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Introduction by the Organisers

The workshop was organized by H. Eliasson (Paris), H. Hofer (Princeton) and
J.-C. Yoccoz (Paris). It was attended by more than 50 participants from 11 coun-
tries and covered a large area of dynamical systems with an emphasis on classical
Hamiltonian dynamics: KAM theory, Arnold diffusion, celestial mechanics, geo-
desic flows, Reeb flows and Floer homology. Other subjects treated where dynam-
ics of PDE’s, motions in random potentials and random scatterers, actions of the
mapping class group and higher rank abelian groups.

The topic of Arnold diffusion was treated in several talks. K. Zhang discussed
diffusion along simple resonances and J. Mather discussed motion through double
resonances in 2 1

2 degrees of freedom. Other aspects of diffusion were treated in
the talks of A. Bounemoura and V. Kaloshin. J. Pöschel and D. Sauzin presented
new results in classical KAM-theory. A surprising connection between the Horn
problem for eigenvalues of sums of symmetric matrices and relative equilibria in
celestial mechanics was revealed in the talk of A. Chenciner. New results on closed
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geodesics on Riemann and Finsler manifolds were presented by V. Bangert and Y.
Long. B. Bramham reported on important progress on some old questions of Katok
about the dynamics of symplectic maps in dimension two using pseudoholomorphic
curves. Symplectic methods and periodic solutions were discussed in the talks of D.
Hein, S. Hochloch, U. Hryniewicz, A.Momin and C. Wendl. Two talks were given
on PDE’s: W. Craig discussed the relevance of resonances for the Birkhoff normal
form and P. Rabinowitz presented results on heteroclinic solutions in the Allen-
Cahn equation. A. Knauf and T. Yarmola presented new results on motions in
random environments and J. Franks and A. Katok reported on recent developments
on the action of the mapping class group on surfaces and on rigidity of higher ranks
abelian actions.

The meeting was held in an informal and stimulating atmosphere. The weather
was in general very nice, except Wednesday which was slightly rainy. This however
didn’t prevent many of the participants to join Paul Rabinowitz for the traditional
walk to St. Roman.
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Abstracts

Reeb dynamics and obstructions to symplectic cobordisms

Chris Wendl

(joint work with Janko Latschev and occasionally Michael Hutchings)

In Hamiltonian dynamics, one often considers the question of whether a given
hypersurfaceM2n−1 in a symplectic manifold (W 2n, ω) admits a periodic orbit for
any Hamiltonian H : W → R that has M as a regular energy surface. As is well
known, the answer does not depend on the choice of H . The question is especially
interesting when M is assumed to be of contact type, meaning it is transverse to a
symplectically dilating vector field—in this case the dynamics nearM are “stable”
in the sense that for any 1-parameter family of hypersurfaces containing M , all
hypersurfaces have the same orbits up to parametrization. The Weinstein conjec-
ture asserts that any closed contact type hypersurface in a symplectic manifold
admits a closed orbit.

The contact type condition also induces an intrinsic structure on the hypersur-
face M : we call a hyperplane field ξ ⊂ TM a contact structure if it is the kernel
of some 1-form α such that α ∧ (dα)n−1 > 0. Such a 1-form also determines the
Reeb vector field Xα by the conditions

dα(Xα, ·) ≡ 0, α(Xα) ≡ 1,

and the Weinstein conjecture is then equivalent to the claim that all Reeb vector
fields on closed contact manifolds admit periodic orbits.

Contact topology also studies a number of questions that, on the surface, have
nothing to do with dynamics. The most fundamental is the classification of contact
structures: given two contact structures ξ and ξ′ on M , is there a diffeomorphism
ϕ : M → M such that ϕ∗ξ = ξ′? Eliashberg showed [Eli89] that the classification
question partitions closed contact 3-manifolds into two fundamentally different
classes,

{contact 3-manifolds} = {tight} ⊔ {overtwisted},
of which the overtwisted ones are in some sense “easy” to classify and the tight
ones are not. The overtwisted contact manifolds also have the property that they
never appear as contact type boundaries of compact symplectic manifolds, i.e. they
are not symplectically fillable. This is part of the inspiration for the following
important conjecture in contact topology:

Conjecture 1. If (M, ξ) is a tight contact manifold and (M ′, ξ′) is obtained from
(M, ξ) by contact surgery, then (M ′, ξ′) is also tight.

Contact surgery is a type of Dehn surgery that can be performed along any knot
in M tangent to ξ, and it produces a new contact manifold (M ′, ξ′) along with an
exact symplectic cobordism from (M, ξ) to (M ′, ξ′). Because of this cobordism,
(M ′, ξ′) obviously admits a symplectic filling of (M, ξ) does, but the conjecture
does not follow from this since tightness and fillability are not quite the same
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thing. One of the most interesting questions in this field is to understand which
tight contact manifolds are not fillable.

On this subject, it turns out that dynamics has something interesting to tell
us about contact topology. The following is, using modern technology, an easy
exercise based on a result that Hofer proved using J-holomorphic disks:

Theorem 1. ([Hof93]) Suppose (M, ξ) has a contact form with no contractible
Reeb orbit. Then after contact surgery, (M ′, ξ′) is always tight.

This result is interesting for us because there are plenty of contact manifolds
without a contractible orbit that are known to admit no symplectic fillings—the
result thus provides a hint as to how one might attack the above conjecture using
dynamical knowledge.

In a recent paper with Janko Latschev [LW10], we find that the above result
of Hofer extends to an infinite hierarchy of nested subclasses of contact manifolds
that are closed under contact surgery.

Main theorem. ([LW10]) There exists a contact invariant AT(M, ξ) ∈ N∪{0,∞}
with the following properties:

(1) If there is an exact symplectic cobordism from (M−, ξ−) to (M+, ξ+), then
AT(M−, ξ−) ≤ AT(M+, ξ+).

(2) AT(M, ξ) = 0 if and only if (M, ξ) is algebraically overtwisted, i.e. it has
trivial contact homology, cf. [BN10].

(3) If (M, ξ) is symplectically fillable then AT(M, ξ) = ∞.
(4) If AT(M, ξ) = k < ∞ then for every contact form defining ξ, there exists

a surface Σ with nonempty boundary and

genus(Σ) + #π0(∂Σ) ≤ k + 1,

and a continuous map f : Σ →M such that f |∂Σ parametrizes a collection
of closed Reeb orbits.

(5) In dimension three, for every k ≥ 0 there exist examples (Mk, ξk) with
AT(Mk, ξk) = k.

A corollary is that if contact surgery is performed on any (M, ξ) with AT(M, ξ) ≥
k, then the new manifold (M ′, ξ′) also has this property. It is known (cf. [Yau06])
that overtwistedness implies algebraic overtwistedness, and the converse is not
known but is a reasonable conjecture. If it is true, then the above theorem proves
the conjecture on surgery. More importantly, it establishes that within the class of
tight contact manifolds, there are varying “degrees of tightness” that can be mea-
sured by the numerical invariant AT(M, ξ); the “tightest” are the fillable contact
manifolds, but there is also an infinite hierarchy of manifolds that are non-fillable
but tight to varying degrees.

The construction of the invariant AT(M, ξ) is based on Symplectic Field Theory,
a very general algebraic formalism originally introduced by Eliashberg, Givental
and Hofer [EGH00]. In the version we consider, one chooses a contact form α
for (M, ξ) and associates to every closed Reeb orbit γ formal variables qγ and pγ ,
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which are given the Z2-grading

|qγ | = |pγ | = CZ(γ) + n− 1 ∈ Z2.

We then define the formal power series

H =
∑

g,Γ+,Γ−

ng(Γ
+,Γ−) ~g−1qΓ−pΓ+ ,

where the sum is over all integers g ≥ 0 and finite collections of Reeb orbits Γ±,
which play the role of multi-indices in the abbreviated expressions qΓ− and pΓ+ .
The numerical factor ng(Γ

+,Γ−) is a suitably weighted algebraic count of rigid
pseudoholomorphic curves of genus g in the symplectization (R×M,d(etα)), with
positive and negative cylindrical ends approaching the collections of orbits Γ+ and
Γ− respectively, and it is understood that we set the count to zero whenever this
space has the wrong dimension to be counted. Now if A denotes the free graded
commutative R-algebra with unit generated by all the variables qγ , we can make
the substitution

pγ  κγ~
∂

∂qγ
,

for a suitable combinatorial constant κγ , and use this to turn the power series H
into a linear differential operator

DH : A[[~]] → A[[~]].

It then follows from the compactness and gluing theory of pseudoholomorphic
curves that D2

H = 0, and the resulting homology

HSFT
∗ (M, ξ) = H∗ (A[[~]], DH)

is an invariant of the contact structure. Since DH is not a derivation (it in-
cludes differential operators of all orders, not just 1) but is ~-linear, the homology
HSFT

∗ (M, ξ) does not inherit the algebra structure from A[[~]], but it is at least an
R[[~]]-module. Moreover, every power ~k for integers k ≥ 0 satisfies DH~k = 0 and
thus defines a canonical element in HSFT

∗ (M, ξ). A useful property is then that
whenever there exists an exact symplectic cobordism from (M−, ξ−) to (M+, ξ+),
this induces an R[[~]]-module morphism

HSFT
∗ (M+, ξ+) → HSFT

∗ (M−, ξ−)

which maps [~k] 7→ [~k] for all k ≥ 0. Our numerical invariant, called the order of
algebraic torsion, is now defined by

AT(M, ξ) = sup{k ≥ 0 | [~k−1] 6= 0 ∈ HSFT
∗ (M, ξ)},

and its monotonicity property with respect to cobordisms follows immediately
from the above discussion.

In reality, we have cheated a bit with this discussion, because while SFT is not
an especially new theory, its foundations present formidable analytical difficulties
whose solution is still work in progress (cf. [Hof06]). For our three-dimensional
examples however, Michael Hutchings has shown in the appendix to our paper
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[LW10] that methods from the distinctly 3-dimensional theory of Embedded Con-
tact Homology can be used to circumvent the analytical difficulties and prove some
interesting corollaries more directly. The argument is, at this level, a direct gener-
alization of Hofer’s work in [Hof93], but using more general types of holomorphic
curves with multiple positive ends for which compactness can fail in a wider vari-
ety of ways, thus producing more complicated ensembles of Reeb orbits that are
not always contractible.

We conclude by mentioning the most obvious open question to arise from this
work:

Question. Are there examples in all dimensions of contact manifolds with all
possible orders of algebraic torsion?

Such examples would automatically satisfy the Weinstein conjecture, which
remains open in dimension greater than three. Some candidates in all dimensions
arise from a joint paper in progress with Patrick Massot and Klaus Niederkrüger
[MNW], but the technical details are considerably harder than in dimension three.
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Ergodic properties of some canonical systems driven by thermostats

Tatiana Yarmola

Rigorous derivations of macroscopic heat conduction laws from microscopic dy-
namics of mechanical models coupled to heat reservoirs require good mixing prop-
erties of the invariant measures. For many such systems in non-equilibrium, i.e.
with two or more unequal heat reservoirs, pure existence of invariant measures is a
nontrivial question due to the non-compactness of the phase space. We present a
simple mechanical system driven by thermostats for which the stationary measure
exists, is unique, absolutely continuous and mixes with exponential rates.

The example we consider is motivated as follows. Consider a system of N non-
interacting particles at various velocities bouncing elastically off the walls of a
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bounded domain. We can assume for visualization purposes that N is very large
and the system is at temperature T0 in the following sense: kinetic energies of the
particles are distributed with a discrete approximation of the Gibbs distribution
with parameter β0 = 1

T0
, i.e. the probability that a given particle has kinetic

energy near E is approximately ce−β0EdE.
Let us introduce a thermostat into the system set at a different temperature

T1 6= T0 such that when a particle collides with the thermostat, an energy ex-
change occurs in which the thermostat absorbs part of the particle’s energy and
the particle acquires an energy E from the thermostat drawn form Gibbs distri-
bution with parameter β1, where β1 = 1

T1
. Over time, such a system is expected

settle at temperature T1, i.e. the initial Gibbs distribution with parameter β0
is expected to converge to the Gibbs distribution with parameter β1. The ques-
tions of interest are whether the Gibbs distribution with parameter β1 is indeed
the unique invariant measure for the system to which all (or almost all) initial
distributions converge, and if so, at which rate.

Now let us add another thermostat at a yet different temperature T2 6= T1.
Does invariant measure exist for such a system? Is it unique and if so, do rea-
sonable initial distributions converge to is and at which rates? For the system
we consider we answer all these questions affirmatively both for equilibrium and
non-equilibrium invariant measures for the corresponding discrete dynamics on
the Poincare section of the flow and conclude existence, uniqueness, and absolute
continuity of the invariant distribution for the continuous dynamics.

Our settings are as follows. Let Γ ⊂ T2 be a bounded horizon billiard table
with circular scatterers D1, · · · , Dp. We set all scatterers to act as thermostats
at possibly different temperatures T1, · · · , Tp such that upon a collision of a par-
ticle with a thermostat at temperature Ti, certain energy exchange occurs. More
precisely, if v = (v⊥, vt) is a decomposition of the particle’s velocity at collision
into a normal and tangential components with respect to the boundary of a ther-
mostat, then after the collision, the v⊥ component changes sign, i.e. v′⊥ = −v⊥,
vt component gets absorbed by the thermostat, and a new tangential component

v′⊥ gets randomly drawn from the distribution with density
√

βi

π e
−βiv

2
t dvt, where

βi =
1
Ti
. We assume that particles do not interact with each other. This type of

energy exchange was used in [3].
Since there are no particle interactions, the system with many particles is simply

the product of one particle systems and we can focus on studying the system with
only one particle. The phase space of this system is

Ω̃ = {(x, v) : x ∈ Γ, v ∈ R
2}/ ∼,

where ∼ is a properly chosen identification of velocities at the collision manifold.
The dynamics is described by a Markov Process Φτ , which is deterministic apart
from collisions with thermostats and upon a collision of the particle with a ther-
mostat, a random perturbation occurs.

The degeneracy of the Markov Process Φτ allows to restrict the study to the
discrete time Markov Chain on the collision manifold. Choose the variables: r ∈
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∂Γ, the position of the particle parameterized by arc-length, ϕ ∈ [−π
2 ,

π
2 ], the angle

of reflection, and v⊥, the absolute value of the normal component of the velocity.
When the random perturbation occurs, i.e. v′t gets randomly drawn, the only
variable that gets affected is ϕ. This allows eliminate the ϕ variable and to reduce
the dynamics to the Markov Chain Φ acting on a two-dimensional phase space
Ω = ∂Γ × [0,∞]. The dynamics of Φ is as follows: starting from a point (r, v⊥),

we first draw vt from the distribution with density
√

βi

π e
−βiv

2
t dvt, from which we

determine ϕ; then let the particle originate from (r, ϕ, v⊥) and flow until its next
collision with the thermostat at (r′, ϕ′, v′⊥); and finally forget the ϕ′ component.
Let P((r, v⊥), ·) be the transition probability kernel of Φ, i.e. P((r, v⊥), A) =
P (Φn ∈ A|Φn−1 = (r, v⊥)). Note that the transition probabilities are degenerate:
P((r, v⊥), ·) = P∗δ(r,v⊥) is supported on a family of one dimensional curves in the
two dimensional phase space.

For the Markov Chain Φ both in equilibrium, β1 = · · · = βp, and non-equilibrium
setting, βi 6= βj for some i, j, we show:

Theorem 1. There exists an invariant measure µ for the Markov Chain Φ. More-
over, µ is unique (ergodic), absolutely continuous (w.r.t. Leb.), and mixing with
exponential rates.

By mixing we mean

lim
n→∞

∣∣∣∣∣

∫

(r,v⊥)∈B

Pn((r, v⊥), A)dµ(r, v⊥)− µ(A)µ(B)

∣∣∣∣∣ = 0.

We also conclude that reasonable initial distributions converge to µ exponen-
tially fast with control on the rates. It follows that for the Markov Process Φτ there
exists and invariant measure and this measure is unique (ergodic) and absolutely
continuous. The uniqueness requires additional argument which is very similar to
the argument we use in the proof on the theorem since ergodicity of one particle
systems does not directly imply the ergodicity of many particle system. Mixing
and convergence of initial distributions to the invariant measure for Φτ do not
follow from Theorem since under some scenarios particles might move extremely
slowly and eventually freeze. We leave investigation of the mixing properties of
the Markov Process Φτ for the future work.

The proof of the Theorem relies heavily on the general state Markov chain
machinery, in particular, on the following Geometric Ergodicity Theorem also
knows as Harris’ Ergodic Theorem [1, 2]

Theorem 2. Assume

Potential Condition: .
There exists a function V : Ω → [0,∞), K > 0 and γ ∈ (0, 1) such that
∀(r, v⊥) ∈ Ω.

PV (r, v⊥) ≤ γV (r, v⊥) +K

and
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Minorization Condition: .
There exists a probability measure ν, N and ηN ∈ (0, 1) such that

inf
(r,v⊥)∈C

PN ((r, v⊥), ·) ≥ ηNν(·),

where C = {(r, v⊥) ∈ Ω : V (r, v⊥) ≤ S} for some S > 2K/(1 − γ) where
K and γ are the constants from the Potential Condition.

Then Φ admits a unique invariant measure µ. Furthermore, there exist constants
C > 0 and γ̃ ∈ (0, 1) such that

sup
A∈Ω

|Pn((r, v⊥), A)− µ(A)| ≤ Cγ̃n(1 + V (r, v⊥)).
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Arnold diffusion via normally hyperbolic cylinders

Ke Zhang

(joint work with Patrick Bernard and Vadim Kaloshin)

The question of Arnold diffusion is concerned with instabilities for nearly integrable
systems. To describe the problem, we consider a Hamiltonian function of the form

Hǫ(θ, p, t) = H0(p) + ǫH1(θ, p, t), p ∈ R
n, θ ∈ T

n, t ∈ T,

where T = R/2πZ. There does not seem to be a universally accepted definition for
Arnold diffusion. In the context of this talk, we say that the Hamiltonian system
exhibits Arnold diffusion if there exists c > 0 such that the following hold: for
arbitrarily small ǫ, there exists an orbit (θǫ(t), pǫ(t)) of the system Hǫ, and Tǫ > 0
with

|pǫ(Tǫ)− pǫ(0)| > c > 0.

The first example of Arnold diffusion was constructed by Arnold in [2], hence
the name “Arnold diffusion”. Arnold conjectured in [1] that this phenomenon
should happen for general systems. In [10], J. Mather announced a result of a
stronger form of Arnold diffusion for n = 2: in our definition, Arnold diffusion
is defined as a property of the family Hǫ, hence the “diffusion distance” c may
depend on H1; while in the case of [10], the diffusion distance c is independent of
H1.

In this talk we present a result on the weaker form of diffusion as described
above.
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Theorem 1. Assume that the Hamiltonian Hǫ(θ, p, t) is Cr with r ≥ 4. For a
“typical” ǫH1 (with ‖H1‖Cr = 1), there exists l(H1) > 0, an orbit (θǫ, pǫ)(t) of the
the Hamiltonian system Hǫ = H0 + ǫH1 and Tǫ > 0 such that

|pǫ(Tǫ)− pǫ(0)| > l(H1).

The “typical” condition is the cusp residue condition introduced by Mather in
[10]. Due to restriction of the length we will not give details of this condition.

The orbit exhibiting diffusion is constructed near resonances (precise definitions
will be given later). The idea of diffusing near resonances is well known among
experts (in particular, some of the ideas we used has first appeared in [11]); the
main novelty of our approach is the use of Hamiltonian averaging and normally
hyperbolic cylinders to connect the diffusion problem to the widely studied a priori
unstable systems.

We will assume that Hǫ is a Tonelli Hamiltonian, which means ∂ppHǫ is uni-
formly strictly convex and lim|p|→∞Hǫ/|p| = ∞. Denote by ω(p) = ∂pH0(p) the
frequency map. A frequency vector ω is called resonant if there exists an integer
vector k ∈ Zn and l ∈ Z such that k · ω + l = 0. A frequency vector ω is called
m−resonant if there exists k1, · · · , km ∈ Z

n, l1, · · · , lm ∈ Z, {(ki, li)} linearly inde-
pendent, and ki ·ω+ li = 0 for i = 1, · · · ,m. The diffusion orbit we will construct
will be close to (n − 1)−resonant vectors under the frequency map. To be more
specific, denote

Γk = {p ∈ R
n : ki · ω(p) + li = 0, i = 1, · · · , n− 1}

for k = {(ki, li)}. A linear change of coordinates brings the resonance into the
form

Γ = {p ∈ R
n : ∂pi

H0(p) = 0, i = 1, · · · , n− 1}.
Denote ps = (p1, ·, pn−1) and pf = pn. Γ can be naturally parametrized as Γ =
{ps = ps∗(p

f )}. Denote θs = (θ1, ·, θn−1) and θ
f = θn, we write

Z(θs, p) =

∫∫
Hs

1(θ
s, ps, θf , pf , t) dθf dt.

The Hamiltonian Hǫ may be rewritten as

Hǫ = H0(p) + ǫZ(θs, p) + ǫH2(θ, p, t),

with Z(θs, p) being the resonant term, and H2 = H1 − Z the nonresonant term.
We have the following normal form theorem:

Theorem 2. For any δ > 0, there exists ǫ0 > 0 and a− < a+ depending only on

δ, such that on the ǫ
1
6 neighbourhood of {ps = ps∗(p

f ), pf ∈ (a−, a+)} ⊂ Γ, there is
a change of coordinates Φ such that

Nǫ = Hǫ ◦ Φ = H0 + ǫZ + ǫR

with ‖R‖C2 ≤ δ.

If the function Z(θs, p) satisfies a set of genericity condition, we show that
there exist normally hyperbolic cylinders for the normal form system Nǫ. In the
simplistic situation, this condition means that Z(θs, p) as a function of θs has a
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unique nondegenerate maximum at θs∗(p
f ) for pf ∈ (a−, a+) and p

s = ps∗(p
f ). The

general picture is more complicated and we shall not discuss it here.

Proposition 1. Assume that Z(θs, p) achieves its maximum at θs∗(p
f ) for each

pf ∈ (a−, a+) and p
s = ps∗(p

f ). Then there exists δ > 0 depending only on Z such
that if Nǫ = H0+ ǫZ+ ǫR satisfies ‖R‖C2 ≤ δ, the Hamiltonian flow of Nǫ admits
a normally hyperbolic invariant cylinder

X = {(θs, ps) = (Θs, P s)(θf , pf , t), θf , t ∈ T, pf ∈ (a−, a+)}.

For the a priori unstable systems, the existence of normally hyperbolic invariant
cylinders can be used to construct diffusion orbits (see [3], [4], [5], [6], [7], [8],
[12], [13]). While our system is not a priori unstable, we show that the variational
methods of Bernard (see [3]) and Cheng-Yan (see [4], [5]) applies. In this simplified
situation, it is possible to prove existence of a diffusion orbit near the set X , if
we allow an additional generic perturbation. This proves our main theorem in the
most simplified situation.

The diffusion orbit will have its pf variable drift from a− to a+. We stress
that the size of this interval depends on Z and hence on H1. The reason that
we cannot diffuse further is due to the existence of additional resonances. We
say that p ∈ Γ admits an additional resonance if there exist kn, l ∈ Z such that
kn∂pn

H0(p) + l = 0. The normal form theorem and the existence of normally
hyperbolic cylinder fails near an additional resonance with small kn and l.

In the case n = 2, the additional resonances on Γ are double resonances. Due
to the low degree of freedom, it is still possible to characterize the system. In
particular, invariant cylinders still exist, but they are no longer normally hyper-
bolic. They are, in general, nonuniformly partially hyperbolic. However, it is still
possible to use them for Arnold diffusion. We intend to explore this in further
research.
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Transition between stability and instability for Hamiltonian systems

close to integrable

Abed Bounemoura

Let n ≥ 2 be an integer, Tn = Rn/Zn and B = BR be an open ball in Rn of
radius R > 1 with respect to the supremum norm. Consider a Hamiltonian system
close to integrable, of the form

{
H(θ, I) = h(I) + f(θ, I)

|f | ≤ ε << 1

where (θ, I) ∈ Tn × B are angle-action coordinates for the integrable part h and
f is a small perturbation in some suitable topology defined by a norm | . |. For
simplicity we shall restrict ourself to the analytic case (but extensions to non-
analytic systems are easily obtained), so we assume that h and f are bounded and
real-analytic on D = Tn × B. Then they have holomorphic extensions to some
σ-neighbourhood Vσ(D) of D in the complex phase space, for some σ > 0, and we
define | . | = | . |σ as the C0 norm on Vσ(D).

In the absence of perturbation, that is when ε is zero, for all solutions (θ(t), I(t))
the action variables I(t) are integrals of motion, but after perturbation the only
(trivial) stability property that remains true for all solutions is that

lim
ε→0

(
sup

0≤|t|≤ε−c

|I(t)− I0|
)

= 0.

for any 0 ≤ c < 1.
Without hypotheses on h, one cannot take c ≥ 1 in the equality above. Indeed,

it follows from the work of Nekhoroshev and Niederman that if the restriction
of h to some affine hyperplane, whose direction is generated by integer vectors,
has a non-isolated critical point, then there exist δ > 0 and an arbitrarily small
perturbation of size ε such that

sup
0≤t≤ε−1

|I(t)− I0| = |I(ε−1)− I0| ≥ δ.

This prompts us to introduce the following two definitions.
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Definition 1. An integrable Hamiltonian h : B → R is rationally steep if its
restriction to any affine hyperplane of the form I0+Λ, with I0 ∈ B and Λ a linear
subspace of Rn generated by integer vectors, has only isolated critical points.

Definition 2. An integrable Hamiltonian h : B → R is effectively stable if for any
f : Tn × B → R with |f | ≤ ε, all solutions (θ(t), I(t)) of the Hamiltonian system
H = h+ f starting at (θ0, I0) satisfy

lim
ε→0

(
sup

0≤|t|≤ε−1

|I(t) − I0|
)

= 0.

Then we have the following result.

Theorem 1. Effectively stable Hamiltonians are exactly rationally steep Hamilto-
nians.

Hence for a rationally steep Hamiltonian, the time of stability T (ε), that is the
maximal time during which the variation V (ε) of the action of all solutions of the
perturbed system satisfy limε→0 V (ε) = 0, is at least 1/ε. As a stability result,
this is very weak but if one quantifies correctly this notion of rational steepness,
then a more precise estimate on T (ε) can be obtained. Now a possible game one
can play is to try to improve as much as possible this stability time T (ε) to reach
an “optimal” value, and by means of examples to show that instability occurs after
this time-scale (this would somehow justify the word “optimal”).

In the case where the integrable Hamiltonian is linear, that is h(I) = ω.I
for some ω ∈ Rn \ {0}, the game described above is over as a consequence of
the following two results. Note that the assumption that h is rationally steep
translates into a non-resonant condition on ω. Up to a rescaling, we may assume
ω = (1, α) with α ∈ Rn−1. Then the function Ψ = Ψω given by

Ψ(K) = max
{
|d(k.α,Z)|−1 | k ∈ Z

n−1, 0 < |k| ≤ K
}
, K ∈ N

∗

is well-defined. It is obviously strictly increasing on N∗, hence we can extend it
(keeping the same notation) as a strictly increasing continuous function defined
on [1,+∞), and then we can also define two additional functions

Λ(x) = xΨ(x), ∆(x) = Λ−1(x), x ≥ 1,

which are also strictly increasing and continuous.

Theorem 2. For any non-resonant vector ω ∈ Rn, and any sufficiently small
ε-perturbation f , all solutions (θ(t), I(t)) of H = h+ f with I0 ∈ BR/2 satisfy the
estimates

|I(t)− I0| ≤ δ, |t| ≤ δε−1 exp
(
c1∆(c2ε

−1)
)
.

for any c1
(
∆
(
c2ε

−1
))−1 ≤ δ < R/2.

Theorem 3. For any non-resonant vector ω ∈ Rn, there exists a sequence (fj)j∈N∗

of εj-perturbation with εj → 0 when j → +∞, such that the system Hj = h + fj
has orbits which satisfy the equalities

|I(t)− I0| = δ, |t| = δε−1
j exp

(
c3∆(c4ε

−1
j )
)
.
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for any 0 < δ < R/2, if I0 ∈ BR/2.

The constants ci depend only on h (n, R, ω) and σ, but not on ε. In Theorem 2,
we recover as a particular case the known results for a Diophantine frequency.

Now let conclude with some remarks concerning non-linear Hamiltonians. We
plan to give an “optimal” result of stability under the rational steepness condition
(in the same spirit as in Theorem 2), which would contain as particular cases
the known results for convex, steep or Diophantine steep Hamiltonians. Also we
are trying to construct examples of instability (as in Theorem 3) to justify the
optimality, but this exercise is much harder for convex or steep Hamiltonians.

For convex systems, there are precise results of stability and instability which
almost match, so that the game here is almost (but not quite) over.

For steep systems, results of stability are also known, but we believe that they
can be improved, while there are no examples of instability for steep non-convex
integrable Hamiltonians.

Let us finally point out that some non-steep systems can be almost as stable as
steep (or convex) systems, and that showing stability and instability in this case
can be more simple.

On an Allen-Cahn phase transition model

Paul H. Rabinowitz

(joint work with Jaeyoung Byeon)

Several authors have studied Allen-Cahn models in which the spatial phase
transition manifests itself as a heteroclinic or homoclinic solution of the corre-
sponding Allen-Cahn equation. These solutions are ”unidirectional” in the sense
that they are heteroclinic or homoclinic in one direction, e.g. in the x1 direction.
See e.g. [1]- [4], [6]-[9], [12]-[14] as well as the related works [5], [10], and [15]. The
goal of this talk is to present a class of Allen-Cahn models for which the phase
transitions are multidirectional. The only results of this nature that we know of
are contained in the recent paper [11] which treats a different but related model.

To describe our results more precisely, let G(u) = 1
2u

2(1−u)2, a typical double

well potential. Let A ∈ C1(Rn) be a nonnegative function that is 1-periodic in
the components of x = (x1, · · · , xn), i.e. A(x) = A(x + i) for any x ∈ R

n and
i ∈ Zn. Set Ω ≡ {x ∈ (0, 1)n | A(x) > 0}. Assume 2δ∗ = |∂Ω − ∂[0, 1]n| > 0
and ∂Ω is a smooth manifold. Set Ωd ≡ {x ∈ Ω | |x− ∂Ω| > d} so for sufficiently
small d ∈ (0, δ∗), ∂Ωd is diffeomorphic to ∂Ω. Fix such a small d. Let ε > 0 and
Aε = 1 + 1

εA.
Our model PDE is

(PDE) −∆u+AεG
′(u) = 0, x ∈ R

n

Let

T ⊂ Z
n, AT = ∪i∈T (i+Ω), BT = ∪i∈Zn\T (i+Ω).
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We are interested in solutions of (PDE) satisfying 0 < U < 1 and that are near
1 on AT and near 0 on BT . To obtain such solutions, take d ∈ (0, δ) and Ωd as
above. Define

AT ≡ ∪{i+Ωd | i ∈ T }
and

BT ≡ ∪{i+ Ωd | i ∈ Z
N \ T }.

Set

Lε(u) =
1

2
|∇u|2 +AεG(u) and Jε(u) =

∫

Rn

Lε(u) dx.

Choose 0 < b < 1
2 < a < 1 and define

Γ(T ) = {u ∈ C2(Rn, [0, 1]) | u ≥ a > 1/2 on AT and u ≤ b < 1/2 on BT }.
Whenever a solution, u ∈ Γ(T ), of (PDE) satisfies Jε(u+ϕ)− Jε(u) ≥ 0 for all

ϕ with compact support such that u + ϕ ∈ Γ(T ), we say u is minimal in Γ(T ).
Our main result is:

Theorem 1. Under the above hypotheses on A and G, there is an ε0 > 0 such
that for any ε ∈ (0, ε0) and any T ⊂ Zn, there is a solution U = Uε,T ∈ Γ(T )
of (PDE), which is minimal in Γ(T ) and satisfies 0 < Uε,T < 1. Moreover as
ε→ 0, Uε,T converges uniformly to 1 on AT and to 0 on BT .

More can be said: as ε → 0, Uε,T → U0,T , a solution of a limit problem associ-
ated with (PDE).

The idea of the proof is first to use a constrained minimization argument to
get the result for finite T and then pass to a limit to get the result for arbitrary
T ⊂ Zn.
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The angular momentum of a relative equilibrium

Alain Chenciner

Analyzing the frequency structure of the angular momentum of a relative equilib-

rium solution of the N -body problem in a euclidean space of arbitrary dimension,

leads to a conjecture which relates this question to a version of Horn’s problem.

1. Angular momentum

Given an euclidean space (E, ǫ) of dimension d andN positivemassesm1, · · ·mN ,

an element x = (~r1, · · · , ~rN ) ∈ EN such that
∑N

k=1mk~rk = 0 will be called an
N -body configuration. Calling y = ẋ = (~v1, · · · , ~vN ) a configuration of velocities,

the angular momentum of (x, y) is the bivector C =
∑N

k=1mk~rk∧~vk ∈ ∧2E. Given
an orthonormal basis of E it can be identified with the antisymmetric matrix

C = −XM tY + YM tX,

where X (resp. Y ) is the d×N matrix whose columns are the coordinates of the ~rk
(resp. ~vk), M = diag(m1, · · · ,mN ) and tX is the transpose of X . The coefficients
cij of C are cij =

∑
kmk(−rikvjk + rjkvik).

2. Relative equilibria

A relative equilibrium solution of the N -body problem is a an equilibrium of the
“reduced” equations, obtained by going to the quotient by translations (this was
implicitely done by choosing a galilean frame where the center of mass is fixed at
the origin) and linear isometries. It is proved in[AC] that these are exactly the rigid
motions, where the mutual distances ||~ri − ~rj ||ǫ stay constant, that is where the
N -body configuration behaves as a rigid body. Moreover, the motion is necessarily
of the form X(t) = etΩX0 where Ω is an ǫ-antisymmetric operator on E and if
we call E the actual space of motion (forgetting the non visited dimensions), Ω is
non degenerate. Choosing an orthonormal basis which diagonalizes Ω amounts to
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saying that there exists a hermitian structure on the space E and an orthogonal
decomposition E ≡ Cp = Ck1 × · · · × Ckr such that

x(t) = (x1(t), · · · , xr(t)) = (eiω1tx1, · · · , eiωrtxr),

where xm is the orthogonal projection on Ckm of the N -body configuration x and
the action of eiωmt on xm is the diagonal action on each body of the projected con-
figuration. Such quasiperiodic motions exist only for very special configurations,
called balanced configurations in [AC]; the classical case of central configurations,
the only one to occur if the dimension of E is 3 or less, corresponds to the totally
degenerate case where Ω = ωJ , with J a hermitian structure on E, that is to

x(t) = (~r1(t), · · · , ~rN (t)) = eiωtx0 = (eiωt~r1, · · · , eiωt~rN (t))

in the hermitian space E ≡ C2p. In particular, it is periodic.

3. The frequency mapping

The dynamics of a solid body is determined by its inertia tensor S0 which in the
case of anN -body configuration x0 whose center of mass is at the origin is identified

with the symmetric matrix S0 = X0M
tX0 with coefficients sij =

∑N
k=1mkrikrjk .

In particular, the angular momentum of a relative equilibrium is represented by
the antisymmetric matrix C = S0Ω + ΩS0. Restricting to the case of central
configurations, we associate in this way to any 2p× 2p real symmetric matrix S0

a mapping
J 7→ ω−1C = S0J + JS0

from the space of hermitian structures on E to the set of 2p × 2p antisymmetric
real matrices. We shall only be interested in the spectra of the matrices ω−1C,
hence choosing an orientation for J is harmless and we shall consider only those

of the form J = R−1J0R, where J0 =

(
0 −Id
Id 0

)
and R ∈ SO(2p). The matrix

C is actually J-skew-hermitian, with spectrum iων1, · · · , iωνp if considered as a

complex matrix. Replacing it by J−1
0 RCR = ω(J−1

0 SJ0+S), where S = RS0R
−1,

makes it J0-hermitian with spectrum ων1, · · · , ωνp that we can suppose to be
ordered. We define the frequency mapping
{
F : U(p)\SO(2p) →W+

p = {(ν1, · · · νp) ∈ R
p, ν1 ≥ · · · ≥ νp} by

R 7→ (ν1, · · · , νp) = ordered spectrum of Σ = J−1
0 (RS0R

−1)J0 +RS0R
−1.

An obvious remark is that ν1 + ν2 + · · ·+ νp = trace S0, which is the moment of
inertia of the configuration with respect to its center of mass.
Question: S0 being given, describe the image of F .

4. Adapted hermitian structures and the Horn problem

We define a class of hermitian structures sharing some symmetries with the
inertia ellipsoid defined by S0.

From now on, we suppose that the othonormal basis of E was chosen so that

S0 = diag(σ1, · · · , σ2p).
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Definition 1. A hermitian structure is called “adapted ” if it is of the form

Jρ,P = P−1

(
0 −ρ−1

ρ 0

)
P = R−1J0R, R = Rρ,P =

(
ρ 0
0 Id

)
P,

where ρ ∈ SO(p) and P ∈ SO(2p) is a signed permutation. When ρ can be chosen
equal to Id, we speak of a “basic hermitian structure”.

The permutation P being given, the adapted hermitian structures of the form
Jρ,P are precisely the ones which send the real p-dimensional subspace generated
by the basis vectors ~eπ(1), · · · , ~eπ(p) onto the orthogonal subspace generated by

~eπ(p+1), · · · , ~eπ(2p), where P−1(~ei) = ǫi~eπ(i). The basic hermitian structures are
those for which the 2-planes generated by ~eπ(i), ~eπ(p+i) are complex lines. What
makes the adapted structures remarkable is that the frequency map F associates
to Rρ,P (that is to Jρ,P ) the ordered spectrum of the hermitian (in fact real
symmetric) p× p matrix

Σρ,P = ρσπ
−ρ

−1 + σπ
+,

where σπ
− and σπ

+ are such that PS0P
−1 = diag(σπ

−, σ
π
+), that is

σπ
− = diag(σπ(1), σπ(2), · · · , σπ(p)), σπ

+ = diag(σπ(p+1), σπ(p+2), · · · , σπ(2p)).
Finding the set AP of ordered spectra of the matrices Σρ,P when P , that is the
diagonal matrices σπ

− and σπ
+, is given is the real form of the Horn problem. Being

the intersection with the positive Weyl chamberW+
P of a moment map[K], AP is a

convex polytope whose faces are given by the so called Horn’s inequalities[F, KT].
Moreover, the following theorem asserts that, if σ1 ≥ · · · ≥ σ2p, all these polytopes
AP are contained in the one, AP0 , corresponding to the permutation P0 such that
π(i) = 2i− 1, π(p+ i) = 2i.

Theorem 1 ([FFLP] Proposition 2.2). Let A and B be p×p Hermitian matrices.
Let σ1 ≥ σ2 ≥ · · · ≥ σ2p be the eigenvalues of A and B arranged in descending

order. Then there exist Hermitian matrices Ã and B̃ with eigenvalues σ1 ≥ σ3 ≥
· · · ≥ σ2p−1 and σ2 ≥ σ4 ≥ · · · ≥ σ2p respectively, such that Ã+ B̃ = A+B.

5. A Conjecture

We conjecture that the non-adapted hermitian structures do not contribute to
the image of the frequency map, that is: ImF = AP0 .

Theorem 2. The conjecture is true when p = 2.

The proof is a direct computation using spherical coordinates on the 2-sphere
U(2)\SO(4). In this case, ImF is contained in an interval and it is shown that it
coincides with ∪PAP = AP0 because the determinant mapping J 7→ ν1ν2 has only
the obvious critical points forced by the symmetries, that is the 6 basic hermitian
structures.

Numerical testing made by Hugo Jimenez Perez for the case p = 3 has not
infirmed the conjecture.
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juin 1998

[FFLP] S. Fomin, W. Fulton, C.K. Li, Y.T. Poon, Eigenvalues, singular values, and Littlewood-
Richardson coefficients, Amer. J. Math. 127, no. 1, (2005), 101–127

[K] A. Knutson The symplectic and algebraic geometry of Horn’s problem, Linear Algebra and
its Applications 319, Issues 1-3, (2000), 61-81

[KT] A. Knutson & T. Tao Honeycombs and sums of Hermitian matrices, Notices of the AMS,
(February 2001).

Dynamical aspects of homoclinic Floer homology

Sonja Hohloch

Let (M,ω) be a symplectic manifold and ϕ a symplectomorphism with a hyperbolic
fixed point x. Then the stable and unstable manifolds W s := W s(ϕ, x) and
Wu :=Wu(ϕ, x) are Lagrangian submanifolds. Thus the set of homoclinic points
W s ∩Wu is the intersection set of a Lagrangian intersection problem.

In the 1960s, Arnold conjectured that, on a closed symplectic manifold, the
number of fixed points of a (nondegenerate) Hamiltonian diffeomorphism ψ is
greater or equal to the sum over the Betti numbers. Floer theory (cf. Floer
[1]) was originally devised to detect the (minimal) number of intersection points
of graph(ψ) with the diagonal in (M × M,ω ⊕ (−ω)) which is the associated
Lagrangian intersection problem. For more general (usually compact) Lagrangian
intersection problems, Floer theory has been studied by Fukaya & Oh & Ohta &
Ono [2].

Since the homoclinic points of a symplectomorphism are associated to a La-
grangian intersection problem, one may ask if one can construct a Floer homol-
ogy for this situation. In classical Floer theory, the Lagrangian submanifolds are
usually compact (or at least sufficiently ‘nice’) whereas (un)stable manifolds are
usually only injectively immersed and oscillate and accumulate wildly. This turns
the analysis of J-holomorphic curves — an essentiel ingredient in Floer theory —
into a quite hopeless task. On top of that, there are ‘too many’ intersection points.

This talk is based on two articles by the author (Hohloch [4], [5]) in which a
Floer theory for homoclinic points is devised and where dynamical aspects are
studied. The above mentioned analysis problem can be circumvented by consider-
ing only two-dimensional symplectic manifolds: then the analysis can be replaced
by combinatorics. The problems caused by the (too) huge number of homoclinic
points are untouched by this restriction. Fortunately, there are ‘good’ subsets of
W s∩Wu, for instance the so-called ‘primary points’, which can serve as generator
sets for the construction of Floer homology.
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Depending on the chosen generator set and on the definition of the boundary
operator, the properties of the resulting homoclinic Floer homologies vary drasti-
cally. For instance, some homoclinic Floer homologies transform

rkH∗(ϕ
n, x) = n rkH∗(ϕ, x)

whereas some stay invariant, i.e. H∗(ϕ
n, x) = H∗(ϕ, x). In the latter case, one

can observe growth by filtering the homology by the symplectic action

rkH
]b−ε,b+ε]
∗ (ϕn, x) = n rkH

]b−ε,b+ε]
∗ (ϕ, x).

Further growth observations are linked to the (absolute) flux studied in MacKay &
Meiss & Percival [6]. In (R2, ω), define the flux of a symplectomorphism ϕ through
a simply closed curve c by

F luxϕ(c) := volω(ϕ(Int(c)) ∩ Ext(c)).

The flux also can be defined on a cylinder or annulus. To a homoclinic point p,
associate a curve cp which starts at x, runs through Wu to p and through W s

back to x. If cp does not have self-intersections define

F luxϕ(p) := F luxϕ(cp)
The flux through a homoclinic point coincides under certain conditions with its
relative symplectic action, thus linking the flux to the action spectrum which
is an important invariant in Floer homology. Moreover, the flux also interacts
in a certain way with the boundary operator and the bifurcation behaviour of
homoclinic points.

In our situation, the action and Maslov index are ϕ-invariant and thus both are
no help for the observation of changes when comparing ϕ and ϕn. But the flux
transforms F luxϕn(p) = nF luxϕ(p). This is the same growth behaviour as the
action and mean index display in classical Floer theory.

Growth phenomena are important features. Growth behaviour of symplecto-
morphisms has been studied for example by Polterovich [7] who used it to establish
a Hamiltonian Zimmer program in [8]. Ginzburg & Gürel [3] used the growth rate
of the symplectic action and the mean index in classical Floer homology for the
proof of the Conley conjecture.
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Near a Double Resonance

John N. Mather

In [1], I announced results concerning Arnold diffusion. In [2], I corrected some
errors in [1]. Part of the proof of these results is a detailed study of the location
of Aubry sets. This talk briefly outlined these results about Aubry sets.

The results announced in [1] and [2] concern the Euler-Lagrange equation as-
sociated to a Lagrangian L in two and one half degrees of freedom that is a
small perturbation of an integrable system. This means that L has the form
L(θ, θ̇, t),= ℓ0(θ̇) + ǫP (θ, θ̇, t), where θ̇ = (θ̇1, θ̇2) ranges over a closed ball B in
R2, θ = (θ1, θ2) ranges over the 2-torus T2 := R2/Z2, and t ∈ R. We assume that
ℓ0 is a C4 function on B, P is a C3 function on T2 × P × R, periodic of period
1 in t, such that ‖P‖C3 = 1, and ǫ is a small positive number. In addition, we

assume that d2P (θ̇) > 0, i.e. the Hessian matrix of second partial derivatives of

ℓ0 is positive definite at every point θ̇ ∈ B.

We let B∗ ⊂ int B be a closed ball with the same center as B and suppose that

Γ ⊂ B∗. We let L̃ : TT2×T → R be a Tonelli Lagrangian of the form L̃ = ℓ̃0+ ǫP̃
that extends L, and let β = βL̃ be the minimal average action function associated

to L̃. In other words if h ∈ H1(T
2,R) then βL̃(h) = min{A(µ)}, where µ ranges

over probability measures on TT2×T, invariant under the Euler-Lagrange flow as-

sociated to L̃, whose rotation vectors satisfy ρ(µ) = h. We let αL̃ : H1
(
T2;R

)
→ R

denote the Legendre-Fenchel dual of βL̃. We identify H1(T
2;R) and H1(T2;R)

with R2 in the standard way. Thus, we regard B∗ as a subset of H1(T
2;R) and

dℓ0(B
∗) as a subset of H1(T2;R), where dℓ0 : B → R2 is the derivative of ℓ0.

If ǫ is sufficiently small then β|B∗ and α|dℓ0(B∗) are independent of the choice L̃
of extension of L. We suppose that ǫ is so chosen. Consequently, the restriction
to B∗ of the Legendre-Fenchel transform LF associated to βL̃ is independent of

the choice of extension L̃. We recall that this associates to h ∈ B∗ a non-empty
convex, compact subset LF(h) ofH1(T2;R). We set LF(Γ ) := ∪{LF(h) : h ∈ Γ}.

Under suitable genericity hypotheses, described in [2], LF(Γ ) has non-empty in-
terior, and it is possible to prove results about the location of Au(c) for c ∈
int LF(Γ ). If ω ∈ Γ is not within a

√
ǫ−neighborhood of an ω0 admitting

a strong second resonance, and c is in the relative interior of LF(ω) (a com-
pact interval) then Au(c) (a subset of T2 × T) is in a small neighborhood of
a 2-torus that can be described explicitly in terms of the averaged potential
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PΓ,ω(ϕ) := 〈P (θ, ω, t)〉(θ,t)∈ϕ, where ϕ ∈ T
1
Γ := (T2 × T)/T2

Γ and

T
2
Γ := {(θ1, θ2, t) ∈ T

2 × T : k0t+ k1θ1 + k1θ2 = 0 (mod Z
2 × Z)}.

The Aubry set Auc is in a small neighborhood of π−1(Min(PΓ,ω)), where π :
T2 × T → T1

Γ is the projection and Min PΓ,ω is the set of ϕ ∈ T1
Γ where the

average potential PΓ,ω takes its minimum. (This set has at most two points under
our genercity hypothesis.)

Near an ω0 that admits a strong second resonance, matters are more complicated.
In contrast to the discussion concerning ω away from strong second resonances,
one needs to consider an averaged Lagrangian Lω0 where one averages over only
one fast variable. See [2, §3] for the definition of Lω0 .) This averaged Lagrangian
has the form Lω0 = Kω0 + Pω0 , where Pω0 is a function defined on a 2-torus
T2
ω0

= T2 × T/T1
ω0

and Kω0 := 1
2gω0 , where gω0 is a Riemannian metric on T2

ω0
.

We set E0 := −min Pω0 . The Jacobi metric gE associated to Lω0 and the energy
level E is a Riemannian metric when E > E0, but vanishes at one point when
E = E0 (under our genericity hypothesis).

We let h0 be the integral homology class associated to T2
Γ /T

1
ω0

in T2
ω0

= (T2 ×
T)/T1

ω0
. There are two cases depending on whether a gE0−shortest curve in h0

is simple or not. (We overlooked the possibility that such a curve might not be
simple when we wrote [1]. This led to the errors that we corrected in [2].)

In the case that all such shortest curves associated to ω0 ∈ Γ that admit strong
second resonances are simple, there is a connected component of LF(Γ ) that con-
tains both LF(ω0) and LF(ω1), where ω0 and ω1 are the endpoints of Γ ; otherwise
this is not true. The proof that I envisioned when I wrote [1] goes through in the
first case; otherwise, it requires considerable modification.

The difference between the two cases appears in the discussion of LF(R · h0),
where now LF denotes the Legendre-Fenchel transform associated to βLω0

. Thus,

LF(h) is a non-empty, compact, convex subset of H1(T2
ω0
;R) in the case that

h ∈ H1(T
2
ω0
;R). In the case that gE0−shortest curve in h0 is simple, there is a

uniform lower bound on the width of LF(R · h0); otherwise LF(λh0) pinches to a
point as λ > 0 converges to 0 and pinches to a second point as λ < 0 converges to
0.
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Global surfaces of section for Reeb flows on the tight 3-sphere

Umberto L. Hryniewicz

Methods from symplectic geometry have been successfully used many times to
understand global questions in Hamiltonian dynamics, leading to the recent in-
troduction of the term Symplectic Dynamics by Bramham and Hofer [1]. An
important example of such methods is pseudo-holomorphic curve theory, which
was introduced in the context of symplectizations by Hofer [2] to study the three-
dimensional Weinstein conjecture.

A celebrated achievement of this set of ideas and techniques was obtained by
Hofer, Wysocki and Zehnder [3] who proved that Hamiltonian dynamics on a
strictly convex regular energy level S ⊂ (R4, ω0) admits a disk-like global surface
of section: this is an embedded disk D ⊂ S such that ∂D is a periodic orbit and
every trajectory (distinct of ∂D) hits D \ ∂D transversely and ∞-many times in
the future and in the past.

Such a Hamiltonian flow can be described as the Reeb flow associated to a
contact form on the tight 3-sphere, and this result immediately prompts the ques-
tion of which closed Reeb orbits bound a disk-like global section. This was first
answered in [4] when the contact form is non-degenerate and arises from a strictly
convex energy level. The more complicated situation of a general non-degenerate
contact form on the tight S3 is covered by the following statement proved in col-
laboration with Pedro A. S. Salomão [6].

Theorem 1. If a contact form on the tight 3-sphere is non-degenerate then a
prime closed Reeb orbit P bounds a disk-like global surface of section if, and only
if, it is unknotted, has self-linking number −1, µCZ(P ) ≥ 3 and all closed Reeb
orbits P ′ satisfying µCZ(P

′) = 2 are linked to P .

Above µCZ denotes the Conley-Zehnder index. The main step of the proof is
the analysis of a Bishop family of pseudo-holomorphic disks with boundary on a
suitable disk spanning the orbit P . The lack of compactness of the Bishop family
and our assumptions on P produce a finite-energy plane asymptotic to P . It turns
out that this plane has a “fast asymptotic convergence” which plays a crucial role
in foliating S3 \ P by planes asymptotic to P . Each plane is only a page of an
open book decomposition of S3 with binding P , and every page is a disk-like global
section.

A contact form on the tight S3 is dynamically convex if all closed Reeb orbits
have Conley-Zehnder index ≥ 3. Examples are given by contact forms induced
by strictly convex energy levels and, in fact, the results of [3] are proved for
dynamically convex contact forms. In [5] we prove

Theorem 2. Let D be the disk-like global section for the Reeb flow of a dynamically
convex contact form on the tight S3 obtained from [3]. Then any closed Reeb orbit
simply linked to ∂D also bounds a disk-like global surface of section for the Reeb
flow.
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Brouwer’s translation theorem implies that the first return map to D has a fixed
point. Consequently Theorem 2 gives new global sections.
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A compact Riemannian manifold with convex boundary that contains

a complete geodesic, but no closed geodesic

Victor Bangert

(joint work with Nena Röttgen)

We construct a Riemannian metric g on the closed ball B of dimension n ≥ 4 with
the following properties:

(i) In a neighbourhood of ∂B the metric coincides with the Euclidean metric.
In particular, ∂B is strictly convex.

(ii) There exists a non-constant geodesic c : R → B.
(iii) There does not exist a closed geodesic in B.

It is a result due to G. D. Birkhoff [2, VI.10] that such an example cannot exist
in two dimensions.

Here is a brief outline of the construction of g:
First, we deform the standard metric g0 on the ball B ⊂ Rn of radius 2 so

that all the spheres S(ρ) ⊂ B of radius ρ ∈]0, 2[ remain strictly convex, except
for S(1) whose second fundamental form vanishes precisely on the vectors tangent
to an irrational geodesic foliation F of the Clifford torus T2 ⊂ S(1) ∩ (R4 × {0}).
This implies that there are no closed geodesics in B with respect to this metric.
Moreover, we achieve that also the second fundamental form of the Clifford torus
T2 vanishes in the direction of F . Then the leaves of F are complete geodesics
not only in T2 but also with respect to the metric on B.

Our example provides a negative answer to two natural questions. The first
one was asked by W. Craig at an Oberwolfach meeting on dynamical systems.
This question is related to the article [3] about microlocal analysis for Schrödinger
equations. In [3] the non-existence of a trapped bicharacteristic (i.e. a bounded
geodesic) is a standing hypothesis:

Suppose g is a Riemannian metric on Rn that is asymptotic to the Euclidean
one at infinity. Assume there exists a non-constant geodesic c : R → (Rn, g) that
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stays in a bounded subset of Rn. Does this imply that there is a closed geodesic in
(Rn, g)?

By property (i), our metric on B can be extended to Rn by the Euclidean metric
and hence shows that the answer to W. Craig’s question is no for n ≥ 4.

The second question was asked by B. White [4, Remark 2.8] in connection with
isoperimetric inequalities for submanifolds in Riemannian manifolds:

Let N be a compact Riemannian manifold with k-convex boundary that contains
a non-zero stationary k-varifold, 1 ≤ k ≤ dimN − 1. Does this imply that N
contains a non-zero integral stationary k-varifold?

B. White proved in [4] that this is true in the codimension one case, i.e. if
k = dimN − 1. In our example, the complete geodesic is part of a geodesic
foliation of a 2-torus in B. This gives rise to a non-zero stationary 1-varifold that
is supported on the tangent vectors to this geodesic foliation. The properties of
our example can be used to prove that B does not contain a non-zero integral
stationary 1-varifold.

It is not difficult to generalize our construction so as to obtain compact n-
dimensional manifolds N with k-convex boundary showing that the answer to
B. White’s question is no for every n ≥ 4 and every 1 ≤ k ≤ n− 3, cf. [1].
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Periodic Reeb orbits in the complement of a Hopf link

Al Momin

(joint work with Umberto Hryniewicz, Pedro A. S. Salomão)

We consider Reeb vector fields on the (tight) three sphere which are tangent to
a certain Hopf link and describe a condition on the infinitessimal rotation around
these orbits which implies the existence of other periodic orbits. The assumptions
- particularly the one that the vector field is tangent to this particular link - may
seem quite restrictive, but are not actually as restrictive as they appear at first
glance. For instance, it can be shown that for certain flows arising from what are
known as “dynamically convex” contact forms (defined first in [HWZ98]) there
is always such a link up to contact isotopy, and thus after an isotopy the above
assumption is satisfied. In this convex case, the theorem we describe below can be
demonstrated using global surfaces of section constructed by U. Hryniewicz and Pe-
dro Salomão [HS10] (refining work of Hofer-Wysocki-Zehnder - see e.g. [HWZ98])
and a version of the Poincaré-Birkhoff Theorem due to J. Franks [Fr88]. However,
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in the general case it is not at all clear that these methods can be applied: the
argument we sketch in this talk is rather variational in nature, instead of the more
geometric methods that work in the dynamically convex case. Finally, we describe
an application to closed geodesics on the two sphere.

Let us describe this in somewhat more detail. On C × C, let us denote the
complex coordinates by (z1, z2) and polar coordinates on each C factor (z1 =
r1e

iθ1 , z2 = r2e
iθ2). On the unit 3-sphere S3 ⊂ C × C, there is a contact form

obtained by restricting the following one-form to S3:

λ0(r1, θ1, r2, θ2) =
r21
2
dθ1 +

r22
2
dθ2.

We consider contact forms λ = f · λ0 where f : S3 → (0,∞) is a smooth positive
function. We consider the following Hopf link in S3

L1 = S3 ∩ {z2 = 0}, L2 = S3 ∩ {z1 = 0}
and now restrict consideration to forms fλ0 such that the associated Reeb vector
field X , defined by

λ(X) = 1, dλ(X, ·) = 0

is tangent to L1 ∪L2 along L1 ∪L2. This condition can be formulated in terms of
the function f : it is true if and only if f satisfies

∀z ∈ L1 ∪ L2, ∀v ∈ ξz, df(z)v = 0

Remark 1. In fact, we only need to assume the following. Suppose λ is a tight
contact form on S3, and that L is a transverse Hopf link of self-linking number 0
(this is a number associated with any transverse link) which is tangent to the Reeb
vector field. By Gray’s stability theorem we may find a diffeomorphism of S3 so
that φ∗λ = fλ0 for some function f . Then a theorem of Etnyre and Van Horn-
Morris [EHM] implies that there is a contact isotopy which takes L to the standard
example L1∪L2 above. This extends to an ambient isotopy (see e.g. [Gei]) ψ, and
ψ∗(fλ0) = f ′ · λ0, which is of the form described above and its Reeb vector field
has the same dynamics as the Reeb vector field for the form λ we started out with.

We may associate to the orbits L1, L2 rotation numbers as follows. First, we
note that the contact structure ξ admits a global trivialization Φ : ξ → C. Denote
by φt the flow of the Reeb vector field X . Fixing a point x ∈ Li and v ∈ C, we
have a path P (t)v:

v 7→ P (t)v = Φ ◦ dφt(x)Φ−1(v) ∈ C

We define the rotation number (let Ti denote the minimal period of the orbit Li):

ρ(Li) = lim
t→∞

∆argP (t) · v
t/Ti

which exists and is independent of all choices made.
The set of homotopy classes of S3\(L1∪L2) are classified by the linking numbers

with the components L1, L2. Given a loop a, let p = ℓ(a, L2) and q = ℓ(a, L1).
The numbers (p, q) completely characterize the homotopy class of a i.e. another
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loop b is freely homotopic to a if and only if p = ℓ(b, L2) and q = ℓ(b, L1). Thus,
we will denote homotopy classes of S3\(L1 ∪ L2) by these integers (p, q).

To state our main theorem, we use the following notation. Suppose v, w are
non-zero vectors in the portion D of R2 defined by D = {(x, y)|x > 0 or y > 0}.
Say v > w if the argument of v is greater than the argument of w, where the
argument function is defined by cutting along a ray in the fourth quadrant (say,
along the ray pointing in the direction of the vector (−1,−1)).

Theorem 1. Suppose fλ0 is as above i.e.

∀z ∈ L1 ∪ L2, ∀v ∈ ξz, df(z)v = 0

If (1, ρ(L1)−1) < (p, q) < (ρ(L2)−1, 1) (in the notation of the previous paragraph,
viewing each ordered pair as a vector in D), there is a periodic Reeb orbit in the
homotopy class (p, q). If (1, ρ(L1)− 1) > (p, q) > (ρ(L2)− 1, 1), there is a periodic
Reeb orbit in the homotopy class (p, q).

We also give an application to closed geodesics on the two-sphere. Suppose
g is a Riemannian or reversible Finsler metric on the two-sphere S2, and that
γ is a simple, closed geodesic. We mention the following corollary, which is a
weaker version of a theorem of Angenent [A05], but which can be applied in more
general situations (such as Finsler metrics, though one must change the statement
appropriately).

Corollary 1. Let ρ(γ) denote Poincaré’s inverse rotation number for the geodesic
γ. Then for each (p, q) in the range (1, 2ρ(γ)− 1) < (p, q) < (2ρ(γ)− 1, 1) (again
using the notation described above), there is a closed geodesic. These geodesics
are distinguished homotopically (up to the possibility that a geodesic is counted
twice - once forwards and once backwards). The same statement holds if instead
(1, 2ρ(γ)− 1) > (p, q) > (2ρ(γ)− 1, 1).

Finally, let us give a word about the proofs. The proof uses “cylindrical con-
tact homology” - due to Eliashberg-Givental-Hofer [EGH00] - or rather a version
defined on the complement of Reeb orbits described in [M10]. In fact, the theorem
was already established in the case that both L1, L2 are elliptic non-degenerate
in [M10]. The proof in the more general case uses the structure of the Hopf link
to refine the arguments of [M10] about compactness of holomorphic cylinders in
R × (S3\L). In the end, the orbits are produced by a “stretching the neck” ar-
gument applied to holomorphic curves that arise in the definition of certain chain
maps between chain complexes of cylindrical contact homology.
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There is only one KAM curve

David Sauzin

(joint work with Carlo Carminati, Stefano Marmi)

We address the oldest open problem in KAM theory: in 1954, at the end of his
ICM conference [Kol54], Kolmogorov asked whether the regularity of the solutions
of small divisor problems with respect to the frequency could be investigated using
appropriate analytical tools, suggesting a connection with the theory of “mono-
genic functions” in the sense of Émile Borel [Bo17]. In [CMS11], we provide
evidence that Kolmogorov’s intuition was correct by establishing a monogenic reg-
ularity result upon a complexified frequency for the KAM curves of a family of
analytic twist maps of the annulus; as a consequence, these curves enjoy a property
of “H 1-quasianalyticity” with respect to the frequency.

Borel’s monogenic functions may be considered as a substitute to holomorphic
functions when the natural domain of definition is not open but can be written as
an increasing union of closed subsetsKj , j ∈ N, of the complex plane; monogenicity
then means C 1-holomorphy on each Kj , which is simply Whitney differentiability
in the complex sense (i.e. usual Whitney differentiability with Cauchy-Rieman
equations) on each Kj . As pointed out by Herman [He85], Borel’s motivation was
probably to ensure quasianalytic properties (unique monogenic continuation) by
an appropriate choice of the sequence (Kj)j∈N, which turns out to be difficult in
a general framework.

Kolmogorov’s question has already been considered in small divisor problems
other than KAM theory, particularly for circle maps. In his work on the local lin-
earization problem of analytic diffeomorphisms of the circle, Arnold [Ar61] defined
a complexified rotation number, with respect to which he showed the monogenic-
ity of the solution of the linearized problem, but his method did not allow him to
prove that the solution of the nonlinear conjugacy problem was monogenic. This
point was dealt with by Herman [He85], who used quite a different method and
also reformulated Borel’s ideas using the modern terminology.

We consider the Lagrangian formulation of KAM theory for symplectic twist
maps of the annulus [SZ89], [LM01], specifically for the standard family defined
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by

Tε : (x, y) 7→ (x1, y1),

{
x1 = x+ y + εf(x)

y1 = y + εf(x)

in the phase space (R/Z)× R, where f is a 1-periodic real analytic function with
zero mean value and ε is a small real parameter. Let us fix τ > 0: associated with
a τ -Diophantine frequency, i.e. an element of

AR

M =

{
ω ∈ R | ∀(n,m) ∈ Z× N

∗, |ω − n

m
| ≥ 1

Mm2+τ

}
,

there is a KAM curve, which can be parametrized as θ ∈ R/Z 7→ γ(θ) =
(
θ +

u(θ), ω + v(θ)
)
so that Tε

(
γ(θ)

)
= γ(θ + ω), where u and v are small 1-periodic

real analytic functions depending analytically on ε. One can impose that the mean
value of u be zero and this function is then determined as the unique solution of
the equation

u(θ + ω)− 2u(θ) + u(θ − ω) = εf
(
θ + u(θ)

)
,

while v(θ) = u(θ)− u(θ− ω). Given ω Diophantine, one can find ρ > 0 such that,
as a function of (θ, ε), the solution u extends holomorphically to SR × Dρ, where

SR = {θ ∈ C/Z | | ℑmθ| < R}, Dρ = {ε ∈ C | |ε| < ρ}.
We thus have a map ω ∈ AR

M 7→ u ∈ BR,ρ, where BR,ρ is the complex Banach
space of all bounded holomorphic functions on SR × Dρ. It turns out that our
parametrization of the KAM curve depends periodically on the frequency, thus we
can set q = E(ω) := e2πiω and view the above as a function q ∈ E(AR

M ) 7→ u ∈
BR,ρ. Our answer to Kolmogorov’s question in [CMS11] consists in

Theorem 1. Suppose that f extends holomorphically to a neighbourhood of SR0 ,
0 < R < R0 and M > 2ζ(1 + τ). Then there exists ρ > 0 such that the above u
extends to a BR,ρ-valued C 1-holomorphic function ũM on the compact set KM of

the Riemann sphere Ĉ obtained as KM := E(AC

M ) ∪ {0,∞} with

AC

M =
{
ω ∈ C | ∃ω∗ ∈ AR

M such that | ℑmω| ≥ |ω∗ − ℜe ω|
}
.

We prove this by defining an appropriate norm on the space of all BR,ρ-valued
C 1-holomorphic functions which makes it a Banach algebra C 1

hol(KM ,BR,ρ) and
by complexifying Levi-Moser’s modified Newton algorithm [LM01].

Observe that the interior of KM has two connected components, one inside the
unit disk, which contains 0, and one outside, which contains ∞, and that our
extension ũM is holomorphic in these open sets. However, we also prove that there
is no point of the unit circle ( i.e. corresponding to a real frequency) at which it
has a holomorphic extension (due to the density of the resonances).

Now, for any complex Banach space B, it is proved in [MS11] that C 1
hol(KM , B)

is “H 1-quasianalytic”: any C ⊂ KM of positive linear Hausdorff measure is a
uniqueness set for the functions of C 1

hol(KM , B) (if such a function vanishes on C
then it must vanish on the whole of KM ). In particular, the function ũM which
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Figure 1. The perfect subset AC

M ⊂ C

encodes the complexified KAM curves is determined by its restriction to any set of
frequencies of positive linear measure.

Notice that Whitney smooth dependence on real Diophantine frequencies has
been established long ago by Lazutkin and Pöschel for KAM curves and tori,
but what is at stake in our work is the complex extension, its regularity and
the uniqueness property this regularity implies. From the point of view of clas-
sical analytic continuation, the real axis in frequency space appears as a natural
boundary, but our quasianalyticity result is sufficient to prove that some sort of
“generalized analytic continuation” [RS02] through it is possible: the knowledge
of the parametrizations on a set of positive linear measure of frequencies (real
or complex) is sufficient to determine all the parametrized KAM curves: in this
sense there is only one KAM curve, parametrized by one monogenic function of
the frequency.

An interesting open problem would be to find a natural space of functions which
contains the parametrization of the KAM curves and which is quasianalytic in the
classical Hadamard sense (i.e. flatness at a point is sufficient to imply that the
function is zero everywhere.)
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Homological periodicity and multiple closed geodesics on compact

simply connected manifolds

Yiming Long

The problem of closed geodesics is a traditional and active topic in dynamical
systems and differential geometry. The existence of at least one closed geodesic
on every Riemannian sphere was proved by G. D. Birkhoff in 1917-1927. Then it
was further proved by L. Lyusternik and A. Fet for every compact Riemannian
manifold. A famous conjecture claims that there exist always infinitely many
closed geodesics on every compact Riemannian manifold.

This conjecture has been extensively studied. There are many important achieve-
ments on this problem. Besides many partial results, here we recall the results of
D. Gromoll and W. Meyer, V. Bangert and J. Franks.

In 1969, D. Gromoll and W. Meyer proved that if the Betti number sequence
{bj(ΛM)}j∈N of the free loop space ΛM of a compact Riemannian manifold M is
unbounded, then there exist infinitely many geometrically distinct closed geodesics
on M . Then in 1976, M. Vigué-Poirrier and D. Sullivan proved that the free loop
space of a compact simply connected Riemannian manifold M has no unbounded
sequence of Betti numbers if and only if the rational cohomology algebra of M
possess only one generator which means that

H∗(M ;Q) ∼= Td,h+1(x) = Q[x]/(xh+1 = 0)

with a generator x of degree d ≥ 2 and hight h+ 1 ≥ 2.
Around 1990, V. Bangert and J. Franks proved that on every Riemannian

S2, there always exist infinitely many geometrically distinct closed geodesics, and
solved the conjecture for 2 dimensional manifolds.

For the Finsler manifolds, in 1973 A. Katok constructed a family of Finsler
metrics on sphere Sd which possesses precisely 2[(d+1)/2] distinct closed geodesics.
In 2003 H. Hofer, K. Wysocki and E. Zehnder proved that there exist either two
or infinitely many distinct prime closed geodesics on a Finsler (S2, F ) provided
that all the iterates of all closed geodesics are non-degenerate and the stable and
unstable manifolds of all hyperbolic closed geodesics intersect transversally. In
2004, V. Bangert and Y. Long proved that on every irreversible Finsler S2 there
exist always at least two distinct prime closed geodesics (published in Math. Ann.
2010). Based on these result, it is natural to conjecture that for each positive
integer n there exist positive integers 1 ≤ pn ≤ qn with pn → +∞ as n → +∞
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such that the number of distinct closed geodesics on a compact Finsler manifold
(M,F ) with dimM = n is either contained in [pn, qn] or equals to +∞.

Recently, H. Duan and Y. Long proved that on every compact simply connected
Riemannian or Finsler manifold of dimension 3 or 4, there exist always at least
two distinct closed geodesics (cf, Advances in Math. 2009, J. Funct. Anal., 2010).

The following theorems are the most recent results

Theorem 1. (H. Duan-Y. Long) For every irreversible Finsler metric F on any
compact simply connected manifold of dimension at least 2, there exist always at
least two distinct prime closed geodesics.

Theorem 2. (H. Duan-Y. Long) For every reversible Finsler metric F on any
compact simply connected manifold of dimension at least 2, there exist always at
least two geometrically distinct closed geodesics. In particular, it holds for every
such Riemannian manifold.

The proof of these theorems starts from the T ∗(M,Q) condition mentioned
before when the Betti number sequence of the free loop space of M is bounded,
using corresponding information on the Betti numbers of the free loop space of
M module the S1 action, a new identity is established when there exists only
one prime closed geodesic c on M . Then using estimates on the Morse indices of
iterates of c, a contradiction is deduced to prove the the existence of at least one
additional prime closed geodesic on M .

In this proof, prime closed geodesics are classified into rational and irrational
two classes. For rational closed geodesic, a new homological periodicity theorem on
the rational homologies of related level set pairs is proved. For irrational closed ge-
odesic, a new homological quasi-periodicity theorem on such homologies is proved.
Such theorems yield the mentioned new identity for the prime closed geodesic.
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Generalised Hopf bifurcations

Marc Chaperon

This talk, inspired by the author’s article in memory of V.I. Arnol’d [2], was about
the birth of dynamics out of statics (or the nonlinear coupling of oscillators). In
generic smooth one-parameter families of vector fields, simple examples are

• the Hopf bifurcation, in which an attracting equilibrium point becomes
unstable while giving rise to an attracting periodic orbit
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• the “Hopf” (Sacker-Naimark) bifurcation, in which an attracting periodic
orbit becomes unstable while giving rise to an attracting invariant 2-torus.

These T0 → T1 and T1 → T2 bifurcations are not paralleled by a T2 → T3

bifurcation which, far from being generic, requires infinitely many conditions [3]:
in generic one-parameter families, the invariant 2-torus will break down when it
loses attractivity and chaos (“turbulence” [6]) will develop.

Thus, to study the birth of n-tori with n > 2, it is best to follow René Thom’s
advice: “Look for the organising centre or phenomena” and consider families de-
pending on more parameters. The result is that T0 → Tn and T1 → Tn+1 bifur-
cations (among others) occur smoothly in generic families depending on at least
n parameters: attracting1 invariant n-tori (and more suprising invariant subman-
ifolds) are born smoothly at partially elliptic stationary points in generic families
of vector fields (resp., transformations) depending on at least n parameters.

Here, “partially elliptic” means that the eigenvalues of the linearised dynamics
which lie on the imaginary axis (resp., unit circle) are simple and consist of n pairs
of conjugate complex numbers2. The corresponding values u0 of the parameter u
form a submanifold of codimension n, but we shall see soon that the set of those u
for which the attracting invariant submanifold exists (and depends differentiably
on u) contains an open subset with nonempty open tangent cone at u0, implying
that the phenomenon is not negligible—for n > 1, turbulence as above can be
observed when the parameter crosses the boundary of this open subset.

Under a mild nonresonance condition, taking a suitable chart and restricting
the dynamics to a central manifold, one may assume that, near u0 and the partially
elliptic stationary point considered in phase space, the dynamics under study form
a local family Zu (resp., hu) of vector fields on (resp., transformations of) Cn

having third order contact at 0 ∈ Cn with a normal form

Nu(z) =
(
zj

(
λj(u) + iµj(u)−

n∑

ℓ=1

(
ajℓ(u) + ibjℓ(u)

)
|zℓ|2

))
1≤j≤n

,

(resp., the time one of its flow), where λj , µj , ajℓ, bjℓ are differentiable real functions
with λj(u0) = 0 (ellipticity). Here is the main result of [2]:

Theorem 1. (birth lemma) Under those hypotheses3, assume that, for some tan-
gent vector v0 at u0, the vector field

ξ̃u0,v0(ζ) =
(
ζj

(
D(λj + iµj)(u0)v0 −

n∑

ℓ=1

(
ajℓ(u0) + ibjℓ(u0)

)
|ζℓ|2

))
1≤j≤n

on C
n admits a normally hyperbolic compact invariant manifold Σ̃ ⊂ C

n. Then,
there is an open subset Uu0,v0 of parameter space U with the following properties:

i) Its closure contains u0.
ii) Its tangent cone at u0 is an open cone with vertex 0 containing R∗

+v0.

1More generally, normally hyperbolic.
2For maps, [2] treats similarly the case where there are n− 1 pairs, plus −1 but not +1.
3Even when there are less than n parameters or the family is not generic.
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iii) Every Zu (resp. hu) with u ∈ Uu0,v0 has a compact normally hyperbolic

invariant manifold Su diffeomorphic to Σ̃, whose index4 is that of Σ̃ for

ξ̃u0,v0 , depending nicely on u and tending to {0} when u→ u0.
iv) Precisely, there is an open cone V ∋ v0 of Tu0U with vertex 0 such that

each ξ̃u0,v with v ∈ V has a unique normally hyperbolic compact invariant

manifold Σ̃v diffeomorphic to Σ̃ and C1-close to it up to homothety5; every
smooth γ : (R+, 0) → (U , u0) with γ̇(0) = v ∈ V satisfies γ(ε) ∈ Uv0,v0 for

ε > 0 small enough, and lim
ε→0

ε−
1
2Sγ(ε) = Σ̃v in the at least C1 sense.

The last statement shows that the invariant manifold Su arises rather suddenly,
as in classical Hopf bifurcations.

The vector field ξ̃u0,v0 being U(1)
n-invariant, so is Σ̃ by local uniqueness; passing

to the quotient, we see that the O(1)n-invariant submanifold Σ = Σ̃∩Rn of Rn is
a normally hyperbolic invariant manifold of the O(1)n-invariant vector field

ξu0,v0(r) =
∑

j

rj

(
Dλj(u0)v0 −

∑

ℓ

ajℓ(u0) r
2
ℓ

) ∂

∂rj

on R
n. Here is a weak converse: if ξu0,v0 has a normally hyperbolic O(1)n-invariant

submanifold Σ on which it vanishes identically, then the hypothesis of the birth

lemma is satisfied by Σ̃ = {z ∈ C
n : (|z1|, . . . , |zn|) ∈ Σ}. Two cases of interest:

− Tori. When Σ = {r : ∀j Dλj(u0)v0 =
∑

ℓ ajℓ(u0) r
2
ℓ} with

(
ajℓ(u0)

)

invertible, it consists of equilibrium points; if they are hyperbolic, we get
the n-tori mentioned before.

− Moment-angle manifolds. If Σ = {r : F (r) = b} with F (r) =
∑

j Λjr
2
j ,

b,Λ1, . . . ,Λn ∈ Rc, conv(Λ1, . . . ,Λn) 6∋ 0 and b a regular value of F , then

Σ̃ is called a moment-angle manifold and can have various topologies [1, 5].
When ξu0,v0(r) =

∑
j rjΛj ·

(
b − F (r)

)
∂

∂rj
(the dot stands for the scalar

product), it equals − 1
2∇|F (r)− b|2 and therefore admits Σ as a pointwise

invariant normally hyperbolic attractor; hence, the birth lemma applies.

In this example, Σ̃ is a (2n−1)-sphere if c = 1, an n-torus if c = n. Of course, this
ξu0,v0 is too particular to arise in generic n-parameter families6 but, as normal
hyperbolicity is open, the birth of normally hyperbolic attractors diffeomorphic to

Σ̃ will be observed in generic n-parameter families nearby. This is the spirit of the
following result, where M and U are separable manifolds:

Corollary 1. Assume that the vector field ξ(r) =
∑

j rj

(
νjv −

∑
ℓ γjℓ r

2
ℓ

)
∂

∂rj
on

Rn, νj , γjℓ ∈ R, has an O(1)n-invariant normally hyperbolic invariant manifold Σ

4Dimension of the leaves of the stable foliation.
5Because normal hyperbolicity is open and η

1
2 Σ̃v is invariant by the flow of ξ̃u0,ηv for all

positive η when Σ̃v is invariant by the flow of ξ̃u0,v
6Normally hyperbolic invariant manifolds Σ of large dimension are not always easy to find.



Dynamische Systeme 1949

whose intersection with R
n
+ is connected (normal hyperbolicity being absolute when

Σ meets some coordinate hyperplane {rj = 0} in which it is not contained). Then,
for dimM ≥ 2n and dimU ≥ n, there exists a nonempty, C3-open set of smooth
families X : U ×M → TM of vector fields (resp., f : U ×M → M) for which
the birth lemma ensures at some point (u0, x0) the birth of normally hyperbolic

invariant submanifolds of Xu (resp., fu) diffeomorphic to Σ̃. The same holds true
if “normally hyperbolic” is replaced by “normally hyperbolic and attracting”.

For example, if n = 3, Σ can be a periodic orbit, yielding a 4-torus Σ̃ in

C3. Of special interest is the case of the birth lemma where Σ̃ is an attracting
embedded sphere of codimension 1 around the origin, a bona fide generalisation of
the Hopf bifurcation in which every nonzero forward orbit of Zu (resp., hu) in a
fixed neighbourhood of the origin in Cn tends to Su for u ∈ Uu0,v0 close enough to
u0. The approach via the case c = 1 of moment-angle manifolds [4] is interesting
because the dynamics on Su varies a lot, ξu0,v0 having no dynamics on Σ, but
this provides quite a narrow set in parameter space. A very wide set is furnished
by the rough birth lemma [2] stating that, for positive Dλj(u0)v0 and ajℓ(u0), a

family of attracting Čech homology (2n − 1)-spheres bifurcates as in the bir! th
lemma. Conditions for these “spheres” to be normally hyperbolic differentiable
hypersurfaces Su will be studied in a forthcoming paper with Santiago López de
Medrano, together with the bifurcations that can occur inside Su—the birth lemma
can indeed apply for the same (u0, v0) (with different Uu0,v0) to many manifolds

Σ̃, among which a big embedded (2n− 1)-sphere containing all the others.
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KAM à la R

Jürgen Pöschel

In [4] Rüssmann proposed – quoting from his abstract – a new variant of the Kam-
theory, containing an artificial parameter q, 0 < q < 1, which makes the steps of
the Kam-iteration infinitely small in the limit q ↓ 1. . . . The new technique of
estimation differs completely from all what has appeared about Kam-theory in the
literature up to date. Only Kolmogorov’s idea of local linearization and Moser’s
modifying terms are left. The basic idea is to use the polynomial structure in order
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to transfer, at least partially, the whole Kam-procedure outside of the original
domain of definition of the given dynamical system.

It is the purpose of this talk to make this scheme accessible in an even simpler
setting, namely for analytic perturbations of constant vector fields on a torus.

Let N denote a constant vector field on the n-torus Tn = Rn/2πZn describing
uniform rotational motions with frequencies ω = (ω1, . . . , ωn). Putting N into nor-
mal form, we have N = ω. A small perturbation X = N +P usually destroys this
simple flow, due to frequency drifts and the effect of resonances. If, however, the
frequencies ω are strongly nonresonant, the perturbation P is sufficiently smooth
and small, and if we are allowed to add a small correctional n-vector to adjust
frequencies, then X is conjugate to ω. This is the content of the classical Kam

theorem with modifying terms for this model problem, as introduced by Moser [2].
The precise setting is the following. We consider N as a vector field in nor-

mal form depending on the frequencies ω as parameters. These vary in some
neighbourhood of a fixed compact set Ω ⊂ Rn consisting of strongly nonresonant
frequencies. That is, each ω ∈ Ω satisfies

|〈k, ω〉| ≥ α

∆(|k|) , 0 6= k ∈ Z
n,

with some α > 0 and some Rüssmann approximation function ∆. These are
continuous, increasing functions ∆: [1,∞) → [1,∞) such that ∆(1) = 1 and

∫ ∞

1

log∆(t)

t2
dt <∞.

The perturbation P is assumed to be analytic in the angles θ ∈ Tn and may
depend analytically on the parameters ω as well. The complex domains are

Ds = {θ : |Im θ| < s}, Ωh = {z : |z − Ω| < h},

where |·| denotes the max -norm for complex vectors, while it denotes the sum-
norm for integer vectors. To simplify matters considerably, we employ the weighted
norms

|P |s,h = |P |s,Ωh
= sup

ω∈Ωh

∑

k∈Zn

|pk(ω)|e|k|s, P =
∑

k∈Zn

pk(ω)e
i〈k,θ〉.

Finally, with any approximation function ∆ we associate another such function Λ
by setting Λ(t) = t∆(t).

KAM Theorem. Suppose X = N + P is real analytic on Ds × Ωh with

|P |s,h = ǫ <
h

16
≤ α

32Λ(τ)
,

where τ is so large that

r := 8

∫ ∞

τ

log Λ(t)

t2
dt <

s

2
.
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Then there exists a real map ϕ : Ω → Ωh, and for each ω ∈ Ω a real analytic
diffeomorphism Φω of the n-torus, such that

Φ∗
ω(ϕ(ω) + P ) = ω.

Moreover, |ϕ− id|Ω ≤ ǫ and |Φ− id|s−2r,Ω ≤ Λ(τ)α−1ǫ.

The above smallness condition does not depend explicitly on the dimension n of
the problem. However, this dimension enters implicitly through the small divisor
conditions and Dirichlet’s lemma which states that for nonresonant vectors ω,

min
0<|k|≤K

|〈k, ω〉| ≤ |ω|
Kn−1

.

Hence the approximation function ∆ has to grow at a rate depending on n in order
to obtain admissible frequencies. A typical example is ∆(t) = tν with ν > n− 1.

We prove the theorem by an iterative process of successive coordinate transfor-
mations proposed by Kolmogorov [1]. However, at variance with the crustimoney
proseedcake [5, Chapter IV], we use a scheme of estimates proposed by Rüssmann,
which does not rely on superlinear convergence speeds, but aims to decrease the
size of the perturbation just a tiny bit at each step.

To this end, we split P into an infrared part P̃ and an ultraviolet part P̂ .
However – and this is a new twist – P̂ also contains fractions of the Fourier
coefficients of low order. As a result, P̃ will be bounded on a larger domain, with
even a better bound than P itself.
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Approximating pseudo-rotations by integrable systems using

holomorphic curves

Barney Bramham

Anatole Katok asks the following fairly informal question.

Question 1 ([13]) In low dimensions (2 for maps, 3 for flows) are all conserva-
tive dynamical systems with zero topological entropy a limit of integrable systems?

In a step towards answering this affirmatively, we prove the following in [6]. All
maps we discuss here are orientation preserving, and area preservation is always
with reference to the Euclidean volume form dx ∧ dy.

Theorem 1 ([6]). Let ϕ be a smooth, area preserving, diffeomorphism of the
closed 2-disk. Assume that ϕ has precisely one periodic point which without loss of
generality is the origin 0 ∈ D. (In particular ϕ has zero topological entropy.) Then
there exists a sequence {ϕj}j∈N of smooth diffeomorphisms converging in Diff∞(D)
to ϕ, such that for each j ∈ N there exists gj ∈ Diff∞(D) with gj(0) = 0, so that

g−1
j ◦ ϕj ◦ gj = Rpj/qj

for some pj , qj ∈ Z, qj ≥ 1, and Rpj/qj : D → D denotes the periodic rotation

map z 7→ e2πipj/qj z.

The class of conservative dynamical systems that this result addresses has an
interesting history, and are referred to as smooth pseudo-rotations:

Definition 1. An area preserving homeomorphism of the closed disk having pre-
cisely one periodic point (which must automatically be a fixed point) is called a
pseudo-rotation.

Note that Franks [9] shows that in fact any area preserving disk homeomorphism
with a finite number of periodic points is a pseudo-rotation. Obvious examples of
pseudo-rotations are maps that are conjugate to a rotation through an irrational
angle, hence the terminology.

However these are not the only examples. In 1970 Anosov and Katok [1] discov-
ered “exotic” pseudo-rotations which cannot be conjugated to a rotation. More
precisely, they developed a technique, known as the “approximation by conjugation
method”, which allowed them to construct pseudo-rotations exhibiting surprising
dynamical properties, including ergodicity. This of course implies the existence
of dense orbits. It is not obvious how one approximates a system with a dense
orbit by integrable ones. Indeed, if we take the definition of integrable to mean
the time-1 map of an autonomous Hamiltonian H : D → R on the disk, then each
orbit of an integrable system is confined to a closed set of measure zero. From this
point of view the two behaviors are entirely different. Nevertheless, the Anosov-
Katok ergodic examples were, by construction, limits of integrable systems. More
precisely, limits of maps conjugate to rational rotations, providing some evidence
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for question 1. Theorem 1 above shows that infact all pseudo-rotations are a limit
of maps conjugate to rational rotations.

We point out that it is currently unclear whether the approximation maps
provided by theorem 1 can be made to preserve the standard area form. This
seems most likely possible, but is still work in progress.

The proof of theorem 1 uses pseudo-holomorphic curve techniques from sym-
plectic geometry. The relevant setup is described in [7], where the focus is on other
applications. Very roughly the construction of the approximating maps goes as
follows. The discrete dynamical system under study given by the area preserving
disk map ϕ, is viewed as the time-1 map of a smooth time dependent Hamiltonian
on the disk. The trajectories of this continuous system can be identified with a
class of pseudo-holomorphic planes in a four dimensional almost complex manifold
(R2 ×D, J). These are characterized as minimizing a certain energy amongst all
pseudo-holomorphic planes. The planes combine to foliate the whole four dimen-
sional space. Denote this foliation Fϕ. (All the dynamical information is contained
in the almost complex structure J which depends explicitly on the Hamiltonian.)

It turns out that to some degree the process just described is reversible. That
is, any suitable foliation of (R2 × D, J) by pseudo-holomorphic curves gives rise
to a diffeomorphism of the disk. Foliations by pseudo-holomorphic curves were
first constructed by Hofer, Wysocki, and Zehnder in their seminal papers on Reeb
flows on energy surfaces diffeomorphic to the three-sphere [11, 12]. In [3] these
techniques were adapted for the setup described here, and much further developed
in [5]. By constructing a sequence of foliations F1,F2,F3 . . . whose energy decays
to zero, a well developed compactness theory of pseudo-holomorphic curves [2] can
be applied and we conclude that Fj → Fϕ in a C∞

loc-sense, as j → ∞. From this
we obtain maps ϕj converging to ϕ, now in a C∞-sense on the whole disk. It is
possible to prove that each foliation Fj has a certain amount of symmetry which
translates into the property that each ϕj is a root of unity. That is, for each j ∈ N

there exists qj ∈ N such that ϕ
(qj)
j = idD. Such maps can be smoothly conjugated

to a rational rotation Rpj/qj for some pj ∈ Z, completing the argument.
The fact that ϕ is a pseudo-rotation enters the proof when showing that each

approximating foliation Fj has the desired symmetry. One would of course like
to know whether this framework can used to give a complete answer to Katok’s
question. This will be the subject of future work.
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Arithmeticity for some higher rank abelian actions

Federico Rodriguez Hertz

(joint work with Anatole Katok)

Given a matrix A ∈ SL(d,Z), we say that A is totally irreducible if the char-
acteristic polynomial of all powers of A are irreducible. Dirchlet’s Unit Theorem
gives that the centralizer in SL(d,Z) of a totally irreducible matrix A ∈ SL(d,Z),
Z(A) ⊂ SL(d,Z) is a finite extension of Zr+c−1 where r is the number of real
eigenvalues and c is the number of pairs of complex (non-real) eigenvalues of A
(hence r + 2c = d). This shows that the maximal possible rank of a totally ir-
reducible linear action of Zk ∈ SL(d,Z) is d − 1 and is precisely when all the
eigenvalues are real.

In this way we get interesting non trivial actions of Zd−1 into a d dimensional
manifold (Td in the present case). Also one can define affine actions simply by
adding a cocycle to the linear action. It turns out that any such cocycle trivializes
on a finite index subgroup. The natural question arises, what are other possible
non trivial actions.

A first natural construction is to blow up a fixed point of the action and then
fill the blown up point with something. Or blow up two fixed points (take a
finite index subgroup to get two fixed points) and add a handle. Finally, in this
maximal rank case the centralizer of A is Zd−1 × {±Id} we can just take the
quotient Td/{±Id} and blow up the fixed points of −Id to get again a manifold.
This type of construction was first done in [8], (see also [9]).

Finally one can try to blow up a non periodic orbit. It is worth noting that
from Berend’s Theorem [1] we have that the only closed invariant sets are either
finite or Td. So a non periodic orbit will be a dense orbit, and hence the blow up
would be like the building of a Denjoy counterexample for circle rotations. It is
yet not clear to us if such a construction can be done, and in case it can be done,
what is the degree of smoothness allowed.

Our next step is to try to understand general non trivial Zd−1 actions on a d-
dimensional manifold M . The non triviality condition will come in a condition on
Lyapunov exponents and entropy w.r.t. some invariant measure. Our first result
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in this direction is a joint work of B. Kalinin and A. Katok with the author in [5]
where we get that such a measure has to be absolutely continuous w.r.t. Lebesgue
measure.

Theorem 1. If α is a Zd−1 action on a d-dimensional manifold, d ≥ 3, preserving
an ergodic measure µ and the kernels of its Lyapunov exponents are in general
position then µ is absolutely continuous w.r.t. Lebesgue measure.

After the prove of this theorem, with the examples at hand and in light of the
results in [4] and [9] it was natural to ask the following (see Oberwolfach report
[6] and [5]):

What are the possible values of the entropy for different elements of the action,
or what is equivalent by Pesin’s entropy formula, what are the possible values of
Lyapunov exponents. Are they logarithms of algebraic numbers and in this case
is the degree the dimension of M?.

Also it is asked if it is possible to build such an action on any manifold as in the
rank 1 case, see [2, 3], or if on the contrary there is some restriction for instance
in the topology of the manifold.

Also, another natural question is about finiteness property of such measure,
since the measure is absolutely continuous w.r.t. Lebesgue then there are at most
countably many ergodic components, are they finite?

And finally what about the measurable classification of such systems? Are they
always measurably conjugated to algebraic actions? It is worth remarking that
in [7] it is proven that knowing the entropy values is not enough to solve the
conjugacy problem unlike the rank one Bernoulli systems.

In the following theorem we solve all this questions:

Theorem 2. Let α : Zd → Diff r(Md+1), d ≥ 2 and r > 1 be a maximal rank
abelian action preserving an ergodic measure µ and such that the kernels of its
Lyapunov exponents are in general position. Then there is a finite index subgroup
Γ ⊂ Zd, a measure ν on Md+1 invariant by the restriction of α to Γ, α|Γ, and
finitely many elements n1, . . . , nk ∈ Zd, k = card(Zd/Γ) such that

µ =
α(n1)∗ν + · · ·+ α(nk)∗ν

k
.

There is an affine action α0 on an infratorus T and a bi-measurable bijection
H : (T, λ) → (M, ν) where λ is Lebesgue measure on T (projected Haar measure)
conjugating the restriction of α to Γ with α0.

Moreover there is an open α|Γ-invariant set U ⊂ Md+1 of full ν measure and
an open α0 invariant set V ⊂ T , the complement of a finite α0-invariant set such
that the inverse of H : V → U coincides (mod 0) with a continuous onto map,
h : U → V conjugating α|Γ with α0.

Finally, for every ǫ there is a set Λǫ of ν-measure bigger than 1 − ǫ and a
diffeomorphism hǫ : U → V that coincides with h on Λǫ.

In particular whenever one has such an action, then the fundamental group of
Md+1 contains a copy of Zd+1 and hence this gives a highly nontrivial restriction
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on the topology ofMd+1. Also, the support of the measure has non trivial topology
hence there are at most finitely many such ergodic measures.

Finally, we get as a Corollary, using the information on the topology of the
manifold and the global rigidity result in [10] that if in addition the actions has
an Anosov element then the action is smoothly conjugated to the affine action.
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Birkhoff normal form and nonlinear scattering for PDEs

Walter Craig

The theory of Hamiltonian partial differential equations (PDEs) takes the point
of view that a PDE of evolution is a dynamical system posed on an appropriate
space of functions for its phase space, studying the details of orbits and the prin-
cipal structures that are invariant under the flow. Examples of this include the
constructions of KAM tori [5][2], the analysis of invarant measures, descriptions
of stable and unstable varieties to fixed points (and to other geometrical objects),
Nekhorashov stability theorems, and the construction of orbits which exhibit ac-
tion cascades. Normal forms have long played a rôle in Hamiltonian dynamical
systems, being useful to reduce a Hamitonian system to exhibit its essential non-
linearities. They are increasingly being used in the analysis of Hamiltonian PDEs,
see [5] for example. However there is an important difference in the character of a
normal form and the importance of classical resonances between problems whose
linearization has continuous spectrum, as opposed to the case of discrete spec-
trum [6]. In this talk this difference is made explicit in a Birkhoff normal form for
the nonlinear Schrödinger equation posed on the space x ∈ Rd, for which all non-
resonant and all resonant terms of the fourth order term of the Hamiltonian can
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be removed by an appropriate canonical transformation of a given Hilbert space.
The normal form and the Birkhoff normal forms transformation have implications
for the nonlinear scattering of solutions. We pursue the analysis as an instructive
example in the particular case of the nonlinear Schrödinger equation, however we
believe that the phenomenon is more general, and relevant to the analysis of the
evolution of other PDEs whose linearization is dominated by continuous spectrum.
An averaging theory approach to nonlinear PDEs which is formally from a quite
different point of view, but which has surprising connections to the present work,
appears in [3]. The results in this note represent work in progress, which is joint
with A. Selvitella and Y. Wang of McMaster University.

Nonlinear Schrödinger equation. The cubic nonlinear Schrödinger equation
on Rdis

(1) i∂tu = 1
2∆xu− σ|u|2u ,

where σ = +1 is the defocusing case and σ = −1 is the focusing case. The
Hamiltonian, or energy functional is given by the expression

H(u) =

∫
1
2 |∇u|

2 dx+

∫
σ
2 |u|

4 dx(2)

= H(2) +H(4) .

With regard to the Hamiltonian (2), the equations (1) can be rewritten in complex
symplectic coordinates as the system

∂tu = igradūH := XH(u) ,

whose flow, or solution map, we will denote by ϕt(u). The linearization of equa-
tions (1) about the equilibrium solution u = 0 is just the free Schrödinger equation,
with Hamlitonian H(2), whose frequencies are given by the dispersion relation

ω(k) = 1
2 |k|

2 .

We denote the linear flow by Φt(u). From the character of the flow about the
equilibrium u = 0, it is clear that it is an elliptic stationary point whose linear
eigenvalues are given by ±iω(k).
Normal forms. A normal forms transformation is intended to simplify a Hamil-
tonian system, retaining only essential nonlinearities. Considering the Hamilton-
ian (2) about the elliptic equilibrium u = 0, a normal form entails a near identity

canonical transformation v = τ(u) such that H̃(v) := H(u) is of the form

H̃(v) = H(2) +
(
Z(3) + · · ·+ Z(N)

)
+ R̃(N+1) .

In finite dimensional Hamiltonian systems the vector field XH(2)

has finitely many
frequencies ω(k), k = 1, . . .m, and the resonant terms Z(n) are associated with
resonance conditions

∑

k

(
ω(k)(pk − qk)

)
= 〈ω, P −Q〉 , P, Q ∈ Z

m , |P |+ |Q| = n .
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All other terms of the Hamiltonian up to order N can be eliminated by the ap-
propriate choice of τ(u). The situation is similar for Hamiltonian PDE posed over
compact domains, such as x ∈ Td as in [5].

This situation contrasts with the case (1) above when posed over x ∈ Rd.
Firstly, the Fourier transform represents a canonical transformation,

û(k) = F(u)(k) =
1

√
2π

d

∫
e−ik·xu(x) dx .

From the Plancherel identity, the Hamiltonian is given by

H(2) +H(4)(3)

=

∫
ω(k)|û(k)|2 dk +

∫∫∫

{k1+k2=k3+k4}

σ
2 û(k1)û(k2)ˆ̄u(k3)ˆ̄u(k4) dk1dk2dk3 .

Following Birkhoff’s receipe, a fourth order normal form is obtained through a

transformation given by the flow of a Hamiltonian vector field XG(4)

, where G(4)

is a solution of the homological equation

(4) {H(2), G(4)} = H(4) .

In the case of the nonlinear Schrödinger equation this has as solution

G(4) = −i
∫∫∫

{k1+k2=k3+k4}

σ
2

û(k1)û(k2)ˆ̄u(k3)ˆ̄u(k4)
ω(k1)+ω(k2)−ω(k3)−ω(k4)

dk1dk2dk3 .

The denominator is rewritten to exhibit the form of a convolution kernel

ω(k1)+ω(k2)−ω(k3)−ω(k4) = 1
2 (|k1|2+|k2|2−|k3|2−|k4|2) = −(k1−k3)·(k2−k3) ,

where we have used the constraint that k1+ k2− k3− k4 = 0, which is imposed by
the conservation of momentum. The fourth order Birkhoff normal forms transfor-
mation is given by the time-1 flow of the Hamiltonian vector field

XG(4)

(u)(x) = igradū(x)G
(4)(5)

= −
∫∫

R2d

u(x1)u(x2)ū(x− x1 − x2) sgn((x1 − x) · (x2 − x)) dx1dx2 .

The basic question presented by this situation is whether the flow ψs(u) of the

vector field XG(4)

(u) exists, and on which Banach space of functions u(x).

Define the Hilbert space Hr,r(Rd) := {u ∈ L2 : ∂rxu , x
ru ∈ L2}.

Theorem 1. Set r > d/2, then the vector field XG(4)

(u) is holomorphic in the
variables (u, ū) ∈ (Hr,r)2. It follows that the flow ψs exists, and for sufficiently
small R it gives rise to a holomorphic canonical transformation v = τ(u) :=
ψs

∣∣
s
(u) on a ball BR(0) ⊆ Hr,r.

Proof: The vector field (5) satisfies a Lipschitz estimate, for u1, u2 ∈ Hr,r

‖XG(4)

(u1)−XG(4)

(u2)‖r,r ≤ CR2‖u1 − u2‖r,r ,
from which the theorem follows. �
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We remark that this transformation removes the nonresonant terms as well
as the resonant terms of the quadratic Hamiltonian H(4), a phenomenon which
is quite different from the finite dimensional analogs of Hamiltonian dynamical
systems, as well as for Hamiltonian PDEs defined over compact spatial domains.

Scattering. Restrict our attention to the nonlinear Schrödinger equation in the
defocusing case, there are other methods with which to approach the problem of
normal forms. These are through the scattering map.

Theorem 2 (J. Ginibre & G. Velo [4]). For d > 1 the following limit exists in
H1(Rd)

lim
t→±∞

Φ−tϕt(u) := u± = Ω±(u)

Related results have been discussed in many other papers on the subject, and a
survey is beyond the scope of this talk. However we know that the maps Ω±(u) are
holomorphic in (u, ū) in the space H1,1 [1]. Furthermore the scattering variables
linearize the flow;

Ω±(ϕt(u)) = Φt(Ω±(u)) .

This is a stronger statement than Theorem 1 above, as there is no restriction to the
ball BR(0) and there are no remaining error terms. However the scattering map
is given by a limiting process, in contrast to being given by an explicit singular
integral kernel as in G(4). We therefore have three normal forms, namely

u+ = Ω+(u) , u− = Ω−(u) = Ω+(ū) , v = τ(u) .

It turns out that there is a relation between these, and in particular the Birkhoff
normal forms transformation v = τ(u) describes the asymptotics of the time decay
of the quantities

Φ−tϕt(u)− Ω±(u) .

This is work in progress, and is beyond the scope of the present short note.
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[5] S. Kuksin & J. Pöschel, Invariant Cantor manifolds of quasiperiodic oscillations for a
nonlinear Schrödinger equation, Annals Math 143 (1996), 149-179.

[6] H. P. McKean, How real is resonance?, Commun. Pure Appl. Math. textbf50 (1997), 317-
322.



1960 Oberwolfach Report 34/2011

Diffusion along mean motion resonance for the restricted planar three

body problem

Vadim Kaloshin

(joint work with J. Féjoz, M. Guardia, P. Roldan)

We study dynamics of the restricted planar three body problem near a mean
motion resonance, i.e. resonance between periods of Jupiter and Asteroid. This
problem often used to model the Sun–Jupiter–Asteroid system. We pick a realistic
mass ratio µ = 10−3 and small Jupiter eccentricity e0. The main result is a
construction of a variety of diffusion orbits with varying eccentricity. In the proof
we verify certain non-degeneracy conditions numerically.

Based on work of Treschev and Piftankin it is natural to conjecture that speed

of diffusion for this problem is at least ∼ − ln(µe0)
µe0

t. We expect our mechanism

to apply to small values of µ and e0 and give heuristic arguments in its favor. If
so, applicability of Nekhoroshev theory to the three body problem as well as long
time stability becomes problematic.

It is well known that in the Asteroid belt distribution of Asteroids has so-
called Kirkwood gaps exactly at low order mean motion resonances and our mech-
anism could be one of possible explanations. To relate existence of Kirkwood gaps
with Arnold diffusion we also state a conjecture on its existence for a typical ε-
perturbation of the product of the pendulum and the rotator. Namely, we predict
that a positive conditional measure of initial conditions concentrated in the main
resonance exhibits Arnold diffusion on time scales − ln ε/ε2.

Localization of filtered Floer homology and implications for the

Conley conjecture

Doris Hein

In 1984, C. Conley conjectured that on any symplectic torus, any Hamiltonian
must have infinitely many periodic orbits, which are geometrically distinct. More
concretely, the conjecture states that there are simple periodic orbits of arbitrarily
large period, if the number of one-periodic orbits is finite. This conjecture has
now been established for Hamiltonians on more general manifolds: If the first
Chern class of a closed symplectic manifold vanishes over the second fundamental
group, then the Conley conjecture is true. The Conley conjecture also holds for
Hamiltonians on the cotangent bundle of a closed manifold, provided that the
Hamiltonian is quadratic at infinity.

Let M be a symplectic manifold and H : S1 ×M → R a Hamiltonian. Denote
the time-one-map of a Hamiltonian H by ϕH .

Theorem 1. ([He1, He2]) Assume that ϕH has only finitely many fixed points
and M and H satisfy one of the conditions:

(1) the manifold M is closed and c1(M)|π2(M) or



Dynamische Systeme 1961

(2) the manifold M = T ∗B is the cotangent bundle of a closed, oriented base
manifold B and the Hamiltonian H is quadratic at infinity.

Then there exist simple periodic orbits of arbitrarily large period.

The crucial ingredient of the proof is the localization of filtered Floer homology.
Using this localization, we can reduce the proof to the case of a closed, symplec-
tically aspherical manifold M in [Gi], since the proof there is essentially a local
argument near a special one-periodic orbit.

The Floer homology is, roughly speaking, the Morse homology for the action
functional on the space of capped loops in M . The action decreases along tra-
jectories connecting the critical points of the action, which are capped periodic
orbits of the underlying Hamiltonian system. Denote the filtered Floer homology

considering only orbits with action in the interval (a, b) by HF
(a, b)
∗ (H). For a

small action interval, the filtered Floer homology can be localized as follows:

Theorem 2. Let U ⊂ V be open sets in M such that they are homotopy equivalent
and that H does not have periodic solutions on V̄ \ U and is autonomous on this
shell. For sufficiently small action interval (a, b), the filtered Floer homology has
a direct sum decomposition

HF
(a, b)
∗ (K) = HF

(a, b)
∗ (K,U)⊕HF

(a, b)
∗ (K;M,U),

where the first summand contains only homology classes of periodic orbits in U
with a capping contained in U .

This theorem is proved using energy bounds for the Floer trajectories passing
through the difference V̄ \ U . In particular, the first summand depends only on
the restriction of the Hamiltonian and the symplectic form to V . The bound for
the length of the action interval depends only on the open sets U and V and the
behavior on the Hamiltonian on the difference. For a sufficiently small open set
V (e.g., V can be contained in a Darboux chart), this summand is therefore inde-
pendent of the surrounding manifold. Restricting to this summand, we can reduce
the proof of the above theorems to the proof in the case of a closed, symplectically
aspherical manifold.
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KAM and rigidity in partially hyperbolic and parabolic dynamics

Anatole Katok

We consider a broad class of partially hyperbolic algebraic actions of higher rank
abelian groups. Those actions appear as restriction of full Cartan actions on
homogeneous spaces of Lie groups and their factors by compact subgroups of their
centralizer. A common property of their actions is that hyperbolic directions
and their brackets generate the whole tangent space. For those actions we prove
differentiable rigidity for perturbations of sufficiently high regularity. The method
of proof is a KAM type iteration scheme. The principal difference with previous
work that used a similar approach is the very general nature of our proofs: the
only tool from analysis on groups is exponential decay of matrix coefficients and
no more specific information about unitary representations is required.

We also consider the rigidity problem for a model parabolic action: that is the
unipotent subgroup on Sl(2,R)× Sl(2,R)/Γ where Γ is an irreducible lattice. In
this case there is a conditional rigidity for 2-parametric families of perturbations
satisfying a natural transversality assumption. The method is also based on KAM
but the iterative step is more specific and uses a description of irreducible unitary
representation of Sl(2,R).

Classical Motion in Random Potentials

Andreas Knauf

(joint work with Christoph Schumacher)

We assume the random potential to be based on short range single site poten-
tials Wj ∈ Cη(Rd,R), j ∈ J , for |J | <∞, η ≥ 2 and

|∂αWj(q)| ≤
Cα

〈q〉d+ε
(q ∈ R

d, α ∈ N
d
0, |α| ≤ η)

with 〈q〉 :=
√
1 + |q|2, for constants Cα > 0.

• In the lattice case the Wj are placed on a regular lattice L ⊆ Rd according
to ω ∈ Ω := JL to form the random potential on extended configuration
space Ω× Rd :

V : Ω× R
d → R , V (ω, q) :=

∑

ℓ∈L

Wω(ℓ)(q − ℓ).

An L-ergodic probability measure β on Ω is chosen.
• In the marked Poisson case intensities ρj > 0 (j ∈ J) are chosen,

Ω̃ :=
{
ω
∣∣ ω measure on (Rd × J, B(Rd × J)) with

ω(K × {j}) ∈ N0 if K ⊆ R
d is compact

}
.
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Then (with Lebesgue measure λd) the probability measure on Ω̃ is given
by

β
(
{ω ∈ Ω̃ | ω(K × {j}) = m}

)
=

(ρjλ
d(K))m

m! exp(ρjλd(K))
,

(m ∈ N0, j ∈ J). This is mixing with respect to translations by Rd, and
induces the random potential

V : Ω̃× R
d → R , (ω, q) 7→

∫

Rd×J

Wj(q − x) dω(x, j).

After restricting to a subset Ω ⊆ Ω̃ of full measure in the Poisson case, on
extended phase space P := Ω× Rd × Rd the hamiltonian function

H : P → R , (ω, p, q) 7→ 1
2 |p|

2 + V (ω, q)

induces in both cases a continuous hamiltonian flow

Φ: R× P → P .

A natural L action on P leaves H as well as the measure µ := β ⊗ λ2d invariant.
Besides others, we derive the following statements:

• asymptotic velocity

v± : P → R
d , v±(ω, x0) := lim

T→±∞

qω(T, x0)

T
.

exists almost surely. It leads to β–a.e. deterministic distributions νω on
the space R× Rd of energies and asymptotic velocities.

• For d = 1 the support of ν is explicitly known.
• If the motion on the energy surface H−1

ω (E) is ergodic, v = 0, but the
motion is unbounded (β–a.s.)

• For d = 1 and in the Poisson case ergodicity does not occur.
• Generally in the lattice case the motion on the energy surfaces is not of
Anosov type and thus lacks uniform hyperbolicity.

• For coulombic random potentials on L (with single site potentials like
Wj(q) = − exp(−µj |q|)/|q|) for large energies E one has ergodicity on a
compactified space, and asymptotic velocity v = 0.

• In that case the motion is topologically transitive on H−1
ω (E), and the

closed orbits are dense. The motion is related to a geodesic flow on a
visibility manifold.
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Triviality of Some Actions of the Mapping Class Group

John Franks

(joint work with Michael Handel)

If S is a surface of genus g with a (perhaps empty) finite set of punctures and
boundary components we will denote by MCG(S) the group of isotopy classes of
homeomorphisms of S which pointwise fix the boundary and punctures of S. In
this talk we show the triviality of representations of MCG(S) in GL(n,C),Diff(S2)
and Homeo(T2) under various additional hypotheses.

For a closed surface S of genus g there is a natural representation of MCG(S)
into the group of symplectic matrices of size n = 2g obtained by taking the induced
action on H1(S,R). It is natural to ask if there are linear representations of lower
dimension. This is one of the questions we address.

Theorem 1 (F, Handel [2]). Suppose that S is a genus g ≥ 1 surface of finite
type (perhaps with boundary and punctures), that n < 2g and that φ : MCG(S) →
GL(n, xC) is a homomorphism. Then if g = 2 the image of φ is finite cyclic and
if g ≥ 3 then φ trivial.

Idea of Proof: The proof is by induction on g (when g decreases by one n decreases
by 2). It suffices to show that one Dehn twist about a non-separating simple closed
curve has trivial φ image. Consider Sg as the connected sum of a torus and a
surface S′ of genus g − 1. Let L = φ(Tα) where Tα is a Dehn twist about α, an
essential curve in the torus.

We analyse the canonical form of L and the fact that MCG(S′) lies in the
centralizer of L. �

This theorem and a classical result of Thurston are used to reduce the problem
of showing triviality to finding a global fixed point.

Theorem 2 (Global Fixed Point ⇒ Triviality). Suppose that Mn is a connected

manifold of dimension n, that n < 2g and that φ : MCG(Sg) → Diff1(Mn) is a
homomorphism. If the action φ has a global fixed point then it is trivial.

As an application we have the following two results about triviality of actions
of the mapping class group.

Theorem 3 (F, Handel [2]). Suppose that S is a closed surface with genus g > 6.
Then every homomorphism φ : MCG(S) → Diff(S2) is trivial.

Theorem 4 (F, Handel [2]). Suppose that S is a closed oriented surface with
genus g > 2. Then if n = 1, 2, every homomorphism φ : MCG(S) → Homeo(Tn)
is trivial.

The proofs of these two results show the existence of a global fixed point for
the action and then apply the “global fixed point theorem.”
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Institut für Analysis, Dynamik und
Modellierung, Fak. für Math. & Physik
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart

Prof. Dr. Paul H. Rabinowitz

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison , WI 53706-1388
USA

Dr. David Sauzin

CNRS-IMCCE
77, avenue Denfert-Rochereau
F-75014 Paris

Prof. Dr. Matthias Schwarz

Mathematisches Institut
Universität Leipzig
Johannisgasse 26
04103 Leipzig

Prof. Dr. Karl Friedrich Siburg

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund

Dr. Richard Siefring

Department of Mathematics
Michigan State University
Wells Hall
East Lansing , MI 48824-1027
USA

Prof. Dr. Serge Tabachnikov

Department of Mathematics
Pennsylvania State University
University Park , PA 16802
USA

Prof. Dr. Clarence Eugene Wayne

Department of Mathematics
Boston University
111 Cummington Street
Boston , MA 02215-2411
USA

Prof. Dr. Chris Wendl

Institut für Mathematik
Humboldt-Universität
Unter den Linden 6
10117 Berlin

Prof. Dr. Krzysztof Wysocki

Department of Mathematics
Pennsylvania State University
303 McAllister Building
University Park , PA 16802
USA

Prof. Dr. Zhihong Jeff Xia

Department of Mathematics
Lunt Hall
Northwestern University
2033 Sheridan Road
Evanston , IL 60208-2730
USA

Dr. Tatiana Yarmola

Department of Mathematics
University of Toronto
40 St George Street
Toronto , Ont. M5S 2E4
CANADA



1970 Oberwolfach Report 34/2011

Prof. Dr. Jean-Christophe Yoccoz

Mathematiques
College de France
(Annexe)
3, rue d’Ulm
F-75005 Paris Cedex 05

Prof. Dr. Lai-Sang Young

Courant Institute of
Mathematical Sciences
New York University
251, Mercer Street
New York , NY 10012-1110
USA

Prof. Dr. Eduard Zehnder

Departement Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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