → R be a smooth function obeying the derivative
bounds

(2) |∇jG(x)| ≤ nc0

for all 0 ≤ j ≤ 5 and x ∈ R
k. Then for any 1 ≤ i1 < i2 · · · < ik ≤ n, and for n

sufficiently large we have

(3) |E(G(λi1 (An), . . . , λik(An))) − E(G(λi1 (A′
n), . . . , λik (A′

n)))| ≤ n−c0 .
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The statement shows that one cannot tell the two distributions apart by looking
at any ”nice” test function. For a detailed discussion of this result (including many
refinements, extensions and applications) we refer to [6, 5, 9].

Acknowledgements. V. Vu is supported by research grants DMS-0901216 and
AFOSAR-FA-9550-09-1-0167.
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Convergence of the norm of a polynomial in independent Wigner
matrices

Greg W. Anderson

As part of a larger operator-theoretic investigation initiated in [11], it was
shown in [10] that there are for N sufficiently large no eigenvalues outside an
ǫ-neighborhood of the support of the limiting spectral distribution of a self-adjoint
noncommutative polynomial in independent GUE(N) matrices. From this it fol-
lows trivially that the norm of a noncommutative polynomial in independent
GUE(N) matrices (self-adjoint or not) converges almost surely. In the preprint
[1] we have proved the analogous statements for Wigner matrices, forswearing the
Poincaré inequality for Gaussian random variables used in [10] to do so. Now
the archetype for all results of the form “no eigenvalues outside the support...”
is the result of [3], which was proved under stringent fourth moment hypotheses.
The paper [3] gave us hope for and guidance toward substitutes for the Poincaré
inequality. The method we ultimately developed for analyzing polynomials in
Wigner matrices combines ideas of [10] and [3] with some new tricks to handle
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correction terms. Needless to say, the classical results of [6] and [4] about single
Wigner matrices also play key roles.

Many generalizations of the random matrix results of [10] and [11] have already
appeared. In [15] results in the GOE and GSE cases were obtained. These re-
sults bring to light correction terms of a sort one must handle as soon as one
goes beyond the GUE case. In [5], a generalization to non-Gaussian distributions
satisfying Poincaré inequalities was obtained. This result clarifies the central role
of the Poincaré inequality in the arguments of [10]. In [12], a generalization in-
volving polynomials in Gaussian Wigner matrices and deterministic matrices with
convergent joint law was obtained. This result in particular provides rectangular
generalizations of the random matrix results of [10].

All the works listed above exploit two extraordinarily powerful ideas from [10],
namely, (i) a counterintuitively “backwards” way of estimating the error of approx-
imate solutions of the Schwinger-Dyson equation and (ii) the linearization trick.
We refine and simplify both ideas in our work. Both ideas are of permanent value
and deserve wide popularization.

The paper [10] and all works following upon it presuppose and heavily ex-
ploit the well-known fact that the limiting spectral distribution of a self-adjoint
polynomial in independent Wigner matrices equals the law of the corresponding
polynomial in free semicircular variables. Many special cases, refinements, general-
izations and proofs of this result exist in the literature. The original insight is due
to Voiculescu; see, for example, [16]. We mention also [2, Chap. 5, Sec. 4] and the
recent preprint [13] in order to give two more recent references. (And yet another
proof emerges as a byproduct of our work.) More is true, namely, the support of
the limiting spectral distribution of a polynomial in independent Wigner matrices
equals the spectrum of a certain self-adjoint operator on Boltzmann-Fock space.
The latter fact one can either dig out of [16, Thm. 2.6.2] or derive from scratch by
elementary arguments at the level, say, of [14]. We have outlined the elementary
arguments in [1] for the reader’s convenience. We are grateful to K. Dykema for
communicating them to us. The spectral representation of the support is an im-
portant tool for us since in effect it converts the analytic problem of controlling a
support into an algebraic problem of controlling a spectrum.

In [4], convergence of the largest eigenvalue of a Wigner matrix was established
under stringent fourth moment hypotheses. In [1], by exploiting a truncation
strategy more or less the same as in [3], we specialize our general results to obtain
a “polynomialization” of the results of [4]. Thus, although it may seem at first
glance that the model studied in [1] has excessively generous moment assumptions,
in fact the theory does touch the fourth moment boundary.

In many papers equations more or less the same as the Schwinger-Dyson equa-
tion albeit under different names have been studied and exploited for probabilistic
purposes. The papers [7], [8] and [9] have been especially significant influences.
But note that we do not solve the Schwinger-Dyson equation by an iterative pro-
cedure as do the cited authors. Rather, more in keeping with the approach of [10],
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we harvest the solutions we need fully formed from Boltzmann-Fock space, thus
painlessly gaining control of domains of definition.

There has recently been much progress on universality for (single) Wigner ma-
trices, as the talks of Vu and of Yin at the conference made plain. It is overwhelm-
ingly likely that universality holds in the polynomial case. We believe polynomial
universality is an excellent direction for future research because many if not quite
all the necessary tools seem already to exist. We hope our results can serve as a
point of departure for investigation of edge-universality in the polynomial case.
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Spectrum of non-hermitian heavy tailed random matrices

Charles Bordenave

(joint work with Pietro Caputo and Djalil Chafäı)

The eigenvalues of an n × n complex matrix M are the roots in C of its charac-
teristic polynomial. We label them λ1(M), . . . , λn(M) so that |λ1(M)| ≥ · · · ≥
|λn(M)| ≥ 0. We also denote by s1(M) ≥ · · · ≥ sn(M) the singular values of

M , defined for every 1 ≤ k ≤ n by sk(M) := λk(
√
MM∗) where M∗ = M

⊤
is

the conjugate transpose of M . We define the empirical spectral measure and the
empirical singular values measure as

µM =
1

n

n
∑

k=1

δλk(M) and νM =
1

n

n
∑

k=1

δsk(M).

Let (Xij)i,j≥1 be i.i.d. complex random variables with cumulative distribution
function F . Consider the matrix X = (Xij)1≤i,j≤n. If F has finite positive
variance σ2, then Marchenko and Pastur [2] have proved that a.s. (almost surely)

(1) ν 1√
n
X  
n→∞

Qσ

where denotes the weak convergence of probability measures and the probability
measure Qσ is the quarter-circular law with Lebesgue density

(2) x 7→ 1

πσ2

√

4σ2 − x21[0,2σ](x).

A proof of (1) is based on a classical approach for Hermitian random matrices with
bounded second moment: truncation, centralization, recursion on the resolvent,
and cubic equation for the limiting Cauchy-Stieltjes transform.

Girko’s famous circular law theorem states under the same assumptions that
a.s.

(3) µ 1√
n
X  
n→∞

Uσ
where Uσ is the uniform law on the disc {z ∈ C; |z| ≤ σ}. This statement was
established through a long sequence of partial results, the general case (3) being
finally obtained by Tao and Vu [3] by using Girko’s Hermitization with logarithmic
potentials and uniform integrability, the convergence (1), and polynomial bounds
on the extremal singular values.

We have investigated what happens when F does not have a finite second mo-
ment and considered the hypothesis:

P(|X11| ≥ t) ∼t→∞ c t−α for some c > 0.

For every n ≥ 1, let us define the i.i.d. n× n complex matrix A = An by

(4) Aij := a−1
n Xij

for every 1 ≤ i, j ≤ n and an ∼n→∞ c1/αn1/α. Belinschi, Dembo and Guionnet
have proved that a.s.

νA  
n→∞

να.
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where να is a symmetric probability measure on R and has a continuous density.
Its density at x = 0 is known and its tail να((t,∞)) is asymptotically equivalent
to t−α.

We have proved a heavy tailed version of Girko’s circular law theorem (3). More
precisely, there exists a probability measure µα on C depending only on α such
that a.s.

µA  
n→∞

µα.

This probability distribution µα is isotropic and has a continuous density. Its
density at z = 0 equals

Γ(1 + 2/α)2Γ(1 + α/2)2/α

πΓ(1 − α/2)2/α
.

Furthermore, up to a multiplicative constant, the density of µα is equivalent to

|z|2(α−1)e−
α
2 |z|α as |z| → ∞.

The above formula reveals a striking contrast between µα and να. The limiting
law of the eigenvalues µα has a stretched exponential tail while the limiting law
να of the singular values is heavy tailed with power exponent α, see [1]. This does
not contradict the identity

∏n
k=1 |λk(A)| =

∏n
k=1 sk(A), but it does indicate that

A is typically far from being a normal matrix.
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A Two Prover One Round Game with Strong Soundness

Subhash Khot

(joint work with Muli Safra)

Brief Description

It is well-known that for many NP-hard problems, even computing approximate
solutions is computationally hard. A hard instance of 2-Prover-1-Round Game is
a starting point for many of the inapproximability results and constructions of
probabilistically checkable proofs (PCPs), e.g. [1, 5, 8, 9]. A 2P1R Game has a
parameter R that denotes the number of different answers each prover may give
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on a fixed question. The PCP Theorem [7, 4, 3] combined with Raz’s Parallel
Repetition Theorem [14] gives1:

Theorem 1. There exists an absolute constant γ > 0 such that for all large
constant R, it is NP-hard to distinguish whether the value of a 2P1R Game with
R answers is 1 (called completeness parameter) or at most 1

Rγ (called the soundness
parameter).

In this paper, we investigate the trade-off between the number of answers R and
the soundness parameter. Given the central nature of 2P1R Games, we believe
this is a natural pursuit. It is easy to see that if the completeness is (close to) 1,
then the soundness must be at least Ω( 1

R ), since the provers may give a random

answer and succeed with probability Ω( 1
R ). The exponent γ in the above theorem

is unspecified in Raz’s paper (and the subsequent works of Holenstein [10] and Rao
[13]) and even if one were to compute it, it would presumably be very tiny.2 The
main result in this paper is that the above theorem holds essentially with γ = 1

6 ,
albeit with imperfect completeness.

Theorem 2. (Main Theorem) For any fixed prime q ≥ 5 and constant ζ > 0,
it is NP-hard to distinguish whether a 2P1R Game with R = q6 answers has value
at least 1 − ζ or at most 4

q .

The exponent γ does play a role in some inapproximability results. For in-
stance, Arora et al [2] show that the Quadratic Programming Problem is inap-
proximable within factor (log n)γ . This is the problem of maximizing a quadratic
form

∑n
i,j=1 aijxixj over all vectors ‖x‖∞ ≤ 1 and known to be approximable

within factor O(log n) [11, 12, 6] (the diagonal entries of the quadratic form are
assumed to be zero; the problem becomes rather meaningless otherwise). Using
Theorem 2 with super-constant setting of parameter q, we obtain the following
result. In fact this application was our original motivation.

Theorem 3. Unless NP ⊆ DTIME(2poly(logn)), no polynomial time algorithm can
approximate the Quadratic Programming Problem within factor (logn)1/6−o(1).

One technical contribution of the paper, perhaps more interesting for future re-
search, is an essentially black-box method to translate a codeword test for Hadamard
code (i.e. a linearity test) to a consistency test, leading to a full PCP construction.

Acknowledgement. Research supported by NSF CAREER grant CCF-0833228,
NSF Expeditions grant CCF-0832795, NSF Waterman Award and BSF grant
2008059.

1The result holds for games with the projection property. In this paper, all games considered
are projection games. For a projection game, the number of answers for the two provers may be
different; R denotes the larger of the two numbers.

2If the value of a game is 1−α, then the value of the k-wise repeated game is at most (1−αp)ck

for some absolute constants c and p. We have improvements p = 32, 3 and for projection games
p = 2 from [14, 10, 13] respectively. However, c still remains unspecified and hence the exponent
γ remains unspecified in Theorem 1.
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Spectral Sparsification

Nikhil Srivastava

(joint work with Joshua Batson and Daniel Spielman)

Suppose G is a graph. Is there a graph H which approximates G and has very
few edges? The answer of course depends on what we mean by approximates and
very few; we show that if we consider the space of weighted undirected graphs the
answer is always yes in a certain very strong sense.

We consider the spectral notion of approximation introduced by Spielman and
Teng [6]. To define it, we recall that the Laplacian matrix of a weighted graph
G = (V,E,w) (where wij ≥ 0 are edge weights) is given by

(1) LG =
∑

ij∈E
wij(δi − δj)(δi − δj)

T =
∑

ij∈E
wijbijb

T
ij ,

where δi is the canonical basis vector with a 1 in position i and zeros elsewhere,
and bij = (δi − δj) to ease notation. We now say that H is a spectral sparsifier for
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G if:

(2) xTLGx ≤ xTLHx ≤ κ · xTLHx, ∀x ∈ Rn,

where κ is some (constant) approximation factor. The above guarantee may be
written as

LG � LH � κ · LG,
where A � B means that B−A is positive semidefinite. It is a natural and useful
notion for the following reasons:

(1) The best κ for which (2) holds is actually the relative condition number
of LG and LH , a well-established measure of distance in numerical linear
algebra. It implies that one can solve systems of linear equations in LG by
solving systems of linear equations in LH (this known as preconditioning).
Spielman and Teng considered (2) precisly for this purpose; in particular,
using it they devised a very fast algorithm which solves systems LGx = b
in time nearly linear in its number of edges.

(2) Substituting x ∈ {0, 1}V , we find that (2) implies as a special case that for
each cut S ⊂ V , the total weight of edges leaving S is approximately equal
in G and in H . This weaker notion of cut approximation was introduced
earlier by Benczur and Karger [1], who showed that for all G one can
efficiently find H with O(n log n) edges satisfying (2) for x ∈ {0, 1}V .

(3) The Courant-Fischer theorem tells us that the quadratic form xTLGx de-
termines all of the eigenvalues of LG, which in turn reflect many combina-
torial properties of G and random walks on G by results in spectral graph
theory.

Our main result [2] is that every G has a spectral sparsifier H with N = O(n)
edges.

Theorem 1. Suppose G = (V,E,w) is an undirected weighted graph on n vertices.
Then for every N > n, there is a graph H with N edges which satisfies:

LG � LH � (1 +
√

n/N)2

(1 −
√

n/N)2
· LG.

Theorem 1 improves [1] and [5], which obtained N = O(n log n) for cut and
spectral approximation respectively. The Marchenko-Pastur type dependence of
the approximation quality on N is only a factor of two worse than that achieved by
the celebrated Ramanujan graphs [3], which are the best possible approximations
of the complete graph G = Kn.

The theorem is actually a special case of a more general result regarding sparse
approximations of sums of outer products.

Theorem 2. Suppose v1, . . . vm ∈ Rn are vectors and N ≥ 1. Then there are
nonnegative weights wi ≥ 0, at most N of which are nonzero, for which

(

1 −
√

n/N
)2∑

i

viv
T
i �

∑

i

wiviv
T
i �

(

1 +
√

n/N
)2∑

i

viv
T
i .

Moreover, the numbers wi can be computed in deterministic O(mn2N) time.
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The above theorem gives a constant factor approximation when N = O(n);
we note that a N = O(n logn) can be obtained by the well-known result of M.
Rudelson [4].

The proof of Theorem 2 is iterative and involves choosing the weights wi one by
one. In particular, we construct a series of matrices A0, A1, . . . AN where A0 = 0
and Ak = Ak−1 + tkzkz

T
k where zk is some vector from our collection {vi} and

tk ≥ 0 is some increment of its weight. The spectra of the Ak are controlled
by evaluating the Stieltjes transform at pre-determined, steadily increasing real
numbers u1, . . . uN and ℓ1, . . . ℓN and choosing the tk, zk so that the following
properties are maintained:

(1) ℓkI ≺ Ak ≺ ukI.
(2) tr(ukI −Ak)−1 = tr(ukI −Ak−1 − tkzkz

T
k )−1

≤ tr(uk−1I −Ak−1)−1.
(3) tr(Ak − ℓkI)−1 = tr(Ak−1 + tkzkz

T
k − ℓkI)−1 ≤ tr(Ak−1 − ℓk−1I)−1.

This is mathematically tractable because the updated Stieltjes transforms as in
(2) and (3) can be explicitly computed using the Sherman-Morisson formula for
rank-one updates of the inverse of a matrix. We show that a suitable tk, zk must
always exist by an averaging argument which relies in (2) and (3) as an induction
hypothesis. Setting parameters appropriately we can obtain ℓN and uN so that
(1) implies the bound in Theorem 2.
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Limit theorems for spectrum of products of large random matrices

Alexander Tikhomirov

(joint work with Friedrich Götze, Nikita Alexeev)

Let for some fixed m ≥ 1 given n = p0 ≤ p1 ≤ · · · ≤ pm. Let X(ν) =
1√
pν−1

(X
(ν)
jk )1≤j≤pν−1, 1≤k≤pν be random matrices with mutually independent ran-

dom entries X
(ν)
jk and EXjk = 0 and E |Xjk|2 = 1. Consider matrix W =

∏m
ν=1 X

(ν). Let Σ = WW∗. Denote by Fn(x) empirical spectral distribution
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of matrix Σ and Fn(x) = EFn(x) Assuming that limn→∞
pν
n = yν is shown that

Fn(x) converge to the limit distribution G(x) with Stieltjes transform S(z) satis-
fying the equation

1 + zS(z) − S(z)

m
∏

ν=1

(1 − yν − yνzS(z)) = 0.

In the case yν = 1, for ν = 1, . . . ,m, the moments of distribution G(x) are
Fuss–Catalan numbers with parameter m, Mm(p) =

(

mp+p
p

)

.

Let y1 = · · · = ym = 1. Denote by µn empirical spectral measure of matrix W.
It is shown that µn converge to the distribution on the unit disc on the complex
plane with density p(x, y) = 1

πm(x2+y2)
m−1
m

under assumptions that the entries

X
(ν)
jk are i.i.d and have the finite second moment. Furthermore, we shall discuss

the limit distributions of spectrum of products of rectangular random matrices.
under minimal moment assumption is shown that the Stieltjes transform S(z, α)

of spectral distribution of symmetrized shifted matrix

[

0 W − zI
W∗ − zI O

]

satisfies the system of equations

(1)

{

1 + wS(z, α) + S2(z, α)
∏m−1
ν=1 (1 − yν − yνwS(z, α)) = 0

(w − α)2S(z, α) + (w − α) − |z|2S(z, α) = 0

In particular, equations (1) imply that for m = 2 the expectation of empirical
distribution of eigenvalues of matrix W has a limit with density

p(u, v) =
1

π
√

(1 − y1)2 + 4y1(u2 + v2)
I{u2 + v2}
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Limiting Empirical Singular Value Distribution of DFT Submatrices

Brendan Farrell

This work addresses the singular values of a random submatrix of the discrete
Fourier transform (DFT) matrix. The DFT matrix is unitary and in dimension n
has entries

Fjk =
1√
n
e−2πi(j−1)(k−1)/n.
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For Tn,Ωn ⊂ {1, ..., n} we define FΩnTn to be the matrix obtained from the n× n
DFT matrix by keeping only rows with index in Ωn and columns with index in
Tn. We include each index in Ωn independently with probability (1− q) and, also
independently, in Tn with probability (1 − p).

Three questions are: in dependence on p and q, how does the distribution of all
the singular values behave, how does the largest singular value behave and how
does the smallest singular value behave? We recently provided an answer to the
first question, the limiting distribution [4]. Two natural conjectures follow from
this distribution for the other two questions. We state this result and then give a
short discussion.

Theorem For i = 1, ..., n let i be contained in Ωn independently with probability
(1−q) and, also independently, let i be included in Tn with probability (1−p). Then
the empirical distributions of the min(|Tn|, |Ωn|) largest eigenvalues of FΩnTnF

∗
ΩnTn

converges almost surely to

(1) fp,q(x) =

√

(1−
r−
x
)(

r+
x

− 1)

2π(1− x)(1−max(p, q))
· I(r−,r+)(x) +

max(0, 1− (p+ q))

1−max(p, q)
· δ(x− 1)

where
r− = (

√

p(1 − q) −
√

q(1 − p))2

and
r+ = (

√

p(1 − q) +
√

q(1 − p))2.

Our proof relies on the Stieltjes transform; this general approach was devel-
oped by Marčenko and Pastur to determine the limiting distribution for Wishart
matrices [5]. Using resolvent identities, many matrix expansions and basic large
deviations results, we obtain an implicit equation in terms of the Stieltjes trans-
form of the limiting distribution. The equation is, quite fortunately, easily solvable,
thus allowing us to recover the Stieltjes transform and apply the inversion formula.
Plots of the distribution for several parameter pairs are given in the figure.

The two conjectures corresponding to the two questions posed above are:

Conjecture 1: If p+ q > 1, then for ǫ > 0

(2) ‖FΩnTn‖ <
√

p(1 − q) +
√

q(1 − p) + ǫ

with high probability.

Conjecture 2: If p 6= q, then for ǫ > 0,

(3) ‖(FΩnTn)−1‖ <
(

|
√

p(1 − q) −
√

q(1 − p)| − ǫ
)−1

.

with high probability.

There have been many works investigating conditions on the cardinalities of Ωn
and Tn such that the largest and smallest singular values of FΩnTn are bounded
away from 1 and 0. Most of these take a probabilistic approach [1, 2, 6, 8],
though [3, 7], for example, present deterministic results. The threshold given by
the condition p+ q > 1 can be seen in the following theorem of Tao.
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Figure 1. Empirical eigenvalue distribution for one realization
plotted against continuous part of asymptotic distribution. In
each case, the original DFT matrix had dimensions 500 × 500.

Theorem (Tao, [7]) If n is prime and |Ωn| + |Tn| < n, then ‖FΩnTn‖ < 1.

Due to the almost sure convergence in our theorem and the existence of infinitely
many primes, for any ǫ > 0, there exists a prime n and subsets Ωn and Tn satisfying
|Ωn|
n + |Tn|

n < 1 and ‖FΩnTn‖ ≥ 1 − ǫ. Conjecture 1 is needed to bound ‖FΩnTn‖
away from 1 for most sets when |Ωn|

n + |Tn|
n is held away from 1. This conjecture

would imply that the behavior seen in Tao’s result holds for almost all subsets of
appropriate cardinality for any integer n and also give a sharp bound on ‖FΩnTn‖
for most such sets. We view such a result as a general uncertainty principle, and
it is the focus of our current work.
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Log gases and Tracy-Widom laws

Brian Rider

(joint work with Manjunath Krishanpur, José A. Ramı́rez, Bálint Virág)

Consider n real particles λ1, λ2, . . . , λn distributed according to the law with den-
sity proportional to

(1)
∑

j<k

|λj − λk|β e−
β
4

∑n
k=1 λ

2
k .

When β = 1 or β = 2, these particles may be realized as the eigenvalues of the
classical Gaussian Orthogonal or Unitary Ensembles (G{O/U}E), random real
symmetric or complex hermitian matrices comprised of independent Gaussians of
mean zero and mean-square one. In both cases these are integrable ensembles:
all correlation functions may be expressed in determinantal or pfaffian form, built
from the standard Hermite polynomials. These explicit formulas pave the way
for various detailed local limit theorems, such as the Tracy-Widom laws for the
fluctuations of the largest eigenvalues described in terms of a special solution to
Painlevé II ODE.

When β > 0 is not one or two (or four, which corresponds to the so-called Gauss-
ian Symplectic Ensemble and is a pfaffian process) the laws (1) are no longer inte-
grable in the same way, but remain interesting as they possess the interpretation
of (one-dimensional caricatures) couloumb (or “log”) gases. Here

√
β is viewed

as the common charge, and a special choice is made in terms of the quadratic
potential.

In [1] the authors establish a limit theorem for the largest point under any of
these “β-Hermite” ensembles. It is proved that n1/6(λmax − √

n) converges to a
random variable TWβ defined by (the equality in law):

TWβ = sup
f∈L

{

2√
β

∫ ∞

0

f2(x)db(x) −
∫ ∞

0

[

(f ′(x))2 + xf2(x)
]

dx

}

,

in which x 7→ b(x) is a standard Brownian motion and L is the space of functions f
which vanish at the origin and satisfy

∫∞
0 f2(x)dx = 1,

∫∞
0 [(f ′(x))2 +xf2(x)]dx <

∞. Said another way, −TWβ is the ground state eigenvalue for the Stochastic Airy

Operator, Hβ = − d2

dx2 + x+ 2√
β
b′(x).
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The proof of the above rests on a tridiagonal representation discovered for
general beta by Dumitriu and Edelman. Let g1, g2, . . . gn be independent Gaussians
with mean 0 and variance 2. Let also χβ , χ2β, . . . , χ(n−1)β be independent χ
random variables of the indicated parameter. Then the eigenvalues of the random
matrix

Hn,β =
1√
β















g1 χβ(n−1)

χβ(n−1) g2 χβ(n−2)

. . .
. . .

. . .

χβ2 gn−1 χβ
χβ gn















have joint law (1). What is proved is that n1/6(
√
nIn − Hn,β) almost surely Γ-

converges to Hβ . A result of this type had been conjectured by Edelman and
Sutton (appropriate references are contained in the bibliography of [1]).

An allied result is available at the random matrix hard edge. Take a law of type

(1), restricted to positive particles (λk ∈ R+) and with the Hermite weight e−βλ
2/4

replaced by the Laguerre weight λβ(a+1)/2−1e−βλ/2, a > −1. When β = 1, 2 these
are the eigenvalue laws for certain Gaussian sample covariance (Wishart) matrices.
For all β, the results of [1] imply that the scaling limit of the largest eigenvalue is
again TWβ . The smallest eigenvalue behaves differently. In [2] it is proved that
n2λmin → Λ(β, a) in which

Λ(β, a) = inf
f :f(0)=0,f 6=0

∫∞
0

(f ′(x))2e
−ax− 2√

β
b(x)

dx
∫∞
0 (f(x))2e

−(a+1)x− 2√
β
b(x)

dx
.

The corresponding differential operator is (formally)

Gβ,a = ex
[

d2

dx2
− (a+

2√
β
b′(x))

d

dx

]

,

a generator for a version of the Brox diffusion. What is important to know is that
the hard edge and ”soft” edge are knit together a2/3 − a−4/3Λ(β, 2a) converges in
law to TWβ as a→ ∞ [2].

A new result (with M. Krisnapur and B. Virág) advertised here is the extension

of the above to more general potentials. In particular, replace e−βλ
2/4 in (1) with

e−βV (λ) for a strictly convex, polynomial V . Then the theorem is that there are
constants c0, c1 so that n1/6c1(λmax −

√
nc0) ⇒ TWβ.

This follows from yet another tridiagonal representation. Denote by T =
T (A,B) the symmetric tridiagonal matrix with Ti,i = Ai for i ≤ n and Ti,i+1=
Ti+1,i = Bi for i ≤ n− 1. Then the nice fact is that, if (A,B) is sampled from the
density

e−nβtrV(T(A,B))
n−1
∏

k=1

B
β(n−k)−1
k
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on (R+)n × R
n, the eigenvalues of T = T (A,B) have density

e−nβ
∑n

k=1 V (λk)
∏

1≤i<k≤n
|λi − λk|β .

Note of course that trT 2 =
∑

(A2
k + 2B2

k), giving back the independent Gaussians
and χ’s of the Hn,β matrix corresponding to quadratic potentials. If V has degree
greater than two, the entries of T are no longer independent, still the proof can
be built along the lines of the main result of [1].
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Some connections between random matrix theory and statistics

Noureddine El Karoui

Spectral properties of matrices play a central role in many methods of multi-
variate analysis and various related problems in applied mathematics. Properties
of random matrices have therefore long been of interest to statisticians involved in
multivariate analysis.

In recent years, practical problems have started involving datasets of larger and
larger size. In particular, it is now common to be working with data for which the
number of measurements per observation, p, is of the same order of magnitude as
the number of observations, n. From an asymptotic stand point, this is radically
different from the classical paradigm where p was assumed to be much smaller
than n.

I have described some of the interactions between modern random matrix theory
and statistics in this high-dimensional context.

Sums and Products of Free Random Variables and Applications

Friedrich Götze

(joint work with S. Bobkov, G. Chistyakov)

Let µ denote a probability measure on IR and let µn⊞ denote it’s n-fold free addi-
tive convolution measure. Write Fn(x) := µn⊞((−∞,

√
nx])) for the distribution

function of the corresponding normalized sum Sn := n−1/2(X1 + . . .+Xn) of free
random variables with distribution µ. Define βq(µ) :=

∫

|x|qµ(du) and assume that

m1(µ) = 0, m2(µ) = 1. Let Lq,n :=
βq

n(q−2)/2 denote the q-th Liapunov fraction.

Let w denote Wigner’s half-circle law with density pw(x) = 1
2π

√

(4 − x2)+.
Then the following analog of the classical Berry-Essen bound in the CLT holds.
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Theorem 1. (Chistyakov, Götze (2010))
For a sequence limn ηq(n) = 0 we have

sup
x

|µn⊞

n (x)− w(x)| ≤ c
(

ηq(n)
βq

n(q−2)/2
+ n

−1
)

≪ Lq,n, if βq < ∞, 2 < q < 3,

≤ c
β3

n1/2
= cL3,n, if β3 < ∞.

Let Um(x) = Um(cos θ) := sin(m+1)θ
sin θ , m = 1, 2, . . . denote the Chebyshev

polynomials of 2nd kind. As an analog to classical Edgeworth expansions we show

Theorem 2. (Chistyakov-Götze (2008,2010))

Assume that βq(µ) < ∞, q ≥ 3. Then there exists c > 0 and a sequence ηq2(n)
as above such that

Fn(x) = µw((−∞, x]) − 1

3
anU2(x/2)pw(x) + ρn1(x), an :=

m3√
n

where

sup
x

|ρn1(x)| ≤ c
(

ηq2(n)Lq,n + L2
3,n + |an|3/2

)

, if βq <∞, 3 ≤ q < 4,

≤ c
(

L4,n + |an|3/2
)

= O(n−1), if βq <∞, q ≥ 4.

Writing bn := (m4 −m2
3 − 1), the approximation of 3rd order is given by

Fn(x+ an) = µw((−∞, x])

+
(

− a2n
2
U1

(x

2

)

+
an
3

(3 − U2

(x

2

)

) − bn − a2n − 1/n

4
U3

(x

2

)

)

pw(x)

+ ρn2(x),

where

|ρn2(x)| ≤ c

{

ηq3(n)Lqn + L
3/2
4n if βq <∞, 4 ≤ q < 5

L5n if βq <∞, q ≥ 5,

for all x ∈ R, n ≥ m4.

For m3(µ) = 0 this approximation simplifies to

Fn(x) = µw((−∞, x]) − m4(µ) − 2

4n
U3

(x

2

)

pw(x) + ρn2(x).

It is known that for n ≥ n0 and µ nontrivial, F ′
n(x) =: pn(x) exists and we

may apply our results to get corresponding expansions for the densities pn which
converge to pw. Using Voiculescu’s free entropy

χ(ν) =

∫ ∫

R×R

log |x− y| ν(dx)ν(dy) + χ0, χ0 =
3

4
+

1

2
log 2π,

which is maximized by Wigner’s w in the class of centered and normalized measures
ν we may study the distance of µn = D(Sn) to w via the (relative) entropic distance

D(ν) := χ(w) − χ(ν).

In particular we obtain the following quantitative results.
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Theorem 3. (Chistyakov-Götze (2011)) Assume supp(µ) ⊂ [−L,L] and m1(µ) = 0,
m2(µ) = 1. Then for all n ≥ n0 and some |θ| ≤ 1,

∫

R

|pn(x) − pw(x)| dx =
2|m3|
π
√
n

+ θ
c(µ)

n
, if m3 6= 0,

= c̃0
|m4 − 2|

n
+ θ

c(µ)

n3/2
, if m3 = 0,

Furthermore, D(µn) =
m2

3

6n
+ θ

c(µ)

n3/2
.

Let X denote a random variable with mean a, variance σ2 > 0 and density
p. Let ϕa,σ(x) denote the corresponding normal density. Using the fact that the
classical (continuous) entropy is minimal for the normal law in the class of all
random variables X as above, the entropic (or Kullback-Leibler) distance to the
class of normal distributions is defined by

D(X) =

∫ +∞

−∞
p(x) log

p(x)

ϕa,σ(x)
dx ∈ [0,+∞].

Improving upon previous results, like [1], [2] and [3], requiring much stronger
assumptions, we have

Theorem 4. (Bobkov-Chistyakov-Götze (2011))

Assume that X,Xj, j ∈ IN are i.i.d. β := EXs < ∞, s ≥ 2. If D(Sn0) < ∞,
n0 ≥ 1 then for s0 := [(s− 2)/2)] ∈ IN we have

D(Sn) = c1n
−1 + c2n

−2 + . . .+ cs0 n
s0 + o

(

(n logn)−(s−2)/2
)

,

where cj depend on the cumulants of X. For instance c1 = 1
12 γ

2
3 .

The implied sequence o(1) in the error term depends on the tail of the sth
moment as well as n0 and D(Sn0) only. The result extends to multidimensional

random vectors X,Xj ∈ IRd when s is an integer and to stable laws as well, see [4]
and [5]. An explicit upper bound of order O(n−1) of Berry-Esseen type has been
shown as well, see [6].

References

[1] Artstein, S., Ball, K.M., Barthe, F., and Naor, A. On the rate of convergence in the entropic
central limit theorem. Probab. Theory Related Fields, 129 (2004), no. 3, 381-390.

[2] Barron, A.R. Entropy and the central limit theorem. Ann. Probab. 14 (1986), no. 1, 336-342.
[3] Barron, A.R., and Johnson, O. Fisher information inequalities and the central limit theorem.

Probab. Theory Related Fields, 129 (2004), no. 3, 391-409.
[4] Bobkov, S.G., Chistyakov, G.P and Götze, F. Rate of convergence and Edgeworth-type

expansion in the entropic central limit theorem. arXiv:1104.3994v1 [math.PR], (2011).
[5] Bobkov, S.G., Chistyakov, G.P and Götze, F. Convergence to stable laws in relative entropy.

arXiv: 1104.4360v1 [math.PR], (2011).
[6] Bobkov, S.G., Chistyakov, G.P and Götze, F. Berry-Esseen bounds in the entropic central

limit theorem. arXiv: 1105.4119v1 [math.PR], (2011).



Random Matrices, Geometric Functional Analysis and Algorithms 1323

Geometry of log-concave vectors and log-concave Ensembles of
random matrices

Rafa l Lata la

(joint work with Rados law Adamczak, Alexander E. Litvak, Alain Pajor, Nicole
Tomczak-Jaegermann)

An N dimensional random vector is called log-concave if it has a log-concave
distribution, i.e. for any compact nonempty sets A,B ⊂ RN and λ ∈ (0, 1),

Pr(X ∈ λA+ (1 − λ)B) ≥ Pr(X ∈ A)λ Pr(X ∈ B)1−λ,

where λA+(1−λ)B = {λx+(1−λ)y : x ∈ A, y ∈ B}. By the result of Borell [4] a
vector X with full dimensional support is log-concave if and only if it has a density
of the form e−f , where f : RN → (−∞,∞] is a convex function. Log-concave
vectors are frequently studied in convex geometry, since by the Brunn-Minkowski
inequality uniform distributions on convex sets as well as their lower dimensional
marginals are log-concave.

AnN -dimensional random vectorX = (X(1), . . . , X(N)) is isotropic if EX(i) =
0 and Cov(X(i), X(j)) = δi,j for all i, j ≤ N . Equivalently, a random vector
in RN with mean zero is isotropic if E〈t,X〉2 = |t|2 for any t ∈ RN . For any
nondegenerate log-concave vector X there exists an affine transformation T such
that TX is isotropic.

In recent years there were derived numerous important properties of log-concave
vectors. One of such results is the Paouris concentration of mass [6] that states
that for any isotropic log-concave vector X in RN ,

(1) P(|X | ≥ Ct
√
N) ≤ exp(−t

√
N) for t ≥ 1,

where |x| = (
∑N

i=1 |xi|2)1/2 denotes the Euclidean norm of x and C denotes an
absolute constant.

It is natural to ask if one may extend the Paouris result to lr norms, that is derive

upper bounds for P(‖X‖r ≥ t), where ‖x‖r = (
∑N

i=1 |xi|r)1/r. For 1 ≤ r ≤ N by

the Hölder inequality ‖x‖r ≤ N1/2−1/r|x|, therefore (1) gives

P(‖X‖r ≥ CtN1/r) ≤ exp(−t
√
N) for t ≥ 1, r ∈ [1, 2].

It is not hard to construct examples showing that this bound is optimal [5].
For r > 2 the situation is less trivial. If coordinates of X are independent

and have symmetric exponential distribution with variance 1, then for N ≥ Cr,
Med(‖X‖r) ≥ rN1/r/C and for such vectors

(2) P

(

‖X‖r ≥
1

C
trN1/r

)

≥ exp(−trN1/r) for t ≥ 1, r ≥ 2.

To get the reverse inequality we write

‖X‖r =
(

N
∑

i=1

|X(i)|r
)1/r

=
(

N
∑

i=1

|X∗(i)|r
)1/r

≤
(

s−1
∑

k=0

2k|X∗(2k)|r
)1/r

,
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where s = ⌊log2 n⌋ and X∗(1) ≥ X∗(2) ≥ . . . ≥ X∗(N) denote the nonincreasing
rearrangement of |X1|, . . . , |Xn| (order statistics of vectors X). So to derive con-
centration inequalities for lr norms of X we may look at the tail inequalities for
X∗(l), 1 ≤ l ≤ n.
Theorem 1. Let X be an N -dimensional log-concave isotropic vector. Then

P(X∗(k) ≥ t) ≤ exp
(

− 1

C

√
kt
)

for t ≥ C log
(eN

k

)

.

Threshold log(eN/k) cannot be improved as shows the example of the isotropic
vector X with the product symmetric exponential distribution.

Theorem 1 yields the following reverse to the inequality (2).
Theorem 2. For any δ > 0 there exists a constant C1(δ) ≤ Cδ−1/2 such that for
any N -dimensional log-concave isotropic vector X,

P(‖X‖r ≥ C1(δ)rN1/r) ≤ exp(−trN1/r) for t ≥ 1, r ≥ 2 + δ.

We believe that the constant C1 in Theorem 2 should not depend on δ.
Tail estimates for order statistics yield also the following uniform version of the

Paouris result (1),

(3) ∀t≥1 P

(

sup
|I|=m

|PIX | ≥ Ct
√
m log

(eN

m

))

≤ exp
(

− t
√
m

√

log(em)
log
(eN

m

))

,

where for ∅ 6= I ⊂ {1, . . . , N} and x ∈ RN , PIx denotes the canonical projection
of x onto {y ∈ RN : supp(y) ⊂ I}.

Estimates presented so far work for all isotropic log-concave vectors and do not
take into account specific geometric properties of vectors X . To formulate more
precise bounds we introduce a weak Lp-norm σX(p) of a random vector X in RN :

σX(p) := sup
t∈SN−1

(E|〈t,X〉|p)1/p p ≥ 2.

For isotropic log-concave vectors X , σX(p) ≤ p/
√

2 and σ−1
X (t) ≥

√
2t.

Combining few results from [6] one gets a stronger version of (1) for isotropic
log-concave vectors X in RN ,

P(|X | ≥ Ct
√
N) ≤ exp(−σ−1

X (t
√
N)) for t ≥ 1.

One may also show improved tail estimates for order statistics.
Theorem 3. For any N -dimensional log-concave isotropic vector X,

P(X∗(l) ≥ t) ≤ exp
(

− σ−1
X

( 1

C
t
√
l
))

for t ≥ C log
(eN

l

)

.

Theorem 3 yields the following improvement of (3) for isotropic log-concave
vectors X in RN and t ≥ 1,

P

(

sup
|I|=m

|PIX | ≥ Ct
√
m log

(eN

m

)

)

≤ exp

(

− σ−1
X

( t
√
m log

(

eN
m

)

√

log(em/m0)

)

)

,
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where

m0 = m0(X, t) = sup
{

k ≤ m : k log
(eN

k

)

≤ σ−1
X

(

t
√
m log

(eN

m

))}

.

In many applications there appear sums of independent log-concave vectors.
Let X1, . . . , Xn be independent isotropic log-concave vectors and Y =

∑n
i=1 xiXi.

Then

σY (p) ≤ C(
√
p|x| + p‖x‖∞) for p ≥ 2

and Theorem 3 implies in this case

P(Y ∗(l) ≥ t) ≤ exp
(

− 1

C
min

{ t2l

|x|2 ,
t
√
l

‖x‖∞

})

for t ≥ |x| log
(eN

l

)

.

If we assume that |x| ≤ 1 and ‖x‖∞ ≤ b ∈ [1/
√
m, 1] then for any t ≥ 1,

P

(

sup
|I|=m

|PIY | ≥ Ct
√
m log

(eN

m

))

≤ exp

(

−
t
√
m log

(

eN
m

)

b
√

log(e2b2m)

)

.

Above estimates may be applied to derive uniform bound for norms of k ×m
submatrices of n×N random matrices with independent log-concave rows.
Theorem 4. Let A be an n × N random matrix with independent log-concave
isotropic rows X1, . . . , Xn ∈ RN . For k ≤ n,m ≤ N and t ≥ 1 we have

P

(

sup
|I|=k,|J|=m

‖A|I×J‖ℓm2 →ℓk2
≥ Ctλmk

)

≤ exp
(

− tλmk
√

log(3m)

)

,

where

λmk =
√

log log(3m)
√
m log

(emax(N,n)

m

)

+
√
k log

(en

k

)

.

Case m = N was investigated in [1]. Theorem 4 plays a crucial role in the
study of Restricted Isoperimetry Properties of random matrices with independent
log-concave rows [2, 3].
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Approximate reconstruction and sharp bounds for singular values for
matrices in log-concave Ensemble

Nicole Tomczak-Jaegermann

(joint work with Rados law Adamczak, Rafa lLata la, Alexander Litvak, Alain
Pajor)

1. Overview

The talk is based on a joint research by Rados law Adamczak, Rafa l Lata la,
Alexander Litvak, Alain Pajor and Nicole Tomczak-Jaegermann.

We study the Restricted Isometry Property and approximate reconstruction
problems for random matrices Γ with independent isotropic rows. This is shown
to depend on the behaviour of parameter Γk,m that controls uniformly the oper-
ator norm of sub-matrices of Γ with k rows and m columns. A similar argument
combined with an approximation trick shows that a behaviour of a simpler pa-
rameter Γk, in the case of uniformly sub-exponential rows, is responsible for sharp
bounds for the extremal (non-zero) singular values of Γ∗Γ, which are quantitative
counterparts of Bai-Yin theorem known for random matrices with i.i.d. entries.

The behaviour of Γk,m has been established in a very recent paper [3] by Adam-
czak, Lata la, Litvak, Pajor and Tomczak-Jaegermann, while Γk was investigated
in the earlier paper [1].

2. Main results

We present some recent results from [3] and [2]. Other related results are also
discussed in the lectures of Rafa l Lata la and Alexander Litvak. We also send
the reader to these reports as well as to above papers for all basic definitions and
notations not explained in this report. Finally, we refer the reader to the above
papers for many references to related results and their history.

General motivation for our recent results was coming from several sources:

• Convexity, reconstruction problems and the Restricted Isometry Property;
• point of view of Random Matrix Theory;
• Kannan-Lovász-Simonovits question.

Recall the notation connected with the Compressed Sensing and reconstruction.
Let n,N ≥ 1 be arbitrary integers (no relation between them will be assumed).

Let T ⊂ RN and Γ be an n×N matrix.
One of problems considered in the theory of Compressed Sensing is to recon-

struct any vector x ∈ T from the data Γx ∈ Rn, with a fast algorithm. We clearly
need some hypothesis on T and on Γ. The common hypothesis is that T consists
of sparse vectors. Recall that if m ≤ N , then x ∈ RN is m-sparse if |supp x| ≤ m.
We let

Um = {x ∈ SN−1 : x is m− sparse}.
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For any T ⊂ SN−1 we let

δT (Γ) = sup
x∈T

∣

∣|Γx|2 − E |Γx|2
∣

∣ .

Denote the rows of Γ by Y1, . . . , Yn ∈ RN , and assume that they are random
vectors which are independent. (In reconstruction problems we look for vectors
given by their n independent measurements, with n≪ N .)

Define the parameter Γk(T ) by

Γk(T )2 = sup
y∈T

sup
I⊂{1,...,n}

|I|=k

∑

i∈I
| 〈Yi, y〉 |2.

We have the following fundamental lemma:
Fundamental Lemma: Let n,N . Let Y1, . . . , Yn ∈ RN be independent isotropic,
T ⊂ SN−1 finite. Let 0 < θ < 1 and B ≥ 1. Then with probability at least
1 − |T | exp

(

−3θ2n/8B2
)

,

δT

(

Γ√
n

)

= sup
y∈T

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(|〈Yi, y〉|2 − E |〈Yi, y〉|2)

∣

∣

∣

∣

∣

≤ θ +
1

n

(

Γk(T )2 + EΓk(T )2
)

.

where k ≤ n is the largest integer satisfying k ≤ (Γk(T )/B)2.

For m ≤ N we let

δm(Γ) = δUm(Γ).

This is so-called the RIP parameter first introduced by E.J. Candés and T. Tao in
[5] and extensively studied in many papers that followed. (We also mention related
results of D. Donoho.) The interest in this parameter stems from the fact that if
δ2m(Γ) is appropriately small then every m-sparse vector x can be reconstructed
from Γx by the ℓ1-minimization method.

For k ≤ n we write Γk,m = Γk(Um). In other words, Γk,m is equal to the
maximal operator norm in a Hilbert space of all sub-matrices of Γ with k rows
and m columns.

We easily get the following Corollary for RIP:
Corollary: Let Yi, Γ, 0 < θ < 1 and B ≥ 1, as before. Assume that m ≤ N
satisfies

m log
7N

m
≤ 3θ2n

16B2
.

Then with probability at least 1 − exp
(

− 3θ2n
16B2

)

one has

δm

(

Γ√
n

)

≤ 4.5 θ +
4.5

n

(

Γ2
k,m + EΓ2

k,m

)

,

where k ≤ n is the largest integer satisfying k ≤ (Γkm/B)2.



1328 Oberwolfach Report 24/2011

One of the main results of [3] (see also the lecture by R. Lata la) gives upper
bounds for Γk,m and EΓk,m. Using these bounds we obtain an RIP Theorem for
matrices with independent rows:
Theorem: Let n,N ≥ 1 and 0 < θ < 1. Let Γ be an n×N matrix, whose rows
are independent isotropic log-concave random vectors Yi, i ≤ n.
There exists c = c(θ) depending on θ only, such that if m ≤ N satisfies

m log log 3m

(

log
3 max{N,n}

m

)2

≤ c

(

θ

log(3/θ)

)2

n

then
δm(Γ/

√
n) ≤ θ

with overwhelming probability.
The theorem is optimal up to a log log factor. For unconditional distributions

these factors can be removed (see [4] and the lecture of A. Litvak).

A similar argument allows to study a simpler parameter Γk = Γk,N , which was
introduced and discussed in [1], and improve (in [2]) on the main convergence
result from [1]. In the case of matrices with uniformly sub-exponential rows it
gives sharp bounds for the extremal (non-zero) singular values of Γ∗Γ, which are
quantitative counterparts of Bai-Yin theorem known for random matrices with
i.i.d. entries.
Theorem: Let n,N ≥ 1. Let X1, . . . , XN ∈ Rn be isotropic independent random
vectors satisfying

sup
i≤N

sup
y∈Sn−1

‖ | 〈Xi, y〉 | ‖ψ1 ≤ ψ,

for some ψ <∞. Assume that for some K <∞,

P

(

max
i≤N

|Xi|/
√
n > K max{1, (N/n)1/4}

)

≤ exp
(

−√
n
)

.

Then with probability at least 1 − 2 exp (−c√n) one has

sup
x∈Sn−1

∣

∣

∣

1

N

N
∑

i=1

(

|〈Xi, x〉|2 − E |〈Xi, x〉|2
)

∣

∣

∣ ≤ C (ψ +K)
2

√

n

N
.

Moreover, let A be a random n ×N matrix, whose columns are X1, . . . , XN . Let
λmin and λmax be the smallest and the largest eigenvalues of AA∗.

Then with probability at least 1 − 2 exp(−c√n),

1 − C (ψ +K)
2

√

n

N
≤ λmin

N
≤ λmax

N
≤ 1 + C (ψ + K)

2

√

n

N
.

The proof is based on the Fundamental Lemma. Namely, we consider Γ = A∗

which is N × n matrix, and T = Sn−1.
This improves the estimates from [2] for log-concave isotropic vectors. There,

N was proportional to n, which was sufficient to answer the Kannan-Lovász-
Simonovits question, however, for bigger N , it was off by a logarithmic factor.
Here the estimate is sharp, in particular of the same order as in the Gaussian case.
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The single ring theorem

Manjunath Krishnapur

(joint work with Alice Guionnet, Ofer Zeitouni)

If An is a random matrix with eigenvalues λ1, . . . , λn, its ESD is the empirical
spectral distribution n−1

∑n
k=1 δλk

and its LSD is the limit of Ln, if it exists.
For hermitian random matrices, there are various approaches to finding the LSD,
for example the method of moments which exploits the identity

∫

xpdLn(x) =
n−1trace(Apn) to express the moments of the ESD in terms of the entries of the
matrix. For non-hermitian An (more precisely, if A∗

nAn 6= AnA
∗
n) the moments

∫

zpz̄qdLn(z) characterize the ESD but are not easy to express in terms of the en-
tries of the matrix. Conversely, the asymptotics of quantities n−1trace(P (An, A

∗
n))

for any non-commutative polynomial P is not difficult to analyse, but does not
lead to any direct information about Ln.

Owing to this difficulty, there are only a few models of non-hermitian random
matrices whose LSD has been proved rigorously to exist. The most well known
examples are of i.i.d entries with zero mean and finite variance where the LSD
is the uniform distribution on the unit disk. This statement, well-known as the
circular law, is the result of a long list of papers by many authors, a few important
ones being those of Girko [2], Bai [5], Götze and Tikhomirov [6], [7], Pan and
Zhou [8], and finally that of Tao and Vu [9] which settled it under the weakest
hypothesis of second moments. Even LSD of matrices with i.i.d heavy tailed entries
have been obtained by Bordenave, Chafai and Caputo [10] and given a spectacular
description in terms of an operator on the PWIT.

Details of the last result may be found in abstract by Bordenave. Two other
abstracts in this conference that deal with LSD of non-hermitian matrices are that
of Götze and Tikhomirov on products of random matrices and that of Adamczak
on matrices whose columns have log-concave distribution.

In this lecture (which is a summary of the paper [1]) we consider the random
matrix An with density proportional to exp{−ntrV (A∗

nAn)} on the space of n×n
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complex matrices, where V is a polynomial of even degree and positive leading
coefficient. The main result is that LSD µ of An exists, and is supported on a
single connected annulus in the complex plane. One can also obtain an expression
for the density of µ, but we do not present it here.

A few remarks on the result. When V (x) = x, the matrix has i.i.d standard
complex Gaussian entries with mean zero and variance 1/n, and hence µ is the
uniform measure on the unit disk. For general V the exact density of eigenvalues
is not known. The circular symmetry of µ follows obviously from the unitary

invariance of An, that is UAnV
d
= An for any fixed unitary matrices U and V .

We first describe the single ring phenomenon, predicted by Feinberg and Zee [4]
and proved in the infinite dimensional setting of free probability by Haagerup

and Larsen [3]. For any matrix X , let HX denote the block matrix

[

0 X
X∗ 0

]

.

A complex number z is an eigenvalue of An if and only if 0 is an eigenvalue of
(zI−An)∗(zI−An) or equivalently, if 0 is an eigenvalue of HzI−An = HzI −HAn .
Heuristically assume that this relationship persists in the limit. Let µ denote
the LSD (assuming they exist) of An and let νz denote the LSD of HzI−An .
Thus z is in the support of µ is and only if 0 is in the support of νz. The
crucial point is that for a large class of random matrices, HAn and HzI are freely
independent, and hence νz = ν0 ⊞ λz where λz = 1

2δ±|z| is the ESD and LSD
of HzI . Haagerup and Larsen [3] have shown that for a symmetric, compactly
supported probability measure on R such as ν0, zero is in the support of ν0 ⊞ λt

if and only if
(∫

u−2dν0(u)
)−1 ≤ t ≤

∫

u2dν0(u). Evidently, this proves that
the support of µ is the annulus with in-radius and out-radius given by these two
bounds.

The actual determination of the limit also goes through the hermitian matrices
HzI−An , following the approach of Girko. Modulo some technicalities, it leads to
the result

∫

φ(z)dLn(z) →
∫

φ(z)
1

2π
∆h(z)dm(z), φ ∈ C(2)

c (R2)

where h(z) =
∫

log |x|νz(dx). The heart of the matter is in proving the technical-
ities referred to above.

This consists in proving that
∫

log |x|dLn(x) →
∫

log |x|νz(dx) which does not
automatically follows from the weak convergence of ESD of Hz

n to νz. One source
of difficulty is the possibility that Hz

n has a very small singular value, for example
of order e−n. In the model at hand, we show that the smallest singular value
of Hz

n is at least n−C . The second difficulty is that there could be a crowding
of δn singular values below n−C/2. To overcome this problem, we show that the
Stieltjes’ transform Gzn of Hz

n is uniformly bounded above by a constant on the

set ℑz ≥ n−C′
. From here, it is simple to control the number of singular values

that fall in an interval around zero.
The heart of the proof consists in showing the uniform boundedness of Gzn on

the set ℑz ≥ n−C′
. The main techniques used here are the Schwinger-Dyson
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equations for Haar unitary matrices and the concentration of measure for Haar
unitary matrices. Here is a very short summary of the idea. Our random matrix
An has the property that UAV has the same distribution as A, for any unitary
matrices U and V . This invariance can be expressed as a collection of differential
equations which are what are known as Schwinger-Dyson equations (see chapter 5
of [11] for details). From this, one can write an equation for the ESD of Hz

n that
converges to the free convolution equation in the limit. The finite equation can be
thought of as an approximation of the limiting equation and the error terms can
be bounded using concentration results for Haar measure on the unitary group.

References

[1] A. Guionnet, M. Krishnapur and O. Zeitouni, The single ring theorem, Ann. Math. To
appear.

[2] V.L Girko, The circular law., Teor. Veroyatnost. i Primenen. 29 (1984), 669-679.
[3] U. Haagerup and F. Larsen, Brown’s spectral distribution measure for R-diagonal elements

in finite von Neumann algebras, J. Funct. Anal. 176 (2000), 331–367.
[4] Feinberg, J. and Zee, A., Non-Gaussian non-Hermitian random matrix theory: phase tran-

sition and addition formalism, Nuclear Phys. B, 501 (1997), 643–669.
[5] Z. Bai, Circular law, Ann. Probab. 25 (1997), 494–529.
[6] F. Götze and A. Tikhomirov, On the Circular Law., unpublished, arXiv:math.PR/0702386.
[7] F. Götze and A. Tikhomirov, The circular law for random matrices, Ann. Prob. 38 (2010),

1444–1491.
[8] G. Pan and W. Zhou, Circular law, extreme singular values and potential theory, J. Multi-

variate Anal. 101 (2010), 645-656
[9] T Tao and V. Vu, with an appendix by M. Krishnapur, Random matrices: universality of

ESDs and the circular law., Ann. Probab. 38 (2010), 2023-2065.
[10] C. Bordenave, P. Caputo and D. Chafai, Spectrum of non-Hermitian heavy tailed random

matrices, Commun. Math. Phys. to appear.
[11] G. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices, Cambridge

Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010.

Some recent works on the random matrices whose entries are almost
independent

Jun Yin

(joint work with L. Erdös, A. Knowles, B. Schlein, H.-T. Yau )

The well known GOE (Gaussian orthogonal ensemble) has two important prop-
erties. First, for any fixed orthogonal matrix O, the ensemble is invariant under
every transformation. Second, the variant elements hjk’s (j ≤ k) are statistically
independent random variables. On the other hand, if a random matrix ensemble
is orthogonally invariant and statistically independent, then it must be GOE. The
orthogonally invariant random matrices have been well studied in 1990’s. In this
talk, we will introduce some recent works [1, 2, 3, 4, 5, 6, 7] on the random matrices
whose entries are almost independent.

This type of random matrices including Wigner matrix, Hij :

H = (hkj)1≤k,j≤N , hji = hij i. i. d.
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Ehij = 0, E|hij |2 =
1

N
+ δij

1

N
.

Generalized Wigner matrix which is similar to Wigner matrix, but variant elements
hjk can have different distribution, and the variance of hij only need to statisfy

E|hij |2 = O(1/N),
∑

j

E|hij |2 = 1

Covariance matrix, Non-Hermitian (i.i.d.) Matrix, sparse random matrix whose
most entries equal to zero and band Wigner matrix whose non-zero entries are lo-
cated near the diagonal line. For some of these matrices, we proved some properties
of their local statistics. For example, it is well known that correlation function for
the k eigenvalues (in the bulk) of GUE has sine kernel. We proved that [2, 3, 4, 6]
the bulk universality holds for generalized Wigner ensembles if

E|hij |4+ǫ ≤ C,

i.e., for −2 < E < 2, b = N−1+ǫ′ , ǫ′ > 0

lim
N→∞

∫ E+b

E−b

dE′

2b

(

p
(k)
H,N − p

(k)
GUE,N

)(

E′ +
b1
N
, . . . , E′ +

bk
N

)

= 0 weakly

where p
(k)
H,N and p

(k)
GUE,N are the correlation function for the k eigenvalues of H and

GUE. For the eigenvalues at edge, it is well known that they satisfy the TW law.
We also proved edge universality for generalized Wigner matrix as follows[4, 6].
Suppose Hv = (hvij) and Hw = (hwij) are generalized Wigner matrices. Assume

E
v(xvij)

2 = E
w(xwij)

2

and for both ensembles we have

E|xij |12 < C

Then for any s ∈ R we have

P
v
(

N2/3(λN − 2) ≤ s
)

− P
w
(

N2/3(λN − 2) ≤ s
)

→ 0

We will also introduce some similar results on covariance matrices [1] and sparse
matrices [5, 6].

Besides eigenvalues, we also study the eigenvectors of these matrix ensembles.
Let vα, 1 ≤ α ≤ N be the normalized eigenvectors. For sparse [5], generalized
Wigner matrix [4] we proved that

max
α

‖vα‖∞ ≤ (logN)C√
N

For Band Wigner matrix [2],

max
α

‖vα‖∞ ≤ (logN)C√
M

where M is the bandwidth of the matrix. Furthermore, in recent work [7], we
studied the distribution of eigenvectors of Wigner matrix.

In the end of the talk, we introduce our main ideas on the proof.
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[4] Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices.

Preprint arXiv:1007.4652.
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Structure from Local Optima: Learning Subspace Juntas via Higher
Order PCA

Ying Xiao

(joint work with Santosh Vempala)

A fundamental computational problem is that of learning a k-junta, a function
of k relevant variables in an n-dimensional space. In this problem, introduced
by A. Blum, one is given examples in Rn according to some fixed distribution.
These examples are labeled by a boolean function that depends only on k of the
n coordinates, and the goal is to learn the relevant k coordinates, and the labeling
function. Naive enumeration of k subsets of the coordinates leads to an algorithm
of complexity roughly nk; Mossel et al gave an algorithm of complexity roughly
O(n0.7k) assuming labeled examples are drawn from the uniform distribution on
the boolean hypercube. They refer to understanding the complexity of this re-
stricted variant of the problem as “the single most important open question in
uniform distribution learning”.

We consider the problem of learning a labeling function ℓ(x) which is dependent
only on some k-dimensional subspace V , the relevant subspace. We call such a
function a k-subspace junta or k-sjunta. More precisely, let πV denote the projec-
tion to the subspace V , then we are interested in labeling functions which have
the form:

ℓ(x) = ℓ(πV (x))

The problem is to learn the unknown concept ℓ, i.e., to find a function that agrees
with ℓ on most of the distribution from which examples are drawn.

We make a natural assumption on the input distribution on examples: let F
be a distribution over Rn and ℓ be a hypothesis with a relevant subspace V . We
assume that F can be factored as a product of independent marginal distributions
FV and FW on the subspaces V and W = V ⊥, i.e., F = FV FW in which case
we call F factorizable. Thus, a random point in F is generated by first picking
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its coordinates in V according to FV and then independently picking coordinates
in W according to FW . One may view the distribution on W as irrelevant noisy
attributes introduced by an irrelevant subspace, and so we call this the irrelevant
noisy attributes model. The full statement of our learning problem in this model
is as follows:

Problem 1 (Learning a k-subspace junta). Given examples drawn from a factor-
izable distribution F = FV FW , and labeled by ℓ (a k-subspace junta with relevant
subspace V ), learn the concept ℓ.

Specific instances of the learning problem have been studied under the assump-
tion that the full distribution F is a Gaussian. Our primary algorithmic result
is an efficient randomized algorithm when the distribution FW on the irrelevant
attributes is a Gaussian while the distribution on the relevant subspace needs only
mild assumptions – in particular the relevant attributes can have dependencies or
correlations. For example, a sample point x in the relevant subspace might have
some independent coordinates and others being functions of these; moreover, we
might only see an affine transformation of x. The complexity of our algorithm is
polynomial in n times a function of k, 1/ε and parameters of the k-dimensional
concept class. This learning result under Gaussian noise is a substantial general-
ization of recent results on special cases of this problem, specifically for learning
intersections of halfspaces and convex concepts assuming the full distribution is
Gaussian. We also consider the case when the distribution over the noisy attributes
is completely arbitrary – our algorithms can factorize and learn in this setting in
a stronger computational model.

We examine higher moments of the distributions involved, and from these, we
compute a basis for the relevant subspace. This approach is inspired by viewing
PCA as optimising the bilinear form defined by the covariance matrix over the unit
sphere. For example, the top eigenvector is the solution to a matrix optimisation
problem:

max
‖v‖=1

vTAv =
∑

i1,i2

Ai1,i2vi1vi2

where A is the covariance matrix. Our higher moment method is a essentially a
tensor method which optimises the multi linear form defined by higher moments:

max
‖v‖=1

A(v, . . . , v) =
∑

i1,...,ir

Ai1,...,irvi1 . . . vir .

While computing global maxima and minima to a bilinear form defined by a matrix
is well-understood and can be done efficiently to arbitrary accuracy, similarly op-
timizing a multilinear form defined by a tensor is NP-hard. Indeed, for α > 16/17,
it is NP-hard to approximate the optimum to better than factor α⌊r/4⌋, and the
best known approximation factor is roughly nr/2. There is actually a substan-
tial literature regarding the computation of tensor optima, including several well
known algorithms. Almost nothing, however, is known about convergence rates:
even the strongest results prove convergence only in the limit.
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Our primary contribution is to sidestep this NP-hardness: instead of trying to
compute global optima to the multilinear form, we use local optima, and recover
the relevant subspace from these. The use of local optima appears to be a novel
and useful technique, and can be viewed as an effective realization of higher-order
PCA; previous tensor methods have required the global optimum – for example,
the planted clique algorithms of Brubaker and Vempala. Using local optima, we
are able to give efficient algorithms which run in polynomial time, which has so
far not been possible in the global optima setting.

The main algorithmic idea is to find local optima of the mth moment tensor
fm(u) = E (xTu)m. We prove that such a vector must lie entirely in V or its
complement W unless its moments are identical to that of a Gaussian. This key
property is inspired by the work of Frieze, Jerrum and Kannan, who under further
assumptions use fourth moments to propose an algorithm for learning a vector of
n fully independent random variables. Our algorithms have two main ingredients
that might be of independent interest: (a) a rigorous second-order gradient method
for computing approximate local optima and (b) a robust version of the Schwartz-
Zippel lemma for testing approximate polynomial identities.

To state our results precisely, we require a few definitions: for a random vector
x ∈ Rn with distribution F , the mth moment tensor is a tensor of order m with
nm entries given by:

Mm
i1,...,im = Exi1 . . . xim .

Themth-moment distance of two distributions F,G over Rn is the metric defined
as

dm(F,G) = max
‖u‖=1

|EF
(

(xTu)m
)

− EG

(

(xTu)m
)

|

= max
‖u‖=1

|(Mm
F −Mm

G ) · u⊗ · · · ⊗ u)| = ‖Mm
F −Mm

G ‖2 .

Let Γn be the standard Gaussian distribution over R
n and γm denote the mth

moment of a standard Gaussian random variable:

γm =

{

0 if m is odd
(m− 1)!! if m is even

We say that a distribution G over Rk is (m, η)-moment-distinguishable along a
direction u ∈ R

k, ‖u‖ = 1, if either there exists j ≤ m:

|E (xTu)j − γj | ≥ η

or there exist {v1, . . . , vt} ⊂ u⊥ where t ≤ m such that

|E (xTu)m−tΠt
i=1(xT vi) − E (xTu)m−t

EΠt
i=1(xT vi)| ≥ η.

This definition simply states that G doesn’t look too Gaussian in the direction of
u, or that there are correlations of u with some vectors orthogonal to it.

To extend to learning, we need the following property for concept classes and
distributions. For a distribution F and a k-dimensional concept class H, we say
that the triple (k, F,H) is (m, η)-moment learnable if:
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(1) F = FV FW is a factorizable distribution where dim(V ) = k.
(2) H is a set of k-subspace juntas whose relevant subspaces are contained in

V .
(3) For ℓ ∈ H with minimal (with respect to dimension) relevant subspace

P ⊆ V , for each u ∈ P with ‖u‖ = 1, either FV of F+
V is (m, η)-moment

distinguishable along u.

To state our learning guarantee, we need one more definition:
A triple (k, F,H) is robust if for any subspace U of dimension at most k with

orthonormal basis {ui} such that |uTi πV (ui)| ≥ 1−ε, then ℓ(πU (x)) labels correctly
1−g(ε) fraction of Rn under F , where g is a monotone function which goes to 0 at
a polynomial rate as ε→ 0. The definition requires the distribution F and labeling
function ℓ to be robust under small perturbations of the relevant subspace. We
can now state our main learning result:

Theorem 2 (Learning, Gaussian noise). Let ε, δ > 0, let ℓ ∈ H where (k, F,H)
is (m, η)-moment learnable and robust, and let FW = Γn−k be Gaussian. Suppose
that we are given labeled examples from F , then Algorithm LearnUnderGaus-

sian identifies a subspace U and a hypothesis h such that h correctly classifies
1 − ε of F with probability at least 1 − δ. The time and sample complexity of
the algorithm are bounded by CF (m, ε)T (k, ε)(kn)mpoly(n, η, k, 1/ε, log(1/δ),M)
where T is the complexity of learning the k-dimensional concept class H.

Another RIP-property and non-Euclidean embeddings

Omer Friedland

(joint work with Olivier Guédon)

1. Sparsity and Kašin-type embeddings

Let 0 < r ≤ p < ∞. We denote by sparse(m) = {x ∈ Rn : |supp(x)| ≤ m} the
set of vectors in Rn of cardinality of the support smaller than m.

We say that an operator A : ℓnp → ℓkr satisfies property P1(m) iff

∀x ∈ sparse(m) α|x|p ≤ |Ax|r ≤ β|x|p
We call this property the restricted isomorphism property, which is a general-

ization of the RIP-property that was introduced in [6]. There are other known
modification of this RIP-property cf. [2, 10, 5]. In the sequel, we shall assume
that m, k ∈ O(n) and α, β do not depend on the dimension n.

Now, we present our main theorem:

Theorem 1. Let 0 < r ≤ p < ∞ and r ≤ 1. Let A : ℓnp → ℓkr be an operator that

satisfies property P1(m). Denote U = 1
βm

1/qA. Then for any x ∈ ℓnp

cr

(

α

β

)

(m

n

)1/q

|x|p ≤
1

n1/q
(|Ux|r + |x|r) ≤ 2|x|p
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where 1
p + 1

q = 1
r , and cr is a positive constant depending only on r.

This is what we call a Kašin-type embedding, for operators that satisfy property
P1(m) we have

1

n1/q

(

Idn
U

)

: ℓnp → ℓn+kr

This is a general framework, for constructing Kašin-type embeddings from ℓnp into

ℓn+kr , which is a deterministic statement. Note that for the Euclidean case, where
p = 2, there are a lot of results of this spirit, cf. [12, 20, 21, 19, 14, 15, 1, 18],
which also follow from theorem 1.

2. Applications

We start by giving an example of an operator that satisfies property P1, based
on this operator, we can later present our applications.

Let 0 < r < p < 2 and r ≤ 1, let η > 0 and let N ≥ n be natural numbers such
that N = (1 + η)n. Let (ei)1≤i≤N be the canonical basis of RN , and Y denotes
a random vector taking the values {±en+1, . . . ,±eN} with probability 1

2ηn . Let

(Yi,j) be a sequence of independent copies of Y , where 1 ≤ i ≤ n, j ∈ N.
We define the operator

T : ℓnp → ℓηnr

x = (x1, . . . , xn) 7→ σp,r
(ηn)1/q

n
∑

i=1

xi
∑

j≥1

1

j1/p
Yi,j(1)

where 1
p + 1

q = 1
r and σp,r is a normalization constant depending only on p, r.

This operator, T , approximates a random p-stable operator cf. [17, 13]. The
rows of T are dependent. In other words, it is not an operator with independent
entries, which makes the situation hard to deal with. In [11] the same type of
operator was used, the difference is that Y is a random vector taking the values
{±e1, . . . ,±eN} with probability 1

2N .
The next proposition tells us that the operator T satisfies property P1:

Proposition 2. Let δ ≤ η/ log(1/η). Then with probability greater than 1 −
2 exp(−cp,rηn) the operator T satisfies property P1(δn). More precisely,

∀x ∈ sparse(δn)
1

2
|x|rp ≤ |Tx|rr ≤

3

2
|x|rp

where cp,r is a positive constant depending only on p, r.

For the proof of this proposition, we need two known results, which are anal-
ogous to the main lemmas in [17]. The first one is a consequence of well-known
results about p−stable random variables. The second one follows from results
about scalar martingale difference (see also [8, Proposition 2]).



1338 Oberwolfach Report 24/2011

2.1. Non-Euclidean embeddings. Random embeddings in the non-Euclidean
case attracts a lot of attention. The first major break through was done by Johnson

and Schechtman [8], who proved that for any ε > 0 ℓnp
1+ε→֒ ℓNr , where N =

C(p, r, ε)n. Later, Pisier [17] gave a different proof and extended their result to
the case of general finite dimensional normed space E, proving that for any ε > 0

ℓnp
1+ε→֒ E, where n depends only on ε and on the stable-type constant of E. For

r = 1, Naor and Zvavitch [16] proved that for any η > 0 ℓnp
C→֒ ℓ

(1+η)n
1 , where

C = (c logn)(1−
1
p )(1+

1
η ). It is important to note that they provide an explicit

definition of a random operator, which satisfies the desired property. Slightly
after, Johnson and Schechtman [9] proved that for any 1 ≤ r < p < 2, there exists

an operator T : ℓnp → ℓ
(1+η)n
r , such that ‖T ‖‖T−1

|ImT ‖ ≤ C(η). However, their proof

depends heavily on a result of Bourgain, Kalton and Tzafriri [3], which in turn is
based on a theorem of Elton [7]. Moreover, it doesn’t give any explicit construction
of the random operator T . The result of Naor and Zvavitch has been also extended

by Bernués and López-Valdes [4] for r ≤ 1, who proved that ℓnp
C(logn,η,r)→֒ ℓ

(1+η)n
r .

The question, whether one can give an explicit construction of a random operator
that embeds ℓnp into ℓNr , and the isomorphism constant depends only on p, r,
recently answered by Friedland and Guédon [11], the isomorphism constant is

c
1/η
p,r . Now, as a corollary of the main theorem, we improve the result of [11].

First, we manage to get an optimal isomorphism constant, i.e. polynomial in 1/η,
and second we present a full variety of operators that satisfy it.

Let us denote S =
(

2
3

)1/r
(δn)1/qT , where T is the operator defined in (1). Now,

that we know that property P1(m) holds for T , we conclude

Theorem 3. Let 0 < 2p
p+2 < r < p < 2 with r ≤ 1. For any η > 0 and any natural

number n, with probability greater than 1 − 2 exp(−cp,rηn), for any x ∈ ℓnp

cη1/q

(log(1/η))1/q
|x|p ≤

1

n1/q
(|x|r + |Sx|r) ≤ 2|x|p

where c is a positive constant depending only on r.

Theorem 3 gives us a new operator that embeds ℓnp into ℓNr with optimal bounds,
where N = (1 + η)n.

2.2. Gelfand width. Let K be a bounded subset of a normed space E. Let k ≥ 0
be an integer. Its kth Gelfand width is defined as

dk(K,E) := inf
S

sup
x∈S∩T

‖x‖E

where ‖ . ‖E denotes the norm of E and where the infimum is taken over all linear
subspaces S of codimension ≤ k.

We have

dk(BNr , ℓ
N
p ) = inf

codimS≤k
diamp(S ∩BNr )
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In the next proposition we bound the p-diameter of a kernel of a given operator
A with respect to the best α and β as defined in property P1(m).

Proposition 4. Let A ∈ Rn×N be a matrix. Then

diamp(kerA ∩BNr ) ≤ (1 + (β/α)p)
1/p

m1/q

Proposition 2 combined with the above, give us the optimal known bounds for
Gelfand width of Bnr .

Theorem 5. Let η > 0, denote k = ηn. Then

dk(Bnr , ℓ
n
p ) ≤ cp,r

(

log(1/η)

ηn

)1/q

where cp,r is a positive constant depending only on p, r.

2.3. Compressed sensing. Let 0 < r ≤ p < ∞ and let A be an n × N ma-
trix. Now, let x be an unknown vector, and y = Ax is the given data. The
ℓr−minimization problem is the following:

min
At=Ax

{

|t|r : t ∈ R
N
}

(2)

Note that the above property is not specific to the matrix A but rather a
property of its null space.

Proposition 6. The following are equivalent

(i) ∀x ∈ sparse(m) problem (2) has a unique solution equal to x
(ii) ∀h ∈ kerA, h 6= 0 and ∀I ⊂ [N ], |I| ≤ m: |hI |r < |hIc |r

As a corollary of propositions 6 and 4 we get that the operator T , as defined in
(1), is a good operator in the sense of compressed sensing:

Theorem 7. Let A be a n×N matrix and let 1 ≤ m ≤ N . If

diamp(kerA ∩BNr ) <
1

2m1/q

then A satisfies ℓr−minimization problem for any x ∈ sparse(m).
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Polynomial Littlewood-Offord Problems

Kevin P. Costello

Consider a standard random walk on the integers, where at each step the walker
independently moves left one step or right one step with probability 1/2. Let Xn

be the location of the walker at time n. Intuitively, we expect Xn to become more
dispersed as n increases. There are several ways in which we can quantify this
dispersion:

• Variance: At time n, we have
√

E(X2) =
√
n.

• Concentration: If you take an interval I of size much larger than
√
n

centered at 0, the walker will with very high probability lie in I
• Anti-Concentration: If you take an interval I of size much smaller than√

n, the walker will with very high probability not lie in I. In particular,
the likelihood that Xi takes on any particular value is O(n−1/2).

Note that the anti-concentration bound is the inverse of the variance bound; this
is to be expected since the limiting normal distribution of the walk is smooth.
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Now suppose we remove the requirement that all step sizes be equal, but still
fix a set of (non-zero) step sizes in advance. Is it possible, by clever choices of
step sizes, to increase the concentration on one value to something larger than
O(n−1/2)? This question was first address by Littlewood and Offord in their
study of the roots of random polynomials [6] and was answered in a strong sense
by Erdős [3]: No matter what the step sizes, the concentration on one value is
never larger than in the case when all step sizes are equal.

Now suppose we exclude this example by requiring all step sizes distinct. As-
suming the step sizes are still integers (intuitively, the concentration on one value
is maximized when all the step sizes are on a single lattice), this increases the
standard deviation to at least n3/2. Sárközy and Szémeredi [9] showed the cor-
responding anticoncentration result: The concentration on one value is at most
n−3/2. A similar phenomenon happens when we forbid solutions to a1+a2 = a3+a4
among the step sizes: The standard deviation is upped to n5/2, and a matching
anti-concentration bound of n−5/2 was provided by Halász [4]. More recently, Tao
and Vu [10] and Rudelson and Vershynin [8] have considered results in the reverse
direction: If the concentration on one value is large, then the step sizes must be
very highly structured (lying in a generalized arithmetic progression).

These results have had many applications in the study of random matrices
with independent entries, since many of the key linear algebraic quantities of
these matrices (e.g. the determinant, or the distance from one row to the span
of the remaining rows) are linear in the entries of each row or column. These
applications have included bounds on the singularity probability (first shown to
be o(1) by Komlós [5]) and on the smallest singular value ([10, 8]). All of these
results, however, depend heavily on the independence of the entries.

In a random symmetric matrix (with entries above the main diagonal indepen-
dent, and below the main diagonal forced by symmetry), we lose this independence.
Furthermore, the determinant of the matrix becomes a quadratic form in the en-
tries of a particular row or column. This difficulty motivated the author (with
Tao and Vu) [2] to consider the question of developing a quadratic analogue of the
Littlewood-Offord problem: If we take a quadratic polynomial in n variables with
many nonzero coefficients and choose each input randomly, how quickly must the
concentration on one value decrease as n increases? Note that if “quadratic” is
replaced by “linear” here we recover the original Littlewood-Offord problem.

One new wrinkle which arises here is that the variance heuristic from the linear
case no longer holds. A quadratic polynomial in n variables with non-zero integer
coefficients is the sum of n2 terms, and so has standard deviation at least n.
Nevertheless the form (x1 + · · · + xn)2 has concentration of n−1/2 on 0. In other
words, degeneracy (or near-degeneracy) can cause spikes in the distribution where
the concentration on one value is much larger than on surrounding values. For
Bilinear forms, I have shown [1] that this degeneracy is essentially the only reason
the heuristic fails by a large amount:

Theorem 1. Let f(x1, . . . xn, y1, . . . yn) = xTBy be a bilinear form whose matrix
B has at least k nonzero entries in every row, and each xi and yj are independently
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set to 1 or −1 with equal probability. If f takes on a single value with probability
k−1+ǫ, then B contains a rank one submatrix of size n(1 − oǫ(1)).

The −1 in the exponent is tight here; if B is a random ±1 matrix, then xTBy
concentrates on one value with probability Ω(n−1) but with high probability B
contains no rank one submatrix of size larger than O(log n). I conjecture the same
holds for quadratic forms, but cannot prove it at this point. However, the analogue
of the original Littlewood-Offord-Erdős result does (nearly) hold [1]

Theorem 2. Let f(x1, . . . xn) = xTAx be a quadratic form whose matrix A has
at least mn nonzero entries. Then for any ǫ > 0, the probability f takes on a given
value is at most O

(

m−1/2+ǫ
)

.

This result improves on [2], which had the 1/2 replaced by a 1/8. Again the
1/2 is tight here, as is shown by the form (x1 + · · · + xm)(x1 + · · · + xn). A
consequence of this result is a bound of O(n−1/2+ǫ) on the singularity probability
of a random symmetric matrix. Recent work of Nguyen [7] and Vershynin [11]
has improved this bound still further by developing further inverse results for the
Quadratic Littlewood-Offord problem.
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A Chevet type inequality and norms of submatrices of a random
matrix in the unconditional case.

Alexander E. Litvak

(joint work with Rados law Adamczak, Rafa l Lata la, Alain Pajor, Nicole
Tomczak-Jaegermann)

Let n, N be positive integers and let X1, . . . , Xn be independent isotropic log-
concave unconditional vectors in RN . Below we consider an n×N random matrix
A, whose rows are Xi’s. The canonical basis on Rd is denoted by {ei}i.

We prove a Chevet type inequality for the matrix A. Namely, let K ⊂ RN and
L ⊂ Rn be origin symmetric convex bodies, ‖ · ‖K and ‖ · ‖L be the correspond-
ing norms on RN and Rn, and let Ei’s be i.i.d. symmetric exponential random
variables. Then

E‖A : (RN , ‖ · ‖K) → (Rn, ‖ · ‖L)‖ ≤ C‖Id : (RN , ‖ · ‖K) → ℓN2 ‖ · E
∥

∥

∥

∥

∥

n
∑

i=1

Eiei

∥

∥

∥

∥

∥

L

+ C‖Id : ℓn2 → (Rn, ‖ · ‖L)‖ · E
∥

∥

∥

∥

∥

N
∑

i=1

Eiei

∥

∥

∥

∥

∥

K0

,

where ‖Γ : X → Y ‖ denotes the operator norm of Γ, considered as a linear
operator from X to Y , Id stays for the formal identity operator, and C is an
absolute constant. We provide the corresponding probability estimates. For the
case of Gaussian random matrices with Ei’s substituted by the standard Gaussian
random variables the inequality is due to Chevet (see [7] and references therein).
It plays an important role in Asymptotic Geometric Analysis. Our proof consist
of two steps: first, using the corresponding Lata la Theorem ([5]), we reduce the
case of general matrix A to the case of the exponential matrix, i.e. the matrix
whose entries are i.i.d. symmetric exponential random variables. Then, using
Talagrand’s result ([6]) on relations between some random processes and so-called
γp functionals and computing those functionals, we obtain the result.

We apply our Chevet inequality to obtain sharp uniform bounds on norms
of submatrices of A. More precisely, for any subsets J ⊂ {1, . . . , n} and I ⊂
{1, . . . , N} denote the submatrix of A consisting of the rows indexed by elements
from J and the columns indexed by elements from I by A(J, I). Given k ≤ n and
m ≤ N define the parameter Ak,m by

Ak,m = sup ‖A(J, I) : ℓm2 → ℓk2‖,

where the supremum is taken over all subsets J ⊂ {1, . . . , n} and I ⊂ {1, . . . , N}
with cardinalities |J | = k, |I| = m. That is, Ak,m is the maximal operator norm
of a submatrix of A with k rows and m columns. We prove that

Akm ≤ √
m log

(

3N

m

)

+
√
k log

(

3n

k

)

,
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with high probability. This estimate is sharp. We conjecture that the condition of
unconditionality of vectors is not needed for this bound, however we can prove it
only with an additional factor ln ln(3m) and the proof is much more involved.

Furthermore, we provide applications of this result to the restricted isometry
property of A. More precisely, define RIP parameter (of order m) of A as the
smallest number δ = δm(A) such that

(1 − δ)|x|2 ≤ 1

n
|Ax|2 ≤ (1 + δ)|x|2

for every x ∈ RN with at most m non-zero coordinates. We show that given
θ ∈ (0, 1) with overwhelming probability δm(A) ≤ θ provided that either
(i) N ≤ n and

m ≈ min

{

N,
θ2n

ln3(3/θ)

}

or
(ii) N ≥ n and

m ≤ c
θn

ln(3N/(θn))
min

{

1

ln(3N/(θn))
,

θ

ln2(3/θ)

}

,

where c is an absolute constant. The proof is similar to the one presented in [4].
Finally, we construct examples showing that the condition of unconditionality

of vectors is important in the Lata la Theorem and in our Chevet inequality. Thus
this scheme cannot be used to provide estimates for Ak,m in the general case.

The results appear in [1] and were partially announced in [2]. For the related
estimates in the non-unconditional case, see [2] and [3].
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The circular law for random matrices with independent
logarithmically-concave rows

Rados law Adamczak

For an n× n matrix M define its spectral measure µM as

µM =
1

n

n
∑

i=1

δλi(M),

where λi(M) are (complex) eigenvalues of M (counted with multiplicities) and δx
stands for the Dirac mass at x.

It is well known (and goes back to the work of Ginibre and Mehta) that if An is a
random n×nmatrix with independent standard complex Gaussian entries then the
spectral measure of n−1/2An converges as n → ∞ to the uniform measure on the
unit disc. It was conjectured that this type of limit behaviour was in fact universal
and held for all random matrices with independent mean zero variance one entries.
The first general approach towards the proof of this conjecture was proposed by
Girko [8, 9] in the eighties and later developed by many authors (e.g. in [4, 10, 12])
resulting in substantial weakening of the conditions on the distribution of the
random matrix under which the limiting behaviour of the spectral measure was
the same as in the complex Gaussian case.

In a recent article [13], Tao and Vu solved the conjecture by proving the follow-
ing

Theorem 1 (The circular law). Let (Xij)i,j<∞ be an infinite array of i.i.d. mean
zero, variance one complex random variables. Let An = (Aij)i,j≤n. Then the

spectral measure of n−1/2An converges almost surely as n → ∞ to the uniform
measure on the unit disc.

The integrability assumptions of the above theorem are known to be the weakest
possible as the limiting behaviour of the spectral distribution of matrices with i.i.d.
infinite variance is known to be qualitatively different from the circular case (see
[6] or the abstract of the talk by Charles Bordenave). In this context a natural
question arises, whether the independence assumption can be relaxed and if so, to
what extent.

Our work may be considered the first step in this direction and is an attempt
to extend the circular law to matrices with independent rows. It is easy to believe
that a corresponding result should hold for random matrices with independent
rows distributed on properly normalized ℓnp balls (thanks to [5] one can compare
such matrices to matrices with independent entries), therefore it is natural to have
a look at a generalization of such distributions, i.e. at random matrices with
independent, isotropic, log-concave rows.

Recall that a random vector in Rn is called isotropic if it is centered and its
covariance matrix is equal to identity.

An n-dimensional random vector not supported on a proper affine subspace of
Rn is called log-concave if it has density of the form exp(−V (x)), where V : Rn →
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(−∞,∞] is convex. Examples include in particular Gaussian measures and uni-
form distributions on convex bodies. Log-concave isotropic vectors have many nice
geometric properties which allow to prove good bounds on the largest and smallest
singular values of random matrices with independent isotropic log-concave rows
(see e.g. [2], [3] or abstracts of talks by Rafa l Lata la, Alexander Litvak and Nicole
Tomczak-Jaegermann). Combining this properties with the Tao and Vu approach
one can obtain

Theorem 2. Let An be a sequence of n × n random matrices with independent

rows X
(n)
1 , . . . , X

(n)
n (defined on the same probability space). Assume that for each

n and i ≤ n, X
(n)
i has a log-concave isotropic distribution. Then, with probability

one, the spectral measure µ 1√
n
An

converges weakly to the uniform distribution on

the unit disc.

The above theorem under an additional assumption that X
(n)
i are unconditional

(i.e. their distribution is invariant under reflections with respect to coordinate
hyperplanes) was proved in 2010 and published in [1]. The general case is a recent
result (yet unpublished). The basic idea behind the proof is using the replacement
principle by Tao and Vu [13] and reducing the problem to the analysis of

1

n
log | det(

1√
n
An − zid)|

for z ∈ C, which can be further reduced to the analysis of extreme singular values
of the matrix 1√

n
An−zid and the spectral measure of Mn = ( 1√

n
An−zid)( 1√

n
An−

zid)∗.
The difference between the original proof in the unconditional case and the

general one consists in the approach to the limit theorem for µMn . In [1] it was
obtained via moment method by exploiting the sign invariance of the matrix, in the
general log-concave case it relies on the Stieltjes transform techniques developed
in [7]. In both cases the crucial property of isotropic log-concave vectors that
steps in for independence is Klartag’s thin shell inequality [11], which asserts that
the Euclidean norm of an isotropic random vector in dimension n is with high
probability very close to

√
n (see Olivier Guédon’s talk for more information).

Let us point out that the general approach suggested by Tao and Vu seems
very robust and that the circular law is likely to hold for matrices with indepen-
dent rows under much milder regularity assumptions than log-concavity. Proving
a more general theorem along the same lines would require analysis of extreme
singular values for random matrices with independent rows, which is a problem of
independent interest, with potential applications in statistics or numerical analysis.
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Estimating Population Eigenvalues From Large Dimensional Sample
Covariance Matrices

Jack W. Silverstein

This talk introduces a way to estimate the population eigenvalues from those of
a sample covariance matrix, with an application to wireless communications. Let

Bn = (1/N)T
1/2
n XnX

∗
nT

1/2
n where Xn = (Xij) is n×N with i.i.d. complex stan-

dardized entries, and T
1/2
n is a Hermitian square root of the nonnegative definite

Hermitian matrix Tn. This matrix can be viewed as the sample covariance matrix

of N i.i.d. samples of the n dimensional random vector T
1/2
n (Xn)·1, the latter

having Tn for its population covariance matrix. Quite a bit is known about the
behavior of the eigenvalues of Bn when n and N are large but on the same or-
der of magnitude. These results are relevant in situations in multivariate analysis
where the vector dimension is large, but the number of samples needed to ade-
quately approximate the population matrix (as prescribed in standard statistical
procedures) cannot be attained. Before presenting the results we introduce some
concepts. For matrix A (p × p) with real eigenvalues, define FA, the empirical
distribution function (d.f.) of the eigenvalues of A, to be

FA(x) ≡ (1/p) · (number of eigenvalues of A ≤ x).

For any p.d.f. G the Stieltjes transform of G is defined as

mG(z) ≡
∫

1

λ− z
dG(λ), z ∈ C

+ ≡ {z ∈ C : ℑz > 0}.
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We have the well-known inversion formula

G{[a, b]} = (1/π) lim
η→0+

∫ b

a

ℑmG(ξ + iη)dξ

(a, b continuity points of G).
The first result is on the limiting behavior of FBn . It is shown in Silverstein

(1995) that if Tn and Xn are independent, and N = N(n) with n/N → c > 0 as
n → ∞ and FTn converges almost surely in distribution to a p.d.f. H on [0,∞)
as n → ∞, then, almost surely, FBn converges in distribution, as n → ∞, to a
(nonrandom) p.d.f. F , whose Stieltjes transform m(z) (z ∈ C+) satisfies

m =

∫

1

t(1 − c− czm) − z
dH(t),

in the sense that, for each z ∈ C+, m = m(z) is the unique solution to the equation
in {m ∈ C : − 1−c

z + cm ∈ C+}.
We have

F (1/N)X∗TX = (1 − n

N
)I[0,∞) +

n

N
F (1/N)XX∗T

a.s.−→ (1 − c)I[0,∞) + cF ≡ F .

Notice mF and mF satisfy

1 − c

cz
+

1

c
mF (z) = mF (z) =

∫

1

−zmF t− z
dH(t).

Therefore, m = mF solves

z = − 1

m
+ c

∫

t

1 + tm
dH(t).

Of course this result only reveals the proper proportion of eigenvalues inside the
support of F . Work was achieved on exact separation of eigenvalues in Bai and
Silverstein (1998),(1999). For any d > 0 and d.f. G, let F d,G denote the limiting
spectral d.f. of (1/N)X∗

nTnXn corresponding to limiting ratio d and limiting FTn

G. Assume the interval [a, b] with a > 0 lies in an open interval outside the support
of F cn,Hn for all large n. Then, under certain assumptions on the entries of Xn,
it is proven in Bai and Silverstein (1998) that

P ( no eigenvalue of Bn appears in [a, b] for all large n ) = 1.

In Bai and Silverstein (1999) it is shown that

(1) If c[1 −H(0)] > 1, then x0, the smallest value in the support of F c,H , is

positive, and with probability one λBn

N → x0 as n → ∞. The number x0
is the maximum value of the function

z(m) = − 1

m
+ c

∫

t

1 + tm
dH(t)

for m ∈ R+.



Random Matrices, Geometric Functional Analysis and Algorithms 1349

(2) If c[1 −H(0)] ≤ 1, or c[1 −H(0)] > 1 but [a, b] is not contained in [0, x0]
then mF c,H (b) < 0. Let for large n integer in ≥ 0 be such that

λTn

in
> −1/mF c,H (b) and λTn

in+1 < −1/mF c,H (a)

(eigenvalues arranged in non-increasing order). Then

P (λBn

in
> b and λBn

in+1 < a for all large n ) = 1.

From this work Mestre (2008) developed a scheme for estimating eigenvalues of
Tn from those of Bn. For fixed n, N , and Hn = FTn , let m = m(z) = mF cn,Hn (z).
Suppose Tn has positive eigenvalue t1 with multiplicity n1, and that exact sepa-
ration occurs for the eigenvalues of Bn for all n large, associated with t1, that is,
with probability one, for all n large there will be n1 eigenvalues of Bn associated
with t1, clustered together, and separated from the remaining eigenvalues of Bn.
Then, it is shown in Mestre (2008) that

t1 = −N

n1

1

2πi

∮

zm′(z)

m(z)
dz,

the contour, C, only containing the support of F cn,Hn associated with t1. Let
mn = mF (1/N)X∗

nTnXn . We have, with probability 1,

sup
z∈C

max |m(z) −mn(z)|, |m′(z) −m′
n(z)| → 0,

as n→ ∞. Thus

−N

n1

1

2πi

∮

zm′
n(z)

mn(z)
dz

can be taken as an estimate of t1. This quantity equals

N

n1





∑

λj∈[xa,xb]

λj −
∑

µj∈[xa,xb]

µj



 ,

where λj ’s are the eigenvalues of Bn, µj ’s are the zeros of mn(z). We have

mn(z) =
1

N

n
∑

j=1

1

λj − z
+
N − n

N

1

−z = 0

⇐⇒ 1

N

n
∑

j=1

λj
λj − z

= 1.

The solutions are the eigenvalues of the matrix

Diag(λ1, . . . , λn) −N−1ss∗,

where s = (
√
λ1, . . . ,

√
λn)∗.

This result is extended to power estimation of multiple signal sources in multi-
antenna fading channels (Couillet, Silverstein, Bai, and Debbah):

Consider K entities transmitting data. Transmitter k ∈ {1, . . . ,K} has (un-
known) transmission power Pk with nk antennas. They transmit data to N sens-
ing devices (receiver). The multiple antenna channel matrix between transmitter
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k and the receiver is denoted by Hk ∈ C
N×nk , where the entries of

√
NHk are

i.i.d. standardized.
At time instant m ∈ {1, . . . ,M}, transmitter k emits signal x

(m)
k ∈ Cnk , entries

independent and standardized, independent for different m’s. At the same time
the receive signal is impaired by additive noise σw(m) ∈ CN (σ > 0), the entries
of w(m) are i.i.d. standardized (independent across m). Therefore at time m the
receiver senses the signal

y(m) =

K
∑

k=1

√

PkHkx
(m)
k + σw(m).

Therefore, with Y = [y(1), . . . , y(M)] ∈ CN×M , Xk = [x
(1)
k , . . . , x

(M)
k ] ∈ Cnk×M ,

and W = [w(1), . . . , w(M)] ∈ CN×M we have

Y =
K
∑

k=1

√

PkHkXk + σW = HP 1/2X + σW,

where, with n = n1 + · · · + nK , H = [H1, . . . , HK ],

X = [XT
1 , · · · , XT

K ]T ∈ C
n×M ,

and P 1/2 is the positive square root of the n × n diagonal matrix P having first
n1 diagonal entries equal to P1, next n2 diagonal matrices equal to P2, etc.

The goal is to estimate the Pk’s. Notice Y is the first N rows of
(

HP 1/2 σIN
01 02

)(

X
W

)

,

(IN N×N identity matrix, 01, n×n, 02 n×N zero matrices) so with the weakening
of assumptions on the entries of Xn in Silverstein (1995) and Bai and Silverstein
(1998),(1999), the previous results apply. In Couillet, Silverstein, Bai, and Debbah
the following are proven:

Theorem. Assume σ and K are fixed, M/N → c > 0, and each N/nk → ck > 0,
as N → ∞. Let BN = (1/M)Y Y ∗. Then, almost surely, FBN converges in
distribution, as N → ∞, to a (nonrandom) p.d.f., whose Stieltjes transform, mF (z)
(z ∈ C+) satisfies

mF (z) = cmF (z) + (c− 1)
1

z
,

where mF is the unique solution with positive imaginary part to the equation

1

mF
= −σ2 +

1

f
−

K
∑

k=1

1

ck

Pk
1 + Pkf

with

f = (1 − c)mF − czm2
F .

Theorem. Assuming M > N , n < N , P1 < P2 < · · · < PK , and certain as-
sumptions on the size of c, and the ck’s, exact separation occurs. Let λi denote the
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i-th smallest eigenvalue of BN and s = (
√
λ1, . . . ,

√
λN )T . Then with probability

1 P̂k → Pk as N → ∞ where

P̂k =
NM

nk(M −N)

∑

i∈Nk

(ηi − µi),

where Nk = {N − ∑K
i=k ni + 1, . . . , N −∑K

i=k+1 ni}, the ηi’s are the ordered
eigenvalues of diag(λ1, . . . , λN )−(1/N)ss∗, and the µi’s are the ordered eigenvalues
of diag(λ1, . . . , λN ) − (1/M)ss∗.
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Random matrices with prescribed row and column sums

Alexander Barvinok

Let us fix positive integer vectors R = (r1, . . . , rm) and C = (c1, . . . , cn), called
margins, such that

(1) r1 + . . .+ rm = c1 + . . .+ cn = N.

We consider two sets: the set A0(R,C) of m × n matrices with 0-1 entries, row
sums R and column sums C and the set A+(R,C) of m × n matrices with non-
negative integer entries, row sums R and column sums C. A well-known theorem
of Gale and Ryser states the necessary and sufficient conditions for A0(R,C) to
be non-empty. The set A+(R,C) is non-empty as long as the balance condition
(1) holds. Assuming that A0(R,C) and A+(R,C) are non-empty, we consider the
sets as finite probability spaces with the uniform measure. We are interested in
what a random matrix D ∈ A0(R,C) and a random matrix D ∈ A+(R,C) are
likely to look like.

We recall that a random variable x is Bernoulli if

P(x = 1) = p and P(x = 0) = q

for some p, q ≥ 0 such that p+ q = 1.
Let

h(y) = y ln
1

y
+ (1 − y) ln

1

1 − y
for 0 ≤ y ≤ 1
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be the entropy of the Bernoulli random variable with expectation y. As is known,
h(y) is strictly concave. We extend function h to m× n matrices Y = (yij) such
that 0 ≤ yij ≤ 1 for all i and j by

H(Y ) =
∑

i,j

h (yij) .

Given margins R and C, we consider the polytope P0(R,C) of all m× n matrices
Y = (yij) with row sums R, column sums C and such that 0 ≤ yij ≤ 1 for all i
and j. Then P0(R,C) 6= ∅ if and only if A0(R,C) 6= ∅. Since H is strictly concave,
it attains its maximum on P0(R,C) at a unique matrix Z0 = Z0(R,C).

In many respects, a random matrix D ∈ A0(R,C) looks like the matrix of
independent Bernoulli random variables with expectation Z0.

Theorem 1. Let us assume that A0(R,C) 6= ∅ and let Z0 = Z0(R,C) be the
matrix constructed as above. Let X = (xij) be the m × n matrix of independent
Bernoulli random variables such that E(X) = Z0. Then

(1) For every D ∈ A0(R,C) we have

P(X = D) = e−H(Z0).

In particular, the distribution of X conditioned on A0(R,C) is uniform.
(2) We have

P (X ∈ A0(R,C)) ≥ (mn)−γ(m+n)

for some absolute constant γ > 0.

Theorem 1 implies that any event which is sufficiently rare for the matrix X of
independent Bernoulli random variables with E(X) = Z0 is also rare for a random
D ∈ A0(R,C). In particular, it follows that asymptotically, as m and n grow, we
have E(D) ≈ Z0. Similarly, the sum of a set of, say, 1% of the entries of a random
D ∈ A0(R,C) is likely to be very close to the sum of the corresponding entries of
Z0 as m and n grow.

The distribution of X is the maximum entropy distribution among those sup-
ported on the set of m × n matrices with 0-1 entries and the expectation in the
affine subspace of the m× n real matrices with row sums R and column sums C.

We recall that a random variable x is geometric if

P(x = k) = pqk for k = 0, 1, 2, . . .

and some p, q ≥ 0 such that p+ q = 1.
Let

g(y) = (y + 1) ln(1 + y) − y ln y for y ≥ 0

be the entropy of the geometric random variable with expectation y. Then g(y) is
strictly concave. We extend function g to m× n non-negative matrices Y = (yij)
by

G(Y ) =
∑

i,j

g (yij) .
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Given margins R and C, we consider the polytope P+(R,C) of all m × n non-
negative matrices Y = (yij) with row sums R and column sums C. Since G is
strictly concave, it attains its maximum on P+(R,C) at a unique matrix Z+ =
Z+(R,C).

In many respects, a random D ∈ A+(R,C) looks like the matrix of independent
geometric random variables with expectation Z+.

Theorem 2. Let Z+ = Z+(R,C) be the matrix constructed as above. Let X =
(xij) be the m × n matrix of independent geometric random variables such that
E(X) = Z+. Then

(1) For every D ∈ A+(R,C) we have

P(X = D) = e−G(Z+).

In particular, the distribution of X conditioned on A+(R,C) is uniform.
(2) We have

P (X ∈ A+(R,C)) ≥ N−γ(m+n)

for some absolute constant γ > 0, where N is the total sum of the margins
from the balance condition (1).

Theorem 2 implies that any event which is sufficiently rare for the matrix X
of independent geometric random variables with E(X) = Z+ is also rare for a
random D ∈ A+(R,C). In particular, it follows that asymptotically, as m and n
grow, we have E(D) ≈ Z+. Similarly, the sum of a set of, say, 1% of the entries of
a random D ∈ A+(R,C) is likely to be very close to the sum of the corresponding
entries of Z+.

The distribution of X is the maximum entropy distribution among those sup-
ported on the set of m × n matrices with non-negative integer entries and the
expectation in the affine subspace of m × n real matrices with row sums R and
column sums C.

A survey, containing sketches of proofs of Theorems 1 and 2 as well as references
to detailed proofs can be found in [1]. Connections to the maximum entropy
principle are discussed in [2].

One interesting question is whether the distribution of an individual entry of a
random D ∈ A+(R,C) is asymptotically geometric as m and n grow. In a related
development, Chatterjee, Diaconis and Sly showed that the properly scaled entry
of a random n × n doubly stochastic matrix (a non-negative matrix with all row
and column sums equal to 1) is asymptotically exponential as n grows [3]. The
question seems to be somewhat harder in the absence of symmetry.

Here is one curious phenomenon. Suppose that m = n and that R = C =
(3n, n, . . . , n). One can show that the (1, 1) entry of the matrix Z+ of Theorem 2
grows linearly in n (it remains bounded by a constant if 3n is replaced by 2n). Is
it true that the expectation of the corresponding entry of a random D ∈ A+(R,C)
also grows linearly in n? Our methods seem to be too crude to answer this question.
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Stein’s method and multivariate normal approximation for random
matrices from the compact classical groups

Michael Stolz

(joint work with Christian Döbler)

One aspect of random matrix theory concerns random elements of compact Lie
groups. A classical result, published by Persi Diaconis and Mehrdad Shahshahani
[2] in 1994, is as follows: Let Mn be an element of Un,On, or USp2n, distributed
according to Haar measure. Then, as n→ ∞, the vector

(Tr(Mn),Tr(M2
n), . . . ,Tr(Md

n))

converges weakly to a vector of independent, (real or complex) Gaussian random
variables. The proof deduced this from exact moment formulae, valid for n suffi-
ciently large (see also [13]). A different approach to these moment computations,
also taking care of SOn, has been proposed in [10].

Subsequently, the speed of convergence in the univariate version of this result
was studied by Charles Stein [12] (in the orthogonal case), who proved that the
error decreases faster than any power of the dimension, and Kurt Johansson [5],
who obtained exponential convergence. While Johansson’s approach had its roots
in Szegö’s limit theorem for Toeplitz determinants, Stein used a set of techniques
that he had been developing since 1972 (see [11]) and that nowadays is referred to
as “Stein’s method”. It basically exploits the observation that the equality

E(f ′(X)) = E(Xf(X))

for a suitable class of test functions characterizes a random variable X as standard
normal. In the “exchangeable pairs” version of this method, which Stein used in
his work on traces of powers, a random variable Wn, that is to be proven close
to normal in the large n limit, is considered together with a random variable W ′

n

such that (Wn,W
′
n) has the same distribution as (W ′

n,Wn).
Recently, Jason Fulman [4] has proposed a different construction of an exchange-

able pair in the traces of powers setting, based on the reversibility of Brownian
motion on compact Lie groups with respect to Haar measure. Combined with
moment formulae from the proof of the original Diaconis-Shahshahani result and
a formula on the action of the Laplace-Baltrami operator on power sum symmet-
ric polynomials that is based on Schur-Weyl duality (see [8, 6]), this construction
leads to a transparent proof for all classical groups that seems to lend itself to
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various generalizations. On the other hand, the rate is only O(j/n), where the
power j in question may depend on the dimension n.

In joint work with Christian Döbler [3], Fulman’s approach has been extended
to the multivariate case, yielding, to the best of our knowledge, the first speed of
convergence results in the multivariate central limit theorem for traces of powers.
Multivariate versions of the exchangeable pair method have become available only
recently in work of Sourav Chatterjee and Elizabeth Meckes [1] on the one hand,
and Gesine Reinert and Adrian Röllin [9] on the other. There are substantial dif-
ferences between the univariate and multivariate versions of Stein’s method, since
a first order Stein type characterization of the multivariate normal distribution
seems not to be available. A further refinement provided by Meckes ([7]) (and a
complex extension thereof) proves suitable for the traces of powers problem. In the
end, one obtains for Un, SOn and USp2n bounds of order O(d7/2/n) in Wasserstein
distance between the vector (Tr(Mn),Tr(M2

n), . . . ,Tr(Md
n)) and a (real or com-

plex) d-dimensional normal distribution with covariance matrix diag(1, 2, . . . , d).
Here d may vary with n. In the orthogonal and symplectic cases, the traces of
even powers have to be shifted by −1 and +1, respectively.
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