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Introduction by the Organisers

There have been dramatic advances in algebraic K-theory recently, especially in
the computation and understanding of negative K-groups and of nilpotent phe-
nomena in algebraic K-theory. Parallel advances have used remarkably different
methods. Quite complete computations for the algebraic K-theory of commuta-
tive algebras over fields have been obtained using algebraic geometric techniques.
On the other hand, the Farrell-Jones conjecture implies results on the K-theory
for arbitrary rings. Proofs here use controlled topology and differential geometry.

Given the diversity of interests and backgrounds of the 28 participants in our
mini-workshop, we encouraged everyone to make their talks accessible to a wide
audience and scheduled five expository talks. The opening talk of the conference
was an inspiring talk by Charles Weibel, on the work of Daniel Quillen, the cre-
ator of higher algebraic K-theory, who died at the end of April. Wolfgang Lück
spoke on the Farrell-Jones conjecture. Jim Davis applied the Farrell-Jones conjec-
ture to give a foundational result on algebraic K-theory, showing that geometric
techniques have algebraic consequences for the iterated NpK-groups. Bjorn Dun-
das gave a survey of trace methods on algebraic K-theory, focusing on topological
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cyclic homology and his new integral homotopy cartesian square. Christian Haese-
meyer gave a survey of algebraic K-theory of singularities and new techniques for
computing negative K-theory and NK-theory for commutative Q-algebras. The
idea of the expository talks worked quite well; it was remarkable how many of the
speakers relied on them.

The mini-workshop had a full schedule; in addition to the five expository talks
there were seventeen research talks. There were computational talks (Teena Ger-
hardt, Charles Weibel, Daniel-Juan Pineda), foundational talks (Bruce Williams,
Lars Hesselholt, Max Karoubi, Guilermo Cortiñas, Jens Hornbostel, Andrew Blum-
berg, Thomas Geisser), applications of ideas from K-theory to geometric topology
(Ib Madsen, Frank Connolly, Qayum Khan, Ian Hambleton, Michael Weiss, Wolf-
gang Steimle), as well as the proof of the Farrell-Jones Conjecture for the group
SLn(Z) (Holger Reich). The talk of Charles Weibel was notable since the topic
was research done at the workshop. Weibel’s talk connected and compared two
different computations of the NpKqR groups, one done by algebraic geometry and
one done by geometric topology. This was emblematic of a successful implemen-
tation of the original goal of the workshop to compare and contrast two powerful
but quite distinct approaches to algebraic K-theory.

Timetable

Monday 16th May, 2011
9:00-10:00 Chuck Weibel On the work of Daniel Quillen (1940-2011)

10:15-11:05 Ib Madsen On the homological structure of BDiff(M)
11:25-12:15 Bruce Williams K-Theory and Endomorphisms
16:00-16:50 Teena Gerhardt On the algebraic K-theory of truncated

polynomials in multiple variables
17:15-18:05 Wolfgang Lück The Farrell-Jones conjecture and its

applications

Tuesday 17th May, 2011
9:00-9:50 Jim Davis Some remarks on Nil groups in algebraic

K-theory
10:15-11:05 Bjørn Dundas A survey of trace methods in algebraic

K-theory
11:25-12:15 Lars Hesselholt Algebraic K-theory and reality
16:00-16:50 Frank Connolly An equivariant rigidity theorem for certain

discrete groups (Part I)
17:15-18:05 Qayum Khan An equivariant rigidity theorem for certain

discrete groups (Part II)

Wednesday 18th May, 2011
9:30-10:20 Christian Haesemeyer Algebraic K-theory of singularities, a

survey
11:00-11:50 Michael Weiss Smooth maps to the plane and

Pontryagin classes
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Thursday 19th May, 2011
9:00-10:00 Max Karoubi Twisted bundles and twisted K-theory

10:15-11:05 Holger Reich The Farrell-Jones conjecture for SL(n,Z)
11:25-12:15 Andrew Blumberg Localisation in THH of Waldhausen

categories
16:00-16:50 Chuck Weibel NK and NpK of commutative algebras
17:15-18:05 Wolfgang Steimle Higher Whitehead torsion and the

geometric assembly map

Friday 20th May, 2011
9:00-9:50 Guillermo Cortiñas Isomorphism conjectures with proper

coefficients
10:15-11:05 Thomas Geisser Rational K-theory in characteristic p
11:25-12:15 Daniel Juan-Pineda Algebraic K-theory of Z[Γ] for Γ the

braid group of a surface
16:00-16:50 Jens Hornbostel Preorientations of the derived motivic

multiplicative group
17:15-18:05 Ian Hambleton Cocompact discrete group actions and

the assembly map
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Abstracts

The work of Daniel Quillen (1940-2011)

Charles Weibel

This was a survey talk about the mathematical works of Daniel Gray Quillen, who
died on April 30, 2011. I focussed on the period 1967-1972, with emphasis on his
paper cited below. The notes for this lecture may be found at:

http://www.maths.ed.ac.uk/~aar/confer/quillen.pdf

References

[1] D. Quillen, Higher algebraic K-theory I, Springer Lecture Notes in Math. 341, 1973

On the homological structure of BDiff(M)

Ib Madsen

(joint work with Alexander Berglund)

1. Introduction

The traditional method to obtain homotopical information about diffeomorphism
groups of high dimensional manifolds is a two step procedure: the surgery exact se-
quence gives information on the group of block diffeomorphisms and Waldhausen’s
K-theory of spaces connects block diffeomorphisms and diffeomorphisms.

With the solution of the generalized Mumford conjecture [MW] a new method
was introduced for diffeomorphisms of surfaces, based on embedded surfaces and
the Pontryagin-Thom collapse map. The method was generalized first in [GMTW],
which determined the homotopy type of the embedded cobordism category. Most
recently, Galatius and Randal-Williams used geometric methods (surgery) to cal-
culate the homological structure of the “stable” diffeomorphism groups of (d− 1)-
connected 2d-dimensional manifolds. As a special case, consider the manifolds

M2d
g = (Sd × Sd)♯ . . . ♯(Sd × Sd), g summands.

Let D2d ⊂ M2d
g be an embedded disk. Boundary connected sum induces a map

BDiff(M2d
g , D

2d)×BDiff(M2d
h , D

2d) → BDiff(M2d
g+h, D

2d)

so that

M =
∐

g

BDiff(Mg, D)

becomes a topological monoid. This monoid can be viewed as a subcategory of the
embedded cobordism category C θ

2d with suitable tangential structure θ. Galatius
and Randal-Williams show that the inclusion of M in C θ

2d induces a homotopy
equivalence of classifying spaces by performing surgery (“in families”) below the
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middle dimension. They then use the group completion theorem and results from
[K] to show

Theorem 1.1 ([GR-W]). There is a homology equivalence

colim
g

H∗(BDiff(M2d
g , D

2d)) → H∗(Ω0BC
θ
2d)

for d 6= 2.

The right-hand side was determined in [GMTW]. For surfaces (d = 1), the
result was proved in [MW] but with an argument that used Harer type stability
theorems [H]. In contrast, the proof of the above theorem for d > 2 is not based
on homological stability. However, it does raise the question if there is a range of
dimensions where

σk : Hk(BDiff(M2d
g , D

2d)) → Hk(BDiff(M2d
g+1, D

2d))

is an isomorphism. The present report gives a partial answer to this question, but
only for homology with rational coefficients and for large d. The result is

Theorem 1.2. For odd d > 2, the stabilization homomorphism

σk : Hk(BDiff(M2d
g , D

2d);Q) → Hk(BDiff(M2d
g+1, D

2d);Q)

is an isomorphism if k < min(12 (g − 4), d− 2).

Remark 1.3. In the case of surfaces (d = 1) there is a stability range for the
forgetful map

Hk(BDiff(M2
g, D

2)) → Hk(BDiff(M2
g)).

For our high-dimensional analogue M2d
g we cannot have stability of this kind.

This follows from the fibration

Emb(D,M) → BDiff(M, D) → BDiff(M)

and the homotopy equivalence

Emb(D,M) ≃ Fr(TM),

the frame bundle. For M = M2d
g , SO(2d) → Fr(TM) is (d − 1)-connected and

the fibration prevents a stability range for

Hk(BDiff(M2d
g , D

2d)) → Hk(BDiff(M2d
g+1, D

2d))

2. Block Diffeomorphisms

The simplicial group (or ∆-group) D̃iff(M) of block diffeomorphisms has k-
simplices equal to the set of face preserving diffeomorphisms

(1) ϕ : ∆k ×M → ∆k ×M.
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In comparison, the simgular complex of the topological group Diff(M) has k-
simplices given by commutative diagrams

(2) ∆k ×M
ϕ

//

$$I
III

IIIII
∆k ×M

zzvvvvvvvvv

∆k

with ϕ a diffeomorphism. There is an analogue of (1) where we require ϕ to be

a face preserving homotopy equivalence. This defines the monoid Ãut(M). The
geometric realizations give topological groups

(3) Diff(M) ⊂ D̃iff(M) ⊂ Ãut(M).

There are homotopy equivalences

Diff(M) ≃ DiffW (M), Ãut(M) ≃ aut(M),

where DiffW (M) denotes the diffeomorphism group of M equipped with the
Whitney topology, and aut(M) the monoid of self homotopy equivalences of M
in the compact-open topology.

The ∆-groups (monoids) above are fibrant, so the homotopy theory of their geo-
metric realizations and the simplicial homotopy theory agree. The homogeneous
spaces of (3) are defined to be the fibers in the fibrations

(4) D̃iff(M)/Diff(M) // BDiff(M) // BD̃iff(M),

Ãut(M)/D̃iff(M) // BD̃iff(M) // BÃut(M).

If X ⊂ M is a closed subset, we write Diff(M, X) for the subgroup that fixes
a neighbourhood germ of X . The first fiber in (4) can be examined via Morlet’s
lemma of disjunction, see e.g. [BLR], p.31. Let V be a compact n-manifold, and
let D0 ⊂ int(V ) be an n-disk. There is a diagram of inclusions

Diff(D0, ∂D0) // //

��

��

Diff(V, ∂V )
��

��

D̃iff(D0, ∂D0)
// // D̃iff(V, ∂V )

where the horizontal inclusions extend a diffeomorphism by the identity in the
complement V \D0. Let

(5) BDiff(D0, ∂D0) // //

��

��

BDiff(V, ∂V )
��

��

BD̃iff(D0, ∂D0)
// // BD̃iff(V, ∂V )

be the associated diagram
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Theorem 2.1 (Morlet). Suppose V is k-connected with k + 1 < 1
2dimV . Then

πj(Diff(V, ∂V ), Diff(D0, ∂D0)) → πj(D̃iff(V, ∂V ), D̃iff(D0, ∂D0))

is (2k − 2)-connected.

It follows that the vertical fibers in (5) are compared by a (2k − 2)-connected
map. This implies

Corollary 2.2. The stabilization map

σ : D̃iff(M2d
g , D

2d)/Diff(M2d
g , D

2d) → D̃iff(M2d
g+1, D

2d)/Diff(M2d
g+1, D

2d)

is (2d− 4)-connected.

3. The proof of theorem 1.2

In this paragraph, Mg = M2d
g and I will assume d > 2 is an odd number.

There are two homotopy fibrations

(I) [Ãut(Mg, D)/D̃iff(Mg, D)](1)
η

// Map∗(Mg, G/O)(1)
λ

// L(Mg)(1),

(II) Ãut(Mg, D)/D̃iff(Mg, D) // BD̃iff(Mg, D) // BÃut(Mg, D).

The subscript (1) in (I) indicates the connected component of the identity and
Map∗ the space of pointed maps. The homotopy exact sequence of (I) is the
surgery exact sequence (above degree zero) by a theorem of F. Quinn.
In particular,

Lk+2d = πkL(Mg)(1) =





Z, if k + 2d ≡ 0 (4)
Z/2, if k + 2d ≡ 2 (4)
0 otherwise.

Theorem 3.1. For k > 0,

πk[Ãut(Mg, D)/D̃iff(Mg, D)](1)]⊗Q =

{
Q2g, if k + d ≡ 0 (4)
0 otherwise.

Proof. We remember the rational homotopy equivalences

(G/O)Q ≃ (G/TOP )Q ≃
∏

K(Q, 4l)

and that by the plumbing construction

λ∗ : [Mg × Sk, G/TOP ] → Lk+2d

is surjective. The theorem follows from the π∗-sequence of (I). �

The proof above shows that

πk[Ãut(Mg, D)/D̃iff(Mg, D)](1)]⊗Q → πkMap∗(M, G/O)⊗Q

is injective. This in turn implies that the rational homotopy type of

[Ãut(Mg, D)/D̃iff(Mg, D)](1) has vanishing k-invariants so that

(6) H∗([Ãut(Mg, D)/D̃iff(Mg, D)](1);Q) = Λ(π∗ ⊗Q)
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with π∗ ⊗ Q given in (3.1) and Λ(π∗ ⊗ Q) being the free commutative graded
algebra generated by π∗ ⊗Q.

Lemma 3.2. The image of

J̃0 : π0D̃iff(M, D) → π0Ãut(M, D)

has finite index.

Proof. The standard surgery exact sequence,

∗ // S (Mg, D)
η∗

// [Mg, G/O]
λ∗

// L2d

(c.f. [B]) shows that the structure set S (Mg, D) is finite. On the other hand, the

cokernel of J̃0 injects into the structure set. �

The rest of the argument is basically an application of the Serre spectral se-
quence of (II), but we need to replace the fiber in (II) by its connected component
in order to apply theorem 3.1. Let

BÃut(M, D) → BÃut(M, D)

be the covering associated to the subgroup imJ̃0 of π1BÃut(M, D). Then

J̃ : BD̃iff(M, D) → BÃut(M, D)

lifts to BÃut(M, D) and gives rise to the homotopy fibration

[Ãut(Mg, D)/D̃iff(Mg, D)](1) → BD̃iff(Mg, D) → BÃut(Mg, D).

Its Serre spectral sequence has E2-term

E2
r,s = Hr(BÃut(Mg, D);Hs([Ãut(Mg, D)/D̃iff(Mg, D)](1);Q)),

and we want to prove that stabilization

σ : E2
r,s(Mg) → E2

r,s(Mg+1)

is an isomorphism in a range of dimensions.

The E2-term has local coefficients in the sense that π1BÃut(Mg, D) acts on
the fiber through the map

π1BÃut(Mg, D) → π0Ãut(Mg, D).

We need to understand this action. First a general lemma from surgery theory.
A homotopy equivalence f : M1 → M2 (with ∂f : ∂M1 → ∂M2 a diffeomor-

phism if ∂M1 6= ∅) determines an element of the structure set S (M2) and defines
an element

η(f) ∈ [M2/∂M2, G/O]∗.

Lemma 3.3. Consider degree one homotopy equivalences

f : M1 → M2, g : M2 → M3

which restrict to diffeomorphisms on the boundaries. Then

η(g ◦ f) = (g−1)∗(η(f)) + η(g).



1480 Oberwolfach Report 27/2011

Since π0D̃iff(Mg, D) → π1BÃut(Mg, D) is surjective, the lemma implies that
the normal invariant

η∗ : πk(Ãut(Mg, D)/D̃iff(Mg, D),1) → [Mg,Ω
k(G/O)]∗

is π1BÃut(Mg, D)-equivariant. This in turn yields that the action of

π1BÃut(Mg, D) on

πs([Ãut(Mg, D)/D̃iff(Mg, D)](1);Q) =

{
Q2g s+ 2d ≡ 0 (4)
0 otherwise

is the standard action, induced from the action of π0Ãut(Mg, D) on Hd(Mg;Q) =
Q2g.

We need information on the rational type of Ãut(Mg, D) ≃ aut(1)(Mg, ∗). To
this end, notice that

π∗(ΩMg)⊗Q = L(α1, . . . , α2g)/(R), |αi| = d− 1.

Here L denotes the free Lie algebra on the listed generators and (R) is the ideal
generated by

R =

g∑

i=1

[αi, αi+g].

The rational type of Mg is both formal and coformal in the sense of Sullivan and
Quillen. In particular

(7)
π0aut((Mg)Q) = AutLie(π∗(ΩMg)⊗Q),
πi(aut((Mg)Q,1)) = 0 for 1 ≤ i < d− 2.

Let ϕ be a Lie algebra automorphism of π∗(ΩMg)⊗Q, determined by the equations

ϕ(αi) =
∑

ωijαj , Ω = (ωij).

Since ϕ preserves the ideal (R), ϕ(R) = λR for some λ ∈ Q∗. This is equivalent
to the matrix relation

ΩJΩt = λJ,

where (since d is odd)

J =

(
0 I
−I 0

)
.

The scalar λ is the degree, so

π0(aut
(1)((Mg)Q)) = Spg(Q).

Moreover, π0(aut
(1)(Mg)) → π0(aut

(1)((Mg)Q)) is commensurable with Spg(Z).
In conclusion,

E2
r,s(Mg) ∼= Hr(BSpg(Z);Hs([Ãut(Mg, D)/D̃iff(Mg, D)](1);Q))

for r < d− 2.
Let Hg = Q2g be the standard representation of Spg(Z). We need the following

result from [C].
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Theorem 3.4 (Charney). The stabilization map

σ∗ : H∗(Spg(Z), H⊗r
g ) → H∗(Spg+1(Z), H

⊗r
g+1)

is 1
2 (g − r − 4)-connected.

Altogether the above results imply that the stabilization

σ∗ : E2
r,s(Mg) → E2

r,s(Mg+1)

is an isomorphism in total degrees less than min(12 (g−4), d−2). The same is then
the case for the E∞-term, so that

σ∗ : H∗(BD̃iff(Mg, D);Q) → H∗(BD̃iff(Mg+1, D);Q)

is an isomorphism in the same range of dimensions. Together with corollary 2.2
this proves theorem 1.2.

Remark 3.5. There are similar theorems for M2d
g where d is even, where Spg(Z)

is replaced by SOg(Z). The only problem is to give a different proof of lemma 3.2
when d ≡ 0(4).
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K-theory of Endomorphisms

Bruce Williams

(joint work with Andrew Blumberg, Lars Hesselholt, John Klein, Mike Mandell)

Suppose A is a ring and M is an A-bimodule. Let End(A;M) be the category
with objects, pairs (P, α : P → P ⊗M) where P is a finitely generated projective
A-module and α is A-linear. For example if φ : A → A is a ring endomorphism,
then Aφ is the A-bimodule where a1a2a3 = a1 · a2 · φ(a3). We denote End(A;Aφ)
by End(A, φ), and End(A, id) by End(A). Let Nil(A;M) denote the subcategory
of End(A;M) given by nilpotent endomorphisms.
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Our goal is to analyze K̃(End(A;M), the homotopy fiber of the forgetful map
KEnd(A;M) → KA.

Let T (A;M) denote the tensor algebra with augmentation ǫ : T (A;M) → A.

Let K̃T (A;M) be the homotopy fiber of ǫ∗; KT (A;M) → KA. Recall that if M

is a left free A-module, then Waldhausen showed that K̃Nil(A;M) is homotopy

equivalent to ΩK̃T (A;M). (This generalized earlier work of Bass-Heller-Swan,

Quillen, Farrell-Hsiang, and Grayson.) Let I be the kernel of ǫ and let T̂ (A;M)
be the completion of T (A;M) with respect to I. This ring is called the formal
power series ring for T (A;M).

Following Ranicki we let Σ denote the set of square T (A;M)-matrices which

are T̂ (A;M)-invertible. (Ranicki introduced the key idea of using localization with

respect to Σ in order to study endomorphisms.) Let T̂(A;M) denote the derived
noncommutative Cohen localization of T (A;M) with respect to Σ. The notion of
derived localization is due to Dwyer and his associated localization fibration also
plays a key role in the proof of the following theorem.

Theorem: When M = Aφ, then K̃(End(A;M)) is homotopy equivalent to

ΩK̃T̂(A;M).
This theorem extends results of Grayson(A commutative and φ = id) and Ran-

icki (induced isomorphism on π0 when φ = id). Also this theorem is a response
to the challenge from the introduction to “On the algebraic K-theory of formal
power series” by Lindenstrauss and McCarthy. They study End(A;M) when M
is a simplicial bimodule using Goodwillie calculus and trace methods. It would be
very interesting to understand how this theorem and their results fit together. See
also the related paper by Betley.

This work is part of an ongoing project with Andrew Blumberg, Lars Hesselholt,
John Klein and Mike Mandell to use trace methods to study invariants for families
of endomorphisms of spaces.

On the algebraic K-theory of truncated polynomials in multiple
variables

Teena Gerhardt

(joint work with Vigleik Angeltveit, Michael Hill, Ayelet Lindenstrauss)

About 15 years ago, Hesselholt and Madsen [3] computed the relative alge-
braic K-theory groups Kq(Fp[x]/x

a, (x)). We consider the algebraic K-theory of
truncated polynomials in multiple commuting variables. We study

Kq(k[x1, . . . , xn]/(x
an

1 , . . . , xan

n ), (x1), (x2), . . . , (xn)),

the appropriate multi-relative version of Kq(k[x1, . . . , xn]/(x
an

1 , . . . , xan
n )). In the

case where k = Fp and p does not divide any of the truncations a1, a2, . . . , an we
compute these multi-relative algebraic K-groups explicitly.
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Theorem 1. If p ∤ ai for all 1 ≤ i ≤ n,

K2q−1(Fp[x1, . . . xn]/(x
an

1 , . . . xan

n ), (x1), . . . (xn)) ∼=
⊕

s1,...sn≥0
ai∤si

p∤gcd(si)

⊕

0≤l<q

(Z/pmZ)⊕(
n−1
2l )

K2q(Fp[x1, . . . xn]/(x
an

1 , . . . xan

n ), (x1), . . . (xn)) ∼=
⊕

s1,...sn≥0
ai∤si

p∤gcd(si)

⊕

0≤l<q

(Z/pmZ)⊕(
n−1
2l+1)

where m is the unique integer such that

n∑

i=1

⌊p
m−1si − 1

ai
⌋ < q − l ≤

n∑

i=1

⌊p
msi − 1

ai
⌋.

To prove this theorem we relate the multi-relative algebraic K-theory groups in
question to multi-relative topological cyclic homology groups using the cyclotomic
trace map of Bökstedt, Hsiang, and Madsen [2]. By a theorem of McCarthy [5],
this map is an isomorphism. Thus, we aim to compute the relative topological
cyclic homology groups TCq(Fp[x1, . . . , xn]/(x

an

1 , . . . xan
n ), (x1), . . . , (xn)).

Topological cyclic homology can be defined for any cyclotomic spectrum [4]. A
cyclotomic spectrum Y is an S1-spectrum, and the topological cyclic homology
of Y , TC(Y ), is defined as a limit of fixed point spectra Y Cn where Cn ⊂ S1 is
the cyclic subgroup of order n. For a ring A, the topological Hochschild homology
of A, T (A), is cyclotomic, and the topological cyclic homology of A is defined
to be TC(T (A)). Thus the first step toward understanding the topological cyclic
homology of A is understanding the topological Hochschild homology of A. In the
case where the ring in question is a pointed monoid algebra, A(Π), in order to
understand T (A(Π)) we take advantage of the following equivalence

T (A(Π)) ≃ T (A) ∧Bcy(Π).

Here Bcy(Π) denotes the cyclic bar construction on the pointed monoid Π. In
particular, for our computation this equivalence allows us to write

T (k[x1, x2, . . . , xn]/(x
a1
1 , . . . , x

an

n )) ≃ T (k) ∧Bcy(Πa1 ∧ . . . ∧Πan
)

where Πa is the pointed multiplicative monoid {0, 1, x, . . . , xa−1}, xa = 0, and k is
any ring. To compute the fixed points of T (A(Π)) one must first understand the
S1-equivariant homotopy type of Bcy(Π). In the case of the pointed monoid Πa,
Hesselholt and Madsen [3] described Bcy(Πa) as a homotopy cofiber of a map of S1-
spaces. They then smashed the cofiber with T (Fp) and applied topological cyclic
homology to compute TCq(Fp[x]/x

a, (x)). Hesselholt and Madsen’s description of
Bcy(Πa) can be used to expressBcy(Πa1∧. . .∧Πan

) as an iterated homotopy cofiber
of an n-cube of S1-spaces. We will denote this n-cube by X = {XI}I⊂{1,2,...,n}.
To compute the multirelative topological cyclic homology

TCq(k[x1, . . . , xn]/(x
an

1 , . . . , xan

n ), (x1), . . . , (xn)),
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one needs to compute TC(hocofib(T (k)∧X)). We show using properties of cyclo-
tomic spectra that

TC(hocofib(T (k) ∧X)) ≃ hocofib(TC(T (k) ∧X))

In the case k = Fp, we then compute TC(T (k) ∧ XI) for each I ⊂ {1, 2, . . . , n}.
These computations use the RO(S1)-graded equivariant homotopy groups of T (Fp)
[1]. If p does not divide any of the truncations a1, a2, . . . , an, we also compute the
maps in the n-cube TC(T (Fp) ∧X). These computations yield the main theorem
above.
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The Farrell-Jones Conjecture and its applications

Wolfgang Lück

Let G be a discrete group and let R be an associative ring with unit. We explain
and state the following conjectures and discuss their relevance.

Kaplanski Conjecture. If G is torsionfree and R is an integral domain, then 0
and 1 are the only idempotents in RG.

Conjecture. Suppose that G is torsionfree. Then Kn(ZG) for n ≤ −1, K̃0(ZG)
and Wh(G) vanish.

Novikov Conjecture. Higher signatures are homotopy invariants.

Borel Conjecture. An aspherical closed manifold is topologically rigid.

Conjecture. If G is a finitely presented Poincaré duality group of dimension
n ≥ 5, then it is the fundamental group of an aspherical homology ANR-manifold.

Conjecture If G is a hyperbolic group with Sn as boundary, then there is a closed
apsherical manifold M whose fundamental group is G.

Farrell-Jones Conjecture. Let G be torsionfree and let R be regular. Then the
assembly maps for algebraic K- and L-theory

Hn

(
BG;KR

)
→ Kn(RG);

Hn

(
BG;L〈−∞〉

R

)
→ L〈−∞〉

n (RG),
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are bijective for all n ∈ Z.
There is a more complicate version of the Farrell-Jones Conjectures which makes

sense for all groups and rings and allows twistings of the group ring. We explain
that it implies all the other conjectures mentioned above provided that in the
Kaplanski Conjecture R is a field of characteristic zero, in the Novikov Conjecture
and the Borel Conjecture the dimension is greater or equal to five and in the
conjecture about boundaries of hyperbolic groups the dimension of the sphere is
greater or equal to five.. We present the following result which summarizes joint
work with Bartels, Echterhoff, Farrell, Reich, Rüping and Weinberger.

Theorem. Let FJ be the class of groups for which the Farrell-Jones Conjecture
is true in its general form. Then:

(1) Hyperbolic groups belong to FJ ;
(2) CAT(0) groups belong to FJ ;
(3) Cocompact lattices in almost connected Lie groups belong to FJ ;
(4) SLn(Z) belongs to FJ ;
(5) Fundamental groups of (not necessarily compact) 3-manifolds possibly

with boundary) belong to FJ ;
(6) If G0 and G1 belong to FJ , then also G0 ∗G1 and G0 ×G1;
(7) If G belongs to FJ , then any subgroup of G belongs to FJ ;
(8) Let {Gi | i ∈ I} be a directed system of groups (with not necessarily

injective structure maps). If each Gi belongs to FJ , then also the direct
limit of {Gi | i ∈ I}.

(9) Let 1 : H → G
p−→ Q → 1 be an extension of groups. If Q and for all

virtually cyclic subgroups V ⊆ Q the preimage p−1(V ) belongs to FJ ,
then G belongs to FJ ;

Since certain prominent constructions of groups yield colimits of hyperbolic
groups, the class FJ contains many interesting groups, e.g. limit groups, Tarski
monsters, groups with expanders and so on. Some of these groups were regarded
as possible counterexamples to the conjectures above but are now ruled out by the
theorem above.

There are also prominent constructions of closed aspherical manifolds with ex-
otic properties, e.g. whose universal covering is not homeomorphic to Euclidean
space, whose fundamental group is not residually finite or which admit no trian-
gulation. All these constructions yield fundamental groups which are CAT(0) and
hence yield topologically rigid manifolds.

However, the Farrell-Jones Conjecture is open for instance for solvable groups,
SLn(Z) for n ≥ 3, mapping class groups or automorphism groups of finitely gen-
erated free groups.
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Some remarks on Nil groups in algebraic K-theory

James F. Davis

Theorem 1: For any ring R and integer q, if KqR[x] = KqR and Kq−1R[x] =
Kq−1R, then KqR[x, y] = KqR.

Under the hypothesis of the theorem, this implies that (N2Kq)R = 0. More
generally, one has a formula for the iterated Nil term:

Theorem 2: For any ring R and integer q,

(NnKq)R =
⊕

M+

n−1⊕

i=0

(
n− 1

i

)
NKq−iR

where M+ = {(a1, . . . , an) ∈ Zn | ai > 0, gcd = 1}.
The lecture gave a complete proof of these theorems by comparing the Funda-

mental Theorem of Algebraic K-theory due to Bass [1] and Quillen [4, 3] with a
computation based on the Farrell-Jones conjecture in K-theory for the group Zn.
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A survey of trace methods in algebraic K-theory

Bjørn Ian Dundas

The cyclotomic trace was introduced by Bökstedt, Hsiang and Madsen in their
proof of the algebraic K-theory Novikov conjecture, and has since been one of the
most prominent invariants for calculating algebraic K-theory.

I was asked to answer the questions: what is the cyclotomic trace, and can you
make it seem like a plausible invariant? We review some of the major calculations,
starting off with the structural theorems that the fiber of the cyclotomic trace from
algebraic K-theory of connective ring spectra to Goodwillie’s integral version of
topological cyclic homology is “locally constant” and satisfies “closed excision”.

Trying to make the construction of the cyclotomic trace credible, we review the
prehistory briefly, and finally the cyclotomic trace is presented as an approximation
to categorical S1-fixed points by homotopy-theoretical means.

Algebraic K-theory and reality

Lars Hesselholt

(joint work with Ib Madsen)

By analogy with Atiyah’s K-theory with reality [1], we associate to an exact
category with strict duality (C , T ) a real symmetric spectrum KR(C , T ), the real
algebraic K-theory spectrum. The construction uses a new modified version of
Waldhausen’s S-construction that we call the real Waldhausen construction.

Let G = Gal(C/R). We define a real set to be a left G-set and a real map of
real sets to be a G-equivariant map. The category Real Set of real sets and real
maps has a cartesian closed structure with the internal Hom-object from X to Y
defined to be the set of all maps from X to Y with the conjugation left G-action.
We define a real category to be a category enriched in Real Set and a real functor to
be an enriched functor. The real simplicial index category is the real category ∆R
whose objects are the categories [n] = 0 → 1 → · · · → n, where n ≥ 0, and whose
real set of morphisms from [m] to [n] consists of all functors θ : [m] → [n] with the
generator T ∈ G acting by (Tθ)(i) = n− θ(m− i). We define a real simplicial set
to be a real functor X [−] : ∆Rop → Real Set. The geometric realization |X [−]|R
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of a real simplicial set is a real space. For instance, the geometric realization of
the real standard n-simplex ∆R[n][−] = ∆R([−], [n]) is given by the topological
standard n-simplex with T ∈ G acting through the affine map that takes the ith
vertex to the (n − i)th vertex. The real nerve of a category with strict duality
is the real simplicial set N(C , T )[−] that in degree n is given by the set of all
functors c : [n] → C with T ∈ G acting by (Tc)(i) = T (c(n− i)).

A real symmetric spectrum is a symmetric spectrum in the category of pointed
real spaces with respect to the object

S2,1 = |S2,1[−]|R = |∆R[2][−]/∂∆R[2][−]|R.
We define the real algebraic K-theory spectrum of the exact category with strict
duality (C , T ) to be the real symmetric spectrum KR(C , T ) defined as follows.
The real Waldhausen construction associates to (C , T ) the real simplicial exact
category with strict duality (S2,1C [−], T ), where

S2,1
C [n] ⊂ Cat(Cat([2], [n]),C )

is the full subcategory of functors A : Cat([2], [n]) → C that satisfy that

(i) for all θ : [1] → [n],

A(s0θ) = A(s1θ) = 0,

a fixed null-object; and
(ii) for all θ : [3] → [n], the sequence

A(d3θ) //
f

// A(d2θ)
g

// A(d1θ)
h

// // A(d0θ)

is 4-term exact;

and where T : S2,1C [n]op → S2,1C [n] is defined by (TA)(θ) = T (Aop(T−1θ)).
That the sequence in (ii) is 4-term exact means that the maps f and g are an
admissible monomorphism and an admissible epimorphism, respectively, and that
g induces an isomorphism coker(f) → ker(f). Now, if wC ⊂ C is a subcategory
of weak equivalences with T (wC op) = wC , we define

KR(C , T )n = |NwS2n,n
C [−]|R,

where S2n,n(−) indicates the real Waldhausen construction iterated n times, and
define the real spectrum structure map

σn,1 : |NwS2n,n
C [−]|R ∧ S2,1 → |NwS2n+2,n+1

C [−]|R
to be the inclusion of the 2-skeleton in the last S2,1-direction.

To understand the equivariant homotopy type of KR(C , T ), we compare it to
the real direct sum K-theory spectrum KR⊕(C , T ) defined as follows. If (X, x) is
a finite pointed real set, we define Q(X, x) to be the category with strict duality,
where the objects are all pointed (not necessarily real) subsets x ∈ U ⊂ X , where
the morphisms from U to V are all pointed subsets x ∈ F ⊂ V ∩ U , and where
the duality functor T : Q(X, x)op → Q(X, x) takes F : U → V to TF : TV → TU .
We define {Fα : Uα → U} to be a covering if ∪αFα = U , define

C (X, x)∼ ⊂ Cat∗(Q(X, x),C )
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to be the full subcategory of sheaves, and define T : C (X, x)∼op → C (X, x)∼ to
be the strict duality functor given by T ◦ Aop ◦ T−1. If f : (X, x) → (Y, y) is a
pointed map, we let f∗ : C (X, x)∼ → C (Y, y)∼ be the direct image functor, define

KR⊕(C , T )n = |NwC (S2n,n[−])∼[−]|R,
where S2n,n[−] is the n-fold smash power of S2,1[−], and define

σ⊕
n,1 : |NwC (S2n,n[−])∼[−]|R ∧ S2,1 → |NwC (S2n+2,n+1[−])∼[−]|R

to be the inclusion of the 2-skeleton in the last S2,1[−]-direction. It follows from
a theorem of Shimakawa [3, Theorem B] that the adjoint structure map

σ̃⊕
n,1 : KR

⊕(C , T )n → Ω2,1KR⊕(C , T )n+1

is an equivariant weak equivalence, for n > 1, and an equivariant group completion,
for n = 0. There is a map of real symmetric spectra

φ∗ : KR⊕(C , T ) → KR(C , T )

induced by the functors φ∗ : C (S2,1[n])∼ → S2,1C [n] that, in turn, are induced by
the functors φ : Cat([2], [n]) → Q(S2,1[n]) that take the morphism θ → θ′ to the
morphism φ(θ) ∩ φ(θ′) : φ(θ) → φ(θ′), where

φ([2]
θ−→ [n]) = {[n] ρ−→ [2] | ρ ◦ θ = id[2]} ∪ {∗}.

Following Quillen’s proof of [2, Theorem 2], we prove:

Theorem. Let (C , T ) is a split-exact category with strict duality, and let wC = iC
be the subcategory of isomorphisms. Then the map of real symmetric spectra

φ∗ : KR⊕(C , T ) → KR(C , T )

is a level weak equivalence.

For all integers p and q, we define the real algebraic K-group

KRp,q(C , T ) = [Sp,q,KR(C , T )]R

to be the abelian group of maps in the homotopy category of real symmetric
spectra from a (choice of virtual) sphere Sp,q of dimension p and weight q. (The
weight counts the number of sign representations.) The theorem identifies the
groupKRp,0(C , T ) with the pth hermitianK-group of (C , T ) defined to be the pth
homotopy group of the group completion of the classifying space of the groupoid
Sym(iC , T ) of non-degenerate symmetric spaces in (C , T ). Moreover, for every
integer q, the cofibration sequence of real symmetric spectra

Sq,q ∧G+
fq

// Sq,q
iq

// Sq+1,q+1
hq

// ΣSq,q ∧G+

induces a long-exact sequence

· · · → Kp+1(C )
Hq−−→ KRp+1,q+1(C , T )

Iq−→ KRp,q(C , T )
Fq−→ Kp(C ) → · · ·

relating the real algebraic K-groups of (C , T ) and the algebraic K-groups of C .
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An Equivariant Rigidity Theorem For Certain Discrete Groups, Parts
I and II

Frank Connolly, Qayum Khan

(joint work with Jim Davis)

Let Γ be a discrete cocompact group of isometries of an n-dimensional CAT(0)
manifold Xn, with n ≥ 5. We make the following assumption about Γ: For each
element of finite order γ ∈ Γ, with γ 6= 1, the centralizer of γ is a finite subgroup
of Γ.

Let S(Γ) denote the set of equivariant homeomorphism classes of contractible
n-manifolds equipped with a proper Γ action, (M,Γ). We prove that S(Γ) has the
structure an abelian group and that there is an isomorphism,

S(Γ) ∼=
∑

(mid)Γ

UNiln+1(Z,Z
ǫ,Zǫ)

Here ǫ = (−1)n, and (mid)Γ denotes the set of conjugacy classes of maximal
infinite dihedral subgroups of Γ.

In particular then, S(Γ) consists of a single element (X,Γ) if Γ has no element
of order 2, or if n = 0, 1 (mod 4).

K-theory of singularities - a survey

Christian Haesemeyer

The algebraic K-theory of a singular scheme X of finite type over a field of char-
acteristic zero can be computed from two pieces of information: the algebraic
K-theory of smooth schemes involved in resolving the singularities of X (this is,
of course, very hard in general); and an ”error term” that can be attacked by
comparing with cyclic homology via the Jones-Goodwillie Chern character. To be
more precise, there is a fibration sequence

FK(X) → K(X) → KH(X)

where KH denotes Weibel’s homotopy K-theory and an equivalence

FK(X) ≃ FHC(X)[1]

where FHC(X) is the homotopy fiber of the natural map from the cyclic homology
of X to its cdh-hypercohomology.
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Using this comparison, the Hochschild-Kostant-Rosenberg theorem and the λ
operation on cyclic homology, one can compute FK and hence the Bass Nil groups
NKi(X). For example, one can conclude the following theorem (see [1]; for more
results see for example [2], [3]; for related results in characteristic p see [4]):
Theorem: Let X be a scheme of finite type over a field F of characteristic 0,
and suppose that the dimension of X is d. Then NKi(X) = 0 for all d ≤ −i, and
in fact X is K−d-regular. Moreover, Ki(X) = 0 for i < −d and K−d(X) can be
computed explicitly in terms of a resolution of the singularities of X .
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Smooth maps to the plane and Pontryagin classes

Michael Weiss

(joint work with Rui Reis)

Novikov and Thom proved long ago that the Pontryagin classes of vector bundles
extend rationally to characteristic classes defined for fiber bundles with fiber Rn,
that is, bundles with structure group TOP(n), the group of homeomorphisms from
Rn to Rn. It emerged some years later that the inclusion BO → BTOP induces
an isomorphism in rational cohomology. By contrast, the rational cohomology
of BTOP(n) is well understood only in dimensions ≤ 4n/3 approximately, and
in those dimensions it often deviates from the rational cohomology of BO(n), as
shown in [1]. The following is not obvious.

Hypothesis A. We have pm = e2 ∈ H4m(BSTOP(2m);Q), where e is the Euler
class and pm is the Pontryagin class.

(Corollary: pm = 0 ∈ H4m(BTOP(n);Q) if n < 2m.)

One reason for being interested in BTOP(n) for finite n is the homotopy equiv-
alence Diff∂(D

n) ≃ Ωn+1(TOP(n)/O(n)), where Diff∂(D
n) denotes the group of

diffeomorphismsDn → Dn which extend the identity on ∂Dn = Sn−1. This comes
from smoothing theory [3],[2].

Smoothing theory also leads to the following reformulation of Hypothesis A. Let
R be the space of smooth regular (= nonsingular) smooth maps from Dn ×D2 to
D2 which, on the entire boundary of Dn×D2, agree with the standard projection.
By viewing the derivative of f ∈ R as a map from Dn ×D2 to GL(n+ 2)/GL(n)
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taking the entire boundary to the base point, and by writing O(n+2)/O(n) instead
of GL(n+ 2)/GL(n) for convenience, we obtain a map

R ∇
// Ωn+2(O(n+ 2)/O(n)) .

This can be viewed as an O(2)-map for certain conjugation type actions of O(2) on
source and target. The target is rationally an Eilenberg-MacLane spaceK(Z, n−3)
when n is even, n ≥ 4.

Hypothesis B. For all even n ≥ 4, the map ∇ is rationally nullhomotopic with
derived O(2)-invariance.

It was explained in the talk how this is equivalent to Hypothesis A. Meanwhile Hy-
pothesis B belongs to differential topology and resembles a well-known, integrally
correct and easily proved statement from concordance theory (replace D2 by D1

and O(2) by O(1) where applicable). It is natural to use ideas from concordance
theory to approach Hypothesis B. So we look for W , a subspace of the space of all
smooth maps Dn ×D2 → D2 which agree with the projection on the boundary,
such that R ⊂ W and

• W is invariant under O(2);
• W is large enough to be homologically computable and such that the
boundary map δ : Hn−3

S1 (R;Q) −→ Hn−2
S1 (W ,R;Q) is injective;

• W is small in the sense that elements f ∈ W are not far from being regular
(only a few singularity types permitted, etc.).

We define our W by disallowing all but the most common singularity types of
smooth maps to the plane (fold, cusp, swallowtail, lips, beak-to-beak), and also
(new idea) by disallowing certain singular features in the target, such as two cusps
in the source Dn×D2 with the same value in D2. For more details, see our recent
articles (arXiv). Why this is the best choice ... we hope to defend that in forth-
coming articles.
Why is W so defined homologically computable? To explain that I gave an
overview on h-principles and manifold calculus. Let Ed be the category of smooth
d-manifolds, with codimension zero embeddings as morphisms. (Here we assume
that all objects of E have empty boundary; in applications it is often more realis-
tic to assume that all objects of E have “the same” fixed boundary of dimension
d − 1.) For each k = 0, 1, 2, 3, . . . let Od(k) be the full subcategory of Ed with
objects Rd × {1, 2, . . . , j} where 0 ≤ j ≤ k. Also, let Od(∞) be the union of the
Od(k). Definition: A contravariant continuous functor F from Ed to spaces is said
to be polynomial of degree ≤ k if it is determined by its restriction to Od(k). More
precisely it is required that the obvious natural transformation from F to TkF ,
the homotopy right Kan extension (to Ed) of F |Od(k), is an equivalence.
Here are some extreme cases. If F is polynomial of degree ≤ 1, and F (∅) is
contractible, we also say that F satisfies the h-principle. Such F can also be char-
acterized by homotopy sheaf properties: they take unions to homotopy pullbacks.
If F is polynomial of degree≤ ∞, we also say that the functor is analytic (manifold
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calculus jargon). Examples: Let F (M) be the space of smooth immersions from
M to a fixed N , where dim(N) > d; then F satisfies the h-principle. Or let F (M)
be the space of smooth embeddings from M to a fixed N , where dim(N) > d+ 2;
then F is analytic.
The functors F which appear in Vassiliev’s first main theorem [4],[5] constitute a
curious in-between case. Here F (M) is defined to be the space of smooth maps
f :M → Rj , for fixed j, which only have certain allowed singularity types. (For
example F (M) could be the space of smooth maps from M to R which have only
Morse and birth-death singularities.) Vassiliev’s statement is that, for many such
F , the natural map from F to T1F induces an isomorphism in homology. (It may
or may not be a homotopy equivalence, as in the standard h-principle.) Manifold
calculus explains what is going on. Namely, Vassiliev essentially works with the
functor (singular chain complex) ◦ F or SP∞ ◦ F or something equivalent. Here
SP∞ is the Dold-Thom infinite symmetric product, so that the homotopy groups
of SP∞(X) are the homology groups of X . Composition with SP∞ fails badly to
preserve the property of being polynomial of degree ≤ 1, because SP∞ fails badly
to preserve homotopy pullback squares. Vassiliev’s arguments show nevertheless
that SP∞ ◦F and SP∞ ◦ T1F are analytic. It is clear that the natural map from
SP∞ ◦ F to SP∞ ◦ T1F is an equivalence on the subcategory Od(∞), and since
both functors are determined by their restrictions to Od(∞), it is an equivalence
on all of Ed. This completes the proof.
So it emerges that any sheaf properties which F may have are not essential to Vas-
siliev’s argument, no matter how much the history of the h-principle may suggest
that they are crucial. Keeping that in mind, we were able to generalize Vassiliev’s
theorem and so to understand some of the homological properties of spaces like
W above.
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Twisted bundles and twisted K-theory

Max Karoubi

Many papers have been devoted recently to twistedK-theory. We offer here a more
direct approach based on the notion of ”twisted vector bundles”. In the same vein,
twisted Hilbert bundles may be used to define extended twisted K-groups.
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More generally, we also analyse the notion of ”twisted principal bundles” with
structural group G. Under favourable circumstances, we show that the associated
category is equivalent to the category of locally trivial fibrations, with an action
of a bundle of groups with fibre G; which is simply transitive on each fibre. When
the bundle of groups is trivial, we recover the usual notion of principal G-bundle.

As is well known, twistedK-theory is a graded group, indexed essentially by the
third cohomology of the base space. The twisted vector bundles are also indexed
by elements of the same group up to isomorphism. Roughly speaking, twisted
K-theory appears as the Grothendieck group of the category of twisted vector
bundles (or suitable Hilbert bundles). This provides a geometric description of
this theory, very close in spirit to Steenrod’s definition of coordinate bundles.

The usual operations on vector bundles (exterior powers, Adams operations...)
are easily extended to twisted vector bundles.

Finally we define connections on twisted vector bundles in a quite elementary
way. From this analog of Chern-Weil theory, we deduce a ”Chern character” from
twisted K-theory to twisted cohomology (indexed by a 3-dimensional de Rham
class) which is an isomorphism up to torsion, as in the classical framework. The
contents of this lecture are detailed on the Web site

http://www.math.jussieu.fr/~karoubi/Publications.html

The Farrell-Jones conjecture for SLn(Z)
Holger Reich

(joint work with Arthur Bartels, Wolfgang Lück, Henrik Rüping)

The Farrell-Jones conjecture predicts that the algebraic K-theory of a group ring
RG can be assembled from the algebraic K-theory of the rings RH , where H runs
over all virtually cyclic subgroups of G. There is an analogous conjecture for L-
theory. Among the most important applications of this conjecture is the Borel
conjecture, which asserts that aspherical manifolds with fundamental group G are
topologically rigid. Many other applications and the state of the art concerning
these conjectures have been surveyed by Wolfgang Lück in his talk at the same
conference.

We prove the conjecture for the groups SLn(Z). In fact we prove both the
K- and L-theory conjecture in the more general version with coefficients in an
additive category (with involutions). Since these generalized versions have good
inheritance properties one can easily deduce the following statement.

The K- and L-theoretic Farrell-Jones conjecture with coefficients in an additive
category holds for GLn(S), where S is any ring (not necessarily commutative)
whose underlying abelian group is finitely generated. Moreover it also holds for
subgroups of such groups and for finite index overgroups, i.e. groups which contain
GLn(S) as a subgroup of finite index.

We would like to remark that the Borel conjecture for torsionfree discrete sub-
groups of GLn(R) is covered by work of Farrell and Jones and that the Baum-
Connes conjecture is not known for SLn(Z) if n ≥ 4.
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Inspired by results of Farrell and Jones, earlier work of Bartels and Lück had
dealt with the case of groups acting properly, cocompactly by isometries on a
CAT (0)-space. The group SLn(Z) acts by isometries on a symmetric space X ,
which can be identified with the space of all inner products on Rn. This is a Rie-
mannian manifold with nonpositive sectional curvature, but the main new tech-
nical difficulty arises from the fact that the action is not cocompact. Grayson
describes how to cut out certain neighbourhoods at infinity from X in order to
obtain a cocompact space. A detailed understanding of these neighbourhoods is
necessary in order to prove the theorem.
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Localization in THH of Waldhausen categories

Andrew J. Blumberg

(joint work with Michael A. Mandell)

In the last two decades, trace methods have proved remarkably successful at
making algebraic K-theory computations tractable via the methods of equivariant
stable homotopy theory. These methods proceed by studying the cyclotomic trace
map from K-theory to topological Hochschild homology (THH) and topological
cyclic homology (TC). In favorable cases, the fiber of the map K → TC is well-
understood after p-completion, and TC is a comparatively tractable theory.

This success focuses attention on the structural properties of THH and TC.
However, K-theory and THH appear to take different inputs and have very differ-
ent formal properties. For algebraic K-theory, the input is typically a Waldhausen
category: A category with subcategories of cofibrations and weak equivalences.
For THH , the basic input is a spectral category: A category enriched in spec-
tra. While THH shares K-theory’s additivity properties, THH seems to lack
K-theory’s approximation and localization properties [2]. From the perspective of
the algebraic K-theory of rings and connective ring spectra, where THH is the
stabilization of K-theory, this lack is surprising, as one might expect THH to
inherit the fundamental properties of K-theory.

A specific example of this failure was studied at great length in the paper [4].
In order to study the localization sequence

K(k) → K(A) → K(K)

via trace methods, Hesselholt-Madsen established a localization cofiber sequence

THH(k) → THH(A) → THH(A|K),
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where A is a discrete valuation ring,K its quotient field (with characteristic 0), and
k the residue field (with characteristic p). These sequences sit in a commutative
diagram

K(k) //

��

K(A) //

��

K(K)

��

THH(k) // THH(A) // THH(A|K).

Both localization sequences arise from the sequence of categories

(Cb
z(A))

q → Cb
z(A) → Cb

q(A),

where Cb
z(A) is the Waldhausen category of bounded complexes of finitely-generated

projective A-modules and quasi-isomorphisms, Cb
q(A) denotes the same category

with rational quasi-isomorphisms as weak equivalences, and (Cb
z(A))

q is the ratio-
nally acyclic objects in Cb

z(A).
The lefthand terms are identified asK(k) and THH(k) via devissage. However,

there is a discrepancy on the right: K(Cb
q(A)) ≃ K(K) via Waldhausen’s approxi-

mation theorem, but “THH(Cb
q(A))” is not equivalent to THH(K). This result is

hard to reconcile with the general theory of localization in THH [1]. Specifically,
when

A → B → C
is a sequence of pre-triangulated spectral categories such that

Ho(A) → Ho(B) → Ho(C)
is a quotient sequence (i.e., the map from the Verdier quotient Ho(B)/Ho(A) →
Ho(C) is cofinal), then there exists a localization cofiber sequence

THH(A) → THH(B) → THH(C).
Since the data for Waldhausen’s localization theorem (i.e., two categories of

weak equivalences vC ⊂ wC and acyclics Cv) encodes the same Bousfield localiza-
tion [5], the discrepancy is puzzling.

In this paper, we construct THH for a general class of Waldhausen categories,
and show that much of the apparent mismatch of formal properties is a consequence
of the former mismatch of input data. We provide a theory of THH of Waldhausen
categories, with connective (WTHHΓ) and non-connective (WTHH) variants.
BothWTHHΓ andWTHH agrees with usual THH for rings and connective ring
spectra, and there is a version of the cyclotomic trace K(C) →WTHHΓ(C).

Our construction allows us to show that the “Theorems of K-theory” hold for
WTHHΓ, WTHH , including Waldhausen’s approximation theorem. Most inter-
estingly, we find two different analogues of the localization sequence in Waldhausen
K-theory (the “Fibration Theorem” [7]). The localization sequences for WTHH
agrees with the one developed in our companion paper on localization in THH
of spectral categories [1]; when applied to the K-theory of schemes, this sequence
produces an analogue of the localization sequence of Thomason-Trobaugh [6]. The
other localization sequence for WTHHΓ generalizes the localization sequence of
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Hesselholt-Madsen [4] above. One of the principal contributions of this paper is
to provide a complete conceptual explanation of the two localization sequences of
THH in relation to the localization sequence of K-theory.

As a primary application, we establish the THH localization sequences

THH(Z) → THH(ℓ) →WTHHΓ(ℓ|L)
and

THH(Z) → THH(ku) →WTHHΓ(ku|KU)

conjectured by Ausoni-Rognes and Hesselholt. Identifying the terms in this se-
quences requires in particular a devissage theorem for the left-hand term.
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NK and NpK of commutative algebras

Charles Weibel

In Jim Davis’ talk, he gave the following formula for any ring R:

Np+1Kq(R) ∼= ⊕p
j=0

(
p

j

)
⊕C NKq−j(R),

where C ranges over all positive rays in Qp+1. On the other hand, if R is a
commutitive Q-algebra then the following formula occurs in [1]:

Np+1Kq(R) ∼= ⊕p
j=0 ∧j Qp ⊗

[
V ⊗p−j ⊗ dV ⊗j

]
⊗NKq−j(R),

Here V is xQ[x] and dV is Ω1
Q[x] (and d : V → dV is an isomorphism). The point

of this talk was to explain how the summands correspond in these formulas
To compare these, we fix a commutative ring R and an R-algebra A. Recall

that for r ∈ R the substitution t 7→ rt induces a map NKq(A) → NKq(A), and
the inclusion i : A[t] ∼= A[tn] ⊂ A[t] induces the Frobenius operator Fn = i∗

and the Verschiebung operator Vn = i∗. By [2], the row-and-column finite sums∑
Vm[rmn]Fn act on NKq(A) and make it a module over the ring Carf(R) of finite
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Cartier operators. This ring contains the ring W (R) of big Witt vectors as the
sums

∑
Vn[rn]Fn. When Q ⊂ R, W (R) ∼=

∏∞
1 R as a ring.

There is a notion of continuous Carf(R)-module — one in which every element
is annihilated by Fn for all large enough n — and NKq(R) is such a continuous
module. These modules also arise in the context of group rings; see [3]

When Q ⊂ R, there is an equivalence between this category and the category
of R-modules; to an R-module M we associate M ⊗ xQ[x] with [r](xn) = rnxn,
Vd(x

n) = xnd and Fd(x
n) = dxn/d when d | n (Fd(x

n) = 0 otherwise).
Thus there are R-modules Tq such that NKq(R) = Tq ⊗ xQ[x]. The modules

Tq are described in [1] in terms of cdh-cohomology of the structure sheaf OX and
the Kähler differentials Ωi; for example if dim(R) = 2 we have T−1 = H1

cdh(R,O)
and NK−1(R) ∼= H1

cdh(R,O)⊗ xQ[x].
For a positive ray C generated by (a0, ..., ap) ∈ Np+1 with gcd{ai} = 1, the

summand Tq ⊗ xn of NKq(R) in Davis’ formula corresponds to the summand

(Tq ⊗ xna0
0 )⊗ (xna1

1 xna2
2 · · ·xnap

p )

of the second formula. Thus the ring map R[t] → R[x0, ..., xp] sending t to

xa0
0 x

a−1
1 · · ·xap

p induces the injection NKq(R) → Np+1Kq(R) sending Tq ⊗ tQ[t]
to the sum of the terms indexed by the integer lattice points on the ray in Qp+1

of slope (a0, ..., ap). A similar formula holds for the terms NKq−j(R).
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Higher Whitehead torsion and the geometric assembly map

Wolfgang Steimle

Given a space X , the structure space of compact n-manifold structures is, roughly
speaking, the space Sn(X) of all pairs (M,h) where M is a compact (topological)
n-manifold and h : M → X is a homotopy equivalence. Crossing M with the
unit interval I defines a stabilization map Sn(X) → Sn+1(X); define the stable
structure space as

S∞(X) := hocolim
(
Sn(X) → Sn+1(X) → . . .

)
.

In the case where X is itself a compact manifold (so S∞(X) 6= ∅), Hoehn [2]
used the stable parametrized h-cobordism theorem [5] to describe the homotopy
type of S∞(X) by a homotopy equivalence

S∞(X)
τ×T−−−→ ΩWh(X)×map(X,BTOP)
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where Wh(X) is the topological Whitehead space as defined by Waldhausen [6].
The map τ is a version of a higher Whitehead torsion, defined using the paramet-
rized A-theory characteristic [1], while the map T describes the tangent bundle.

More generally, if p : E → B is a fiber bundle whose fibers are compact mani-
folds, there is a structure space Sn(p) which consists of commutative diagrams

E′
ϕ

≃
//

q
  

AA
AA

AA
A E

p
��~~

~~
~~

~

B

where q is a bundle of compact n-manifolds and ϕ is a fiber homotopy equivalence.
This space can also be stabilized and Hoehn’s result says more generally that there
is a homotopy equivalence

S∞(p)
τ×T−−−→ Γ

( ΩWhB(E)
↓
B

)
×map(E,BTOP).

Here Γ(. . . ) denotes the section space of a fibration ΩWhB(E) → B which is
obtained from p, loosely speaking, by applying the functor ΩWh “fiber-wise”.

Suppose now that B happens to be a compact topological manifold.

Definition. The geometric assembly map

α : S∞(p) → S∞(E)

sends a fiber homotopy equivalence of bundles over B to the underlying homotopy
equivalence of compact manifolds.

Suppose that B is connected and choose b ∈ B. Let

β : Γ

( ΩWhB(E)
↓
B

)
Restr.−−−−→ ΩWh(p−1(b))

χ(B)·i∗−−−−−→ ΩWh(E),

γ : map(E,BTOP) → map(E,BTOP), ξ 7→ ξ ⊕ p∗TB

where χ(B) ∈ Z denotes the Euler characteristic and i∗ is the inclusion-induced
map.

Theorem 2 ([3]). The following diagram commutes up to homotopy:

S∞(p)

α

��

τ×T
// Γ

( ΩWhB(E)
↓
B

)
×map(E,BTOP)

β×γ

��

S∞(E)
τ×T

// ΩWh(E)×map(E,BTOP)
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Theorem 2, in combination with the “Riemann-Roch theorem with converse”
by Dwyer-Weiss-Williams [1], may be applied to fibering questions: Given a map
f : M → B between compact manifolds, say that f fibers stably if there exists an
n ∈ N such that the composite

M ×Dn proj−−→M
f−→ B

is homotopic to the projection map of a fiber bundle with manifold fibers.

Theorem 3 ([4]). Let f : M → B be a map between compact manifolds where B
is connected. Then f fibers stably if and only if

(1) the homotopy fibers of f are finitely dominated,
(2) a “parametrized Wall obstruction”

Wall(f) ∈ Γ

( WhB(E)
↓
B

)

is nullhomotopic, and
(3) a secondary obstruction

o(f) ∈ cokerπ0(β)

is zero.
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Isomorphism conjectures for proper actions

Guillermo Cortiñas

(joint work with Eugenia Ellis)

This is a report on joint work with Eugenia Ellis. Let G be a group, F a family
of subgroups, A a ring on which G acts by automorphisms (i.e. a G-ring), and E
a functor from Z-linear categories to spectra. Under very general conditions on E
and A, there is defined an assembly map

(1) HG
∗ (E(G,F), E(A)) → E∗(A⋊G)

from G-equivariant E-homology with coefficients in A of the classifying space of G
relative to F , to the E-groups of the crossed product of A by G. We introduce a
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notion of properness (modelled on the analogous notion for C∗-algebras) and give
sufficient conditions on E so that the assembly map be an isomorphism when A is
proper. For example if X is a locally finite simplicial set with an action of G such
that all stabilizers are in F (i.e. X is a (G;F)-complex), then the ring Z(X) of
finitely supported integral polynomial functions on X is (G;F)-proper. In general
a G-ring A is (G;F)-proper if there is a (G;F)-complex X such that A is proper
over X ; this means that A is an algebra over Z(X) in such a way that the actions
of G on A and Z(X) are compatible, and that Z(X) ·A = A. We show that if E is a
sufficiently good theory, such as Weibel’s homotopy K- theory KH , then (1) is an
isomorphism for every proper (G;F)-ring A. We view this as an algebraic analogue
of the fact that the Baum-Connes conjecture with proper coefficients holds ([1]).
A key property that we use is that KH satisfies excision; if I ⊳ R is an ideal then
the fiber KH(R : I) of KH(R) → KH(R/I) depends only on I, and not on R.
We remark that Quillen’s K-theory does not satisfy excision; the not necessarily
unital rings I for which K(R : I) depends only on I are called K-excisive. For
example Z(X) is K-excisive if X is locally finite. We show that the K-theory
assembly map (1) is a rational isomorphism for every (G;F)-proper K-excisive
ring A, and an integral isomorphism if in addition A is a Q-algebra. We also show
that for a functor E satisfying rather mild assumptions (which hold when E = K),
the assembly map (1) is an isomorphism when A is E-excisive and proper over a
0-dimensional (G;F)-space. This is already enough to give an algebraic analogue
of the Dirac-dual Dirac method from Baum-Connes’ theory which applies to the
(G,F , E)-isomorphism conjecture with E-excisive coefficients.
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The Beilinson-Soule vanishing conjecture and rational K-theory in
characteristic p

Thomas Geisser

This is a survey on open problems in algebraic K-theory. No new results were
presented.

Recently, many of the fundamental properties and conjectures on algebraic K-
theory of schemes have been established, most notably the Beilinson-Lichtenbaum
conjectures and the spectral sequence from motivic cohomology to algebraic K-
theory. Among the remaining properties, the following two conjectures seem to be
the most important and least accessible:

Conjecture 0.1. (Bass, 1973) For any finitely generated (commutative) algebra
over the integers, the groups K ′

i(R) are finitely generated abelian groups.

Here K ′
i(R) is the K-theory of finitely generated R-modules. Except in special

cases, this is only known for R of dimension 1, by work of Quillen.
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Conjecture 0.2. (Beilinson-Soule vanishing conjecture, 1985) For any regular
ring, R we have Km(R) = Fn

γ Km(R) for m ≥ max{2n− 1, 1}.

In other words, the Adams eigenspace Km(R)(n) vanishes for n < 2m+1
2 except

for K0(R)
(0). Beilinson gave an ad hoc definition for motivic cohomology

Hi
M (X,Q(n)) := K2n−i(X)(n),

and in this language the conjecture says that Hi
M (X,Q(n)) vanishes for i < 1,

except in case i, n = 0. As candidates for motivic cohomology, Bloch constructed
higher Chow groups CHn(X, i) = HBM

i+2n(X,Z(n)) (as indicated, they actually
form a Borel-Moore homology theory), and later Voevodsky gave a definition of
motivic cohomology groups Hi

M (X,Z(n)). The analog of Poincaré duality holds:

For X smooth of dimension d one has HBM
i (X,Z(n)) ∼= H2d−i

M (X,Z(d − n)). By
definition, Hi

M (X,Z(n)) vanishes for i > 2n or i > dimX +n if X is smooth, and
H2n

M (X,Z(n)) = CHn(X) is the usual Chow group in codimension n. There is
a spectral sequence from Borel-Moore homology to algebraic K ′-theory for X of
finite type over a field or Dedekind ring,

Ep,q
2 = HBM

p+q (X,Z(−q)) ⇒ K ′
−p−q(X).

This spectral sequence degenerates modulo small torsion because the Adams op-
erator ψr acts like rn on the term HBM

p+q (X,Z(d − n)), so that Beilinson’s ad hoc
definition becomes a theorem. In characteristic p, one has the following strength-
ening of the vanishing conjecture:

Conjecture 0.3. (Parshin) For X smooth and proper over a finite field, the group
Ki(X) is torsion for i > 0.

This conjecture is motivated by the idea that higher algebraic K-groups are
related to extensions in a conjectural category of mixed motives, whereas over
a finite field, such a category would be semi-simple. Using the niveau spectral
sequence

Epq
1 =

⊕

x∈X(p)

Hq−p
M (k(x),Z(n − p)) ⇒ Hq

M (X,Z(n)),

where X(p) denotes the points x of X whose closure has codimension p, one can
show that Parshin’s conjecture implies

a) Hi
M (U,Q(n)) = 0 for all smooth U over Fq and all i < n.

b) For all fields over Fq, H
i
M (F,Q(n)) = 0 unless i = n and n ≤ trdegFq

F .

The last statement means that the niveau spectral sequence rationally collapses
to one line q = n.

Since Ki(X)Q = ⊕nH
2n−i
M (X,Q(n)), Parshin’s conjecture is equivalent to the

vanishing of Hi
M (X,Q(n)) for all smooth and projective schemes X over a finite

field, and all i 6= 2n. Except in special cases, the conjecture is only known in the
case dimX = 1 by work of Harder and Soule. Soule’s argument is as follows: A
curve C decomposes in the category of (pure, Chow) motives into a direct sum
P1 ⊕ C+, and the K-theory of the projective line is known. By work of Weil, we
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know that the characteristic polynomial PC+ of the Frobenius endomorphism FC+

has roots of absolute value
√
q on the one hand, and acts like qn on Hi

M (C+,Q(n))
on the other hand. Hence 0 6= PC+(qn) = PC+(FC+) = 0 on motivic cohomology,
so that the group is torsion.

Parshin’s conjecture on higher K-theory is complemented by a conjecture of
Beilinson for K0(X)Q ∼= ⊕nCH

n(X):

Conjecture 0.4. For all smooth and proper schemes X over a finite field, the
intersection pairing

CHn(X)Q × CHn(X)Q → CH0(X) → Q

is non-degenerate.

Non-degeneration implies finite dimensionality of the rational Chow groups,
hence perfectness of the pairing. A uniform formulation of Parshin’s and Beilin-
son’s conjecture is the statement that for all smooth and projective schemes X
over a finite field Fq, the cup product pairing

Hi
M (X,Q(n))×H2d−i

M (X,Q(d− n)) → Q

is perfect. The role of the Hodge conjecture in characteristic p is played by

Conjecture 0.5. (Tate, 1965) For X smooth and proper over a finitely generated
field k, the cycle map to the fixed set under the Galois group of etale cohomology,

CHn(X)⊗Ql → H2n
et (X ×k k̄,Ql(n))

Gal k

is surjective.

Note that the conjecture of Beilinson stated above implies the injectivity of the
map. In [3], we showed that if Tate’s conjecture and Beilinson’s conjecture hold,
then Parshin’s conjecture holds, giving some evidence for Parshin’s conjecture.
The method is a modification of Soule’s original argument.

For more general fields of characteristic p, one can ask the following question
(generalization of Parshin’s conjecture):

If X is smooth and proper over a field F of characteristic p, is the rational K-
theory multiplicatively generated by K0(X)Q and the Milnor K-theory KM

∗ (F )Q?
In terms of motivic cohomology, this would mean that there is a surjection

CHn(X)Q ⊗KM
i−n(F )Q → Hi+n

M (X,Q(n)).

What can one say about the kernel?
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Algebraic K-theory of Z[Γ] for Γ the braid group of a surface.

Daniel Juan-Pineda

(joint work with J. Guaschi., S. Millán)

Let Γ be the braid group of a closed connected surface. When the surface is not
the sphere nor the projective plane, it was proven by S. Aravinda, T. Farrell and
K. Roushon, [1], that the Whitehead group vanishes for both the pure and the
full braid groups in any number of strands. The technique is to prove that the
Farrell-Jones isomorphism conjecture holds for these groups. In recent work we
study the case when the surface is the sphere or the projective plane. In case of the
pure braid groups, Juan-Pineda and S. Millán proved that most of the Whitehead
groups vanish. In fact we proved that these groups vanish when we have at least
four strands.

The case of the full braid groups of the sphere is much more complex, this is
mainly due to the following facts:

(1) The family of finite subgroups is bigger: it has cyclic groups of order
that grows with the number of strands, it has also generalized quaternion
groups whose orders grow with the number of strands.

(2) The family of infinite virtually cyclic groups has elements of arbitrary large
order, this implies that there will be non-trivial Nil groups in the K-theory
of Z for almost all groups.

We will present general results for the K groups and outline in detail the case
of four strands, we prove that the Whitehead group is not finitely generated in
this case.
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Preorientations of the derived motivic multiplicative group

Jens Hornbostel

Recently, Jacob Lurie [Lu1] gave a description of the spectrum tmf (= “topo-
logical modular forms”) as the solution of a moduli problem in derived algebraic
geometry. The latter here is constructed with commutative ring spectra as the
affine derived schemes, and the moduli problem is to classify derived oriented el-
liptic curves with all terms defined appropriately. Lurie sketches a proof of this
theorem in the language of infinity categories in [Lu1].

The above description of tmf corresponding to height 2 and the second chro-
matic layer has an analog in height 1 which is much easier to state and to prove,
and is also due to Lurie [Lu1, §3]. Namely, real topologicalK-theory KO classifies
oriented derived multiplicative groups. The key step for proving this is to show
that the suspension spectrum of CP∞ classifies preorientations of the derived mul-
tiplicative group. Here the derived multiplicative group is by definition Gm :=
Σ∞Z+, in analogy with the multiplicative group Spec(k[Z]) in classical algebraic
geometry over a base field k. As usual, the object RmapAbMon(SpΣ)(Σ

∞Z+,−))
it represents via the derived version of the Yoneda embedding will still be called
the multiplicative group.

We are able to provide a proof of this result in the language of model cate-
gories and symmetric spectra SpΣ, and present some of its ingredients in our talk.
The result reads as follows in general, the special case N = CP∞ being the one
discussed above:

Theorem 1. (Lurie) For any abelian monoid A in symmetric spectra SpΣ (based
on simplicial sets) and any simplicial abelian group N , we have a natural isomor-
phism of abelian groups

HomHo(AbMon(SpΣ))(Σ
∞N+, A)

≃ HomHo(AbMon(∆opSets))(N,RmapAbMon(SpΣ)(Σ
∞Z+, A))

= HomHo(AbMon(∆opSets))(N,Gm(A)).

Here Ho(−) denotes the homotopy category, Rmap means the derived map-
ping space and the weak equivalences between abelian monoids are always the
underlying ones, forgetting the abelian monoid structure. We explain the model
structures involved in this theorem, which are due to Hovey-Shipley-Smith, Harper
and others (see in particular [HSS], [Sh], [Ha]). Among the ingredients of the proof
we then discuss are a model category refinement of the recognition principle and
a new non-positive model structure for E-modules in SpΣ where E is the Barratt-
Eccles operad, thus avoiding the “Lewis paradoxon”. Using a theorem of Snaith
[Sn], Lurie’s definition of an orientation and the above theorem then imply his
above theorem about KO.

We then discuss the motivic generalization of this theorem, that is to motivic
symmetric spectra SpΣ,T (M) on the site M = (Sm/S)Nis with S an arbitrary
noetherian base scheme. For this, we must establish various motivic model struc-
tures on categories built from motivic symmetric spectra with respect to both



1506 Oberwolfach Report 27/2011

circles S1 and P1 and suitable model structures, the first results here being due
to Hovey and Jardine. Once we have established all necessary model structures
and some of their properties, the main theorem then is as follows.

Theorem 2. Let M = (Sm/S)Nis and T = S1 or T = P1. Then for any abelian
monoid A in motivic symmetric T -spectra SpΣ,T (M) and any abelian group N
in the category ∆opPrShv(M) of simplicial presheaves on M, we have a natural
isomorphism of abelian groups

HomHo(AbMon(SpΣ,T (M)))(Σ
∞
T N+, A)

≃ HomHo(AbMon(∆opPrShv(M)))(N,RmapAbMon(SpΣ,T (M))(Σ
∞
T Z+, A))

Appliying this theorem to T = P1 pointed at ∞ and to N = P∞ which is
not a variety but still a simplicial presheaf, and using the recently established
motivic version of Snaith’s theorem [GS], [SO], this implies that algebraic K-
theory represents motivic orientations of the derived motivic multiplicative group,
provided one works with the correct motivic generalizations of the concept of
derived algebraic groups and of orientations. As a corollary of the motivic model
structures we establish, we see that these satisfy both the conditions for an HA-
context in the sense of Toën-Vezzosi [TV] and the axioms of Goerss-Hopkins [GH]
for doing E∞-obstruction theory.
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Discrete cocompact group actions and the assembly map

Ian Hambleton

(joint work with Erik Pedersen)

We are interested in a question of Farrell and Wall: which discrete groups can
act freely, properly and cocompactly on some product Sn × Rk? In [1], Connolly
and Prassidis proved that any countable discrete group Γ with vcdΓ < ∞ and
periodic Farrell cohomology can act freely and properly on some Sn×Rk, but did
not produce cocompact actions. Connolly and Prassidis also proved:

Theorem ([1]). Suppose that Γ is a virtual Poincaré duality group with periodic
Farrell cohomology. Then there exists a finite Poincaré complex X of dimension

n+ k, where k = cdΓ, with fundemental group Γ and universal covering X̃ ≃ Sn.

This result leads to questions in surgery theory: (i) can X be constructed so
that its Spivak normal fibre space is reducible (is fibre-homotopy equivalent to a
topological sphere bundle), and (ii) does there exist such an X which is homotopy
equivalent to a closed manifold?

A positive answer to (i) would lead to a degree 1 normal map f : M → X , with
a surgery obstruction in the Wall group Ln(ZΓ). If this surgery problem could be
solved, then (M, f) would be normally cobordant to a manifold, whose universal
covering would then answer the existence question for the given group Γ. The
main result presented in the talk was:

Theorem A. Suppose that Γ has periodic Farrell cohomology and a normal finite
index subgroup Γ0 which is the fundamental group of a closed aspherical manifold.
Then there is a finite Poincaré complex X as above, with reducible Spivak normal
fibre space.

The method of proof for Theorem A gives an equivariant surgery problem,
with target X , blocked over the finite dimensional classifying space EΓ for proper
Γ-actions. We obtain an element in the controlled L-group over EΓ defined by
Hambleton and Pedersen [3, §7]. The controlled assembly map applied to this
element gives the surgery obstruction to existence of a free cocompact Γ action
on Sn × Rk. This is similar to the blocked surgery construction in our proof of
Theorem 8.1 in [2].
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