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Abstract. The subject of this Mini-Workshop is the probabilistic analysis
of random tree models that originate from applications in Computer Sci-
ence. Emphasis is put on their connections to algorithms and information
theory. Trees with a stochastic growth dynamic appear in Computer Science
as data structures, in the context of coding schemes as well as connected to
fundamental algorithms such as sorting, searching and selecting. The focus
of this Mini-Workshop is on probabilistic and analytic techniques that have
been developed recently in the asymptotic analysis of random trees such as
martingale methods, connections to branching random walks, the contraction
method, the method of moments as well as various techniques based on gen-
erating functions.
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Introduction by the Organisers

In the asymptotic analysis of random tree models that originate from Com-
puter Science diverse probabilistic and analytic techniques have been developed
in the last decades with a strongly increasing interest during the last years. The
techniques being developed include methods based on martingales, connections
to branching random walks, the contraction method, techniques using generating
functions, and the method of moments. Classically, in Computer Science ran-
dom trees appear in the performance analysis of data structures, in the context of
coding schemes as well as connected to fundamental algorithms such as sorting,
searching and selecting. However, in the last years also fascinating connections
of these random tree models to coalescent processes, fragmentation theory and
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other combinatorial stochastic processes have been found. The aims of this Mini-
Workshop are a deeper understanding and advances in the probabilistic analysis
of random tree models as well as to discover their connections beyond the realm
of models motivated from Computer Science.

The topics discussed at the workshop are briefly summarized as follows: For
the model of simply generated trees Svante Janson discussed convergence of the
size n trees to limit objects in a topology corresponding to convergence of all out-
degrees. In particular, he discussed the cases where there is a representation of
the simply generated tree as conditioned subcritical Galton-Watson tree or there
is no representation as a conditioned Galton-Watson tree, the generating function
associated having zero radius of convergence. Louigi Addario-Berry considered
the problem of cutting down such simply generated trees (for finite variance off-
spring distributions) and its connection to the distance between two independent,
uniformly chosen nodes in the tree by a coupling method. Here, the Rayleigh
distribution appears in a

√
n scaling and connections to Brownian excursions are

found. Christina Goldschmidt also discussed the cutting of random trees to iso-
late the root. However, in contrast to the

√
n-height simply generated trees she

considered a logn-height tree, the random recursive tree. The stochastic process
describing the cutting procedure on the set of partitions of {1, . . . , n} turns out
to be the Bolthausen-Sznitman coalescent. Also asymptotic frequencies of blocks
were discussed and the open problem was raised to find other coalescents that can
be represented by cutting down a combinatorial tree.

An important tree structure to store bit-strings are tries. In the talk of Wojciech
Szpankowski tries were considered under the symmetric and asymmetric Bernoulli
model (which describe memoryless sources). The quantities under consideration
are the internal and external profile of tries. Results on asymptotic expectations
with their phase changes were presented together with asymptotic variances and
limit laws. In the talk of Mark Ward the internal profile of tries was considered
under a different probabilistic model that makes the trie a suffix tree, another
important data structure in applications. A related quantity is the subword com-
plexity of the given string; the approach is based on generating functions.

A couple of talks discussed the analysis of search trees, mainly by the use of
the contraction method. Ludger Rüschendorf presented results on depths and
various distance measures of the weighted b-ary tree together with applications
to special kinds of random trees that are covered by the class of weighted b-ary
trees. Uwe Rösler discussed a functional limit law for a process version associated
to the Quicksort algorithm: the algorithm on size n input always first recursively
sorts the left sublist generated and stops once the smallest ℓ ∈ {1, . . . , n} items
are sorted. The number of key comparisons as a process in ℓ is considered asymp-
totically in n. Ralph Neininger developed the contraction method on the spaces
C[0, 1] and D[0, 1] of continuous resp. cádlág functions with the supremum norm
by use of the Zolotarev metric. This leads to a framework that covers as an ap-
plication Donsker’s invariance principle. Another application was presented by
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Henning Sulzbach. He showed a functional limit law for the complexity of par-
tial match queries of the form (s, ∗), s ∈ [0, 1] in random two-dimensional (point)
quadtrees, the process being in s. As corollaries, open questions regarding the
variance and limit law for uniform queries and the order of worst case queries
could be solved. The approach also covers the k-d trees for k = 2. Related to the
contraction method Gerold Alsmeyer characterized the set of solutions of general
smoothing transforms. By asking for fixed points of a functional equation under
various constraints on the solutions he covers recursive distributional equations of
sum and max type. The relation between solutions of homogeneous and inhomo-
geneous equations was also discussed as well as the phenomenon of endogeneity
that plays a role in cases also important in applications. Rudolf Grübel viewed the
stochastic evolution of random (search) trees as a transient Markov chain and used
connections to discrete potential theory. He discussed almost sure convergence of
the normalized trees to limiting random measures. Also a metric on trees based on
subtree sizes was introduced and the resulting limiting metric space was explored.

Nicolas Broutin considered algorithms to resolve collisions in communication
of multiple users on one broadcast channel. He studied protocols for which the
execution of the algorithms can be represented by a tree. The main focus was on
the stability of the protocols, analyzed via the long-term behavior of an associated
conditioned Markov chain.

Talks with geometrically motivated topics started with Hsien-Kuei Hwang dis-
cussing different notions of dominance in random point sets in space. He stud-
ied threshold phenomena and uniform estimates for the expected number of such
points among n iid. points in d-dimensional cubes and simplices in various asymp-
totic settings. Yuliy Baryshnikov discussed bounding the unimodal category of
functions, in particular addressed the case of a simple random function in dimen-
sion 1, the uniformly chosen random Dyck path of length 2n, for which a limit
law was derived. Gábor Lugosi presented a random geometric graph model on
high-dimensional spheres that is motivated from a statistical hypothesis testing
problem. In particular the clique number and its dependence on the dimension of
the spheres were addressed.

There was a special session on Wednesday morning dedicated to the memory
of Philippe Flajolet who passed away about a month before the workshop. Hsien-
Kuei Hwang gave a survey on the subjects of Philippe Flajolet’s research continued
by the talk of Wojciech Szpankowski.
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Abstracts

Threshold phenomena in k-dominant skylines of random samples

Hsien-Kuei Hwang

(joint work with Wei-Mei Chen and Tsung-Hsi Tsai)

Skylines of multivariate data sample were introduced for selecting representa-
tive groups in the database query literature by Börzsönyi et al. (see [4]) and had
appeared in diverse areas under several different guises and names: Pareto optimal-
ity, efficiency, maxima, admissibility, elite, sink, etc.; see [6, 7] and the references
therein for more information. These diverse terms reveal the importance of the
use of skyline in practice. Many different notions and variants of skylines have
been proposed in the literature, following the original paper [4]. In particular, the
k-dominant skylines were introduced by Chan et al. (see [5]) in situations when the
skylines are abundant and have received widespread discussions since. We focus
in this paper on the asymptotic estimates of such skylines and prove several types
of results under different probability assumptions of the input samples, which are
believed to be useful for practitioners.

The definitions of skyline and many of its variants are based on the notion of
dominance. Given a d-dimensional dataset D, a point p ∈ D is said to dominate
another point q ∈ D if pj ≤ qj for 1 ≤ j ≤ d, where p = (p1, . . . , pn) and q =
(q1, . . . , qn), and is less than in at least one dimension. The non-dominated points
in D are called the skyline (or skyline points) of D. By relaxing the dominance
definition to partial dominance, we say that a point p ∈ D k-dominates another
point q ∈ D if there are k dimensions in which pj is not greater than qj and is
less than in at least one of these k dimensions. The points in D that are not
k-dominated by any other points are defined to be the k-dominant skyline of D.
The definition of k-dominant skyline implies that for a fixed dataset the number
of k-dominant skylines decreases as k becomes smaller.

The number of skyline points is a key issue in their use and usefulness. This
quantity under suitable random assumptions of the input is also important for
practical modeling or reference purposes, as well as for the analysis of skyline-
finding algorithms. The two major simple, representative random models are
hypercubes and simplices. Assuming that the input dataset D = {p1, . . . ,pn} is
taken uniformly and independently from the hypercube [0, 1]d, then it has been
known since the 1960’s (see [1]) that the expected number of skyline points of D
is asymptotic to (logn)d−1/(d− 1)! for large n and finite d, exhibiting roughly the
independence of the coordinates. On the other hand, if we assume that the input
points are uniformly sampled from the d-dimensional simplex {|x1|+ · · ·+ |xd| ≤
1, xj ∈ (−1, 0]}, then the expected number of skyline points is asymptotic to

Γ(1/d)n1−1/d, reflecting obviously a stronger negative correlation of the coordi-
nates; see [3] and the references cited there. Here Γ denotes Euler’s Gamma
function. For the number of skyline points under other models, see [2, 8, 11] and
the references therein.
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On the other hand, in contrast to the recent growing high-p-low-n trend (p
being our d, the dimensionality), not much is known for the expected number of
skyline points when d is large compared with n. The only exception is the uniform
estimates given in [9] (see also [3]) for the expected number of skyline points µn,d

in a random uniform samples of n points from the hypercube [0, 1]d. While the
order (logn)d−1/(d− 1)! may seem slowly growing as d increases, it soon reaches
the order n when d is around log n, which is relatively small for moderate values
of n. Consequently, the skyline points become too numerous to be of direct use.
The growth of skyline points in the random d-dimensional simplex model is even
faster and we can show that almost all points are skylines when d roughly exceeds
(logn)/(log logn).

Since k-dominant skyline were proposed (see [5]) to resolve the abundance prob-
lem of skyline, it is of interest to know their quantity under suitable random mod-
els. A critical step in applying k-dominant skyline is to identify an appropriate k
such that the size of the k-dominant skyline is within the acceptable ranges. But
this may not be always feasible. Consider the 5-dimensional dataset D given in
Table 1. The six points are all skyline points, one (p6) is the 4-dominant skyline
point and no point is in the 3-dominant skyline. Clearly, p6 is to some extent bet-
ter than the other points since it contains two components with the lowest value
1. However, it was already mentioned in [5] that some k-dominant skylines may
be empty. For example, if we drop p6 from D, then the five points are all skyline
points but all k-dominant skylines are empty for 1 ≤ k ≤ 4. In this example,
other alternatives to k-dominant skylines have to be used. Unfortunately, such a
property of excessive skylines but few k-dominant skylines is not uncommon, and
we show in this paper that, under the hypercube and the simplex random models,
the expected number of k-dominant skylines both tends to zero for large n and
1 ≤ k ≤ d− 1.

point skyline 4-dominant skyline 3-dominant skyline

p1 (1, 2, 2, 3, 3) ✔ - -
p2 (3, 1, 2, 2, 3) ✔ - -
p3 (3, 3, 1, 2, 2) ✔ - -
p4 (2, 3, 3, 1, 2) ✔ - -
p5 (2, 2, 3, 3, 1) ✔ - -
p6 (2, 3, 1, 1, 3) ✔ ✔ -

Table 1: An example showing the property of many skylines but few k-dominant skylines.

More precisely, We present first an asymptotic vanishing property for the num-
ber of k-dominant skyline points under a common hypercube model when the
dimensionality is fixed. The extension to include more points in the partial dom-
inant skyline is showed to suffer from a similar drawback. We then prove that
changing the underlying model from hypercube to simplex does not change the
asymptotic vanishing property. Switching from continuous model to a categorical
model also does not help and we have too many skyline points. Roughly, as the
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total number of sample points are finite in this model, the expected number of
k-dominant skylines will be asymptotically linear, meaning too many choices for
ranking or selection purposes. All these results point to the negative side for the
use of k-dominant skylines under similar data situations. We then address the pos-
itive side by considering again the hypercubes but with growing dimensionality.
A sharp threshold phenomenon is discovered for E[Md−1(n)] when d → ∞ with
n, which says that if d is less than the threshold, then E[Md−1(n)] → 0, while if d
is larger than the threshold, then E[Md−1(n)] → ∞, at the threshold E[Md−1(n)]
taking either the value 0 or 1.
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Simply generated trees and conditioned Galton–Watson trees

Svante Janson

The trees that we consider are rooted and ordered (= plane); thus each node v
has a number of children, ordered in a sequence v1, . . . , vd, where d = d(v) ≥ 0 is
the outdegree of v. (See [1] for more information on these and other types of trees;
the trees we consider are there called planted plane trees.) We let Tn denote the set
of all ordered rooted trees with n nodes (including the root) and let Tf :=

⋃∞
n=0 Tn

be the set of all finite ordered rooted trees.
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Let (wk)k≥0 be a fixed weight sequence of non-negative real numbers. We then
define the weight of a tree T ∈ Tf by

w(T ) :=
∏

v∈T

wd(v),

taking the product over all nodes v in T . Trees with such weights are called simply
generated trees and were introduced by Meir and Moon [5]. To avoid trivialities,
we assume that w0 > 0 and that there exists some k ≥ 2 with wk > 0.

We let Tn be the random tree obtained by picking an element of Tn at random
with probability proportional to its weight, i.e.,

P(Tn = T ) =
w(T )

Zn
, T ∈ Tn,

where the normalizing factor Zn, known as the partition function, is given by

Zn :=
∑

T∈Tn

w(T ).

We consider only n such that Zn > 0.
One particularly important case is when

∑∞
k=0 wk = 1, so the weight sequence

(wk) is a probability distribution on Z≥0. In this case, the random tree Tn is
the same as the random Galton–Watson tree T with offspring distribution (wk)
conditioned on |T | = n. In this case the random tree Tn is thus called a conditioned
Galton–Watson tree.

The distribution of the tree Tn does not change if wk is replaced by w̃k := abkwk

for some a, b > 0. Using this, we can always reduce to one of the three following
cases, where ρ ∈ [0,∞] is the radius of convergence of the generating function
Φ(x) :=

∑∞
k=0 wkx

k and µ :=
∑∞

k=0 kwk = Φ′(1):

(i) Critical Galton–Watson: (wk) a probability distribution with mean µ = 1.
(In this case ρ ≥ 1.)

(ii) Subcritical Galton–Watson: (wk) a probability distribution with mean
µ < 1 and ρ = 1.

(iii) Not Galton–Watson: ρ = 0.

Case (i) is the standard case, and most work has been done for this case only
(often with additional conditions like Var ξ <∞).

Probabilists, including myself, have often dismissed the remaining cases as un-
interesting exceptional cases. However, some researchers, including mathematical
physicists, have studied such cases and found a condensation, showing that there
are interesting phenomena in the exceptional cases as well. The purpose of this
talk is to give a unified limit theorem of Tn as n→ ∞ for all simply generated
trees, extending the well-known result in the standard case (i), and to encourage
further research in the other cases too.

A limit theorem

In cases (i) and (ii), let ξ be an integer-valued random variable with distribution

(wk); thus 0 < E ξ ≤ 1. In case (iii), let ξ = 0, so E ξ = 0. In all cases, let ξ̂ be a
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random variable with values in {0, 1, . . . ,∞} with the distribution

P(ξ̂ = k) :=

{
k P(ξ = k), k = 0, 1, 2, . . . ,

1− E ξ, k = ∞.

In case (i), this is the usual size-biased transformation of ξ.

We define the modified Galton–Watson tree T̂ as follows: There are two types
of nodes: normal and special, with the root being special. Normal nodes have
offspring (outdegree) according to independent copies of ξ, while special nodes

have offspring according to independent copies of ξ̂. Moreover, all children of a
normal node are normal; when a special node gets an infinite number of children,
all are normal; when a special node gets a finite number of children, one of its
children is selected uniformly at random and is special, while all other children are
normal.

The special nodes form a path from the root; we call this path the spine of T̂ .

T̂ behaves differently in our three different cases:

(i) In the critical Galton–Watson case, the spine is an infinite path. Each

outdegree d(v) in T̂ is finite, so the tree is infinite but locally finite. This
is the size-biased Galton–Watson tree defined by Lyons, Pemantle and
Peres [4].

(ii) In the subcritical Galton–Watson case, the spine is a.s. finite with a num-
ber L of vertices that has a (shifted) Geometric distribution Ge(1− µ):

P(L = ℓ) = (1− µ)µℓ−1, ℓ = 1, 2, . . . .

(iii) In the non-Galton–Watson case, the spine consists of the root only; the

root has infinitely many children, and all its children are leaves. T̂ is thus
an infinite star. (This is the limiting case µ = 0 of case (ii).)

In case (i), all vertices have finite degree, while in cases (ii) and (iii), the tree
has (a.s.) exactly one node with infinite outdegree, viz. the top of the spine.

Our main theorem extends a result by Lyons, Pemantle and Peres to cases (ii)
and (iii) in complete generality. For special cases, see [3] and [2].

Theorem 1. In all three cases, Tn converges in distribution to T̂ as n→ ∞, in
the topology defined by convergence of all finite parts of the tree.

The topology can, equivalently, be defined as convergence of each outdegree.

Acknowledgement. This research was started during a visit to NORDITA,
Stockholm, during the programRandom Geometry and Applications, 2010. I thank
the participants, in particular Bergfinnur Durhuus, Thordur Jonsson and Sigurður
Stefánsson, for stimulating discussions.
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Unimodal category of random univariate functions

Yuliy Baryshnikov

Let M be a smooth manifold. We call a function f : M → R+ unimodal if the
excursion sets Mf(c) := {f−1(c,∞)}, c > 0 are contractible.

For a non-negative function g :M → R+, a decomposition f =
∑

α fα is called
unimodal, if all the summands are unimodal. The minimal number of unimodal
summands in a unimodal decomposition of f is called the unimodal category (the
term comes from a formal analogy with the Lyusternik-Schnirelman category) of
f , and denoted as UCat(f). Unimodal category is an important “fully covariant”
invariant of a probability distribution, giving a lower bound on the effects that
result in this distribution. An upper bound on UCat is the number of modes (i.e.
local maxima) of the distribution which is rarely exact.

The question of finding UCat for an arbitrary function is hard and answered
satisfactory only in dimension 1. This talk addressed the question of finding uni-
modal category for some simplest random functions. (We remark that UCat for
Brownian motions, for example for the Brownian excursion, is always infinity.)

Let f : [0, 2n] → R+ be the (linearly interpolated) simple random walk with
n steps 1 and n steps −1 conditioned to stay positive (“Dyck paths with uni-
form measure”). Our main result states that UCat(f) scaled by

√
n converges in

distribution to ∫ 1

0

1/e(s)ds,

where e(s) : [0, 1] → R+ is the standard Brownian excursion on [0, 1]. In particular,

the expectation of UCat(f) grows as
√
2πn.

Cutting down trees with a Markov chainsaw

Louigi Addario-Berry

(joint work with Nicolas Broutin, Cecilia Holmgren)

The subject of cutting down trees has been introduced by [28, 29]. One is given
a rooted tree T which is pruned by random removal of edges. At each step, only
the portion containing the root is kept (we refer to the portion not containing the
root as the pruned portion) and the process continues until eventually the root
has been isolated. The main parameter of interest is the number of cuts necessary
to isolate the root. (The dual problem of isolating a leaf or a node with a specific
label has been considered by [24, 23].)



Mini-Workshop: Random Trees, Information and Algorithms 1253

The procedure has been studied on different deterministic and random trees.
Essentially two kinds of randommodels have been considered for the tree: recursive
trees with typical inter-node distances of the order of logn [30, 19, 14, 18], and trees
arising from critical branching processes conditioned on their size, with typical
distances of order

√
n [21, 16, 33, 32, 20, 33]. We are interested in the latter

family, and refer to such trees as conditioned trees for short.
The original analyses by [28] include asymptotics for the mean and variance

of the number of cuts. In recent years, the subject has regained interest. [32]
and [16] have studied the somewhat simpler case where, conditional on its size,
the distribution of the remaining tree is left unchanged by a cut; this naturally
simplifies greatly the recursive treatment. The class of random trees which satisfy
this property include the important example of rooted Cayley trees (uniformly
random labelled rooted trees), or, equivalently, Poisson Galton–Watson trees. For
this class, they obtained the limiting distribution of the number of cuts using the
method of moments and an analytic treatment of the recursive equation describing
the cutting procedure. [21, 20] used a representation of the number of cuts in terms
of generalized records in a labelled tree to extend these results to all the family trees
of critical branching processes with offspring distribution having a finite variance.
His method is also based on the calculation of moments.

At this point, it is important to mention that once divided by σ
√
n, the num-

ber of cuts required to isolate the root of a tree of size n converges in distribution

to a Rayleigh random variable with density xe−x2/2 on [0,∞). The fact that
the Rayleigh distribution appears here with a

√
n scaling in a setting involving

conditioned trees struck us. The Rayleigh distribution also arises as the limiting
distribution of the length of a path between two uniformly random nodes in a con-
ditioned tree, after appropriate rescaling. We show that the existence of a Rayleigh
limit in both cases is not fortuitous. We prove using a coupling method that the
number of cuts and the distance between two random vertices are asymptotically
equal in distribution (modulo a constant factor σ2). This approach yields as a
by-product a very simple proofs of the results concerning the distribution of the
number of cuts obtained by [32, 16, 20, 21]. The connection is most striking in
the case of rooted Cayley trees. In this case, for any finite n we exhibit a coupling
which shows that the number of nodes on a path between two random nodes of
a Cayley tree has exactly the same distribution as the number of cuts required to
isolate the root. Our approach also allows us to describe the joint distribution of
the sequence of pruned trees.

Using a classical bijection, it is possible to re-express the cutting down procedure
as acting on excursions rather than trees. Considering the limiting version of this
procedure allows us to define a cutting down procedure for the continuum random
trees of [4, 2, 5], where the trees are cut according to a Poisson point process on
the skeleton. This continuous version of the procedure yields a construction of the
random variable mentioned by [21, Remark 1.11]. As a by-product, we obtain a
novel random transformation of a Brownian excursion into a Brownian bridge.
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Cutting random recursive trees, and the Bolthausen–Sznitman

coalescent

Christina Goldschmidt

(joint work with James Martin)

The Bolthausen–Sznitman coalescent was introduced in the context of spin glasses
in [1]. These days, it is usually thought of as a special case of a more general
class of coalescent processes introduced by Pitman [5] and Sagitov [7] and usually
referred to as the Λ-coalescents. These are Markov processes taking values in the
space P∞ of partitions of N, or the space Pn of partitions of {1, 2, . . . , n}, where
the blocks of the partition represent particles which gradually coalesce over the
course of time. The dynamics of the Bolthausen–Sznitman coalescent on Pn are
very simple. Suppose that we have an initial state π ∈ Pn consisting of b blocks.
Then any k of them coalesce at rate

λb,k =
(k − 2)!(b− k)!

(b− 1)!
, 2 ≤ k ≤ b ≤ n,

regardless of block sizes or which integers the blocks contain. Since the state-
space Pn is finite, the distribution of the coalescent is entirely specified by its
initial distribution and these transition rates.

A random partition Π of [n] is exchangeable if

P(Π = π) = P(Π = σ(π))
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for any π ∈ Pn and any permutation σ of [n]. A random partition of N is ex-
changeable if its restriction to [n] is exchangeable in the above sense for all n ≥ 1.
The above dynamics preserve the property of exchangeability: if the initial state
of the Bolthausen–Sznitman coalescent is exchangeable, then the state remains
exchangeable for all times. Moreover, the rates are such that the restriction of
the coalescent evolving in Pn+1 to [n] evolves exactly as the coalescent evolving in
Pn; in other words, we have consistency for each n ≥ 1. This means that we can
define the coalescent evolving in P∞ simply as a projective limit.

Let (Π(t), t ≥ 0) be the Bolthausen–Sznitman coalescent in P∞. An important
consequence of the exchangeability of Π(t) for all t ≥ 0 is that its blocks possess
asymptotic frequencies i.e. if B is a block of Π(t) then

lim
n→∞

|B ∩ [n]|
n

exists almost surely.
We now turn to random recursive trees. A recursive tree is a labelled, un-

ordered tree which is rooted at its vertex of smallest label and has the property
that its labels increase along non-backtracking paths away from the root. We al-
low any partition of [n] to be a label-set for such a tree, where we order blocks
according to their least elements; the canonical label-set is the partition into sin-
gletons ({1}, {2}, . . . , {n}) for some n ≥ 1. A random recursive tree on label-set
L = (ℓ1, ℓ2, . . . , ℓb) with ℓ1 � ℓ2 � . . . � ℓb is simply chosen uniformly at random
from the (b − 1)! recursive trees with those labels. It is more easily constructed
via a recursive procedure:

• start from a single vertex labelled by ℓ1;
• for k ≥ 2, attach a vertex labelled by ℓk to one of the vertices labelled by
ℓ1, . . . , ℓk−1 chosen uniformly at random.

(Note that this procedure does not, in fact, require finiteness of the label-set.) We
now consider a variant of a cutting procedure which was first introduced by Meir
and Moon [3, 4] and has been subsequently much studied in the combinatorics
literature. Pick an edge uniformly at random. Cut it, and combine all of the
labels below the cut edge with the label of the vertex just above. Repeat, until
only the root remains (necessarily labelled by [n]). If we start with a partition of
[n] then, at every subsequent step, we clearly obtain a coarser partition of [n]. We
can easily put this procedure into continuous time by associating an independent
standard exponential random variable with each edge: this random variable gives
the time at which that edge will be cut, if it still exists in the tree at that time.

Suppose that the tree has the partition of [n] into singletons as its initial label-
set. Let Γ[n](t) be the partition obtained by running the cutting procedure for
time t.

Theorem 1. The process (Γ[n](t), t ≥ 0) is the Bolthausen–Sznitman coalescent
on [n].

The proof is straightforward and relies on the fact that a random recursive
tree cut at a uniformly-chosen edge is again a random recursive tree on its new
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label-set. Moreover, the rate at which a cut results in a coalescence of k labels is

(k − 2)!(b − k)!

(b − 1)!
, 2 ≤ k ≤ b ≤ n.

We immediately recognise the rates of the Bolthausen–Sznitman coalescent. See
[2] for the details of the proof.

Note that, because of the recursive way in which the tree is built, we have
consistency in n and so, in fact, we can define (Γ(t), t ≥ 0) evolving in P∞ by
means of the cutting procedure applied to a random recursive tree labelled by N.

The representation given by Theorem 1 is somewhat surprising. It splits the
randomness of the coalescent into two parts: the randomness used to build the tree,
and the randomness used to cut it. A particular realisation of the tree corresponds
to a particular conditioning of the path of the coalescent. For example, if {2} and
{5} are both children of {1} then we condition 2 and 5 only to be in the same
block once they have both coalesced with 1. The tree representation gives a size-
biased viewpoint rather than the usual exchangeable one. The block containing 1
(which is always the label of the root) is a size-biased pick from amongst the blocks
and so tends to be large. We can think of it as a tagged particle, and we watch
the coalescent evolve from its point of view. This leads to a rather nice way to
prove the following properties of the coalescent, originally due to Bolthausen and
Sznitman [1] and Pitman [5] respectively. Write PD(α, θ) for the Poisson–Dirichlet
distribution with parameters 0 < α < 1 and θ > −α (see Pitman and Yor [6]).

Theorem 2. (1) Write F (t) for the asymptotic frequencies of the blocks of
(Π(t), t ≥ 0), where the frequencies are listed in decreasing order of size.
Then

F (t) ∼ PD(e−t, 0).

(2) Write F∗(t) for the frequency of the block containing 1 at time t. Then
(F∗(t), t ≥ 0) is Markovian, with the same distribution as the process
(γ(1 − e−t)/γ(1), t ≥ 0), where (γ(s), s ≥ 0) is a Gamma subordina-
tor. This entails that F∗(t) ∼ Beta(1 − e−t, e−t). Moreover, if J1 ≥
J2 ≥ . . . ≥ 0 is the ranked sequence of jumps of (F∗(t), t ≥ 0) then
(J1, J2, . . .) ∼ PD(0, 1).

We refer the reader to [2] for the proofs and for further development.

Open problem. Find another exchangeable coalescent which may be represented
by cutting down a combinatorial tree.
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The works of Philippe Flajolet

Hsien-Kuei Hwang

Philippe Flajolet was born in 1948 in Lyon and passed away on March 22, 2011.
He was one of the most influential figures in several scientific fields, notably in
analysis of algorithms and in analytic combinatorics, for each of which he published
a book jointly with Robert Sedgewick). He was elected member of the French
Academy of Science (l’Académie des Sciences) in 2003. The major events of his
life are briefly summarized as follows.

1948

1966

1968

1970
1971

1973

1979

Born in Lyon

Baccalauŕeat

Ecole polytechnique

DEA; Research Assistant at INRIA

Thèse de 3e cycle, Université Paris 7

Docteur ès Science, Universit́e Paris 11
Research Director

1981

1986

1994

1996

2003
2004

2007

2009

2011

Head of Projet ALGO

Prix Scientifique (Union des Assurances de Paris)

Prix Michel Montpetit
corresponding member (Acad́emie des Sciences)
Doctorate Honoris Causa (U. Libre Bruxelles)
Analysis of Algorithms book published
Fellow, Academia Europaea

Full member Académie des Sciences
Médaille d’argent CNRS

Simulation Prize of INFORMS

Analytic Combinatorics book published

Rest in peace

We first give a more outsider’s view of his major works through several figures
and tables (for example, the number of citations per year is shown below), and then
provide a more thorough “guided tour” for almost all of his publications, indicating
important ideas, original developments, philosophical thoughts, interdisciplinary
connections, and linguistic-complexity synthesis.
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One can readily grasp an idea of his most popular works through a simple search
on Google Scholar.

Quoted from the webpage1 of EATCS (European Association for Theoretical
Computer Science):

“Philippe Flajolet (1948–2011) passed away on Tuesday, March 22. He was
a larger-than-life theorist, the kind of person who “makes” an institution and
becomes one himself.

Philippe Flajolet (1 December 1948–22 March 2011) was a French computer

scientist. A former student of École Polytechnique, Philippe Flajolet got a Ph.D.
in computer science from University Paris Diderot in 1977 and a doctorate of state
in 1979. Most of Philippe Flajolet’s research work was dedicated towards generic
methods for analyzing the computational complexity of algorithms, including the
theory of average-case complexity. He introduced the theory of analytic combi-
natorics. With Robert Sedgewick of Princeton, he wrote the first book-length
treatment of the topic, the 2009 book entitled Analytic Combinatorics. A sum-
mary of his research up to 1998 can be found in the article ”Philippe Flajolet’s
research in Combinatorics and Analysis of Algorithms” by H. Prodinger and W.
Szpankowski, Algorithmica 22 (1998), 366-387. At the time of his death from a
serious illness, Philippe Flajolet was a research director (senior research scientist)
at INRIA in Rocquencourt. From 1994 to 2003 he was a corresponding member
of the French Academy of Sciences, and was a full member from 2003 on.

He was also a member of the Academia Europaea.”

Profile of Tries

Wojciech Szpankowski

(joint work with Gahyun Park, Hsien-Kuei Hwang, Pierre Nicodème)

Tries are prototype data structures useful for many indexing and retrieval pur-
poses. They were first proposed by de la Briandais [1] in the late 1950’s for
information processing; Fredkin [5] suggested the current name as it being part
of retrieval. Tries are multiway trees whose nodes are vectors of characters or
digits. Due to their simplicity and efficiency, tries found widespread use in diverse
applications ranging from document taxonomy to IP addresses lookup, from data

1www.eatcs.org/index.php/component/content/article/1-news/922-in-memoriam-of-
philippe-flajolet-19482011
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compression to dynamic hashing, from partial-match queries to speech recognition,
from leader election algorithms to distributed hashing tables (see [10, 11, 15]).
Here, we are concerned with probabilistic properties of the profiles of tries, where
the profile of a tree is the sequence of numbers each counting the number of nodes
with the same distance from the root. We discover several new phenomena in the
profiles of tries built over strings generated by a random memoryless source, and
develop asymptotic tools to describe them.

Tries are natural choice of data structures when the input records involve a
notion of alphabets or digits. They are often used to store such data so that future
retrieval can be made efficient. Given a sequence of n words over the alphabet
{a1, . . . , am}, m ≥ 2, we can construct a trie as follows. If n = 0, then the trie is
empty. If n = 1, then a single (external) node holding the word is allocated. If
n ≥ 1, then the trie consists of a root (internal) node directing words to the m
subtrees according to the first alphabet of each word, and words directed to the
same subtree are themselves tries (see [10, 11, 15] for more details).

Throughout, we write Bn,k to denote the number of external nodes (leaves) at
distance k from the root; the number of internal nodes at distance k from the
root is denoted by In,k. For simplicity, we will refer to Bn,k as the external profile
and In,k the internal profile. Figure 1 shows a trie and its profiles. Here we
study the profiles of a trie built over n binary strings generated by a memoryless
source. More precisely, we assume that the input is a sequence of n independent
and identically distributed random variables, each being composed of an infinite
sequence of Bernoulli random variables with mean p, where 0 < p < 1 is the
probability of a “1” and q := 1− p is the probability of a “0”. The corresponding
trie constructed from these n bit-strings is called a random trie.

Summary of main results

We summarize here our main results proved in [13]. Crucial to our analysis of
the profiles is the asymptotics of the expected profiles. Not only are the results
fundamental and highly interesting, but also the analytic methods we used are of
certain generality.

The expected external profile µn,k := E(Bn,k) satisfies the following recurrence

(1) µn,k =
∑

0≤j≤n

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1),

for n ≥ 2 and k ≥ 1 with the initial values µn,0 = 0 for all n 6= 1 and 1 for n = 1.
Furthermore, µ0,k = 0, k ≥ 0 and µ1,k = 0 for k ≥ 1 and equal to 1 when k = 0.
Throughout we assume that p > q = 1− p unless stated otherwise.
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Figure 1. A trie of n = 5 records and its profiles: the circles
represent internal nodes and rectangles holding the records are
external nodes.

We solve asymptotically (1) for various ranges of k when p 6= q; a crude de-
scription of the asymptotics of µn,k is as follows.

log µn,k

logn
→





0, if α ≤ α1;
−ρ+ α log(p−ρ + q−ρ), if α1 ≤ α ≤ α2;
2 + α log(p2 + q2), if α2 ≤ α ≤ α3;
0, if α ≥ α3,

(2)

where

α1 :=
1

log(1/q)
, α2 :=

p2 + q2

p2 log(1/p) + q2 log(1/q)
, and α3 :=

2

log(1/(p2 + q2))

(3)

are delimiters of α := limn k/ logn (k = k(n)), and

ρ :=
1

log(p/q)
log

(
1− α log(1/p)

α log(1/q)− 1

)
.

Note that α1 ≤ α2. The limiting estimate (2) gives a rough picture of µn,k as
follows: µn,k is of polynomial growth rate when α1 + ε ≤ α ≤ α3 − ε, and is
smaller than any polynomial powers when 0 ≤ α ≤ α1 − ε and α ≥ α3 + ε. Near
the two boundaries α1 and α3, the behaviors of µn,k will undergo phase-changes
from being sub-polynomial to being polynomial or the other way around.

To derive more precise asymptotics of µn,k than the phase transitions (2) of the
polynomial order of µn,k, we divide all possible values of k into four overlapping
ranges.

(I) Elementary range: 1 ≤ k ≤ α1(logn− log log logn+O(1));
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(II) Saddle-point range: α1(log n − log log logn + Kn) ≤ k ≤ α2(logn −
Kn

√
logn);

(III) Gaussian transitional range: k = α2 logn+ o((log n)2/3);
(IV) Polar singularity range: k ≥ α2 log n+Kn

√
logn,

where, throughout this paper, Kn ≥ 1 represents a (generic) sequence tending to
infinity.

More precisely, in [13] we prove that for k lying in range (I) the expected external
profile µn,k decays first exponentially fast (asymptotic to qkn(1− qk)n−1). Then,
when k is around α1(logn − log log logn + log(p/q − 1) + m log(p/q)) for some
integer m ≥ 0,

µn,k ∼ km

m!
pmqk−mne−npmqk−m

,

which is of order

µn,k = O

(
log logn

logξ−m n

)
,

for some ξ. Thus, for m < ξ the expected external profile decays only logarithmi-
cally, but for m ≥ ξ it increases logarithmically.

The behavior of µn,k in range (II) is described next. The situation becomes
highly nontrivial and interesting. More precisely, for α1(1 + ε) logn ≤ k ≤ α2(1−
ε) logn, we find that

µn,k ∼ G1

(
ρ; logp/q p

kn
) pρqρ(p−ρ + q−ρ)√

2παn,k log(p/q)
· nυ1

√
logn

,

where (αn,k := k/ logn)

υ1 = −ρ+ αn,k log(p
−ρ + q−ρ),

ρ = − 1

log(p/q)
log

(−1− αn,k log q

1 + αn,k log p

)
,

and G1(ρ;x) is a periodic function. Analytically, these oscillations are conse-
quences of an infinite number of saddle-points appearing in the integrand of the
associated Mellin transform of the expected profile, but visually they look like cer-
tain sine waves due to the fact that the corresponding Fourier expansions involve
Gamma function with increasing parameters, which decreases very fast along fixed
vertical line for increasing imaginary part, so that only a few terms dominate.

Finally, in range (IV) we prove that

µn,k ∼ 2pqn2(p2 + q2)k−1 =
2pq

p2 + q2
nυ2 ,

where υ2 = 2 + αn,k log(p
2 + q2), and the periodic function disappears. Here, the

asymptotic behavior of the expected profile is dictated by the expected number of
pairs (of input-strings) having common prefixes of length at least k. This property
is analytically reflected by a polar singularity in the associated Mellin transform.

Asymptotics of µn,k in range (III) for k = α2 logn+o(log
2/3 n) is presented in [13].

In this transitional range, the saddle-point coalesces with the polar singularity, so
we use the Gaussian integral to describe the behavior of µn,k.
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The expected value of the internal profile E(In,k) is also discussed in [13].
In particular, the expected internal profile is asymptotically equivalent to 2k

for k ≤ α0(logn − Kn

√
logn), where α0 := 2/(log(1/p) + log(1/q)). When

k ≥ α2(logn + Kn

√
logn), then E(In,k) ∼ (p2 + q2)E(Bn,k)/pq. Between these

two ranges, it is again the infinite number of saddle-points that yield the dominant
asymptotic approximation. Unlike µn,k, an additional phase transition appears in
the asymptotics of the E(In,k) when k = α0 logn+O(

√
logn), reflecting the struc-

tural change of the internal nodes from being asymptotically full to being of the
same order as the number of external nodes.

In [13] we also deal with the variance of the profile. In particular, we derive
asymptotic approximations to the variance of the profile, which asymptotically
turns out to be of the same order as the expected value for all ranges of k ≥ 1,
namely, V(Bn,k) = Θ(E(Bn,k)). In fact, we show that V(Bn,k) ∼ E(Bn,k) in range
(I), for range (IV) V(Bn,k) ∼ 2E(Bn,k), while in range (II) (polynomial growth)
the variance and the expected profile differ only by the oscillating functions. The
variance of the internal profile behaves almost identically to the variance of the
external profile; roughly, V(In,k) = Θ(V(Bn,k)) for all k.

We then prove that both internal and external profiles, after proper normaliza-
tion, are asymptotically normally distributed if and only if the variance tends to
infinity. The limiting distribution is Poisson when the variance remains bounded
away from zero and infinity. In particular, we prove that when V(Bn,k) = Θ(1),
then

P (Bn,k = 2m) =
λm0
m!

e−λ0 + o(1) and P (Bn,k = 2m+ 1) = o(1),

where λ0 := pqn2(p2 + q2)k−1, while for V(In,k) = Θ(1), we find

P(In,k = m) =
λm1
m!

e−λ1 + o(1) (m = 0, 1, . . . ),

where λ1 := n2(p2+q2)k/2. These results hold for both symmetric and asymmetric
tries, but the ranges where the variances become unbounded are different.

In passing, we should point out that recently Drmota and Szpankowski [2]
extended the above analysis to the expected profile of digital search tree (see also
[9]).
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[6] P. Jacquet and M. Régnier, Trie partitioning process: limiting distributions, in Lecture Notes

in Computer Science, 214 (1986) 196–210.



1264 Oberwolfach Report 23/2011

[7] P. Jacquet, and W. Szpankowski, Analysis of digital tries with Markovian dependency, IEEE
Transactions on Information Theory, 37 (1991) 1470–1475.

[8] P. Jacquet and W. Szpankowski, Analytical depoissonization and its applications, Theoret-
ical Computer Science, 201 (1998) 1–62.

[9] C. Knessl and W. Szpankowski, On the Average Profile of Symmetric Digital Search Trees,
Analytic Combinatorics, 4, article #6, 2009.

[10] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting and Searching,
Second edition, Addison Wesley, Reading, MA, 1998.

[11] H. M. Mahmoud, Evolution of Random Search Trees, John Wiley & Sons, New York, 1992.
[12] G. Park, Profile of Tries, Ph.D. Thesis, Purdue University, 2006.
[13] G. Park, H-K. Hwang, P. Nicodeme, and W. Szpankowski, Profile of Tries, SIAM J. Com-

puting, 38, 5, 1821-1880, 2009.
[14] W. Schachinger, Asymptotic normality of recursive algorithms via martingale difference

arrays, Discrete Mathematics and Theoretical Computer Science, 4 (2001) 363–397.
[15] W. Szpankowski, Average Case Analysis of Algorithms on Sequences, Wiley, New York,

2001.

On depths and distances in random weighted b-ary trees

Ludger Rüschendorf

(joint work with G. Olaf Munsonius)

Weighted b-ary recursive trees are a combination of recursive trees as introduced
in Szymański (1987) resp. of b-ary increasing trees as introduced in Bergeron,
Flajolet, and Salvy (1992) with the random weighted b-ary trees, a continuous
time tree model introduced in Broutin and Devroye (2006). The simplest descrip-
tion of the model is given by a recursive construction. If τn denotes the random
weighted b-ary recursive tree with n nodes then an external node is chosen ran-
domly with uniform distribution. This node is transformed into an internal node.
It gets b external children which get their labels according to the appearance in
the construction. Also a vector of random weights is attached to these children
independent of the weights of the other nodes.

We establish that these trees belong to the class of well balanced logn-trees.
Central limit theorems are established for the depth Dn of the n-th node, for DUn

the depth of a random node as well as for the distance ∆Un,Vn of two randomly
chosen nodes. For the proof of this last result we establish that the (random)
distance Rn of the least common ancestor of two randomly chosen nodes to the
root is small in the sense that the sequence (Rn) is stochastically bounded. This
allows to make use of the relationship

∆Un,Vn = DUn +DVn − 2Rn.

For the internal path length Pn and for the Wiener indexWn we give a recursive
representation of the form

(
Wn

Pn

)
d
=

b∑

i=1

(
1 n− In,i
0 1

)(
W

(i)
In,i

P
(i)
In,i

)
+ bn
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with subgroup sizes In,i, (W
(i)
k ), (P

(i)
k ) denoting independent copies and bn a

random toll term.
Based on this recursive structure we establish a second order asymptotic expan-

sion for EWn by means of Roura’s (2001) Theorem. By means of the contraction
method we obtain a central limit theorem(

Wn − EWn

n2
,
Pn − EPn

n

)
d→ (W,P ),

where the limit (W,P ) in the unique solution of a fixed point equation.
By a suitable choice of weighting vectors and embeddings these limit results

can be extended to further classes of random trees including also models with
unbounded degree. We give applications to the class of linear recursive trees
which include the recursive tree and the plane oriented recursive tree (PORT) as
special cases.

The distributional limit results for Pn andWn obtained by this transference are
new.
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The Functional Equation of the Smoothing Transform

Gerold Alsmeyer

(joint work with John D. Biggins, Matthias Meiners)

Let T = (Tj)j≥0 be a sequence of nonnegative random variables. Using T , a
function f , defined on R or R+, can be transformed as follows:

f(t) 7→ E
∏

k≥1

f(tTk).

Call f a fixed point if

(4) f(t) = E
∏

k≥1

f(tTk).
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Given a further random variable C and a possibly complex-valued function g, one
may further consider the nonhomogeneous version of the above transform, viz.

f(t) 7→ Eg(tC)
∏

k≥1

f(tTk),

and its fixed points satisfying

(5) f(t) = Eg(tC)
∏

k≥1

f(tTk).

Here we are interested in fixed points f in the classes L of Laplace transforms, F
of Fourier transforms, and M of survival functions of distributions on R≥. The
corresponding set of solutions (fixed points) are denoted S(L),S(F) and S(M),
respectively. Note that S(L) ⊂ S(M). If X has Laplace (Fourier) transform f and
g(t) = e−t (= eit), then (5) in terms of random variables turns into the stochastic
fixed point equation

(6) X
d
=
∑

k≥1

TkXk + C,

where X1, X2, ... are i.i.d. copies of X and independent of T,C and where
d
= means

equality in distribution. If f is the survival function of X , i.e. f(x) = P(X ≥ x),
and C = 0, then (5) corresponds to the min-type equation

(7) X
d
= inf

k≥1:Tk>0

Xk

Tk
,

where the infimum over the empty set is defined to be ∞. Examples of the above
fixed point equations abound in the literature, for instance in the study of branch-
ing processes, random trees or divide and conquer algorithms.

We first look at the homogeneous case (C = 0) imposing the following conditions
on T : For θ ≥ 0 define

m(θ) := E
∑

k≥1

T θ
k .

If α is the minimal positive real satisfying m(α) = 1, then α will be called char-
acteristic exponent of T . Now suppose that

m(0) = EN > 1, where N :=
∑

k≥1

1{Tk>0},

T has characteristic exponent α > 0,

the closed subgroup generated by the positive Tk is R+,

and furthermore

m(θ) <∞ for some θ < α,
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or

E
∑

i≥1

Tα
i logTi ∈ (−∞, 0)

and E


∑

i≥1

Tα
i


 log+


∑

i≥1

Tα
i


 < ∞.

If one of the last two alternatives hold, we say that (A) is satisfied. Under these
assumptions, the following two results settle the homogeneous case within class
M:

Theorem 1. If (A) holds, there exists a unique (up to scaling) random variable
W solving

(8) W
d
=
∑

k≥1

Tα
k Wk,

such that all f ∈ S(M) are given by the family, parametrized by h ∈ R+,

f(t) = E exp(−Whtα).

Theorem 2 (Representation Theorem). Suppose that (A) holds. Then there exists
a unique (up to a positive scaling factor) random variable W satisfying

W
d
=
∑

i≥1

Tα
i Wi

such that any disintegration M of a solution f ∈ S(M) has the following repre-
sentation:

(9) M(t) = exp(−Whtα) a.s. (t > 0).

In particular, any f ∈ S(M) is of the conjectured form.

Turning to two-sided solutions in the homogeneous case, which amounts to a
study of Fourier transforms, we make the additional assumption that N is a.s.
finite. Then the result for α 6= 1 is as follows:

Theorem 3. Suppose that (A) and α ∈ (0, 2] \ {1} hold true. Then S(F), the set
of two-sided solutions in terms of Fourier transforms, is given by

φ(t) =

{
E exp

(
−σαW |t|α

[
1− iβ t

|t| tan
(
πα
2

)])
, if α 6= 2,

E exp(−σ2Wt2), if α = 2.

The range of the parameters is given by σ > 0, β ∈ [−1, 1] if α 6= 2, and σ > 0 if
α = 2.

The case α = 1 is more involved than the case α 6= 1 due to a phenomenon
called endogeneity, a notion coined by Aldous and Bandyopadhyay [1]. It means
that a solution can be represented by a random variable that is a function of the
weighted branching process. The random variable W appearing in the previous
results, which is the unique endogeneous nonnegative solution (up to scaling), but
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in order to rule out the existence of a second one within the class of real-valued
variables we need the additional assumption

(A+) E

N∑

j=1

Tα
j (log

− Tj)
2 < ∞.

Theorem 4. Suppose that (A), (A+) and α = 1 hold true. Then S(F) is given
by the family

(10) φ(t) = E exp (iµWt− σW |t|) ,
where µ ∈ R, σ ≥ 0 and (µ, σ) 6= (0, 0).

Finally regarding the non-homogeneous case (C 6= 0), we first have to state the
following two conditions before stating our final result:

m(1) <∞, E|C| <∞, and W ∗
n is Lp-bounded(C1)

for some p ≥ 1.

m(β) < 1 and E|C|β <∞ for some 0 < β ≤ 1.(C2)

Theorem 5. Suppose that (A) and one of (C1) or (C2) hold true. Additionally
assume (A+) in the case α = 1. Then there exists a coupling (W ∗,W ) of rv’s such
that W ∗ solves (6), W ≥ 0 solves (8), and the Fourier transforms of solutions to
(6) are

φ(t) =




E exp
(
iW ∗t− σαW |t|α

[
1− iβ t

|t| tan
(
πα
2

)])
, if α 6∈ {1, 2},

E exp (i(W ∗ + µW )t− σW |t|) , if α = 1,

E exp(iW ∗t− σ2W t2), if α = 2.

where σ ≥ 0, β ∈ [−1, 1] if α 6∈ {1, 2}, µ ∈ R, σ ≥ 0 if α = 1, and σ ≥ 0 if α = 2.

Finally, we mention that there is a one-to-one correspondence between homoge-
nous solutions and non-homogeneous ones which may be stated in terms of the
disintegration of a solution. We refrain from giving details but mention that the
result has been obtained under slightly stronger conditions by Rüschendorf [8].

A list of references mentioned in the talk is given below.
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Towards the Variance of the Profile of Suffix Trees

Mark Daniel Ward

(joint work with Pierre Nicodème)

We consider randomly generated strings from which we (1) determine the profile
of the analogous suffix tree, or (2) determine the subword complexity. A suffix
tree is a retrieval tree (trie) built from the unique (occurring only once) prefixes
of the suffixes of a string. E.g., if S = 0101100111100001000111000 . . ., and if we
build a suffix tree from the first 12 strings of S, the 10th suffix has a unique prefix
11000, so it gets inserted as the leaf S10 in Figure 2. The suffix tree has “myriad”
applications [1].

Figure 2. A suffix tree built from string S = 0101100111100001000111000 . . .

The (internal) profile of a suffix tree at level k is the number of (internal) nodes
located on level k. Our goal is to make precise comparisons of the profile of a suffix
tree versus the profile of a trie built over independent strings. When the underlying
strings all derive from a Bernoulli source, a comparison of the average profile of a
suffix tree versus the average profile of a trie built over independent strings was
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made in [7]. Empirical evidence has been given, however, that the variance of the
profile of a suffix tree at level k has asymptotically different behavior than the
profile of a trie built over independent strings; see [5]. A recent, comprehensive
study of the distribution of the profile of a trie built over independent strings
appears in [6].

We use the following notations.

• |S|w is the number of occurrences of the word w in the string S.
• For a set of words Wn of cardinality n, we write

|Wn|w = |{u ∈ Wn; u = w}|, the number of words of Wn equal to w.

We generate strings randomly over an alphabet A = {a, b} according to a Bernoulli
source. In other words, assuming that there are probabilities p and q = 1 − p
associated with letters a and b, the probability that a string of length n has exactly
j occurrences of a is

(
n
j

)
pjqn−j .

Generating a random string S of length n + k − 1 and a set Tn of n random
strings of length k, we consider the boolean indicators

• I
(d)
n,w = 1 if |S|w ≥ d and I

(d)
n,w = 0 elsewhere,

• J
(d)
n,w = 1 if |Tn|w ≥ d and J

(d)
n,w = 0 elsewhere.

If a suffix tree is built from such a string S, then the profile X
(prof)
n,k of such a suffix

tree is equal to the number of words of length k that occur two or more times as
subwords in S. In other words, we observe

X
(prof)
n,k =

∑

w∈Ak

I(2)n,w,

where Ak is the collection of all binary words of length k.
Similarly, we define

Y
(prof)
n,k =

∑

w∈Ak

J (2)
n,w,

which corresponds to the profile of a trie built upon n random strings of length k.

Then [7] proves X
(prof)
n,k − Y

(prof)
n,k = O(n−ǫµk) for ǫ > 0 and µ < 1, but [5] gives

empirical evidence that the variances are asymptotically different.

The kth subword complexity X
(sub)
n,k of S (of length n+k− 1) is the number

of distinct subwords of length k that occur at least once as a subword of S. We
therefore have

X
(sub)
n,k =

∑

w∈Ak

I(1)n,w.

Finally, we define

Y
(sub)
n,k =

∑

w∈Ak

J (1)
n,w,

where the “sub” is just meant to remind us that Y
(sub)
n,k is defined similarly to the

subword complexity X
(sub)
n,k above. Then [3] proves X

(sub)
n,k − Y

(sub)
n,k = O(n−ǫµk)
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for ǫ > 0 and µ < 1, but empirical evidence (unpublished) also shows that the
variances are asymptotically different.

The correlation set of a pair of words u, v (here, of the same length) is
Cu,v = {h | u.h = y.v, |y| < |u|}. The correlation polynomial is the relevant
generating function. For example, u = ababa and v = abaab have correlation poly-
nomial Cu,v(z) = P (ab)z2 + P (baab)z4. Previous approaches to problems of this
nature use methods by Jacquet, Régnier, Szpankowski, and many others, tracing
back to Goulden and Jackson, and Guibas and Odlyzko; here, we use the “cluster”
approach that has been initially defined by Goulden and Jackson (see [2] for cita-
tions and recent discussion); we also do not consider the relevant complex analysis
(this will follow in a longer treatment), but use the following intuitive approach:
the primary results will be derived from noting that an autocorrelation polynomial
is 1 plus much smaller terms, with high probability, and a correlation polynomial
of two distinct words is 0 plus much smaller terms, with high probability; see [4].
Briefly, we have

∑

n≥0

E[Y
(sub)
n,k ]zn =

∑

w∈Ak

(1− (1− P (w)))zn =
∑

w∈Ak

P (w)z

(1− z)(1− (1− P (w))z)
.

To determine
∑

n≥0E[X
(sub)
n,k ]zn, we use the cluster approach. The probability

generating function for the cluster of a word w is

ξw(z, t) =
tP (w)z|w|

1− t(Cw(z)− 1)
.

The probability generating function for the set of all words, with some of the w’s
distinguished, is Tw(z, t) = 1/(1− z − ξw(z, t)). Thus, the probability generating
function for the set of words with no occurrences of w is

1

1− z − ξ(z,−1)
=
Cw(z)

Dw(z)
,

where Dw(z) = (1− z)Cw(z) + P (w)z|w|. It follows that

∑

n≥0

E[X
(sub)
n,k ]zn =

∑

w∈Ak

P (w)z

(1− z)Dw(z)
.

These results were first derived in [3], but the cluster approach allows a much
more straightforward proof. Clusters allow quick verification of the probability
generating functions from [7], and clusters allow the new derivation of the relevant
probability generating functions for the variance of the profile of suffix trees and
the variance of the subword complexity. MDW has derived several more results
in this direction but did not have time to present these derivations during the
relatively short talk at MFO. These results will be presented in a longer version of
this paper in the near future, and we will complete the analysis using bootstrapping
for complex-valued singularities and then using residue analysis.
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The Quicksort Process

Uwe Rösler

The sorting algorithm Quicksort, invented by Hoare ’61, sorts a given list of n
different reals. By now, we have a complete analysis of the running time, including
the distribution and large deviation results. Is there an online version of Quicksort
in the sense, that given the input of n different numbers, the online version provides
first the smallest number, then the second smallest and so on during time. That is
very easy to obtain, if we recall Quicksort every time for the list with the smallest
numbers. But what about a limit as n tends to infinity as a process?

The answer to this question will be yes, the details will be given in a forthcoming
paper by my PhD-student Mohammed Ragab. In this talk we discuss some related
problems and technics via the Weighted Branching Process.

Let Xn(l) denote the number of comparisons until the l-th smallest element
appears for the online version of Quicksort. Mathematically we can describe the
distribution of Xn(l) recursively by

Xn(l)
D
= n− 1 + 11In≤l(X

In−1
1 (In − 1) +Xn−In

2 (l − In)) + 11In>lX
In−1
1 (l)

Here In, Xk
i for i = 1, 2 and 0 ≤ k < n are independent. The distributions of

Xk
1 , X

k
2 , X

k are the same and In has the uniform distribution on {1, 2, . . . , n}.
By a result of Mart́ınez, [1], the expectation an(l) = E(Xn(l)) can be explicitly

calculated via the recursion and is

an(l) = 2n+ 2(n+ 1)Hn − 2(n+ 3− l)Hn+1−l − 6l+ 6

where Hn denotes the n-th harmonic number.
The natural normalization

Y n

(
l

n

)
=
Xn(l)− an(l)

n+ 1
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provides the recursion

Y n

(
l

n

)
D
= 11In≤l

(
In

n+ 1
Y In−1
1 (1) +

n− In + 1

n+ 1
Y n−In

2

(
l − In

n− In

))

+ 11In>l
In

n+ 1
Y In−1
1

(
l

In − 1

)
+ Cn

(
l

n

)

with Cn some toll term.
If Y n converges as a process to some Y then Y = (Y (t))t∈[0,1] should satisfy

the fixed point equation

Y
D
=

(
11U≤t

(
UY1(1) + (1− U)Y2

(
t− U

1− U

))
+ 11U>tUY1

(
t

U

)
+ C(t)

)

t

where C = C(U) is a known function. The distribution of U is uniform.
The general approach as given in Knof and Rösler [2] for recursions

Y
D
=
∑

i

AiYi ◦Bi + C

would not work here, since the contraction constant is 1.
We suggest to consider the following approach via the ’right’ random variables

defined via the Weighted Branching Process. Consider the binary tree V = {1, 2}∗,
edge weights Av

1 , A
v
2 , v ∈ V and vertex weights Cv as suggested above. Let Lv

denote the path weight. Then the process

Rn =
∑

|v|<n

Ln ◦ Cv

converges to a limiting process R in terms of convergence of finite dimensional
distributions. For example, Rn(t) for fixed t is an L2 martingale and converges
a.e. to R(t).

The work in progress and main forthcoming result is, the limit R satisfies the
fixed point equation.
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On a Functional Contraction Method

Ralph Neininger

(joint work with Henning Sulzbach)

The contraction method was invented by Rösler [7] to derive a limit law for the
normalized number of comparisons needed by the Quicksort algorithm to sort n
randomly permuted numbers. The method is based on a recursive structure for the
distributions of the random variables under consideration which often results from
the recursive nature of the algorithms or from a decomposition of random trees
into subtrees. In the last 20 years the method has been extended and applied to the
asymptotic distributional analysis of numerous parameters, in particular in Rachev
and Rüschendorf [6], Rösler [8], Neininger [3], and Neininger and Rüschendorf
[4], where also many applications to random trees and recursive algorithms are
discussed. Whereas all these studies consider quantities in R or Rn, more recently,
also systematic versions of the method on functional spaces have been developed:
for quantities in separable Hilbert spaces in Drmota, Neininger and Janson [1], for
quantities in the Banach space Lp[0, 1] of Lp-integrable functions on [0, 1] equipped
with the Lp norm in Eickmeyer and Rüschendorf [2].

In this talk, based on Neininger and Sulzbach [5], the contraction method is
developed for the Banach spaces C[0, 1] and D[0, 1] of continuous respectively
cádlág functions each equipped with the supremum norm ‖ · ‖∞. It is exemplified
at a short proof of Donsker’s invariance principle. An algorithmic application to
the probabilitic analysis of partial match queries is discussed in the subsequent
talk by Henning Sulzbach.

Let (Vj)j≥1 be a sequence of independent, identically distributed real random
variables with E[V1] = 0, Var(V1) = 1 and E[|V1|2+ε] < ∞ for some ε > 0.
We consider the normalized, linearly interpolated process Sn = (Sn

t )t∈[0,1] of the
partial sums

Sn
t :=

1√
n




⌊nt⌋∑

j=1

Vj + (nt− ⌊nt⌋)V⌊nt⌋+1


 , t ∈ [0, 1].

The idea in the context of the contraction method is that we have similar recursive
decompositions for Sn as well as for Brownian motion: For β > 1 we define
operators

ϕβ : C[0, 1] → C[0, 1], ϕβ(f)(t) = 1{t≤1/β}f(βt) + 1{t>1/β}f(1),

ψβ : C[0, 1] → C[0, 1], ψβ(f)(t) = 1{t≤1/β}f(0) + 1{t>1/β}f
(

βt−1
β−1

)
.

Both operators ϕβ and ψβ are linear, continuous and have operator norms ‖ϕβ‖ =
‖ψβ‖ = 1. By construction we have for all n ≥ 2,

Sn d
=

√
⌈n/2⌉
n

ϕ n
⌈n/2⌉

(
S⌈n/2⌉

)
+

√
⌊n/2⌋
n

ψ n
⌈n/2⌉

(
Ŝ⌊n/2⌋

)
,
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where
d
= denotes equality in distribution, (Sj)j≥1 and (Ŝj)j≥1 are independent

and Sj and Ŝj are identically distributed for all j ≥ 1. Let B = (Bt)t∈[0,1] and

B̂ = (B̂t)t∈[0,1] be independent standard Brownian motions. Properties of the
Brownian motion imply

B
d
=

√
1

β
ϕβ(B) +

√
β − 1

β
ψβ(B̂),

for any β > 1. This implies that distances between L(Sn) and L(B) (more precisely
a discretized version of B) can recursively been bounded.

For this we work with the Zolotarev distance. For an arbitrary Banach space
(B, ‖ · ‖), B its Borel σ-algebra and M(B) the set of probability measures on B
the Zolotarev metrics are defined as follows: For s > 0 fixed and m := ⌈s⌉ − 1,
α := s−m we define

Fs = {f : B → R : ‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α ∀ x, y ∈ B},
where Dmf denotes the m-th (Fréchet) derivative of f . For µ, ν ∈ M(B) the
Zolotarev distance between µ and ν is defined by

ζs(µ, ν) = sup
f∈Fs

|E f(X)− f(Y )|,

where X and Y are B-valued random variables with L(X) = µ and L(Y ) = ν.
Key issues for the contraction method to be developed in the Zolotarev metric on
B = C[0, 1] and B = D[0, 1] with the uniform topology are

• finiteness of ζs on appropriate subspaces of M(C[0, 1]), M(D[0, 1]),
• completeness of ζs on appropriate subspaces of M(C[0, 1]), M(D[0, 1]),
• conditions under which convergence in ζs implies weak convergence on
M(C[0, 1]), M(D[0, 1]),

• tightness criteria on these spaces in terms of the Zolotarev metric.
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A Process Convergence Result for Partial Match Queries in Random

Quadtrees

Henning Sulzbach

(joint work with Nicolas Broutin and Ralph Neininger)

The quadtree is a data structure introduced by Finkel and Bentley [5] to store
multidimensional data. For general references on multidimensional data structures
and more details about their various applications, see the series of monographs by
Samet [9, 10, 11]. For more information on the analysis of such tree data structure,
we refer to [7, 4, 6].

The problem of partial match retrieval consists in reporting all the data with
some specified values for some of their attributes. It is important for multidimen-
sional databases which among others may arise in the management of geographical
data and graphics algorithms.

In this paper, we focus on two-dimensional quadtrees. A quadtree is constructed
by inserting data points into a tree data structure. For our model, we will assume
the data to attain values in the unit square which is justified by the representation
of elements by long binary strings. Consider a point sequence p1, p2, . . . , pn ∈
[0, 1]2. As we build the tree, regions of the unit square are associated to the nodes
where the points are stored. Initially, the root is associated with the region [0, 1]2

and the data structure is empty. The first point p1 is stored at the root, and
divides the unit square into four regions Q1, . . . , Q4. Each region is assigned to a
child of the root. More generally, when i points have already been inserted, we
have a set of 1 + 3i (lower-level) regions that cover the unit square. The point
pi+1 is stored in the node (say u) that corresponds to the region it falls in, divides
it into four new regions that are assigned to the children of u. A partial match
query for (s, ∗), s ∈ [0, 1], asks for all points whose first coordinate is s, where the
second coordinate can be arbitrary. The complexity of the query is the number of
nodes visited in the tree performing the partial search.

We are interested in the model of random quadtrees, where the data points are
independent and uniformly distributed in the unit square. Let Cn(s) denote the
complexity of the partial match query for (s, ∗) which coincides with the number
of horizontal lines that insersect a vertical line at s in the unit square. It was
conjectured in the 1970s that the order of E[Cn(U)], where the query U itself
is uniform on [0, 1] and independent of the process, is

√
n. This was based on

a approximation by a fully-balanced tree, i.e., all subtree sizes are concentrated
around n/4. Examining singularities of generating functions Flajolet et. al [3]
disprove this conjecture by showing

E[Cn(U)] ∼ κ nβ where κ =
Γ(2β + 2)

2(Γ(β + 1))3
, β =

√
17− 3

2
,

where Γ(x) denotes the Gamma function Γ(x) =
∫∞
0
tx−1e−tdt. They also give

the order of growth in all dimensions. These results have since been strengthened
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by Chern and Hwang [1], who provided the order of the error term together with
the values of the leading constant in higher dimensions.

Recently, Curien and Joseph [2] were the first to give results for fixed s ∈ [0, 1].
Using a continuous-time embedding they prove

E[Cn(s)] ∼ K(s(1− s))β/2nβ, K =
κ

B
(

β
2 + 1, β2 + 1

) .(11)

Here, B(a, b) denotes the Beta function B(a, b) :=
∫ 1

0
xa−1(1−x)b−1dx = Γ(a)Γ(b)

Γ(a+b) .

Since subtrees behave independently of each other, given their sizes, the under-
lying structure of the problem proposes a recursive approach. For the cost within
a subregion or subtree, what matters is the location of the query line relative to
the region. Hence, decomposing the tree at the root with value (U, V ) yields

Cn(s)
d
= 1 + 1{s<U}

[
C

(1)

I
(n)
1

( s
U

)
+ C

(2)

I
(n)
2

( s
U

)]

+1{s≥U}

[
C

(3)

I
(n)
3

(
s− U

1− U

)
+ C

(4)

I
(n)
4

(
s− U

1− U

)]
,(12)

where I
(n)
1 , . . . , I

(n)
4 denote the sizes of the subtrees, i.e. the number of points

falling in the four subregions. (C
(1)
n ), . . . , (C

(4)
n ) are independent copies of (Cn),

independent of
(
U, V, I

(n)
1 , . . . , I

(n)
4

)
. This does not imply a recurrence for the

one-dimensional distributions expect for the case s = 0 which had already been
studied in [3] and [2]. There, the number of nodes traversed, is of smaller order,

E[Cn(0)] = Θ
(
n
√
2−1
)
. However, (Cn(s))s∈[0,1] is a random stepfunction, hence

the recurrence (12) can also be regarded in the space of cádlàg functions on the
unit interval which is crucial for us. Then, if n−βCn(s) converges to some random
process Z(s) uniformly, the limit is likely to satisfy

(Z(s))s∈[0,1]
d
=
(
1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]

+ 1{s≥U}

[
((1− U)V )βZ(3)

(
s− U

1− U

)

+ ((1− U)(1 − V ))βZ(4)

(
s− U

1− U

)])

s∈[0,1]

,(13)

where U and V are independent [0, 1]-uniform random variables and Z(i), i =
1, . . . , 4 are independent copies of the process Z, which are also independent of U
and V . Our first result is

Theorem 1. Subject to E[Z(s)] = (s(1 − s))β/2 and E[‖Z‖2] < ∞ there exists a
unique continuous solution of (13).

The theorem is shown by constructing a sequence of random continuous func-
tions satisfying a discrete recurrence approximating (13), that converges uniformly.
The proof uses Chernoff-type concentration inequalities and tail bounds for the
saturation level of random quadtrees.
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Our main result is a functional limit law for (Cn(s)), accompanied by finer
asymptotic properties of the one-dimensional marginals. In particular, it solves
the open problems of the asymptotic variance and a distributional limit law for
Cn(U).

Theorem 2. Let Z be as in Theorem 1. Then(
Cn(s)

Knβ

)

s∈[0,1]

→ (Z(s))s∈[0,1] , n→ ∞,

in distribution in (D[0, 1], ‖·‖∞), the space of cádlág functions on the unit interval
endowed with the supremum norm. Here K is defined in (11). For the marginals,
we have

Cn(s)

Knβ

d,m−→ Z(s),

where
m−→ means convergence of all moments. If U is uniformly distributed on

[0, 1], independent of (Cn) and Z, then

Cn(U)

K1nβ

d,m−→ Z(U).

More precisely,

Var[Cn(U)] ∼ K̄n2β ,

with

K̄ = K2

(
2(2β + 1)

3(1− β)
(B (β + 1, β + 1))2 −

(
B

(
β

2
+ 1,

β

2
+ 1

))2
)

≈ 0.44736.

The proof of the result relies on the contraction method in Banach spaces, here
(D[0, 1], ‖ · ‖∞), as discussed in the previous talk by Ralph Neininger, see [8]. It
is heavily based on a refinement of (11), towards a uniform polynomial rate of
convergence.

As Svante Janson pointed out to us at the end of the talk, our method also
implies that the distribution of Z(s) is easily described by a single distribution
on R+. More precisely, there exists a random variable Z∗ ≥ 0 such that for all
s ∈ [0, 1] we have

Z(s)
d
= Z∗ · (s(1− s))β/2.

Analogous results can also be derived for random 2d-trees which are closely
related to quadtrees.
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Metric aspects of binary search trees

Rudolf Grübel

Binary trees

Let V := {0, 1}⋆ be the set of all finite sequences of 0’s and 1’s. By a binary
tree we mean a prefix-stable subset x of V . For u = (u1, . . . , uk) ∈ V let ũ :=
(u1, . . . , uk−1) if k ≥ 1 and u0 := (u1, . . . , uk, 0), u1 := (u1, . . . , uk, 1) be its direct
ancestor and its left and right direct descendant; |u| := k. Let B be the set of
finite binary trees x, Bn those of size |x| = n. We write σ(x, u) for the number of
descendants of u in x, including u.

Our basic objects are Markov chains with state space B: For the BST chain
X = (Xn)n∈N the next valueXn+1, givenXn = x, is uniformly distributed on those
y ∈ B with x ⊂ y and |y| = |x| + 1. For the DST chain Xµ = (Xµ

n )n∈N driven
by a measure µ on {0, 1}∞ the transition from x to y, where again |y| = |x| + 1,
happens with probability µ(Aui) if u ∈ x and ui ∈ y \ x; here Au is the set of 0-1
sequences that have u as a prefix. We always start with x = {∅} at time n = 1.

These are transient Markov chains that have the space-time property, mean-
ing that the nth variable has all its values in Bn. For these, discrete potential
theory can be applied to obtain a strong law that is in a certain sense optimal.
Convergences are understood to hold with probability 1 and refer to n→ ∞.

Theorem 1 ([2]). (a) Xn → X∞, a random measure on {0, 1}∞, in the sense of

1

n
σ(Xn, u) → X∞(Au) for all u ∈ V .

(b) X∞ generates the tail σ-field associated with X.
(c) The conditional distribution of X, given X∞ = µ, is the same as the distribu-
tion of the DST chain Xµ driven by µ.

Moreover, an explicit expression for the distribution of X∞ is available.
We sketch a proof of part (a) that makes use of the binary search tree algorithm

and that also displays X∞ as a function of its input sequence. (This algorithm,
and the digital search tree algorithm, are responsible for the acronyms.)
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Metric aspects

A metric d on a tree x is specified by the edge lengths d(ũ, u), u ∈ V , u 6= ∅.
For simply generated trees the canonical tree distance, with d(ũ, u) ≡ 1, leads to a
theory that is one of the highlights of modern probability; see e.g. [1] (the situation
here turns out to be technically simpler). Metric trees (x, d) can be rescaled in the
sense that αx refers to (x, αd). Theorem 1 suggests the use of a tree dependent
metric that is based on subtree sizes: For ρ > 0 let

dx,ρ(ũ, u) := ρ|u|σ(x, u) for all u ∈ V , u 6= ∅.
Theorem 1 then implies pointwise convergence of n−1Xn to X∞, where the metric
on the infinite limit tree is given by

dX∞,ρ(ũ, u) := ρ|u|X∞(Au) for all u ∈ V , u 6= ∅.
The next result implies that there is a transition where the limit space changes
from being totally bounded to having infinite diameter.

Theorem 2. Let ρ0 = 1.2617 . . . be the smaller root of the equation 2e log(ρ) = ρ.
Then, with probability 1, (X∞, dX∞) is compact for ρ < ρ0. Further, for ρ > ρ0,

sup{dX∞,ρ(ũ, u) : u ∈ V , u 6= ∅} = ∞.

Applications

Over the years, many tree functionals have been studied, by different authors
and with different techniques. For binary search trees perhaps the best known
strong limit theorem refers to the internal path length Ψ(x) :=

∑
u∈x |u|, where

Régnier [4] showed that Zn := n−1Ψ(Xn) − 2 logn converges almost surely (and
in quadratic mean) to a limit variable Z∞. In view of part (b) of Theorem 1 this
limit must be a function of X∞. Indeed, it turns out that

Z∞ =
∑

u∈V
X∞(Au)C

(
X∞(Au0)

X∞(Au)

)
almost surely,

with C(s) = 1+ 2s log(s) + 2(1− s) log(1− s). Convergence on the level of metric
trees with a suitable topology suggests an approach that puts such results into a
general framework.

Of special interest are functionals that map a combinatorial structure x to a
function f(x, ·) : [0, 1] → R, such as the Harris correspondence for simply generated
trees. In [3] such a function was obtained by identifying t ∈ [0, 1] with its binary
expansion (bj)j∈N ∈ {0, 1}∞ (in what follows, the binary rationals Qb do not
matter) and letting f(x, t) be the depth of the first node along t that is outside of
x. Replacing the canonical tree distance that is inherent in this definition by the
subtree size metric dx = dx,1 we arrive at the metric silhouette,

f(x, t) :=

∞∑

k=1

σ(x, u(t, k)),
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where u(t, k) = (b1, . . . , bk) if t =
∑∞

j=1 bj2
−j . For s, t ∈ [0, 1] let d0(s, t) := 2−k

where k denotes the length of the common prefix in the binary expansions of s and
t. For tree nodes u and v the value k is the length of the last common ancestor of
u and v. Again, convergence means almost sure convergence and refers to n→ ∞.

Theorem 3. For all t ∈ [0, 1] \Qb,

Yn(t) := f(n−1Xn, t) → Y∞(t) =

∫ (
− log d0(s, t)

)
X∞(ds).

Thus, the limit process Y∞ for the metric silhouette Yn of the BST chain is
the logarithmic potential of the random limit measure X∞ on the compact metric
space ({0, 1}∞, d0).
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Behaviour of tree-based contention algorithms

Nicolas Broutin

(joint work with C. Holmgren)

Introduction

Consider the following general model of communication using a single broadcast
channel (e.g., cable, radio, satellite channel, internet, mobile networks etc.) shared
by many users (or sources). Suppose that the channel is in free access : every user
transmits on the channel as soon as it has a message to send. When a source
sends a message, it is picked up by the destination unless some other source also
attempted to send its message, in which case the messages are corrupted and need
to be resent. We assume that every message sent without interference reaches its
destination, and that the corresponding source then quits the system. A strategy
to resolve the collisions and (try to) ensure that each source eventually sends its
message successfully is called a protocol.

Here, we are interested in a specific algorithm designed by [1] and [5] based on
the divide-and-conquer paradigm: Using coin flips, any set of sources that collide
is split into two subgroups; the users of the first group immediately try to send
their message again, while those in the second group wait for the entire first group
to be fully resolved. This strategy is used recursively to resolve the two groups,
when their time has come.
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A tree representation

The recursive splitting that underlies the protocol yields an elegant represen-
tation of the execution by a tree (For the sake of space, I will not give to much
detail). The nodes in the tree represent time slots, and every node v carries the
number of sources Nv that are allowed to emit during the corresponding time slot
(sources at level 0). From now on, we identify nodes and time slots. If Nv ≥ 2, the
messages interfere and the sources are split into two subgroups that are associated
with the children v1 and v2 of v. In general, the number of sources Nv1 and Nv2

that try to transmit during v1 and v2 are given by

(Nv1 , Nv2) = Mult(Nv; p, 1− p) + (Av1 , Av2)(14)

where Av1 and Av2 are the random numbers of additional sources that joined the
system during time slots immediately before v1 and v2. Since priority is given to
the first group, the dates (or time slots) associated to the nodes is recovered using
a depth-first traversal of the tree. A branch of the tree is killed when the value of
a node drops below one (successful transmission).

In general, we can consider splitting the sources allowed to transmit into b
groups, according a the proportions given by a random split vector (V1, . . . , Vb),
Vi ≥ 0, V1 + V2 + · · ·+ Vb = 1. One is then lead to study the b-ary tree with the
splitting rule:

(Nv1 , Nv2 , . . . , Nvb) = Mult(Nv;V1, V2, . . . , Vb) + (Av1 , Av2 , . . . , Avb).

The branches are still killed when the value of the node drops below one (one can
generalize to channel with capacity s ≥ 1). In the following, we write T n for an
instance of this killed branching Markov chain, started from the value n at the
root. Quite naturally, the stability of the protocol is related to the finiteness of
the trees T n, for n ≥ 1.

Stability of the algorithm and conditioned Markov chains

Let (Vi, Ai) be i.i.d. copies of (V,A), where V is the distribution of a uniform
random component of (V1, . . . , Vb). Along any branch of the tree, one sees a
Markov chain with transitions given by Ni+1 = Bin(Ni;Vi) +Ai, It is possible to
make a strong connection between the stability of the algorithm and the long term
behaviour of the Markov chain seen along a branch, conditioned on non-absorption
(when it has a value less than two).

Under some mild conditions that are satisfied here provided P (V = 0) = 0,
one can show that there exists a random variable D that is quasi-stationary for
the conditioned process. Here we mean that conditioned on Bin(D;V ) + A > 1,
Bin(D;V ) +A is distributed as D. Then, by definition of the distribution D, the
tree TD is a Galton–Watson tree. It is easily seen that D must charge all the natu-
ral numbers i ≥ 2, so that the stability finiteness of the tree T n corresponds to sub-
criticality for the Galton–Watson process. Writing ρ−1 = P (Bin(D;V ) +A > 1),
the process is stable (|T n| <∞ a.s. for every n) precisely when ρ−1b ≤ 1.
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Fix the distribution for V . Consider the distribution for D as a function (if
there is only one such distribution) of that of A. By proving the uniqueness and
the continuity of the function D = D(A), as A → 0 in probability, extend the
result of [4], showing that the stability region is never empty:

Theorem 1. Let V ∈ [0, 1] be a random variable such that E[V ] = 1/b and V > 0
almost surely. There exists ǫ > 0 (depending only on V ) such that if P (A > 0) < ǫ
then E|T n| < ∞ for all n ∈ N. In particular by Markov’s inequality, if E[A] < ǫ
then the protocol is stable.

Unfortunately, the result is based on a continuity argument, and does not give
access to estimates for ǫ. To go further, we consider the more specific case of fair
splits. Note that the result gives access to a universal stability region (given the
split), regardless of the arrival distribution.

The case of fair splits

In the special case when (V1, . . . , Vb) = (1/b, . . . , 1/b), we can go further and
identify the quasi-stationary distribution at the point that is critical for the stabil-
ity. This allows us to pin down the precise value of the stability threshold as the
root of certain series equations. We can express the stability threshold in terms of
a(z) = E[zA].

Theorem 2. Assume that V = 1/b, s = 1 and that E[A2] <∞. Then, the system
is critical if and only if

1 =
∑

i≥0

b−i a
′(1 − b−i)

a(1− b−i)
+ b

∑

i≥0

bi
i−1∏

j=0

a(1− b−j)

[
1− a(1− b−i)− b−ia′(1− b−i)

+
{
a(1− b−i)− 1 + b−iEA

}∑

k≥i

b−k a
′(1− b−k)

a(1− b−k)

]
.

This representation is more than just theoretical, since it permits to compute ef-
fectively the stability threshold in concrete examples. For instance, we can recover
the results of [3] and [2]

Corollary 1. Suppose that the immigration A is Poisson(λ) and that V = 1/b
almost surely. Then, the process is stable if and only if λ < λc, where λc is the
smallest positive root of

1 +
b(b− 1)e−

bλ
b−1

b− 1− bλ

∑

i≥0

bie
bλb−i

b−1

[
e−λb−i

(
1− λb−i

b− 1

)
− 1 + b

λb−i

b− 1

(
1− λ

bi

)]
= 0.

We can also obtain many more examples (previous results were only about
Poisson arrivals). For instance:

Corollary 2. Suppose that V = 1/b almost surely and that A is Bernoulli(p).
Then, the process is stable if and only if p < pc, where pc is the root of

1 =
∑

i≥0

pb−i

1− pb−i
.
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Random geometric graphs in high dimension

Gábor Lugosi

(joint work with Luc Devroye, András György, Frederic Udina)

Motivated by a statistical hypothesis testing problem of detecting small corre-
lations in Gaussian data, we introduce a model of random geometric graphs on
high-dimensional spheres. We show that as the dimension grows, the graph be-
comes similar to and Erdős-Rényi random graph. We pay particular attention to
the clique numbers of such graphs and show that the size of the dimension plays
an important role in their behavior. In particular, we show that the clique number
is very close to that of the corresponding Erdős-Rényi graph when the dimension
is larger than log3 n where n is the number of vertices.

Reporter: Ralph Neininger
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