
Mathematisches Forschungsinstitut Oberwolfach

Report No. 25/2011

DOI: 10.4171/OWR/2011/25

Billiards, Flat Surfaces, and Dynamics on Moduli Spaces

Organised by
Howard Masur, Chicago
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Introduction by the Organisers

Billiards in polygons provide much of the motivation and the many of the main
examples of the subject of this workshop. More generally, flat surfaces were the
objects of focus of all the participants of this conference. Dynamics on moduli
space is a good description of an area that has become very well established in
recent years.

Some of the most interesting recent results in this area have arisen from apply-
ing methods from quite different subjects. Consequently the workshop had partic-
ipants with very different backgrounds. These included ergodic theory, topology,
(Teichmüller) geometry, geometric group theory, and algebraic geometry. Never-
theless the level of expertise of participants in the common subject of the confer-
ence was extremely high. This allowed the organizers to schedule short research
talks by almost all individuals or groups who had recent results, and these results
were understood by essentially everybody whether the talks were ergodic theoretic,
differential geometric, or algebraic geometric in nature.

The area of dynamics on moduli spaces is rapidly evolving. Basically the results
presented were limited to new results obtained since the research summer trimester
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in HIM in 2010. This suggests that it might be reasonable to preserve the tradition
of have yearly conferences in this area of mathematics at institutions such as CIRM,
MSRI, Oberwolfach, and HIM.

It has become commonplace that papers written in this area are the collabora-
tion of two or three authors who often live on different continents. The evenings
were very densely charged, since all these mostly overlapping small groups were
working hard taking advantage of being unified in a nice and creative environment.
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Abstracts

Gaps for Saddle Connection Directions

Jayadev Athreya

(joint work with Jon Chaika)

1. Introduction

1.1. Generalized diagonals for rational billiards. Let P be a Euclidean poly-
gon with angles in πQ. We call such a polygon rational. A classical dynamical
system is given by the idealized motion of a billiard ball on P : the (frictionless)
motion of a point mass at unit speed with elastic collisions with the sides.

A generalized diagonal for the polygon P is a trajectory for the billiard flow
that starts at one vertex of P and ends at another vertex. Since the group ∆P

generated by reflections in the sides of P is finite, the angle of a trajectory is well
defined in S1 ∼= S1/∆P . A motivating question for our paper is the following: how
close in angle can two generalized diagonals of (less than) a given length be (in
terms of the length)?

Masur [4] showed that the number of generalized diagonals of length at most R
grows quadratically in R. We show, for some families of billiards, that the smallest
gap γPR between two generalized diagonals on P of length at most R satisfies

(1.1) lim
R→∞

R2γPR = 0,

and for other specific billiard tables that

(1.2) lim inf
R→∞

R2γPR > 0.

1.2. Translation surfaces. Let Σg be a compact surface of genus g ≥ 2. Let Ωg

be the moduli space of holomorphic differentials on Σg. That is, a point ω ∈ Ωg

is a equivalence class of pairs (M,ω), where M is a genus g Riemann surface, and
ω is a holomorphic differential on M , i.e., a tensor with the form f(z)dz in local
coordinates, such that i

2

∫
Σg
ω ∧ ω̄ = 1.

|ω| determines a flat metric on M with conical singularities at the zeros of the
differential ω. Geometrically, a zero of the form zk(dz) corresponds to a cone angle
of order (2k+2)π. Zeroes of ω are singular points for the flat metric. We refer to
non-singular points as regular points. The space Ωg can be decomposed naturally
into strata H, each carrying a natural measure µH.

1.3. Saddle connections and cylinders. Fix ω ∈ Ωg. A saddle connection on
ω is a geodesic segment in the flat metric connecting two singular points (that is,
zeros of ω) with no singularities in its interior. Given a regular point p, a regular
closed geodesic through p is a closed geodesic not passing through any singular
points. Regular closed geodesics appear in families of parallel geodesics of the
same length, which fill a cylindrical subset of the surface.
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1.3.1. Holonomy vectors. Let γ be an (oriented) saddle connection or regular
closed geodesic. Define the associated holonomy vector

(1.3) vγ :=

∫

γ

ω.

Note that if γ is a closed geodesic, vγ only depends on the cylinder it is contained
in, since regular closed geodesics appearing in a fixed cylinder all have the same
length and direction. View vγ as an element of R2 by identifying C with R2.

Let

Λsc
ω = {vγ : γ a saddle connection on ω}(1.4)

Λcyl
ω = {vγ : γ a cylinder on ω}

be the set of holonomy vectors of saddle connections and cylinders respectively.
For Λω = Λsc

ω or Λcyl
ω , we have that Λω is discrete in R2 (see, e.g., [5, Proposition

3.1]), but Masur [3] showed that associated set of directions

Θω := {arg(v) : v ∈ Λω}
is dense in [0, 2π) for any ω ∈ Ωg.

1.4. Decay of gaps. In this paper, we give a measure of the quantitative na-
ture of this density by considering fine questions about the distribution of saddle
connection directions. Given R > 0, let

(1.5) Θω
R := {arg(v) : v ∈ Λω ∩B(0, R)}

denote the set of directions of saddle connections (or cylinders) of length at most
R. Let γω(R) be the size of the smallest gap, that is γω(R) = minθi∈ΘR

|θi−θi+1|,
where we view θn+1 as θ1, where

n = N(ω,R) := |Λω ∩B(0, R)|
is the cardinality of Θω

R. Masur [4] showed that the counting function N(ω,R)
grows quadratically in R for any ω, thus, one would expect the γω(R) to decay
quadratically. Our main theorem addresses the asymptotic behavior of the rescaled
quantity R2γω(R). Let H be a stratum of Ωg, and let µ = µH.

Theorem 1.1. For µ-almost every ω ∈ H,

(1.6) lim
R→∞

R2γω(R) = 0.

Moreover, for any ǫ > 0, the proportion of gaps less than ǫ/R2 is positive. That
is, writing Θω

R := {0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn}, we have

(1.7) lim
R→∞

|{1 ≤ i ≤ N(ω,R) : (θi+1 − θi) ≤ ǫ/R2}|
N(ω,R)

> 0.

Theorem 1.1 cannot be extended to all ω ∈ H, since for any stratum H there are
many examples ω ∈ H for which

(1.8) lim inf
R→∞

R2γω(R) > 0.
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We say that ω has no small gaps (NSG) if (1.8) holds. An important motivating
example of a surface with NSG is the case of the square torus (C/Z2, dz). Since
there are no singular points, there are no saddle connections, but cylinders are
given by integer vectors, and Θω0 then corresponds to rational slopes. It can be
shown that 3/π2 is a lower bound for R2γω0(R) (see, for example [1]).

The torus is an example of a lattice surface. Recall that ω is said to be a lattice
surface if the group of derivatives of affine diffeomorphisms of ω is a lattice in
SL(2,R) We have:

Theorem 1.2. ω is a lattice surface if and only if it has no small gaps.
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Ellipses in translation surfaces

Christopher Judge

(joint work with S. Allen Broughton)

In this talk, I describe joint work with S. Allen Broughton of the Rose-Hulman
Institute of Technology that will soon appear as [3].

A translation structure µ on a (connected) topological surface X is an equiv-
alence class of atlases whose transition functions are translations. Translation
surfaces are fundamental objects in Teichmüller theory, the study of polygonal
billiards, and the study of interval exchange maps.

The cylinders that are isometrically embedded in a translation surface play a
central role in the theory. In Teichmüller theory, they appear as solutions to moduli
problems. In rational billiards and interval exchange maps, cylinders correspond
to periodic orbits.

Indeed, each periodic geodesic γ on a translation surface belongs to a unique
‘maximal’ cylinder that is foliated by the geodesics that are both parallel and
homotopic to γ. One method for producing such periodic geodesics implicitly uses
ellipse interiors: If X admits an isometric immersion of an ellipse with area greater
than that of X , then the image of the immersion contains a cylinder, and hence a
periodic geodesic.

Ellipses interiors also serve to interpolate between maximal cylinders. The set,
E(X,µ), of ellipse interiors isometrically immersed in X has a natural geometry
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coming from the space of quadratic forms. The set of maximal cylinders is a
discrete set lying in the frontier of the path connected space E(X,µ).

If the frontier of a translation surface X is finite, then each point in the frontier
may be naturally regarded as a cone point with angle equal to an integral multiple
of 2π. If the frontier of an immersed ellipse interior U contains a cone point c,
then we will say that U meets x. If an ellipse interior meets a cone point, then the
ellipse interior belongs to the frontier of E(X,µ). The remainder of the frontier
consists of cylinders.

The number of cone points met by an ellipse interior determines a natural strat-
ification of E(X,µ).1 We show that E(X,µ) is homotopy equivalent to the stratum
consisting of ellipse interiors that meet at least three cone points. We prove that
the completion of this stratum is naturally a (non-manifold) 2-dimensional cell
complex whose 2-cells are convex polygons.

We show that the topology of this polygonal complex and the geometry of
the immersed ellipses and cylinders that serve as its vertices together encode the
geometry of (X,µ) up to homothety.

Theorem. Suppose that there is a homeomorphism Φ that maps the polygonal
complex associated to (X,µ) onto the polygonal complex associated to (X ′, µ′). If
for each vertex U , the ellipses (or strips) U and Φ(U) differ by a homothety, then
(X,µ) and (X ′, µ′) are equivalent up to homothety.

Affine mappings naturally act on planar ellipses, and hence the group of affine
homeomorphisms of (X,µ) acts on E(X,µ). Because µ is a translation structure,
the differential of an orientation preserving affine homeomorphism is a well-defined
2× 2 matrix of unit determinant. The set of all differentials is a discrete subgroup
of SL2(R) that is sometimes called the Veech group and is denoted Γ(X,µ). Using
Theorem , one can characterize Γ(X,µ).

Theorem. The group Γ(X,µ) consists of the g ∈ SL2(R) for which there exists an
orientation preserving self homeomorphism of the polygonal complex associated to
(X,µ) such that for each vertex U there exist a homothety hU such that U differs
from Φ(U) by hU ◦ g.

The group Γ(X,µ) is closely related to the subgroup of the mapping class group
of X that stabilizes the Teichmüller disc associated to (X,µ). To be precise, each
mapping class in the stabilizer has a unique representative that is affine with
respect to µ. The Veech group is the set of differentials of these affine maps, and
is isomorphic to the stabilizer modulo automorphisms. In particular, if there are
no nontrivial automorphisms in the stabilizer, then the quotient of the hyperbolic
plane by a lattice Veech group is isometric to a Teichmüller curve.

There is a natural map that sends each ellipse interior U ⊂ R2 to the coset
of SO(2) \ SL2(R) consisting of g such that g(U) is a disc. This map naturally
determines a map from E(X,µ) onto the Poincaré disc. The image of the 1-skeleton
of the polygonal cell complex determines a tessellation of the upper half-plane that

1To be precise one must lift to the universal cover before counting.
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coincides with a tessellation defined by William Veech [6] [7]. Indeed, our work
began with a reading of a 2004 preprint of [7]. Later, we discovered that Joshua
Bowman had independently defined the tessellation [1] [2]. In a companion paper
[4], we will discuss the connection between E3(X,µ) and the tessellation in more
detail.
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Diffusion rate in the wind-tree model

Vincent Delecroix

(joint work with Pascal Hubert and Samuel Lelièvre)

We study periodic versions of the wind-tree model introduced by P. & T. Ehrenfest
in 1912 [3]. A point moves in the plane R2 and bounces elastically off rectangular
scatterers following the usual law of reflection. The scatterers are translates of the
rectangle [0, a]× [0, b], 0 < a < 1 and 0 < b < 1, one centered at each point of Z2.
We denote the complement of obstacles in the plane by T (a, b) and refer to it as
the wind-tree model. Our aim is to understand its dynamical properties following
the general scheme.

• Does there exists a typical behavior for trajectories ? If so describe it ?
• Quantify the set of non-typical behavior.

Typical behavior can be thought in topological or measurable sense and with
respect to different dynamical properties: recurrence/divergence, diffusion rate,
ergodicity, . . .

The first study of the periodic wind-tree model is due to J. Hardy and J. Weber
[7]. They proved that the rate of diffusion is log(t) log log(t) for very specific direc-
tions (generalized diagonals). Their result was recently completed by J.P. Conze
and E. Gutkin [2] who build the ergodic decomposition of the billiard flow for those
specific directions. In another direction, P. Hubert, S. Lelièvre and S. Troubetzkoy
[6] proved that for a dense set of parameters a, b, for almost every direction θ, the
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flow in the direction θ is recurrent. In this paper, we compute the polynomial rate
of diffusion.

Let 0 < a, b < 1 be a fixed size for the scatterer. If we consider an initial
condition with angle θ then, as the barriers are either horizontal or vertical, the
ball will only takes direction θ, −θ, π−θ and π+θ. We call flow in direction θ and
denote by φθt the billiard flow associated to the quadruple of directions {θ,−θ, π−
θ, π + θ}. The phase space for the billiard flow is T (a, b) × (++,+−,−+,−−)
where ++,+−,−+,−− refers to the four possible directions.

Theorem. Let φθt be the billiard flow in direction θ in the table T (a, b) and d(., .)
be the euclidean distance on R2.

(1) If (a, b) are rational numbers, then for almost every θ and for every point
x in T (a, b) (with an infinite trajectory), we have

lim sup
t→∞

log(d(x, φθt (x)))

log(t)
=

2

3
.

(2) If (a, b) ∈ Q[
√
D] are quadratic numbers with the additional condition that:

1/(1−a) = x+ z
√
D and 1/(1− b) = (1−x)+ z

√
D then for almost every

θ and for every point x in T (a, b) (with an infinite trajectory), we have

lim sup
t→∞

log(d(x, φθt (x)))

log(t)
=

2

3
.

(3) For almost all (a, b) ∈ (0, 1)2, for almost every θ and for every point x in
T (a, b) (with an infinite trajectory), we have

lim sup
t→∞

log(d(x, φθt (x)))

log(t)
=

2

3
.

The conclusion of the first and second statement holds for specific parameters
while the third one is the answer in the generic case. We do not know if the latter
result holds for every parameters (a, b) ∈ (0, 1)2.

By the Z2 periodicity of the billiard table T (a, b), our problem reduces to esti-
mations of a Z2 cocycle over the billiard in a fundamental domain. On the other
hand, a standard construction consisting of unfolding the trajectories [12], the bil-
liard flow can be replaced by a linear flow on a (non compact) translation surface
that we denote X∞(a, b). The surface X∞(a, b) keeps the Z2-periodicity of the
billiard table T (a, b). We denote X(a, b) the quotient of X∞(a, b) under this Z2

action. As, the unfolding procedure of the billiard flow is equivariant with respect
to the Z2 action X(a, b) can be also be seen as the unfolding of the billiard in a
fundamental domain of T (a, b)/Z2.

The position of the particle in T (a, b) can be tracked from X(a, b). The po-
sition of the particle starting from x in direction θ can be approximated by the
intersection of a geodesic in X(a, b) with a cocycle f ∈ H1(X(a, b);Z2) describing
the infinite cover X∞(a, b)/X(a, b). Theorem has an immediate translation in
this language. The growth of such quantities has been studied since a long time
by A. Zorich [13, 14] and G. Forni [5] (see also [8]) and are related to Lyapunov
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exponents of the Teichmüller flow. In our case which does not fit into the pre-
ceding general theory, we prove that the exponents do control the growth of the
intersection. That’s the main part of the paper. From results by M. Bainbridge
[1] and A. Eskin, M. Kontsevich and A. Zorich [4], we deduce that the value of
the Lyapunov exponent under consideration is 2/3 which explains the right term
in Theorem .

The surface X(a, b) is a covering of the genus 2 surface L(a, b) which is a so
called L-shaped surface. By C. McMullen’s fundamental work [9, 10, 11], the only
SL2(R) invariant submanifolds of the stratum H(2) are the Teichmüller curves
(cases 1 and 2 in Theorem ) and the stratum itself (case 3). The only SL2(R)
invariant probability measures are the Lebesgue measures on these loci. To prove
Theorem we use asymptotic theorems (namely Birkhoff and Oseledets ergodic
theorem) with respect to those measure.
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On the neutral Oseledets bundle of Kontsevich-Zorich cocycle over
certain cyclic covers

Carlos Matheus

(joint work with Giovanni Forni and Anton Zorich)

The moduli space H(1)
g of unit area Abelian differentials ω on a genus g ≥ 1

Riemann surface M is naturally stratified by prescribing the list (k1, . . . , kσ) of
orders of zeros of ω. Here

∑σ
n=1 ki = 2g − 2 in view of classical index theorems

(Poincaré-Hopf, Gauss-Bonnet, Riemann-Roch, etc.). Denoting by H(k1, . . . , kσ)
the corresponding stratum, it is possible to define a natural SL(2,R)-action on
each connected component1 C of H(k1, . . . , kσ). By the seminal works of Howard
Masur [9] and William Veech [11], we know that the action of the diagonal sub-
group gt = diag(et, e−t) of SL(2,R) is ergodic (and actually mixing) with respect
to a natural SL(2,R)-invariant probability µMV on C (sometimes called Masur-
Veech measure in the literature). The action of gt is the so-called Teichmüller
geodesic flow. This flow is known to act as a renormalization dynamics for interval
exchange transformations, certain rational billiards and vertical flows on transla-
tion surfaces. In particular, the study of Lyapunov exponents of gt is a relevant
subject connected to the deviations of ergodic means of the systems quoted above.

Following M. Kontsevich and A. Zorich, the Lyapunov spectrum (i.e., the col-
lection of Lyapunov exponents) of Teichmüller geodesic flow can be computed
from the nowadays called Kontsevich-Zorich (KZ) cocycle. In few words, KZ
cocycle GKZ

t is obtained from the quotient by the mapping class group Γg :=

Diff+(M)/Diff+
0 (M) of the trivial cocycle ĜKZ

t : Tg×H1(M,R) → Tg×H1(M,R),

ĜKZ
t (ω, c) = (gt(ω), c). Here, Diff+(M) is the set of orientation-preserving diffeo-

morphisms of M , Diff+
0 (M) is the connected component of the identity inside

Diff+(M), and Tg is the Teichmüller space of Abelian differentials on M . By
definition, GKZ

t is a symplectic cocycle on the 2g-dimensional real vector space
H1(M,R) (since it preserves the symplectic natural intersection form onH1(M,R),
and thus the Lyapunov spectrum of GKZ

t with respect to any gt-invariant proba-
bility µ is symmetric under sign changes, i.e., it has the form

λµ1 ≥ · · · ≥ λg ≥ 0 ≥ λµg+1 = −λµg ≥ · · · ≥ λµ2g = −λµ1 .

Also, it is possible to show that the Lyapunov exponents of gt with respect to
µ have the form ±1 ± λµi , so that the Lyapunov spectra of gt are completely
determined by the Lyapunov spectra of GKZ

t .
For the Masur-Veech measure µMV , after several computer experiments, it was

conjectured by Kontsevich and Zorich that the Lyapunov spectrum of KZ cocycle
was simple, i.e., all exponents λµMV

i have multiplicity 1 and, in particular, 0 doesn’t

1After the results of Maxim Kontsevich and Anton Zorich [8], there is a complete classification
of such connected components and, in particular, we know that there are at most 3 of them per
stratum.
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belong to it. Nowadays, after the works of Giovanni Forni [3], and Artur Avila
and Marcelo Viana [1], we have that this conjecture is true.

Partly motivated by this, W. Veech asked whether such a conjecture would
remain true for other SL(2,R)-invariant probabilities. In general, a simple geo-
metrical argument reveals that λµ1 = 1. Also, as it was shown by W. Veech in the
case of µMV and by G. Forni in the general case of a gt-invariant probability µ, one
always has 1 = λµ1 > λµ2 , i.e., λ

µ
1 always has multiplicity 1, so that Veech’s question

concerns only the exponents λµ2 ≥ · · · ≥ λµg (≥ 0). In 2005, G. Forni [4] found an
example of SL(2,R)-invariant probability µEW in the stratum H(1, 1, 1, 1) of genus
3 Riemann surfaces equipped with Abelian differential with 4 simple zeroes such
that λµEW

2 = λµEW

3 = 0. Hence, this shows that Kontsevich-Zorich conjecture is
far from being true for other measures than µMV . In 2008, Forni’s example was
rediscovered by Martin Möller, Frank Herrlich and Gabriela Schmithüsen [7] as an
example of Teichmüller curve with plenty of unusual properties and they coined
the term Eierlegende Wollmilchsau for the (unique) square-tiled surface in the sup-
port of µEW . In the same year, G. Forni and the present author announced the
existence of another SL(2,R)-invariant probability µO in the (even spin connected
component of the) stratum H(2, 2, 2) of genus 4 Riemann surfaces with 3 double
zeroes such that λµO

2 = λµO

3 = λµO

4 = 0, i.e., the spectrum is totally degenerate. It
was recently suggested to the author by Vincent Delecroix and Barak Weiss that,
in analogy to the Eierlegende Wollmilchsau, the unique square-tiled surface in the
support of µO should be called Ornithorynque (i.e., Platypus in French), Ornitor-
inco (i.e., Platypus in Italian) or even Ornitorrinco (i.e., Platypus in Portuguese),
and that’s why we denoted µO the corresponding measure.

In any case, even though it was shown recently by M. Möller [10] that, except
possibly for certain strata in genus 5, there are no further totally degenerate ex-
amples among Teichmüller curves besides the previous examples, it is possible to
“include” these examples in a larger class of Teichmüller curves called square-tiled
cyclic covers obtained by cyclic covers of the Riemann sphere branched at four
points. After the works of G. Forni, the present author and A. Zorich [5], and Alex
Eskin, Maxim Kontsevich and Anton Zorich [2], the geometry, combinatorics and
the precise value of individual Lyapunov exponents of square-tiled cyclic covers
were studied in details, and, in particular, we know that this is a rich class of ex-
amples with partially degenerate spectrum (i.e., some of the Lyapunov exponents
vanish). Also, in a work [6] still in preparation, G. Forni, A. Zorich and the present
author found the geometric reason responsible for the presence of vanishing expo-
nents in square-tiled cyclic covers: indeed, denoting by B the second fundamental
form (also known as Kodaira-Spencer map) of the Gauss-Manin connection on
the Hodge bundle H1

g := (Tg × H1(M,R))/Γg, the neutral Oseledets bundle Eµ
0

(i.e., the Oseledets subspaces associated to vanishing Lyapunov exponents) coin-
cides with the annihilator Ann(B) of B. In particular, since B is a real-analytic
function of the base point ω ∈ C, we see that the neutral Oseledets bundles of
square-tiled cyclic covers depend real-analytically on the base point. Notice that
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this is very far from being true for general cocycles (and the best one can say in
general is that Oseledets subspaces depend measurably on the base point).

Of course, it is tempting to conjecture that this picture for square-tiled cyclic
covers could be generalized for all SL(2,R)-invariant probabilities under KZ co-
cycle. One of the main results of the work [6] is the fact that the family of

genus 10 curves y6 =
6∏

n=1
(x − xn) equipped with the Abelian differentials ω =

(x−x1)dx/y3 ∈ H(8, 2, 2, 2, 2, 2) for a SL(2,R)-invariant locus supporting SL(2,R)-
invariant probabilities such that the corresponding neutral Oseledets bundles doesn’t
coincide with the annihilator of B even though these subspaces have the same di-
mension!

Closing our discussion, we present in a nutshell the proof of this result. A direct
inspection reveals that Ann(B) is SO(2,R)-invariant, so that, if Eµ

0 = Ann(B), we
would conclude that Ann(B) is SO(2,R) and gt invariant at the same time. Hence,
it would follow that Ann(B) is SL(2,R)-invariant. However, this last property can
be easily contradicted if one can find an adequate pair of pseudo-Anosov (i.e., a
pair of periodic gt-orbits) associated to two Abelian differentials ω and ω′ sitting
on the same Riemann surfaceM and deduced one from the other by rotation (i.e.,
an element in SO(2,R), or equivalently, ω′ = eiθω for some θ ∈ R). Indeed, in
this context, Ann(B) would be a common subspace of the matrices associated to
the actions on homology of these pseudo-Anosovs, and so we get a contradiction
as soon as these matrices don’t share common subspaces, a simple (linear algebra)
property to check from explicit realizations of them.
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Geometry of Teichmüller curves

Dawei Chen

(joint work with Martin Möller)

My research centers around the geometry of moduli spaces. One of my projects
related to this meeting is to study the algebro-geometric properties of SL(2,R)-
submanifolds in the moduli space H of Abelian differentials.

Take a Riemann surface along with a holomorphic 1-form parameterized in
H. Its complex structure varies naturally with the 1-form via the SL(2,R) ac-
tion. An SL(2,R)-submanifold is an orbit closure in H under this action. To
name a few examples, if an orbit itself forms a closed complex curve, we call it
a Teichmüller curve. The Hurwitz space parameterizing branched covers of tori
and the strata in H parameterizing 1-forms with prescribed type of zeros are also
SL(2,R)-submanifolds.

In algebraic geometry it is often desirable to work with a compactified moduli
space, like passing from the moduli space Mg of genus g Riemann surfaces to

its Deligne-Mumford compactification Mg, i.e. we allow a slight degeneration of
Riemann surfaces by pinching two points together. Here I would like to emphasize
the significance of this viewpoint for the study of SL(2,R)-submanifolds.

Take Teichmüller curves as illustration of the idea. One can associate three
numbers: the sum of Lyapunov exponents L, Siegel-Veech constant c and slope s
to a Teichmüller curve. The first two come from dynamics. Roughly speaking,
Lyapunov exponents characterize the rate of separation of infinitesimally closed
trajectories under the Teichmüller geodesic flow. The Siegel-Veech constant repre-
sents the average number of weighted horizontal cylinders in the orbit that gener-
ates the Teichmüller curve, where the Abelian differential defines a flat structure
on the Riemann surface such that it decomposes into cylinders along a fixed di-
rection and the weight of a cylinder is given by its height/length. The third one,
slope, comes from algebraic geometry, by taking the quotient of the intersection of
a Teichmüller curve with the boundary of Mg and the intersection with the first

Chern class of the Hodge bundle on Mg.
Although these three numbers seem unrelated, after the work of Kontsevich

[5], Bouw-Möller [1], Eskin-Kontsevich-Zorich [4] (in much more generality) and
myself [2], we now know a simple relation among them:

s =
12c

L
=

12c

c+ κ
,

where κ is a constant determined by the type of zeros of a generating Abelian
differential. Namely, knowing any one of the three immediately tells the other
two!

As an application, joint with Möller [3] we show that for many strata of Abelian
differentials in low genus the sum of Lyapunov exponents is non-varying for all
Teichmüller curves in that stratum. Our idea is to prove that the slope is non-
varying first, by exhibiting a geometrically defined divisor on Mg that does not
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intersect Teichmüller curves. Then we can translate back to the dynamical side
by the above relation.

Currently I am interested in generalizing the results of Teichmüller curves to
quadratic differentials as well as higher dimensional SL(2,R)-submanifolds.
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Ends of strata of the moduli space of quadratic differentials

Corentin Boissy

In this talk, we present the main result of the paper [2].

1. Introduction and statement of the result

We study compact surfaces endowed with a flat metric with isolated conical
singularities and Z/2Z linear holonomy. Such surface is naturally identified with a
Riemann surface endowed with a meromorphic quadratic differential with at most
simple poles. The moduli space of such surfaces with fixed combinatorial data is
a noncompact complex-analytic orbifold Q and is called a stratum of the moduli
space of quadratic differentials.

There is an obvious way to leave any compact subset of Q by rescaling the
metric so that the area tends to infinity or to zero. Hence we usually consider
normalized strata that corresponds to area one flat surfaces. A normalized strata is
still noncompact, and a neighborhood of the boundary corresponds to flat surfaces
with a short saddle connection.

Very few results are known about the topology of these strata. Kontsevich,
Zorich and Lanneau have classified their connected components (see [5] and [6]).
Here, we show the following theorem:

Theorem 1.1. Let C be a connected component of a normalized stratum of the
moduli space of quadratic differentials. Then, C has only one topological end.

We will consider the subset Cε ⊂ C of area one flat surfaces that have a saddle
connection of length less than ε. And show that it is connected.
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2. Combinatorics of a surface near the boundary

The most natural approach to prove the theorem is to describe a typical flat
surface in the neighborhood of the boundary. A saddle connection is a geodesic
joining two singularities. A flat surface is near the boundary if it has a saddle
connection of short length. One can look at the set of saddle connections that
are of minimal length. In general, there can be several such saddle connections
and we can show that they are parallel for a generic flat surface. Furthermore,
they stay parallel and of the same length for any small perturbation of the surface.
One can associate to such collection of saddle connection a “configuration” that
describes how the collection splits the surface (see [4, 9], and also [1]). The number
of different configurations tends to infinity when the genus tends to infinity. Also,
there is no obvious way to relate the different configurations that occur on a
connected component of a stratum, as illustrated by the following example.

2.1. Example. We consider the stratum of quadratic differentials Q(−1, 9). This
stratum has two connected component: the regular one and the irreducible one.
For each k ∈ {1, 2, 3, 4}, there exists Sk ∈ Q(−1, 9) with the following decomposi-
tion:

• on Sk, there are exactly two smallest closed saddle connections γ1,k and
γ2,k.

• γ1,k and γ2,k start and end at the singularity of order 9 and are the bound-
ary of a metric cylinder embedded in the surface.

• the angle between γ1 and γ2 is kπ.

Lanneau ([6]) has proven the following.

• If k ∈ {1, 2, 4} then Sk belongs to the regular connected component of
Q(−1, 9).

• If k = 3, then S belongs to the irreducible connected component of
Q(−1, 9).

Therefore, in we can start from the surface S1, we can continuously deform it so
that we get S2 or S4, but it is impossible to continuously deform the surface so that
we have S3. Note that in the stratumQ(−1, 1+4n), for n ≥ 3, one can find surfaces
with analogous decomposition by a pair of saddle connections bounding a cylinder.
But in this case all parameters k, can be reached by continuous deformations, since
the underlying stratum is connected.

3. Sketch of the proof

In order to bypass these difficulties, we use a construction, that build a transla-
tion surface S(π, ζ) from to a (irreducible) permutation π ∈ Σd and a continuous
parameter ζ ∈ Cd. The continuous parameter is called a suspension data and
must satisfy some linear inequalities (see [7]), and the connected component in
which the constructed surface lies depends only of π. The original construction
is due to Veech [10], but the equivalent point of view in terms of suspension data
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is due to Marmi-Moussa-Yoccoz [7]. Such construction was generalized quadratic
differentials by the author and Lanneau [3].

Given a permutation π that corresponds to a connected component C, we can
define the set S(Dπ,ε) of area one flat surfaces obtained with the Veech construc-
tion, and with a parameter ζ having at least one coordinate of length smaller
than ε. This set is naturally a subset of Cε, and one can show that it is connected.

The set of permutations that can appear with the Veech construction in a con-
nected component of a stratum is called the extended Rauzy class. The important
fact is that for each pair π, π′ in such class, we can join π to π′ using a sequence of
elementary operations called the (extended) Rauzy moves. This moves are related
to the well known Rauzy induction. Using this moves, one can show the following
lemma:

Lemma 3.1. All the subsets S(Dπ,ε) are in the same connected component of Cε.
A difficulty now is that a generic surface near the boundary, even if it is obtained

by the Veech construction, it does not necessarily appear from the construction
with a “short” parameter. But we can show the following:

Lemma 3.2. For any flat surface S in Cε, there exists a permutation π and a
path that stays in Cε and joins S to S(Dπ,ε).

Theorem 1.1 is then obtained by a combination of the to previous lemma.
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Abelian Square-Tiled Surfaces

Alex Wright

The flat pillowcase metric on CP1 \ {z1, z2, z3, z4} is given by the quadratic
differential

q0 =
(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)
.

For some choice of z1, z2, z3, z4, the result is two squares glued together along
corresponding edges.

A cyclic square-tiled surface is a normal cover of CP1 \ {z1, z2, z3, z4} whose deck
group is cyclic, endowed with a lift of q0. Such covers can be given as algebraic
curves by

wN = (z − z1)
a1(z − z2)

a2(z − z3)
a3(z − z4)

a4 .

Historically, interest in cyclic square-tiled surfaces arose from examples of Te-
ichmüller curves with totally degenerate Lyapunov spectrum [5, 3, 4]. (All known
examples of Teichmüller curves with totally degenerate Lyapunov spectrum are
cyclic square-tiled surfaces.)

Cyclic square-tiled surfaces have been studied systematically in [2] and [4]. No-
tably, Eskin-Kontsevich-Zorich have computed all individual Lyapunov exponents
of the Hodge bundle for cyclic square-tiled surfaces. The moral reason for their
success is that the underlying Riemann surface is nicely described as an algebraic
curve, allowing computations to be done explicitly.
We define an abelian square-tiled surface to be a normal cover ofCP1 \ {z1, z2, z3, z4}
whose deck group is abelian, endowed with a lift of q0. Despite the fact that there
is no longer a single nice formula for the underlying algebraic curve, it is possi-
ble to write down the function field, and once again all Lyapunov exponents may
be computed. This computation was in fact the original motivation for studying
abelian square-tiled surfaces, since the holonomy double cover of a cyclic square
tiled-surfaces is abelian, and the Lyapunov exponents of the Hodge bundle of the
double cover give the Lyapunov exponents of the full tangent bundle to the cyclic
square-tiled surface.

Perhaps the most surprising thing about abelian square-tiled surfaces is that
they can be used to rephrase the construction of the Bouw-Möller Teichmüller
curves. These are Teichmüller curves whose affine group is typically a (n,m,∞)
triangle group [1]. This construction includes the Veech and Ward curves as a
special case.

Hooper has given an elementary construction of lattice surfaces whose affine
group is typically a (n,m,∞) triangle group [4].

Theorem (W). Hooper’s lattice surfaces generate the Bouw-Möller curves in all
cases.
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Previously this was known in some cases. As a consequence, the Bouw-Möller
curves are generated by the flat surfaces with semi-regular polygon decomposition,
discovered independently by Hooper and Mukamel.

Bouw-Möller’s construction is novel in that, instead of using the SL2(R) action,
it uses a variant of the following result.

Theorem (Rephrasing of Möller’s Criterion). A curve in moduli space is a Te-
ichmüller curve if and only if there is a rank two sub-VHS (i.e., rank two bundle
that splits into a (1, 0) part and a (0, 1) part) of H1 such that

• the rank two bundle has parabolic monodromy around cusps, and
• the associated period map has non-vanishing derivative.

The monodromy of the Hodge bundle for cyclic square-tiled surfaces may es-
sentially be computed using hypergeometric differential equations, and as a result
rank two subbundles can be found with triangle group monodromy, whose pe-
riod maps have non-vanishing derivative. However, these bundles have finite order
monodromy around some cusps, so Möller’s Criterion does not apply.

The solution is to use abelian square-tiled surfaces which are exceptionally sym-
metric, in that they admit a lift of the Klein four group of pillowcase symmetries.
Upon taking a fiberwise quotient, some of the noded Riemann surfaces at the
cusps of the arithmetic Teichmüller curve become smooth, and then, after for-
getting marked points, Möller’s criterion applies. This is only a rephrasing of
the original construction of Bouw-Möller, but the square-tiled surface perspective
directly gives the following surprising result.

Theorem (W). The closures of the Bouw-Möller and Veech Teichmüller curves in
the Deligne-Mumford compactification of Mg are images of the closures of arith-

metic Teichmüller curves under a tautological forgetful map Mg,n → Mg.

A quadratic differential with simple poles may be assigned to all but at most
four fibers of a Veech or Bouw-Möller Teichmüller curve, giving the fibers the
structure of a square-tiled surface in such a way that all the square-tiled surfaces
thus obtained are related by the SL2(R) action on the square-tiled flat structures.

We suggest that Teichmüller curves in Mg which are images of arithmetic
Teichmüller curves in some Mg,n under a tautological forgetful map be thought of
as “pseudo-arithmetic.” We do not yet know if all Teichmüller curves are pseudo-
arithmetic.

The high-tech nature of the construction of the Veech-Ward-Bouw-Möller curves
gives the Lyapunov exponents and monodromy almost for free, and allows us to
observe that these curves are pseudo-arithmetic. Furthermore, the connection to
abelian square-tiled surfaces as well as to the semi-regular polygon decomposition
allows the Veech-Ward-Bouw-Möller curves to be studied by elementary means.
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Weak mixing of induced IETs

Michael Boshernitzan

For an ergodic IET (interval exchange transformation) f : X → X , X = [0, 1]
we prove that the IETs ft : Xt → Xt, Xt := [0, t], 0 < t < 1 (obtained from f by
inducing f to Xt) are weakly mixing for Lebesgue almost all t.

Ergodic infinite extensions of locally Hamiltonian flows

Corinna Ulcigrai

(joint work with Krzysztof Fraczek)

Let S be a closed connected surface of genus g ≥ 1 with a smooth area form ν.
Consider a vector field X which preserves ν and denote by (φt)t∈R the associated
area-preserving flow. Given a smooth real valued function f : S → R, the extension
(Φf

t )t∈R of (φt)t∈R given by f is the flow on the trivial bundle M = S × R given
by the solutions of the differential equations

(0.1)

{
dx
dt = X(x),
dy
dt = f(x),

⇒ Φf
t (x, y) =

(
φtx, y +

∫ t

0
f(φsx) ds

)
,

where (x, y) ∈ S × R. Hence, the flow (0.1) projects in the first coordinate to the
the surface flow (φt)t∈R, while the motion in the R-coordinate is determined by

the ergodic integrals of f along the flow trajectories. Thus, the extension (Φf
t )t∈R

provides a geometric way of visualizing the fluctuations of the ergodic integrals.

The flow (Φf
t )t∈R preserves the infinite invariant measure µ = ν ×Leb, where Leb

denotes the Lebesgue measure on the fiber R. Thus one can investigate its ergodic
properties. Let us recall that a flow (Φt)t∈R preserving a invariant measure µ
(possibly infinite, as in our case) is ergodic if for any measurable set A which is
invariant, i.e. such that A = Φt(A) for all t ∈ R, either µ(A) = 0 or µ(Ac) = 0
where Ac denotes the complement.

For g = 1, extensions of linear flows on tori where studied by Herman and
Krygin, who showed that the extension can be ergodic only when the rotation
number of the linear flow is Liouville (see [7, 9]). On the other hand, Fayad
and Lemańczyk [3] studied flows on tori with singularities (more precisely, they
considered locally Hamiltonian flows, which are defined below) and proved that in
this case for almost every rotation number one can construct ergodic extensions
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over their minimal components. The ergodicity of extensions of minimal flows of
the same type in higher genus g ≥ 2 is left as an open problem in [3].

We prove the existenceof ergodic extensions of area-preserving flows on surfaces
any genus g ≥ 2. More precisely, we consider locally Hamiltonian flows (φt)t∈R

(also known as flows given by a multivalued Hamiltonian), which are a natural
class of symplectic flows introduced and studied by S.P. Novikov and his school
(see [1, 11, 17]). Given a closed 1-form onM , the locally Hamiltonian flow (φt)t∈R

given by η is the the smooth flow onM associated to the vector field X determined
by η = iXω = ω(X, · ), where ω is the non-degenerate 2-form which gives ν. Let us
assume that (φt)t∈R has no saddle connections, (this implies minimality) and that
the fixed points of the flow are only Morse saddles. The ergodic properties of these
locally Hamiltonian surface flows are now well understood (see [8, 4, 12, 15, 16]) and
the deviations of their ergodic integrals were studied by Forni in [6]. We restrict
our attention to locally Hamiltonian flows of hyperbolic periodic type, which are a
natural generalization of linear flows on tori whose rotation number has periodic
continued fraction (more precisely, we say that a flow is of periodic type if it
induces, as Poincaré map on a cross section, an interval exchange transformation
with periodic Rauzy-Veech expansion and it is of hyperbolic periodic type if 2g
eigenvalues of the period matrix have modulus different than 1). This class, which
has measure zero, exhibit nevertheless the same ergodic properties of the typical
locally Hamiltonian flows with simple saddles (that is, they are minimal, uniquely
ergodic and weakly mixing, but not mixing). Our main result is the following.

Theorem. Let (φt)t∈R be a locally Hamiltonian flow of hyperbolic periodic type
on a compact surface S of genus g ≥ 2. There exists a closed (φt)t∈R-invariant
subspace K ⊂ C2+ǫ(S) with codimension g in C2+ǫ(S), where g is the genus of S,
such that if f ∈ K and there is a fixed point of (φt)t∈R on which f does not vanish,

then the extension (Φf
t )t∈R is ergodic.

We remark that the space K is infinite dimensional and it is an extension of
the space of invariant distributions introduced by Forni [5]. In particular, the
Theorem allows to construct examples of ergodic extensions of area-preserving
flows on surfaces of any genus g ≥ 2. Furthermore, for functions f ∈ K we can
prove a dynamical dichotomy. If f ∈ K and, otherwise, f vanishes on all fixed

points, then the extension (Φf
t )t∈R is topologically reducible (that is, it is isomorphic

to the trivial extension (Φ0
t )t∈R given by Φ0

t (x, y) = (φtx, y), via an isomorphism
of the form G(x, y) = (x, y + g(x)), where g :M → R is continuous). In this case,
which is opposite to ergodicity, the phase space is foliated into invariant sets for

(Φf
t )t∈R given by graphs of g. No other phenomenon (in particular, no irregular

extensions, see [13]) arise for functions in K.
The proof reduces to proving ergodicity for a class of skew products over in-

terval exchange transformations (IETS). We recall that IETs are Poincaré maps
of (φt)t∈R on a transverse interval I ⊂ S (in suitably chosen coordinates). The

Poincaré map of the extension (Φf
t )t∈R on the transverse hypersurface Σ = I × R

has the form Tϕf
(x, y) = (Tx, y + ϕf (x)), where (x, y) ∈ I × R, T is the IET
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obtained inducing (φt)t∈R on I and ϕf : I → R is given by

(0.2) ϕf (x) =

∫ τ(x)

0

f(φsx)ds,

where τ(x) is the first return time of x ∈ I to I under (φt)t∈R. It turns out that ϕf

has symmetric logarithmic singularities. In order to prove ergodicity of Tϕ, we use
the technique of essential values, developed by K. Schmidt and J.-P. Conze (see for
example [13]). To control essential values, we investigate the behavior of Birkhoff

sums ϕ
(n)
f (x) =

∑n−1
k=0 ϕf (T

kx) of ϕf . Ergodicity follows if one can prove that

the sequence ϕ
(nj)
f is partially tight along a subsequence (nj)j∈N of partial rigidity

times for the IET and at the same time, exploiting the presence of the logarithmic

singularities, ϕ
(n)
f has enough oscillations. In order to achieve tightness, we need

correct the function ϕf by a piecewise constant function χ (which is equivalent to
requiring that f belongs to the spaceK, which is defined as kernel of the correction
operator), following an idea introduced by Marmi, Moussa and Yoccoz in order to
solve the cohomological equation for IETs in [10]. The correction operator that
we use is closely related to the correction operator used by the Fraczek and Conze
in [2]. The additional difficulty that we have to face to achieve tightness is the
presence of logarithmic singularities. Here the assumption that the singularities
are symmetric is crucial to exploit the cancellation mechanism introduced in [16]
in order to show absence of mixing of the surface flow.

We conclude with some open questions. It is natural to ask what are the ergodic

properties of extensions (Φf
t )t∈R of a typical locally Hamiltonian flow. We believe

that if f ∈ K our techniques could extend to prove ergodicity for almost every
flow under a Roth-type condition (see [10]). On the other hand, our approach does
not seem to be suitable for functions outside the space K, for which new tools are
required.
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Renormalization of Polygon Exchange Maps arising from Corner
Percolation

W. Patrick Hooper

Let X be a finite disjoint union of polygons in the plane. A polygon exchange map
of X , T : X → X , cuts X into finitely many pieces, then and applies a translation
to each piece so that the image T (X) has full area in X .

Polygon exchange maps are natural generalizations of interval exchange maps,
and yet comparatively little is understood about polygon exchange maps. In par-
ticular, it is not understood how effective renormalization arguments will be for
understanding the long-term behavior of iterating polygon exchange maps.

We will consider a family of rectangle exchange maps parameterized by a choice
of a point (α, β) in the square [0, 12 ]× [0, 12 ]. We denote these maps by Ψα,β : X →
X , where X is a union of four tori. (These maps are defined at the end of this
abstract.) We show that for irrational choices of α and β, there are points whose
orbits under Ψα,β are periodic, with arbitrarily large period. The space X comes
equipped with Lebesgue measure, λ, which we normalize so that λ(X) = 1. We
define M(α, β) to be the λ-measure of the collection of all periodic points under
Ψα,β. In a forthcoming paper, we prove the following three results about this
quantity.

Theorem (Periodicity almost everywhere). M(α, β) = 1 for Lebesgue-almost ev-
ery parameter (α, β) ∈ [0, 12 ]× [0, 12 ].

As mentioned above, there are always periodic points. In fact, M(α, β) > 0 for
all (α, β). However,

Theorem (Existence of periodicity only on small sets). For any ǫ > 0, there are
irrational parameters α and β so that M(α, β) < ǫ.
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Theorem (Topologically generic aperiodicity). There is a dense set of irrational
parameters (α, β) so that M(α, β) 6= 1.

Renormalization Dynamics

A renormalization of a polygon exchange map T : X → X , is the choice of a
finite union Y of sub-polygons of X with disjoint interiors such that the return
map T |Y : Y → Y is also a polygon exchange map. In the case of interval exchange
maps, the return map to an interval is always another interval exchange map. For
polygon exchange maps, however, not all such return maps yield polygon exchange
maps.

Let G be the group of isometries of R generated by the maps z 7→ z + 1 and
z 7→ −z. This group has [0, 12 ] as a fundamental domain, and for x ∈ R we write

x (mod G) to denote the unique element y ∈ [0, 12 ] so that there is a g ∈ G with

g(x) = y. We define the action f on the irrationals in (0, 12 ) by

(0.1) f(x) =
x

1− 2x
(mod G).

This map governs our renormalization.
For the maps Ψα,β, we actually renormalize on a double cover. So, for each pair

(α, β) we consider a lift Ψ̃α,β : X̃ → X̃, where X̃ is a particular double cover of

X . For each pair of parameters, we show that there is a subset Z = Z(α, β) ⊂ X̃

so that the return map of Ψ̃α,β to Z is affinely conjugate to Ψ̃f(α),f(β).

So, we are implicitly interested in the dynamics of f × f on [0, 12 ]× [0, 12 ]. The
following results concern the dynamics of this map.

Proposition. The measure ν on [0, 12 ] which is absolutely continuous with respect

to λ with Radon-Nikodym derivative given by dν
dλ(x) =

1
x + 1

1−x is f invariant.

It should be noted that ν([0, 12 ]) = ∞. Nonetheless:

Theorem (Poincaré recurrence). Let A ⊂ [0, 12 ] × [0, 12 ] be Lebesgue measurable.
Then, for ν × ν-a.e. pair (α, β) ∈ A there is an n ≥ 1 so that (f × f)n(α, β) ∈ A.

It remains to explain what the orbit of (α, β) under f × f says about M(α, β).
In fact, there is a formula which gives the quantity M(α, β) in terms of a limit
involving a finite dimensional cocycle over f × f . (We omit a formal description
for brevity.) By explicitly working with this formula, we are able to show prove
Theorem 3, as well as the following.

Lemma. For α and β irrational, there is an increasing sequence {mk}k∈N such
that limi→∞mi =M(α, β). Moreover, for all integers k > 0,

1−mk < (1−mk−1)
(
1− 4

3
fk−1(α)fk−1(β)

)
.

In particular, if the orbit of (α, β) has an accumulation point in (0, 12 ]× (0, 12 ],
we have M(α, β) = 1. In particular, Theorem implies M(α, β) = 1 for Lebesgue-
almost every (α, β). (This sketches the proof of Theorem 1.)
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Definition of the polygon exchange maps Ψα,β

We will now define the examples of interest to us. Consider the lattice Λ =
Z2 ∪

[
(12 ,

1
2 ) + Z2

]
, and let Y be the torus R2/Λ. This torus may be cut into

two squares, A1 = [0, 12 ) × [0, 12 ) and A−1 = [0, 12 ) × [ 12 , 1), whose union forms

a fundamental domain for the action of Λ on R2 by translation. Let N be the
finite set of four elements, N = {(1, 0), (−1, 0), (0, 1), (0,−1)}. Fix two parameters
α, β ∈ [0, 12 ]. We will define a polygon exchange map Ψα,β : Y × N → Y × N .
Assume (x, y) ∈ As and v = (a, b) ∈ N . Then we define

(0.2) Ψα,β

(
(x, y),v

)
=

(
(x+ bsα, y + asβ) (mod Λ), (bs, as)

)
.

Figure 1 illustrates this map.

Connections to Corner Percolation

We will very briefly describe the corner percolation model introduced by Bálint
Tóth, and studied in depth by Gábor Pete [1].

Consider four squares decorated by arcs joining a pair of midpoints of adjacent
edges:

Figure 1. This illustrates the map Ψ = Ψα,β defined in equation

0.2. Above the line indicates the sets A
(a,b)
s = As × {(a, b)}, and

below illustrates their images under Ψ. In both cases, the tori are
drawn Y ×{(1, 0)}, Y ×{(−1, 0)}, Y ×{(0, 1)} and Y ×{(0,−1)},
from left to right.
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A corner percolation tiling is formed by tiling the plane with these tiles, so that
whenever two tiles are adjacent along an edge, the arcs of these two tiles either
both have endpoints on the edge or neither have endpoints along the edge. Thus,
the arcs of the tiles join together to form a family of disjoint simple curves, which
are either closed or bi-infinite.

In [1], it was shown that in a “random” corner percolation tiling, all loops were
closed. (Much stronger results were shown as well.) Corner percolation tilings can
also be generated using symbolic dynamics applied to a pair of rotations by α and
β. The quantity M(α, β) can then be interpreted as representing the probability
that a curve of the tiling is closed, where the curve is chosen by fixing an edge in
the tiling and looking a the curve through that edge. Thus, Theorems 1-3 are also
theorems about tilings which are random with respect to a zero-entropy measure
µα,β on the space of corner percolation tilings.
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Translation surfaces satisfying Pérez Marco’s condition

Yitwah Cheung

(joint work with Pascal Hubert and Howard Masur)

For the billiard in a rational polygon P , Kerckhoff-Masur-Smillie [5] showed that
the flow in almost every direction is uniquely ergodic. Thus, the set NE(P ) of non-
ergodic directions has measure zero. In [6] Masur showed that every non-ergodic
direction determines a Teichmüller geodesic that is divergent in the stratum. In
other words, denoting by DIV(P ) the set of such directions, we have the inclusion

NE(P ) ⊂ DIV(P )

for any rational polygon P . Moreover, the Hausdorff dimension of DIV(P ) is
bounded above [6]:

H.DimDIV(P ) ≤ 1

2
.

Both sets can be defined more generally for the class of translation surfaces. In
[7] Masur-Smillie showed that the Hausdorff dimension of NE(X) is positive for
a generic translation surface. In the few examples where it has been determined,
the value of the Hausdorff dimension (for either of these sets) is either zero or 1

2
and it remains unknown if any value strictly between these can be achieved.

For Veech surfaces, both of these sets are countable, and hence, of Hausdorff di-
mension zero. Smillie-Weiss [8] showed that this holds more generally for branched
covers of Veech surfaces that are branched over a single point, as well as for iter-
ates of this construction. Parking garages exhibiting this phenomenon have been
found in [4], suggesting that billiard examples may also exist. In these examples,
the converse to Masur’s theorem [6] holds, i.e. every uniquely ergodic direction
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determines a Teichmüller geodesic that eventually returns to a compact set. How-
ever, it is well-known that the converse does not hold in general [3].

Consider the billiard in the rectangular table Pλ of width one and height two
with a wall of length λ ∈ (0, 1) parallel to the shorter sides inserted at the midpoint
of one of its longer sides. In joint work with Pascal Hubert and Howard Masur
[2], we show that

(i) H.DimDIV(Pλ) =
1
2 if λ is irrational, and is otherwise zero;

(ii) H.DimNE(Pλ) =
1
2 if λ is an irrational satisfying Pérez Marco’s condition

∑

k

log log qk+1

qk
<∞

on the denominators of the continued fraction of λ, and is otherwise zero.

The statement (ii) extends earlier results of Boshernitzan and Cheung [1].
The associated translation surface Xλ obtained by unfolding Pλ is a branched

double cover of the square torus T , branched over two points that form the end-
points of a horizontal slit. We expect the main result to hold more generally if
Xλ is replaced with a cyclic branched cover of T branched over an arbitrary two
points. In this case, qk is understood to be the denominators of the sequence
of simultaneous best approximants of the holonomy vector (x0, y0) that joins the
branch points.

We further expect this generalization to hold if T is replaced by a square-tiled
surface. More specifically, the main result is expected to hold for the class of
cyclic branched covers of arithmetic Veech surfaces, branched over two points, one
of which is assumed to be a singularity.

Question: Does the dichotomy for the Hausdorff dimension of the set of non-
ergodic directions or the set of divergent directions still hold if we replace T with
a non-arithmetic Veech surface ? And if so, what is the analog of Pérez Marco’s
condition ?
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Surfaces with Completely Degenerate Kontsevich-Zorich Spectrum

David Aulicino

1. Introduction

In [8], Kontsevich and Zorich introduced the Kontsevich-Zorich cocycle, denoted
GKZ

t , which is a continuous version of the Rauzy-Veech-Zorich cocycle. They
showed that this cocycle has a spectrum of 2g non-trivial Lyapunov exponents
with the property

1 = λ1 ≥ λ2 ≥ · · · ≥ λg ≥ 0 ≥ −λg ≥ · · · ≥ −λ2 ≥ −λ1 = −1.

These exponents have strong implications about the dynamics of flows on Riemann
surfaces, interval exchange transformations, rational billiards, and related systems.
These exponents also describe how generic trajectories of an Abelian differential
distribute over a surface [14]. Furthermore, Zorich [14] proved that they fully
describe the non-trivial exponents of the Teichmüller geodesic flow, denoted Gt.
Veech [13] proved λ2 < 1, which implies that Gt is non-uniformly hyperbolic. Since
then, the study of the Lyapunov spectrum of the Kontsevich-Zorich cocycle has
become of widespread interest. Forni [4] proved the first part of the Kontsevich-
Zorich conjecture [8]: λg > 0 for almost every SL2(R)-invariant measure in the
moduli space of holomorphic quadratic differentials. His result implies GKZ

t is also
non-uniformly hyperbolic. Avila and Viana [1] then used independent techniques
to show that the spectrum is simple for the canonical measures on the strata of
Abelian differentials, i.e. λk > λk+1, for all k.

Veech asked how degenerate the spectrum could be. Forni [5] found an example
of a surface in genus three whose Teichmüller disk has completely degenerate
Lyapunov spectrum, i.e. λ1 = 1 > λ2 = λ3 = 0. In the literature, Forni’s
genus three example is known as the Eierlegende Wollmilchsau for its numerous
remarkable properties [7]. Forni and Matheus [6] then found an example in genus
four with λ1 = 1 > λ2 = λ3 = λ4 = 0. Both examples are Veech surfaces and in
particular cyclic covers of square tiled surfaces. Using techniques from algebraic
geometry Möller [10] proved that these two examples are the only examples of
Veech surfaces with completely degenerate Lyapunov spectrum except for possible
examples in certain strata of Abelian differentials in genus five.

2. Complete Periodicity and the Rank One Locus

Let Dg(1) denote the subset of the moduli space of Abelian differentials such
that the derivative of the period matrix has rank one. For this note it suffices to
interpret Dg(1) as the subset of the moduli space containing all surfaces with com-
pletely degenerate Lyapunov spectrum. Though the Kontsevich-Zorich exponents
are only defined almost everywhere, the following corollary allows us to state a
problem that is defined everywhere.
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Corollary 2.1. Let µ be a SL2(R)-invariant ergodic probability measure on the
moduli space of Abelian differentials. The support supp(µ) ⊂ Dg(1) if and only if

λ2 = · · · = λg = 0.

Since we choose to focus on SL2(R)-invariant measures, we consider SL2(R) or-
bits of surfaces carrying Abelian differentials, known as Teichmüller disks. It is
natural to ask if we can classify all Teichmüller disks contained in Dg(1). We prove
a strong restriction on such disks.

Definition 2.2. A surface (X,ω) is completely periodic if for all θ ∈ R such
that (X, eiθω) has a periodic trajectory γ, every trajectory parallel to γ is either
periodic or a union of saddle connections.

Recall that a surface can be completely periodic with nearly all the properties
of a Veech surface, without being a Veech surface [12].

Theorem 2.3. If the Teichmüller disk of (X,ω) is contained in Dg(1), then (X,ω)
is completely periodic.

We prove this by looking at the Deligne-Mumford compactification of the moduli
space. Using expansions of Abelian differentials in terms of pinching coordinates
[9], we can estimate the derivative of the period matrix as in [4][Section 4]. Then
certain phenomena that would prevent the surface from being completely periodic
are excluded. A key tool in this proof is the extension of the SL2(R) action on
holomorphic Abelian differentials to meromorphic Abelian differentials with simple
poles and the study of the SL2(R) orbits of such differentials.

3. Progress Toward Classifying Teichmüller Disks in Dg(1)

It is conjectured that the genus three and four examples above represent the only
Teichmüller disks contained in Dg(1). In the recent work of [3], they prove that
there are no SL2(R)-invariant orbifolds contained in Dg(1), for g ≥ 7. We provide
a completely different approach to this problem than that of [3] with the hope that
it may yield a stronger result, while relying on far less sophisticated techniques.
We summarize our progress here. The moduli space of Abelian differentials is
stratified by the orders of the zeros of the differentials. Let H(κ) denote such a
stratum.

Proposition 3.1. Let n and m be odd numbers such that n+m = 2g − 2. There
are no Teichmüller disks contained in either Dg(1)∩H(2g−2) or Dg(1)∩H(n,m).

Corollary 3.2. There are no Teichmüller disks contained in D2(1).

We can extend Dg(1) to the boundary of the moduli space given by the Deligne-

Mumford compactification and denote this extension by Dg(1).

Theorem 3.3. The Teichmüller disk D of a completely periodic surface (X,ω) is
contained in Dg(1) only if there is a Veech surface (X ′, ω′) ∈ Mg such that the

Teichmüller disk D′ of (X ′, ω′) is contained in Dg(1) and ω
′ is holomorphic.
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This theorem is proven by finding a sequence of completely periodic surfaces
that converge to a surface satisfying topological dichotomy in the sense of [2],
followed by constructing another sequence of surfaces satisfying topological di-
chotomy that converge to a surface which is uniformly completely periodic. By
[11], uniform complete periodicity is equivalent to being a Veech surface.

Möller [10] showed that any Veech surface whose Teichmüller disk is contained
in Dg(1) is a square-tiled surface. In the context of Theorem 3.3, the Teichmüller
disk of a surface of high genus can only be contained in Dg(1) if it can degenerate
to one of the square-tiled surfaces in Dg(1). Such a surface obviously has punctures
because it is of lower genus. By analyzing where the punctures must lie, we hope
to reach a contradiction to show that no such degeneration is possible, thereby
eliminating the possibility that Teichmüller disks are contained in Dg(1) in high
genus. So far this method has yielded the following theorem.

Theorem 3.4. The Eierlegende Wollmilchsau generates the only Teichmüller disk
contained in D3(1).
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Monodromy Representations of Origamis

André Kappes

This talk is based on the author’s thesis [4].
Consider the affine group Aff(X,ω) of a translation surface (X,ω) ∈ ΩMg.

This group has an action ρ by pullback on the first cohomology H1(X,Z) of X .
On the other hand, Aff(X,ω) acts as a Fuchsian group on the upper half plane H,
seen as the Teichmüller disk for (X,ω2). Here, an element f ∈ Aff(X,ω) acts by
the action of its derivative D(f) ∈ SL2(R) on H.

If the surface (X,ω) is a Veech surface, then the quotient H/Aff(X,ω) is an
algebraic curve with an immersion into the moduli space of curves, and is called
a Teichmüller curve. Passing to a finite index subgroup Γ ⊂ Aff(X,ω), we can
achieve that C = H/Γ is smooth, that Γ is the fundamental group of C and that
C → Mg factors over a fine moduli space. Then the restriction of ρ to Γ is the
monodromy representation of the family of curves φ : X → C that parametrizes
all compact Riemann surfaces obtained from affine deformations of the initial
translation surface (X,ω) by matrices in SL2(R).

By a theorem of Deligne [2], the monodromy representation of an algebraic fam-
ily is semi-simple. Furthermore, Möller [6] showed that in the case of a Teichmüller
curve, there is a splitting

ρ⊗Q = ρT ⊕ ρR

where ρT ⊗ R consists of all Galois conjugates to the standard fuchsian represen-
tation Aff(X,ω) → SL2(R), coming from the subspace spanned by ℜω and ℑω in
H1(X,R).

I address the question how to decompose the second factor ρR. A general
principle how to obtain splittings is to use covering maps from (X,ω) to another
Veech surface (Y, ν). I present two examples of Veech surfaces, where a complete
splitting of the first cohomology into invariant rank-2 subspaces is found. The
examples are both origamis, i.e. coverings of the once-punctured square torus E∗,
and my computations relie on the concrete description of origamis as conjugacy
classes of subgroups of F2 = π1(E

∗) initiated by Weitze-Schmithüsen [7]. One is
an origami M in the stratum ΩM4(2, 2, 2)

odd consisting of 9 squares, the other
one is an origami N in the stratum ΩM10(2

9)even, which is a 3-fold cover of M .
Both are covered by the characteristic origami with 108 squares constructed by
Herrlich [3].

The question of finding Γ-invariant subspaces in the cohomology of (X,ω) is
strongly connected with the question how to compute the Lyapunov exponents
of the Kontsevich-Zorich cocycle over the Teichmüller curve. These are 2g real
numbers

1 = λ1 > λ2 ≥ · · · ≥ λg ≥ 0 ≥ −λg ≥ · · · ≥ −λ1 = −1

that govern the mean logarithmic growth behavior of the norms of vectors in
H1(X,R) along a generic Teichmüller geodesic on the Teichmüller curve, measured
in the Hodge norm. In general, not much is known about the individual exponents.
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However, by [5], their sum is given by

g∑

i=1

λi =
2deg(φ∗ΩX/C)

−χ(C) .

A variation of this formula arises in the following way: Let V ⊂ H1(X,R) be a
rank 2-subspace, which is Γ-invariant, and whose associated local system carries a
polarized variation of Hodge structures (pVHS). Then as is shown in [1], there are
two Lyapunov exponents associated with V , and the non-negative one is given by

λV =
deg(L)
−χ(C) ,

where L is the (1, 0)-part of the pVHS associated with V (on the completion C of
C). Using an idea of M. Möller, I show in [4] that one can rewrite this equation
to obtain

λV =
deg(p)vol(H/ρ|V (Γ))

vol(H/Γ)

in the case when V is defined over Z and ρ|V (Γ) is a finite-index subgroup of
SL2(Z). Here, p is the period map H/Γ → H/ρ|V (Γ) associated with the pVHS on
V , or rather its extension to the closed curves. The volumes and even the degree
of p can entirely be determined from the monodromy representation ρ if the latter
is given in terms of a matrix for each generator of Aff(X,ω) representing its action
on cohomology. In this way, I am able to determine all the Lyapunov exponents
of the two examples. For M ,

1 > 1
3 ≥ 1

3 ≥ 1
3

is the non-negative part of the Lyapunov spectrum, and for N ,

1 > 1
3 ≥ · · · ≥ 1

3︸ ︷︷ ︸
6

≥ 0 ≥ 0 ≥ 0

is the non-negative part of the Lyapunov spectrum. In particular, the action of the
affine group of N on a six-dimensional subspace of H1(N,Z) is by a finite group.
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Finite blocking property on translation surfaces

Thierry Monteil

The following problem was stated for the Leningrad’s Olympiad of 1989 [2]:

“Professor Smith stands in a square hall with mirrored walls. Pro-
fessor Jones intends to arrange several students in the hall so that
Smith can’t see his own reflection. Can Jones reach her goal?
(Professor Smith and the students are considered points; students
can be arranged by the walls and in the corners).”

Note that there are infinitely many light (billiard) trajectories between Jones and
Smith. The square billiard table can be unfolded into a flat torus R2/Z2. A
translation surface T is said to have the finite blocking property (FBP) if, for
every pair (S, J) of points in T , there exists a finite number of “blocking” points
B1, . . . , Bn (different from S and J) such that every geodesic from S to J meets
one of the Bi’s. Let us solve the Olympiad’s problem by showing that R2/Z2 has
the FBP.
Let us write the professors’ positions in coordinates: S = (x, y), J = (x′, y′). Any
trajectory between S and J can be unfolded in R2 into a line between S and
J ′ = (x′ + k, y′ + l) for some (k, l) ∈ Z2.

•

x

y
S

•

x′

y′

J

•

x′ + k

y′ + l
J ′

•

M

The middle of the trajectory is M = ((x+ x′ + k)/2, (y+ y′ + l)/2). If we project

M back to R2/Z2, we get a point M̃ = ((x+x′)/2, (y+y′)/2)+(k/2, l/2) mod Z2.
Since (k/2, l/2) mod Z2 can only take four values, the infinite set of trajectories
between S and J in R2/Z2 is blocked by at most four points (in some particular
cases, some of the four points could correspond to J or S and should be removed
from the blocking configuration). �

Since the FBP is stable under branched coverings and under the action of SL(2,R),
we just saw that any torus branched covering has the FBP. If we try to
generalise the previous construction to another surface T , “ mod Z2 ” should be
replaced by “ mod G ”, where G is the group generated by the translations used
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to identify the pairs of edges in some representation of T by a glued polygon.
The previous construction of a finite set of points M̃ back in T works when G is
discrete.
The easiest way to make G non-discrete is to have two adjacent parallel cylinders
of uncommensurable perimeters. It turns out that in such a situation, the surface
fails to have the FBP [6], hence we have a local criterion to start a classification.
Any periodic orbit in a translation surface can be thickened into a cylinder. Un-
fortunately, the set of translation surfaces that contains two parallel cylinders with
uncommensurable perimeters has zero measure, so this local criterion cannot be
often directly used.
In [8], we proved that a translation surface with the finite blocking property is
completely periodic. If we merge this result with the local criterion, we proved
that any translation surface with the FBP is purely periodic, where a
translation surface T is said to be purely periodic if, for any direction θ ∈ S1,
the existence of a (non-singular) periodic orbit in the direction θ implies that
the directional flow φθ is periodic (i.e. there exists t > 0 such that φtθ = IdS
a.e.). Indeed the periodicity of the flow φθ is equivalent to the existence of a
decomposition of T into cylinders of commensurable perimeters in the direction θ.
The geodesic flow on a translation surface T is defined on its unit tangent bundle
T × S1, it admits two subflows depending on whether we fix the direction θ ∈ S1

(directional flow) or the starting point J ∈ T (exponential flow). Hence, the
previous results establish a surprising relation between three notions on transla-
tion surfaces, the first involving the global geometry of the surface (being a torus
branched covering), the second involving the exponential flow (the FBP) and the
third involving the directional flow (the pure periodicity). It would be nice to
have an equivalence between those three notions, hence we would like the pure
periodicity to imply being a torus branched covering.
Torus branched coverings can be characterised using translational holonomy: any
curve γ : [0, 1] → T on a translation surface T can be lifted as a planar curve γ̃
which is defined up to translation so that hol(γ) = γ̃(1) − γ̃(0) is well defined.
Restricted to the closed curves, the map hol induces a morphism from H1(T,Z)
to R2. The “unfolding group” G previously introduced is actually hol(H1(T,Z)).
A translation surface is a torus branched covering if, and only if, hol(H1(T,Z)) is
a lattice.
For purely periodic translation surfaces, the J-invariant introduced in [5] can be
computed through any pair of periodic directions, and the fact that it does not
depend on such a pair implies that the holonomy of any three periodic orbits are
rationally dependent. Hence, if P (T ) denotes the subgroup of H1(T,Z) generated
by the periodic orbits (considered as closed curves), then hol(P (T )) is a lattice
[7]. Hence, the previous three notions are equivalent when the periodic orbits of
the translation surface generates its homology.
In a nutshell, the three notions are known to be equivalent:

• on a dense open subset of full measure in every stratum,
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• for Veech surfaces, and more generally for surfaces whose Veech group
contains two non-commuting parabolic elements,

• in genus 2 (using the classification of completely periodic surfaces [1]),
• for surfaces that admit a representation by a convex glued polygon, and
more generally for surfaces which are named face-to-face surfaces.

A natural challenge is therefore to describe the surfaces whose homology is
not generated by the periodic orbits of their geodesic flow.

The eierlegende Wollmilchsau [4] and the translation surface introduced in [3]
constitute the first examples. Indeed, in both cases, the two horizontal cylin-
ders are homologous. Moreover, the Veech group of those two surfaces is equal
to SL(2,Z), hence the vertical and horizontal cylinders generate all cylinders (by
making successive twists along both directions), hence the periodic orbits gener-
ate only a subgroup of dimension 2 in H1(T,Z). Those two examples are torus
branched coverings, we do not know any primitive example.
Note that

• the set of translation surfaces that do not admit a strictly convex pattern,
• the non face-to-face surfaces,
• the set of translation surfaces whose homology is not generated by periodic
orbits (and some variations on the dimension of the space generated by
the periodic orbits)

are closed SL(2,R)-invariant spaces (containing each other).
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Small eigenvalues of the Laplacian in moduli space

Sébastien Gouëzel

(joint work with Artur Avila)

Let M be a compact hyperbolic surface, we will first mention several classical
facts on such objects.

(1) Analysis. Consider the hyperbolic Laplacian on M coming from the rie-
mannian metric. Since ∆ is a self-adjoint elliptic differential operator, its
spectrum is a sequence of eigenvalues λ0 < λ1 ≤ λ2 ≤ · · · → ∞.

(2) Geometry. Let πT be the number of closed geodesics of length at most
T . Using Margulis’ techniques, one can show that πT ∼ eT /T . How-
ever, in this situation, much more is known thanks to Selberg’s trace for-
mula. A bold application of this formula leads to the conjecture πT =∑K

j=0 e
ajT /(ajT ) +O(eT/2), where aj is a sequence of numbers in [1/2, 1]

in bijection with the λj ∈ [0, 1/4]. This formula should hold in full gener-

ality, but it is only known up to an error term O(e3T/4) (Huber).
(3) Dynamics. The geodesic flow gt on the unit cotangent bundle T 1M of M

is mixing, i.e., for all smooth functions u, v,
∫
u ·v ◦gt tends to

∫
u ·

∫
v. In

this situation, one can be more precise: one has
∫
u ·v ◦ gt =

∑K
j=0 e

−bjt+

O(e−t), for some numbers bj in [0, 1] which are again in bijection with the
λj ∈ [1/4] (Moore, Ratner).

(4) Representation theory. The unitary action of SL(2,R) on L2(T 1M) can
be decomposed as a direct integral of irreducible representations. The ir-
reducible representations have been classified by Bargmann, and belong
to three series (the principal series, the discrete series and the comple-
mentary series). It turns out that the irreducible representations arising
in L2(T 1M) are in bijection with the eigenvalues of the Laplacian, and
the eigenvalues in [0, 1/4] correspond to the representations in the com-
plementary series, i.e., the most exotic ones in some sense.

This shows that the eigenvalues of the Laplacian in [0, 1/4] really play a special
role. In finite volume hyperbolic surfaces, the analytic approach above fails (while
∆ still has a regularizing effect, the presence of the cusp prevents (I +∆)−1 from
being compact). Nevertheless, using a more algebraic approach, one may show
that the spectrum of the Laplacian is made of the whole interval [1/4,+∞), and
finitely many eigenvalues in the interval [0, 1/4). Therefore, the above geometric,
dynamical and representation theory facts can still be formulated in this context,
and they all hold.

Our main object of interest is a stratum H in the moduli space of abelian (or
quadratic) differentials, together with an SL(2,R)-invariant probability measure
µ. The space H is not compact, and leaves of the foliation by SL(2,R)-orbits have
large codimension. Therefore, the Laplacian is not elliptic (nor hypo-elliptic): it
can have smoothing properties in all directions only thanks to recurrence properties
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of the foliation, that are hard to quantify. Using a different approach (that avoids
completely the use of the Laplacian), we prove the following theorem.

Theorem. The measure µ satisfies the following properties:

(1) The (foliated) Laplacian acting on L2(µ) has finite spectrum in [0, 1/4− δ]
for all δ > 0.

(2)
(3) For all δ > 0, for all C∞ compactly supported functions in H, one has∫

u · v ◦ gt =
∑K

j=0 e
−bjt +O(e−(1−δ)t), for some numbers bj in [0, 1− δ].

(4) When one decomposes L2(µ) into irreducible representations for the canon-
ical unitary SL(2,R)-action, representations in the complementary series
occur only discretely.

It turns out that those different items are all equivalent. We prove a part of
the third one, deduce the fourth one, and then also obtain the first and third one.
Unfortunately, we have nothing to say on point (2), i.e., the geometric counting of
closed geodesics in the support of the measure µ.

The main idea of the proof is to use a functional analytic approach. We in-
troduce a suitable Banach space B such that the operator L : u 7→ u ◦ gt (for
some fixed t) acts continuously on B, with good spectral properties: while there
is no hope to get a compact operator since the space is not compact, one can en-
sure that L is quasi-compact, meaning that its spectrum is made of finitely many
eigenvalues outside of a suitably small disk. The space B should be chosen to
take advantage of the good dynamical properties of the flow gt. One takes for B a
space of distributions which are smooth in the stable direction and dual of smooth
in the unstable direction, so that u ◦ gt is better behaved than u in all respects.
The main issue is to control infinity, where there is no hyperbolicity. Here, we
use quantitative recurrence estimates due to Eskin-Masur and Athreya, that we
incorporate into the definition of the space.

Decompositions and Genericity in Hhyp(4)

Duc-Manh Nguyen

In this talk we are concerned with the stratum Hhyp(4) of translation surfaces of
genus three. This stratum consists of pairs (X,ω), where X is a hyper-elliptic
Riemann surface of genus 3, and ω is a holomorphic 1-form on X which has only
one zero, the order of which must be 4. Note that the unique zero of ω must be
a Weierstrass point of X . The holomorphic 1-form induces a flat metric structure
on X with cone singularity at the zero of ω whose transition maps are translations
of R2, such a surface is called a translation surface. The hyper-elliptic involution
of X induces an isometry of the corresponding translation surface. Note that this
involution acts like −Id on H1(X,Z), and fixes 8 points on X . We denote by

Hhyp
1 (4) the subset of Hhyp(4) consisting of surfaces with unit area.
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On a translation surface, a saddle connection is a geodesic segment whose end-
points are singularities of the surface, which may coincide. For surfaces in Hhyp(4),
a saddle connection is then a geodesic loop joining the unique singularity to itself.
We can associate to a saddle connection γ (together with a choice of orientation)
a vector V (γ) ∈ R2, which is the integral of the holomorphic 1-form defining the
flat metric along γ. In fact, the integral gives us a complex number, we view it as
a vector in R2 by the standard identification C = R⊕ ıR.

Given a translation surface Σ, a cylinder in Σ is an open subset which is isometric
to the quotient R×]0;h[/Z, where Z is the cyclic group generated by (x, y) 7→
(x + ℓ, y), and maximal with respect to this property. We will call h the height,
and ℓ the width of C, the modulus of C is defined to be the ratio h/ℓ. By definition,
we have a map from R×]0;h[ to Σ, which is locally isometric, with image C. This
map can be extended by continuity to a map from R × [0;h] to Σ. We call the
images of R × {0} and R × {h} under this map the boundary components of C.
Each boundary component ofC is a concatenation of saddle connections, and freely
homotopic to the simple closed geodesics in C. Remark that the two boundary
components of C are, in general, not disjoint subsets of Σ, they can even coincide.
We call C a simple cylinder when each of its boundary components consists of
only one saddle connection. First, we have

Theorem. On every surface in Hhyp(4), there always exist four pairs of homolo-
gous saddle connections δ±i , i = 1, . . . , 4, such that

• δ±1 bound a simple cylinder,
• for i = 1, 2, 3, δ+i ∪ δ+i+1 ∪ δ−i ∪ δ−i+1 is the boundary of a topological disk

isometric to a parallelogram in R2,
• δ±4 bound a simple cylinder.

There exists an action of SL(2,R) on the moduli space of translation surfaces
which leaves invariant the Lebesgue measure, and preserves the area. It is now a
classical fact, due to Masur and Veech, that the SL(2,R) action is ergodic in each
connected component of the moduli space, a surface whose SL(2,R)-orbit is dense
in its component is called generic. The SL(2,R)-orbit of almost all surfaces in each
component is dense, however, the problem of determining whether the orbit of a
particular surface is dense in its component is wide open. We only have a complete
classification, due to McMullen and Calta, for the case of genus 2. Recall that the
Veech group of a translation surface is the stabilizer subgroup for the action of
SL(2,R). It is a well-known fact that the SL(2,R)-orbit of a surface is a closed
subset in its stratum if and only if its Veech group is a lattice of SL(2,R). It
turns out from the work of McMullen that, for translation surfaces of genus two,
if the Veech group contains a hyperbolic element, then the SL(2,R)-orbit cannot
be dense in the corresponding stratum. More recently, Hubert-Lanneau-Moeller
give some results on generic surfaces in the hyper-elliptic locus L of Hodd(2, 2),
which is one of the two components of H(2, 2). They show that, in contrast with
the case of genus 2, there are generic surfaces in L, that is the SL(2,R)-orbit is
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dense in L, whose Veech group contains hyperbolic elements.

Back to the case of Hhyp(4), let Σ be a surface in Hhyp
1 (4), and δ±i , i = 1, . . . , 4,

be as in Theorem . Cutting Σ along δ±3 , we get two connected components whose
boundary consists of two geodesic segments. Gluing those geodesic segments to-
gether, we then get a flat torus, which will be denoted by Σ′, and a surface in H(2).
We can identify Σ′ with the quotient R2/Λ, where Λ is a lattice in R2, which is

the image of the map H1(Σ
′,Z) → C ≃ R2 : c 7→

∫

c

ω. A vector in R2 is said to be

generic with respect to Λ if it is not collinear with any vector in Λ. We have

Theorem. Suppose that δ±1 and δ±3 are parallel, that is V (δ±1 ) and V (δ±3 ) are
collinear, and V (δ3) = V (δ±3 ) is generic with respect to Λ, then SL(2,R) · Σ is

dense in Hhyp
1 (4).

A consequence of Theorem is the following

Corollary. Let Σ be a surface in Hhyp
1 (4). Suppose that the horizontal direction is

completely periodic for Σ, and that Σ is decomposed into three horizontal cylinders

whose moduli are independent over Q. Then SL(2,R) · Σ is dense in Hhyp
1 (4).

Using this result, we can show that there exists generic surfaces in Hhyp(4)
with coordinates in a real quadratic field over Q. We can also construct explicitly
Thurston-Veech surfaces with cubic trace field overQ which are generic inHhyp(4).
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Deviation of ergodic averages for substitution dynamical systems with
eigenvalues of modulus one

Pascal Hubert

(joint work with X. Bressaud and A. Bufetov)

Let σ be a primitive substitution over a finite alphabet A, letMσ be the matrix
substitution, and let Xσ be the corresponding subshift. The aim of this report is to
study the asymptotic behavior of ergodic sums for the minimal dynamical system
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(Xσ, T ) in the (non-hyperbolic) case when the matrix Mσ has an eigenvalue of
modulus one. For a function f : Xσ → R, all x ∈ Xσ and all n ∈ N, set

Snf(x) =

n−1∑

k=0

f(T kx).

We shall only consider functions f depending on the first coordinate of the symbolic
sequence. In what follows, we will identify such a function f with the corresponding
vector in C#A. Deviation of ergodic sums is studied for substitution dynamical
systems with a matrix that admits eigenvalues of modulus 1. The functions γ we
consider are the corresponding eigenfunctions.

Deviations of ergodic sums for interval exchange transformations have been
studied by Zorich [9] [10] and Forni [4]. Part of this analysis applies to interval
exchange transformations arising from pseudo-Anosov diffeomorphisms. More pre-
cisely, an interval exchange transformation defining a periodic path in its Rauzy
diagram provides an example of a substitutive subshift. Examples of pseudo-
Anosov diffeomorphisms with eigenvalues of modulus one are known till the work
of Veech in 1982 [8]. Now, infinitely such examples have been described (see for
instance [5]).

We prove that the limit inferior of the ergodic sums

(n, γ(x0) + . . .+ γ(xn−1))n∈N

is bounded for every point x in the phase space. This result has corollaries concern-
ing the theory of affine interval exchange transformations (see for instance [2] and
[6]). Given a self similar interval exchange transformation T and γ as above, any
affine interval exchange transformation with log slopes vector γ semi-conjugate to
T is in fact conjugate to T .

We prove the existence of limit distributions along certain exponential subse-
quences of times for substitutions of constant length (Snf(x) is considered as a
random variable). Under additional assumptions, we prove that ergodic integrals
satisfy the Central Limit Theorem. The proof of this result is based on a Markov
approximation of our system and Dubroshin’s CLT on non homogeneous Markov
chains (see [3] and [7]).
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Non-uniquely ergodic billiards and flows on flat surfaces

Jon Chaika

Dynamical systems seeks to understand the orbits of points. Motivated by this
and the Birkhoff Ergodic Theorem we are interested in understanding the invariant
measures of systems. Flows on flat surfaces are typically uniquely ergodic [7],[10],
as are flows in rational billiards [6]. This talk considers the other situation, when
flows are minimal (every orbit is dense) but not uniquely ergodic. There are
two different constructions of this phenomena and they can be used to construct
different behaviors.

1. Skew products of rotations

It was shown in [9] and [8] that irrational rotations have Z2 skew products that
are minimal but not uniquely ergodic. This example can arise as the first return of
a billiard by examining a table that is a rectangle with a barrier of carefully chosen
length placed halfway up the side and parallel to two sides. In this example there
is symmetry that comes from the fact that the barrier is placed halfway. (This is
also visible by examining the symmetry coming from the Z2 group action on the
first return map.)

2. Keane Construction

Another construction of minimal but not uniquely ergodic billiard flows arises
from discrete dynamical systems. Induction procedures on interval exchange trans-
formations (IET) can give rise to minimal but not uniquely ergodic dynamical sys-
tems [5] that can be viewed as first return maps of billiards. These are connected
to billiards in L-shaped polygons. Under the unfolding [4] we obtain an L shaped
table with opposite sides identified. The flow in these tables parametrize an open
set of IETs with permutation (2413). After the first few steps of Rauzy-Veech
induction one can obtain any IET with permutation in this Rauzy class. Many
dynamical properties behave well under this induction procedure so we gain ex-
amples about flows in polygons with strange properties by constructing IETs with
strange properties.
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3. Strange metric behavior

Theorem 3.1. [1] There exists a minimal flow in an L shaped polygon with two
ergodic measures, λ2 and λ3 such that for any ǫ > 0 we have lim inf

n→∞
t1−ǫd(F tx, y) =

0 for λ2 × λ3 almost every (x, y) and lim inf
n→∞

tǫd(F tx, y) = ∞ for λ3 × λ2 almost

every (x, y).

Due to the symmetry in the construction this can not arise from Veech-Sataev
constructions.

Theorem 3.2. [2] There exists a minimal, non-uniquely ergodic flow in a rectangle
with barriers and a constant c > 0 such that inf

n>0
t |F tx− x| > c for all x.

4. Strange measure behavior

4.1. Eigenfunctions and weak mixing.

Theorem 4.1. (Ferenczi, Zamboni [3]) There exists a minimal, non-uniquely er-
godic 4-IET with two ergodic measures where it is weakly mixing with respect to
one ergodic measure and not the other.

This is another example of a 4-IET where the behavior of the two ergodic
measures are different.

4.2. Quasi-generic measures.

Definition 4.2. Let (X,T, µ) be a dynamical system. We say x ∈ X is generic
for µ if δx,

1
2 (δx+ δTx), ... converges in the weak-* topology to µ. (δu denotes point

mass at u.) We say it is quasi-generic for µ if µ is a weak-* limit point. We say
a measure is quasi-generic if there is a point quasi-generic for it.

One can think of quasi-generic measures are the measures that can be seen at
some time by some points of the dynamical system. If T is continuous, µ is Borel
and X is a compact metric space then quasi-generic measures are invariant. If T
is minimal and continuous then the set of quasi-generic measures is connected and
closed. This should be contrasted to Ratner’s Theorem where the quasi-generic
measures are ergodic measures, but the map is not minimal. Therefore when
T is minimal and there are only 2 ergodic measures all invariant measures are
quasi-generic.

Theorem 4.3. (Chaika, Cheung, Masur) There exists a minimal non-uniquely
ergodic flows with invariant measures that are not quasi-generic.

A complementary result:

Theorem 4.4. There are flows with arbitrarily many ergodic measures such that
all the invariant measures are quasi-generic.
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4.3. Hausdorff dimensions of ergodic measures. Given a metric D let
diam(U) = sup

x,y∈U
D(x, y). Consider a set S ⊂ [0, 1). We say a collection of open

sets U = {Ui}∞i=1 is a δ > 0 cover of S if S ⊂
∞
∪
i=1
Ui and diam(Ui) ≤ δ ∀i. Let

Hs
δ (S) = inf{

∞∑
i=1

|Ui|s : {Ui} is a δ cover of S}. Let Hs(S) = lim
δ→0+

Hs
δ (S). Notice

that the limit exists. Let Hdim(S) = inf{s : Hs(S) = 0}. This is equivalent to
defining Hdim(S) = sup{s : Hs(S) = ∞}.

We can create two new metrics on [0, 1), dµi
(a, b) = µi([a, b]) and ask what is

the Hausdorff dimension of µ1 with respect to the metric dµ2
and vice-versa. Let

Hdim(µ, dν) denote the Hausdorff dimension µ with respect to the metric dν .

Theorem 4.5. [1] There exists a 4-IET with two ergodic measures µ and ν such
that Hdim(µ, dν) = 1 and Hdim(ν, dµ) = 0.

This example shows two ergodic measures that interact with each other differ-
ently. It is reminiscent of Theorem 3.1. It can arise from a billiard in an L-shaped
polygon.

We end with a question:

Question 1. (Kornfeld) Can any residual set carry an ergodic measure of a min-
imal non-uniquely ergodic IET?

References

[1] Chaika, J: On the Hausdorff dimensions of a singular ergodic measure for some minimal
interval exchange transformations. arxiv:1105.3633.

[2] Chaika, J: Skew products over rotations with exotic properties. arxiv:1105.3632.
[3] Ferenczi, S; Zamboni, L: Eigenvalues and simplicity of 4-interval exchanges. Annales ENS

44 (2011).
[4] Katok, A; Zemljakov, A N: Topological transitivity of billiards in polygons. Mat. Zametki

18 (1975), no. 2, 291–300.
[5] Keane, M: Non-ergodic interval exchange transformations, Israel J. Math. 26 (2) (1977)

188-196.
[6] Kerckhoff, S; Masur, H; Smillie, J: Ergodicity of billiard flows and quadratic differentials.

Ann. of Math. (2) 124 (1986), no. 2, 293–311.
[7] Masur, H: Interval exchange transformations and measured foliations. Ann. of Math. (2)

115 (1982) 168-200.
[8] Sataev, E. A. The number of invariant measures for flows on orientable surfaces. Izv. Akad.

Nauk SSSR Ser. Mat. 39 (1975), no. 4, 860–878.
[9] Veech, William A. Strict ergodicity in zero dimensional dynamical systems and the

Kronecker-Weyl theorem mod 2.
[10] Veech, W: Gauss measures for transformations on the space of interval exchange maps.

Ann. of Math. (2) 115 (1982) 201-242.



Billiards, Flat Surfaces, and Dynamics on Moduli Spaces 1405

On the geometry of the handlebody group

Sebastian Hensel

(joint work with Ursula Hamenstädt)

A handlebody of genus g is a 3–manifold with boundary that is obtained from
a 3–ball by attaching g one-handles. The boundary of such a handlebody Vg
is a closed surface Sg of genus g. Every closed 3–manifold can be obtained by
gluing two handlebodies of the same genus along their boundaries with a suitable
homeomorphism (this is a so called Heegaard splitting of the 3–manifold). In this
sense, handlebodies are basic building blocks for closed 3–manifolds.

In this work, we are interested in the mapping class group of the handlebody
Vg, which is often called the handlebody group of Vg. Explicitly, the handlebody
group is the group of all self-homeomorphisms of Vg up to homotopy.

By a theorem of Wajnryb [8], the handlebody group is finitely presented. There-
fore, one can equip the handlebody group with a word metric. Our main goal is
to study the large-scale geometric properties of the handlebody group induced by
such a metric.

It is easy to see that the handlebody group of Vg embeds into the mapping class
group of the boundary surface Sg. The coarse geometry of mapping class groups
of closed surfaces has been thoroughly studied in recent years, and there are many
powerful tools available to answer geometric questions about such mapping class
groups (see for example [5] or [2] for explicit constructions of quasigeodesics).

Therefore, a natural approach to study the geometry of handlebody groups
is to study the geometry of the inclusion map into the mapping class group of
the boundary surface. If the inclusion were a quasi-isometric embedding, then
the geometry of the handlebody group would be completely inherited from the
ambient surface mapping class group.

Our main result states (see [3]) that this is not the case for handlebody groups of
genus g ≥ 2. More precisely, we show that the handlebody group is exponentially
distorted as a subgroup of the mapping class group.

In addition to mapping class groups of surfaces, the handlebody group is con-
nected to another important group. Namely, the action of homeomorphisms on the
fundamental group induces a homomorphism from the handlebody group onto the
outer automorphism group of a free group on g generators. The outer automor-
phism group of a free group is finitely generated, and hence also can be equipped
with a word metric. However, the kernel of the projection from the handlebody
group to the outer automorphism group of a free group is infinitely generated (see
[6]) and therefore it is not easily possible to transfer geometric properties between
the two groups.



1406 Oberwolfach Report 25/2011

To shed more light on the geometry of the handlebody group, we next consider
geometric properties that might distinguish handlebody groups from surface map-
ping class groups on the one side, and outer automorphism groups of free groups
on the other side. One such invariant is the growth rate of the Dehn function.
The Dehn functions of surface mapping class groups have quadratic growth (this
follows from the stronger statement that they are automatic groups, compare [7])
while the Dehn functions of outer automorphism groups of free groups have expo-
nential growth type (compare [4] and [1]). In an upcoming preprint, we show that
for any genus g ≥ 2 the growth rate of the Dehn function of handlebody groups is
at most exponential.

At least for genus 2, this estimate is probably not sharp. In fact, we conjecture
that the Dehn function for genus 2 handlebody groups is of quadratic growth
type. In the study of surface mapping class groups, the case of genus 2 is often
exceptional, and it is not clear what growth rate to expect for Dehn functions of
higher genus handlebody groups.

A different geometric property one might consider is the structure of curve
stabilizers. The stabilizer of a simple closed curve in the mapping class group
of a surface is an undistorted subgroup (i.e. the inclusion is a quasi-isometric
embedding).

In analogy to this result, we show in an upcoming preprint that the stabilizer of
an essential disk in a handlebody is undistorted in the handlebody group. Hence,
although the handlebody group is not quasi-isometrically embedded in the surface
mapping class group, the intrinsic geometries have certain features in common.
The analogous statement for outer automorphism groups of free groups is also
true (see [4]): the stabilizer of a free splitting of a free group (corresponding to a
separating disk) or a corank 1 factor (corresponding to a nonseparating disk) is
undistorted. It remains to be shown if the geometry of handlebody groups is more
related to the geometry of mapping class groups of surfaces or the one of outer
automorphism groups of free groups.
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Measures and hyperbolicity in Teichmüller space

Moon Duchin

(joint work with Spencer Dowdall and Howard Masur)

We seek to make precise the usual intuition that exceptions to hyperbolicity in Te-
ichmüller space are “rare.” To do this we consider various measures on Teichmüller
space, and prove that, with respect to either Hausdorff measure or the push-down
of Masur-Veech measure,

If two points are selected at random in the ball of radius r then the expected
distance between them is additively close to 2r.
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Asymptotics for pseudo-Anosov elements in Teichmüller lattices

Joseph Maher

A Teichmüller lattice Γy is the orbit of a point y in Teichmüller space under the
action of the mapping class group Γ. Athreya, Bufetov, Eskin and Mirzakhani [1]
showed that the asymptotic growth rate of the number of lattice points in a ball
of radius r is

|Γy ∩Br(x)| ∼ Λ(x)Λ(y)hehr.

Here Br(x) denotes the ball of radius r centered at x in the Teichmüller metric,
h = 6g − 6 is the topological entropy of the Teichmüller geodesic flow, Λ is the
Hubbard-Masur function, |X | denotes the number of elements in a finite set X ,
and f(r) ∼ g(r) means f(r)/g(r) tends to one as r tends to infinity. We use their
work, together with some results from [6], to show that the number of lattice points
corresponding to pseudo-Anosov elements in the ball of radius r is asymptotically
the same as the total number of lattice points in the ball of radius r. More
generally, let R ⊂ Γ be a set of elements for which there is an upper bound on
their translation length on the complex of curves, for example, the set of non-
pseudo-Anosov elements. We shall write Ry for the orbit of the point y under the
subset R. We show that the proportion of lattice points Γy in Br(x) which lie in
Ry tends to zero as r tends to infinity. In fact, we show a version of this result for
bisectors. Let Q be the space of unit area quadratic differentials on the surface
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§, and given x ∈ T , let S(x) be the subset of Q consisting of unit area quadratic
differentials on x. The spaceQ has a canonical measure, known as the Masur-Veech
measure, which we shall denote µ, and we will write sx for the conditional measure
on S(x) induced by µ. We may think of S(x) as the (co-)tangent space at x. Given
x, y ∈ T , let qx(y) be the unit area quadratic differential on x corresponding to
the geodesic ray through y. Given a lattice point γy, we will write q(x, γy) for the
pair (qx(γy), qy(γ

−1x)) ∈ S(x) × S(y). Given subsets U ⊂ S(x) and V ⊂ S(y),
we may consider those lattice points γy which lie in the bisector determined by
U and V , i.e. those γy for which q(x, γy) ∈ U × V . If X is a finite subset of Γ,
we will write |X, condition | to denote the number of elements γ ∈ X which also
satisfy condition. We say a surface of finite type is sporadic if it is a torus with at
most one puncture, or a sphere with at most four punctures.

Theorem. Let Γ be the mapping class group of a non-sporadic surface. Let R ⊂ Γ
be a set of elements of the for which there is an upper bound on their translation
distance on the complex of curves. Let x, y ∈ T , and let U ⊂ S(x) and V ⊂ S(y)
be Borel sets whose boundaries have measure zero. Then

(0.1)
|Ry ∩Br(x), q(x, γy) ∈ U × V |
|Γy ∩Br(x), q(x, γy) ∈ U × V | → 0, as r → ∞.

This shows that pseudo-Anosov elements are “generic” in the mapping class
group , at least for one particular definition of generic, see Farb [4] for a discussion
of similar questions. In the case in which R consists of the non-pseudo-Anosov
elements of the mapping class group , this result should also follow from the
methods of Eskin and Mirzakhani [3], which they use to show that the number of
conjugacy classes of pseudo-Anosov elements of translation length at most r on
Teichmüller space is asymptotic to ehr/hr. In the sporadic cases, the mapping
class group is either finite, or already well understood, as the mapping class group
is SL(2,Z), up to finite index.

We now give a more detailed outline of the argument. Let R ⊂ Γ be a set
of elements for which there is an upper bound on their translation length on the
complex of curves, for example, the set of non-pseudo-Anosov elements in the
mapping class group . We wish to consider the distribution of elements of Ry
inside Teichmüller space T . In some parts of T elements of Ry are close together,
and in other parts elements of Ry are widely separated. We quantify this by by
defining Rk to be the k-dense elements of Ry, namely those elements of Ry which
are distance at most k in the Teichmüller metric from some other element of R.
If two lattice points γy and γ′y are a bounded Teichmüller distance apart, then γ
and γ′ are a bounded distance apart in the word metric on Γ. In [6] we showed
that the limit set of the k-dense elements in the word metric has measure zero
in the Gromov boundary of the relative space, and we use this to show that the
k-dense elements in Teichmüller space have a limit set in the visual boundary S(x)
which has sx-measure zero. A straightforward application of the results of [1] then
shows that the proportion of lattice points Γy ∩ Br(x) which lie in Rky tends to
zero as r tends to infinity.
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It remains to consider Ry \ Rky, which we shall denote R′
ky. We say a subset

of T is k-separated, if any two elements of the set are Teichmüller distance at
least k apart, so R′

ky is a k-separated subset of T . Naively, one might hope that
the proportion of k-separated elements of Γy in Br(x) is at most 1/ |Γy ∩Bk(y)|,
as each lattice point γy ∈ R′

ky is contained in a ball of radius k in Teichmüller
space containing |Γy ∩Bk(y)| other lattice points, none of which lie in R′

ky. Such
a bound would imply the required result, as this would give a collection of upper
bounds for

lim
r→∞

|Ry ∩Br(x)|
|Γy ∩Br(x)|

which depend on k, and furthermore these upper bounds would decay exponen-
tially in k, so this implies that the limit above is zero. However, this argument only
works for those lattice points in the interior of Br(x) for which Bk(γy) ⊂ Br(x).
If a lattice point γy is within distance k of ∂Br(x), then many of the lattice points
in Bk(γy) may lie outside Br(x), and a definite proportion of lattice points are
close to the boundary, as the volume of Br(x) grows exponentially. We use the
mixing property of the geodesic flow to show that that ∂Br(x) becomes equidis-
tributed on compact sets of the quotient space T /Γ, and this in turn shows that
the intersections of ∂Br(x) with Bk(γy) are evenly distributed. This implies that
we can find an upper bound for the average number of lattice points of Γy near
some γy close to the boundary, which do in fact lie inside Br(x). In fact, we prove
a result that works for bisectors, so we also need to show that the proportion
of lattice points near the geodesics rays through ∂U tends to zero as r tends to
infinity. These arguments using mixing originate in work of Margulis [7], and our
treatment of conditional mixing is essentially due to Eskin and McMullen [2], see
also Gorodnik and Oh [5], for the higher rank case.
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Dynamics of the horocycle flow on the eigenform loci in H(1, 1)

Barak Weiss

(joint work with Matt Bainbridge and John Smillie)

We discuss dynamics of the horocycle flow on the eigenform loci in the stratum
H(1, 1), discovered by Calta and McMullen. We reprove and improve the measure
classification result of Calta and Wortman, and obtain a corresponding orbit-
closure classification. The new phenomenon we display is orbit-closures which are
linear manifolds with boundary. We also obtain some statements regarding limits
of sequences of measures arising in some counting problems. In particular we show
that every orbit is equidistributed in its closure.

In other strata, we describe new examples of closed horocycle invariant sets and
measures. These do not arise via the previously known mechanisms: minimal sets,
invariant horizontal saddle connections, SL(2, R)-invariant sets and measures, and
their pushforward via the real REL action. Instead their construction involves
new invariant vector fields which commute with the horocycle actions, on infinite
covers of the stratum, corresponding to invariant subspaces in the monodromy
action of affine automorphism groups.

Particular compatible sequences of periodic orbits of the Koch
snowflake fractal billiard

Robert G. Niemeyer

(joint work with Michel L. Lapidus)

Those familiar with the subject of mathematical billiards are well aware of the
friendly nature of a billiard table with a smooth boundary. Even a billiard table
with finitely many singularities (i.e., points for which reflection is not defined) still
maintains a rather pleasant demeanor. An example of such a billiard is a rational
billiard Ω(R). Such a billiard table has a polygonal boundary R where each interior
angle is a rational multiple of π. The Koch snowflake is a fractal that is comprised
of three self-similar Koch curves; see Figure 1. The Koch snowflake KS is an
everywhere nondifferentiable curve. As one then expects, the billiard Ω(KS) with
boundary KS is a particularly unfriendly (and unwieldy) billiard table. However,
closely related to the Koch snowflake are its prefractal approximations. A prefrac-
tal approximation to the Koch snowflake billiard, denoted by Ω(KSn) (with n = 0
being the equilateral triangle billiard), is a rational billiard. It is our intention
to gain insight into the nature of the Koch snowflake billiard by examining the
behavior of the billiard flow on successive prefractal approximations.

Let us first state a very lofty goal: to show that an analogue of the Veech
dichotomy holds for a particular family of fractal billiard tables. Given that the
subject of fractal billiards is still in its infancy, this very difficult problem will likely
not be solved by the authors in the near future. However, such a goal serves to
guide the development of the subject. In [1], we detailed a number of conjectures
and open questions regarding the existence of a well-defined billiard Ω(KS). A
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Figure 1. The construction of the Koch snowflake, via its pre-
fractal approximations KSn for n = 0, 1, 2, ....

number of simulations were detailed and experimental evidence motivated many
of the definitions given therein. In [2], we began to investigate the behavior of
orbits in a particular direction, namely, the direction of θ = π/3.

In [4], the billiard flow associated with a rational billiard is carefully described.
Consider the billiard map fn that describes the billiard flow on the phase space
Ω(KSn) × S1/ ∼. Second, fix a coordinate system by which every angle will be

measured. Then fn(x
kn
n , θkn

n ) = (x
(k+1)n
n , θ

(k+1)n
n ) is the image of a basepoint xkn

n

and angle θkn
n under the billiard map fn associated with Ω(KSn), and both θkn

n

and θ
(k+1)n
n are measured relative to the same coordinate system, rather than

their respective sides in Ω(KSn). Now, suppose one takes (x0n, π/3) as an initial
condition of the billiard flow (we are assuming π/3 is an inward pointing direction
based at x0n). As described in great detail in [2], one may then show there is an
intimate relationship between the orbit On(x

0
n, π/3) and an orbit O0(x

0
0, π/3) of

the equilateral triangle billiard Ω(KS0) (assuming x0n was not a corner of Ω(KSn)).
We describe this intimate relationship as the two orbits being compatible.

Such language allows us to construct what we call a compatible sequence of
piecewise Fagnano orbits, an eventually constant compatible sequence of periodic
orbits and a compatible sequence of generalized piecewise Fagnano orbits. The
notion of a compatible sequence of piecewise Fagnano orbits is motivated by the
Fagnano orbit of the equilateral triangle billiard Ω(KS0). Simply put, a piecewise
Fagnano orbit is constructed by appending scaled copies of the Fagnano orbit to
each basepoint; the result will then be an orbit that is compatible with the orbit
to which the scaled copies were appended. An interesting fact to point out is that
a piecewise Fagnano orbit can be determined by utilizing a particular iterated
function system of non-expansive mappings. An orbit in an eventually constant
compatible sequence of orbits is referred to as a Cantor orbit (or C-orbit), because
of the nature of the basepoints of such an orbit; they are points which coincide
with elements of Cantor sets that do not have finite ternary representations. A
generalized piecewise Fagnano orbit is named for the fact that it is very much a
generalization of a piecewise Fagnano orbit, which is clearly seen in a symbolic set-
ting. Specifically, the graphical representation of a generalized piecewise Fagnano
orbit may be obtained by a suitably adjusted iterated function system consisting
of finitely many non-expansive mappings. By this we mean that the contraction
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ratio may not necessarily be 1/3k, for some k, nor can one simply append suit-
ably scaled copies of a Fagnano orbit to produce the next orbit in the compatible
sequence of generalized piecewise Fagnano orbits.

A more formal description of these orbits can be given in terms of the ternary
representation of the initial basepoint x00 of the initial orbit in the particular com-
patible sequence of orbits. In particular, if x00 has a ternary representation con-
sisting of infinitely many 1’s and finitely many 0’s and 2’s, then the resulting
compatible sequence to which O0(x

0
0, π/3) belongs will be a compatible sequence

of piecewise Fagnano orbits. If x00 has a ternary representation consisting of finitely
many 1’s and infinitely many 0’s and 2’s, then the resulting compatible sequence
is an eventually constant compatible sequence of orbits (eventually comprised of
a single C-orbit). Finally, if x00 has a ternary representation consisting of either
infinitely many 1’s and 2’s, or 1’s and 0’s or 1’s, 2’s and 0’s, then the resulting
compatible sequence to which the orbit O0(x

0
0, π/3) belongs to is a compatible

sequence of generalized piecewise Fagnano orbits.
In [2], we give a plausibility argument as to why it is that the inverse limit of

a compatible sequence of piecewise Fagnano orbits constitutes a periodic orbit of
the Koch snowflake billiard Ω(KS). In addition to this, we show that the trivial
limit of an eventually constant compatible sequence of periodic orbits constitutes
what we call a stabilizing periodic orbit of the Koch snowflake billiard Ω(KS).
Because of the elusive nature of a compatible sequence of generalized piecewise
Fagnano orbits, we do not give a plausibility argument as to why it is the suitably
defined inverse limit of such a sequence may constitute a periodic orbit of the Koch
snowflake. Instead, we provide a conjecture about the existence of such an orbit.

Recent work in [3] providing support for the conjecture that Ω(KS) constitutes
a well-defined billiard involves analyzing what we are calling hybrid periodic or-
bits. Current computer simulations of these orbits in their respective prefractal
approximations show 1) that one can construct a well-defined compatible sequence
of hybrid periodic orbits and 2) such orbits may be generated by a particular iter-
ated function system of non-expansive mappings (in much the same way one can
generate a piecewise Fagnano orbit). Such simulations provide the most substan-
tial evidence in support of the existence of a well-defined billiard Ω(KS). Addi-
tional results indicate that is may be possible to construct well-defined compatible
sequences of periodic orbits in directions other than π/3.

It is our hope that once a suitable notion of reflection in the boundary KS of
the fractal billiard Ω(KS) can be determined, the particular orbits that we have
described above will have analogues in the limiting case that are also periodic
orbits of the well-defined Koch snowflake billiard. Once (and if) this has been
accomplished, we hope that out of this comes a natural notion of non periodic
orbit. Then, with a notion of periodic and not periodic at hand, it should become
much clearer how to formulate a suitable analogue of the Veech dichotomy.
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Coarse Differentiation and the rank of Teichmüller space

Kasra Rafi

We study the quasi-isometry group of Teichmüller space. As a first step we
give a local description of floats in the Teichmüller space. The key ingredients are:
Eskin’s coarse differentiations and the construction of a combinatorial model for
Teichmüller space.

Prym-Tyurin classes and tau-functions

Dmitry Korotkin

(joint work with Peter Zograf)

In this talk we study the moduli space M of holomorphic n-differentials with
simple zeros on Riemann surfaces for n ≥ 2, following our recent work [1] devoted
to the moduli spaces of holomorphic Abelian differentials (n = 1). The space M
consists of pairs (C,W ), where C is a compact Riemann surface of genus g and
W is a holomorphic n-differential on C with simple zeros (the number of the zeros
then equals n(2g−2)). The dimension of the space M equals (n+1)(2g−2) (here
and below we always assume that n ≥ 2). To each pair (C,W ) one can naturally

associate the canonical n-sheeted covering p : Ĉ → C where Ĉ is a Riemann
surface of genus n2(g− 1) and W becomes an nth power of an abelian differential
w: W = wn. The covering has ramification points of multiplicity n − 1 at the
zeros of W . Moreover, Ĉ possesses an automorphizm µ such that µn = id and
w(µx) = ǫw(x) where x ∈ Ĉ and ǫ is the primitive root of unity, ǫ := e2πi/n.

Consider the space H(1,0)(Ĉ,C) of holomorphic differentials on Ĉ; the dimen-
sion of this space equals (n + 1)(2g − 2). The automorphizm µ defines a linear

automorphizm Qµ of order n in H(1,0)(Ĉ,C). Denote the eigenspace of Qµ cor-
responding to the eigenvalue ǫk by H(k) (k = 0, 1, . . . , n − 1). The dimensions of
these eigenspaces are given by: dimH(0) = g, dimH(k) = (2n− 2k+ 1)(g − 1) for
k = 1, . . . , n−1. In this way we get a set of n vector bundles over the moduli space
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M. The vector space H(0) coincides with the vector space of holomorphic differ-
entials on C. Other n−1 vector bundles obtained in this way we call Prym-Tyurin
vector bundles. The first Chern classes of the corresponding determinant line bun-
dles we call Prym-Tyurin classes and denote them by λPT

k for k = 1, . . . , n− 1.
The boundary of the space M is formed by the following divisors: the divi-

sors D0, D1, . . . , D[g/2] corresponding to Deligne-Mumford compactification of the
moduli space of Riemann surfaces of genus g, and an additional divisorDdeg, which
corresponds to n-differentials W with double zeros.

Our main result is the expression for the classes λPT
k (as elements of the rational

Picard group) in terms of the boundary classes of M and the tautological class ψ.
The main analytical tool we are using is the formalism of Bergman tau-functions,

appropriately adjusted to the present situation. The definition of these tau-
functions is inspired by the theory of isomonodormic deformations [2], the spectral
theory of Laplace operator in flat singular metrics [3] and the theory of random
matrices [4].
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Hilbert modular varieties do not lie in the Schottky locus

Matt Bainbridge

(joint work with Martin Möller)

Consider the moduli space of genus g Riemann surfaces Mg and the moduli
space of g-dimensional principally polarized Abelian varieties Ag = Hg/Sp2gZ,
where Hg is the g-dimensional Siegel upper half space. The Torelli map t : Mg →
Ag embeds Mg into Ag, and the image t(Mg) is called the Schottky locus. The
image of the Torelli map is dense in Ag if g = 2 or 3, and is otherwise a complicated
subvariety of Ag.

The moduli space Ag possesses a natural locally symmetric metric. There are
many subvarieties of Ag which are totally geodesic with respect to this metric.
Such a subvariety is called a Shimura variety. (To be completely precise, a Shimura
variety is a totally geodesic subvariety which contains a CM point.) In this talk,
we consider the question of which Shimura subvarieties of Ag are contained in the

closure of the Schottky locus t(Mg). It is conjectured that over all g there are

only finitely many Shimura subvarieties of Ag which are contained in t(Mg) and
meet t(Mg). See the survey [MO] for more about these questions.
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Examples of Shimura varieties are the Hilbert modular varietiesXO = Hg/ SL2 O.
Here O is an order in a totally real number field F of degree g (for example the
ring of integers). XO can be regarded as the moduli space of principally polarized
Abelian varieties with real multiplication by O, and there is a canonical totally
geodesic immersion XO → Ag.

A special case of the above problem is the question of which Hilbert modular
varieties are contained in the closure of the Schottky locus. In [dJZ07], de Jong
and Zhang showed that if g > 5, then no Hilbert modular variety is contained in
t(Mg). This question is trivial if g = 2 or 3 as the Schottky locus is dense, but
the question remained open if g = 4.

A more delicate question is to study the dimension of intersection of Hilbert
modular varieties with the Schottky locus. It is natural to conjecture for dimension
reasons that for any sufficiently large g, all but finitely many Hilbert modular
varieties are disjoint from the Schottky locus. This would likely imply that there
are only finitely many algebraically primitive Teichmüller curves in Mg for any
sufficiently large g.

In recent work with Martin Möller, we proved:

Theorem. No Hilbert modular variety in A4 is contained in t(M4).

Combined with [dJZ07], this shows that no Hilbert modular variety is contained
in the Schottky locus for g > 3. After this result was proved, we learned from
[MO] of a mistake in [dJZ07]. In fact, their proof works for the case of g = 4,
although they claimed otherwise. So our theorem is not in fact new, though the
methods are different and could potentially be applied to study for example the
dimension of intersection with the Schottky locus.

The proof uses an explicit computation of the boundary of t−1(XO) in the
Deligne-Mumford compactification Mg from [BM]. The boundary of Mg can be
divided into strata composed of stable curves of a fixed topological type. Given
such a stratum S ⊂ Mg, we defined in [BM] a morphism tS from S to an algebraic

torus (C∗)N . Each component of the boundary of t−1(XO) is t−1
S (T ) for some

subtorus T ⊂ (C∗)N of appropriate dimension. The proof of the theorem then
roughly amounts to showing that certain explicit subvarieties of algebraic tori do
not contain subtori of a given dimension.
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of a branched covering, Preprint, August 2010, 43pp. Submitted to the Handbook of Moduli
(G. Farkas and I. Morrisson, eds.).



1416 Oberwolfach Report 25/2011

Wild singularities of translation surfaces.

Ferrán Valdez

(joint work with Joshua P. Bowman)

Overview. In this talk we define wild singularities for a special class of transla-
tion surfaces and introduce an affine invariant topological space called the space of
linear approaches to a singularity. This space provides local criteria to distinguish
among several recently discovered classes of translation surfaces presenting wild
singularities but having the same (infinite) topological type. We address topologi-
cal aspects of this space such as functoriality and its decomposition into rotational
components.

Wild singularities. A translation surface is a pair (X,ω) formed by a Riemann
surface X and a non identically zero holomorphic 1-form ω on X . We denote by

Z(ω) ⊂ X the set of zeroes of ω and by X̂ the metric completion of X \ Z(ω)
with respect to its natural translation invariant flat metric. Henceforth, we deal

with translation surfaces for which the set of singularities Sing(X̂) := X̂ \X is a

discrete subset of Sing(X̂). Points in X̂ \X are classified into:

(1) Cone angle singularities. These are points x ∈ X̂ for which either the Rie-
mann surface structure of X extends to X ∪ x or there exists a punctured
neighborhood of x which is isometric to an infinite cyclic covering of the
punctured disc (0 < |z| < ε, dz) ⊂ C. The point x is called finite or infinite
angle cone singularity respectively.

(2) The rest. We call such points wild singularities of the flat surface.

Examples. Cone angle singularities naturally appear in translation surfaces as-
sociated to polygonal billiards or infinite staircases [3]. On the other hand, wild
singularities arise when studying the “Baker’s map” [2], generalizing Thurston’s
construction to infinite bipartite graphs [4] or as geometric limits of a family of
compact translation surfaces [1].
The space of linear approaches. In the following paragraphs we introduce the
topological spaces L(X) and L(x). The latter provides the desired invariant for a

wild singularity x ∈ Sing(X̂).
Consider for each ε > 0 the space

Lε(X) := {unit speed geodesic trajectories γ : (0, ε) → X ′}
endowed with the uniform metric. Two linear approaches γ1 ∈ Lε(X) and γ2 ∈
Lε′(X) are said to be equivalent if and only if γ1(t) = γ2(t) for all t ∈ (0,min{ε, ε′}).
We denote by ∼ this equivalence relation and define:

(0.1) L(X) :=
⊔

ε>0

Lε(X)/ ∼

The equivalence class defined γ will be denoted by [γ]. Every class [γ] ∈ L(X)

is called a linear approach to the point limt→0 γ(t) ∈ X̂. Remark that for each
ε′ ≤ ε the restriction of each linear approach in Lε(X) to the interval (0, ε′) defines
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a continuous injection ρε
′

ε : Lε(X) → Lε′(X). Define ε E ε′ if and only if ε′ ≤ ε,

where ≤ is the standard order in R. Then < Lε(X), ρε
′

ε > is a direct system of
topological spaces over (R+,E). We have the equality of sets

(0.2) L(X) = lim−→Lε(X)

Henceforth we endow L(X) with the direct limit topology. This topology is gen-
erated by the family of sets U t = {[γ] ∈ L(X) | γ(t) ∈ U}, where U ranges over
open subsets of X and t over R+. Using this subbasis, one can prove that the
space L(X) is Hausdorff. Nevertheless, in general L(X) is not metrizable.

For every [γ] ∈ L(X) we define two maps bp([γ]) := limt→0 γ(t) ∈ X̂ and
dir([γ]) := γ′(t) ∈ S1. These are called the basepoint and direction maps respec-
tively. Their continuity follows from the universal property of the direct limit.

For every x ∈ X̂ we call L(x) := bp−1(x), endowed with the subspace topology,
the set of linear approaches to the point x. The topological type of this space is
invariant under affine orientation preserving diffeomorphisms of X . Remark that

a point x ∈ Sing(X̂) is a cone angle singularity (of finite or infinite type) if and
only if L(x) ⊂ Lε(X) for some 0 < ε. This corresponds to the fact that short
saddle connections do not accumulate on x.

Theorem. The space L(x) is the closure of a union of immersed connected 1-
manifolds (possibly with boundary), each of which carries a canonical (angular)
metric.

Each 1-manifold is called a rotational component and its obtained by rotating
a fixed [γ] ∈ L(x) around the basepoint bp([γ]). A rotational component is called
a spire if it is unbounded with respect to its angular metric, a double spire if it is
unbounded in both directions or an arc if it is unbounded and not homeomorphic
to S1.

Examples revisited. Denote by Xb and XAY the translation surface associated
to the Baker’s map [2] and the geometric limit of the Arnoux-Yoccoz family [1].
Both surfaces have the same topological type and we can now distinguish them us-

ing only the space of linear approaches. Remark that X̂b = Xb∪x, X̂AY = Xb∪x′
and that both x and x′ are wild singularities. On the other hand, L(x) is formed by
two double spires plus an infinite number of arcs, whereas L(x′) is formed by two
double spires and 4 arcs. Since the space of linear approaches is an affine invariant,
there is no affine diffeomorphism from Xb to XAY . A similar argumentation can
be used to distinguish between other pairs of translation surfaces presenting wild
singularities.

Functoriality. Every affine map f : X → Y between two translation sur-
faces whose differential lies in GL+(2,R) induces a continuous “push-forward”

map f∗ : L(X) → L(Y ). Moreover, if we denote by f̂ the continuous extension of

f to X̂ and by Df the normalized differential of f , then the following diagrams
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commute:

L(X)
f∗−−−−→ L(Y )

bp

y
ybp

X −−−−→
f̄

Y

L(X)
f∗−−−−→ L(Y )

dir

y
ydir

S1 −−−−→
Df

S1

In this sense, the space L(X) extends the unit tangent bundle of X to points in
Sing(X).

Questions for future work.

(1) Let f(z) be holomorphic in the punctured unit disc D∗ ⊂ C and suppose
that z = 0 is an essential singularity. Consider the holomorphic 1-form
ω := f(z)dz defined in U∗. Is it possible to tell from the Laurent se-
ries f(z) =

∑∞
k=−∞ akz

k what kind of rotational components L(z = 0)
presents?

(2) Can the topological spaces that arise as L(x) be characterized?

(3) What is the analog of theorem 1 to be obtained if we let Sing(X) be

non-discrete in X̂ (e.g., what if Sing(X) contains a Cantor set)?
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Bounded combinatorics and the Lipschitz metric on Teichmüller space

Anna Lenzhen

(joint work with Kasra Rafi and Jing Tao)

Let T (S) be the Teichmüller space of a surface S of finite type. Given a metric on
T (S), it is natural to ask to what extent it is hyperbolic. One way hyperbolicity
manifests itself is in strongly contracting closest point projection to geodesics.

We would like to consider the Lipschitz distance on T (S), that was introduced
by Thurston in [10]. For x, y ∈ T (S), the distance dL(x, y) between x and y is
defined in terms of the best Lipschitz map from x to y. The distance can be
formulated in terms of ratios of hyperbolic lengths of curves [10]:

(0.1) dL(x, y) = log sup
α

ℓy(α)

ℓx(α)
,
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where ℓx(α) is the hyperbolic length of α in the unique hyperbolic metric in the
conformal class of x.

This metric is in some ways similar to the much more studied and better under-
stood Teichmüller metric on T (S). The Teichmüller distance dT (x, y) is defined
in terms of the best quasiconformal map between x and y, and can be formulated
in terms of ratios of extremal lengths of curves [3]:

(0.2) dT (x, y) =
1

2
log sup

α

Exty(α)

Extx(α)
.

It is easy to see that the Lipschitz metric, unlike the Teichmüller metric, is not
symmetric. On the other hand, we know from [1] that in the thick part of T (S),
the distances dL(x, y), dL(y, x) and dT (x, y) are equal up to a universal additive
error.

When x is in the thick part, the geometry of x can be coarsely encoded by its
associated short marking µx, which is a finite collection of simple closed curves.
There are many results relating the combinatorics of µx and µy to the behavior
of the Teichmüller geodesic GT between x and y. (See [7, 8, 2], or [9] for a review
of some of these results in one paper.) Contrasting with the Teichmüller metric,
there is no unique geodesic in the Lipschitz metric from x to y. But one hopes
that qualitative information about Lipschitz geodesics can still be extracted from
the end invariants µx and µy.

The first natural situation to consider is when x and y have bounded combina-
torics. That is when, for every proper subsurface Y of S, the distance dY (µx, µy)
in the curve complex of Y between the projections of µx and µy to Y is uni-
formly bounded. For the Teichmüller metric, this is in fact equivalent to GT being
cobounded (See [7] and [9]. The fact that endpoints of a cobounded Teichmüller
geodesic have bounded combinatorics follows also from the work of Minsky [4, 6].)

Our first result is that bounded combinatorics also guarantees cobounded for
every Lipschitz geodesic GL from x to y. In fact, GL is well approximated by GT .

Theorem (Bounded combinatorics implies cobounded). Assume, for x, y ∈ T (S)
in the thick part of Teichmüller space, that

dY (µx, µy) = O(1)

for every proper subsurface Y ⊂ S. Then any geodesic GL in the Lipschitz metric
connecting x to y fellow travels the Teichmüller geodesic GT with endpoints x and
y. Consequently, GL is cobounded.

To restate Theorem more succinctly is to say that GT , viewed as a set in the
Lipschitz metric, is quasi-convex. A standard argument for showing a set is quasi-
convex is to show the closest-point projection to the set is strongly contracting.
Indeed, this is how we prove Theorem .

Theorem (Lipschitz projection to Teichmüller geodesics). Let GT be a cobounded
Teichmüller geodesic. Then the image of a Lipschitz ball disjoint from GT under
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the closest-point projection to GT (with respect to the Lipschitz metric) has uni-
formly bounded diameter. That is, the closest-point projection to GT is strongly
contracting.

This is analogous to Minsky’s theorem ([5]) that the closest-point projection in
the Teichmüller metric to a cobounded Teichmüller geodesic is strongly contract-
ing. Combining Theorem and Theorem , we obtain:

Theorem (Strongly contracting for projections to Lipschitz geodesics). Let GL

be a Lipschitz geodesic whose endpoints have bounded combinatorics. Then the
closest-point projection to GL is strongly contracting.

Theorem is a negative-curvature phenomenon. A natural consequence is sta-
bility of GL. In other words,

Corollary (Stability of Lipschitz geodesics). If GL is a Lipschitz geodesic whose
endpoints have bounded combinatorics, then any quasi-geodesic with the same end-
points as GL fellow travels GL.

For a Teichmüller geodesic to be cobounded, it is necessary for the endpoints
to have bounded combinatorics. Naturally, one should ask whether this holds for
the Lipschitz metric as well. We claim that the answer is no. That is, there are
arbitrarily long Lipschitz geodesics which stay in the thick part of Teichmüller
space, but whose endpoints do not have bounded combinatorics.
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Continued fractions and translation surfaces

Thomas A. Schmidt

(joint work with Kariane Calta)

Arnoux and Yoccoz [2] gave examples in genus g ≥ 3 of pseudo-Anosov maps with
dilatation of degree g. These were the first examples of such maps that realized
the lower bound on their degree. Their examples have led to various interesting
studies, see especially [9] and [12].

When a pseudo-Anosov stabilizes an abelian differential, it acts as an affine
diffeomorphism, whose linear part is a hyperbolic matrix. This matrix can be

diagonalized to the form

(
λ 0
0 λ−1

)
, with λ the dilatation. Following Long and

Reid [11], we call the matrix and the pseudo-Anosov map special if λ ∈ Q(λ+λ−1).
The Arnoux-Yoccoz examples are thus special in this sense.

Recall that the Sah-Arnoux-Fathi (SAF) invariant for interval exchange maps
is zero whenever the map is periodic, and that the Kenyon-Smillie J-invariant [10]
associated to a translation surface (defined by an abelian differential) “projects”
so as to give the SAF-invariant of each direction on the surface. Calta [5] showed
that if a surface has three directions with vanishing SAF-invariant, then the set of
directions form the projective line over a field as soon as the surface is normalized
to be in standard form: 0, 1, ∞ have vanishing SAF-invariant. Calta and Smillie
show that furthermore, the presence of a pseudo-Anosov implies that this periodic
field is exactly the trace field formed by adjoining onto Q the traces of the elements
of the Veech group. Thus, a pseudo-Anosov map has linear part with trace in this
periodic field, and is special exactly when λ itself lies in the field (in general, λ lies
in a quadratic extension of the trace field).

Veech [15] gave examples of translation surfaces with large affine diffeomorphism
groups. His examples, formed by identifying sides of pairs of regular n-gons, have
so-called Veech groups (formed by the linear part of the affine diffeomorphisms)
that are triangle Fuchsian groups of signature (2, n,∞), (2m,∞,∞). In the 1930s,
Hecke studied a particular family of such groups; in the 1950s, D. Rosen [13]
introduced his continued fractions to address the “word problem” for the Hecke
groups. A decade later, Rosen posed the problem of identifying the parabolic
fixed points of each of the Hecke groups. A German school of Leutbecher, Borho,
Rosenberger, Wolfart and others attacked the problem throughout the 1970s.

Arnoux and Schmidt [1] point out that results of Rosen and Towse [14] (ob-
tained almost 50 years after Rosen had written his thesis) show that the double
septagon has a special pseudo-Anosov map, and that work of Towse and others [8]
imply that the double nonagon has at least four such maps. Arnoux and Schmidt
further exhibited special hyperbolics for the lattice surface examples of Veech cor-
responding to (double) 14-, 18- 20-, and 24-gons. This complemented work of
Leutbecher, Wolfart et al. to imply that: Every Veech example of g > 2 has
non-parabolic elements in its periodic field.
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Veech’s student Ward [16] gave a second infinite family of lattice translation sur-
faces, having Veech group that are triangle Fuchsian groups of signature (3, n,∞).
More recently, Bouw andMöller [3] have shown that virtually all signatures (m,n,∞)
are realized as Veech groups. We show the following.

Theorem. Any Bouw-Möller surface of signature (2m′, 2n′,∞) has a special pseudo-
Anosov map.

We prove this by first exhibiting a representative group of signature (m,n,∞)
that lies in PSL2(OK) where OK is the ring of integers of the trace field of the
group. Whereas the representative is in standard form (that is has parabolic fixed
points including 0, 1 and ∞) when at least one of m,n is odd, when both m,n are
even one finds rather that 1 is a hyperbolic fixed point. An easy argument shows
that since the group must be conjugated to one in standard form, and 0, ∞ are
parabolic fixed points of the group, there is an element of K that is fixed by the
conjugate group in standard form.

Furthermore, reduction modulo the prime ideal of OK above 〈2〉 leads to the
following.

Theorem. Any Bouw-Möller surface of signature (2k, n,∞) with n odd, n 6= 2f+1
has non-parabolic elements in periodic field.

Finally, in [6] we create a continued fraction algorithm for the Ward examples,
with the aim to detect non-parabolic elements of the periodic field. Our continued
fractions have various desirable properties, including detecting transcendence; this
property was only recently shown for the Rosen fractions [4].
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[9] P. Hubert, E. Lanneau and M. Möller, The Arnoux-Yoccoz Teichmüller disc, Geom. Funct.

Anal. 18 (2009), no. 6, 1988–2016.
[10] R. Kenyon and J. Smillie, Billiards in rational-angled triangles, Comment. Mathem. Helv.

75 (2000), 65–108.
[11] D. Long and A. Reid, Pseudomodular surfaces, J. Reine Angew. Math. 552 (2002), 77–100.



Billiards, Flat Surfaces, and Dynamics on Moduli Spaces 1423

[12] J. H. Lowenstein, G. Poggiaspalla, and F. Vivaldi, Interval exchange transformations over
algebraic number fields: the cubic Arnoux-Yoccoz model Dyn. Syst. 22 (2007), no. 1, 73106.

[13] D. Rosen, A Class of Continued Fractions Associated with Certain Properly Discontinuous
Groups, Duke Math. J. 21 (1954), 549–563.

[14] D. Rosen, C. Towse, Continued fraction representations of units associated with certain
Hecke groups, Arch. Math. (Basel) 77 (2001), no. 4, 294–302.

[15] W.A. Veech, Teichmüller curves in modular space, Eisenstein series, and an application to
triangular billiards, Inv. Math. 97 (1989), 553 – 583.

[16] C. Ward Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic
Theory Dynam. Systems 18, (1998), 1019–1042.

Reporter: Christian Weiß



1424 Oberwolfach Report 25/2011

Participants

Dr. Jayadev S. Athreya

Department of Mathematics
University of Illinois at
Urbana-Champaign
1409 West Green Street
Urbana IL 61801
USA

David Aulicino

Department of Mathematics
University of Maryland
College Park , MD 20742-4015
USA

Prof. Dr. Matthew Bainbridge

Department of Mathematics
Indiana University
Bloomington IN 47405-4301
USA

Prof. Dr. Maximilian Bauer

U. F. R. Mathematiques
I. R. M. A. R.
Universite de Rennes I
Campus de Beaulieu
F-35042 Rennes Cedex

Prof. Dr. Corentin Boissy

LATP(Mathematiques)
Faculte St. Jerome
Universite Aix-Marseille III
Avenue Escadrille Normandie-N.
F-13397 Marseille Cedex 20

Prof. Dr. Michael Boshernitzan

Dept. of Mathematical Sciences
Rice University
P. O. Box 1892
Houston , TX 77251-1892
USA

Prof. Dr. Irene Ingeborg Bouw

Institut f. Reine Mathematik
Universität Ulm
Helmholtzstr. 18
89081 Ulm

Prof. Dr. Joshua Bowman

Department of Mathematics
Stony Brook University
Stony Brook , NY 11794-3651
USA

Prof. Dr. Kariane Calta

Department of Mathematics
Vassar College
Box 69
Poughkeepsie NY 12604
USA

Dr. Jonathan M. Chaika

Department of Mathematics
The University of Chicago
5734 South University Avenue
Chicago , IL 60637-1514
USA

Dr. Dawei Chen

Dept. of Mathematics, Statistics
and Computer Science, M/C 249
University of Illinois at Chicago
851 S. Morgan Street
Chicago , IL 60607-7045
USA

Prof. Yitwah Cheung

Department of Mathematics
San Francisco State University
1600 Holloway Avenue
San Francisco , CA 94132
USA



Billiards, Flat Surfaces, and Dynamics on Moduli Spaces 1425

Vincent Delecroix

Institut de Mathematiques de Luminy
CNRS
Case 907 - Luminy
F-13288 Marseille Cedex 9

Prof. Dr. Moon Duchin

Department of Mathematics
University of Michigan
East Hall, 525 E. University
Ann Arbor , MI 48109-1109
USA

Myriam Finster

Institut für Algebra u. Geometrie
Karlsruher Institut für Technologie
Kaiserstr. 89-93
76128 Karlsruhe

Prof. Dr. Sebastien Gouezel

U. F. R. Mathematiques
I. R. M. A. R.
Universite de Rennes I
Campus de Beaulieu
F-35042 Rennes Cedex

Prof. Dr. Ursula Hamenstädt
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